xref: /qemu/hw/net/msf2-emac.c (revision a976a99a)
1 /*
2  * QEMU model of the Smartfusion2 Ethernet MAC.
3  *
4  * Copyright (c) 2020 Subbaraya Sundeep <sundeep.lkml@gmail.com>.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  *
24  * Refer to section Ethernet MAC in the document:
25  * UG0331: SmartFusion2 Microcontroller Subsystem User Guide
26  * Datasheet URL:
27  * https://www.microsemi.com/document-portal/cat_view/56661-internal-documents/
28  * 56758-soc?lang=en&limit=20&limitstart=220
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu/log.h"
33 #include "qapi/error.h"
34 #include "hw/registerfields.h"
35 #include "hw/net/msf2-emac.h"
36 #include "hw/net/mii.h"
37 #include "hw/irq.h"
38 #include "hw/qdev-properties.h"
39 #include "migration/vmstate.h"
40 
41 REG32(CFG1, 0x0)
42     FIELD(CFG1, RESET, 31, 1)
43     FIELD(CFG1, RX_EN, 2, 1)
44     FIELD(CFG1, TX_EN, 0, 1)
45     FIELD(CFG1, LB_EN, 8, 1)
46 REG32(CFG2, 0x4)
47 REG32(IFG, 0x8)
48 REG32(HALF_DUPLEX, 0xc)
49 REG32(MAX_FRAME_LENGTH, 0x10)
50 REG32(MII_CMD, 0x24)
51     FIELD(MII_CMD, READ, 0, 1)
52 REG32(MII_ADDR, 0x28)
53     FIELD(MII_ADDR, REGADDR, 0, 5)
54     FIELD(MII_ADDR, PHYADDR, 8, 5)
55 REG32(MII_CTL, 0x2c)
56 REG32(MII_STS, 0x30)
57 REG32(STA1, 0x40)
58 REG32(STA2, 0x44)
59 REG32(FIFO_CFG0, 0x48)
60 REG32(FIFO_CFG4, 0x58)
61     FIELD(FIFO_CFG4, BCAST, 9, 1)
62     FIELD(FIFO_CFG4, MCAST, 8, 1)
63 REG32(FIFO_CFG5, 0x5C)
64     FIELD(FIFO_CFG5, BCAST, 9, 1)
65     FIELD(FIFO_CFG5, MCAST, 8, 1)
66 REG32(DMA_TX_CTL, 0x180)
67     FIELD(DMA_TX_CTL, EN, 0, 1)
68 REG32(DMA_TX_DESC, 0x184)
69 REG32(DMA_TX_STATUS, 0x188)
70     FIELD(DMA_TX_STATUS, PKTCNT, 16, 8)
71     FIELD(DMA_TX_STATUS, UNDERRUN, 1, 1)
72     FIELD(DMA_TX_STATUS, PKT_SENT, 0, 1)
73 REG32(DMA_RX_CTL, 0x18c)
74     FIELD(DMA_RX_CTL, EN, 0, 1)
75 REG32(DMA_RX_DESC, 0x190)
76 REG32(DMA_RX_STATUS, 0x194)
77     FIELD(DMA_RX_STATUS, PKTCNT, 16, 8)
78     FIELD(DMA_RX_STATUS, OVERFLOW, 2, 1)
79     FIELD(DMA_RX_STATUS, PKT_RCVD, 0, 1)
80 REG32(DMA_IRQ_MASK, 0x198)
81 REG32(DMA_IRQ, 0x19c)
82 
83 #define EMPTY_MASK              (1 << 31)
84 #define PKT_SIZE                0x7FF
85 #define PHYADDR                 0x1
86 #define MAX_PKT_SIZE            2048
87 
88 typedef struct {
89     uint32_t pktaddr;
90     uint32_t pktsize;
91     uint32_t next;
92 } EmacDesc;
93 
94 static uint32_t emac_get_isr(MSF2EmacState *s)
95 {
96     uint32_t ier = s->regs[R_DMA_IRQ_MASK];
97     uint32_t tx = s->regs[R_DMA_TX_STATUS] & 0xF;
98     uint32_t rx = s->regs[R_DMA_RX_STATUS] & 0xF;
99     uint32_t isr = (rx << 4) | tx;
100 
101     s->regs[R_DMA_IRQ] = ier & isr;
102     return s->regs[R_DMA_IRQ];
103 }
104 
105 static void emac_update_irq(MSF2EmacState *s)
106 {
107     bool intr = emac_get_isr(s);
108 
109     qemu_set_irq(s->irq, intr);
110 }
111 
112 static void emac_load_desc(MSF2EmacState *s, EmacDesc *d, hwaddr desc)
113 {
114     address_space_read(&s->dma_as, desc, MEMTXATTRS_UNSPECIFIED, d, sizeof *d);
115     /* Convert from LE into host endianness. */
116     d->pktaddr = le32_to_cpu(d->pktaddr);
117     d->pktsize = le32_to_cpu(d->pktsize);
118     d->next = le32_to_cpu(d->next);
119 }
120 
121 static void emac_store_desc(MSF2EmacState *s, EmacDesc *d, hwaddr desc)
