xref: /qemu/hw/net/imx_fec.c (revision f8e1a989)
1 /*
2  * i.MX Fast Ethernet Controller emulation.
3  *
4  * Copyright (c) 2013 Jean-Christophe Dubois. <jcd@tribudubois.net>
5  *
6  * Based on Coldfire Fast Ethernet Controller emulation.
7  *
8  * Copyright (c) 2007 CodeSourcery.
9  *
10  *  This program is free software; you can redistribute it and/or modify it
11  *  under the terms of the GNU General Public License as published by the
12  *  Free Software Foundation; either version 2 of the License, or
13  *  (at your option) any later version.
14  *
15  *  This program is distributed in the hope that it will be useful, but WITHOUT
16  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  *  FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18  *  for more details.
19  *
20  *  You should have received a copy of the GNU General Public License along
21  *  with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "hw/net/imx_fec.h"
26 #include "sysemu/dma.h"
27 #include "qemu/log.h"
28 #include "net/checksum.h"
29 #include "net/eth.h"
30 
31 /* For crc32 */
32 #include <zlib.h>
33 
34 #ifndef DEBUG_IMX_FEC
35 #define DEBUG_IMX_FEC 0
36 #endif
37 
38 #define FEC_PRINTF(fmt, args...) \
39     do { \
40         if (DEBUG_IMX_FEC) { \
41             fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_FEC, \
42                                              __func__, ##args); \
43         } \
44     } while (0)
45 
46 #ifndef DEBUG_IMX_PHY
47 #define DEBUG_IMX_PHY 0
48 #endif
49 
50 #define PHY_PRINTF(fmt, args...) \
51     do { \
52         if (DEBUG_IMX_PHY) { \
53             fprintf(stderr, "[%s.phy]%s: " fmt , TYPE_IMX_FEC, \
54                                                  __func__, ##args); \
55         } \
56     } while (0)
57 
58 #define IMX_MAX_DESC    1024
59 
60 static const char *imx_default_reg_name(IMXFECState *s, uint32_t index)
61 {
62     static char tmp[20];
63     sprintf(tmp, "index %d", index);
64     return tmp;
65 }
66 
67 static const char *imx_fec_reg_name(IMXFECState *s, uint32_t index)
68 {
69     switch (index) {
70     case ENET_FRBR:
71         return "FRBR";
72     case ENET_FRSR:
73         return "FRSR";
74     case ENET_MIIGSK_CFGR:
75         return "MIIGSK_CFGR";
76     case ENET_MIIGSK_ENR:
77         return "MIIGSK_ENR";
78     default:
79         return imx_default_reg_name(s, index);
80     }
81 }
82 
83 static const char *imx_enet_reg_name(IMXFECState *s, uint32_t index)
84 {
85     switch (index) {
86     case ENET_RSFL:
87         return "RSFL";
88     case ENET_RSEM:
89         return "RSEM";
90     case ENET_RAEM:
91         return "RAEM";
92     case ENET_RAFL:
93         return "RAFL";
94     case ENET_TSEM:
95         return "TSEM";
96     case ENET_TAEM:
97         return "TAEM";
98     case ENET_TAFL:
99         return "TAFL";
100     case ENET_TIPG:
101         return "TIPG";
102     case ENET_FTRL:
103         return "FTRL";
104     case ENET_TACC:
105         return "TACC";
106     case ENET_RACC:
107         return "RACC";
108     case ENET_ATCR:
109         return "ATCR";
110     case ENET_ATVR:
111         return "ATVR";
112     case ENET_ATOFF:
113         return "ATOFF";
114     case ENET_ATPER:
115         return "ATPER";
116     case ENET_ATCOR:
117         return "ATCOR";
118     case ENET_ATINC:
119         return "ATINC";
120     case ENET_ATSTMP:
121         return "ATSTMP";
122     case ENET_TGSR:
123         return "TGSR";
124     case ENET_TCSR0:
125         return "TCSR0";
126     case ENET_TCCR0:
127         return "TCCR0";
128     case ENET_TCSR1:
129         return "TCSR1";
130     case ENET_TCCR1:
131         return "TCCR1";
132     case ENET_TCSR2:
133         return "TCSR2";
134     case ENET_TCCR2:
135         return "TCCR2";
136     case ENET_TCSR3:
137         return "TCSR3";
138     case ENET_TCCR3:
139         return "TCCR3";
140     default:
141         return imx_default_reg_name(s, index);
142     }
143 }
144 
145 static const char *imx_eth_reg_name(IMXFECState *s, uint32_t index)
146 {
147     switch (index) {
148     case ENET_EIR:
149         return "EIR";
150     case ENET_EIMR:
151         return "EIMR";
152     case ENET_RDAR:
153         return "RDAR";
154     case ENET_TDAR:
155         return "TDAR";
156     case ENET_ECR:
157         return "ECR";
158     case ENET_MMFR:
159         return "MMFR";
160     case ENET_MSCR:
161         return "MSCR";
162     case ENET_MIBC:
163         return "MIBC";
164     case ENET_RCR:
165         return "RCR";
166     case ENET_TCR:
167         return "TCR";
168     case ENET_PALR:
169         return "PALR";
170     case ENET_PAUR:
171         return "PAUR";
172     case ENET_OPD:
173         return "OPD";
174     case ENET_IAUR:
175         return "IAUR";
176     case ENET_IALR:
177         return "IALR";
178     case ENET_GAUR:
179         return "GAUR";
180     case ENET_GALR:
181         return "GALR";
182     case ENET_TFWR:
183         return "TFWR";
184     case ENET_RDSR:
185         return "RDSR";
186     case ENET_TDSR:
187         return "TDSR";
188     case ENET_MRBR:
189         return "MRBR";
190     default:
191         if (s->is_fec) {
192             return imx_fec_reg_name(s, index);
193         } else {
194             return imx_enet_reg_name(s, index);
195         }
196     }
197 }
198 
199 /*
200  * Versions of this device with more than one TX descriptor save the
201  * 2nd and 3rd descriptors in a subsection, to maintain migration
202  * compatibility with previous versions of the device that only
203  * supported a single descriptor.
