xref: /qemu/hw/net/sungem.c (revision 27a4a30e)
1 /*
2  * QEMU model of SUN GEM ethernet controller
3  *
4  * As found in Apple ASICs among others
5  *
6  * Copyright 2016 Ben Herrenschmidt
7  * Copyright 2017 Mark Cave-Ayland
8  */
9 
10 #include "qemu/osdep.h"
11 #include "hw/pci/pci.h"
12 #include "hw/qdev-properties.h"
13 #include "migration/vmstate.h"
14 #include "qemu/log.h"
15 #include "qemu/module.h"
16 #include "net/net.h"
17 #include "net/eth.h"
18 #include "net/checksum.h"
19 #include "hw/net/mii.h"
20 #include "sysemu/sysemu.h"
21 #include "trace.h"
22 
23 #define TYPE_SUNGEM "sungem"
24 
25 #define SUNGEM(obj) OBJECT_CHECK(SunGEMState, (obj), TYPE_SUNGEM)
26 
27 #define MAX_PACKET_SIZE 9016
28 
29 #define SUNGEM_MMIO_SIZE        0x200000
30 
31 /* Global registers */
32 #define SUNGEM_MMIO_GREG_SIZE   0x2000
33 
34 #define GREG_SEBSTATE     0x0000UL    /* SEB State Register */
35 
36 #define GREG_STAT         0x000CUL    /* Status Register */
37 #define GREG_STAT_TXINTME     0x00000001    /* TX INTME frame transferred */
38 #define GREG_STAT_TXALL       0x00000002    /* All TX frames transferred */
39 #define GREG_STAT_TXDONE      0x00000004    /* One TX frame transferred */
40 #define GREG_STAT_RXDONE      0x00000010    /* One RX frame arrived */
41 #define GREG_STAT_RXNOBUF     0x00000020    /* No free RX buffers available */
42 #define GREG_STAT_RXTAGERR    0x00000040    /* RX tag framing is corrupt */
43 #define GREG_STAT_TXMAC       0x00004000    /* TX MAC signalled interrupt */
44 #define GREG_STAT_RXMAC       0x00008000    /* RX MAC signalled interrupt */
45 #define GREG_STAT_MAC         0x00010000    /* MAC Control signalled irq */
46 #define GREG_STAT_TXNR        0xfff80000    /* == TXDMA_TXDONE reg val */
47 #define GREG_STAT_TXNR_SHIFT  19
48 
49 /* These interrupts are edge latches in the status register,
50  * reading it (or writing the corresponding bit in IACK) will
51  * clear them
52  */
53 #define GREG_STAT_LATCH       (GREG_STAT_TXALL  | GREG_STAT_TXINTME | \
54                                GREG_STAT_RXDONE | GREG_STAT_RXDONE |  \
55                                GREG_STAT_RXNOBUF | GREG_STAT_RXTAGERR)
56 
57 #define GREG_IMASK        0x0010UL    /* Interrupt Mask Register */
58 #define GREG_IACK         0x0014UL    /* Interrupt ACK Register */
59 #define GREG_STAT2        0x001CUL    /* Alias of GREG_STAT */
60 #define GREG_PCIESTAT     0x1000UL    /* PCI Error Status Register */
61 #define GREG_PCIEMASK     0x1004UL    /* PCI Error Mask Register */
62 
63 #define GREG_SWRST        0x1010UL    /* Software Reset Register */
64 #define GREG_SWRST_TXRST      0x00000001    /* TX Software Reset */
65 #define GREG_SWRST_RXRST      0x00000002    /* RX Software Reset */
66 #define GREG_SWRST_RSTOUT     0x00000004    /* Force RST# pin active */
67 
68 /* TX DMA Registers */
69 #define SUNGEM_MMIO_TXDMA_SIZE   0x1000
70 
71 #define TXDMA_KICK        0x0000UL    /* TX Kick Register */
72 
73 #define TXDMA_CFG         0x0004UL    /* TX Configuration Register */
74 #define TXDMA_CFG_ENABLE      0x00000001    /* Enable TX DMA channel */
75 #define TXDMA_CFG_RINGSZ      0x0000001e    /* TX descriptor ring size */
76 
77 #define TXDMA_DBLOW       0x0008UL    /* TX Desc. Base Low */
78 #define TXDMA_DBHI        0x000CUL    /* TX Desc. Base High */
79 #define TXDMA_PCNT        0x0024UL    /* TX FIFO Packet Counter */
80 #define TXDMA_SMACHINE    0x0028UL    /* TX State Machine Register */
81 #define TXDMA_DPLOW       0x0030UL    /* TX Data Pointer Low */
82 #define TXDMA_DPHI        0x0034UL    /* TX Data Pointer High */
83 #define TXDMA_TXDONE      0x0100UL    /* TX Completion Register */
84 #define TXDMA_FTAG        0x0108UL    /* TX FIFO Tag */
85 #define TXDMA_FSZ         0x0118UL    /* TX FIFO Size */
86 
87 /* Receive DMA Registers */
88 #define SUNGEM_MMIO_RXDMA_SIZE   0x2000
89 
90 #define RXDMA_CFG         0x0000UL    /* RX Configuration Register */
91 #define RXDMA_CFG_ENABLE      0x00000001    /* Enable RX DMA channel */
92 #define RXDMA_CFG_RINGSZ      0x0000001e    /* RX descriptor ring size */
93 #define RXDMA_CFG_FBOFF       0x00001c00    /* Offset of first data byte */
94 #define RXDMA_CFG_CSUMOFF     0x000fe000    /* Skip bytes before csum calc */
95 
96 #define RXDMA_DBLOW       0x0004UL    /* RX Descriptor Base Low */
97 #define RXDMA_DBHI        0x0008UL    /* RX Descriptor Base High */
98 #define RXDMA_PCNT        0x0018UL    /* RX FIFO Packet Counter */
99 #define RXDMA_SMACHINE    0x001CUL    /* RX State Machine Register */
100 #define RXDMA_PTHRESH     0x0020UL    /* Pause Thresholds */
101 #define RXDMA_DPLOW       0x0024UL    /* RX Data Pointer Low */
102 #define RXDMA_DPHI        0x0028UL    /* RX Data Pointer High */
103 #define RXDMA_KICK        0x0100UL    /* RX Kick Register */
104 #define RXDMA_DONE        0x0104UL    /* RX Completion Register */
105 #define RXDMA_BLANK       0x0108UL    /* RX Blanking Register */
106 #define RXDMA_FTAG        0x0110UL    /* RX FIFO Tag */
107 #define RXDMA_FSZ         0x0120UL    /* RX FIFO Size */
108 
109 /* MAC Registers */
110 #define SUNGEM_MMIO_MAC_SIZE   0x200
111 
112 #define MAC_TXRST         0x0000UL    /* TX MAC Software Reset Command */
113 #define MAC_RXRST         0x0004UL    /* RX MAC Software Reset Command */
114 #define MAC_TXSTAT        0x0010UL    /* TX MAC Status Register */
115 #define MAC_RXSTAT        0x0014UL    /* RX MAC Status Register */
116 
117 #define MAC_CSTAT         0x0018UL    /* MAC Control Status Register */
118 #define MAC_CSTAT_PTR         0xffff0000    /* Pause Time Received */
119 
120 #define MAC_TXMASK        0x0020UL    /* TX MAC Mask Register */
121 #define MAC_RXMASK        0x0024UL    /* RX MAC Mask Register */
122 #define MAC_MCMASK        0x0028UL    /* MAC Control Mask Register */
123 
124 #define MAC_TXCFG         0x0030UL    /* TX MAC Configuration Register */
125 #define MAC_TXCFG_ENAB        0x00000001    /* TX MAC Enable */
126 
127 #define MAC_RXCFG         0x0034UL    /* RX MAC Configuration Register */
128 #define MAC_RXCFG_ENAB        0x00000001    /* RX MAC Enable */
129 #define MAC_RXCFG_SFCS        0x00000004    /* Strip FCS */