122 {
123     /* Convert from host endianness into LE. */
124     d->pktaddr = cpu_to_le32(d->pktaddr);
125     d->pktsize = cpu_to_le32(d->pktsize);
126     d->next = cpu_to_le32(d->next);
127 
128     address_space_write(&s->dma_as, desc, MEMTXATTRS_UNSPECIFIED, d, sizeof *d);
129 }
130 
131 static void msf2_dma_tx(MSF2EmacState *s)
132 {
133     NetClientState *nc = qemu_get_queue(s->nic);
134     hwaddr desc = s->regs[R_DMA_TX_DESC];
135     uint8_t buf[MAX_PKT_SIZE];
136     EmacDesc d;
137     int size;
138     uint8_t pktcnt;
139     uint32_t status;
140 
141     if (!(s->regs[R_CFG1] & R_CFG1_TX_EN_MASK)) {
142         return;
143     }
144 
145     while (1) {
146         emac_load_desc(s, &d, desc);
147         if (d.pktsize & EMPTY_MASK) {
148             break;
149         }
150         size = d.pktsize & PKT_SIZE;
151         address_space_read(&s->dma_as, d.pktaddr, MEMTXATTRS_UNSPECIFIED,
152                            buf, size);
153         /*
154          * This is very basic way to send packets. Ideally there should be
155          * a FIFO and packets should be sent out from FIFO only when
156          * R_CFG1 bit 0 is set.
157          */
158         if (s->regs[R_CFG1] & R_CFG1_LB_EN_MASK) {
159             qemu_receive_packet(nc, buf, size);
160         } else {
161             qemu_send_packet(nc, buf, size);
162         }
163         d.pktsize |= EMPTY_MASK;
164         emac_store_desc(s, &d, desc);
165         /* update sent packets count */
166         status = s->regs[R_DMA_TX_STATUS];
167         pktcnt = FIELD_EX32(status, DMA_TX_STATUS, PKTCNT);
168         pktcnt++;
169         s->regs[R_DMA_TX_STATUS] = FIELD_DP32(status, DMA_TX_STATUS,
170                                               PKTCNT, pktcnt);
171         s->regs[R_DMA_TX_STATUS] |= R_DMA_TX_STATUS_PKT_SENT_MASK;
172         desc = d.next;
173     }
174     s->regs[R_DMA_TX_STATUS] |= R_DMA_TX_STATUS_UNDERRUN_MASK;
175     s->regs[R_DMA_TX_CTL] &= ~R_DMA_TX_CTL_EN_MASK;
176 }
177 
178 static void msf2_phy_update_link(MSF2EmacState *s)
179 {
180     /* Autonegotiation status mirrors link status. */
181     if (qemu_get_queue(s->nic)->link_down) {
182         s->phy_regs[MII_BMSR] &= ~(MII_BMSR_AN_COMP |
183                                    MII_BMSR_LINK_ST);
184     } else {
185         s->phy_regs[MII_BMSR] |= (MII_BMSR_AN_COMP |
186                                   MII_BMSR_LINK_ST);
187     }
188 }
189 
190 static void msf2_phy_reset(MSF2EmacState *s)
191 {
192     memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
193     s->phy_regs[MII_BMCR] = 0x1140;
194     s->phy_regs[MII_BMSR] = 0x7968;
195     s->phy_regs[MII_PHYID1] = 0x0022;
196     s->phy_regs[MII_PHYID2] = 0x1550;
197     s->phy_regs[MII_ANAR] = 0x01E1;
198     s->phy_regs[MII_ANLPAR] = 0xCDE1;
199 
200     msf2_phy_update_link(s);
201 }
202 
203 static void write_to_phy(MSF2EmacState *s)
204 {
205     uint8_t reg_addr = s->regs[R_MII_ADDR] & R_MII_ADDR_REGADDR_MASK;
206     uint8_t phy_addr = (s->regs[R_MII_ADDR] >> R_MII_ADDR_PHYADDR_SHIFT) &
207                        R_MII_ADDR_REGADDR_MASK;
208     uint16_t data = s->regs[R_MII_CTL] & 0xFFFF;
209 
210     if (phy_addr != PHYADDR) {
211         return;