204  */
205 static bool imx_eth_is_multi_tx_ring(void *opaque)
206 {
207     IMXFECState *s = IMX_FEC(opaque);
208 
209     return s->tx_ring_num > 1;
210 }
211 
212 static const VMStateDescription vmstate_imx_eth_txdescs = {
213     .name = "imx.fec/txdescs",
214     .version_id = 1,
215     .minimum_version_id = 1,
216     .needed = imx_eth_is_multi_tx_ring,
217     .fields = (VMStateField[]) {
218          VMSTATE_UINT32(tx_descriptor[1], IMXFECState),
219          VMSTATE_UINT32(tx_descriptor[2], IMXFECState),
220          VMSTATE_END_OF_LIST()
221     }
222 };
223 
224 static const VMStateDescription vmstate_imx_eth = {
225     .name = TYPE_IMX_FEC,
226     .version_id = 2,
227     .minimum_version_id = 2,
228     .fields = (VMStateField[]) {
229         VMSTATE_UINT32_ARRAY(regs, IMXFECState, ENET_MAX),
230         VMSTATE_UINT32(rx_descriptor, IMXFECState),
231         VMSTATE_UINT32(tx_descriptor[0], IMXFECState),
232         VMSTATE_UINT32(phy_status, IMXFECState),
233         VMSTATE_UINT32(phy_control, IMXFECState),
234         VMSTATE_UINT32(phy_advertise, IMXFECState),
235         VMSTATE_UINT32(phy_int, IMXFECState),
236         VMSTATE_UINT32(phy_int_mask, IMXFECState),
237         VMSTATE_END_OF_LIST()
238     },
239     .subsections = (const VMStateDescription * []) {
240         &vmstate_imx_eth_txdescs,
241         NULL
242     },
243 };
244 
245 #define PHY_INT_ENERGYON            (1 << 7)
246 #define PHY_INT_AUTONEG_COMPLETE    (1 << 6)
247 #define PHY_INT_FAULT               (1 << 5)
248 #define PHY_INT_DOWN                (1 << 4)
249 #define PHY_INT_AUTONEG_LP          (1 << 3)
250 #define PHY_INT_PARFAULT            (1 << 2)
251 #define PHY_INT_AUTONEG_PAGE        (1 << 1)
252 
253 static void imx_eth_update(IMXFECState *s);
254 
255 /*
256  * The MII phy could raise a GPIO to the processor which in turn
257  * could be handled as an interrpt by the OS.
258  * For now we don't handle any GPIO/interrupt line, so the OS will
259  * have to poll for the PHY status.
260  */
261 static void phy_update_irq(IMXFECState *s)
262 {
263     imx_eth_update(s);
264 }
265 
266 static void phy_update_link(IMXFECState *s)
267 {
268     /* Autonegotiation status mirrors link status.  */
269     if (qemu_get_queue(s->nic)->link_down) {
270         PHY_PRINTF("link is down\n");
271         s->phy_status &= ~0x0024;
272         s->phy_int |= PHY_INT_DOWN;
273     } else {
274         PHY_PRINTF("link is up\n");
275         s->phy_status |= 0x0024;
276         s->phy_int |= PHY_INT_ENERGYON;
277         s->phy_int |= PHY_INT_AUTONEG_COMPLETE;
278     }
279     phy_update_irq(s);
280 }
281 
282 static void imx_eth_set_link(NetClientState *nc)
283 {
284     phy_update_link(IMX_FEC(qemu_get_nic_opaque(nc)));
285 }
286 
287 static void phy_reset(IMXFECState *s)
288 {
289     s->phy_status = 0x7809;
290     s->phy_control = 0x3000;
291     s->phy_advertise = 0x01e1;
292     s->phy_int_mask = 0;
293     s->phy_int = 0;
294     phy_update_link(s);
295 }
296 
297 static uint32_t do_phy_read(IMXFECState *s, int reg)
298 {
299     uint32_t val;
300 
301     if (reg > 31) {
302         /* we only advertise one phy */
303         return 0;
304     }
305 
306     switch (reg) {
307     case 0:     /* Basic Control */
308         val = s->phy_control;
309         break;
310     case 1:     /* Basic Status */
311         val = s->phy_status;
312         break;
313     case 2:     /* ID1 */
314         val = 0x0007;
315         break;
316     case 3:     /* ID2 */
317         val = 0xc0d1;
318         break;
319     case 4:     /* Auto-neg advertisement */
320         val = s->phy_advertise;
321         break;
322     case 5:     /* Auto-neg Link Partner Ability */
323         val = 0x0f71;
324         break;
325     case 6:     /* Auto-neg Expansion */
326         val = 1;
327         break;
328     case 29:    /* Interrupt source.  */
329         val = s->phy_int;
330         s->phy_int = 0;
331         phy_update_irq(s);
332         break;
333     case 30:    /* Interrupt mask */
334         val = s->phy_int_mask;
335         break;
336     case 17:
337     case 18:
338     case 27:
339     case 31:
340         qemu_log_mask(LOG_UNIMP, "[%s.phy]%s: reg %d not implemented\n",
341                       TYPE_IMX_FEC, __func__, reg);
342         val = 0;
343         break;
344     default:
345         qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n",
346                       TYPE_IMX_FEC, __func__, reg);
347         val = 0;
348         break;
349     }
350 
351     PHY_PRINTF("read 0x%04x @ %d\n", val, reg);
352 
353     return val;
354 }
355 
356 static void do_phy_write(IMXFECState *s, int reg, uint32_t val)
357 {
358     PHY_PRINTF("write 0x%04x @ %d\n", val, reg);
359 
360     if (reg > 31) {
361         /* we only advertise one phy */
362         return;
363     }
364 
365     switch (reg) {
366     case 0:     /* Basic Control */
367         if (val & 0x8000) {
368             phy_reset(s);
369         } else {
370             s->phy_control = val & 0x7980;
371             /* Complete autonegotiation immediately.  */
372             if (val & 0x1000) {
373                 s->phy_status |= 0x0020;
374             }
375         }
376         break;
377     case 4:     /* Auto-neg advertisement */
378         s->phy_advertise = (val & 0x2d7f) | 0x80;
379         break;
380     case 30:    /* Interrupt mask */
381         s->phy_int_mask = val & 0xff;
382         phy_update_irq(s);
383         break;
384     case 17:
385     case 18:
386     case 27:
387     case 31:
388         qemu_log_mask(LOG_UNIMP, "[%s.phy)%s: reg %d not implemented\n",
389                       TYPE_IMX_FEC, __func__, reg);
390         break;
391     default:
392         qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n",
393                       TYPE_IMX_FEC, __func__, reg);
394         break;
395     }
396 }
397 
398 static void imx_fec_read_bd(IMXFECBufDesc *bd, dma_addr_t addr)
399 {
400     dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd));
401 }
402 
403 static void imx_fec_write_bd(IMXFECBufDesc *bd, dma_addr_t addr)
404 {
405     dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd));
406 }
407 
408 static void imx_enet_read_bd(IMXENETBufDesc *bd, dma_addr_t addr)
409 {
410     dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd));
411 }
412 
413 static void imx_enet_write_bd(IMXENETBufDesc *bd, dma_addr_t addr)
414 {
415     dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd));
416 }
417 
418 static void imx_eth_update(IMXFECState *s)
419 {
420     /*
421      * Previous versions of qemu had the ENET_INT_MAC and ENET_INT_TS_TIMER
422      * interrupts swapped. This worked with older versions of Linux (4.14
423      * and older) since Linux associated both interrupt lines with Ethernet
424      * MAC interrupts. Specifically,
425      * - Linux 4.15 and later have separate interrupt handlers for the MAC and
426      *   timer interrupts. Those versions of Linux fail with versions of QEMU
427      *   with swapped interrupt assignments.
428      * - In linux 4.14, both interrupt lines were registered with the Ethernet
429      *   MAC interrupt handler. As a result, all versions of qemu happen to
430      *   work, though that is accidental.
431      * - In Linux 4.9 and older, the timer interrupt was registered directly
432      *   with the Ethernet MAC interrupt handler. The MAC interrupt was
433      *   redirected to a GPIO interrupt to work around erratum ERR006687.
434      *   This was implemented using the SOC's IOMUX block. In qemu, this GPIO
435      *   interrupt never fired since IOMUX is currently not supported in qemu.
436      *   Linux instead received MAC interrupts on the timer interrupt.
437      *   As a result, qemu versions with the swapped interrupt assignment work,
438      *   albeit accidentally, but qemu versions with the correct interrupt
439      *   assignment fail.
440      *
441      * To ensure that all versions of Linux work, generate ENET_INT_MAC
442      * interrrupts on both interrupt lines. This should be changed if and when
443      * qemu supports IOMUX.
444      */
445     if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] &
446         (ENET_INT_MAC | ENET_INT_TS_TIMER)) {
447         qemu_set_irq(s->irq[1], 1);
448     } else {
449         qemu_set_irq(s->irq[1], 0);
450     }
451 
452     if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] & ENET_INT_MAC) {
453         qemu_set_irq(s->irq[0], 1);
454     } else {
455         qemu_set_irq(s->irq[0], 0);
456     }
457 }
458 
459 static void imx_fec_do_tx(IMXFECState *s)
460 {
461     int frame_size = 0, descnt = 0;
462     uint8_t *ptr = s->frame;
463     uint32_t addr = s->tx_descriptor[0];
464 
465     while (descnt++ < IMX_MAX_DESC) {
466         IMXFECBufDesc bd;
467         int len;
468 
469         imx_fec_read_bd(&bd, addr);
470         FEC_PRINTF("tx_bd %x flags %04x len %d data %08x\n",
471                    addr, bd.flags, bd.length, bd.data);
472         if ((bd.flags & ENET_BD_R) == 0) {
473             /* Run out of descriptors to transmit.  */
474             FEC_PRINTF("tx_bd ran out of descriptors to transmit\n");
475             break;
476         }
477         len = bd.length;
478         if (frame_size + len > ENET_MAX_FRAME_SIZE) {
479             len = ENET_MAX_FRAME_SIZE - frame_size;
480             s->regs[ENET_EIR] |= ENET_INT_BABT;
481         }
482         dma_memory_read(&address_space_memory, bd.data, ptr, len);
483         ptr += len;
484         frame_size += len;
485         if (bd.flags & ENET_BD_L) {
486             /* Last buffer in frame.  */
487             qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
488             ptr = s->frame;
489             frame_size = 0;
490             s->regs[ENET_EIR] |= ENET_INT_TXF;
491         }
492         s->regs[ENET_EIR] |= ENET_INT_TXB;
493         bd.flags &= ~ENET_BD_R;
494         /* Write back the modified descriptor.  */
495         imx_fec_write_bd(&bd, addr);
496         /* Advance to the next descriptor.  */
497         if ((bd.flags & ENET_BD_W) != 0) {
498             addr = s->regs[ENET_TDSR];
499         } else {
500             addr += sizeof(bd);
501         }
502     }
503 
504     s->tx_descriptor[0] = addr;
505 
506     imx_eth_update(s);
507 }
508 
509 static void imx_enet_do_tx(IMXFECState *s, uint32_t index)
510 {
511     int frame_size = 0, descnt = 0;
512 
513     uint8_t *ptr = s->frame;
514     uint32_t addr, int_txb, int_txf, tdsr;
515     size_t ring;
516 
517     switch (index) {
518     case ENET_TDAR:
519         ring    = 0;
520         int_txb = ENET_INT_TXB;
521         int_txf = ENET_INT_TXF;
522         tdsr    = ENET_TDSR;
523         break;
524     case ENET_TDAR1:
525         ring    = 1;
526         int_txb = ENET_INT_TXB1;
527         int_txf = ENET_INT_TXF1;
528         tdsr    = ENET_TDSR1;
529         break;
530     case ENET_TDAR2:
531         ring    = 2;
532         int_txb = ENET_INT_TXB2;
533         int_txf = ENET_INT_TXF2;
534         tdsr    = ENET_TDSR2;
535         break;
536     default:
537         qemu_log_mask(LOG_GUEST_ERROR,
