xref: /qemu/hw/nvme/ctrl.c (revision 1fe8ac35)
1 /*
2  * QEMU NVM Express Controller
3  *
4  * Copyright (c) 2012, Intel Corporation
5  *
6  * Written by Keith Busch <keith.busch@intel.com>
7  *
8  * This code is licensed under the GNU GPL v2 or later.
9  */
10 
11 /**
12  * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
13  *
14  *  https://nvmexpress.org/developers/nvme-specification/
15  *
16  *
17  * Notes on coding style
18  * ---------------------
19  * While QEMU coding style prefers lowercase hexadecimals in constants, the
20  * NVMe subsystem use thes format from the NVMe specifications in the comments
21  * (i.e. 'h' suffix instead of '0x' prefix).
22  *
23  * Usage
24  * -----
25  * See docs/system/nvme.rst for extensive documentation.
26  *
27  * Add options:
28  *      -drive file=<file>,if=none,id=<drive_id>
29  *      -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
30  *      -device nvme,serial=<serial>,id=<bus_name>, \
31  *              cmb_size_mb=<cmb_size_mb[optional]>, \
32  *              [pmrdev=<mem_backend_file_id>,] \
33  *              max_ioqpairs=<N[optional]>, \
34  *              aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
35  *              mdts=<N[optional]>,vsl=<N[optional]>, \
36  *              zoned.zasl=<N[optional]>, \
37  *              zoned.auto_transition=<on|off[optional]>, \
38  *              sriov_max_vfs=<N[optional]> \
39  *              sriov_vq_flexible=<N[optional]> \
40  *              sriov_vi_flexible=<N[optional]> \
41  *              sriov_max_vi_per_vf=<N[optional]> \
42  *              sriov_max_vq_per_vf=<N[optional]> \
43  *              subsys=<subsys_id>
44  *      -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
45  *              zoned=<true|false[optional]>, \
46  *              subsys=<subsys_id>,detached=<true|false[optional]>
47  *
48  * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
49  * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
50  * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
51  * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
52  *
53  * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
54  * For example:
55  * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
56  *  size=<size> .... -device nvme,...,pmrdev=<mem_id>
57  *
58  * The PMR will use BAR 4/5 exclusively.
59  *
60  * To place controller(s) and namespace(s) to a subsystem, then provide
61  * nvme-subsys device as above.
62  *
63  * nvme subsystem device parameters
64  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
65  * - `nqn`
66  *   This parameter provides the `<nqn_id>` part of the string
67  *   `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
68  *   of subsystem controllers. Note that `<nqn_id>` should be unique per
69  *   subsystem, but this is not enforced by QEMU. If not specified, it will
70  *   default to the value of the `id` parameter (`<subsys_id>`).
71  *
72  * nvme device parameters
73  * ~~~~~~~~~~~~~~~~~~~~~~
74  * - `subsys`
75  *   Specifying this parameter attaches the controller to the subsystem and
76  *   the SUBNQN field in the controller will report the NQN of the subsystem
77  *   device. This also enables multi controller capability represented in
78  *   Identify Controller data structure in CMIC (Controller Multi-path I/O and
79  *   Namespace Sharing Capabilities).
80  *
81  * - `aerl`
82  *   The Asynchronous Event Request Limit (AERL). Indicates the maximum number
83  *   of concurrently outstanding Asynchronous Event Request commands support
84  *   by the controller. This is a 0's based value.
85  *
86  * - `aer_max_queued`
87  *   This is the maximum number of events that the device will enqueue for
88  *   completion when there are no outstanding AERs. When the maximum number of
89  *   enqueued events are reached, subsequent events will be dropped.
90  *
91  * - `mdts`
92  *   Indicates the maximum data transfer size for a command that transfers data
93  *   between host-accessible memory and the controller. The value is specified
94  *   as a power of two (2^n) and is in units of the minimum memory page size
95  *   (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
96  *
97  * - `vsl`
98  *   Indicates the maximum data size limit for the Verify command. Like `mdts`,
99  *   this value is specified as a power of two (2^n) and is in units of the
100  *   minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
101  *   KiB).
102  *
103  * - `zoned.zasl`
104  *   Indicates the maximum data transfer size for the Zone Append command. Like
105  *   `mdts`, the value is specified as a power of two (2^n) and is in units of
106  *   the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
107  *   defaulting to the value of `mdts`).
108  *
109  * - `zoned.auto_transition`
110  *   Indicates if zones in zone state implicitly opened can be automatically
111  *   transitioned to zone state closed for resource management purposes.
112  *   Defaults to 'on'.
113  *
114  * - `sriov_max_vfs`
115  *   Indicates the maximum number of PCIe virtual functions supported
116  *   by the controller. The default value is 0. Specifying a non-zero value
117  *   enables reporting of both SR-IOV and ARI capabilities by the NVMe device.
118  *   Virtual function controllers will not report SR-IOV capability.
119  *
120  *   NOTE: Single Root I/O Virtualization support is experimental.
121  *   All the related parameters may be subject to change.
122  *
123  * - `sriov_vq_flexible`
124  *   Indicates the total number of flexible queue resources assignable to all
125  *   the secondary controllers. Implicitly sets the number of primary
126  *   controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`.
127  *
128  * - `sriov_vi_flexible`
129  *   Indicates the total number of flexible interrupt resources assignable to
130  *   all the secondary controllers. Implicitly sets the number of primary
131  *   controller's private resources to `(msix_qsize - sriov_vi_flexible)`.
132  *
133  * - `sriov_max_vi_per_vf`
134  *   Indicates the maximum number of virtual interrupt resources assignable
135  *   to a secondary controller. The default 0 resolves to
136  *   `(sriov_vi_flexible / sriov_max_vfs)`.
137  *
138  * - `sriov_max_vq_per_vf`
139  *   Indicates the maximum number of virtual queue resources assignable to
140  *   a secondary controller. The default 0 resolves to
141  *   `(sriov_vq_flexible / sriov_max_vfs)`.
142  *
143  * nvme namespace device parameters
144  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
145  * - `shared`
146  *   When the parent nvme device (as defined explicitly by the 'bus' parameter
147  *   or implicitly by the most recently defined NvmeBus) is linked to an
148  *   nvme-subsys device, the namespace will be attached to all controllers in
149  *   the subsystem. If set to 'off' (the default), the namespace will remain a
150  *   private namespace and may only be attached to a single controller at a
151  *   time.
152  *
153  * - `detached`
154  *   This parameter is only valid together with the `subsys` parameter. If left
155  *   at the default value (`false/off`), the namespace will be attached to all
156  *   controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
157  *   namespace will be available in the subsystem but not attached to any
158  *   controllers.
159  *
160  * Setting `zoned` to true selects Zoned Command Set at the namespace.
161  * In this case, the following namespace properties are available to configure
162  * zoned operation:
163  *     zoned.zone_size=<zone size in bytes, default: 128MiB>
164  *         The number may be followed by K, M, G as in kilo-, mega- or giga-.
165  *
166  *     zoned.zone_capacity=<zone capacity in bytes, default: zone size>
167  *         The value 0 (default) forces zone capacity to be the same as zone
168  *         size. The value of this property may not exceed zone size.
169  *
170  *     zoned.descr_ext_size=<zone descriptor extension size, default 0>
171  *         This value needs to be specified in 64B units. If it is zero,
172  *         namespace(s) will not support zone descriptor extensions.
173  *
174  *     zoned.max_active=<Maximum Active Resources (zones), default: 0>
175  *         The default value means there is no limit to the number of
176  *         concurrently active zones.
177  *
178  *     zoned.max_open=<Maximum Open Resources (zones), default: 0>
179  *         The default value means there is no limit to the number of
180  *         concurrently open zones.
181  *
182  *     zoned.cross_read=<enable RAZB, default: false>
183  *         Setting this property to true enables Read Across Zone Boundaries.
184  */
185 
186 #include "qemu/osdep.h"
187 #include "qemu/cutils.h"
188 #include "qemu/error-report.h"
189 #include "qemu/log.h"
190 #include "qemu/units.h"
191 #include "qemu/range.h"
192 #include "qapi/error.h"
193 #include "qapi/visitor.h"
194 #include "sysemu/sysemu.h"
195 #include "sysemu/block-backend.h"
196 #include "sysemu/hostmem.h"
197 #include "hw/pci/msix.h"
198 #include "hw/pci/pcie_sriov.h"
199 #include "migration/vmstate.h"
200 
201 #include "nvme.h"
202 #include "dif.h"
203 #include "trace.h"
204 
205 #define NVME_MAX_IOQPAIRS 0xffff
206 #define NVME_DB_SIZE  4
207 #define NVME_SPEC_VER 0x00010400
208 #define NVME_CMB_BIR 2
209 #define NVME_PMR_BIR 4
210 #define NVME_TEMPERATURE 0x143
211 #define NVME_TEMPERATURE_WARNING 0x157
212 #define NVME_TEMPERATURE_CRITICAL 0x175
213 #define NVME_NUM_FW_SLOTS 1
214 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
215 #define NVME_MAX_VFS 127
216 #define NVME_VF_RES_GRANULARITY 1
217 #define NVME_VF_OFFSET 0x1
218 #define NVME_VF_STRIDE 1
219 
220 #define NVME_GUEST_ERR(trace, fmt, ...) \
221     do { \
222         (trace_##trace)(__VA_ARGS__); \
223         qemu_log_mask(LOG_GUEST_ERROR, #trace \
224             " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
225     } while (0)
226 
227 static const bool nvme_feature_support[NVME_FID_MAX] = {
228     [NVME_ARBITRATION]              = true,
229     [NVME_POWER_MANAGEMENT]         = true,
230     [NVME_TEMPERATURE_THRESHOLD]    = true,
231     [NVME_ERROR_RECOVERY]           = true,
232     [NVME_VOLATILE_WRITE_CACHE]     = true,
233     [NVME_NUMBER_OF_QUEUES]         = true,
234     [NVME_INTERRUPT_COALESCING]     = true,
235     [NVME_INTERRUPT_VECTOR_CONF]    = true,
236     [NVME_WRITE_ATOMICITY]          = true,
237     [NVME_ASYNCHRONOUS_EVENT_CONF]  = true,
238     [NVME_TIMESTAMP]                = true,
239     [NVME_HOST_BEHAVIOR_SUPPORT]    = true,
240     [NVME_COMMAND_SET_PROFILE]      = true,
241 };
242 
243 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
244     [NVME_TEMPERATURE_THRESHOLD]    = NVME_FEAT_CAP_CHANGE,
245     [NVME_ERROR_RECOVERY]           = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
246     [NVME_VOLATILE_WRITE_CACHE]     = NVME_FEAT_CAP_CHANGE,
247     [NVME_NUMBER_OF_QUEUES]         = NVME_FEAT_CAP_CHANGE,
248     [NVME_ASYNCHRONOUS_EVENT_CONF]  = NVME_FEAT_CAP_CHANGE,
249     [NVME_TIMESTAMP]                = NVME_FEAT_CAP_CHANGE,
250     [NVME_HOST_BEHAVIOR_SUPPORT]    = NVME_FEAT_CAP_CHANGE,
251     [NVME_COMMAND_SET_PROFILE]      = NVME_FEAT_CAP_CHANGE,
252 };
253 
254 static const uint32_t nvme_cse_acs[256] = {
255     [NVME_ADM_CMD_DELETE_SQ]        = NVME_CMD_EFF_CSUPP,
256     [NVME_ADM_CMD_CREATE_SQ]        = NVME_CMD_EFF_CSUPP,
257     [NVME_ADM_CMD_GET_LOG_PAGE]     = NVME_CMD_EFF_CSUPP,
258     [NVME_ADM_CMD_DELETE_CQ]        = NVME_CMD_EFF_CSUPP,
259     [NVME_ADM_CMD_CREATE_CQ]        = NVME_CMD_EFF_CSUPP,
260     [NVME_ADM_CMD_IDENTIFY]         = NVME_CMD_EFF_CSUPP,
261     [NVME_ADM_CMD_ABORT]            = NVME_CMD_EFF_CSUPP,
262     [NVME_ADM_CMD_SET_FEATURES]     = NVME_CMD_EFF_CSUPP,
263     [NVME_ADM_CMD_GET_FEATURES]     = NVME_CMD_EFF_CSUPP,
264     [NVME_ADM_CMD_ASYNC_EV_REQ]     = NVME_CMD_EFF_CSUPP,
265     [NVME_ADM_CMD_NS_ATTACHMENT]    = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
266     [NVME_ADM_CMD_VIRT_MNGMT]       = NVME_CMD_EFF_CSUPP,
267     [NVME_ADM_CMD_DBBUF_CONFIG]     = NVME_CMD_EFF_CSUPP,
268     [NVME_ADM_CMD_FORMAT_NVM]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
269 };
270 
271 static const uint32_t nvme_cse_iocs_none[256];
272 
273 static const uint32_t nvme_cse_iocs_nvm[256] = {
274     [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
275     [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
276     [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
277     [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
278     [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
279     [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
280     [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
281     [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
282 };
283 
284 static const uint32_t nvme_cse_iocs_zoned[256] = {
285     [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
286     [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
287     [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
288     [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
289     [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
290     [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
291     [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
292     [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
293     [NVME_CMD_ZONE_APPEND]          = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
294     [NVME_CMD_ZONE_MGMT_SEND]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
295     [NVME_CMD_ZONE_MGMT_RECV]       = NVME_CMD_EFF_CSUPP,
296 };
297 
298 static void nvme_process_sq(void *opaque);
299 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst);
300 
301 static uint16_t nvme_sqid(NvmeRequest *req)
302 {
303     return le16_to_cpu(req->sq->sqid);
304 }
305 
306 static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
307                                    NvmeZoneState state)
308 {
309     if (QTAILQ_IN_USE(zone, entry)) {
310         switch (nvme_get_zone_state(zone)) {
311         case NVME_ZONE_STATE_EXPLICITLY_OPEN:
312             QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
313             break;
314         case NVME_ZONE_STATE_IMPLICITLY_OPEN:
315             QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
316             break;
317         case NVME_ZONE_STATE_CLOSED:
318             QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
319             break;
320         case NVME_ZONE_STATE_FULL:
321             QTAILQ_REMOVE(&ns->full_zones, zone, entry);
322         default:
323             ;
324         }
325     }
326 
327     nvme_set_zone_state(zone, state);
328 
329     switch (state) {
330     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
331         QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
332         break;
333     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
334         QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
335         break;
336     case NVME_ZONE_STATE_CLOSED:
337         QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
338         break;
339     case NVME_ZONE_STATE_FULL:
340         QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
341     case NVME_ZONE_STATE_READ_ONLY:
342         break;
343     default:
344         zone->d.za = 0;
345     }
346 }
347 
348 static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act,
349                                          uint32_t opn, uint32_t zrwa)
350 {
351     if (ns->params.max_active_zones != 0 &&
352         ns->nr_active_zones + act > ns->params.max_active_zones) {
353         trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
354         return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
355     }
356 
357     if (ns->params.max_open_zones != 0 &&
358         ns->nr_open_zones + opn > ns->params.max_open_zones) {
359         trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
360         return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
361     }
362 
363     if (zrwa > ns->zns.numzrwa) {
364         return NVME_NOZRWA | NVME_DNR;
365     }
366 
367     return NVME_SUCCESS;
368 }
369 
370 /*
371  * Check if we can open a zone without exceeding open/active limits.
372  * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
373  */
374 static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
375 {
376     return nvme_zns_check_resources(ns, act, opn, 0);
377 }
378 
379 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
380 {
381     hwaddr hi, lo;
382 
383     if (!n->cmb.cmse) {
384         return false;
385     }
386 
387     lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
388     hi = lo + int128_get64(n->cmb.mem.size);
389 
390     return addr >= lo && addr < hi;
391 }
392 
393 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
394 {
395     hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
396     return &n->cmb.buf[addr - base];
397 }
398 
399 static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
400 {
401     hwaddr hi;
402 
403     if (!n->pmr.cmse) {
404         return false;
405     }
406 
407     hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
408 
409     return addr >= n->pmr.cba && addr < hi;
410 }
411 
412 static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
413 {
414     return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
415 }
416 
417 static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr)
418 {
419     hwaddr hi, lo;
420 
421     /*
422      * The purpose of this check is to guard against invalid "local" access to
423      * the iomem (i.e. controller registers). Thus, we check against the range
424      * covered by the 'bar0' MemoryRegion since that is currently composed of
425      * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however,
426      * that if the device model is ever changed to allow the CMB to be located
427      * in BAR0 as well, then this must be changed.
428      */
429     lo = n->bar0.addr;
430     hi = lo + int128_get64(n->bar0.size);
431 
432     return addr >= lo && addr < hi;
433 }
434 
435 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
436 {
437     hwaddr hi = addr + size - 1;
438     if (hi < addr) {
439         return 1;
440     }
441 
442     if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
443         memcpy(buf, nvme_addr_to_cmb(n, addr), size);
444         return 0;
445     }
446 
447     if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
448         memcpy(buf, nvme_addr_to_pmr(n, addr), size);
449         return 0;
450     }
451 
452     return pci_dma_read(&n->parent_obj, addr, buf, size);
453 }
454 
455 static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size)
456 {
457     hwaddr hi = addr + size - 1;
458     if (hi < addr) {
459         return 1;
460     }
461 
462     if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
463         memcpy(nvme_addr_to_cmb(n, addr), buf, size);
464         return 0;
465     }
466 
467     if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
468         memcpy(nvme_addr_to_pmr(n, addr), buf, size);
469         return 0;
470     }
471 
472     return pci_dma_write(&n->parent_obj, addr, buf, size);
473 }
474 
475 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
476 {
477     return nsid &&
478         (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES);
479 }
480 
481 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
482 {
483     return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
484 }
485 
486 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
487 {
488     return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
489 }
490 
491 static void nvme_inc_cq_tail(NvmeCQueue *cq)
492 {
493     cq->tail++;
494     if (cq->tail >= cq->size) {
495         cq->tail = 0;
496         cq->phase = !cq->phase;
497     }
498 }
499 
500 static void nvme_inc_sq_head(NvmeSQueue *sq)
501 {
502     sq->head = (sq->head + 1) % sq->size;
503 }
504 
505 static uint8_t nvme_cq_full(NvmeCQueue *cq)
506 {
507     return (cq->tail + 1) % cq->size == cq->head;
508 }
509 
510 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
511 {
512     return sq->head == sq->tail;
513 }
514 
515 static void nvme_irq_check(NvmeCtrl *n)
516 {
517     uint32_t intms = ldl_le_p(&n->bar.intms);
518 
519     if (msix_enabled(&(n->parent_obj))) {
520         return;
521     }
522     if (~intms & n->irq_status) {
523         pci_irq_assert(&n->parent_obj);
524     } else {
525         pci_irq_deassert(&n->parent_obj);
526     }
527 }
528 
529 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
530 {
531     if (cq->irq_enabled) {
532         if (msix_enabled(&(n->parent_obj))) {
533             trace_pci_nvme_irq_msix(cq->vector);
534             msix_notify(&(n->parent_obj), cq->vector);
535         } else {
536             trace_pci_nvme_irq_pin();
537             assert(cq->vector < 32);
538             n->irq_status |= 1 << cq->vector;
539             nvme_irq_check(n);
540         }
541     } else {
542         trace_pci_nvme_irq_masked();
543     }
544 }
545 
546 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
547 {
548     if (cq->irq_enabled) {
549         if (msix_enabled(&(n->parent_obj))) {
550             return;
551         } else {
552             assert(cq->vector < 32);
553             if (!n->cq_pending) {
554                 n->irq_status &= ~(1 << cq->vector);
555             }
556             nvme_irq_check(n);
557         }
558     }
559 }
560 
561 static void nvme_req_clear(NvmeRequest *req)
562 {
563     req->ns = NULL;
564     req->opaque = NULL;
565     req->aiocb = NULL;
566     memset(&req->cqe, 0x0, sizeof(req->cqe));
567     req->status = NVME_SUCCESS;
568 }
569 
570 static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
571 {
572     if (dma) {
573         pci_dma_sglist_init(&sg->qsg, &n->parent_obj, 0);
574         sg->flags = NVME_SG_DMA;
575     } else {
576         qemu_iovec_init(&sg->iov, 0);
577     }
578 
579     sg->flags |= NVME_SG_ALLOC;
580 }
581 
582 static inline void nvme_sg_unmap(NvmeSg *sg)
583 {
584     if (!(sg->flags & NVME_SG_ALLOC)) {
585         return;
586     }
587 
588     if (sg->flags & NVME_SG_DMA) {
589         qemu_sglist_destroy(&sg->qsg);
590     } else {
591         qemu_iovec_destroy(&sg->iov);
592     }
593 
594     memset(sg, 0x0, sizeof(*sg));
595 }
596 
597 /*
598  * When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
599  * holds both data and metadata. This function splits the data and metadata
600  * into two separate QSG/IOVs.