130 #define MAC_RXCFG_PROM        0x00000008    /* Promiscuous Mode */
131 #define MAC_RXCFG_PGRP        0x00000010    /* Promiscuous Group */
132 #define MAC_RXCFG_HFE         0x00000020    /* Hash Filter Enable */
133 
134 #define MAC_XIFCFG        0x003CUL    /* XIF Configuration Register */
135 #define MAC_XIFCFG_LBCK       0x00000002    /* Loopback TX to RX */
136 
137 #define MAC_MINFSZ        0x0050UL    /* MinFrameSize Register */
138 #define MAC_MAXFSZ        0x0054UL    /* MaxFrameSize Register */
139 #define MAC_ADDR0         0x0080UL    /* MAC Address 0 Register */
140 #define MAC_ADDR1         0x0084UL    /* MAC Address 1 Register */
141 #define MAC_ADDR2         0x0088UL    /* MAC Address 2 Register */
142 #define MAC_ADDR3         0x008CUL    /* MAC Address 3 Register */
143 #define MAC_ADDR4         0x0090UL    /* MAC Address 4 Register */
144 #define MAC_ADDR5         0x0094UL    /* MAC Address 5 Register */
145 #define MAC_HASH0         0x00C0UL    /* Hash Table 0 Register */
146 #define MAC_PATMPS        0x0114UL    /* Peak Attempts Register */
147 #define MAC_SMACHINE      0x0134UL    /* State Machine Register */
148 
149 /* MIF Registers */
150 #define SUNGEM_MMIO_MIF_SIZE   0x20
151 
152 #define MIF_FRAME         0x000CUL    /* MIF Frame/Output Register */
153 #define MIF_FRAME_OP          0x30000000    /* OPcode */
154 #define MIF_FRAME_PHYAD       0x0f800000    /* PHY ADdress */
155 #define MIF_FRAME_REGAD       0x007c0000    /* REGister ADdress */
156 #define MIF_FRAME_TALSB       0x00010000    /* Turn Around LSB */
157 #define MIF_FRAME_DATA        0x0000ffff    /* Instruction Payload */
158 
159 #define MIF_CFG           0x0010UL    /* MIF Configuration Register */
160 #define MIF_CFG_MDI0          0x00000100    /* MDIO_0 present or read-bit */
161 #define MIF_CFG_MDI1          0x00000200    /* MDIO_1 present or read-bit */
162 
163 #define MIF_STATUS        0x0018UL    /* MIF Status Register */
164 #define MIF_SMACHINE      0x001CUL    /* MIF State Machine Register */
165 
166 /* PCS/Serialink Registers */
167 #define SUNGEM_MMIO_PCS_SIZE   0x60
168 #define PCS_MIISTAT       0x0004UL    /* PCS MII Status Register */
169 #define PCS_ISTAT         0x0018UL    /* PCS Interrupt Status Reg */
170 #define PCS_SSTATE        0x005CUL    /* Serialink State Register */
171 
172 /* Descriptors */
173 struct gem_txd {
174     uint64_t control_word;
175     uint64_t buffer;
176 };
177 
178 #define TXDCTRL_BUFSZ     0x0000000000007fffULL  /* Buffer Size */
179 #define TXDCTRL_CSTART    0x00000000001f8000ULL  /* CSUM Start Offset */
180 #define TXDCTRL_COFF      0x000000001fe00000ULL  /* CSUM Stuff Offset */
181 #define TXDCTRL_CENAB     0x0000000020000000ULL  /* CSUM Enable */
182 #define TXDCTRL_EOF       0x0000000040000000ULL  /* End of Frame */
183 #define TXDCTRL_SOF       0x0000000080000000ULL  /* Start of Frame */
184 #define TXDCTRL_INTME     0x0000000100000000ULL  /* "Interrupt Me" */
185 
186 struct gem_rxd {
187     uint64_t status_word;
188     uint64_t buffer;
189 };
190 
191 #define RXDCTRL_HPASS     0x1000000000000000ULL  /* Passed Hash Filter */
192 #define RXDCTRL_ALTMAC    0x2000000000000000ULL  /* Matched ALT MAC */
193 
194 
195 typedef struct {
196     PCIDevice pdev;
197 
198     MemoryRegion sungem;
199     MemoryRegion greg;
200     MemoryRegion txdma;
201     MemoryRegion rxdma;
202     MemoryRegion mac;
203     MemoryRegion mif;
204     MemoryRegion pcs;
205     NICState *nic;
206     NICConf conf;
207     uint32_t phy_addr;
208 
209     uint32_t gregs[SUNGEM_MMIO_GREG_SIZE >> 2];
210     uint32_t txdmaregs[SUNGEM_MMIO_TXDMA_SIZE >> 2];
211     uint32_t rxdmaregs[SUNGEM_MMIO_RXDMA_SIZE >> 2];
212     uint32_t macregs[SUNGEM_MMIO_MAC_SIZE >> 2];
213     uint32_t mifregs[SUNGEM_MMIO_MIF_SIZE >> 2];
214     uint32_t pcsregs[SUNGEM_MMIO_PCS_SIZE >> 2];
215 
216     /* Cache some useful things */
217     uint32_t rx_mask;
218     uint32_t tx_mask;
219 
220     /* Current tx packet */
221     uint8_t tx_data[MAX_PACKET_SIZE];
222     uint32_t tx_size;
223     uint64_t tx_first_ctl;
224 } SunGEMState;
225 
226 
227 static void sungem_eval_irq(SunGEMState *s)
228 {
229     uint32_t stat, mask;
230 
231     mask = s->gregs[GREG_IMASK >> 2];
232     stat = s->gregs[GREG_STAT >> 2] & ~GREG_STAT_TXNR;
233     if (stat & ~mask) {
234         pci_set_irq(PCI_DEVICE(s), 1);
235     } else {
236         pci_set_irq(PCI_DEVICE(s), 0);
237     }
238 }
239 
240 static void sungem_update_status(SunGEMState *s, uint32_t bits, bool val)
241 {
242     uint32_t stat;
243 
244     stat = s->gregs[GREG_STAT >> 2];
245     if (val) {
246         stat |= bits;
247     } else {
248         stat &= ~bits;
249     }
250     s->gregs[GREG_STAT >> 2] = stat;
251     sungem_eval_irq(s);
252 }
253 
254 static void sungem_eval_cascade_irq(SunGEMState *s)
255 {
256     uint32_t stat, mask;
257 
258     mask = s->macregs[MAC_TXSTAT >> 2];
259     stat = s->macregs[MAC_TXMASK >> 2];
260     if (stat & ~mask) {
261         sungem_update_status(s, GREG_STAT_TXMAC, true);
262     } else {
263         sungem_update_status(s, GREG_STAT_TXMAC, false);
264     }
265 
266     mask = s->macregs[MAC_RXSTAT >> 2];
267     stat = s->macregs[MAC_RXMASK >> 2];
268     if (stat & ~mask) {
269         sungem_update_status(s, GREG_STAT_RXMAC, true);
270     } else {
271         sungem_update_status(s, GREG_STAT_RXMAC, false);
272     }
273 
274     mask = s->macregs[MAC_CSTAT >> 2];
275     stat = s->macregs[MAC_MCMASK >> 2] & ~MAC_CSTAT_PTR;
276     if (stat & ~mask) {
277         sungem_update_status(s, GREG_STAT_MAC, true);
278     } else {
279         sungem_update_status(s, GREG_STAT_MAC, false);
280     }
281 }
282 
283 static void sungem_do_tx_csum(SunGEMState *s)
284 {
285     uint16_t start, off;
286     uint32_t csum;
287 
288     start = (s->tx_first_ctl & TXDCTRL_CSTART) >> 15;
289     off = (s->tx_first_ctl & TXDCTRL_COFF) >> 21;
290 
291     trace_sungem_tx_checksum(start, off);
292 
293     if (start > (s->tx_size - 2) || off > (s->tx_size - 2)) {
294         trace_sungem_tx_checksum_oob();
295         return;
296     }
297 
298     csum = net_raw_checksum(s->tx_data + start, s->tx_size - start);