538                       "%s: bogus value for index %x\n",
539                       __func__, index);
540         abort();
541         break;
542     }
543 
544     addr = s->tx_descriptor[ring];
545 
546     while (descnt++ < IMX_MAX_DESC) {
547         IMXENETBufDesc bd;
548         int len;
549 
550         imx_enet_read_bd(&bd, addr);
551         FEC_PRINTF("tx_bd %x flags %04x len %d data %08x option %04x "
552                    "status %04x\n", addr, bd.flags, bd.length, bd.data,
553                    bd.option, bd.status);
554         if ((bd.flags & ENET_BD_R) == 0) {
555             /* Run out of descriptors to transmit.  */
556             break;
557         }
558         len = bd.length;
559         if (frame_size + len > ENET_MAX_FRAME_SIZE) {
560             len = ENET_MAX_FRAME_SIZE - frame_size;
561             s->regs[ENET_EIR] |= ENET_INT_BABT;
562         }
563         dma_memory_read(&address_space_memory, bd.data, ptr, len);
564         ptr += len;
565         frame_size += len;
566         if (bd.flags & ENET_BD_L) {
567             if (bd.option & ENET_BD_PINS) {
568                 struct ip_header *ip_hd = PKT_GET_IP_HDR(s->frame);
569                 if (IP_HEADER_VERSION(ip_hd) == 4) {
570                     net_checksum_calculate(s->frame, frame_size);
571                 }
572             }
573             if (bd.option & ENET_BD_IINS) {
574                 struct ip_header *ip_hd = PKT_GET_IP_HDR(s->frame);
575                 /* We compute checksum only for IPv4 frames */
576                 if (IP_HEADER_VERSION(ip_hd) == 4) {
577                     uint16_t csum;
578                     ip_hd->ip_sum = 0;
579                     csum = net_raw_checksum((uint8_t *)ip_hd, sizeof(*ip_hd));
580                     ip_hd->ip_sum = cpu_to_be16(csum);
581                 }
582             }
583             /* Last buffer in frame.  */
584 
585             qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
586             ptr = s->frame;
587 
588             frame_size = 0;
589             if (bd.option & ENET_BD_TX_INT) {
590                 s->regs[ENET_EIR] |= int_txf;
591             }
592         }
593         if (bd.option & ENET_BD_TX_INT) {
594             s->regs[ENET_EIR] |= int_txb;
595         }
596         bd.flags &= ~ENET_BD_R;
597         /* Write back the modified descriptor.  */
598         imx_enet_write_bd(&bd, addr);
599         /* Advance to the next descriptor.  */
600         if ((bd.flags & ENET_BD_W) != 0) {
601             addr = s->regs[tdsr];
602         } else {
603             addr += sizeof(bd);
604         }
605     }
606 
607     s->tx_descriptor[ring] = addr;
608 
609     imx_eth_update(s);
610 }
611 
612 static void imx_eth_do_tx(IMXFECState *s, uint32_t index)
613 {
614     if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) {
615         imx_enet_do_tx(s, index);
616     } else {
617         imx_fec_do_tx(s);
618     }
619 }
620 
621 static void imx_eth_enable_rx(IMXFECState *s, bool flush)
622 {
623     IMXFECBufDesc bd;
624 
625     imx_fec_read_bd(&bd, s->rx_descriptor);
626 
627     s->regs[ENET_RDAR] = (bd.flags & ENET_BD_E) ? ENET_RDAR_RDAR : 0;
628 
629     if (!s->regs[ENET_RDAR]) {
630         FEC_PRINTF("RX buffer full\n");
631     } else if (flush) {
632         qemu_flush_queued_packets(qemu_get_queue(s->nic));
633     }
634 }
635 
636 static void imx_eth_reset(DeviceState *d)
637 {
638     IMXFECState *s = IMX_FEC(d);
639 
640     /* Reset the Device */
641     memset(s->regs, 0, sizeof(s->regs));
642     s->regs[ENET_ECR]   = 0xf0000000;
643     s->regs[ENET_MIBC]  = 0xc0000000;
644     s->regs[ENET_RCR]   = 0x05ee0001;
645     s->regs[ENET_OPD]   = 0x00010000;
646 
647     s->regs[ENET_PALR]  = (s->conf.macaddr.a[0] << 24)
648                           | (s->conf.macaddr.a[1] << 16)
649                           | (s->conf.macaddr.a[2] << 8)
650                           | s->conf.macaddr.a[3];
651     s->regs[ENET_PAUR]  = (s->conf.macaddr.a[4] << 24)
652                           | (s->conf.macaddr.a[5] << 16)
653                           | 0x8808;
654 
655     if (s->is_fec) {
656         s->regs[ENET_FRBR]  = 0x00000600;
657         s->regs[ENET_FRSR]  = 0x00000500;
658         s->regs[ENET_MIIGSK_ENR]  = 0x00000006;
659     } else {
660         s->regs[ENET_RAEM]  = 0x00000004;
661         s->regs[ENET_RAFL]  = 0x00000004;
662         s->regs[ENET_TAEM]  = 0x00000004;
663         s->regs[ENET_TAFL]  = 0x00000008;
664         s->regs[ENET_TIPG]  = 0x0000000c;
665         s->regs[ENET_FTRL]  = 0x000007ff;
666         s->regs[ENET_ATPER] = 0x3b9aca00;
667     }
668 
669     s->rx_descriptor = 0;
670     memset(s->tx_descriptor, 0, sizeof(s->tx_descriptor));
671 
672     /* We also reset the PHY */
673     phy_reset(s);
674 }
675 
676 static uint32_t imx_default_read(IMXFECState *s, uint32_t index)
677 {
678     qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
679                   PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4);
680     return 0;
681 }
682 
683 static uint32_t imx_fec_read(IMXFECState *s, uint32_t index)
684 {
685     switch (index) {
686     case ENET_FRBR:
687     case ENET_FRSR:
688     case ENET_MIIGSK_CFGR:
689     case ENET_MIIGSK_ENR:
690         return s->regs[index];
691     default:
692         return imx_default_read(s, index);
693     }
694 }
695 
696 static uint32_t imx_enet_read(IMXFECState *s, uint32_t index)
697 {
698     switch (index) {
699     case ENET_RSFL:
700     case ENET_RSEM:
701     case ENET_RAEM:
702     case ENET_RAFL:
703     case ENET_TSEM:
704     case ENET_TAEM:
705     case ENET_TAFL:
706     case ENET_TIPG:
707     case ENET_FTRL:
708     case ENET_TACC:
709     case ENET_RACC:
710     case ENET_ATCR:
711     case ENET_ATVR:
712     case ENET_ATOFF:
713     case ENET_ATPER:
714     case ENET_ATCOR:
715     case ENET_ATINC:
716     case ENET_ATSTMP:
717     case ENET_TGSR:
718     case ENET_TCSR0:
719     case ENET_TCCR0:
720     case ENET_TCSR1:
721     case ENET_TCCR1:
722     case ENET_TCSR2:
723     case ENET_TCCR2:
724     case ENET_TCSR3:
725     case ENET_TCCR3:
726         return s->regs[index];
727     default:
728         return imx_default_read(s, index);
729     }
730 }
731 
732 static uint64_t imx_eth_read(void *opaque, hwaddr offset, unsigned size)
733 {
734     uint32_t value = 0;
735     IMXFECState *s = IMX_FEC(opaque);
736     uint32_t index = offset >> 2;
737 
738     switch (index) {
739     case ENET_EIR:
740     case ENET_EIMR:
741     case ENET_RDAR:
742     case ENET_TDAR:
743     case ENET_ECR:
744     case ENET_MMFR:
745     case ENET_MSCR:
746     case ENET_MIBC:
747     case ENET_RCR:
748     case ENET_TCR:
749     case ENET_PALR:
750     case ENET_PAUR:
751     case ENET_OPD:
752     case ENET_IAUR:
753     case ENET_IALR:
754     case ENET_GAUR:
755     case ENET_GALR:
756     case ENET_TFWR:
757     case ENET_RDSR:
758     case ENET_TDSR:
759     case ENET_MRBR:
760         value = s->regs[index];
761         break;
762     default:
763         if (s->is_fec) {
764             value = imx_fec_read(s, index);
765         } else {
766             value = imx_enet_read(s, index);
767         }
768         break;
769     }
770 
771     FEC_PRINTF("reg[%s] => 0x%" PRIx32 "\n", imx_eth_reg_name(s, index),
772                                               value);
773 
774     return value;
775 }
776 
777 static void imx_default_write(IMXFECState *s, uint32_t index, uint32_t value)
778 {
779     qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad address at offset 0x%"
780                   PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4);
781     return;
782 }
783 
784 static void imx_fec_write(IMXFECState *s, uint32_t index, uint32_t value)
785 {
786     switch (index) {
787     case ENET_FRBR:
788         /* FRBR is read only */
789         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register FRBR is read only\n",
790                       TYPE_IMX_FEC, __func__);
791         break;
792     case ENET_FRSR:
793         s->regs[index] = (value & 0x000003fc) | 0x00000400;
794         break;
795     case ENET_MIIGSK_CFGR:
796         s->regs[index] = value & 0x00000053;
797         break;
798     case ENET_MIIGSK_ENR:
799         s->regs[index] = (value & 0x00000002) ? 0x00000006 : 0;
800         break;
801     default:
802         imx_default_write(s, index, value);
803         break;
804     }
805 }
806 
807 static void imx_enet_write(IMXFECState *s, uint32_t index, uint32_t value)
808 {
809     switch (index) {
810     case ENET_RSFL:
811     case ENET_RSEM:
812     case ENET_RAEM:
813     case ENET_RAFL:
814     case ENET_TSEM:
815     case ENET_TAEM:
816     case ENET_TAFL:
817         s->regs[index] = value & 0x000001ff;
818         break;
819     case ENET_TIPG:
820         s->regs[index] = value & 0x0000001f;
821         break;
822     case ENET_FTRL:
823         s->regs[index] = value & 0x00003fff;
824         break;
825     case ENET_TACC:
826         s->regs[index] = value & 0x00000019;
827         break;
828     case ENET_RACC:
829         s->regs[index] = value & 0x000000C7;
830         break;
831     case ENET_ATCR:
832         s->regs[index] = value & 0x00002a9d;
833         break;
834     case ENET_ATVR:
835     case ENET_ATOFF:
836     case ENET_ATPER:
837         s->regs[index] = value;
838         break;
839     case ENET_ATSTMP:
840         /* ATSTMP is read only */
841         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register ATSTMP is read only\n",
842                       TYPE_IMX_FEC, __func__);
843         break;
844     case ENET_ATCOR:
845         s->regs[index] = value & 0x7fffffff;
846         break;
847     case ENET_ATINC:
848         s->regs[index] = value & 0x00007f7f;
849         break;
850     case ENET_TGSR:
851         /* implement clear timer flag */
852         value = value & 0x0000000f;
853         break;
854     case ENET_TCSR0:
855     case ENET_TCSR1:
856     case ENET_TCSR2:
857     case ENET_TCSR3:
858         value = value & 0x000000fd;
859         break;
860     case ENET_TCCR0:
861     case ENET_TCCR1:
862     case ENET_TCCR2:
863     case ENET_TCCR3:
864         s->regs[index] = value;
865         break;
866     default:
867         imx_default_write(s, index, value);
868         break;
869     }
870 }
871 
872 static void imx_eth_write(void *opaque, hwaddr offset, uint64_t value,
873                            unsigned size)
874 {
875     IMXFECState *s = IMX_FEC(opaque);
876     const bool single_tx_ring = !imx_eth_is_multi_tx_ring(s);
877     uint32_t index = offset >> 2;
878 
879     FEC_PRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx_eth_reg_name(s, index),
880                 (uint32_t)value);
881 
882     switch (index) {
883     case ENET_EIR:
884         s->regs[index] &= ~value;
885         break;
886     case ENET_EIMR:
887         s->regs[index] = value;
888         break;
889     case ENET_RDAR:
890         if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) {
891             if (!s->regs[index]) {
892                 imx_eth_enable_rx(s, true);
893             }
894         } else {
895             s->regs[index] = 0;