601  */
602 static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
603                           NvmeSg *mdata)
604 {
605     NvmeSg *dst = data;
606     uint32_t trans_len, count = ns->lbasz;
607     uint64_t offset = 0;
608     bool dma = sg->flags & NVME_SG_DMA;
609     size_t sge_len;
610     size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
611     int sg_idx = 0;
612 
613     assert(sg->flags & NVME_SG_ALLOC);
614 
615     while (sg_len) {
616         sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
617 
618         trans_len = MIN(sg_len, count);
619         trans_len = MIN(trans_len, sge_len - offset);
620 
621         if (dst) {
622             if (dma) {
623                 qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
624                                 trans_len);
625             } else {
626                 qemu_iovec_add(&dst->iov,
627                                sg->iov.iov[sg_idx].iov_base + offset,
628                                trans_len);
629             }
630         }
631 
632         sg_len -= trans_len;
633         count -= trans_len;
634         offset += trans_len;
635 
636         if (count == 0) {
637             dst = (dst == data) ? mdata : data;
638             count = (dst == data) ? ns->lbasz : ns->lbaf.ms;
639         }
640 
641         if (sge_len == offset) {
642             offset = 0;
643             sg_idx++;
644         }
645     }
646 }
647 
648 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
649                                   size_t len)
650 {
651     if (!len) {
652         return NVME_SUCCESS;
653     }
654 
655     trace_pci_nvme_map_addr_cmb(addr, len);
656 
657     if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
658         return NVME_DATA_TRAS_ERROR;
659     }
660 
661     qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
662 
663     return NVME_SUCCESS;
664 }
665 
666 static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
667                                   size_t len)
668 {
669     if (!len) {
670         return NVME_SUCCESS;
671     }
672 
673     if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
674         return NVME_DATA_TRAS_ERROR;
675     }
676 
677     qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
678 
679     return NVME_SUCCESS;
680 }
681 
682 static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
683 {
684     bool cmb = false, pmr = false;
685 
686     if (!len) {
687         return NVME_SUCCESS;
688     }
689 
690     trace_pci_nvme_map_addr(addr, len);
691 
692     if (nvme_addr_is_iomem(n, addr)) {
693         return NVME_DATA_TRAS_ERROR;
694     }
695 
696     if (nvme_addr_is_cmb(n, addr)) {
697         cmb = true;
698     } else if (nvme_addr_is_pmr(n, addr)) {
699         pmr = true;
700     }
701 
702     if (cmb || pmr) {
703         if (sg->flags & NVME_SG_DMA) {
704             return NVME_INVALID_USE_OF_CMB | NVME_DNR;
705         }
706 
707         if (sg->iov.niov + 1 > IOV_MAX) {
708             goto max_mappings_exceeded;
709         }
710 
711         if (cmb) {
712             return nvme_map_addr_cmb(n, &sg->iov, addr, len);
713         } else {
714             return nvme_map_addr_pmr(n, &sg->iov, addr, len);
715         }
716     }
717 
718     if (!(sg->flags & NVME_SG_DMA)) {
719         return NVME_INVALID_USE_OF_CMB | NVME_DNR;
720     }
721 
722     if (sg->qsg.nsg + 1 > IOV_MAX) {
723         goto max_mappings_exceeded;
724     }
725 
726     qemu_sglist_add(&sg->qsg, addr, len);
727 
728     return NVME_SUCCESS;
729 
730 max_mappings_exceeded:
731     NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings,
732                    "number of mappings exceed 1024");
733     return NVME_INTERNAL_DEV_ERROR | NVME_DNR;
734 }
735 
736 static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
737 {
738     return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
739 }
740 
741 static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
742                              uint64_t prp2, uint32_t len)
743 {
744     hwaddr trans_len = n->page_size - (prp1 % n->page_size);
745     trans_len = MIN(len, trans_len);
746     int num_prps = (len >> n->page_bits) + 1;
747     uint16_t status;
748     int ret;
749 
750     trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
751 
752     nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
753 
754     status = nvme_map_addr(n, sg, prp1, trans_len);
755     if (status) {
756         goto unmap;
757     }
758 
759     len -= trans_len;
760     if (len) {
761         if (len > n->page_size) {
762             uint64_t prp_list[n->max_prp_ents];
763             uint32_t nents, prp_trans;
764             int i = 0;
765 
766             /*
767              * The first PRP list entry, pointed to by PRP2 may contain offset.
768              * Hence, we need to calculate the number of entries in based on
769              * that offset.
770              */
771             nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
772             prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
773             ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
774             if (ret) {
775                 trace_pci_nvme_err_addr_read(prp2);
776                 status = NVME_DATA_TRAS_ERROR;
777                 goto unmap;
778             }
779             while (len != 0) {
780                 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
781 
782                 if (i == nents - 1 && len > n->page_size) {
783                     if (unlikely(prp_ent & (n->page_size - 1))) {
784                         trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
785                         status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
786                         goto unmap;
787                     }
788 
789                     i = 0;
790                     nents = (len + n->page_size - 1) >> n->page_bits;
791                     nents = MIN(nents, n->max_prp_ents);
792                     prp_trans = nents * sizeof(uint64_t);
793                     ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
794                                          prp_trans);
795                     if (ret) {
796                         trace_pci_nvme_err_addr_read(prp_ent);
797                         status = NVME_DATA_TRAS_ERROR;
798                         goto unmap;
799                     }
800                     prp_ent = le64_to_cpu(prp_list[i]);
801                 }
802 
803                 if (unlikely(prp_ent & (n->page_size - 1))) {
804                     trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
805                     status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
806                     goto unmap;
807                 }
808 
809                 trans_len = MIN(len, n->page_size);
810                 status = nvme_map_addr(n, sg, prp_ent, trans_len);
811                 if (status) {
812                     goto unmap;
813                 }
814 
815                 len -= trans_len;
816                 i++;
817             }
818         } else {
819             if (unlikely(prp2 & (n->page_size - 1))) {
820                 trace_pci_nvme_err_invalid_prp2_align(prp2);
821                 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
822                 goto unmap;
823             }
824             status = nvme_map_addr(n, sg, prp2, len);
825             if (status) {
826                 goto unmap;
827             }
828         }
829     }
830 
831     return NVME_SUCCESS;
832 
833 unmap:
834     nvme_sg_unmap(sg);
835     return status;
836 }
837 
838 /*
839  * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
840  * number of bytes mapped in len.
841  */
842 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
843                                   NvmeSglDescriptor *segment, uint64_t nsgld,
844                                   size_t *len, NvmeCmd *cmd)
845 {
846     dma_addr_t addr, trans_len;
847     uint32_t dlen;
848     uint16_t status;
849 
850     for (int i = 0; i < nsgld; i++) {
851         uint8_t type = NVME_SGL_TYPE(segment[i].type);
852 
853         switch (type) {
854         case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
855             break;
856         case NVME_SGL_DESCR_TYPE_SEGMENT:
857         case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
858             return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
859         default:
860             return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
861         }
862 
863         dlen = le32_to_cpu(segment[i].len);
864 
865         if (!dlen) {
866             continue;
867         }
868 
869         if (*len == 0) {
870             /*
871              * All data has been mapped, but the SGL contains additional
872              * segments and/or descriptors. The controller might accept
873              * ignoring the rest of the SGL.
874              */
875             uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
876             if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
877                 break;
878             }
879 
880             trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
881             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
882         }
883 
884         trans_len = MIN(*len, dlen);
885 
886         addr = le64_to_cpu(segment[i].addr);
887 
888         if (UINT64_MAX - addr < dlen) {
889             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
890         }
891 
892         status = nvme_map_addr(n, sg, addr, trans_len);
893         if (status) {
894             return status;
895         }
896 
897         *len -= trans_len;
898     }
899 
900     return NVME_SUCCESS;
901 }
902 
903 static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
904                              size_t len, NvmeCmd *cmd)
905 {
906     /*
907      * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
908      * dynamically allocating a potentially huge SGL. The spec allows the SGL
909      * to be larger (as in number of bytes required to describe the SGL
910      * descriptors and segment chain) than the command transfer size, so it is
911      * not bounded by MDTS.
912      */
913     const int SEG_CHUNK_SIZE = 256;
914 
915     NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
916     uint64_t nsgld;
917     uint32_t seg_len;
918     uint16_t status;
919     hwaddr addr;
920     int ret;
921 
922     sgld = &sgl;
923     addr = le64_to_cpu(sgl.addr);
924 
925     trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
926 
927     nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
928 
929     /*
930      * If the entire transfer can be described with a single data block it can
931      * be mapped directly.
932      */
933     if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
934         status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
935         if (status) {
936             goto unmap;
937         }
938 
939         goto out;
940     }
941 
942     for (;;) {
943         switch (NVME_SGL_TYPE(sgld->type)) {
944         case NVME_SGL_DESCR_TYPE_SEGMENT:
945         case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
946             break;
947         default:
948             return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
949         }
950 
951         seg_len = le32_to_cpu(sgld->len);
952 
953         /* check the length of the (Last) Segment descriptor */
954         if (!seg_len || seg_len & 0xf) {
955             return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
956         }
957 
958         if (UINT64_MAX - addr < seg_len) {
959             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
960         }
961 
962         nsgld = seg_len / sizeof(NvmeSglDescriptor);
963 
964         while (nsgld > SEG_CHUNK_SIZE) {
965             if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
966                 trace_pci_nvme_err_addr_read(addr);
967                 status = NVME_DATA_TRAS_ERROR;
968                 goto unmap;
969             }
970 
971             status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
972                                        &len, cmd);
973             if (status) {
974                 goto unmap;
975             }
976 
977             nsgld -= SEG_CHUNK_SIZE;
978             addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
979         }
980 
981         ret = nvme_addr_read(n, addr, segment, nsgld *
982                              sizeof(NvmeSglDescriptor));
983         if (ret) {
984             trace_pci_nvme_err_addr_read(addr);
985             status = NVME_DATA_TRAS_ERROR;
986             goto unmap;
987         }
988 
989         last_sgld = &segment[nsgld - 1];
990 
991         /*
992          * If the segment ends with a Data Block, then we are done.
993          */
994         if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
995             status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
996             if (status) {
997                 goto unmap;
998             }
999 
1000             goto out;
1001         }
1002 
1003         /*
1004          * If the last descriptor was not a Data Block, then the current
1005          * segment must not be a Last Segment.
1006          */
1007         if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
1008             status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1009             goto unmap;
1010         }
1011 
1012         sgld = last_sgld;
1013         addr = le64_to_cpu(sgld->addr);
1014 
1015         /*
1016          * Do not map the last descriptor; it will be a Segment or Last Segment
1017          * descriptor and is handled by the next iteration.
1018          */
1019         status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
1020         if (status) {
1021             goto unmap;
1022         }
1023     }
1024 
1025 out:
1026     /* if there is any residual left in len, the SGL was too short */
1027     if (len) {
1028         status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1029         goto unmap;
1030     }
1031 
1032     return NVME_SUCCESS;
1033 
1034 unmap:
1035     nvme_sg_unmap(sg);
1036     return status;
1037 }
1038 
1039 uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1040                        NvmeCmd *cmd)
1041 {
1042     uint64_t prp1, prp2;
1043 
1044     switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
1045     case NVME_PSDT_PRP:
1046         prp1 = le64_to_cpu(cmd->dptr.prp1);
1047         prp2 = le64_to_cpu(cmd->dptr.prp2);
1048 
1049         return nvme_map_prp(n, sg, prp1, prp2, len);
1050     case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
1051     case NVME_PSDT_SGL_MPTR_SGL:
1052         return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
1053     default:
1054         return NVME_INVALID_FIELD;
1055     }
1056 }
1057 
1058 static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1059                               NvmeCmd *cmd)
1060 {
1061     int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
1062     hwaddr mptr = le64_to_cpu(cmd->mptr);
1063     uint16_t status;
1064 
1065     if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
1066         NvmeSglDescriptor sgl;
1067 
1068         if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
1069             return NVME_DATA_TRAS_ERROR;
1070         }
1071 
1072         status = nvme_map_sgl(n, sg, sgl, len, cmd);
1073         if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
1074             status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
1075         }
1076 
1077         return status;
1078     }
1079 
1080     nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
1081     status = nvme_map_addr(n, sg, mptr, len);
1082     if (status) {
1083         nvme_sg_unmap(sg);
1084     }
1085 
1086     return status;
1087 }
1088 
1089 static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1090 {
1091     NvmeNamespace *ns = req->ns;
1092     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1093     bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1094     bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1095     size_t len = nvme_l2b(ns, nlb);
1096     uint16_t status;
1097 
1098     if (nvme_ns_ext(ns) &&
1099         !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1100         NvmeSg sg;
1101 
1102         len += nvme_m2b(ns, nlb);
1103 
1104         status = nvme_map_dptr(n, &sg, len, &req->cmd);
1105         if (status) {
1106             return status;
1107         }
1108 
1109         nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1110         nvme_sg_split(&sg, ns, &req->sg, NULL);
1111         nvme_sg_unmap(&sg);
1112 
1113         return NVME_SUCCESS;
1114     }
1115 
1116     return nvme_map_dptr(n, &req->sg, len, &req->cmd);
1117 }
1118 
1119 static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1120 {
1121     NvmeNamespace *ns = req->ns;
1122     size_t len = nvme_m2b(ns, nlb);
1123     uint16_t status;
1124 
1125     if (nvme_ns_ext(ns)) {
1126         NvmeSg sg;
1127 
1128         len += nvme_l2b(ns, nlb);
1129 
1130         status = nvme_map_dptr(n, &sg, len, &req->cmd);
1131         if (status) {
1132             return status;
1133         }
1134 
1135         nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1136         nvme_sg_split(&sg, ns, NULL, &req->sg);
1137         nvme_sg_unmap(&sg);
1138 
1139         return NVME_SUCCESS;
1140     }
1141 
1142     return nvme_map_mptr(n, &req->sg, len, &req->cmd);
1143 }
1144 
1145 static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
1146                                     uint32_t len, uint32_t bytes,
1147                                     int32_t skip_bytes, int64_t offset,
1148                                     NvmeTxDirection dir)
1149 {
1150     hwaddr addr;
1151     uint32_t trans_len, count = bytes;
1152     bool dma = sg->flags & NVME_SG_DMA;
1153     int64_t sge_len;
1154     int sg_idx = 0;
1155     int ret;
1156 
1157     assert(sg->flags & NVME_SG_ALLOC);
1158 
1159     while (len) {
1160         sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
1161 
1162         if (sge_len - offset < 0) {
1163             offset -= sge_len;
1164             sg_idx++;
1165             continue;
1166         }
1167 
1168         if (sge_len == offset) {
1169             offset = 0;
1170             sg_idx++;
1171             continue;
1172         }
1173 
1174         trans_len = MIN(len, count);
1175         trans_len = MIN(trans_len, sge_len - offset);
1176 
1177         if (dma) {
1178             addr = sg->qsg.sg[sg_idx].base + offset;
1179         } else {
1180             addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
1181         }
1182 
1183         if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1184             ret = nvme_addr_read(n, addr, ptr, trans_len);
1185         } else {
1186             ret = nvme_addr_write(n, addr, ptr, trans_len);
1187         }
1188 
1189         if (ret) {
1190             return NVME_DATA_TRAS_ERROR;
1191         }
1192 
1193         ptr += trans_len;
1194         len -= trans_len;
1195         count -= trans_len;
1196         offset += trans_len;
1197 
1198         if (count == 0) {
1199             count = bytes;
1200             offset += skip_bytes;
1201         }
1202     }
1203 
1204     return NVME_SUCCESS;
1205 }
1206 
1207 static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len,
1208                         NvmeTxDirection dir)
1209 {
1210     assert(sg->flags & NVME_SG_ALLOC);
1211 
1212     if (sg->flags & NVME_SG_DMA) {
1213         const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
1214         dma_addr_t residual;
1215 
1216         if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1217             dma_buf_write(ptr, len, &residual, &sg->qsg, attrs);
1218         } else {
1219             dma_buf_read(ptr, len, &residual, &sg->qsg, attrs);
1220         }
1221 
1222         if (unlikely(residual)) {
1223             trace_pci_nvme_err_invalid_dma();
1224             return NVME_INVALID_FIELD | NVME_DNR;
1225         }
1226     } else {
1227         size_t bytes;
1228 
1229         if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1230             bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
1231         } else {
1232             bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
1233         }
1234 
1235         if (unlikely(bytes != len)) {
1236             trace_pci_nvme_err_invalid_dma();
1237             return NVME_INVALID_FIELD | NVME_DNR;
1238         }
1239     }
1240 
1241     return NVME_SUCCESS;
1242 }
1243 
1244 static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len,
1245                                 NvmeRequest *req)
1246 {
1247     uint16_t status;
1248 
1249     status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1250     if (status) {
1251         return status;
1252     }
1253 
1254     return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
1255 }
1256 
1257 static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len,
1258                                 NvmeRequest *req)
1259 {
1260     uint16_t status;
1261 
1262     status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1263     if (status) {
1264         return status;
1265     }
1266 
1267     return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
1268 }
1269 
1270 uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len,
1271                           NvmeTxDirection dir, NvmeRequest *req)
1272 {
1273     NvmeNamespace *ns = req->ns;
1274     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1275     bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1276     bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1277 
1278     if (nvme_ns_ext(ns) &&
1279         !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1280         return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz,
1281                                    ns->lbaf.ms, 0, dir);
1282     }
1283 
1284     return nvme_tx(n, &req->sg, ptr, len, dir);
1285 }
1286 
1287 uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len,
1288                            NvmeTxDirection dir, NvmeRequest *req)
1289 {
1290     NvmeNamespace *ns = req->ns;
1291     uint16_t status;
1292 
1293     if (nvme_ns_ext(ns)) {
1294         return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms,
1295                                    ns->lbasz, ns->lbasz, dir);
1296     }
1297 
1298     nvme_sg_unmap(&req->sg);
1299 
1300     status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
1301     if (status) {
1302         return status;
1303     }
1304 
1305     return nvme_tx(n, &req->sg, ptr, len, dir);
1306 }
1307 
1308 static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
1309                                  BlockCompletionFunc *cb, NvmeRequest *req)
1310 {
1311     assert(req->sg.flags & NVME_SG_ALLOC);
1312 
1313     if (req->sg.flags & NVME_SG_DMA) {
1314         req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1315                                   cb, req);
1316     } else {
1317         req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
1318     }
1319 }
1320 
1321 static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
1322                                   BlockCompletionFunc *cb, NvmeRequest *req)
1323 {
1324     assert(req->sg.flags & NVME_SG_ALLOC);
1325 
1326     if (req->sg.flags & NVME_SG_DMA) {
1327         req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1328                                    cb, req);
1329     } else {
1330         req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
1331     }
1332 }
1333 
1334 static void nvme_update_cq_head(NvmeCQueue *cq)
1335 {
1336     pci_dma_read(&cq->ctrl->parent_obj, cq->db_addr, &cq->head,
1337             sizeof(cq->head));
1338     trace_pci_nvme_shadow_doorbell_cq(cq->cqid, cq->head);
1339 }
1340 
1341 static void nvme_post_cqes(void *opaque)
1342 {
1343     NvmeCQueue *cq = opaque;
1344     NvmeCtrl *n = cq->ctrl;
1345     NvmeRequest *req, *next;
1346     bool pending = cq->head != cq->tail;
1347     int ret;
1348 
1349     QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
1350         NvmeSQueue *sq;
1351         hwaddr addr;
1352 
1353         if (n->dbbuf_enabled) {
1354             nvme_update_cq_head(cq);
1355         }
1356 
1357         if (nvme_cq_full(cq)) {
1358             break;
1359         }
1360 
1361         sq = req->sq;
1362         req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
1363         req->cqe.sq_id = cpu_to_le16(sq->sqid);
1364         req->cqe.sq_head = cpu_to_le16(sq->head);
1365         addr = cq->dma_addr + cq->tail * n->cqe_size;
1366         ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
1367                             sizeof(req->cqe));
1368         if (ret) {
1369             trace_pci_nvme_err_addr_write(addr);
1370             trace_pci_nvme_err_cfs();
1371             stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
1372             break;
1373         }
1374         QTAILQ_REMOVE(&cq->req_list, req, entry);
1375         nvme_inc_cq_tail(cq);
1376         nvme_sg_unmap(&req->sg);
1377         QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
1378     }
1379     if (cq->tail != cq->head) {
1380         if (cq->irq_enabled && !pending) {
1381             n->cq_pending++;
1382         }
1383 
1384         nvme_irq_assert(n, cq);
1385     }
1386 }
1387 
1388 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
1389 {
1390     assert(cq->cqid == req->sq->cqid);
1391     trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
1392                                           le32_to_cpu(req->cqe.result),
1393                                           le32_to_cpu(req->cqe.dw1),
1394                                           req->status);
1395 
1396     if (req->status) {
1397         trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
1398                                       req->status, req->cmd.opcode);
1399     }
1400 
1401     QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
1402     QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
1403 
1404     if (req->sq->ioeventfd_enabled) {
1405         /* Post CQE directly since we are in main loop thread */
1406         nvme_post_cqes(cq);
1407     } else {
1408         /* Schedule the timer to post CQE later since we are in vcpu thread */
1409         timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1410     }
1411 }
1412 
1413 static void nvme_process_aers(void *opaque)
1414 {
1415     NvmeCtrl *n = opaque;
1416     NvmeAsyncEvent *event, *next;
1417 
1418     trace_pci_nvme_process_aers(n->aer_queued);
1419 
1420     QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
1421         NvmeRequest *req;
1422         NvmeAerResult *result;
1423 
1424         /* can't post cqe if there is nothing to complete */
1425         if (!n->outstanding_aers) {
1426             trace_pci_nvme_no_outstanding_aers();
1427             break;
1428         }
1429 
1430         /* ignore if masked (cqe posted, but event not cleared) */
1431         if (n->aer_mask & (1 << event->result.event_type)) {
1432             trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
1433             continue;
1434         }
1435 
1436         QTAILQ_REMOVE(&n->aer_queue, event, entry);
1437         n->aer_queued--;
1438 
1439         n->aer_mask |= 1 << event->result.event_type;
1440         n->outstanding_aers--;
1441 
1442         req = n->aer_reqs[n->outstanding_aers];
1443 
1444         result = (NvmeAerResult *) &req->cqe.result;
1445         result->event_type = event->result.event_type;
1446         result->event_info = event->result.event_info;
1447         result->log_page = event->result.log_page;
1448         g_free(event);
1449 
1450         trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
1451                                     result->log_page);
1452 
1453         nvme_enqueue_req_completion(&n->admin_cq, req);
1454     }
1455 }
1456 
1457 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
1458                                uint8_t event_info, uint8_t log_page)
1459 {
1460     NvmeAsyncEvent *event;
1461 
1462     trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
1463 
1464     if (n->aer_queued == n->params.aer_max_queued) {
1465         trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
1466         return;
1467     }
1468 
1469     event = g_new(NvmeAsyncEvent, 1);
1470     event->result = (NvmeAerResult) {
1471         .event_type = event_type,
1472         .event_info = event_info,
1473         .log_page   = log_page,
1474     };
1475 
1476     QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
1477     n->aer_queued++;
1478 
1479     nvme_process_aers(n);
1480 }
1481 
1482 static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
1483 {
1484     uint8_t aer_info;
1485 
1486     /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
1487     if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
1488         return;
1489     }
1490 
1491     switch (event) {
1492     case NVME_SMART_SPARE:
1493         aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
1494         break;
1495     case NVME_SMART_TEMPERATURE:
1496         aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
1497         break;
1498     case NVME_SMART_RELIABILITY:
1499     case NVME_SMART_MEDIA_READ_ONLY:
1500     case NVME_SMART_FAILED_VOLATILE_MEDIA:
1501     case NVME_SMART_PMR_UNRELIABLE:
1502         aer_info = NVME_AER_INFO_SMART_RELIABILITY;
1503         break;
1504     default:
1505         return;
1506     }
1507 
1508     nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
1509 }
1510 
1511 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
1512 {
1513     n->aer_mask &= ~(1 << event_type);
1514     if (!QTAILQ_EMPTY(&n->aer_queue)) {
1515         nvme_process_aers(n);
1516     }
1517 }
1518 
1519 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
1520 {
1521     uint8_t mdts = n->params.mdts;
1522 
1523     if (mdts && len > n->page_size << mdts) {
1524         trace_pci_nvme_err_mdts(len);
1525         return NVME_INVALID_FIELD | NVME_DNR;
1526     }
1527 
1528     return NVME_SUCCESS;
1529 }
1530 
1531 static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
1532                                          uint32_t nlb)
1533 {
1534     uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
1535 
1536     if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
1537         trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
1538         return NVME_LBA_RANGE | NVME_DNR;
1539     }
1540 
1541     return NVME_SUCCESS;
1542 }
1543 
1544 static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba,
1545                                  uint32_t nlb, int flags)
1546 {
1547     BlockDriverState *bs = blk_bs(ns->blkconf.blk);
1548 
1549     int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
1550     int64_t offset = nvme_l2b(ns, slba);
1551     int ret;
1552 
1553     /*
1554      * `pnum` holds the number of bytes after offset that shares the same
1555      * allocation status as the byte at offset. If `pnum` is different from
1556      * `bytes`, we should check the allocation status of the next range and
1557      * continue this until all bytes have been checked.