299     stw_be_p(s->tx_data + off, csum);
300 }
301 
302 static void sungem_send_packet(SunGEMState *s, const uint8_t *buf,
303                                int size)
304 {
305     NetClientState *nc = qemu_get_queue(s->nic);
306 
307     if (s->macregs[MAC_XIFCFG >> 2] & MAC_XIFCFG_LBCK) {
308         nc->info->receive(nc, buf, size);
309     } else {
310         qemu_send_packet(nc, buf, size);
311     }
312 }
313 
314 static void sungem_process_tx_desc(SunGEMState *s, struct gem_txd *desc)
315 {
316     PCIDevice *d = PCI_DEVICE(s);
317     uint32_t len;
318 
319     /* If it's a start of frame, discard anything we had in the
320      * buffer and start again. This should be an error condition
321      * if we had something ... for now we ignore it
322      */
323     if (desc->control_word & TXDCTRL_SOF) {
324         if (s->tx_first_ctl) {
325             trace_sungem_tx_unfinished();
326         }
327         s->tx_size = 0;
328         s->tx_first_ctl = desc->control_word;
329     }
330 
331     /* Grab data size */
332     len = desc->control_word & TXDCTRL_BUFSZ;
333 
334     /* Clamp it to our max size */
335     if ((s->tx_size + len) > MAX_PACKET_SIZE) {
336         trace_sungem_tx_overflow();
337         len = MAX_PACKET_SIZE - s->tx_size;
338     }
339 
340     /* Read the data */
341     pci_dma_read(d, desc->buffer, &s->tx_data[s->tx_size], len);
342     s->tx_size += len;
343 
344     /* If end of frame, send packet */
345     if (desc->control_word & TXDCTRL_EOF) {
346         trace_sungem_tx_finished(s->tx_size);
347 
348         /* Handle csum */
349         if (s->tx_first_ctl & TXDCTRL_CENAB) {
350             sungem_do_tx_csum(s);
351         }
352 
353         /* Send it */
354         sungem_send_packet(s, s->tx_data, s->tx_size);
355 
356         /* No more pending packet */
357         s->tx_size = 0;
358         s->tx_first_ctl = 0;
359     }
360 }
361 
362 static void sungem_tx_kick(SunGEMState *s)
363 {
364     PCIDevice *d = PCI_DEVICE(s);
365     uint32_t comp, kick;
366     uint32_t txdma_cfg, txmac_cfg, ints;
367     uint64_t dbase;
368 
369     trace_sungem_tx_kick();
370 
371     /* Check that both TX MAC and TX DMA are enabled. We don't
372      * handle DMA-less direct FIFO operations (we don't emulate
373      * the FIFO at all).
374      *
375      * A write to TXDMA_KICK while DMA isn't enabled can happen
376      * when the driver is resetting the pointer.
377      */
378     txdma_cfg = s->txdmaregs[TXDMA_CFG >> 2];
379     txmac_cfg = s->macregs[MAC_TXCFG >> 2];
380     if (!(txdma_cfg & TXDMA_CFG_ENABLE) ||
381         !(txmac_cfg & MAC_TXCFG_ENAB)) {
382         trace_sungem_tx_disabled();
383         return;
384     }
385 
386     /* XXX Test min frame size register ? */
387     /* XXX Test max frame size register ? */
388 
389     dbase = s->txdmaregs[TXDMA_DBHI >> 2];
390     dbase = (dbase << 32) | s->txdmaregs[TXDMA_DBLOW >> 2];
391 
392     comp = s->txdmaregs[TXDMA_TXDONE >> 2] & s->tx_mask;
393     kick = s->txdmaregs[TXDMA_KICK >> 2] & s->tx_mask;
394 
395     trace_sungem_tx_process(comp, kick, s->tx_mask + 1);
396 
397     /* This is rather primitive for now, we just send everything we
398      * can in one go, like e1000. Ideally we should do the sending
399      * from some kind of background task
400      */
401     while (comp != kick) {
402         struct gem_txd desc;
403 
404         /* Read the next descriptor */
405         pci_dma_read(d, dbase + comp * sizeof(desc), &desc, sizeof(desc));
406 
407         /* Byteswap descriptor */
408         desc.control_word = le64_to_cpu(desc.control_word);
409         desc.buffer = le64_to_cpu(desc.buffer);
410         trace_sungem_tx_desc(comp, desc.control_word, desc.buffer);
411 
412         /* Send it for processing */
413         sungem_process_tx_desc(s, &desc);
414 
415         /* Interrupt */
416         ints = GREG_STAT_TXDONE;
417         if (desc.control_word & TXDCTRL_INTME) {
418             ints |= GREG_STAT_TXINTME;
419         }
420         sungem_update_status(s, ints, true);
421 
422         /* Next ! */
423         comp = (comp + 1) & s->tx_mask;
424         s->txdmaregs[TXDMA_TXDONE >> 2] = comp;
425     }
426 
427     /* We sent everything, set status/irq bit */
428     sungem_update_status(s, GREG_STAT_TXALL, true);
429 }
430 
431 static bool sungem_rx_full(SunGEMState *s, uint32_t kick, uint32_t done)
432 {
433     return kick == ((done + 1) & s->rx_mask);
434 }
435 
436 static int sungem_can_receive(NetClientState *nc)
437 {
438     SunGEMState *s = qemu_get_nic_opaque(nc);
439     uint32_t kick, done, rxdma_cfg, rxmac_cfg;
440     bool full;
441 
442     rxmac_cfg = s->macregs[MAC_RXCFG >> 2];
443     rxdma_cfg = s->rxdmaregs[RXDMA_CFG >> 2];
444 
445     /* If MAC disabled, can't receive */
446     if ((rxmac_cfg & MAC_RXCFG_ENAB) == 0) {
447         trace_sungem_rx_mac_disabled();
448         return 0;
449     }
450     if ((rxdma_cfg & RXDMA_CFG_ENABLE) == 0) {
451         trace_sungem_rx_txdma_disabled();
452         return 0;
453     }
454 
455     /* Check RX availability */
456     kick = s->rxdmaregs[RXDMA_KICK >> 2];
457     done = s->rxdmaregs[RXDMA_DONE >> 2];
458     full = sungem_rx_full(s, kick, done);
459 
460     trace_sungem_rx_check(!full, kick, done);
461 
462     return !full;
463 }
464 
465 enum {
466         rx_no_match,
467         rx_match_promisc,
468         rx_match_bcast,
469         rx_match_allmcast,
470         rx_match_mcast,
471         rx_match_mac,
472         rx_match_altmac,
473 };
474 
475 static int sungem_check_rx_mac(SunGEMState *s, const uint8_t *mac, uint32_t crc)
476 {
477     uint32_t rxcfg = s->macregs[MAC_RXCFG >> 2];
478     uint32_t mac0, mac1, mac2;
479 
480     /* Promisc enabled ? */
481     if (rxcfg & MAC_RXCFG_PROM) {
482         return rx_match_promisc;
483     }
484 
485     /* Format MAC address into dwords */
486     mac0 = (mac[4] << 8) | mac[5];
487     mac1 = (mac[2] << 8) | mac[3];
488     mac2 = (mac[0] << 8) | mac[1];
489 
490     trace_sungem_rx_mac_check(mac0, mac1, mac2);
491 
492     /* Is this a broadcast frame ? */
493     if (mac0 == 0xffff && mac1 == 0xffff && mac2 == 0xffff) {