212     }
213 
214     switch (reg_addr) {
215     case MII_BMCR:
216         if (data & MII_BMCR_RESET) {
217             /* Phy reset */
218             msf2_phy_reset(s);
219             data &= ~MII_BMCR_RESET;
220         }
221         if (data & MII_BMCR_AUTOEN) {
222             /* Complete autonegotiation immediately */
223             data &= ~MII_BMCR_AUTOEN;
224             s->phy_regs[MII_BMSR] |= MII_BMSR_AN_COMP;
225         }
226         break;
227     }
228 
229     s->phy_regs[reg_addr] = data;
230 }
231 
232 static uint16_t read_from_phy(MSF2EmacState *s)
233 {
234     uint8_t reg_addr = s->regs[R_MII_ADDR] & R_MII_ADDR_REGADDR_MASK;
235     uint8_t phy_addr = (s->regs[R_MII_ADDR] >> R_MII_ADDR_PHYADDR_SHIFT) &
236                        R_MII_ADDR_REGADDR_MASK;
237 
238     if (phy_addr == PHYADDR) {
239         return s->phy_regs[reg_addr];
240     } else {
241         return 0xFFFF;
242     }
243 }
244 
245 static void msf2_emac_do_reset(MSF2EmacState *s)
246 {
247     memset(&s->regs[0], 0, sizeof(s->regs));
248     s->regs[R_CFG1] = 0x80000000;
249     s->regs[R_CFG2] = 0x00007000;
250     s->regs[R_IFG] = 0x40605060;
251     s->regs[R_HALF_DUPLEX] = 0x00A1F037;
252     s->regs[R_MAX_FRAME_LENGTH] = 0x00000600;
253     s->regs[R_FIFO_CFG5] = 0X3FFFF;
254 
255     msf2_phy_reset(s);
256 }
257 
258 static uint64_t emac_read(void *opaque, hwaddr addr, unsigned int size)
259 {
260     MSF2EmacState *s = opaque;
261     uint32_t r = 0;
262 
263     addr >>= 2;
264 
265     switch (addr) {
266     case R_DMA_IRQ:
267         r = emac_get_isr(s);
268         break;
269     default:
270         if (addr >= ARRAY_SIZE(s->regs)) {
271             qemu_log_mask(LOG_GUEST_ERROR,
272                           "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
273                           addr * 4);
274             return r;
275         }
276         r = s->regs[addr];
277         break;
278     }
279     return r;
280 }
281 
282 static void emac_write(void *opaque, hwaddr addr, uint64_t val64,
283         unsigned int size)
284 {
285     MSF2EmacState *s = opaque;
286     uint32_t value = val64;
287     uint32_t enreqbits;
288     uint8_t pktcnt;
289 
290     addr >>= 2;
291     switch (addr) {
292     case R_DMA_TX_CTL:
293         s->regs[addr] = value;
294         if (value & R_DMA_TX_CTL_EN_MASK) {
295             msf2_dma_tx(s);
296         }
297         break;
298     case R_DMA_RX_CTL:
299         s->regs[addr] = value;
300         if (value & R_DMA_RX_CTL_EN_MASK) {
301             s->rx_desc = s->regs[R_DMA_RX_DESC];
302             qemu_flush_queued_packets(qemu_get_queue(s->nic));
303         }
304         break;
305     case R_CFG1:
306         s->regs[addr] = value;
307         if (value & R_CFG1_RESET_MASK) {
308             msf2_emac_do_reset(s);
309         }
310         break;
311     case R_FIFO_CFG0:
312        /*
313         * For our implementation, turning on modules is instantaneous,
314         * so the states requested via the *ENREQ bits appear in the
315         * *ENRPLY bits immediately. Also the reset bits to reset PE-MCXMAC
316         * module are not emulated here since it deals with start of frames,
317         * inter-packet gap and control frames.