1558      */
1559     do {
1560         bytes -= pnum;
1561 
1562         ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
1563         if (ret < 0) {
1564             return ret;
1565         }
1566 
1567 
1568         trace_pci_nvme_block_status(offset, bytes, pnum, ret,
1569                                     !!(ret & BDRV_BLOCK_ZERO));
1570 
1571         if (!(ret & flags)) {
1572             return 1;
1573         }
1574 
1575         offset += pnum;
1576     } while (pnum != bytes);
1577 
1578     return 0;
1579 }
1580 
1581 static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
1582                                  uint32_t nlb)
1583 {
1584     int ret;
1585     Error *err = NULL;
1586 
1587     ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA);
1588     if (ret) {
1589         if (ret < 0) {
1590             error_setg_errno(&err, -ret, "unable to get block status");
1591             error_report_err(err);
1592 
1593             return NVME_INTERNAL_DEV_ERROR;
1594         }
1595 
1596         return NVME_DULB;
1597     }
1598 
1599     return NVME_SUCCESS;
1600 }
1601 
1602 static void nvme_aio_err(NvmeRequest *req, int ret)
1603 {
1604     uint16_t status = NVME_SUCCESS;
1605     Error *local_err = NULL;
1606 
1607     switch (req->cmd.opcode) {
1608     case NVME_CMD_READ:
1609         status = NVME_UNRECOVERED_READ;
1610         break;
1611     case NVME_CMD_FLUSH:
1612     case NVME_CMD_WRITE:
1613     case NVME_CMD_WRITE_ZEROES:
1614     case NVME_CMD_ZONE_APPEND:
1615         status = NVME_WRITE_FAULT;
1616         break;
1617     default:
1618         status = NVME_INTERNAL_DEV_ERROR;
1619         break;
1620     }
1621 
1622     trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
1623 
1624     error_setg_errno(&local_err, -ret, "aio failed");
1625     error_report_err(local_err);
1626 
1627     /*
1628      * Set the command status code to the first encountered error but allow a
1629      * subsequent Internal Device Error to trump it.
1630      */
1631     if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
1632         return;
1633     }
1634 
1635     req->status = status;
1636 }
1637 
1638 static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
1639 {
1640     return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
1641                                     slba / ns->zone_size;
1642 }
1643 
1644 static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
1645 {
1646     uint32_t zone_idx = nvme_zone_idx(ns, slba);
1647 
1648     if (zone_idx >= ns->num_zones) {
1649         return NULL;
1650     }
1651 
1652     return &ns->zone_array[zone_idx];
1653 }
1654 
1655 static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
1656 {
1657     uint64_t zslba = zone->d.zslba;
1658 
1659     switch (nvme_get_zone_state(zone)) {
1660     case NVME_ZONE_STATE_EMPTY:
1661     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1662     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1663     case NVME_ZONE_STATE_CLOSED:
1664         return NVME_SUCCESS;
1665     case NVME_ZONE_STATE_FULL:
1666         trace_pci_nvme_err_zone_is_full(zslba);
1667         return NVME_ZONE_FULL;
1668     case NVME_ZONE_STATE_OFFLINE:
1669         trace_pci_nvme_err_zone_is_offline(zslba);
1670         return NVME_ZONE_OFFLINE;
1671     case NVME_ZONE_STATE_READ_ONLY:
1672         trace_pci_nvme_err_zone_is_read_only(zslba);
1673         return NVME_ZONE_READ_ONLY;
1674     default:
1675         assert(false);
1676     }
1677 
1678     return NVME_INTERNAL_DEV_ERROR;
1679 }
1680 
1681 static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
1682                                       uint64_t slba, uint32_t nlb)
1683 {
1684     uint64_t zcap = nvme_zone_wr_boundary(zone);
1685     uint16_t status;
1686 
1687     status = nvme_check_zone_state_for_write(zone);
1688     if (status) {
1689         return status;
1690     }
1691 
1692     if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1693         uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas;
1694 
1695         if (slba < zone->w_ptr || slba + nlb > ezrwa) {
1696             trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr);
1697             return NVME_ZONE_INVALID_WRITE;
1698         }
1699     } else {
1700         if (unlikely(slba != zone->w_ptr)) {
1701             trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba,
1702                                                zone->w_ptr);
1703             return NVME_ZONE_INVALID_WRITE;
1704         }
1705     }
1706 
1707     if (unlikely((slba + nlb) > zcap)) {
1708         trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
1709         return NVME_ZONE_BOUNDARY_ERROR;
1710     }
1711 
1712     return NVME_SUCCESS;
1713 }
1714 
1715 static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
1716 {
1717     switch (nvme_get_zone_state(zone)) {
1718     case NVME_ZONE_STATE_EMPTY:
1719     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1720     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1721     case NVME_ZONE_STATE_FULL:
1722     case NVME_ZONE_STATE_CLOSED:
1723     case NVME_ZONE_STATE_READ_ONLY:
1724         return NVME_SUCCESS;
1725     case NVME_ZONE_STATE_OFFLINE:
1726         trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
1727         return NVME_ZONE_OFFLINE;
1728     default:
1729         assert(false);
1730     }
1731 
1732     return NVME_INTERNAL_DEV_ERROR;
1733 }
1734 
1735 static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
1736                                      uint32_t nlb)
1737 {
1738     NvmeZone *zone;
1739     uint64_t bndry, end;
1740     uint16_t status;
1741 
1742     zone = nvme_get_zone_by_slba(ns, slba);
1743     assert(zone);
1744 
1745     bndry = nvme_zone_rd_boundary(ns, zone);
1746     end = slba + nlb;
1747 
1748     status = nvme_check_zone_state_for_read(zone);
1749     if (status) {
1750         ;
1751     } else if (unlikely(end > bndry)) {
1752         if (!ns->params.cross_zone_read) {
1753             status = NVME_ZONE_BOUNDARY_ERROR;
1754         } else {
1755             /*
1756              * Read across zone boundary - check that all subsequent
1757              * zones that are being read have an appropriate state.
1758              */
1759             do {
1760                 zone++;
1761                 status = nvme_check_zone_state_for_read(zone);
1762                 if (status) {
1763                     break;
1764                 }
1765             } while (end > nvme_zone_rd_boundary(ns, zone));
1766         }
1767     }
1768 
1769     return status;
1770 }
1771 
1772 static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
1773 {
1774     switch (nvme_get_zone_state(zone)) {
1775     case NVME_ZONE_STATE_FULL:
1776         return NVME_SUCCESS;
1777 
1778     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1779     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1780         nvme_aor_dec_open(ns);
1781         /* fallthrough */
1782     case NVME_ZONE_STATE_CLOSED:
1783         nvme_aor_dec_active(ns);
1784 
1785         if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1786             zone->d.za &= ~NVME_ZA_ZRWA_VALID;
1787             if (ns->params.numzrwa) {
1788                 ns->zns.numzrwa++;
1789             }
1790         }
1791 
1792         /* fallthrough */
1793     case NVME_ZONE_STATE_EMPTY:
1794         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
1795         return NVME_SUCCESS;
1796 
1797     default:
1798         return NVME_ZONE_INVAL_TRANSITION;
1799     }
1800 }
1801 
1802 static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
1803 {
1804     switch (nvme_get_zone_state(zone)) {
1805     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1806     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1807         nvme_aor_dec_open(ns);
1808         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
1809         /* fall through */
1810     case NVME_ZONE_STATE_CLOSED:
1811         return NVME_SUCCESS;
1812 
1813     default:
1814         return NVME_ZONE_INVAL_TRANSITION;
1815     }
1816 }
1817 
1818 static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone)
1819 {
1820     switch (nvme_get_zone_state(zone)) {
1821     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1822     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1823         nvme_aor_dec_open(ns);
1824         /* fallthrough */
1825     case NVME_ZONE_STATE_CLOSED:
1826         nvme_aor_dec_active(ns);
1827 
1828         if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1829             if (ns->params.numzrwa) {
1830                 ns->zns.numzrwa++;
1831             }
1832         }
1833 
1834         /* fallthrough */
1835     case NVME_ZONE_STATE_FULL:
1836         zone->w_ptr = zone->d.zslba;
1837         zone->d.wp = zone->w_ptr;
1838         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
1839         /* fallthrough */
1840     case NVME_ZONE_STATE_EMPTY:
1841         return NVME_SUCCESS;
1842 
1843     default:
1844         return NVME_ZONE_INVAL_TRANSITION;
1845     }
1846 }
1847 
1848 static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
1849 {
1850     NvmeZone *zone;
1851 
1852     if (ns->params.max_open_zones &&
1853         ns->nr_open_zones == ns->params.max_open_zones) {
1854         zone = QTAILQ_FIRST(&ns->imp_open_zones);
1855         if (zone) {
1856             /*
1857              * Automatically close this implicitly open zone.
1858              */
1859             QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
1860             nvme_zrm_close(ns, zone);
1861         }
1862     }
1863 }
1864 
1865 enum {
1866     NVME_ZRM_AUTO = 1 << 0,
1867     NVME_ZRM_ZRWA = 1 << 1,
1868 };
1869 
1870 static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns,
1871                                     NvmeZone *zone, int flags)
1872 {
1873     int act = 0;
1874     uint16_t status;
1875 
1876     switch (nvme_get_zone_state(zone)) {
1877     case NVME_ZONE_STATE_EMPTY:
1878         act = 1;
1879 
1880         /* fallthrough */
1881 
1882     case NVME_ZONE_STATE_CLOSED:
1883         if (n->params.auto_transition_zones) {
1884             nvme_zrm_auto_transition_zone(ns);
1885         }
1886         status = nvme_zns_check_resources(ns, act, 1,
1887                                           (flags & NVME_ZRM_ZRWA) ? 1 : 0);
1888         if (status) {
1889             return status;
1890         }
1891 
1892         if (act) {
1893             nvme_aor_inc_active(ns);
1894         }
1895 
1896         nvme_aor_inc_open(ns);
1897 
1898         if (flags & NVME_ZRM_AUTO) {
1899             nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
1900             return NVME_SUCCESS;
1901         }
1902 
1903         /* fallthrough */
1904 
1905     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1906         if (flags & NVME_ZRM_AUTO) {
1907             return NVME_SUCCESS;
1908         }
1909 
1910         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
1911 
1912         /* fallthrough */
1913 
1914     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1915         if (flags & NVME_ZRM_ZRWA) {
1916             ns->zns.numzrwa--;
1917 
1918             zone->d.za |= NVME_ZA_ZRWA_VALID;
1919         }
1920 
1921         return NVME_SUCCESS;
1922 
1923     default:
1924         return NVME_ZONE_INVAL_TRANSITION;
1925     }
1926 }
1927 
1928 static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns,
1929                                      NvmeZone *zone)
1930 {
1931     return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO);
1932 }
1933 
1934 static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
1935                                  uint32_t nlb)
1936 {
1937     zone->d.wp += nlb;
1938 
1939     if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
1940         nvme_zrm_finish(ns, zone);
1941     }
1942 }
1943 
1944 static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone,
1945                                            uint32_t nlbc)
1946 {
1947     uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg);
1948 
1949     nlbc = nzrwafgs * ns->zns.zrwafg;
1950 
1951     trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc);
1952 
1953     zone->w_ptr += nlbc;
1954 
1955     nvme_advance_zone_wp(ns, zone, nlbc);
1956 }
1957 
1958 static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
1959 {
1960     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1961     NvmeZone *zone;
1962     uint64_t slba;
1963     uint32_t nlb;
1964 
1965     slba = le64_to_cpu(rw->slba);
1966     nlb = le16_to_cpu(rw->nlb) + 1;
1967     zone = nvme_get_zone_by_slba(ns, slba);
1968     assert(zone);
1969 
1970     if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1971         uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1;
1972         uint64_t elba = slba + nlb - 1;
1973 
1974         if (elba > ezrwa) {
1975             nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa);
1976         }
1977 
1978         return;
1979     }
1980 
1981     nvme_advance_zone_wp(ns, zone, nlb);
1982 }
1983 
1984 static inline bool nvme_is_write(NvmeRequest *req)
1985 {
1986     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1987 
1988     return rw->opcode == NVME_CMD_WRITE ||
1989            rw->opcode == NVME_CMD_ZONE_APPEND ||
1990            rw->opcode == NVME_CMD_WRITE_ZEROES;
1991 }
1992 
1993 static AioContext *nvme_get_aio_context(BlockAIOCB *acb)
1994 {
1995     return qemu_get_aio_context();
1996 }
1997 
1998 static void nvme_misc_cb(void *opaque, int ret)
1999 {
2000     NvmeRequest *req = opaque;
2001 
2002     trace_pci_nvme_misc_cb(nvme_cid(req));
2003 
2004     if (ret) {
2005         nvme_aio_err(req, ret);
2006     }
2007 
2008     nvme_enqueue_req_completion(nvme_cq(req), req);
2009 }
2010 
2011 void nvme_rw_complete_cb(void *opaque, int ret)
2012 {
2013     NvmeRequest *req = opaque;
2014     NvmeNamespace *ns = req->ns;
2015     BlockBackend *blk = ns->blkconf.blk;
2016     BlockAcctCookie *acct = &req->acct;
2017     BlockAcctStats *stats = blk_get_stats(blk);
2018 
2019     trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
2020 
2021     if (ret) {
2022         block_acct_failed(stats, acct);
2023         nvme_aio_err(req, ret);
2024     } else {
2025         block_acct_done(stats, acct);
2026     }
2027 
2028     if (ns->params.zoned && nvme_is_write(req)) {
2029         nvme_finalize_zoned_write(ns, req);
2030     }
2031 
2032     nvme_enqueue_req_completion(nvme_cq(req), req);
2033 }
2034 
2035 static void nvme_rw_cb(void *opaque, int ret)
2036 {
2037     NvmeRequest *req = opaque;
2038     NvmeNamespace *ns = req->ns;
2039 
2040     BlockBackend *blk = ns->blkconf.blk;
2041 
2042     trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
2043 
2044     if (ret) {
2045         goto out;
2046     }
2047 
2048     if (ns->lbaf.ms) {
2049         NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2050         uint64_t slba = le64_to_cpu(rw->slba);
2051         uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
2052         uint64_t offset = nvme_moff(ns, slba);
2053 
2054         if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
2055             size_t mlen = nvme_m2b(ns, nlb);
2056 
2057             req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
2058                                                BDRV_REQ_MAY_UNMAP,
2059                                                nvme_rw_complete_cb, req);
2060             return;
2061         }
2062 
2063         if (nvme_ns_ext(ns) || req->cmd.mptr) {
2064             uint16_t status;
2065 
2066             nvme_sg_unmap(&req->sg);
2067             status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
2068             if (status) {
2069                 ret = -EFAULT;
2070                 goto out;
2071             }
2072 
2073             if (req->cmd.opcode == NVME_CMD_READ) {
2074                 return nvme_blk_read(blk, offset, nvme_rw_complete_cb, req);
2075             }
2076 
2077             return nvme_blk_write(blk, offset, nvme_rw_complete_cb, req);
2078         }
2079     }
2080 
2081 out:
2082     nvme_rw_complete_cb(req, ret);
2083 }
2084 
2085 static void nvme_verify_cb(void *opaque, int ret)
2086 {
2087     NvmeBounceContext *ctx = opaque;
2088     NvmeRequest *req = ctx->req;
2089     NvmeNamespace *ns = req->ns;
2090     BlockBackend *blk = ns->blkconf.blk;
2091     BlockAcctCookie *acct = &req->acct;
2092     BlockAcctStats *stats = blk_get_stats(blk);
2093     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2094     uint64_t slba = le64_to_cpu(rw->slba);
2095     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2096     uint16_t apptag = le16_to_cpu(rw->apptag);
2097     uint16_t appmask = le16_to_cpu(rw->appmask);
2098     uint64_t reftag = le32_to_cpu(rw->reftag);
2099     uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2100     uint16_t status;
2101 
2102     reftag |= cdw3 << 32;
2103 
2104     trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag);
2105 
2106     if (ret) {
2107         block_acct_failed(stats, acct);
2108         nvme_aio_err(req, ret);
2109         goto out;
2110     }
2111 
2112     block_acct_done(stats, acct);
2113 
2114     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2115         status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
2116                                        ctx->mdata.iov.size, slba);
2117         if (status) {
2118             req->status = status;
2119             goto out;
2120         }
2121 
2122         req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2123                                      ctx->mdata.bounce, ctx->mdata.iov.size,
2124                                      prinfo, slba, apptag, appmask, &reftag);
2125     }
2126 
2127 out:
2128     qemu_iovec_destroy(&ctx->data.iov);
2129     g_free(ctx->data.bounce);
2130 
2131     qemu_iovec_destroy(&ctx->mdata.iov);
2132     g_free(ctx->mdata.bounce);
2133 
2134     g_free(ctx);
2135 
2136     nvme_enqueue_req_completion(nvme_cq(req), req);
2137 }
2138 
2139 
2140 static void nvme_verify_mdata_in_cb(void *opaque, int ret)
2141 {
2142     NvmeBounceContext *ctx = opaque;
2143     NvmeRequest *req = ctx->req;
2144     NvmeNamespace *ns = req->ns;
2145     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2146     uint64_t slba = le64_to_cpu(rw->slba);
2147     uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2148     size_t mlen = nvme_m2b(ns, nlb);
2149     uint64_t offset = nvme_moff(ns, slba);
2150     BlockBackend *blk = ns->blkconf.blk;
2151 
2152     trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
2153 
2154     if (ret) {
2155         goto out;
2156     }
2157 
2158     ctx->mdata.bounce = g_malloc(mlen);
2159 
2160     qemu_iovec_reset(&ctx->mdata.iov);
2161     qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2162 
2163     req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2164                                 nvme_verify_cb, ctx);
2165     return;
2166 
2167 out:
2168     nvme_verify_cb(ctx, ret);
2169 }
2170 
2171 struct nvme_compare_ctx {
2172     struct {
2173         QEMUIOVector iov;
2174         uint8_t *bounce;
2175     } data;
2176 
2177     struct {
2178         QEMUIOVector iov;
2179         uint8_t *bounce;
2180     } mdata;
2181 };
2182 
2183 static void nvme_compare_mdata_cb(void *opaque, int ret)
2184 {
2185     NvmeRequest *req = opaque;
2186     NvmeNamespace *ns = req->ns;
2187     NvmeCtrl *n = nvme_ctrl(req);
2188     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2189     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2190     uint16_t apptag = le16_to_cpu(rw->apptag);
2191     uint16_t appmask = le16_to_cpu(rw->appmask);
2192     uint64_t reftag = le32_to_cpu(rw->reftag);
2193     uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2194     struct nvme_compare_ctx *ctx = req->opaque;
2195     g_autofree uint8_t *buf = NULL;
2196     BlockBackend *blk = ns->blkconf.blk;
2197     BlockAcctCookie *acct = &req->acct;
2198     BlockAcctStats *stats = blk_get_stats(blk);
2199     uint16_t status = NVME_SUCCESS;
2200 
2201     reftag |= cdw3 << 32;
2202 
2203     trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
2204 
2205     if (ret) {
2206         block_acct_failed(stats, acct);
2207         nvme_aio_err(req, ret);
2208         goto out;
2209     }
2210 
2211     buf = g_malloc(ctx->mdata.iov.size);
2212 
2213     status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
2214                                NVME_TX_DIRECTION_TO_DEVICE, req);
2215     if (status) {
2216         req->status = status;
2217         goto out;
2218     }
2219 
2220     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2221         uint64_t slba = le64_to_cpu(rw->slba);
2222         uint8_t *bufp;
2223         uint8_t *mbufp = ctx->mdata.bounce;
2224         uint8_t *end = mbufp + ctx->mdata.iov.size;
2225         int16_t pil = 0;
2226 
2227         status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2228                                 ctx->mdata.bounce, ctx->mdata.iov.size, prinfo,
2229                                 slba, apptag, appmask, &reftag);
2230         if (status) {
2231             req->status = status;
2232             goto out;
2233         }
2234 
2235         /*
2236          * When formatted with protection information, do not compare the DIF
2237          * tuple.
2238          */
2239         if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
2240             pil = ns->lbaf.ms - nvme_pi_tuple_size(ns);
2241         }
2242 
2243         for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) {
2244             if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) {
2245                 req->status = NVME_CMP_FAILURE;
2246                 goto out;
2247             }
2248         }
2249 
2250         goto out;
2251     }
2252 
2253     if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
2254         req->status = NVME_CMP_FAILURE;
2255         goto out;
2256     }
2257 
2258     block_acct_done(stats, acct);
2259 
2260 out:
2261     qemu_iovec_destroy(&ctx->data.iov);
2262     g_free(ctx->data.bounce);
2263 
2264     qemu_iovec_destroy(&ctx->mdata.iov);
2265     g_free(ctx->mdata.bounce);
2266 
2267     g_free(ctx);
2268 
2269     nvme_enqueue_req_completion(nvme_cq(req), req);
2270 }
2271 
2272 static void nvme_compare_data_cb(void *opaque, int ret)
2273 {
2274     NvmeRequest *req = opaque;
2275     NvmeCtrl *n = nvme_ctrl(req);
2276     NvmeNamespace *ns = req->ns;
2277     BlockBackend *blk = ns->blkconf.blk;
2278     BlockAcctCookie *acct = &req->acct;
2279     BlockAcctStats *stats = blk_get_stats(blk);
2280 
2281     struct nvme_compare_ctx *ctx = req->opaque;
2282     g_autofree uint8_t *buf = NULL;
2283     uint16_t status;
2284 
2285     trace_pci_nvme_compare_data_cb(nvme_cid(req));
2286 
2287     if (ret) {
2288         block_acct_failed(stats, acct);
2289         nvme_aio_err(req, ret);
2290         goto out;
2291     }
2292 
2293     buf = g_malloc(ctx->data.iov.size);
2294 
2295     status = nvme_bounce_data(n, buf, ctx->data.iov.size,
2296                               NVME_TX_DIRECTION_TO_DEVICE, req);
2297     if (status) {
2298         req->status = status;
2299         goto out;
2300     }
2301 
2302     if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
2303         req->status = NVME_CMP_FAILURE;
2304         goto out;
2305     }
2306 
2307     if (ns->lbaf.ms) {
2308         NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2309         uint64_t slba = le64_to_cpu(rw->slba);
2310         uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2311         size_t mlen = nvme_m2b(ns, nlb);
2312         uint64_t offset = nvme_moff(ns, slba);
2313 
2314         ctx->mdata.bounce = g_malloc(mlen);
2315 
2316         qemu_iovec_init(&ctx->mdata.iov, 1);
2317         qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2318 
2319         req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2320                                     nvme_compare_mdata_cb, req);
2321         return;
2322     }
2323 
2324     block_acct_done(stats, acct);
2325 
2326 out:
2327     qemu_iovec_destroy(&ctx->data.iov);
2328     g_free(ctx->data.bounce);
2329     g_free(ctx);
2330 
2331     nvme_enqueue_req_completion(nvme_cq(req), req);
2332 }
2333 
2334 typedef struct NvmeDSMAIOCB {
2335     BlockAIOCB common;
2336     BlockAIOCB *aiocb;
2337     NvmeRequest *req;
2338     QEMUBH *bh;
2339     int ret;
2340 
2341     NvmeDsmRange *range;
2342     unsigned int nr;
2343     unsigned int idx;
2344 } NvmeDSMAIOCB;
2345 
2346 static void nvme_dsm_cancel(BlockAIOCB *aiocb)
2347 {
2348     NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common);
2349 
2350     /* break nvme_dsm_cb loop */
2351     iocb->idx = iocb->nr;
2352     iocb->ret = -ECANCELED;
2353 
2354     if (iocb->aiocb) {
2355         blk_aio_cancel_async(iocb->aiocb);
2356         iocb->aiocb = NULL;
2357     } else {
2358         /*
2359          * We only reach this if nvme_dsm_cancel() has already been called or
2360          * the command ran to completion and nvme_dsm_bh is scheduled to run.