494         return rx_match_bcast;
495     }
496 
497     /* TODO: Implement address filter registers (or we don't care ?) */
498 
499     /* Is this a multicast frame ? */
500     if (mac[0] & 1) {
501         trace_sungem_rx_mac_multicast();
502 
503         /* Promisc group enabled ? */
504         if (rxcfg & MAC_RXCFG_PGRP) {
505             return rx_match_allmcast;
506         }
507 
508         /* TODO: Check MAC control frames (or we don't care) ? */
509 
510         /* Check hash filter (somebody check that's correct ?) */
511         if (rxcfg & MAC_RXCFG_HFE) {
512             uint32_t hash, idx;
513 
514             crc >>= 24;
515             idx = (crc >> 2) & 0x3c;
516             hash = s->macregs[(MAC_HASH0 + idx) >> 2];
517             if (hash & (1 << (15 - (crc & 0xf)))) {
518                 return rx_match_mcast;
519             }
520         }
521         return rx_no_match;
522     }
523 
524     /* Main MAC check */
525     trace_sungem_rx_mac_compare(s->macregs[MAC_ADDR0 >> 2],
526                                 s->macregs[MAC_ADDR1 >> 2],
527                                 s->macregs[MAC_ADDR2 >> 2]);
528 
529     if (mac0 == s->macregs[MAC_ADDR0 >> 2] &&
530         mac1 == s->macregs[MAC_ADDR1 >> 2] &&
531         mac2 == s->macregs[MAC_ADDR2 >> 2]) {
532         return rx_match_mac;
533     }
534 
535     /* Alt MAC check */
536     if (mac0 == s->macregs[MAC_ADDR3 >> 2] &&
537         mac1 == s->macregs[MAC_ADDR4 >> 2] &&
538         mac2 == s->macregs[MAC_ADDR5 >> 2]) {
539         return rx_match_altmac;
540     }
541 
542     return rx_no_match;
543 }
544 
545 static ssize_t sungem_receive(NetClientState *nc, const uint8_t *buf,
546                               size_t size)
547 {
548     SunGEMState *s = qemu_get_nic_opaque(nc);
549     PCIDevice *d = PCI_DEVICE(s);
550     uint32_t mac_crc, done, kick, max_fsize;
551     uint32_t fcs_size, ints, rxdma_cfg, rxmac_cfg, csum, coff;
552     uint8_t smallbuf[60];
553     struct gem_rxd desc;
554     uint64_t dbase, baddr;
555     unsigned int rx_cond;
556 
557     trace_sungem_rx_packet(size);
558 
559     rxmac_cfg = s->macregs[MAC_RXCFG >> 2];
560     rxdma_cfg = s->rxdmaregs[RXDMA_CFG >> 2];
561     max_fsize = s->macregs[MAC_MAXFSZ >> 2] & 0x7fff;
562 
563     /* If MAC or DMA disabled, can't receive */
564     if (!(rxdma_cfg & RXDMA_CFG_ENABLE) ||
565         !(rxmac_cfg & MAC_RXCFG_ENAB)) {
566         trace_sungem_rx_disabled();
567         return 0;
568     }
569 
570     /* Size adjustment for FCS */
571     if (rxmac_cfg & MAC_RXCFG_SFCS) {
572         fcs_size = 0;
573     } else {
574         fcs_size = 4;
575     }
576 
577     /* Discard frame smaller than a MAC or larger than max frame size
578      * (when accounting for FCS)
579      */
580     if (size < 6 || (size + 4) > max_fsize) {
581         trace_sungem_rx_bad_frame_size(size);
582         /* XXX Increment error statistics ? */
583         return size;
584     }
585 
586     /* We don't drop too small frames since we get them in qemu, we pad
587      * them instead. We should probably use the min frame size register
588      * but I don't want to use a variable size staging buffer and I
589      * know both MacOS and Linux use the default 64 anyway. We use 60
590      * here to account for the non-existent FCS.
591      */
592     if (size < 60) {
593         memcpy(smallbuf, buf, size);
594         memset(&smallbuf[size], 0, 60 - size);
595         buf = smallbuf;
596         size = 60;
597     }
598 
599     /* Get MAC crc */
600     mac_crc = net_crc32_le(buf, ETH_ALEN);
601 
602     /* Packet isn't for me ? */
603     rx_cond = sungem_check_rx_mac(s, buf, mac_crc);
604     if (rx_cond == rx_no_match) {
605         /* Just drop it */
606         trace_sungem_rx_unmatched();
607         return size;
608     }
609 
610     /* Get ring pointers */
611     kick = s->rxdmaregs[RXDMA_KICK >> 2] & s->rx_mask;
612     done = s->rxdmaregs[RXDMA_DONE >> 2] & s->rx_mask;
613 
614     trace_sungem_rx_process(done, kick, s->rx_mask + 1);
615 
616     /* Ring full ? Can't receive */
617     if (sungem_rx_full(s, kick, done)) {
618         trace_sungem_rx_ringfull();
619         return 0;
620     }
621 
622     /* Note: The real GEM will fetch descriptors in blocks of 4,
623      * for now we handle them one at a time, I think the driver will
624      * cope
625      */
626 
627     dbase = s->rxdmaregs[RXDMA_DBHI >> 2];
628     dbase = (dbase << 32) | s->rxdmaregs[RXDMA_DBLOW >> 2];
629 
630     /* Read the next descriptor */
631     pci_dma_read(d, dbase + done * sizeof(desc), &desc, sizeof(desc));
632 
633     trace_sungem_rx_desc(le64_to_cpu(desc.status_word),
634                          le64_to_cpu(desc.buffer));
635 
636     /* Effective buffer address */
637     baddr = le64_to_cpu(desc.buffer) & ~7ull;
638     baddr |= (rxdma_cfg & RXDMA_CFG_FBOFF) >> 10;
639 
640     /* Write buffer out */
641     pci_dma_write(d, baddr, buf, size);
642 
643     if (fcs_size) {
644         /* Should we add an FCS ? Linux doesn't ask us to strip it,
645          * however I believe nothing checks it... For now we just
646          * do nothing. It's faster this way.
647          */
648     }
649 
650     /* Calculate the checksum */
651     coff = (rxdma_cfg & RXDMA_CFG_CSUMOFF) >> 13;
652     csum = net_raw_checksum((uint8_t *)buf + coff, size - coff);
653 
654     /* Build the updated descriptor */
655     desc.status_word = (size + fcs_size) << 16;
656     desc.status_word |= ((uint64_t)(mac_crc >> 16)) << 44;
657     desc.status_word |= csum;
658     if (rx_cond == rx_match_mcast) {
659         desc.status_word |= RXDCTRL_HPASS;
660     }
661     if (rx_cond == rx_match_altmac) {
662         desc.status_word |= RXDCTRL_ALTMAC;
663     }
664     desc.status_word = cpu_to_le64(desc.status_word);
665 
666     pci_dma_write(d, dbase + done * sizeof(desc), &desc, sizeof(desc));
667 
668     done = (done + 1) & s->rx_mask;
669     s->rxdmaregs[RXDMA_DONE >> 2] = done;
670 
671     /* XXX Unconditionally set RX interrupt for now. The interrupt
672      * mitigation timer might well end up adding more overhead than
673      * helping here...