318         */
319         enreqbits = extract32(value, 8, 5);
320         s->regs[addr] = deposit32(value, 16, 5, enreqbits);
321         break;
322     case R_DMA_TX_DESC:
323         if (value & 0x3) {
324             qemu_log_mask(LOG_GUEST_ERROR, "Tx Descriptor address should be"
325                           " 32 bit aligned\n");
326         }
327         /* Ignore [1:0] bits */
328         s->regs[addr] = value & ~3;
329         break;
330     case R_DMA_RX_DESC:
331         if (value & 0x3) {
332             qemu_log_mask(LOG_GUEST_ERROR, "Rx Descriptor address should be"
333                           " 32 bit aligned\n");
334         }
335         /* Ignore [1:0] bits */
336         s->regs[addr] = value & ~3;
337         break;
338     case R_DMA_TX_STATUS:
339         if (value & R_DMA_TX_STATUS_UNDERRUN_MASK) {
340             s->regs[addr] &= ~R_DMA_TX_STATUS_UNDERRUN_MASK;
341         }
342         if (value & R_DMA_TX_STATUS_PKT_SENT_MASK) {
343             pktcnt = FIELD_EX32(s->regs[addr], DMA_TX_STATUS, PKTCNT);
344             pktcnt--;
345             s->regs[addr] = FIELD_DP32(s->regs[addr], DMA_TX_STATUS,
346                                        PKTCNT, pktcnt);
347             if (pktcnt == 0) {
348                 s->regs[addr] &= ~R_DMA_TX_STATUS_PKT_SENT_MASK;
349             }
350         }
351         break;
352     case R_DMA_RX_STATUS:
353         if (value & R_DMA_RX_STATUS_OVERFLOW_MASK) {
354             s->regs[addr] &= ~R_DMA_RX_STATUS_OVERFLOW_MASK;
355         }
356         if (value & R_DMA_RX_STATUS_PKT_RCVD_MASK) {
357             pktcnt = FIELD_EX32(s->regs[addr], DMA_RX_STATUS, PKTCNT);
358             pktcnt--;
359             s->regs[addr] = FIELD_DP32(s->regs[addr], DMA_RX_STATUS,
360                                        PKTCNT, pktcnt);
361             if (pktcnt == 0) {
362                 s->regs[addr] &= ~R_DMA_RX_STATUS_PKT_RCVD_MASK;
363             }
364         }
365         break;
366     case R_DMA_IRQ:
367         break;
368     case R_MII_CMD:
369         if (value & R_MII_CMD_READ_MASK) {
370             s->regs[R_MII_STS] = read_from_phy(s);
371         }
372         break;
373     case R_MII_CTL:
374         s->regs[addr] = value;
375         write_to_phy(s);
376         break;
377     case R_STA1:
378         s->regs[addr] = value;
379        /*
380         * R_STA1 [31:24] : octet 1 of mac address
381         * R_STA1 [23:16] : octet 2 of mac address
382         * R_STA1 [15:8] : octet 3 of mac address
383         * R_STA1 [7:0] : octet 4 of mac address
384         */
385         stl_be_p(s->mac_addr, value);
386         break;
387     case R_STA2:
388         s->regs[addr] = value;
389        /*
390         * R_STA2 [31:24] : octet 5 of mac address
391         * R_STA2 [23:16] : octet 6 of mac address
392         */
393         stw_be_p(s->mac_addr + 4, value >> 16);
394         break;
395     default:
396         if (addr >= ARRAY_SIZE(s->regs)) {
397             qemu_log_mask(LOG_GUEST_ERROR,
398                           "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