2361          */
2362         assert(iocb->idx == iocb->nr);
2363     }
2364 }
2365 
2366 static const AIOCBInfo nvme_dsm_aiocb_info = {
2367     .aiocb_size   = sizeof(NvmeDSMAIOCB),
2368     .cancel_async = nvme_dsm_cancel,
2369 };
2370 
2371 static void nvme_dsm_bh(void *opaque)
2372 {
2373     NvmeDSMAIOCB *iocb = opaque;
2374 
2375     iocb->common.cb(iocb->common.opaque, iocb->ret);
2376 
2377     qemu_bh_delete(iocb->bh);
2378     iocb->bh = NULL;
2379     qemu_aio_unref(iocb);
2380 }
2381 
2382 static void nvme_dsm_cb(void *opaque, int ret);
2383 
2384 static void nvme_dsm_md_cb(void *opaque, int ret)
2385 {
2386     NvmeDSMAIOCB *iocb = opaque;
2387     NvmeRequest *req = iocb->req;
2388     NvmeNamespace *ns = req->ns;
2389     NvmeDsmRange *range;
2390     uint64_t slba;
2391     uint32_t nlb;
2392 
2393     if (ret < 0) {
2394         iocb->ret = ret;
2395         goto done;
2396     }
2397 
2398     if (!ns->lbaf.ms) {
2399         nvme_dsm_cb(iocb, 0);
2400         return;
2401     }
2402 
2403     range = &iocb->range[iocb->idx - 1];
2404     slba = le64_to_cpu(range->slba);
2405     nlb = le32_to_cpu(range->nlb);
2406 
2407     /*
2408      * Check that all block were discarded (zeroed); otherwise we do not zero
2409      * the metadata.
2410      */
2411 
2412     ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO);
2413     if (ret) {
2414         if (ret < 0) {
2415             iocb->ret = ret;
2416             goto done;
2417         }
2418 
2419         nvme_dsm_cb(iocb, 0);
2420         return;
2421     }
2422 
2423     iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba),
2424                                         nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP,
2425                                         nvme_dsm_cb, iocb);
2426     return;
2427 
2428 done:
2429     iocb->aiocb = NULL;
2430     qemu_bh_schedule(iocb->bh);
2431 }
2432 
2433 static void nvme_dsm_cb(void *opaque, int ret)
2434 {
2435     NvmeDSMAIOCB *iocb = opaque;
2436     NvmeRequest *req = iocb->req;
2437     NvmeCtrl *n = nvme_ctrl(req);
2438     NvmeNamespace *ns = req->ns;
2439     NvmeDsmRange *range;
2440     uint64_t slba;
2441     uint32_t nlb;
2442 
2443     if (ret < 0) {
2444         iocb->ret = ret;
2445         goto done;
2446     }
2447 
2448 next:
2449     if (iocb->idx == iocb->nr) {
2450         goto done;
2451     }
2452 
2453     range = &iocb->range[iocb->idx++];
2454     slba = le64_to_cpu(range->slba);
2455     nlb = le32_to_cpu(range->nlb);
2456 
2457     trace_pci_nvme_dsm_deallocate(slba, nlb);
2458 
2459     if (nlb > n->dmrsl) {
2460         trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
2461         goto next;
2462     }
2463 
2464     if (nvme_check_bounds(ns, slba, nlb)) {
2465         trace_pci_nvme_err_invalid_lba_range(slba, nlb,
2466                                              ns->id_ns.nsze);
2467         goto next;
2468     }
2469 
2470     iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba),
2471                                    nvme_l2b(ns, nlb),
2472                                    nvme_dsm_md_cb, iocb);
2473     return;
2474 
2475 done:
2476     iocb->aiocb = NULL;
2477     qemu_bh_schedule(iocb->bh);
2478 }
2479 
2480 static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
2481 {
2482     NvmeNamespace *ns = req->ns;
2483     NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
2484     uint32_t attr = le32_to_cpu(dsm->attributes);
2485     uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
2486     uint16_t status = NVME_SUCCESS;
2487 
2488     trace_pci_nvme_dsm(nr, attr);
2489 
2490     if (attr & NVME_DSMGMT_AD) {
2491         NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk,
2492                                          nvme_misc_cb, req);
2493 
2494         iocb->req = req;
2495         iocb->bh = qemu_bh_new(nvme_dsm_bh, iocb);
2496         iocb->ret = 0;
2497         iocb->range = g_new(NvmeDsmRange, nr);
2498         iocb->nr = nr;
2499         iocb->idx = 0;
2500 
2501         status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr,
2502                           req);
2503         if (status) {
2504             return status;
2505         }
2506 
2507         req->aiocb = &iocb->common;
2508         nvme_dsm_cb(iocb, 0);
2509 
2510         return NVME_NO_COMPLETE;
2511     }
2512 
2513     return status;
2514 }
2515 
2516 static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
2517 {
2518     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2519     NvmeNamespace *ns = req->ns;
2520     BlockBackend *blk = ns->blkconf.blk;
2521     uint64_t slba = le64_to_cpu(rw->slba);
2522     uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2523     size_t len = nvme_l2b(ns, nlb);
2524     int64_t offset = nvme_l2b(ns, slba);
2525     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2526     uint32_t reftag = le32_to_cpu(rw->reftag);
2527     NvmeBounceContext *ctx = NULL;
2528     uint16_t status;
2529 
2530     trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
2531 
2532     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2533         status = nvme_check_prinfo(ns, prinfo, slba, reftag);
2534         if (status) {
2535             return status;
2536         }
2537 
2538         if (prinfo & NVME_PRINFO_PRACT) {
2539             return NVME_INVALID_PROT_INFO | NVME_DNR;
2540         }
2541     }
2542 
2543     if (len > n->page_size << n->params.vsl) {
2544         return NVME_INVALID_FIELD | NVME_DNR;
2545     }
2546 
2547     status = nvme_check_bounds(ns, slba, nlb);
2548     if (status) {
2549         return status;
2550     }
2551 
2552     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2553         status = nvme_check_dulbe(ns, slba, nlb);
2554         if (status) {
2555             return status;
2556         }
2557     }
2558 
2559     ctx = g_new0(NvmeBounceContext, 1);
2560     ctx->req = req;
2561 
2562     ctx->data.bounce = g_malloc(len);
2563 
2564     qemu_iovec_init(&ctx->data.iov, 1);
2565     qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
2566 
2567     block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
2568                      BLOCK_ACCT_READ);
2569 
2570     req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
2571                                 nvme_verify_mdata_in_cb, ctx);
2572     return NVME_NO_COMPLETE;
2573 }
2574 
2575 typedef struct NvmeCopyAIOCB {
2576     BlockAIOCB common;
2577     BlockAIOCB *aiocb;
2578     NvmeRequest *req;
2579     QEMUBH *bh;
2580     int ret;
2581 
2582     void *ranges;
2583     unsigned int format;
2584     int nr;
2585     int idx;
2586 
2587     uint8_t *bounce;
2588     QEMUIOVector iov;
2589     struct {
2590         BlockAcctCookie read;
2591         BlockAcctCookie write;
2592     } acct;
2593 
2594     uint64_t reftag;
2595     uint64_t slba;
2596 
2597     NvmeZone *zone;
2598 } NvmeCopyAIOCB;
2599 
2600 static void nvme_copy_cancel(BlockAIOCB *aiocb)
2601 {
2602     NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common);
2603 
2604     iocb->ret = -ECANCELED;
2605 
2606     if (iocb->aiocb) {
2607         blk_aio_cancel_async(iocb->aiocb);
2608         iocb->aiocb = NULL;
2609     }
2610 }
2611 
2612 static const AIOCBInfo nvme_copy_aiocb_info = {
2613     .aiocb_size   = sizeof(NvmeCopyAIOCB),
2614     .cancel_async = nvme_copy_cancel,
2615 };
2616 
2617 static void nvme_copy_bh(void *opaque)
2618 {
2619     NvmeCopyAIOCB *iocb = opaque;
2620     NvmeRequest *req = iocb->req;
2621     NvmeNamespace *ns = req->ns;
2622     BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk);
2623 
2624     if (iocb->idx != iocb->nr) {
2625         req->cqe.result = cpu_to_le32(iocb->idx);
2626     }
2627 
2628     qemu_iovec_destroy(&iocb->iov);
2629     g_free(iocb->bounce);
2630 
2631     qemu_bh_delete(iocb->bh);
2632     iocb->bh = NULL;
2633 
2634     if (iocb->ret < 0) {
2635         block_acct_failed(stats, &iocb->acct.read);
2636         block_acct_failed(stats, &iocb->acct.write);
2637     } else {
2638         block_acct_done(stats, &iocb->acct.read);
2639         block_acct_done(stats, &iocb->acct.write);
2640     }
2641 
2642     iocb->common.cb(iocb->common.opaque, iocb->ret);
2643     qemu_aio_unref(iocb);
2644 }
2645 
2646 static void nvme_copy_cb(void *opaque, int ret);
2647 
2648 static void nvme_copy_source_range_parse_format0(void *ranges, int idx,
2649                                                  uint64_t *slba, uint32_t *nlb,
2650                                                  uint16_t *apptag,
2651                                                  uint16_t *appmask,
2652                                                  uint64_t *reftag)
2653 {
2654     NvmeCopySourceRangeFormat0 *_ranges = ranges;
2655 
2656     if (slba) {
2657         *slba = le64_to_cpu(_ranges[idx].slba);
2658     }
2659 
2660     if (nlb) {
2661         *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2662     }
2663 
2664     if (apptag) {
2665         *apptag = le16_to_cpu(_ranges[idx].apptag);
2666     }
2667 
2668     if (appmask) {
2669         *appmask = le16_to_cpu(_ranges[idx].appmask);
2670     }
2671 
2672     if (reftag) {
2673         *reftag = le32_to_cpu(_ranges[idx].reftag);
2674     }
2675 }
2676 
2677 static void nvme_copy_source_range_parse_format1(void *ranges, int idx,
2678                                                  uint64_t *slba, uint32_t *nlb,
2679                                                  uint16_t *apptag,
2680                                                  uint16_t *appmask,
2681                                                  uint64_t *reftag)
2682 {
2683     NvmeCopySourceRangeFormat1 *_ranges = ranges;
2684 
2685     if (slba) {
2686         *slba = le64_to_cpu(_ranges[idx].slba);
2687     }
2688 
2689     if (nlb) {
2690         *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2691     }
2692 
2693     if (apptag) {
2694         *apptag = le16_to_cpu(_ranges[idx].apptag);
2695     }
2696 
2697     if (appmask) {
2698         *appmask = le16_to_cpu(_ranges[idx].appmask);
2699     }
2700 
2701     if (reftag) {
2702         *reftag = 0;
2703 
2704         *reftag |= (uint64_t)_ranges[idx].sr[4] << 40;
2705         *reftag |= (uint64_t)_ranges[idx].sr[5] << 32;
2706         *reftag |= (uint64_t)_ranges[idx].sr[6] << 24;
2707         *reftag |= (uint64_t)_ranges[idx].sr[7] << 16;
2708         *reftag |= (uint64_t)_ranges[idx].sr[8] << 8;
2709         *reftag |= (uint64_t)_ranges[idx].sr[9];
2710     }
2711 }
2712 
2713 static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format,
2714                                          uint64_t *slba, uint32_t *nlb,
2715                                          uint16_t *apptag, uint16_t *appmask,
2716                                          uint64_t *reftag)
2717 {
2718     switch (format) {
2719     case NVME_COPY_FORMAT_0:
2720         nvme_copy_source_range_parse_format0(ranges, idx, slba, nlb, apptag,
2721                                              appmask, reftag);
2722         break;
2723 
2724     case NVME_COPY_FORMAT_1:
2725         nvme_copy_source_range_parse_format1(ranges, idx, slba, nlb, apptag,
2726                                              appmask, reftag);
2727         break;
2728 
2729     default:
2730         abort();
2731     }
2732 }
2733 
2734 static void nvme_copy_out_completed_cb(void *opaque, int ret)
2735 {
2736     NvmeCopyAIOCB *iocb = opaque;
2737     NvmeRequest *req = iocb->req;
2738     NvmeNamespace *ns = req->ns;
2739     uint32_t nlb;
2740 
2741     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2742                                  &nlb, NULL, NULL, NULL);
2743 
2744     if (ret < 0) {
2745         iocb->ret = ret;
2746         goto out;
2747     } else if (iocb->ret < 0) {
2748         goto out;
2749     }
2750 
2751     if (ns->params.zoned) {
2752         nvme_advance_zone_wp(ns, iocb->zone, nlb);
2753     }
2754 
2755     iocb->idx++;
2756     iocb->slba += nlb;
2757 out:
2758     nvme_copy_cb(iocb, iocb->ret);
2759 }
2760 
2761 static void nvme_copy_out_cb(void *opaque, int ret)
2762 {
2763     NvmeCopyAIOCB *iocb = opaque;
2764     NvmeRequest *req = iocb->req;
2765     NvmeNamespace *ns = req->ns;
2766     uint32_t nlb;
2767     size_t mlen;
2768     uint8_t *mbounce;
2769 
2770     if (ret < 0) {
2771         iocb->ret = ret;
2772         goto out;
2773     } else if (iocb->ret < 0) {
2774         goto out;
2775     }
2776 
2777     if (!ns->lbaf.ms) {
2778         nvme_copy_out_completed_cb(iocb, 0);
2779         return;
2780     }
2781 
2782     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2783                                  &nlb, NULL, NULL, NULL);
2784 
2785     mlen = nvme_m2b(ns, nlb);
2786     mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2787 
2788     qemu_iovec_reset(&iocb->iov);
2789     qemu_iovec_add(&iocb->iov, mbounce, mlen);
2790 
2791     iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba),
2792                                   &iocb->iov, 0, nvme_copy_out_completed_cb,
2793                                   iocb);
2794 
2795     return;
2796 
2797 out:
2798     nvme_copy_cb(iocb, ret);
2799 }
2800 
2801 static void nvme_copy_in_completed_cb(void *opaque, int ret)
2802 {
2803     NvmeCopyAIOCB *iocb = opaque;
2804     NvmeRequest *req = iocb->req;
2805     NvmeNamespace *ns = req->ns;
2806     uint32_t nlb;
2807     uint64_t slba;
2808     uint16_t apptag, appmask;
2809     uint64_t reftag;
2810     size_t len;
2811     uint16_t status;
2812 
2813     if (ret < 0) {
2814         iocb->ret = ret;
2815         goto out;
2816     } else if (iocb->ret < 0) {
2817         goto out;
2818     }
2819 
2820     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2821                                  &nlb, &apptag, &appmask, &reftag);
2822     len = nvme_l2b(ns, nlb);
2823 
2824     trace_pci_nvme_copy_out(iocb->slba, nlb);
2825 
2826     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2827         NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2828 
2829         uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
2830         uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
2831 
2832         size_t mlen = nvme_m2b(ns, nlb);
2833         uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2834 
2835         status = nvme_dif_mangle_mdata(ns, mbounce, mlen, slba);
2836         if (status) {
2837             goto invalid;
2838         }
2839         status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor,
2840                                 slba, apptag, appmask, &reftag);
2841         if (status) {
2842             goto invalid;
2843         }
2844 
2845         apptag = le16_to_cpu(copy->apptag);
2846         appmask = le16_to_cpu(copy->appmask);
2847 
2848         if (prinfow & NVME_PRINFO_PRACT) {
2849             status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag);
2850             if (status) {
2851                 goto invalid;
2852             }
2853 
2854             nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen,
2855                                         apptag, &iocb->reftag);
2856         } else {
2857             status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen,
2858                                     prinfow, iocb->slba, apptag, appmask,
2859                                     &iocb->reftag);
2860             if (status) {
2861                 goto invalid;
2862             }
2863         }
2864     }
2865 
2866     status = nvme_check_bounds(ns, iocb->slba, nlb);
2867     if (status) {
2868         goto invalid;
2869     }
2870 
2871     if (ns->params.zoned) {
2872         status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb);
2873         if (status) {
2874             goto invalid;
2875         }
2876 
2877         if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) {
2878             iocb->zone->w_ptr += nlb;
2879         }
2880     }
2881 
2882     qemu_iovec_reset(&iocb->iov);
2883     qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2884 
2885     iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba),
2886                                   &iocb->iov, 0, nvme_copy_out_cb, iocb);
2887 
2888     return;
2889 
2890 invalid:
2891     req->status = status;
2892     iocb->aiocb = NULL;
2893     if (iocb->bh) {
2894         qemu_bh_schedule(iocb->bh);
2895     }
2896 
2897     return;
2898 
2899 out:
2900     nvme_copy_cb(iocb, ret);
2901 }
2902 
2903 static void nvme_copy_in_cb(void *opaque, int ret)
2904 {
2905     NvmeCopyAIOCB *iocb = opaque;
2906     NvmeRequest *req = iocb->req;
2907     NvmeNamespace *ns = req->ns;
2908     uint64_t slba;
2909     uint32_t nlb;
2910 
2911     if (ret < 0) {
2912         iocb->ret = ret;
2913         goto out;
2914     } else if (iocb->ret < 0) {
2915         goto out;
2916     }
2917 
2918     if (!ns->lbaf.ms) {
2919         nvme_copy_in_completed_cb(iocb, 0);
2920         return;
2921     }
2922 
2923     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2924                                  &nlb, NULL, NULL, NULL);
2925 
2926     qemu_iovec_reset(&iocb->iov);
2927     qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb),
2928                    nvme_m2b(ns, nlb));
2929 
2930     iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba),
2931                                  &iocb->iov, 0, nvme_copy_in_completed_cb,
2932                                  iocb);
2933     return;
2934 
2935 out:
2936     nvme_copy_cb(iocb, iocb->ret);
2937 }
2938 
2939 static void nvme_copy_cb(void *opaque, int ret)
2940 {
2941     NvmeCopyAIOCB *iocb = opaque;
2942     NvmeRequest *req = iocb->req;
2943     NvmeNamespace *ns = req->ns;
2944     uint64_t slba;
2945     uint32_t nlb;
2946     size_t len;
2947     uint16_t status;
2948 
2949     if (ret < 0) {
2950         iocb->ret = ret;
2951         goto done;
2952     } else if (iocb->ret < 0) {
2953         goto done;
2954     }
2955 
2956     if (iocb->idx == iocb->nr) {
2957         goto done;
2958     }
2959 
2960     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2961                                  &nlb, NULL, NULL, NULL);
2962     len = nvme_l2b(ns, nlb);
2963 
2964     trace_pci_nvme_copy_source_range(slba, nlb);
2965 
2966     if (nlb > le16_to_cpu(ns->id_ns.mssrl)) {
2967         status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
2968         goto invalid;
2969     }
2970 
2971     status = nvme_check_bounds(ns, slba, nlb);
2972     if (status) {
2973         goto invalid;
2974     }
2975 
2976     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2977         status = nvme_check_dulbe(ns, slba, nlb);
2978         if (status) {
2979             goto invalid;
2980         }
2981     }
2982 
2983     if (ns->params.zoned) {
2984         status = nvme_check_zone_read(ns, slba, nlb);
2985         if (status) {
2986             goto invalid;
2987         }
2988     }
2989 
2990     qemu_iovec_reset(&iocb->iov);
2991     qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2992 
2993     iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_l2b(ns, slba),
2994                                  &iocb->iov, 0, nvme_copy_in_cb, iocb);
2995     return;
2996 
2997 invalid:
2998     req->status = status;
2999 done:
3000     iocb->aiocb = NULL;
3001     if (iocb->bh) {
3002         qemu_bh_schedule(iocb->bh);
3003     }
3004 }
3005 
3006 
3007 static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
3008 {
3009     NvmeNamespace *ns = req->ns;
3010     NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
3011     NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk,
3012                                       nvme_misc_cb, req);
3013     uint16_t nr = copy->nr + 1;
3014     uint8_t format = copy->control[0] & 0xf;
3015     uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
3016     uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
3017     size_t len = sizeof(NvmeCopySourceRangeFormat0);
3018 
3019     uint16_t status;
3020 
3021     trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
3022 
3023     iocb->ranges = NULL;
3024     iocb->zone = NULL;
3025 
3026     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
3027         ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) {
3028         status = NVME_INVALID_FIELD | NVME_DNR;
3029         goto invalid;
3030     }
3031 
3032     if (!(n->id_ctrl.ocfs & (1 << format))) {
3033         trace_pci_nvme_err_copy_invalid_format(format);
3034         status = NVME_INVALID_FIELD | NVME_DNR;
3035         goto invalid;
3036     }
3037 
3038     if (nr > ns->id_ns.msrc + 1) {
3039         status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
3040         goto invalid;
3041     }
3042 
3043     if (ns->pif && format != 0x1) {
3044         status = NVME_INVALID_FORMAT | NVME_DNR;
3045         goto invalid;
3046     }
3047 
3048     if (ns->pif) {
3049         len = sizeof(NvmeCopySourceRangeFormat1);
3050     }
3051 
3052     iocb->format = format;
3053     iocb->ranges = g_malloc_n(nr, len);
3054     status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req);
3055     if (status) {
3056         goto invalid;
3057     }
3058 
3059     iocb->slba = le64_to_cpu(copy->sdlba);
3060 
3061     if (ns->params.zoned) {
3062         iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba);
3063         if (!iocb->zone) {
3064             status = NVME_LBA_RANGE | NVME_DNR;
3065             goto invalid;
3066         }
3067 
3068         status = nvme_zrm_auto(n, ns, iocb->zone);
3069         if (status) {
3070             goto invalid;
3071         }
3072     }
3073 
3074     iocb->req = req;
3075     iocb->bh = qemu_bh_new(nvme_copy_bh, iocb);
3076     iocb->ret = 0;
3077     iocb->nr = nr;
3078     iocb->idx = 0;
3079     iocb->reftag = le32_to_cpu(copy->reftag);
3080     iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32;
3081     iocb->bounce = g_malloc_n(le16_to_cpu(ns->id_ns.mssrl),
3082                               ns->lbasz + ns->lbaf.ms);
3083 
3084     qemu_iovec_init(&iocb->iov, 1);
3085 
3086     block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.read, 0,
3087                      BLOCK_ACCT_READ);
3088     block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.write, 0,
3089                      BLOCK_ACCT_WRITE);
3090 
3091     req->aiocb = &iocb->common;
3092     nvme_copy_cb(iocb, 0);
3093 
3094     return NVME_NO_COMPLETE;
3095 
3096 invalid:
3097     g_free(iocb->ranges);
3098     qemu_aio_unref(iocb);
3099     return status;
3100 }
3101 
3102 static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
3103 {
3104     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3105     NvmeNamespace *ns = req->ns;
3106     BlockBackend *blk = ns->blkconf.blk;
3107     uint64_t slba = le64_to_cpu(rw->slba);
3108     uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
3109     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3110     size_t data_len = nvme_l2b(ns, nlb);
3111     size_t len = data_len;
3112     int64_t offset = nvme_l2b(ns, slba);
3113     struct nvme_compare_ctx *ctx = NULL;
3114     uint16_t status;
3115 
3116     trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
3117 
3118     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) {
3119         return NVME_INVALID_PROT_INFO | NVME_DNR;
3120     }
3121 
3122     if (nvme_ns_ext(ns)) {
3123         len += nvme_m2b(ns, nlb);
3124     }
3125 
3126     status = nvme_check_mdts(n, len);
3127     if (status) {
3128         return status;
3129     }
3130 