674      */
675     ints = GREG_STAT_RXDONE;
676     if (sungem_rx_full(s, kick, done)) {
677         ints |= GREG_STAT_RXNOBUF;
678     }
679     sungem_update_status(s, ints, true);
680 
681     return size;
682 }
683 
684 static void sungem_set_link_status(NetClientState *nc)
685 {
686     /* We don't do anything for now as I believe none of the OSes
687      * drivers use the MIF autopoll feature nor the PHY interrupt
688      */
689 }
690 
691 static void sungem_update_masks(SunGEMState *s)
692 {
693     uint32_t sz;
694 
695     sz = 1 << (((s->rxdmaregs[RXDMA_CFG >> 2] & RXDMA_CFG_RINGSZ) >> 1) + 5);
696     s->rx_mask = sz - 1;
697 
698     sz = 1 << (((s->txdmaregs[TXDMA_CFG >> 2] & TXDMA_CFG_RINGSZ) >> 1) + 5);
699     s->tx_mask = sz - 1;
700 }
701 
702 static void sungem_reset_rx(SunGEMState *s)
703 {
704     trace_sungem_rx_reset();
705 
706     /* XXX Do RXCFG */
707     /* XXX Check value */
708     s->rxdmaregs[RXDMA_FSZ >> 2] = 0x140;
709     s->rxdmaregs[RXDMA_DONE >> 2] = 0;
710     s->rxdmaregs[RXDMA_KICK >> 2] = 0;
711     s->rxdmaregs[RXDMA_CFG >> 2] = 0x1000010;
712     s->rxdmaregs[RXDMA_PTHRESH >> 2] = 0xf8;
713     s->rxdmaregs[RXDMA_BLANK >> 2] = 0;
714 
715     sungem_update_masks(s);
716 }
717 
718 static void sungem_reset_tx(SunGEMState *s)
719 {
720     trace_sungem_tx_reset();
721 
722     /* XXX Do TXCFG */
723     /* XXX Check value */
724     s->txdmaregs[TXDMA_FSZ >> 2] = 0x90;
725     s->txdmaregs[TXDMA_TXDONE >> 2] = 0;
726     s->txdmaregs[TXDMA_KICK >> 2] = 0;
727     s->txdmaregs[TXDMA_CFG >> 2] = 0x118010;
728 
729     sungem_update_masks(s);
730 
731     s->tx_size = 0;
732     s->tx_first_ctl = 0;
733 }
734 
735 static void sungem_reset_all(SunGEMState *s, bool pci_reset)
736 {
737     trace_sungem_reset(pci_reset);
738 
739     sungem_reset_rx(s);
740     sungem_reset_tx(s);
741 
742     s->gregs[GREG_IMASK >> 2] = 0xFFFFFFF;
743     s->gregs[GREG_STAT >> 2] = 0;
744     if (pci_reset) {
745         uint8_t *ma = s->conf.macaddr.a;
746 
747         s->gregs[GREG_SWRST >> 2] = 0;
748         s->macregs[MAC_ADDR0 >> 2] = (ma[4] << 8) | ma[5];
749         s->macregs[MAC_ADDR1 >> 2] = (ma[2] << 8) | ma[3];
750         s->macregs[MAC_ADDR2 >> 2] = (ma[0] << 8) | ma[1];
751     } else {
752         s->gregs[GREG_SWRST >> 2] &= GREG_SWRST_RSTOUT;
753     }
754     s->mifregs[MIF_CFG >> 2] = MIF_CFG_MDI0;
755 }
756 
757 static void sungem_mii_write(SunGEMState *s, uint8_t phy_addr,
758                              uint8_t reg_addr, uint16_t val)
759 {
760     trace_sungem_mii_write(phy_addr, reg_addr, val);
761 
762     /* XXX TODO */
763 }
764 
765 static uint16_t __sungem_mii_read(SunGEMState *s, uint8_t phy_addr,
766                                   uint8_t reg_addr)
767 {
768     if (phy_addr != s->phy_addr) {
769         return 0xffff;
770     }
771     /* Primitive emulation of a BCM5201 to please the driver,
772      * ID is 0x00406210. TODO: Do a gigabit PHY like BCM5400
773      */
774     switch (reg_addr) {
775     case MII_BMCR:
776         return 0;
777     case MII_PHYID1:
778         return 0x0040;
779     case MII_PHYID2:
780         return 0x6210;
781     case MII_BMSR:
782         if (qemu_get_queue(s->nic)->link_down) {
783             return MII_BMSR_100TX_FD  | MII_BMSR_AUTONEG;
784         } else {
785             return MII_BMSR_100TX_FD | MII_BMSR_AN_COMP |
786                     MII_BMSR_AUTONEG | MII_BMSR_LINK_ST;
787         }
788     case MII_ANLPAR:
789     case MII_ANAR:
790         return MII_ANLPAR_TXFD;
791     case 0x18: /* 5201 AUX status */
792         return 3; /* 100FD */
793     default:
794         return 0;
795     };
796 }
797 static uint16_t sungem_mii_read(SunGEMState *s, uint8_t phy_addr,
798                                 uint8_t reg_addr)
799 {
800     uint16_t val;
801 
802     val = __sungem_mii_read(s, phy_addr, reg_addr);
803 
804     trace_sungem_mii_read(phy_addr, reg_addr, val);
805 
806     return val;
807 }
808 
809 static uint32_t sungem_mii_op(SunGEMState *s, uint32_t val)
810 {
811     uint8_t phy_addr, reg_addr, op;
812 
813     /* Ignore not start of frame */
814     if ((val >> 30) != 1) {
815         trace_sungem_mii_invalid_sof(val >> 30);
816         return 0xffff;
817     }
818     phy_addr = (val & MIF_FRAME_PHYAD) >> 23;
819     reg_addr = (val & MIF_FRAME_REGAD) >> 18;
820     op = (val & MIF_FRAME_OP) >> 28;
821     switch (op) {
822     case 1:
823         sungem_mii_write(s, phy_addr, reg_addr, val & MIF_FRAME_DATA);
824         return val | MIF_FRAME_TALSB;
825     case 2:
826         return sungem_mii_read(s, phy_addr, reg_addr) | MIF_FRAME_TALSB;
827     default:
828         trace_sungem_mii_invalid_op(op);
829     }
830     return 0xffff | MIF_FRAME_TALSB;
831 }
832 
833 static void sungem_mmio_greg_write(void *opaque, hwaddr addr, uint64_t val,
834                                    unsigned size)
835 {
836     SunGEMState *s = opaque;
837 
838     if (!(addr < 0x20) && !(addr >= 0x1000 && addr <= 0x1010)) {
839         qemu_log_mask(LOG_GUEST_ERROR,
840                       "Write to unknown GREG register 0x%"HWADDR_PRIx"\n",
841                       addr);
842         return;
843     }
844 
845     trace_sungem_mmio_greg_write(addr, val);
846 
847     /* Pre-write filter */
848     switch (addr) {
849     /* Read only registers */
850     case GREG_SEBSTATE:
851     case GREG_STAT:
852     case GREG_STAT2:
853     case GREG_PCIESTAT:
854         return; /* No actual write */
855     case GREG_IACK:
856         val &= GREG_STAT_LATCH;
857         s->gregs[GREG_STAT >> 2] &= ~val;
858         sungem_eval_irq(s);
859         return; /* No actual write */
860     case GREG_PCIEMASK:
861         val &= 0x7;
862         break;
863     }
864 
865     s->gregs[addr  >> 2] = val;
866 
867     /* Post write action */
868     switch (addr) {
869     case GREG_IMASK:
870         /* Re-evaluate interrupt */
871         sungem_eval_irq(s);
872         break;
873     case GREG_SWRST:
874         switch (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST)) {
875         case GREG_SWRST_RXRST:
876             sungem_reset_rx(s);
877             break;
878         case GREG_SWRST_TXRST:
879             sungem_reset_tx(s);
880             break;