896         }
897         break;
898     case ENET_TDAR1:    /* FALLTHROUGH */
899     case ENET_TDAR2:    /* FALLTHROUGH */
900         if (unlikely(single_tx_ring)) {
901             qemu_log_mask(LOG_GUEST_ERROR,
902                           "[%s]%s: trying to access TDAR2 or TDAR1\n",
903                           TYPE_IMX_FEC, __func__);
904             return;
905         }
906     case ENET_TDAR:     /* FALLTHROUGH */
907         if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) {
908             s->regs[index] = ENET_TDAR_TDAR;
909             imx_eth_do_tx(s, index);
910         }
911         s->regs[index] = 0;
912         break;
913     case ENET_ECR:
914         if (value & ENET_ECR_RESET) {
915             return imx_eth_reset(DEVICE(s));
916         }
917         s->regs[index] = value;
918         if ((s->regs[index] & ENET_ECR_ETHEREN) == 0) {
919             s->regs[ENET_RDAR] = 0;
920             s->rx_descriptor = s->regs[ENET_RDSR];
921             s->regs[ENET_TDAR]  = 0;
922             s->regs[ENET_TDAR1] = 0;
923             s->regs[ENET_TDAR2] = 0;
924             s->tx_descriptor[0] = s->regs[ENET_TDSR];
925             s->tx_descriptor[1] = s->regs[ENET_TDSR1];
926             s->tx_descriptor[2] = s->regs[ENET_TDSR2];
927         }
928         break;
929     case ENET_MMFR:
930         s->regs[index] = value;
931         if (extract32(value, 29, 1)) {
932             /* This is a read operation */
933             s->regs[ENET_MMFR] = deposit32(s->regs[ENET_MMFR], 0, 16,
934                                            do_phy_read(s,
935                                                        extract32(value,
936                                                                  18, 10)));
937         } else {
938             /* This a write operation */
939             do_phy_write(s, extract32(value, 18, 10), extract32(value, 0, 16));
940         }
941         /* raise the interrupt as the PHY operation is done */
942         s->regs[ENET_EIR] |= ENET_INT_MII;
943         break;
944     case ENET_MSCR:
945         s->regs[index] = value & 0xfe;
946         break;
947     case ENET_MIBC:
948         /* TODO: Implement MIB.  */
949         s->regs[index] = (value & 0x80000000) ? 0xc0000000 : 0;
950         break;
951     case ENET_RCR:
952         s->regs[index] = value & 0x07ff003f;
953         /* TODO: Implement LOOP mode.  */
954         break;
955     case ENET_TCR:
956         /* We transmit immediately, so raise GRA immediately.  */
957         s->regs[index] = value;
958         if (value & 1) {
959             s->regs[ENET_EIR] |= ENET_INT_GRA;
960         }
961         break;
962     case ENET_PALR:
963         s->regs[index] = value;
964         s->conf.macaddr.a[0] = value >> 24;
965         s->conf.macaddr.a[1] = value >> 16;
966         s->conf.macaddr.a[2] = value >> 8;
967         s->conf.macaddr.a[3] = value;
968         break;
969     case ENET_PAUR:
970         s->regs[index] = (value | 0x0000ffff) & 0xffff8808;
971         s->conf.macaddr.a[4] = value >> 24;
972         s->conf.macaddr.a[5] = value >> 16;
973         break;
974     case ENET_OPD:
975         s->regs[index] = (value & 0x0000ffff) | 0x00010000;
976         break;
977     case ENET_IAUR:
978     case ENET_IALR:
979     case ENET_GAUR:
980     case ENET_GALR:
981         /* TODO: implement MAC hash filtering.  */
982         break;
983     case ENET_TFWR:
984         if (s->is_fec) {
985             s->regs[index] = value & 0x3;
986         } else {
987             s->regs[index] = value & 0x13f;
988         }
989         break;
990     case ENET_RDSR:
991         if (s->is_fec) {
992             s->regs[index] = value & ~3;
993         } else {
994             s->regs[index] = value & ~7;
995         }
996         s->rx_descriptor = s->regs[index];
997         break;
998     case ENET_TDSR:
999         if (s->is_fec) {
1000             s->regs[index] = value & ~3;
1001         } else {
1002             s->regs[index] = value & ~7;
1003         }
1004         s->tx_descriptor[0] = s->regs[index];
1005         break;
1006     case ENET_TDSR1:
1007         if (unlikely(single_tx_ring)) {
1008             qemu_log_mask(LOG_GUEST_ERROR,
1009                           "[%s]%s: trying to access TDSR1\n",
1010                           TYPE_IMX_FEC, __func__);
1011             return;
1012         }
1013 
1014         s->regs[index] = value & ~7;
1015         s->tx_descriptor[1] = s->regs[index];
1016         break;
1017     case ENET_TDSR2:
1018         if (unlikely(single_tx_ring)) {
1019             qemu_log_mask(LOG_GUEST_ERROR,
1020                           "[%s]%s: trying to access TDSR2\n",
1021                           TYPE_IMX_FEC, __func__);
1022             return;
1023         }
1024 
1025         s->regs[index] = value & ~7;
1026         s->tx_descriptor[2] = s->regs[index];
1027         break;
1028     case ENET_MRBR:
1029         s->regs[index] = value & 0x00003ff0;
1030         break;
1031     default:
1032         if (s->is_fec) {
1033             imx_fec_write(s, index, value);
1034         } else {
1035             imx_enet_write(s, index, value);
1036         }
1037         return;
1038     }
1039 
1040     imx_eth_update(s);
1041 }
1042 
1043 static int imx_eth_can_receive(NetClientState *nc)
1044 {
1045     IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1046 
1047     FEC_PRINTF("\n");
1048 
1049     return !!s->regs[ENET_RDAR];
1050 }
1051 
1052 static ssize_t imx_fec_receive(NetClientState *nc, const uint8_t *buf,
1053                                size_t len)