3131     status = nvme_check_bounds(ns, slba, nlb);
3132     if (status) {
3133         return status;
3134     }
3135 
3136     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3137         status = nvme_check_dulbe(ns, slba, nlb);
3138         if (status) {
3139             return status;
3140         }
3141     }
3142 
3143     status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
3144     if (status) {
3145         return status;
3146     }
3147 
3148     ctx = g_new(struct nvme_compare_ctx, 1);
3149     ctx->data.bounce = g_malloc(data_len);
3150 
3151     req->opaque = ctx;
3152 
3153     qemu_iovec_init(&ctx->data.iov, 1);
3154     qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
3155 
3156     block_acct_start(blk_get_stats(blk), &req->acct, data_len,
3157                      BLOCK_ACCT_READ);
3158     req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0,
3159                                 nvme_compare_data_cb, req);
3160 
3161     return NVME_NO_COMPLETE;
3162 }
3163 
3164 typedef struct NvmeFlushAIOCB {
3165     BlockAIOCB common;
3166     BlockAIOCB *aiocb;
3167     NvmeRequest *req;
3168     QEMUBH *bh;
3169     int ret;
3170 
3171     NvmeNamespace *ns;
3172     uint32_t nsid;
3173     bool broadcast;
3174 } NvmeFlushAIOCB;
3175 
3176 static void nvme_flush_cancel(BlockAIOCB *acb)
3177 {
3178     NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common);
3179 
3180     iocb->ret = -ECANCELED;
3181 
3182     if (iocb->aiocb) {
3183         blk_aio_cancel_async(iocb->aiocb);
3184     }
3185 }
3186 
3187 static const AIOCBInfo nvme_flush_aiocb_info = {
3188     .aiocb_size = sizeof(NvmeFlushAIOCB),
3189     .cancel_async = nvme_flush_cancel,
3190     .get_aio_context = nvme_get_aio_context,
3191 };
3192 
3193 static void nvme_flush_ns_cb(void *opaque, int ret)
3194 {
3195     NvmeFlushAIOCB *iocb = opaque;
3196     NvmeNamespace *ns = iocb->ns;
3197 
3198     if (ret < 0) {
3199         iocb->ret = ret;
3200         goto out;
3201     } else if (iocb->ret < 0) {
3202         goto out;
3203     }
3204 
3205     if (ns) {
3206         trace_pci_nvme_flush_ns(iocb->nsid);
3207 
3208         iocb->ns = NULL;
3209         iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb);
3210         return;
3211     }
3212 
3213 out:
3214     iocb->aiocb = NULL;
3215     qemu_bh_schedule(iocb->bh);
3216 }
3217 
3218 static void nvme_flush_bh(void *opaque)
3219 {
3220     NvmeFlushAIOCB *iocb = opaque;
3221     NvmeRequest *req = iocb->req;
3222     NvmeCtrl *n = nvme_ctrl(req);
3223     int i;
3224 
3225     if (iocb->ret < 0) {
3226         goto done;
3227     }
3228 
3229     if (iocb->broadcast) {
3230         for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
3231             iocb->ns = nvme_ns(n, i);
3232             if (iocb->ns) {
3233                 iocb->nsid = i;
3234                 break;
3235             }
3236         }
3237     }
3238 
3239     if (!iocb->ns) {
3240         goto done;
3241     }
3242 
3243     nvme_flush_ns_cb(iocb, 0);
3244     return;
3245 
3246 done:
3247     qemu_bh_delete(iocb->bh);
3248     iocb->bh = NULL;
3249 
3250     iocb->common.cb(iocb->common.opaque, iocb->ret);
3251 
3252     qemu_aio_unref(iocb);
3253 
3254     return;
3255 }
3256 
3257 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
3258 {
3259     NvmeFlushAIOCB *iocb;
3260     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
3261     uint16_t status;
3262 
3263     iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req);
3264 
3265     iocb->req = req;
3266     iocb->bh = qemu_bh_new(nvme_flush_bh, iocb);
3267     iocb->ret = 0;
3268     iocb->ns = NULL;
3269     iocb->nsid = 0;
3270     iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
3271 
3272     if (!iocb->broadcast) {
3273         if (!nvme_nsid_valid(n, nsid)) {
3274             status = NVME_INVALID_NSID | NVME_DNR;
3275             goto out;
3276         }
3277 
3278         iocb->ns = nvme_ns(n, nsid);
3279         if (!iocb->ns) {
3280             status = NVME_INVALID_FIELD | NVME_DNR;
3281             goto out;
3282         }
3283 
3284         iocb->nsid = nsid;
3285     }
3286 
3287     req->aiocb = &iocb->common;
3288     qemu_bh_schedule(iocb->bh);
3289 
3290     return NVME_NO_COMPLETE;
3291 
3292 out:
3293     qemu_bh_delete(iocb->bh);
3294     iocb->bh = NULL;
3295     qemu_aio_unref(iocb);
3296 
3297     return status;
3298 }
3299 
3300 static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
3301 {
3302     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3303     NvmeNamespace *ns = req->ns;
3304     uint64_t slba = le64_to_cpu(rw->slba);
3305     uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3306     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3307     uint64_t data_size = nvme_l2b(ns, nlb);
3308     uint64_t mapped_size = data_size;
3309     uint64_t data_offset;
3310     BlockBackend *blk = ns->blkconf.blk;
3311     uint16_t status;
3312 
3313     if (nvme_ns_ext(ns)) {
3314         mapped_size += nvme_m2b(ns, nlb);
3315 
3316         if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3317             bool pract = prinfo & NVME_PRINFO_PRACT;
3318 
3319             if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3320                 mapped_size = data_size;
3321             }
3322         }
3323     }
3324 
3325     trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
3326 
3327     status = nvme_check_mdts(n, mapped_size);
3328     if (status) {
3329         goto invalid;
3330     }
3331 
3332     status = nvme_check_bounds(ns, slba, nlb);
3333     if (status) {
3334         goto invalid;
3335     }
3336 
3337     if (ns->params.zoned) {
3338         status = nvme_check_zone_read(ns, slba, nlb);
3339         if (status) {
3340             trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
3341             goto invalid;
3342         }
3343     }
3344 
3345     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3346         status = nvme_check_dulbe(ns, slba, nlb);
3347         if (status) {
3348             goto invalid;
3349         }
3350     }
3351 
3352     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3353         return nvme_dif_rw(n, req);
3354     }
3355 
3356     status = nvme_map_data(n, nlb, req);
3357     if (status) {
3358         goto invalid;
3359     }
3360 
3361     data_offset = nvme_l2b(ns, slba);
3362 
3363     block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3364                      BLOCK_ACCT_READ);
3365     nvme_blk_read(blk, data_offset, nvme_rw_cb, req);
3366     return NVME_NO_COMPLETE;
3367 
3368 invalid:
3369     block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
3370     return status | NVME_DNR;
3371 }
3372 
3373 static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
3374                               bool wrz)
3375 {
3376     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3377     NvmeNamespace *ns = req->ns;
3378     uint64_t slba = le64_to_cpu(rw->slba);
3379     uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3380     uint16_t ctrl = le16_to_cpu(rw->control);
3381     uint8_t prinfo = NVME_RW_PRINFO(ctrl);
3382     uint64_t data_size = nvme_l2b(ns, nlb);
3383     uint64_t mapped_size = data_size;
3384     uint64_t data_offset;
3385     NvmeZone *zone;
3386     NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
3387     BlockBackend *blk = ns->blkconf.blk;
3388     uint16_t status;
3389 
3390     if (nvme_ns_ext(ns)) {
3391         mapped_size += nvme_m2b(ns, nlb);
3392 
3393         if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3394             bool pract = prinfo & NVME_PRINFO_PRACT;
3395 
3396             if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3397                 mapped_size -= nvme_m2b(ns, nlb);
3398             }
3399         }
3400     }
3401 
3402     trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
3403                          nvme_nsid(ns), nlb, mapped_size, slba);
3404 
3405     if (!wrz) {
3406         status = nvme_check_mdts(n, mapped_size);
3407         if (status) {
3408             goto invalid;
3409         }
3410     }
3411 
3412     status = nvme_check_bounds(ns, slba, nlb);
3413     if (status) {
3414         goto invalid;
3415     }
3416 
3417     if (ns->params.zoned) {
3418         zone = nvme_get_zone_by_slba(ns, slba);
3419         assert(zone);
3420 
3421         if (append) {
3422             bool piremap = !!(ctrl & NVME_RW_PIREMAP);
3423 
3424             if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3425                 return NVME_INVALID_ZONE_OP | NVME_DNR;
3426             }
3427 
3428             if (unlikely(slba != zone->d.zslba)) {
3429                 trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
3430                 status = NVME_INVALID_FIELD;
3431                 goto invalid;
3432             }
3433 
3434             if (n->params.zasl &&
3435                 data_size > (uint64_t)n->page_size << n->params.zasl) {
3436                 trace_pci_nvme_err_zasl(data_size);
3437                 return NVME_INVALID_FIELD | NVME_DNR;
3438             }
3439 
3440             slba = zone->w_ptr;
3441             rw->slba = cpu_to_le64(slba);
3442             res->slba = cpu_to_le64(slba);
3443 
3444             switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3445             case NVME_ID_NS_DPS_TYPE_1:
3446                 if (!piremap) {
3447                     return NVME_INVALID_PROT_INFO | NVME_DNR;
3448                 }
3449 
3450                 /* fallthrough */
3451 
3452             case NVME_ID_NS_DPS_TYPE_2:
3453                 if (piremap) {
3454                     uint32_t reftag = le32_to_cpu(rw->reftag);
3455                     rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
3456                 }
3457 
3458                 break;
3459 
3460             case NVME_ID_NS_DPS_TYPE_3:
3461                 if (piremap) {
3462                     return NVME_INVALID_PROT_INFO | NVME_DNR;
3463                 }
3464 
3465                 break;
3466             }
3467         }
3468 
3469         status = nvme_check_zone_write(ns, zone, slba, nlb);
3470         if (status) {
3471             goto invalid;
3472         }
3473 
3474         status = nvme_zrm_auto(n, ns, zone);
3475         if (status) {
3476             goto invalid;
3477         }
3478 
3479         if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3480             zone->w_ptr += nlb;
3481         }
3482     }
3483 
3484     data_offset = nvme_l2b(ns, slba);
3485 
3486     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3487         return nvme_dif_rw(n, req);
3488     }
3489 
3490     if (!wrz) {
3491         status = nvme_map_data(n, nlb, req);
3492         if (status) {
3493             goto invalid;
3494         }
3495 
3496         block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3497                          BLOCK_ACCT_WRITE);
3498         nvme_blk_write(blk, data_offset, nvme_rw_cb, req);
3499     } else {
3500         req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
3501                                            BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
3502                                            req);
3503     }
3504 
3505     return NVME_NO_COMPLETE;
3506 
3507 invalid:
3508     block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
3509     return status | NVME_DNR;
3510 }
3511 
3512 static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
3513 {
3514     return nvme_do_write(n, req, false, false);
3515 }
3516 
3517 static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
3518 {
3519     return nvme_do_write(n, req, false, true);
3520 }
3521 
3522 static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
3523 {
3524     return nvme_do_write(n, req, true, false);
3525 }
3526 
3527 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
3528                                             uint64_t *slba, uint32_t *zone_idx)
3529 {
3530     uint32_t dw10 = le32_to_cpu(c->cdw10);
3531     uint32_t dw11 = le32_to_cpu(c->cdw11);
3532 
3533     if (!ns->params.zoned) {
3534         trace_pci_nvme_err_invalid_opc(c->opcode);
3535         return NVME_INVALID_OPCODE | NVME_DNR;
3536     }
3537 
3538     *slba = ((uint64_t)dw11) << 32 | dw10;
3539     if (unlikely(*slba >= ns->id_ns.nsze)) {
3540         trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
3541         *slba = 0;
3542         return NVME_LBA_RANGE | NVME_DNR;
3543     }
3544 
3545     *zone_idx = nvme_zone_idx(ns, *slba);
3546     assert(*zone_idx < ns->num_zones);
3547 
3548     return NVME_SUCCESS;
3549 }
3550 
3551 typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
3552                                  NvmeRequest *);
3553 
3554 enum NvmeZoneProcessingMask {
3555     NVME_PROC_CURRENT_ZONE    = 0,
3556     NVME_PROC_OPENED_ZONES    = 1 << 0,
3557     NVME_PROC_CLOSED_ZONES    = 1 << 1,
3558     NVME_PROC_READ_ONLY_ZONES = 1 << 2,
3559     NVME_PROC_FULL_ZONES      = 1 << 3,
3560 };
3561 
3562 static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
3563                                NvmeZoneState state, NvmeRequest *req)
3564 {
3565     NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3566     int flags = 0;
3567 
3568     if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) {
3569         uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3570 
3571         if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3572             return NVME_INVALID_ZONE_OP | NVME_DNR;
3573         }
3574 
3575         if (zone->w_ptr % ns->zns.zrwafg) {
3576             return NVME_NOZRWA | NVME_DNR;
3577         }
3578 
3579         flags = NVME_ZRM_ZRWA;
3580     }
3581 
3582     return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags);
3583 }
3584 
3585 static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
3586                                 NvmeZoneState state, NvmeRequest *req)
3587 {
3588     return nvme_zrm_close(ns, zone);
3589 }
3590 
3591 static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
3592                                  NvmeZoneState state, NvmeRequest *req)
3593 {
3594     return nvme_zrm_finish(ns, zone);
3595 }
3596 
3597 static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
3598                                   NvmeZoneState state, NvmeRequest *req)
3599 {
3600     switch (state) {
3601     case NVME_ZONE_STATE_READ_ONLY:
3602         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
3603         /* fall through */
3604     case NVME_ZONE_STATE_OFFLINE:
3605         return NVME_SUCCESS;
3606     default:
3607         return NVME_ZONE_INVAL_TRANSITION;
3608     }
3609 }
3610 
3611 static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
3612 {
3613     uint16_t status;
3614     uint8_t state = nvme_get_zone_state(zone);
3615 
3616     if (state == NVME_ZONE_STATE_EMPTY) {
3617         status = nvme_aor_check(ns, 1, 0);
3618         if (status) {
3619             return status;
3620         }
3621         nvme_aor_inc_active(ns);
3622         zone->d.za |= NVME_ZA_ZD_EXT_VALID;
3623         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
3624         return NVME_SUCCESS;
3625     }
3626 
3627     return NVME_ZONE_INVAL_TRANSITION;
3628 }
3629 
3630 static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
3631                                     enum NvmeZoneProcessingMask proc_mask,
3632                                     op_handler_t op_hndlr, NvmeRequest *req)
3633 {
3634     uint16_t status = NVME_SUCCESS;
3635     NvmeZoneState zs = nvme_get_zone_state(zone);
3636     bool proc_zone;
3637 
3638     switch (zs) {
3639     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3640     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3641         proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
3642         break;
3643     case NVME_ZONE_STATE_CLOSED:
3644         proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
3645         break;
3646     case NVME_ZONE_STATE_READ_ONLY:
3647         proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
3648         break;
3649     case NVME_ZONE_STATE_FULL:
3650         proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
3651         break;
3652     default:
3653         proc_zone = false;
3654     }
3655 
3656     if (proc_zone) {
3657         status = op_hndlr(ns, zone, zs, req);
3658     }
3659 
3660     return status;
3661 }
3662 
3663 static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
3664                                 enum NvmeZoneProcessingMask proc_mask,
3665                                 op_handler_t op_hndlr, NvmeRequest *req)
3666 {
3667     NvmeZone *next;
3668     uint16_t status = NVME_SUCCESS;
3669     int i;
3670 
3671     if (!proc_mask) {
3672         status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
3673     } else {
3674         if (proc_mask & NVME_PROC_CLOSED_ZONES) {
3675             QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
3676                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3677                                              req);
3678                 if (status && status != NVME_NO_COMPLETE) {
3679                     goto out;
3680                 }
3681             }
3682         }
3683         if (proc_mask & NVME_PROC_OPENED_ZONES) {
3684             QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
3685                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3686                                              req);
3687                 if (status && status != NVME_NO_COMPLETE) {
3688                     goto out;
3689                 }
3690             }
3691 
3692             QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
3693                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3694                                              req);
3695                 if (status && status != NVME_NO_COMPLETE) {
3696                     goto out;
3697                 }
3698             }
3699         }
3700         if (proc_mask & NVME_PROC_FULL_ZONES) {
3701             QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
3702                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3703                                              req);
3704                 if (status && status != NVME_NO_COMPLETE) {
3705                     goto out;
3706                 }
3707             }
3708         }
3709 
3710         if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
3711             for (i = 0; i < ns->num_zones; i++, zone++) {
3712                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3713                                              req);
3714                 if (status && status != NVME_NO_COMPLETE) {
3715                     goto out;
3716                 }
3717             }
3718         }
3719     }
3720 
3721 out:
3722     return status;
3723 }
3724 
3725 typedef struct NvmeZoneResetAIOCB {
3726     BlockAIOCB common;
3727     BlockAIOCB *aiocb;
3728     NvmeRequest *req;
3729     QEMUBH *bh;
3730     int ret;
3731 
3732     bool all;
3733     int idx;
3734     NvmeZone *zone;
3735 } NvmeZoneResetAIOCB;
3736 
3737 static void nvme_zone_reset_cancel(BlockAIOCB *aiocb)
3738 {
3739     NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common);
3740     NvmeRequest *req = iocb->req;
3741     NvmeNamespace *ns = req->ns;
3742 
3743     iocb->idx = ns->num_zones;
3744 
3745     iocb->ret = -ECANCELED;
3746 
3747     if (iocb->aiocb) {
3748         blk_aio_cancel_async(iocb->aiocb);
3749         iocb->aiocb = NULL;
3750     }
3751 }
3752 
3753 static const AIOCBInfo nvme_zone_reset_aiocb_info = {
3754     .aiocb_size = sizeof(NvmeZoneResetAIOCB),
3755     .cancel_async = nvme_zone_reset_cancel,
3756 };
3757 
3758 static void nvme_zone_reset_bh(void *opaque)
3759 {
3760     NvmeZoneResetAIOCB *iocb = opaque;
3761 
3762     iocb->common.cb(iocb->common.opaque, iocb->ret);
3763 
3764     qemu_bh_delete(iocb->bh);
3765     iocb->bh = NULL;
3766     qemu_aio_unref(iocb);
3767 }
3768 
3769 static void nvme_zone_reset_cb(void *opaque, int ret);
3770 
3771 static void nvme_zone_reset_epilogue_cb(void *opaque, int ret)
3772 {
3773     NvmeZoneResetAIOCB *iocb = opaque;
3774     NvmeRequest *req = iocb->req;
3775     NvmeNamespace *ns = req->ns;
3776     int64_t moff;
3777     int count;
3778 
3779     if (ret < 0) {
3780         nvme_zone_reset_cb(iocb, ret);
3781         return;
3782     }
3783 
3784     if (!ns->lbaf.ms) {
3785         nvme_zone_reset_cb(iocb, 0);
3786         return;
3787     }
3788 
3789     moff = nvme_moff(ns, iocb->zone->d.zslba);
3790     count = nvme_m2b(ns, ns->zone_size);
3791 
3792     iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count,
3793                                         BDRV_REQ_MAY_UNMAP,
3794                                         nvme_zone_reset_cb, iocb);
3795     return;
3796 }
3797 
3798 static void nvme_zone_reset_cb(void *opaque, int ret)
3799 {
3800     NvmeZoneResetAIOCB *iocb = opaque;
3801     NvmeRequest *req = iocb->req;
3802     NvmeNamespace *ns = req->ns;
3803 
3804     if (ret < 0) {
3805         iocb->ret = ret;
3806         goto done;
3807     }
3808 
3809     if (iocb->zone) {
3810         nvme_zrm_reset(ns, iocb->zone);
3811 
3812         if (!iocb->all) {
3813             goto done;
3814         }
3815     }
3816 
3817     while (iocb->idx < ns->num_zones) {
3818         NvmeZone *zone = &ns->zone_array[iocb->idx++];
3819 
3820         switch (nvme_get_zone_state(zone)) {
3821         case NVME_ZONE_STATE_EMPTY:
3822             if (!iocb->all) {
3823                 goto done;
3824             }
3825 
3826             continue;
3827 
3828         case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3829         case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3830         case NVME_ZONE_STATE_CLOSED:
3831         case NVME_ZONE_STATE_FULL:
3832             iocb->zone = zone;
3833             break;
3834 
3835         default:
3836             continue;
3837         }
3838 
3839         trace_pci_nvme_zns_zone_reset(zone->d.zslba);
3840 
3841         iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk,
3842                                             nvme_l2b(ns, zone->d.zslba),
3843                                             nvme_l2b(ns, ns->zone_size),
3844                                             BDRV_REQ_MAY_UNMAP,
3845                                             nvme_zone_reset_epilogue_cb,
3846                                             iocb);
3847         return;
3848     }
3849 
3850 done:
3851     iocb->aiocb = NULL;
3852     if (iocb->bh) {
3853         qemu_bh_schedule(iocb->bh);
3854     }
3855 }
3856 
3857 static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone,
3858                                                uint64_t elba, NvmeRequest *req)
3859 {
3860     NvmeNamespace *ns = req->ns;
3861     uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3862     uint64_t wp = zone->d.wp;
3863     uint32_t nlb = elba - wp + 1;
3864     uint16_t status;
3865 
3866 
3867     if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3868         return NVME_INVALID_ZONE_OP | NVME_DNR;
3869     }
3870 
3871     if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3872         return NVME_INVALID_FIELD | NVME_DNR;
3873     }
3874 
3875     if (elba < wp || elba > wp + ns->zns.zrwas) {
3876         return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR;
3877     }
3878 
3879     if (nlb % ns->zns.zrwafg) {