881         case GREG_SWRST_RXRST | GREG_SWRST_TXRST:
882             sungem_reset_all(s, false);
883         }
884         break;
885     }
886 }
887 
888 static uint64_t sungem_mmio_greg_read(void *opaque, hwaddr addr, unsigned size)
889 {
890     SunGEMState *s = opaque;
891     uint32_t val;
892 
893     if (!(addr < 0x20) && !(addr >= 0x1000 && addr <= 0x1010)) {
894         qemu_log_mask(LOG_GUEST_ERROR,
895                       "Read from unknown GREG register 0x%"HWADDR_PRIx"\n",
896                       addr);
897         return 0;
898     }
899 
900     val = s->gregs[addr >> 2];
901 
902     trace_sungem_mmio_greg_read(addr, val);
903 
904     switch (addr) {
905     case GREG_STAT:
906         /* Side effect, clear bottom 7 bits */
907         s->gregs[GREG_STAT >> 2] &= ~GREG_STAT_LATCH;
908         sungem_eval_irq(s);
909 
910         /* Inject TX completion in returned value */
911         val = (val & ~GREG_STAT_TXNR) |
912                 (s->txdmaregs[TXDMA_TXDONE >> 2] << GREG_STAT_TXNR_SHIFT);
913         break;
914     case GREG_STAT2:
915         /* Return the status reg without side effect
916          * (and inject TX completion in returned value)
917          */
918         val = (s->gregs[GREG_STAT >> 2] & ~GREG_STAT_TXNR) |
919               (s->txdmaregs[TXDMA_TXDONE >> 2] << GREG_STAT_TXNR_SHIFT);
920         break;
921     }
922 
923     return val;
924 }
925 
926 static const MemoryRegionOps sungem_mmio_greg_ops = {
927     .read = sungem_mmio_greg_read,
928     .write = sungem_mmio_greg_write,
929     .endianness = DEVICE_LITTLE_ENDIAN,
930     .impl = {
931         .min_access_size = 4,
932         .max_access_size = 4,
933     },
934 };
935 
936 static void sungem_mmio_txdma_write(void *opaque, hwaddr addr, uint64_t val,
937                                     unsigned size)
938 {
939     SunGEMState *s = opaque;
940 
941     if (!(addr < 0x38) && !(addr >= 0x100 && addr <= 0x118)) {
942         qemu_log_mask(LOG_GUEST_ERROR,
943                       "Write to unknown TXDMA register 0x%"HWADDR_PRIx"\n",
944                       addr);
945         return;
946     }
947 
948     trace_sungem_mmio_txdma_write(addr, val);
949 
950     /* Pre-write filter */
951     switch (addr) {
952     /* Read only registers */
953     case TXDMA_TXDONE:
954     case TXDMA_PCNT:
955     case TXDMA_SMACHINE:
956     case TXDMA_DPLOW:
957     case TXDMA_DPHI:
958     case TXDMA_FSZ:
959     case TXDMA_FTAG:
960         return; /* No actual write */
961     }
962 
963     s->txdmaregs[addr >> 2] = val;
964 
965     /* Post write action */
966     switch (addr) {
967     case TXDMA_KICK:
968         sungem_tx_kick(s);
969         break;
970     case TXDMA_CFG:
971         sungem_update_masks(s);
972         break;
973     }
974 }
975 
976 static uint64_t sungem_mmio_txdma_read(void *opaque, hwaddr addr, unsigned size)
977 {
978     SunGEMState *s = opaque;
979     uint32_t val;
980 
981     if (!(addr < 0x38) && !(addr >= 0x100 && addr <= 0x118)) {
982         qemu_log_mask(LOG_GUEST_ERROR,
983                       "Read from unknown TXDMA register 0x%"HWADDR_PRIx"\n",
984                       addr);
985         return 0;
986     }
987 
988     val = s->txdmaregs[addr >> 2];
989 
990     trace_sungem_mmio_txdma_read(addr, val);
991 
992     return val;
993 }
994 
995 static const MemoryRegionOps sungem_mmio_txdma_ops = {
996     .read = sungem_mmio_txdma_read,
997     .write = sungem_mmio_txdma_write,
998     .endianness = DEVICE_LITTLE_ENDIAN,
999     .impl = {
1000         .min_access_size = 4,
1001         .max_access_size = 4,
1002     },
1003 };
1004 
1005 static void sungem_mmio_rxdma_write(void *opaque, hwaddr addr, uint64_t val,
1006                                     unsigned size)
1007 {
1008     SunGEMState *s = opaque;
1009 
1010     if (!(addr <= 0x28) && !(addr >= 0x100 && addr <= 0x120)) {
1011         qemu_log_mask(LOG_GUEST_ERROR,
1012                       "Write to unknown RXDMA register 0x%"HWADDR_PRIx"\n",
1013                       addr);
1014         return;
1015     }
1016 
1017     trace_sungem_mmio_rxdma_write(addr, val);
1018 
1019     /* Pre-write filter */
1020     switch (addr) {
1021     /* Read only registers */
1022     case RXDMA_DONE:
1023     case RXDMA_PCNT:
1024     case RXDMA_SMACHINE:
1025     case RXDMA_DPLOW:
1026     case RXDMA_DPHI:
1027     case RXDMA_FSZ:
1028     case RXDMA_FTAG:
1029         return; /* No actual write */
1030     }
1031 
1032     s->rxdmaregs[addr >> 2] = val;
1033 
1034     /* Post write action */
1035     switch (addr) {
1036     case RXDMA_KICK:
1037         trace_sungem_rx_kick(val);
1038         break;
1039     case RXDMA_CFG:
1040         sungem_update_masks(s);
1041         if ((s->macregs[MAC_RXCFG >> 2] & MAC_RXCFG_ENAB) != 0 &&
1042             (s->rxdmaregs[RXDMA_CFG >> 2] & RXDMA_CFG_ENABLE) != 0) {
1043             qemu_flush_queued_packets(qemu_get_queue(s->nic));
1044         }
1045         break;
1046     }
1047 }
1048 
1049 static uint64_t sungem_mmio_rxdma_read(void *opaque, hwaddr addr, unsigned size)
1050 {
1051     SunGEMState *s = opaque;
1052     uint32_t val;
1053 
1054     if (!(addr <= 0x28) && !(addr >= 0x100 && addr <= 0x120)) {
1055         qemu_log_mask(LOG_GUEST_ERROR,
1056                       "Read from unknown RXDMA register 0x%"HWADDR_PRIx"\n",
1057                       addr);
1058         return 0;
1059     }
1060 
1061     val = s->rxdmaregs[addr >> 2];
1062 
1063     trace_sungem_mmio_rxdma_read(addr, val);
1064 
1065     return val;
1066 }
1067 
1068 static const MemoryRegionOps sungem_mmio_rxdma_ops = {
1069     .read = sungem_mmio_rxdma_read,
1070     .write = sungem_mmio_rxdma_write,
1071     .endianness = DEVICE_LITTLE_ENDIAN,
1072     .impl = {
1073         .min_access_size = 4,
1074         .max_access_size = 4,
1075     },
1076 };
1077 
1078 static void sungem_mmio_mac_write(void *opaque, hwaddr addr, uint64_t val,
1079                                   unsigned size)
1080 {
1081     SunGEMState *s = opaque;
1082 
1083     if (!(addr <= 0x134)) {
1084         qemu_log_mask(LOG_GUEST_ERROR,
1085                       "Write to unknown MAC register 0x%"HWADDR_PRIx"\n",
1086                       addr);
1087         return;