399                           addr * 4);
400             return;
401         }
402         s->regs[addr] = value;
403         break;
404     }
405     emac_update_irq(s);
406 }
407 
408 static const MemoryRegionOps emac_ops = {
409     .read = emac_read,
410     .write = emac_write,
411     .endianness = DEVICE_NATIVE_ENDIAN,
412     .impl = {
413         .min_access_size = 4,
414         .max_access_size = 4
415     }
416 };
417 
418 static bool emac_can_rx(NetClientState *nc)
419 {
420     MSF2EmacState *s = qemu_get_nic_opaque(nc);
421 
422     return (s->regs[R_CFG1] & R_CFG1_RX_EN_MASK) &&
423            (s->regs[R_DMA_RX_CTL] & R_DMA_RX_CTL_EN_MASK);
424 }
425 
426 static bool addr_filter_ok(MSF2EmacState *s, const uint8_t *buf)
427 {
428     /* The broadcast MAC address: FF:FF:FF:FF:FF:FF */
429     const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF,
430                                               0xFF, 0xFF };
431     bool bcast_en = true;
432     bool mcast_en = true;
433 
434     if (s->regs[R_FIFO_CFG5] & R_FIFO_CFG5_BCAST_MASK) {
435         bcast_en = true; /* Broadcast dont care for drop circuitry */
436     } else if (s->regs[R_FIFO_CFG4] & R_FIFO_CFG4_BCAST_MASK) {
437         bcast_en = false;
438     }
439 
440     if (s->regs[R_FIFO_CFG5] & R_FIFO_CFG5_MCAST_MASK) {
441         mcast_en = true; /* Multicast dont care for drop circuitry */
442     } else if (s->regs[R_FIFO_CFG4] & R_FIFO_CFG4_MCAST_MASK) {
443         mcast_en = false;
444     }
445 
446     if (!memcmp(buf, broadcast_addr, sizeof(broadcast_addr))) {
447         return bcast_en;
448     }
449 
450     if (buf[0] & 1) {
451         return mcast_en;
452     }
453 
454     return !memcmp(buf, s->mac_addr, sizeof(s->mac_addr));
455 }
456 
457 static ssize_t emac_rx(NetClientState *nc, const uint8_t *buf, size_t size)
458 {
459     MSF2EmacState *s = qemu_get_nic_opaque(nc);
460     EmacDesc d;
461     uint8_t pktcnt;
462     uint32_t status;
463 
464     if (size > (s->regs[R_MAX_FRAME_LENGTH] & 0xFFFF)) {
465         return size;
466     }
467     if (!addr_filter_ok(s, buf)) {
468         return size;
469     }
470 
471     emac_load_desc(s, &d, s->rx_desc);
472 
473     if (d.pktsize & EMPTY_MASK) {
474         address_space_write(&s->dma_as, d.pktaddr, MEMTXATTRS_UNSPECIFIED,
475                             buf, size & PKT_SIZE);
476         d.pktsize = size & PKT_SIZE;
477         emac_store_desc(s, &d, s->rx_desc);
478         /* update received packets count */
479         status = s->regs[R_DMA_RX_STATUS];
480         pktcnt = FIELD_EX32(status, DMA_RX_STATUS, PKTCNT);
481         pktcnt++;
482         s->regs[R_DMA_RX_STATUS] = FIELD_DP32(status, DMA_RX_STATUS,
483                                               PKTCNT, pktcnt);
484         s->regs[R_DMA_RX_STATUS] |= R_DMA_RX_STATUS_PKT_RCVD_MASK;
485         s->rx_desc = d.next;
486     } else {
487         s->regs[R_DMA_RX_CTL] &= ~R_DMA_RX_CTL_EN_MASK;
488         s->regs[R_DMA_RX_STATUS] |= R_DMA_RX_STATUS_OVERFLOW_MASK;