3880         return NVME_INVALID_FIELD | NVME_DNR;
3881     }
3882 
3883     status = nvme_zrm_auto(n, ns, zone);
3884     if (status) {
3885         return status;
3886     }
3887 
3888     zone->w_ptr += nlb;
3889 
3890     nvme_advance_zone_wp(ns, zone, nlb);
3891 
3892     return NVME_SUCCESS;
3893 }
3894 
3895 static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
3896 {
3897     NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3898     NvmeNamespace *ns = req->ns;
3899     NvmeZone *zone;
3900     NvmeZoneResetAIOCB *iocb;
3901     uint8_t *zd_ext;
3902     uint64_t slba = 0;
3903     uint32_t zone_idx = 0;
3904     uint16_t status;
3905     uint8_t action = cmd->zsa;
3906     bool all;
3907     enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
3908 
3909     all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL;
3910 
3911     req->status = NVME_SUCCESS;
3912 
3913     if (!all) {
3914         status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx);
3915         if (status) {
3916             return status;
3917         }
3918     }
3919 
3920     zone = &ns->zone_array[zone_idx];
3921     if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) {
3922         trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
3923         return NVME_INVALID_FIELD | NVME_DNR;
3924     }
3925 
3926     switch (action) {
3927 
3928     case NVME_ZONE_ACTION_OPEN:
3929         if (all) {
3930             proc_mask = NVME_PROC_CLOSED_ZONES;
3931         }
3932         trace_pci_nvme_open_zone(slba, zone_idx, all);
3933         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
3934         break;
3935 
3936     case NVME_ZONE_ACTION_CLOSE:
3937         if (all) {
3938             proc_mask = NVME_PROC_OPENED_ZONES;
3939         }
3940         trace_pci_nvme_close_zone(slba, zone_idx, all);
3941         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
3942         break;
3943 
3944     case NVME_ZONE_ACTION_FINISH:
3945         if (all) {
3946             proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
3947         }
3948         trace_pci_nvme_finish_zone(slba, zone_idx, all);
3949         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
3950         break;
3951 
3952     case NVME_ZONE_ACTION_RESET:
3953         trace_pci_nvme_reset_zone(slba, zone_idx, all);
3954 
3955         iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk,
3956                            nvme_misc_cb, req);
3957 
3958         iocb->req = req;
3959         iocb->bh = qemu_bh_new(nvme_zone_reset_bh, iocb);
3960         iocb->ret = 0;
3961         iocb->all = all;
3962         iocb->idx = zone_idx;
3963         iocb->zone = NULL;
3964 
3965         req->aiocb = &iocb->common;
3966         nvme_zone_reset_cb(iocb, 0);
3967 
3968         return NVME_NO_COMPLETE;
3969 
3970     case NVME_ZONE_ACTION_OFFLINE:
3971         if (all) {
3972             proc_mask = NVME_PROC_READ_ONLY_ZONES;
3973         }
3974         trace_pci_nvme_offline_zone(slba, zone_idx, all);
3975         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
3976         break;
3977 
3978     case NVME_ZONE_ACTION_SET_ZD_EXT:
3979         trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
3980         if (all || !ns->params.zd_extension_size) {
3981             return NVME_INVALID_FIELD | NVME_DNR;
3982         }
3983         zd_ext = nvme_get_zd_extension(ns, zone_idx);
3984         status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
3985         if (status) {
3986             trace_pci_nvme_err_zd_extension_map_error(zone_idx);
3987             return status;
3988         }
3989 
3990         status = nvme_set_zd_ext(ns, zone);
3991         if (status == NVME_SUCCESS) {
3992             trace_pci_nvme_zd_extension_set(zone_idx);
3993             return status;
3994         }
3995         break;
3996 
3997     case NVME_ZONE_ACTION_ZRWA_FLUSH:
3998         if (all) {
3999             return NVME_INVALID_FIELD | NVME_DNR;
4000         }
4001 
4002         return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req);
4003 
4004     default:
4005         trace_pci_nvme_err_invalid_mgmt_action(action);
4006         status = NVME_INVALID_FIELD;
4007     }
4008 
4009     if (status == NVME_ZONE_INVAL_TRANSITION) {
4010         trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
4011                                                          zone->d.za);
4012     }
4013     if (status) {
4014         status |= NVME_DNR;
4015     }
4016 
4017     return status;
4018 }
4019 
4020 static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
4021 {
4022     NvmeZoneState zs = nvme_get_zone_state(zl);
4023 
4024     switch (zafs) {
4025     case NVME_ZONE_REPORT_ALL:
4026         return true;
4027     case NVME_ZONE_REPORT_EMPTY:
4028         return zs == NVME_ZONE_STATE_EMPTY;
4029     case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
4030         return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
4031     case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
4032         return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
4033     case NVME_ZONE_REPORT_CLOSED:
4034         return zs == NVME_ZONE_STATE_CLOSED;
4035     case NVME_ZONE_REPORT_FULL:
4036         return zs == NVME_ZONE_STATE_FULL;
4037     case NVME_ZONE_REPORT_READ_ONLY:
4038         return zs == NVME_ZONE_STATE_READ_ONLY;
4039     case NVME_ZONE_REPORT_OFFLINE:
4040         return zs == NVME_ZONE_STATE_OFFLINE;
4041     default:
4042         return false;
4043     }
4044 }
4045 
4046 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
4047 {
4048     NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
4049     NvmeNamespace *ns = req->ns;
4050     /* cdw12 is zero-based number of dwords to return. Convert to bytes */
4051     uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
4052     uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4053     uint32_t zone_idx, zra, zrasf, partial;
4054     uint64_t max_zones, nr_zones = 0;
4055     uint16_t status;
4056     uint64_t slba;
4057     NvmeZoneDescr *z;
4058     NvmeZone *zone;
4059     NvmeZoneReportHeader *header;
4060     void *buf, *buf_p;
4061     size_t zone_entry_sz;
4062     int i;
4063 
4064     req->status = NVME_SUCCESS;
4065 
4066     status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
4067     if (status) {
4068         return status;
4069     }
4070 
4071     zra = dw13 & 0xff;
4072     if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
4073         return NVME_INVALID_FIELD | NVME_DNR;
4074     }
4075     if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
4076         return NVME_INVALID_FIELD | NVME_DNR;
4077     }
4078 
4079     zrasf = (dw13 >> 8) & 0xff;
4080     if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
4081         return NVME_INVALID_FIELD | NVME_DNR;
4082     }
4083 
4084     if (data_size < sizeof(NvmeZoneReportHeader)) {
4085         return NVME_INVALID_FIELD | NVME_DNR;
4086     }
4087 
4088     status = nvme_check_mdts(n, data_size);
4089     if (status) {
4090         return status;
4091     }
4092 
4093     partial = (dw13 >> 16) & 0x01;
4094 
4095     zone_entry_sz = sizeof(NvmeZoneDescr);
4096     if (zra == NVME_ZONE_REPORT_EXTENDED) {
4097         zone_entry_sz += ns->params.zd_extension_size;
4098     }
4099 
4100     max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
4101     buf = g_malloc0(data_size);
4102 
4103     zone = &ns->zone_array[zone_idx];
4104     for (i = zone_idx; i < ns->num_zones; i++) {
4105         if (partial && nr_zones >= max_zones) {
4106             break;
4107         }
4108         if (nvme_zone_matches_filter(zrasf, zone++)) {
4109             nr_zones++;
4110         }
4111     }
4112     header = (NvmeZoneReportHeader *)buf;
4113     header->nr_zones = cpu_to_le64(nr_zones);
4114 
4115     buf_p = buf + sizeof(NvmeZoneReportHeader);
4116     for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
4117         zone = &ns->zone_array[zone_idx];
4118         if (nvme_zone_matches_filter(zrasf, zone)) {
4119             z = (NvmeZoneDescr *)buf_p;
4120             buf_p += sizeof(NvmeZoneDescr);
4121 
4122             z->zt = zone->d.zt;
4123             z->zs = zone->d.zs;
4124             z->zcap = cpu_to_le64(zone->d.zcap);
4125             z->zslba = cpu_to_le64(zone->d.zslba);
4126             z->za = zone->d.za;
4127 
4128             if (nvme_wp_is_valid(zone)) {
4129                 z->wp = cpu_to_le64(zone->d.wp);
4130             } else {
4131                 z->wp = cpu_to_le64(~0ULL);
4132             }
4133 
4134             if (zra == NVME_ZONE_REPORT_EXTENDED) {
4135                 if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
4136                     memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
4137                            ns->params.zd_extension_size);
4138                 }
4139                 buf_p += ns->params.zd_extension_size;
4140             }
4141 
4142             max_zones--;
4143         }
4144     }
4145 
4146     status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
4147 
4148     g_free(buf);
4149 
4150     return status;
4151 }
4152 
4153 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
4154 {
4155     NvmeNamespace *ns;
4156     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4157 
4158     trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
4159                           req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
4160 
4161     if (!nvme_nsid_valid(n, nsid)) {
4162         return NVME_INVALID_NSID | NVME_DNR;
4163     }
4164 
4165     /*
4166      * In the base NVM command set, Flush may apply to all namespaces
4167      * (indicated by NSID being set to FFFFFFFFh). But if that feature is used
4168      * along with TP 4056 (Namespace Types), it may be pretty screwed up.
4169      *
4170      * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
4171      * opcode with a specific command since we cannot determine a unique I/O
4172      * command set. Opcode 0h could have any other meaning than something
4173      * equivalent to flushing and say it DOES have completely different
4174      * semantics in some other command set - does an NSID of FFFFFFFFh then
4175      * mean "for all namespaces, apply whatever command set specific command
4176      * that uses the 0h opcode?" Or does it mean "for all namespaces, apply
4177      * whatever command that uses the 0h opcode if, and only if, it allows NSID
4178      * to be FFFFFFFFh"?
4179      *
4180      * Anyway (and luckily), for now, we do not care about this since the
4181      * device only supports namespace types that includes the NVM Flush command
4182      * (NVM and Zoned), so always do an NVM Flush.
4183      */
4184     if (req->cmd.opcode == NVME_CMD_FLUSH) {
4185         return nvme_flush(n, req);
4186     }
4187 
4188     ns = nvme_ns(n, nsid);
4189     if (unlikely(!ns)) {
4190         return NVME_INVALID_FIELD | NVME_DNR;
4191     }
4192 
4193     if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
4194         trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
4195         return NVME_INVALID_OPCODE | NVME_DNR;
4196     }
4197 
4198     if (ns->status) {
4199         return ns->status;
4200     }
4201 
4202     if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
4203         return NVME_INVALID_FIELD;
4204     }
4205 
4206     req->ns = ns;
4207 
4208     switch (req->cmd.opcode) {
4209     case NVME_CMD_WRITE_ZEROES:
4210         return nvme_write_zeroes(n, req);
4211     case NVME_CMD_ZONE_APPEND:
4212         return nvme_zone_append(n, req);
4213     case NVME_CMD_WRITE:
4214         return nvme_write(n, req);
4215     case NVME_CMD_READ:
4216         return nvme_read(n, req);
4217     case NVME_CMD_COMPARE:
4218         return nvme_compare(n, req);
4219     case NVME_CMD_DSM:
4220         return nvme_dsm(n, req);
4221     case NVME_CMD_VERIFY:
4222         return nvme_verify(n, req);
4223     case NVME_CMD_COPY:
4224         return nvme_copy(n, req);
4225     case NVME_CMD_ZONE_MGMT_SEND:
4226         return nvme_zone_mgmt_send(n, req);
4227     case NVME_CMD_ZONE_MGMT_RECV:
4228         return nvme_zone_mgmt_recv(n, req);
4229     default:
4230         assert(false);
4231     }
4232 
4233     return NVME_INVALID_OPCODE | NVME_DNR;
4234 }
4235 
4236 static void nvme_cq_notifier(EventNotifier *e)
4237 {
4238     NvmeCQueue *cq = container_of(e, NvmeCQueue, notifier);
4239     NvmeCtrl *n = cq->ctrl;
4240 
4241     if (!event_notifier_test_and_clear(e)) {
4242         return;
4243     }
4244 
4245     nvme_update_cq_head(cq);
4246 
4247     if (cq->tail == cq->head) {
4248         if (cq->irq_enabled) {
4249             n->cq_pending--;
4250         }
4251 
4252         nvme_irq_deassert(n, cq);
4253     }
4254 
4255     nvme_post_cqes(cq);
4256 }
4257 
4258 static int nvme_init_cq_ioeventfd(NvmeCQueue *cq)
4259 {
4260     NvmeCtrl *n = cq->ctrl;
4261     uint16_t offset = (cq->cqid << 3) + (1 << 2);
4262     int ret;
4263 
4264     ret = event_notifier_init(&cq->notifier, 0);
4265     if (ret < 0) {
4266         return ret;
4267     }
4268 
4269     event_notifier_set_handler(&cq->notifier, nvme_cq_notifier);
4270     memory_region_add_eventfd(&n->iomem,
4271                               0x1000 + offset, 4, false, 0, &cq->notifier);
4272 
4273     return 0;
4274 }
4275 
4276 static void nvme_sq_notifier(EventNotifier *e)
4277 {
4278     NvmeSQueue *sq = container_of(e, NvmeSQueue, notifier);
4279 
4280     if (!event_notifier_test_and_clear(e)) {
4281         return;
4282     }
4283 
4284     nvme_process_sq(sq);
4285 }
4286 
4287 static int nvme_init_sq_ioeventfd(NvmeSQueue *sq)
4288 {
4289     NvmeCtrl *n = sq->ctrl;
4290     uint16_t offset = sq->sqid << 3;
4291     int ret;
4292 
4293     ret = event_notifier_init(&sq->notifier, 0);
4294     if (ret < 0) {
4295         return ret;
4296     }
4297 
4298     event_notifier_set_handler(&sq->notifier, nvme_sq_notifier);
4299     memory_region_add_eventfd(&n->iomem,
4300                               0x1000 + offset, 4, false, 0, &sq->notifier);
4301 
4302     return 0;
4303 }
4304 
4305 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
4306 {
4307     uint16_t offset = sq->sqid << 3;
4308 
4309     n->sq[sq->sqid] = NULL;
4310     timer_free(sq->timer);
4311     if (sq->ioeventfd_enabled) {
4312         memory_region_del_eventfd(&n->iomem,
4313                                   0x1000 + offset, 4, false, 0, &sq->notifier);
4314         event_notifier_set_handler(&sq->notifier, NULL);
4315         event_notifier_cleanup(&sq->notifier);
4316     }
4317     g_free(sq->io_req);
4318     if (sq->sqid) {
4319         g_free(sq);
4320     }
4321 }
4322 
4323 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
4324 {
4325     NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4326     NvmeRequest *r, *next;
4327     NvmeSQueue *sq;
4328     NvmeCQueue *cq;
4329     uint16_t qid = le16_to_cpu(c->qid);
4330 
4331     if (unlikely(!qid || nvme_check_sqid(n, qid))) {
4332         trace_pci_nvme_err_invalid_del_sq(qid);
4333         return NVME_INVALID_QID | NVME_DNR;
4334     }
4335 
4336     trace_pci_nvme_del_sq(qid);
4337 
4338     sq = n->sq[qid];
4339     while (!QTAILQ_EMPTY(&sq->out_req_list)) {
4340         r = QTAILQ_FIRST(&sq->out_req_list);
4341         assert(r->aiocb);
4342         blk_aio_cancel(r->aiocb);
4343     }
4344 
4345     assert(QTAILQ_EMPTY(&sq->out_req_list));
4346 
4347     if (!nvme_check_cqid(n, sq->cqid)) {
4348         cq = n->cq[sq->cqid];
4349         QTAILQ_REMOVE(&cq->sq_list, sq, entry);
4350 
4351         nvme_post_cqes(cq);
4352         QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
4353             if (r->sq == sq) {
4354                 QTAILQ_REMOVE(&cq->req_list, r, entry);
4355                 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
4356             }
4357         }
4358     }
4359 
4360     nvme_free_sq(sq, n);
4361     return NVME_SUCCESS;
4362 }
4363 
4364 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
4365                          uint16_t sqid, uint16_t cqid, uint16_t size)
4366 {
4367     int i;
4368     NvmeCQueue *cq;
4369 
4370     sq->ctrl = n;
4371     sq->dma_addr = dma_addr;
4372     sq->sqid = sqid;
4373     sq->size = size;
4374     sq->cqid = cqid;
4375     sq->head = sq->tail = 0;
4376     sq->io_req = g_new0(NvmeRequest, sq->size);
4377 
4378     QTAILQ_INIT(&sq->req_list);
4379     QTAILQ_INIT(&sq->out_req_list);
4380     for (i = 0; i < sq->size; i++) {
4381         sq->io_req[i].sq = sq;
4382         QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
4383     }
4384     sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
4385 
4386     if (n->dbbuf_enabled) {
4387         sq->db_addr = n->dbbuf_dbs + (sqid << 3);
4388         sq->ei_addr = n->dbbuf_eis + (sqid << 3);
4389 
4390         if (n->params.ioeventfd && sq->sqid != 0) {
4391             if (!nvme_init_sq_ioeventfd(sq)) {
4392                 sq->ioeventfd_enabled = true;
4393             }
4394         }
4395     }
4396 
4397     assert(n->cq[cqid]);
4398     cq = n->cq[cqid];
4399     QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
4400     n->sq[sqid] = sq;
4401 }
4402 
4403 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
4404 {
4405     NvmeSQueue *sq;
4406     NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
4407 
4408     uint16_t cqid = le16_to_cpu(c->cqid);
4409     uint16_t sqid = le16_to_cpu(c->sqid);
4410     uint16_t qsize = le16_to_cpu(c->qsize);
4411     uint16_t qflags = le16_to_cpu(c->sq_flags);
4412     uint64_t prp1 = le64_to_cpu(c->prp1);
4413 
4414     trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
4415 
4416     if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
4417         trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
4418         return NVME_INVALID_CQID | NVME_DNR;
4419     }
4420     if (unlikely(!sqid || sqid > n->conf_ioqpairs || n->sq[sqid] != NULL)) {
4421         trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
4422         return NVME_INVALID_QID | NVME_DNR;
4423     }
4424     if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4425         trace_pci_nvme_err_invalid_create_sq_size(qsize);
4426         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4427     }
4428     if (unlikely(prp1 & (n->page_size - 1))) {
4429         trace_pci_nvme_err_invalid_create_sq_addr(prp1);
4430         return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4431     }
4432     if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
4433         trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
4434         return NVME_INVALID_FIELD | NVME_DNR;
4435     }
4436     sq = g_malloc0(sizeof(*sq));
4437     nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
4438     return NVME_SUCCESS;
4439 }
4440 
4441 struct nvme_stats {
4442     uint64_t units_read;
4443     uint64_t units_written;
4444     uint64_t read_commands;
4445     uint64_t write_commands;
4446 };
4447 
4448 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
4449 {
4450     BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
4451 
4452     stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
4453     stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
4454     stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
4455     stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
4456 }
4457 
4458 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4459                                 uint64_t off, NvmeRequest *req)
4460 {
4461     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4462     struct nvme_stats stats = { 0 };
4463     NvmeSmartLog smart = { 0 };
4464     uint32_t trans_len;
4465     NvmeNamespace *ns;
4466     time_t current_ms;
4467 
4468     if (off >= sizeof(smart)) {
4469         return NVME_INVALID_FIELD | NVME_DNR;
4470     }
4471 
4472     if (nsid != 0xffffffff) {
4473         ns = nvme_ns(n, nsid);
4474         if (!ns) {
4475             return NVME_INVALID_NSID | NVME_DNR;
4476         }
4477         nvme_set_blk_stats(ns, &stats);
4478     } else {
4479         int i;
4480 
4481         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4482             ns = nvme_ns(n, i);
4483             if (!ns) {
4484                 continue;
4485             }
4486             nvme_set_blk_stats(ns, &stats);
4487         }
4488     }
4489 
4490     trans_len = MIN(sizeof(smart) - off, buf_len);
4491     smart.critical_warning = n->smart_critical_warning;
4492 
4493     smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read,
4494                                                         1000));
4495     smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written,
4496                                                            1000));
4497     smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
4498     smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
4499 
4500     smart.temperature = cpu_to_le16(n->temperature);
4501 
4502     if ((n->temperature >= n->features.temp_thresh_hi) ||
4503         (n->temperature <= n->features.temp_thresh_low)) {
4504         smart.critical_warning |= NVME_SMART_TEMPERATURE;
4505     }
4506 
4507     current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4508     smart.power_on_hours[0] =
4509         cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
4510 
4511     if (!rae) {
4512         nvme_clear_events(n, NVME_AER_TYPE_SMART);
4513     }
4514 
4515     return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
4516 }
4517 
4518 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
4519                                  NvmeRequest *req)
4520 {
4521     uint32_t trans_len;
4522     NvmeFwSlotInfoLog fw_log = {
4523         .afi = 0x1,
4524     };
4525 
4526     if (off >= sizeof(fw_log)) {
4527         return NVME_INVALID_FIELD | NVME_DNR;
4528     }
4529 
4530     strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
4531     trans_len = MIN(sizeof(fw_log) - off, buf_len);
4532 
4533     return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
4534 }
4535 
4536 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4537                                 uint64_t off, NvmeRequest *req)
4538 {
4539     uint32_t trans_len;
4540     NvmeErrorLog errlog;
4541 
4542     if (off >= sizeof(errlog)) {
4543         return NVME_INVALID_FIELD | NVME_DNR;
4544     }
4545 
4546     if (!rae) {
4547         nvme_clear_events(n, NVME_AER_TYPE_ERROR);
4548     }
4549 
4550     memset(&errlog, 0x0, sizeof(errlog));
4551     trans_len = MIN(sizeof(errlog) - off, buf_len);
4552 
4553     return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
4554 }
4555 
4556 static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4557                                     uint64_t off, NvmeRequest *req)
4558 {
4559     uint32_t nslist[1024];
4560     uint32_t trans_len;
4561     int i = 0;
4562     uint32_t nsid;
4563 
4564     if (off >= sizeof(nslist)) {
4565         trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist));
4566         return NVME_INVALID_FIELD | NVME_DNR;
4567     }
4568 
4569     memset(nslist, 0x0, sizeof(nslist));
4570     trans_len = MIN(sizeof(nslist) - off, buf_len);
4571 
4572     while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
4573             NVME_CHANGED_NSID_SIZE) {
4574         /*
4575          * If more than 1024 namespaces, the first entry in the log page should
4576          * be set to FFFFFFFFh and the others to 0 as spec.