1088     }
1089 
1090     trace_sungem_mmio_mac_write(addr, val);
1091 
1092     /* Pre-write filter */
1093     switch (addr) {
1094     /* Read only registers */
1095     case MAC_TXRST: /* Not technically read-only but will do for now */
1096     case MAC_RXRST: /* Not technically read-only but will do for now */
1097     case MAC_TXSTAT:
1098     case MAC_RXSTAT:
1099     case MAC_CSTAT:
1100     case MAC_PATMPS:
1101     case MAC_SMACHINE:
1102         return; /* No actual write */
1103     case MAC_MINFSZ:
1104         /* 10-bits implemented */
1105         val &= 0x3ff;
1106         break;
1107     }
1108 
1109     s->macregs[addr >> 2] = val;
1110 
1111     /* Post write action */
1112     switch (addr) {
1113     case MAC_TXMASK:
1114     case MAC_RXMASK:
1115     case MAC_MCMASK:
1116         sungem_eval_cascade_irq(s);
1117         break;
1118     case MAC_RXCFG:
1119         sungem_update_masks(s);
1120         if ((s->macregs[MAC_RXCFG >> 2] & MAC_RXCFG_ENAB) != 0 &&
1121             (s->rxdmaregs[RXDMA_CFG >> 2] & RXDMA_CFG_ENABLE) != 0) {
1122             qemu_flush_queued_packets(qemu_get_queue(s->nic));
1123         }
1124         break;
1125     }
1126 }
1127 
1128 static uint64_t sungem_mmio_mac_read(void *opaque, hwaddr addr, unsigned size)
1129 {
1130     SunGEMState *s = opaque;
1131     uint32_t val;
1132 
1133     if (!(addr <= 0x134)) {
1134         qemu_log_mask(LOG_GUEST_ERROR,
1135                       "Read from unknown MAC register 0x%"HWADDR_PRIx"\n",
1136                       addr);
1137         return 0;
1138     }
1139 
1140     val = s->macregs[addr >> 2];
1141 
1142     trace_sungem_mmio_mac_read(addr, val);
1143 
1144     switch (addr) {
1145     case MAC_TXSTAT:
1146         /* Side effect, clear all */
1147         s->macregs[addr >> 2] = 0;
1148         sungem_update_status(s, GREG_STAT_TXMAC, false);
1149         break;
1150     case MAC_RXSTAT:
1151         /* Side effect, clear all */
1152         s->macregs[addr >> 2] = 0;
1153         sungem_update_status(s, GREG_STAT_RXMAC, false);
1154         break;
1155     case MAC_CSTAT:
1156         /* Side effect, interrupt bits */
1157         s->macregs[addr >> 2] &= MAC_CSTAT_PTR;
1158         sungem_update_status(s, GREG_STAT_MAC, false);
1159         break;
1160     }
1161 
1162     return val;
1163 }
1164 
1165 static const MemoryRegionOps sungem_mmio_mac_ops = {
1166     .read = sungem_mmio_mac_read,
1167     .write = sungem_mmio_mac_write,
1168     .endianness = DEVICE_LITTLE_ENDIAN,
1169     .impl = {
1170         .min_access_size = 4,
1171         .max_access_size = 4,
1172     },
1173 };
1174 
1175 static void sungem_mmio_mif_write(void *opaque, hwaddr addr, uint64_t val,
1176                                   unsigned size)
1177 {
1178     SunGEMState *s = opaque;
1179 
1180     if (!(addr <= 0x1c)) {
1181         qemu_log_mask(LOG_GUEST_ERROR,
1182                       "Write to unknown MIF register 0x%"HWADDR_PRIx"\n",
1183                       addr);
1184         return;
1185     }
1186 
1187     trace_sungem_mmio_mif_write(addr, val);
1188 
1189     /* Pre-write filter */
1190     switch (addr) {
1191     /* Read only registers */
1192     case MIF_STATUS:
1193     case MIF_SMACHINE:
1194         return; /* No actual write */
1195     case MIF_CFG:
1196         /* Maintain the RO MDI bits to advertize an MDIO PHY on MDI0 */
1197         val &= ~MIF_CFG_MDI1;
1198         val |= MIF_CFG_MDI0;
1199         break;
1200     }
1201 
1202     s->mifregs[addr >> 2] = val;
1203 
1204     /* Post write action */
1205     switch (addr) {
1206     case MIF_FRAME:
1207         s->mifregs[addr >> 2] = sungem_mii_op(s, val);
1208         break;
1209     }
1210 }
1211 
1212 static uint64_t sungem_mmio_mif_read(void *opaque, hwaddr addr, unsigned size)
1213 {
1214     SunGEMState *s = opaque;
1215     uint32_t val;
1216 
1217     if (!(addr <= 0x1c)) {
1218         qemu_log_mask(LOG_GUEST_ERROR,
1219                       "Read from unknown MIF register 0x%"HWADDR_PRIx"\n",
1220                       addr);
1221         return 0;
1222     }
1223 
1224     val = s->mifregs[addr >> 2];
1225 
1226     trace_sungem_mmio_mif_read(addr, val);
1227 
1228     return val;
1229 }
1230 
1231 static const MemoryRegionOps sungem_mmio_mif_ops = {
1232     .read = sungem_mmio_mif_read,
1233     .write = sungem_mmio_mif_write,
1234     .endianness = DEVICE_LITTLE_ENDIAN,
1235     .impl = {
1236         .min_access_size = 4,
1237         .max_access_size = 4,
1238     },
1239 };
1240 
1241 static void sungem_mmio_pcs_write(void *opaque, hwaddr addr, uint64_t val,
1242                                   unsigned size)
1243 {
1244     SunGEMState *s = opaque;
1245 
1246     if (!(addr <= 0x18) && !(addr >= 0x50 && addr <= 0x5c)) {
1247         qemu_log_mask(LOG_GUEST_ERROR,
1248                       "Write to unknown PCS register 0x%"HWADDR_PRIx"\n",
1249                       addr);
1250         return;
1251     }
1252 
1253     trace_sungem_mmio_pcs_write(addr, val);
1254 
1255     /* Pre-write filter */
1256     switch (addr) {
1257     /* Read only registers */
1258     case PCS_MIISTAT:
1259     case PCS_ISTAT:
1260     case PCS_SSTATE:
1261         return; /* No actual write */
1262     }
1263 
1264     s->pcsregs[addr >> 2] = val;
1265 }
1266 
1267 static uint64_t sungem_mmio_pcs_read(void *opaque, hwaddr addr, unsigned size)
1268 {
1269     SunGEMState *s = opaque;
1270     uint32_t val;
1271 
1272     if (!(addr <= 0x18) && !(addr >= 0x50 && addr <= 0x5c)) {
1273         qemu_log_mask(LOG_GUEST_ERROR,
1274                       "Read from unknown PCS register 0x%"HWADDR_PRIx"\n",
1275                       addr);
1276         return 0;
1277     }
1278 
1279     val = s->pcsregs[addr >> 2];
1280 
1281     trace_sungem_mmio_pcs_read(addr, val);
1282 
1283     return val;
1284 }
1285 
1286 static const MemoryRegionOps sungem_mmio_pcs_ops = {
1287     .read = sungem_mmio_pcs_read,
1288     .write = sungem_mmio_pcs_write,
1289     .endianness = DEVICE_LITTLE_ENDIAN,
1290     .impl = {
1291         .min_access_size = 4,
1292         .max_access_size = 4,
1293     },
1294 };
1295 
1296 static void sungem_uninit(PCIDevice *dev)
1297 {
1298     SunGEMState *s = SUNGEM(dev);