1054 {
1055     IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1056     IMXFECBufDesc bd;
1057     uint32_t flags = 0;
1058     uint32_t addr;
1059     uint32_t crc;
1060     uint32_t buf_addr;
1061     uint8_t *crc_ptr;
1062     unsigned int buf_len;
1063     size_t size = len;
1064 
1065     FEC_PRINTF("len %d\n", (int)size);
1066 
1067     if (!s->regs[ENET_RDAR]) {
1068         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n",
1069                       TYPE_IMX_FEC, __func__);
1070         return 0;
1071     }
1072 
1073     /* 4 bytes for the CRC.  */
1074     size += 4;
1075     crc = cpu_to_be32(crc32(~0, buf, size));
1076     crc_ptr = (uint8_t *) &crc;
1077 
1078     /* Huge frames are truncated.  */
1079     if (size > ENET_MAX_FRAME_SIZE) {
1080         size = ENET_MAX_FRAME_SIZE;
1081         flags |= ENET_BD_TR | ENET_BD_LG;
1082     }
1083 
1084     /* Frames larger than the user limit just set error flags.  */
1085     if (size > (s->regs[ENET_RCR] >> 16)) {
1086         flags |= ENET_BD_LG;
1087     }
1088 
1089     addr = s->rx_descriptor;
1090     while (size > 0) {
1091         imx_fec_read_bd(&bd, addr);
1092         if ((bd.flags & ENET_BD_E) == 0) {
1093             /* No descriptors available.  Bail out.  */
1094             /*
1095              * FIXME: This is wrong. We should probably either
1096              * save the remainder for when more RX buffers are
1097              * available, or flag an error.
1098              */
1099             qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n",
1100                           TYPE_IMX_FEC, __func__);
1101             break;
1102         }
1103         buf_len = (size <= s->regs[ENET_MRBR]) ? size : s->regs[ENET_MRBR];
1104         bd.length = buf_len;
1105         size -= buf_len;
1106 
1107         FEC_PRINTF("rx_bd 0x%x length %d\n", addr, bd.length);
1108 
1109         /* The last 4 bytes are the CRC.  */
1110         if (size < 4) {
1111             buf_len += size - 4;
1112         }
1113         buf_addr = bd.data;
1114         dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
1115         buf += buf_len;
1116         if (size < 4) {
1117             dma_memory_write(&address_space_memory, buf_addr + buf_len,
1118                              crc_ptr, 4 - size);
1119             crc_ptr += 4 - size;
1120         }
1121         bd.flags &= ~ENET_BD_E;
1122         if (size == 0) {
1123             /* Last buffer in frame.  */
1124             bd.flags |= flags | ENET_BD_L;
1125             FEC_PRINTF("rx frame flags %04x\n", bd.flags);
1126             s->regs[ENET_EIR] |= ENET_INT_RXF;
1127         } else {
1128             s->regs[ENET_EIR] |= ENET_INT_RXB;
1129         }
1130         imx_fec_write_bd(&bd, addr);
1131         /* Advance to the next descriptor.  */
1132         if ((bd.flags & ENET_BD_W) != 0) {
1133             addr = s->regs[ENET_RDSR];
1134         } else {
1135             addr += sizeof(bd);
1136         }
1137     }
1138     s->rx_descriptor = addr;
1139     imx_eth_enable_rx(s, false);
1140     imx_eth_update(s);
1141     return len;
1142 }
1143 
1144 static ssize_t imx_enet_receive(NetClientState *nc, const uint8_t *buf,
1145                                 size_t len)
1146 {
1147     IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1148     IMXENETBufDesc bd;
1149     uint32_t flags = 0;
1150     uint32_t addr;
1151     uint32_t crc;
1152     uint32_t buf_addr;
1153     uint8_t *crc_ptr;
1154     unsigned int buf_len;
1155     size_t size = len;
1156     bool shift16 = s->regs[ENET_RACC] & ENET_RACC_SHIFT16;
1157 
1158     FEC_PRINTF("len %d\n", (int)size);
1159 
1160     if (!s->regs[ENET_RDAR]) {
1161         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n",
1162                       TYPE_IMX_FEC, __func__);
1163         return 0;
1164     }
1165 
1166     /* 4 bytes for the CRC.  */
1167     size += 4;
1168     crc = cpu_to_be32(crc32(~0, buf, size));
1169     crc_ptr = (uint8_t *) &crc;
1170 
1171     if (shift16) {
1172         size += 2;
1173     }
1174 
1175     /* Huge frames are truncated. */
1176     if (size > s->regs[ENET_FTRL]) {
1177         size = s->regs[ENET_FTRL];
1178         flags |= ENET_BD_TR | ENET_BD_LG;
1179     }
1180 
1181     /* Frames larger than the user limit just set error flags.  */
1182     if (size > (s->regs[ENET_RCR] >> 16)) {
1183         flags |= ENET_BD_LG;
1184     }
1185 
1186     addr = s->rx_descriptor;
1187     while (size > 0) {
1188         imx_enet_read_bd(&bd, addr);
1189         if ((bd.flags & ENET_BD_E) == 0) {
1190             /* No descriptors available.  Bail out.  */
1191             /*
1192              * FIXME: This is wrong. We should probably either
1193              * save the remainder for when more RX buffers are
1194              * available, or flag an error.
1195              */
1196             qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n",
1197                           TYPE_IMX_FEC, __func__);
1198             break;
1199         }
1200         buf_len = MIN(size, s->regs[ENET_MRBR]);
1201         bd.length = buf_len;
1202         size -= buf_len;
1203 
1204         FEC_PRINTF("rx_bd 0x%x length %d\n", addr, bd.length);
1205 
1206         /* The last 4 bytes are the CRC.  */
1207         if (size < 4) {
1208             buf_len += size - 4;
1209         }
1210         buf_addr = bd.data;
1211 
1212         if (shift16) {
1213             /*
1214              * If SHIFT16 bit of ENETx_RACC register is set we need to
1215              * align the payload to 4-byte boundary.