4577          */
4578         if (i == ARRAY_SIZE(nslist)) {
4579             memset(nslist, 0x0, sizeof(nslist));
4580             nslist[0] = 0xffffffff;
4581             break;
4582         }
4583 
4584         nslist[i++] = nsid;
4585         clear_bit(nsid, n->changed_nsids);
4586     }
4587 
4588     /*
4589      * Remove all the remaining list entries in case returns directly due to
4590      * more than 1024 namespaces.
4591      */
4592     if (nslist[0] == 0xffffffff) {
4593         bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
4594     }
4595 
4596     if (!rae) {
4597         nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
4598     }
4599 
4600     return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
4601 }
4602 
4603 static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
4604                                  uint64_t off, NvmeRequest *req)
4605 {
4606     NvmeEffectsLog log = {};
4607     const uint32_t *src_iocs = NULL;
4608     uint32_t trans_len;
4609 
4610     if (off >= sizeof(log)) {
4611         trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
4612         return NVME_INVALID_FIELD | NVME_DNR;
4613     }
4614 
4615     switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) {
4616     case NVME_CC_CSS_NVM:
4617         src_iocs = nvme_cse_iocs_nvm;
4618         /* fall through */
4619     case NVME_CC_CSS_ADMIN_ONLY:
4620         break;
4621     case NVME_CC_CSS_CSI:
4622         switch (csi) {
4623         case NVME_CSI_NVM:
4624             src_iocs = nvme_cse_iocs_nvm;
4625             break;
4626         case NVME_CSI_ZONED:
4627             src_iocs = nvme_cse_iocs_zoned;
4628             break;
4629         }
4630     }
4631 
4632     memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
4633 
4634     if (src_iocs) {
4635         memcpy(log.iocs, src_iocs, sizeof(log.iocs));
4636     }
4637 
4638     trans_len = MIN(sizeof(log) - off, buf_len);
4639 
4640     return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
4641 }
4642 
4643 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
4644 {
4645     NvmeCmd *cmd = &req->cmd;
4646 
4647     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
4648     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
4649     uint32_t dw12 = le32_to_cpu(cmd->cdw12);
4650     uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4651     uint8_t  lid = dw10 & 0xff;
4652     uint8_t  lsp = (dw10 >> 8) & 0xf;
4653     uint8_t  rae = (dw10 >> 15) & 0x1;
4654     uint8_t  csi = le32_to_cpu(cmd->cdw14) >> 24;
4655     uint32_t numdl, numdu;
4656     uint64_t off, lpol, lpou;
4657     size_t   len;
4658     uint16_t status;
4659 
4660     numdl = (dw10 >> 16);
4661     numdu = (dw11 & 0xffff);
4662     lpol = dw12;
4663     lpou = dw13;
4664 
4665     len = (((numdu << 16) | numdl) + 1) << 2;
4666     off = (lpou << 32ULL) | lpol;
4667 
4668     if (off & 0x3) {
4669         return NVME_INVALID_FIELD | NVME_DNR;
4670     }
4671 
4672     trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
4673 
4674     status = nvme_check_mdts(n, len);
4675     if (status) {
4676         return status;
4677     }
4678 
4679     switch (lid) {
4680     case NVME_LOG_ERROR_INFO:
4681         return nvme_error_info(n, rae, len, off, req);
4682     case NVME_LOG_SMART_INFO:
4683         return nvme_smart_info(n, rae, len, off, req);
4684     case NVME_LOG_FW_SLOT_INFO:
4685         return nvme_fw_log_info(n, len, off, req);
4686     case NVME_LOG_CHANGED_NSLIST:
4687         return nvme_changed_nslist(n, rae, len, off, req);
4688     case NVME_LOG_CMD_EFFECTS:
4689         return nvme_cmd_effects(n, csi, len, off, req);
4690     default:
4691         trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
4692         return NVME_INVALID_FIELD | NVME_DNR;
4693     }
4694 }
4695 
4696 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
4697 {
4698     uint16_t offset = (cq->cqid << 3) + (1 << 2);
4699 
4700     n->cq[cq->cqid] = NULL;
4701     timer_free(cq->timer);
4702     if (cq->ioeventfd_enabled) {
4703         memory_region_del_eventfd(&n->iomem,
4704                                   0x1000 + offset, 4, false, 0, &cq->notifier);
4705         event_notifier_set_handler(&cq->notifier, NULL);
4706         event_notifier_cleanup(&cq->notifier);
4707     }
4708     if (msix_enabled(&n->parent_obj)) {
4709         msix_vector_unuse(&n->parent_obj, cq->vector);
4710     }
4711     if (cq->cqid) {
4712         g_free(cq);
4713     }
4714 }
4715 
4716 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
4717 {
4718     NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4719     NvmeCQueue *cq;
4720     uint16_t qid = le16_to_cpu(c->qid);
4721 
4722     if (unlikely(!qid || nvme_check_cqid(n, qid))) {
4723         trace_pci_nvme_err_invalid_del_cq_cqid(qid);
4724         return NVME_INVALID_CQID | NVME_DNR;
4725     }
4726 
4727     cq = n->cq[qid];
4728     if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
4729         trace_pci_nvme_err_invalid_del_cq_notempty(qid);
4730         return NVME_INVALID_QUEUE_DEL;
4731     }
4732 
4733     if (cq->irq_enabled && cq->tail != cq->head) {
4734         n->cq_pending--;
4735     }
4736 
4737     nvme_irq_deassert(n, cq);
4738     trace_pci_nvme_del_cq(qid);
4739     nvme_free_cq(cq, n);
4740     return NVME_SUCCESS;
4741 }
4742 
4743 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
4744                          uint16_t cqid, uint16_t vector, uint16_t size,
4745                          uint16_t irq_enabled)
4746 {
4747     int ret;
4748 
4749     if (msix_enabled(&n->parent_obj)) {
4750         ret = msix_vector_use(&n->parent_obj, vector);
4751         assert(ret == 0);
4752     }
4753     cq->ctrl = n;
4754     cq->cqid = cqid;
4755     cq->size = size;
4756     cq->dma_addr = dma_addr;
4757     cq->phase = 1;
4758     cq->irq_enabled = irq_enabled;
4759     cq->vector = vector;
4760     cq->head = cq->tail = 0;
4761     QTAILQ_INIT(&cq->req_list);
4762     QTAILQ_INIT(&cq->sq_list);
4763     if (n->dbbuf_enabled) {
4764         cq->db_addr = n->dbbuf_dbs + (cqid << 3) + (1 << 2);
4765         cq->ei_addr = n->dbbuf_eis + (cqid << 3) + (1 << 2);
4766 
4767         if (n->params.ioeventfd && cqid != 0) {
4768             if (!nvme_init_cq_ioeventfd(cq)) {
4769                 cq->ioeventfd_enabled = true;
4770             }
4771         }
4772     }
4773     n->cq[cqid] = cq;
4774     cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
4775 }
4776 
4777 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
4778 {
4779     NvmeCQueue *cq;
4780     NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
4781     uint16_t cqid = le16_to_cpu(c->cqid);
4782     uint16_t vector = le16_to_cpu(c->irq_vector);
4783     uint16_t qsize = le16_to_cpu(c->qsize);
4784     uint16_t qflags = le16_to_cpu(c->cq_flags);
4785     uint64_t prp1 = le64_to_cpu(c->prp1);
4786 
4787     trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
4788                              NVME_CQ_FLAGS_IEN(qflags) != 0);
4789 
4790     if (unlikely(!cqid || cqid > n->conf_ioqpairs || n->cq[cqid] != NULL)) {
4791         trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
4792         return NVME_INVALID_QID | NVME_DNR;
4793     }
4794     if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4795         trace_pci_nvme_err_invalid_create_cq_size(qsize);
4796         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4797     }
4798     if (unlikely(prp1 & (n->page_size - 1))) {
4799         trace_pci_nvme_err_invalid_create_cq_addr(prp1);
4800         return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4801     }
4802     if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
4803         trace_pci_nvme_err_invalid_create_cq_vector(vector);
4804         return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4805     }
4806     if (unlikely(vector >= n->conf_msix_qsize)) {
4807         trace_pci_nvme_err_invalid_create_cq_vector(vector);
4808         return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4809     }
4810     if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
4811         trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
4812         return NVME_INVALID_FIELD | NVME_DNR;
4813     }
4814 
4815     cq = g_malloc0(sizeof(*cq));
4816     nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
4817                  NVME_CQ_FLAGS_IEN(qflags));
4818 
4819     /*
4820      * It is only required to set qs_created when creating a completion queue;
4821      * creating a submission queue without a matching completion queue will
4822      * fail.
4823      */
4824     n->qs_created = true;
4825     return NVME_SUCCESS;
4826 }
4827 
4828 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
4829 {
4830     uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4831 
4832     return nvme_c2h(n, id, sizeof(id), req);
4833 }
4834 
4835 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
4836 {
4837     trace_pci_nvme_identify_ctrl();
4838 
4839     return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
4840 }
4841 
4842 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
4843 {
4844     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4845     uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4846     NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
4847 
4848     trace_pci_nvme_identify_ctrl_csi(c->csi);
4849 
4850     switch (c->csi) {
4851     case NVME_CSI_NVM:
4852         id_nvm->vsl = n->params.vsl;
4853         id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
4854         break;
4855 
4856     case NVME_CSI_ZONED:
4857         ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
4858         break;
4859 
4860     default:
4861         return NVME_INVALID_FIELD | NVME_DNR;
4862     }
4863 
4864     return nvme_c2h(n, id, sizeof(id), req);
4865 }
4866 
4867 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
4868 {
4869     NvmeNamespace *ns;
4870     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4871     uint32_t nsid = le32_to_cpu(c->nsid);
4872 
4873     trace_pci_nvme_identify_ns(nsid);
4874 
4875     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4876         return NVME_INVALID_NSID | NVME_DNR;
4877     }
4878 
4879     ns = nvme_ns(n, nsid);
4880     if (unlikely(!ns)) {
4881         if (!active) {
4882             ns = nvme_subsys_ns(n->subsys, nsid);
4883             if (!ns) {
4884                 return nvme_rpt_empty_id_struct(n, req);
4885             }
4886         } else {
4887             return nvme_rpt_empty_id_struct(n, req);
4888         }
4889     }
4890 
4891     if (active || ns->csi == NVME_CSI_NVM) {
4892         return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
4893     }
4894 
4895     return NVME_INVALID_CMD_SET | NVME_DNR;
4896 }
4897 
4898 static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req,
4899                                         bool attached)
4900 {
4901     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4902     uint32_t nsid = le32_to_cpu(c->nsid);
4903     uint16_t min_id = le16_to_cpu(c->ctrlid);
4904     uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
4905     uint16_t *ids = &list[1];
4906     NvmeNamespace *ns;
4907     NvmeCtrl *ctrl;
4908     int cntlid, nr_ids = 0;
4909 
4910     trace_pci_nvme_identify_ctrl_list(c->cns, min_id);
4911 
4912     if (!n->subsys) {
4913         return NVME_INVALID_FIELD | NVME_DNR;
4914     }
4915 
4916     if (attached) {
4917         if (nsid == NVME_NSID_BROADCAST) {
4918             return NVME_INVALID_FIELD | NVME_DNR;
4919         }
4920 
4921         ns = nvme_subsys_ns(n->subsys, nsid);
4922         if (!ns) {
4923             return NVME_INVALID_FIELD | NVME_DNR;
4924         }
4925     }
4926 
4927     for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
4928         ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
4929         if (!ctrl) {
4930             continue;
4931         }
4932 
4933         if (attached && !nvme_ns(ctrl, nsid)) {
4934             continue;
4935         }
4936 
4937         ids[nr_ids++] = cntlid;
4938     }
4939 
4940     list[0] = nr_ids;
4941 
4942     return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
4943 }
4944 
4945 static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl *n, NvmeRequest *req)
4946 {
4947     trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n->pri_ctrl_cap.cntlid));
4948 
4949     return nvme_c2h(n, (uint8_t *)&n->pri_ctrl_cap,
4950                     sizeof(NvmePriCtrlCap), req);
4951 }
4952 
4953 static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl *n, NvmeRequest *req)
4954 {
4955     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4956     uint16_t pri_ctrl_id = le16_to_cpu(n->pri_ctrl_cap.cntlid);
4957     uint16_t min_id = le16_to_cpu(c->ctrlid);
4958     uint8_t num_sec_ctrl = n->sec_ctrl_list.numcntl;
4959     NvmeSecCtrlList list = {0};
4960     uint8_t i;
4961 
4962     for (i = 0; i < num_sec_ctrl; i++) {
4963         if (n->sec_ctrl_list.sec[i].scid >= min_id) {
4964             list.numcntl = num_sec_ctrl - i;
4965             memcpy(&list.sec, n->sec_ctrl_list.sec + i,
4966                    list.numcntl * sizeof(NvmeSecCtrlEntry));
4967             break;
4968         }
4969     }
4970 
4971     trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id, list.numcntl);
4972 
4973     return nvme_c2h(n, (uint8_t *)&list, sizeof(list), req);
4974 }
4975 
4976 static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
4977                                      bool active)
4978 {
4979     NvmeNamespace *ns;
4980     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4981     uint32_t nsid = le32_to_cpu(c->nsid);
4982 
4983     trace_pci_nvme_identify_ns_csi(nsid, c->csi);
4984 
4985     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4986         return NVME_INVALID_NSID | NVME_DNR;
4987     }
4988 
4989     ns = nvme_ns(n, nsid);
4990     if (unlikely(!ns)) {
4991         if (!active) {
4992             ns = nvme_subsys_ns(n->subsys, nsid);
4993             if (!ns) {
4994                 return nvme_rpt_empty_id_struct(n, req);
4995             }
4996         } else {
4997             return nvme_rpt_empty_id_struct(n, req);
4998         }
4999     }
5000 
5001     if (c->csi == NVME_CSI_NVM) {
5002         return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm),
5003                         req);
5004     } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
5005         return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
5006                         req);
5007     }
5008 
5009     return NVME_INVALID_FIELD | NVME_DNR;
5010 }
5011 
5012 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
5013                                      bool active)
5014 {
5015     NvmeNamespace *ns;
5016     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5017     uint32_t min_nsid = le32_to_cpu(c->nsid);
5018     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5019     static const int data_len = sizeof(list);
5020     uint32_t *list_ptr = (uint32_t *)list;
5021     int i, j = 0;
5022 
5023     trace_pci_nvme_identify_nslist(min_nsid);
5024 
5025     /*
5026      * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
5027      * since the Active Namespace ID List should return namespaces with ids
5028      * *higher* than the NSID specified in the command. This is also specified
5029      * in the spec (NVM Express v1.3d, Section 5.15.4).
5030      */
5031     if (min_nsid >= NVME_NSID_BROADCAST - 1) {
5032         return NVME_INVALID_NSID | NVME_DNR;
5033     }
5034 
5035     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5036         ns = nvme_ns(n, i);
5037         if (!ns) {
5038             if (!active) {
5039                 ns = nvme_subsys_ns(n->subsys, i);
5040                 if (!ns) {
5041                     continue;
5042                 }
5043             } else {
5044                 continue;
5045             }
5046         }
5047         if (ns->params.nsid <= min_nsid) {
5048             continue;
5049         }
5050         list_ptr[j++] = cpu_to_le32(ns->params.nsid);
5051         if (j == data_len / sizeof(uint32_t)) {
5052             break;
5053         }
5054     }
5055 
5056     return nvme_c2h(n, list, data_len, req);
5057 }
5058 
5059 static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
5060                                          bool active)
5061 {
5062     NvmeNamespace *ns;
5063     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5064     uint32_t min_nsid = le32_to_cpu(c->nsid);
5065     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5066     static const int data_len = sizeof(list);
5067     uint32_t *list_ptr = (uint32_t *)list;
5068     int i, j = 0;
5069 
5070     trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
5071 
5072     /*
5073      * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
5074      */
5075     if (min_nsid >= NVME_NSID_BROADCAST - 1) {
5076         return NVME_INVALID_NSID | NVME_DNR;
5077     }
5078 
5079     if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
5080         return NVME_INVALID_FIELD | NVME_DNR;
5081     }
5082 
5083     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5084         ns = nvme_ns(n, i);
5085         if (!ns) {
5086             if (!active) {
5087                 ns = nvme_subsys_ns(n->subsys, i);
5088                 if (!ns) {
5089                     continue;
5090                 }
5091             } else {
5092                 continue;
5093             }
5094         }
5095         if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
5096             continue;
5097         }
5098         list_ptr[j++] = cpu_to_le32(ns->params.nsid);
5099         if (j == data_len / sizeof(uint32_t)) {
5100             break;
5101         }
5102     }
5103 
5104     return nvme_c2h(n, list, data_len, req);
5105 }
5106 
5107 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
5108 {
5109     NvmeNamespace *ns;
5110     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5111     uint32_t nsid = le32_to_cpu(c->nsid);
5112     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5113     uint8_t *pos = list;
5114     struct {
5115         NvmeIdNsDescr hdr;
5116         uint8_t v[NVME_NIDL_UUID];
5117     } QEMU_PACKED uuid = {};
5118     struct {
5119         NvmeIdNsDescr hdr;
5120         uint64_t v;
5121     } QEMU_PACKED eui64 = {};
5122     struct {
5123         NvmeIdNsDescr hdr;
5124         uint8_t v;
5125     } QEMU_PACKED csi = {};
5126 
5127     trace_pci_nvme_identify_ns_descr_list(nsid);
5128 
5129     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5130         return NVME_INVALID_NSID | NVME_DNR;
5131     }
5132 
5133     ns = nvme_ns(n, nsid);
5134     if (unlikely(!ns)) {
5135         return NVME_INVALID_FIELD | NVME_DNR;
5136     }
5137 
5138     if (!qemu_uuid_is_null(&ns->params.uuid)) {
5139         uuid.hdr.nidt = NVME_NIDT_UUID;
5140         uuid.hdr.nidl = NVME_NIDL_UUID;
5141         memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
5142         memcpy(pos, &uuid, sizeof(uuid));
5143         pos += sizeof(uuid);
5144     }
5145 
5146     if (ns->params.eui64) {
5147         eui64.hdr.nidt = NVME_NIDT_EUI64;
5148         eui64.hdr.nidl = NVME_NIDL_EUI64;
5149         eui64.v = cpu_to_be64(ns->params.eui64);
5150         memcpy(pos, &eui64, sizeof(eui64));
5151         pos += sizeof(eui64);
5152     }
5153 
5154     csi.hdr.nidt = NVME_NIDT_CSI;
5155     csi.hdr.nidl = NVME_NIDL_CSI;
5156     csi.v = ns->csi;
5157     memcpy(pos, &csi, sizeof(csi));
5158     pos += sizeof(csi);
5159 
5160     return nvme_c2h(n, list, sizeof(list), req);
5161 }
5162 
5163 static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
5164 {
5165     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5166     static const int data_len = sizeof(list);
5167 
5168     trace_pci_nvme_identify_cmd_set();
5169 
5170     NVME_SET_CSI(*list, NVME_CSI_NVM);
5171     NVME_SET_CSI(*list, NVME_CSI_ZONED);
5172 
5173     return nvme_c2h(n, list, data_len, req);
5174 }
5175 
5176 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
5177 {
5178     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5179 
5180     trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
5181                             c->csi);
5182 
5183     switch (c->cns) {
5184     case NVME_ID_CNS_NS:
5185         return nvme_identify_ns(n, req, true);
5186     case NVME_ID_CNS_NS_PRESENT:
5187         return nvme_identify_ns(n, req, false);
5188     case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
5189         return nvme_identify_ctrl_list(n, req, true);
5190     case NVME_ID_CNS_CTRL_LIST:
5191         return nvme_identify_ctrl_list(n, req, false);
5192     case NVME_ID_CNS_PRIMARY_CTRL_CAP:
5193         return nvme_identify_pri_ctrl_cap(n, req);
5194     case NVME_ID_CNS_SECONDARY_CTRL_LIST:
5195         return nvme_identify_sec_ctrl_list(n, req);
5196     case NVME_ID_CNS_CS_NS:
5197         return nvme_identify_ns_csi(n, req, true);
5198     case NVME_ID_CNS_CS_NS_PRESENT:
5199         return nvme_identify_ns_csi(n, req, false);
5200     case NVME_ID_CNS_CTRL:
5201         return nvme_identify_ctrl(n, req);
5202     case NVME_ID_CNS_CS_CTRL:
5203         return nvme_identify_ctrl_csi(n, req);
5204     case NVME_ID_CNS_NS_ACTIVE_LIST:
5205         return nvme_identify_nslist(n, req, true);
5206     case NVME_ID_CNS_NS_PRESENT_LIST:
5207         return nvme_identify_nslist(n, req, false);
5208     case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
5209         return nvme_identify_nslist_csi(n, req, true);
5210     case NVME_ID_CNS_CS_NS_PRESENT_LIST:
5211         return nvme_identify_nslist_csi(n, req, false);
5212     case NVME_ID_CNS_NS_DESCR_LIST:
5213         return nvme_identify_ns_descr_list(n, req);
5214     case NVME_ID_CNS_IO_COMMAND_SET:
5215         return nvme_identify_cmd_set(n, req);
5216     default:
5217         trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
5218         return NVME_INVALID_FIELD | NVME_DNR;
5219     }
5220 }
5221 
5222 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
5223 {
5224     uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
5225 
5226     req->cqe.result = 1;
5227     if (nvme_check_sqid(n, sqid)) {
5228         return NVME_INVALID_FIELD | NVME_DNR;
5229     }
5230 
5231     return NVME_SUCCESS;
5232 }
5233 
5234 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
5235 {
5236     trace_pci_nvme_setfeat_timestamp(ts);
5237 
5238     n->host_timestamp = le64_to_cpu(ts);
5239     n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5240 }
5241 
5242 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
5243 {
5244     uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5245     uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
5246 
5247     union nvme_timestamp {
5248         struct {
5249             uint64_t timestamp:48;
5250             uint64_t sync:1;
5251             uint64_t origin:3;
5252             uint64_t rsvd1:12;
5253         };
5254         uint64_t all;
5255     };
5256 
5257     union nvme_timestamp ts;
5258     ts.all = 0;
5259     ts.timestamp = n->host_timestamp + elapsed_time;
5260 
5261     /* If the host timestamp is non-zero, set the timestamp origin */
5262     ts.origin = n->host_timestamp ? 0x01 : 0x00;
5263 
5264     trace_pci_nvme_getfeat_timestamp(ts.all);
5265 
5266     return cpu_to_le64(ts.all);
5267 }
5268 
5269 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5270 {
5271     uint64_t timestamp = nvme_get_timestamp(n);
5272 
5273     return nvme_c2h(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5274 }
5275 
5276 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
5277 {
5278     NvmeCmd *cmd = &req->cmd;
5279     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5280     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5281     uint32_t nsid = le32_to_cpu(cmd->nsid);
5282     uint32_t result;
5283     uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5284     NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
5285     uint16_t iv;
5286     NvmeNamespace *ns;
5287     int i;
5288 
5289     static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
5290         [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
5291     };
5292 
5293     trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
5294 
5295     if (!nvme_feature_support[fid]) {
5296         return NVME_INVALID_FIELD | NVME_DNR;
5297     }
5298 
5299     if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5300         if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5301             /*
5302              * The Reservation Notification Mask and Reservation Persistence
5303              * features require a status code of Invalid Field in Command when
5304              * NSID is FFFFFFFFh. Since the device does not support those
5305              * features we can always return Invalid Namespace or Format as we
5306              * should do for all other features.