1299 
1300     qemu_del_nic(s->nic);
1301 }
1302 
1303 static NetClientInfo net_sungem_info = {
1304     .type = NET_CLIENT_DRIVER_NIC,
1305     .size = sizeof(NICState),
1306     .can_receive = sungem_can_receive,
1307     .receive = sungem_receive,
1308     .link_status_changed = sungem_set_link_status,
1309 };
1310 
1311 static void sungem_realize(PCIDevice *pci_dev, Error **errp)
1312 {
1313     DeviceState *dev = DEVICE(pci_dev);
1314     SunGEMState *s = SUNGEM(pci_dev);
1315     uint8_t *pci_conf;
1316 
1317     pci_conf = pci_dev->config;
1318 
1319     pci_set_word(pci_conf + PCI_STATUS,
1320                  PCI_STATUS_FAST_BACK |
1321                  PCI_STATUS_DEVSEL_MEDIUM |
1322                  PCI_STATUS_66MHZ);
1323 
1324     pci_set_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID, 0x0);
1325     pci_set_word(pci_conf + PCI_SUBSYSTEM_ID, 0x0);
1326 
1327     pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
1328     pci_conf[PCI_MIN_GNT] = 0x40;
1329     pci_conf[PCI_MAX_LAT] = 0x40;
1330 
1331     sungem_reset_all(s, true);
1332     memory_region_init(&s->sungem, OBJECT(s), "sungem", SUNGEM_MMIO_SIZE);
1333 
1334     memory_region_init_io(&s->greg, OBJECT(s), &sungem_mmio_greg_ops, s,
1335                           "sungem.greg", SUNGEM_MMIO_GREG_SIZE);
1336     memory_region_add_subregion(&s->sungem, 0, &s->greg);
1337 
1338     memory_region_init_io(&s->txdma, OBJECT(s), &sungem_mmio_txdma_ops, s,
1339                           "sungem.txdma", SUNGEM_MMIO_TXDMA_SIZE);
1340     memory_region_add_subregion(&s->sungem, 0x2000, &s->txdma);
1341 
1342     memory_region_init_io(&s->rxdma, OBJECT(s), &sungem_mmio_rxdma_ops, s,
1343                           "sungem.rxdma", SUNGEM_MMIO_RXDMA_SIZE);
1344     memory_region_add_subregion(&s->sungem, 0x4000, &s->rxdma);
1345 
1346     memory_region_init_io(&s->mac, OBJECT(s), &sungem_mmio_mac_ops, s,
1347                           "sungem.mac", SUNGEM_MMIO_MAC_SIZE);
1348     memory_region_add_subregion(&s->sungem, 0x6000, &s->mac);
1349 
1350     memory_region_init_io(&s->mif, OBJECT(s), &sungem_mmio_mif_ops, s,
1351                           "sungem.mif", SUNGEM_MMIO_MIF_SIZE);
1352     memory_region_add_subregion(&s->sungem, 0x6200, &s->mif);
1353 
1354     memory_region_init_io(&s->pcs, OBJECT(s), &sungem_mmio_pcs_ops, s,
1355                           "sungem.pcs", SUNGEM_MMIO_PCS_SIZE);
1356     memory_region_add_subregion(&s->sungem, 0x9000, &s->pcs);
1357 
1358     pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->sungem);
1359 
1360     qemu_macaddr_default_if_unset(&s->conf.macaddr);
1361     s->nic = qemu_new_nic(&net_sungem_info, &s->conf,
1362                           object_get_typename(OBJECT(dev)),
1363                           dev->id, s);
1364     qemu_format_nic_info_str(qemu_get_queue(s->nic),
1365                              s->conf.macaddr.a);
1366 }
1367 
1368 static void sungem_reset(DeviceState *dev)
1369 {
1370     SunGEMState *s = SUNGEM(dev);
1371 
1372     sungem_reset_all(s, true);
1373 }
1374 
1375 static void sungem_instance_init(Object *obj)
1376 {
1377     SunGEMState *s = SUNGEM(obj);
1378 
1379     device_add_bootindex_property(obj, &s->conf.bootindex,
1380                                   "bootindex", "/ethernet-phy@0",
1381                                   DEVICE(obj), NULL);
1382 }
1383 
1384 static Property sungem_properties[] = {
1385     DEFINE_NIC_PROPERTIES(SunGEMState, conf),
1386     /* Phy address should be 0 for most Apple machines except
1387      * for K2 in which case it's 1. Will be set by a machine
1388      * override.
1389      */
1390     DEFINE_PROP_UINT32("phy_addr", SunGEMState, phy_addr, 0),
1391     DEFINE_PROP_END_OF_LIST(),
1392 };
1393 
1394 static const VMStateDescription vmstate_sungem = {
1395     .name = "sungem",
1396     .version_id = 0,
1397     .minimum_version_id = 0,
1398     .fields = (VMStateField[]) {
1399         VMSTATE_PCI_DEVICE(pdev, SunGEMState),
1400         VMSTATE_MACADDR(conf.macaddr, SunGEMState),
1401         VMSTATE_UINT32(phy_addr, SunGEMState),
1402         VMSTATE_UINT32_ARRAY(gregs, SunGEMState, (SUNGEM_MMIO_GREG_SIZE >> 2)),
1403         VMSTATE_UINT32_ARRAY(txdmaregs, SunGEMState,
1404                              (SUNGEM_MMIO_TXDMA_SIZE >> 2)),
1405         VMSTATE_UINT32_ARRAY(rxdmaregs, SunGEMState,
1406                              (SUNGEM_MMIO_RXDMA_SIZE >> 2)),
1407         VMSTATE_UINT32_ARRAY(macregs, SunGEMState, (SUNGEM_MMIO_MAC_SIZE >> 2)),
1408         VMSTATE_UINT32_ARRAY(mifregs, SunGEMState, (SUNGEM_MMIO_MIF_SIZE >> 2)),
1409         VMSTATE_UINT32_ARRAY(pcsregs, SunGEMState, (SUNGEM_MMIO_PCS_SIZE >> 2)),
1410         VMSTATE_UINT32(rx_mask, SunGEMState),
1411         VMSTATE_UINT32(tx_mask, SunGEMState),
1412         VMSTATE_UINT8_ARRAY(tx_data, SunGEMState, MAX_PACKET_SIZE),
1413         VMSTATE_UINT32(tx_size, SunGEMState),
1414         VMSTATE_UINT64(tx_first_ctl, SunGEMState),
1415         VMSTATE_END_OF_LIST()
1416     }
1417 };
1418 
1419 static void sungem_class_init(ObjectClass *klass, void *data)
1420 {
1421     DeviceClass *dc = DEVICE_CLASS(klass);
1422     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1423 
1424     k->realize = sungem_realize;
1425     k->exit = sungem_uninit;
1426     k->vendor_id = PCI_VENDOR_ID_APPLE;
1427     k->device_id = PCI_DEVICE_ID_APPLE_UNI_N_GMAC;
1428     k->revision = 0x01;
1429     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
1430     dc->vmsd = &vmstate_sungem;
1431     dc->reset = sungem_reset;
1432     device_class_set_props(dc, sungem_properties);
1433     set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
1434 }
1435 
1436 static const TypeInfo sungem_info = {
1437     .name          = TYPE_SUNGEM,
1438     .parent        = TYPE_PCI_DEVICE,
1439     .instance_size = sizeof(SunGEMState),
1440     .class_init    = sungem_class_init,
1441     .instance_init = sungem_instance_init,
1442     .interfaces = (InterfaceInfo[]) {
1443         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1444         { }
1445     }
1446 };
1447 
1448 static void sungem_register_types(void)
1449 {
1450     type_register_static(&sungem_info);
1451 }
1452 
1453 type_init(sungem_register_types)
1454