1216              */
1217             const uint8_t zeros[2] = { 0 };
1218 
1219             dma_memory_write(&address_space_memory, buf_addr,
1220                              zeros, sizeof(zeros));
1221 
1222             buf_addr += sizeof(zeros);
1223             buf_len  -= sizeof(zeros);
1224 
1225             /* We only do this once per Ethernet frame */
1226             shift16 = false;
1227         }
1228 
1229         dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
1230         buf += buf_len;
1231         if (size < 4) {
1232             dma_memory_write(&address_space_memory, buf_addr + buf_len,
1233                              crc_ptr, 4 - size);
1234             crc_ptr += 4 - size;
1235         }
1236         bd.flags &= ~ENET_BD_E;
1237         if (size == 0) {
1238             /* Last buffer in frame.  */
1239             bd.flags |= flags | ENET_BD_L;
1240             FEC_PRINTF("rx frame flags %04x\n", bd.flags);
1241             if (bd.option & ENET_BD_RX_INT) {
1242                 s->regs[ENET_EIR] |= ENET_INT_RXF;
1243             }
1244         } else {
1245             if (bd.option & ENET_BD_RX_INT) {
1246                 s->regs[ENET_EIR] |= ENET_INT_RXB;
1247             }
1248         }
1249         imx_enet_write_bd(&bd, addr);
1250         /* Advance to the next descriptor.  */
1251         if ((bd.flags & ENET_BD_W) != 0) {
1252             addr = s->regs[ENET_RDSR];
1253         } else {
1254             addr += sizeof(bd);
1255         }
1256     }
1257     s->rx_descriptor = addr;
1258     imx_eth_enable_rx(s, false);
1259     imx_eth_update(s);
1260     return len;
1261 }
1262 
1263 static ssize_t imx_eth_receive(NetClientState *nc, const uint8_t *buf,
1264                                 size_t len)
1265 {
1266     IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1267 
1268     if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) {
1269         return imx_enet_receive(nc, buf, len);
1270     } else {
1271         return imx_fec_receive(nc, buf, len);
1272     }
1273 }
1274 
1275 static const MemoryRegionOps imx_eth_ops = {
1276     .read                  = imx_eth_read,
1277     .write                 = imx_eth_write,
1278     .valid.min_access_size = 4,
1279     .valid.max_access_size = 4,
1280     .endianness            = DEVICE_NATIVE_ENDIAN,
1281 };
1282 
1283 static void imx_eth_cleanup(NetClientState *nc)
1284 {
1285     IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1286 
1287     s->nic = NULL;
1288 }
1289 
1290 static NetClientInfo imx_eth_net_info = {
1291     .type                = NET_CLIENT_DRIVER_NIC,
1292     .size                = sizeof(NICState),
1293     .can_receive         = imx_eth_can_receive,
1294     .receive             = imx_eth_receive,
1295     .cleanup             = imx_eth_cleanup,
1296     .link_status_changed = imx_eth_set_link,
1297 };
1298 
1299 
1300 static void imx_eth_realize(DeviceState *dev, Error **errp)
1301 {
1302     IMXFECState *s = IMX_FEC(dev);
1303     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1304 
1305     memory_region_init_io(&s->iomem, OBJECT(dev), &imx_eth_ops, s,
1306                           TYPE_IMX_FEC, FSL_IMX25_FEC_SIZE);
1307     sysbus_init_mmio(sbd, &s->iomem);
1308     sysbus_init_irq(sbd, &s->irq[0]);
1309     sysbus_init_irq(sbd, &s->irq[1]);
1310 
1311     qemu_macaddr_default_if_unset(&s->conf.macaddr);
1312 
1313     s->nic = qemu_new_nic(&imx_eth_net_info, &s->conf,
1314                           object_get_typename(OBJECT(dev)),
1315                           DEVICE(dev)->id, s);
1316 
1317     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
1318 }
1319 
1320 static Property imx_eth_properties[] = {
1321     DEFINE_NIC_PROPERTIES(IMXFECState, conf),
1322     DEFINE_PROP_UINT32("tx-ring-num", IMXFECState, tx_ring_num, 1),
1323     DEFINE_PROP_END_OF_LIST(),
1324 };
1325 
1326 static void imx_eth_class_init(ObjectClass *klass, void *data)
1327 {
1328     DeviceClass *dc = DEVICE_CLASS(klass);
1329 
1330     dc->vmsd    = &vmstate_imx_eth;
1331     dc->reset   = imx_eth_reset;
1332     dc->props   = imx_eth_properties;
1333     dc->realize = imx_eth_realize;
1334     dc->desc    = "i.MX FEC/ENET Ethernet Controller";
1335 }
1336 
1337 static void imx_fec_init(Object *obj)
1338 {
1339     IMXFECState *s = IMX_FEC(obj);
1340 
1341     s->is_fec = true;
1342 }
1343 
1344 static void imx_enet_init(Object *obj)
1345 {
1346     IMXFECState *s = IMX_FEC(obj);
1347 
1348     s->is_fec = false;
1349 }
1350 
1351 static const TypeInfo imx_fec_info = {
1352     .name          = TYPE_IMX_FEC,
1353     .parent        = TYPE_SYS_BUS_DEVICE,
1354     .instance_size = sizeof(IMXFECState),
1355     .instance_init = imx_fec_init,
1356     .class_init    = imx_eth_class_init,
1357 };
1358 
1359 static const TypeInfo imx_enet_info = {
1360     .name          = TYPE_IMX_ENET,
1361     .parent        = TYPE_IMX_FEC,
1362     .instance_init = imx_enet_init,
1363 };
1364 
1365 static void imx_eth_register_types(void)
1366 {
1367     type_register_static(&imx_fec_info);
1368     type_register_static(&imx_enet_info);
1369 }
1370 
1371 type_init(imx_eth_register_types)
1372