489     }
490     emac_update_irq(s);
491     return size;
492 }
493 
494 static void msf2_emac_reset(DeviceState *dev)
495 {
496     MSF2EmacState *s = MSS_EMAC(dev);
497 
498     msf2_emac_do_reset(s);
499 }
500 
501 static void emac_set_link(NetClientState *nc)
502 {
503     MSF2EmacState *s = qemu_get_nic_opaque(nc);
504 
505     msf2_phy_update_link(s);
506 }
507 
508 static NetClientInfo net_msf2_emac_info = {
509     .type = NET_CLIENT_DRIVER_NIC,
510     .size = sizeof(NICState),
511     .can_receive = emac_can_rx,
512     .receive = emac_rx,
513     .link_status_changed = emac_set_link,
514 };
515 
516 static void msf2_emac_realize(DeviceState *dev, Error **errp)
517 {
518     MSF2EmacState *s = MSS_EMAC(dev);
519 
520     if (!s->dma_mr) {
521         error_setg(errp, "MSS_EMAC 'ahb-bus' link not set");
522         return;
523     }
524 
525     address_space_init(&s->dma_as, s->dma_mr, "emac-ahb");
526 
527     qemu_macaddr_default_if_unset(&s->conf.macaddr);
528     s->nic = qemu_new_nic(&net_msf2_emac_info, &s->conf,
529                           object_get_typename(OBJECT(dev)), dev->id, s);
530     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
531 }
532 
533 static void msf2_emac_init(Object *obj)
534 {
535     MSF2EmacState *s = MSS_EMAC(obj);
536 
537     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->irq);
538 
539     memory_region_init_io(&s->mmio, obj, &emac_ops, s,
540                           "msf2-emac", R_MAX * 4);
541     sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
542 }
543 
544 static Property msf2_emac_properties[] = {
545     DEFINE_PROP_LINK("ahb-bus", MSF2EmacState, dma_mr,
546                      TYPE_MEMORY_REGION, MemoryRegion *),
547     DEFINE_NIC_PROPERTIES(MSF2EmacState, conf),
548     DEFINE_PROP_END_OF_LIST(),
549 };
550 
551 static const VMStateDescription vmstate_msf2_emac = {
552     .name = TYPE_MSS_EMAC,
553     .version_id = 1,
554     .minimum_version_id = 1,
555     .fields = (VMStateField[]) {
556         VMSTATE_UINT8_ARRAY(mac_addr, MSF2EmacState, ETH_ALEN),
557         VMSTATE_UINT32(rx_desc, MSF2EmacState),
558         VMSTATE_UINT16_ARRAY(phy_regs, MSF2EmacState, PHY_MAX_REGS),
559         VMSTATE_UINT32_ARRAY(regs, MSF2EmacState, R_MAX),
560         VMSTATE_END_OF_LIST()
561     }
562 };
563 
564 static void msf2_emac_class_init(ObjectClass *klass, void *data)
565 {
566     DeviceClass *dc = DEVICE_CLASS(klass);
567 
568     dc->realize = msf2_emac_realize;
569     dc->reset = msf2_emac_reset;
570     dc->vmsd = &vmstate_msf2_emac;
571     device_class_set_props(dc, msf2_emac_properties);
572 }
573 
574 static const TypeInfo msf2_emac_info = {
575     .name          = TYPE_MSS_EMAC,
576     .parent        = TYPE_SYS_BUS_DEVICE,
577     .instance_size = sizeof(MSF2EmacState),
578     .instance_init = msf2_emac_init,
579     .class_init    = msf2_emac_class_init,
580 };
581 
582 static void msf2_emac_register_types(void)
583 {
584     type_register_static(&msf2_emac_info);
585 }
586 
587 type_init(msf2_emac_register_types)
588