5307              */
5308             return NVME_INVALID_NSID | NVME_DNR;
5309         }
5310 
5311         if (!nvme_ns(n, nsid)) {
5312             return NVME_INVALID_FIELD | NVME_DNR;
5313         }
5314     }
5315 
5316     switch (sel) {
5317     case NVME_GETFEAT_SELECT_CURRENT:
5318         break;
5319     case NVME_GETFEAT_SELECT_SAVED:
5320         /* no features are saveable by the controller; fallthrough */
5321     case NVME_GETFEAT_SELECT_DEFAULT:
5322         goto defaults;
5323     case NVME_GETFEAT_SELECT_CAP:
5324         result = nvme_feature_cap[fid];
5325         goto out;
5326     }
5327 
5328     switch (fid) {
5329     case NVME_TEMPERATURE_THRESHOLD:
5330         result = 0;
5331 
5332         /*
5333          * The controller only implements the Composite Temperature sensor, so
5334          * return 0 for all other sensors.
5335          */
5336         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5337             goto out;
5338         }
5339 
5340         switch (NVME_TEMP_THSEL(dw11)) {
5341         case NVME_TEMP_THSEL_OVER:
5342             result = n->features.temp_thresh_hi;
5343             goto out;
5344         case NVME_TEMP_THSEL_UNDER:
5345             result = n->features.temp_thresh_low;
5346             goto out;
5347         }
5348 
5349         return NVME_INVALID_FIELD | NVME_DNR;
5350     case NVME_ERROR_RECOVERY:
5351         if (!nvme_nsid_valid(n, nsid)) {
5352             return NVME_INVALID_NSID | NVME_DNR;
5353         }
5354 
5355         ns = nvme_ns(n, nsid);
5356         if (unlikely(!ns)) {
5357             return NVME_INVALID_FIELD | NVME_DNR;
5358         }
5359 
5360         result = ns->features.err_rec;
5361         goto out;
5362     case NVME_VOLATILE_WRITE_CACHE:
5363         result = 0;
5364         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5365             ns = nvme_ns(n, i);
5366             if (!ns) {
5367                 continue;
5368             }
5369 
5370             result = blk_enable_write_cache(ns->blkconf.blk);
5371             if (result) {
5372                 break;
5373             }
5374         }
5375         trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
5376         goto out;
5377     case NVME_ASYNCHRONOUS_EVENT_CONF:
5378         result = n->features.async_config;
5379         goto out;
5380     case NVME_TIMESTAMP:
5381         return nvme_get_feature_timestamp(n, req);
5382     case NVME_HOST_BEHAVIOR_SUPPORT:
5383         return nvme_c2h(n, (uint8_t *)&n->features.hbs,
5384                         sizeof(n->features.hbs), req);
5385     default:
5386         break;
5387     }
5388 
5389 defaults:
5390     switch (fid) {
5391     case NVME_TEMPERATURE_THRESHOLD:
5392         result = 0;
5393 
5394         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5395             break;
5396         }
5397 
5398         if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
5399             result = NVME_TEMPERATURE_WARNING;
5400         }
5401 
5402         break;
5403     case NVME_NUMBER_OF_QUEUES:
5404         result = (n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16);
5405         trace_pci_nvme_getfeat_numq(result);
5406         break;
5407     case NVME_INTERRUPT_VECTOR_CONF:
5408         iv = dw11 & 0xffff;
5409         if (iv >= n->conf_ioqpairs + 1) {
5410             return NVME_INVALID_FIELD | NVME_DNR;
5411         }
5412 
5413         result = iv;
5414         if (iv == n->admin_cq.vector) {
5415             result |= NVME_INTVC_NOCOALESCING;
5416         }
5417         break;
5418     default:
5419         result = nvme_feature_default[fid];
5420         break;
5421     }
5422 
5423 out:
5424     req->cqe.result = cpu_to_le32(result);
5425     return NVME_SUCCESS;
5426 }
5427 
5428 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5429 {
5430     uint16_t ret;
5431     uint64_t timestamp;
5432 
5433     ret = nvme_h2c(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5434     if (ret) {
5435         return ret;
5436     }
5437 
5438     nvme_set_timestamp(n, timestamp);
5439 
5440     return NVME_SUCCESS;
5441 }
5442 
5443 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
5444 {
5445     NvmeNamespace *ns = NULL;
5446 
5447     NvmeCmd *cmd = &req->cmd;
5448     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5449     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5450     uint32_t nsid = le32_to_cpu(cmd->nsid);
5451     uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5452     uint8_t save = NVME_SETFEAT_SAVE(dw10);
5453     uint16_t status;
5454     int i;
5455 
5456     trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
5457 
5458     if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
5459         return NVME_FID_NOT_SAVEABLE | NVME_DNR;
5460     }
5461 
5462     if (!nvme_feature_support[fid]) {
5463         return NVME_INVALID_FIELD | NVME_DNR;
5464     }
5465 
5466     if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5467         if (nsid != NVME_NSID_BROADCAST) {
5468             if (!nvme_nsid_valid(n, nsid)) {
5469                 return NVME_INVALID_NSID | NVME_DNR;
5470             }
5471 
5472             ns = nvme_ns(n, nsid);
5473             if (unlikely(!ns)) {
5474                 return NVME_INVALID_FIELD | NVME_DNR;
5475             }
5476         }
5477     } else if (nsid && nsid != NVME_NSID_BROADCAST) {
5478         if (!nvme_nsid_valid(n, nsid)) {
5479             return NVME_INVALID_NSID | NVME_DNR;
5480         }
5481 
5482         return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
5483     }
5484 
5485     if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
5486         return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
5487     }
5488 
5489     switch (fid) {
5490     case NVME_TEMPERATURE_THRESHOLD:
5491         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5492             break;
5493         }
5494 
5495         switch (NVME_TEMP_THSEL(dw11)) {
5496         case NVME_TEMP_THSEL_OVER:
5497             n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
5498             break;
5499         case NVME_TEMP_THSEL_UNDER:
5500             n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
5501             break;
5502         default:
5503             return NVME_INVALID_FIELD | NVME_DNR;
5504         }
5505 
5506         if ((n->temperature >= n->features.temp_thresh_hi) ||
5507             (n->temperature <= n->features.temp_thresh_low)) {
5508             nvme_smart_event(n, NVME_SMART_TEMPERATURE);
5509         }
5510 
5511         break;
5512     case NVME_ERROR_RECOVERY:
5513         if (nsid == NVME_NSID_BROADCAST) {
5514             for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5515                 ns = nvme_ns(n, i);
5516 
5517                 if (!ns) {
5518                     continue;
5519                 }
5520 
5521                 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
5522                     ns->features.err_rec = dw11;
5523                 }
5524             }
5525 
5526             break;
5527         }
5528 
5529         assert(ns);
5530         if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat))  {
5531             ns->features.err_rec = dw11;
5532         }
5533         break;
5534     case NVME_VOLATILE_WRITE_CACHE:
5535         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5536             ns = nvme_ns(n, i);
5537             if (!ns) {
5538                 continue;
5539             }
5540 
5541             if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
5542                 blk_flush(ns->blkconf.blk);
5543             }
5544 
5545             blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
5546         }
5547 
5548         break;
5549 
5550     case NVME_NUMBER_OF_QUEUES:
5551         if (n->qs_created) {
5552             return NVME_CMD_SEQ_ERROR | NVME_DNR;
5553         }
5554 
5555         /*
5556          * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
5557          * and NSQR.
5558          */
5559         if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
5560             return NVME_INVALID_FIELD | NVME_DNR;
5561         }
5562 
5563         trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1,
5564                                     ((dw11 >> 16) & 0xffff) + 1,
5565                                     n->conf_ioqpairs,
5566                                     n->conf_ioqpairs);
5567         req->cqe.result = cpu_to_le32((n->conf_ioqpairs - 1) |
5568                                       ((n->conf_ioqpairs - 1) << 16));
5569         break;
5570     case NVME_ASYNCHRONOUS_EVENT_CONF:
5571         n->features.async_config = dw11;
5572         break;
5573     case NVME_TIMESTAMP:
5574         return nvme_set_feature_timestamp(n, req);
5575     case NVME_HOST_BEHAVIOR_SUPPORT:
5576         status = nvme_h2c(n, (uint8_t *)&n->features.hbs,
5577                           sizeof(n->features.hbs), req);
5578         if (status) {
5579             return status;
5580         }
5581 
5582         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5583             ns = nvme_ns(n, i);
5584 
5585             if (!ns) {
5586                 continue;
5587             }
5588 
5589             ns->id_ns.nlbaf = ns->nlbaf - 1;
5590             if (!n->features.hbs.lbafee) {
5591                 ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15);
5592             }
5593         }
5594 
5595         return status;
5596     case NVME_COMMAND_SET_PROFILE:
5597         if (dw11 & 0x1ff) {
5598             trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
5599             return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
5600         }
5601         break;
5602     default:
5603         return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
5604     }
5605     return NVME_SUCCESS;
5606 }
5607 
5608 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
5609 {
5610     trace_pci_nvme_aer(nvme_cid(req));
5611 
5612     if (n->outstanding_aers > n->params.aerl) {
5613         trace_pci_nvme_aer_aerl_exceeded();
5614         return NVME_AER_LIMIT_EXCEEDED;
5615     }
5616 
5617     n->aer_reqs[n->outstanding_aers] = req;
5618     n->outstanding_aers++;
5619 
5620     if (!QTAILQ_EMPTY(&n->aer_queue)) {
5621         nvme_process_aers(n);
5622     }
5623 
5624     return NVME_NO_COMPLETE;
5625 }
5626 
5627 static void nvme_update_dmrsl(NvmeCtrl *n)
5628 {
5629     int nsid;
5630 
5631     for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
5632         NvmeNamespace *ns = nvme_ns(n, nsid);
5633         if (!ns) {
5634             continue;
5635         }
5636 
5637         n->dmrsl = MIN_NON_ZERO(n->dmrsl,
5638                                 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
5639     }
5640 }
5641 
5642 static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns)
5643 {
5644     uint32_t cc = ldl_le_p(&n->bar.cc);
5645 
5646     ns->iocs = nvme_cse_iocs_none;
5647     switch (ns->csi) {
5648     case NVME_CSI_NVM:
5649         if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) {
5650             ns->iocs = nvme_cse_iocs_nvm;
5651         }
5652         break;
5653     case NVME_CSI_ZONED:
5654         if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) {
5655             ns->iocs = nvme_cse_iocs_zoned;
5656         } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) {
5657             ns->iocs = nvme_cse_iocs_nvm;
5658         }
5659         break;
5660     }
5661 }
5662 
5663 static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
5664 {
5665     NvmeNamespace *ns;
5666     NvmeCtrl *ctrl;
5667     uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
5668     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5669     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5670     uint8_t sel = dw10 & 0xf;
5671     uint16_t *nr_ids = &list[0];
5672     uint16_t *ids = &list[1];
5673     uint16_t ret;
5674     int i;
5675 
5676     trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
5677 
5678     if (!nvme_nsid_valid(n, nsid)) {
5679         return NVME_INVALID_NSID | NVME_DNR;
5680     }
5681 
5682     ns = nvme_subsys_ns(n->subsys, nsid);
5683     if (!ns) {
5684         return NVME_INVALID_FIELD | NVME_DNR;
5685     }
5686 
5687     ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
5688     if (ret) {
5689         return ret;
5690     }
5691 
5692     if (!*nr_ids) {
5693         return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
5694     }
5695 
5696     *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1);
5697     for (i = 0; i < *nr_ids; i++) {
5698         ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
5699         if (!ctrl) {
5700             return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
5701         }
5702 
5703         switch (sel) {
5704         case NVME_NS_ATTACHMENT_ATTACH:
5705             if (nvme_ns(ctrl, nsid)) {
5706                 return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
5707             }
5708 
5709             if (ns->attached && !ns->params.shared) {
5710                 return NVME_NS_PRIVATE | NVME_DNR;
5711             }
5712 
5713             nvme_attach_ns(ctrl, ns);
5714             nvme_select_iocs_ns(ctrl, ns);
5715 
5716             break;
5717 
5718         case NVME_NS_ATTACHMENT_DETACH:
5719             if (!nvme_ns(ctrl, nsid)) {
5720                 return NVME_NS_NOT_ATTACHED | NVME_DNR;
5721             }
5722 
5723             ctrl->namespaces[nsid] = NULL;
5724             ns->attached--;
5725 
5726             nvme_update_dmrsl(ctrl);
5727 
5728             break;
5729 
5730         default:
5731             return NVME_INVALID_FIELD | NVME_DNR;
5732         }
5733 
5734         /*
5735          * Add namespace id to the changed namespace id list for event clearing
5736          * via Get Log Page command.
5737          */
5738         if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
5739             nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
5740                                NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
5741                                NVME_LOG_CHANGED_NSLIST);
5742         }
5743     }
5744 
5745     return NVME_SUCCESS;
5746 }
5747 
5748 typedef struct NvmeFormatAIOCB {
5749     BlockAIOCB common;
5750     BlockAIOCB *aiocb;
5751     QEMUBH *bh;
5752     NvmeRequest *req;
5753     int ret;
5754 
5755     NvmeNamespace *ns;
5756     uint32_t nsid;
5757     bool broadcast;
5758     int64_t offset;
5759 
5760     uint8_t lbaf;
5761     uint8_t mset;
5762     uint8_t pi;
5763     uint8_t pil;
5764 } NvmeFormatAIOCB;
5765 
5766 static void nvme_format_bh(void *opaque);
5767 
5768 static void nvme_format_cancel(BlockAIOCB *aiocb)
5769 {
5770     NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common);
5771 
5772     if (iocb->aiocb) {
5773         blk_aio_cancel_async(iocb->aiocb);
5774     }
5775 }
5776 
5777 static const AIOCBInfo nvme_format_aiocb_info = {
5778     .aiocb_size = sizeof(NvmeFormatAIOCB),
5779     .cancel_async = nvme_format_cancel,
5780     .get_aio_context = nvme_get_aio_context,
5781 };
5782 
5783 static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset,
5784                             uint8_t pi, uint8_t pil)
5785 {
5786     uint8_t lbafl = lbaf & 0xf;
5787     uint8_t lbafu = lbaf >> 4;
5788 
5789     trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil);
5790 
5791     ns->id_ns.dps = (pil << 3) | pi;
5792     ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl;
5793 
5794     nvme_ns_init_format(ns);
5795 }
5796 
5797 static void nvme_format_ns_cb(void *opaque, int ret)
5798 {
5799     NvmeFormatAIOCB *iocb = opaque;
5800     NvmeNamespace *ns = iocb->ns;
5801     int bytes;
5802 
5803     if (ret < 0) {
5804         iocb->ret = ret;
5805         goto done;
5806     }
5807 
5808     assert(ns);
5809 
5810     if (iocb->offset < ns->size) {
5811         bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset);
5812 
5813         iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset,
5814                                             bytes, BDRV_REQ_MAY_UNMAP,
5815                                             nvme_format_ns_cb, iocb);
5816 
5817         iocb->offset += bytes;
5818         return;
5819     }
5820 
5821     nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil);
5822     ns->status = 0x0;
5823     iocb->ns = NULL;
5824     iocb->offset = 0;
5825 
5826 done:
5827     iocb->aiocb = NULL;
5828     qemu_bh_schedule(iocb->bh);
5829 }
5830 
5831 static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi)
5832 {
5833     if (ns->params.zoned) {
5834         return NVME_INVALID_FORMAT | NVME_DNR;
5835     }
5836 
5837     if (lbaf > ns->id_ns.nlbaf) {
5838         return NVME_INVALID_FORMAT | NVME_DNR;
5839     }
5840 
5841     if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) {
5842         return NVME_INVALID_FORMAT | NVME_DNR;
5843     }
5844 
5845     if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
5846         return NVME_INVALID_FIELD | NVME_DNR;
5847     }
5848 
5849     return NVME_SUCCESS;
5850 }
5851 
5852 static void nvme_format_bh(void *opaque)
5853 {
5854     NvmeFormatAIOCB *iocb = opaque;
5855     NvmeRequest *req = iocb->req;
5856     NvmeCtrl *n = nvme_ctrl(req);
5857     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5858     uint8_t lbaf = dw10 & 0xf;
5859     uint8_t pi = (dw10 >> 5) & 0x7;
5860     uint16_t status;
5861     int i;
5862 
5863     if (iocb->ret < 0) {
5864         goto done;
5865     }
5866 
5867     if (iocb->broadcast) {
5868         for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
5869             iocb->ns = nvme_ns(n, i);
5870             if (iocb->ns) {
5871                 iocb->nsid = i;
5872                 break;
5873             }
5874         }
5875     }
5876 
5877     if (!iocb->ns) {
5878         goto done;
5879     }
5880 
5881     status = nvme_format_check(iocb->ns, lbaf, pi);
5882     if (status) {
5883         req->status = status;
5884         goto done;
5885     }
5886 
5887     iocb->ns->status = NVME_FORMAT_IN_PROGRESS;
5888     nvme_format_ns_cb(iocb, 0);
5889     return;
5890 
5891 done:
5892     qemu_bh_delete(iocb->bh);
5893     iocb->bh = NULL;
5894 
5895     iocb->common.cb(iocb->common.opaque, iocb->ret);
5896 
5897     qemu_aio_unref(iocb);
5898 }
5899 
5900 static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
5901 {
5902     NvmeFormatAIOCB *iocb;
5903     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5904     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5905     uint8_t lbaf = dw10 & 0xf;
5906     uint8_t mset = (dw10 >> 4) & 0x1;
5907     uint8_t pi = (dw10 >> 5) & 0x7;
5908     uint8_t pil = (dw10 >> 8) & 0x1;
5909     uint8_t lbafu = (dw10 >> 12) & 0x3;
5910     uint16_t status;
5911 
5912     iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req);
5913 
5914     iocb->req = req;
5915     iocb->bh = qemu_bh_new(nvme_format_bh, iocb);
5916     iocb->ret = 0;
5917     iocb->ns = NULL;
5918     iocb->nsid = 0;
5919     iocb->lbaf = lbaf;
5920     iocb->mset = mset;
5921     iocb->pi = pi;
5922     iocb->pil = pil;
5923     iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
5924     iocb->offset = 0;
5925 
5926     if (n->features.hbs.lbafee) {
5927         iocb->lbaf |= lbafu << 4;
5928     }
5929 
5930     if (!iocb->broadcast) {
5931         if (!nvme_nsid_valid(n, nsid)) {
5932             status = NVME_INVALID_NSID | NVME_DNR;
5933             goto out;
5934         }
5935 
5936         iocb->ns = nvme_ns(n, nsid);
5937         if (!iocb->ns) {
5938             status = NVME_INVALID_FIELD | NVME_DNR;
5939             goto out;
5940         }
5941     }
5942 
5943     req->aiocb = &iocb->common;
5944     qemu_bh_schedule(iocb->bh);
5945 
5946     return NVME_NO_COMPLETE;
5947 
5948 out:
5949     qemu_bh_delete(iocb->bh);
5950     iocb->bh = NULL;
5951     qemu_aio_unref(iocb);
5952     return status;
5953 }
5954 
5955 static void nvme_get_virt_res_num(NvmeCtrl *n, uint8_t rt, int *num_total,
5956                                   int *num_prim, int *num_sec)
5957 {
5958     *num_total = le32_to_cpu(rt ?
5959                              n->pri_ctrl_cap.vifrt : n->pri_ctrl_cap.vqfrt);
5960     *num_prim = le16_to_cpu(rt ?
5961                             n->pri_ctrl_cap.virfap : n->pri_ctrl_cap.vqrfap);
5962     *num_sec = le16_to_cpu(rt ? n->pri_ctrl_cap.virfa : n->pri_ctrl_cap.vqrfa);
5963 }
5964 
5965 static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl *n, NvmeRequest *req,
5966                                              uint16_t cntlid, uint8_t rt,
5967                                              int nr)
5968 {
5969     int num_total, num_prim, num_sec;
5970 
5971     if (cntlid != n->cntlid) {
5972         return NVME_INVALID_CTRL_ID | NVME_DNR;
5973     }
5974 
5975     nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
5976 
5977     if (nr > num_total) {
5978         return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
5979     }
5980 
5981     if (nr > num_total - num_sec) {
5982         return NVME_INVALID_RESOURCE_ID | NVME_DNR;
5983     }
5984 
5985     if (rt) {
5986         n->next_pri_ctrl_cap.virfap = cpu_to_le16(nr);
5987     } else {
5988         n->next_pri_ctrl_cap.vqrfap = cpu_to_le16(nr);
5989     }
5990 
5991     req->cqe.result = cpu_to_le32(nr);
5992     return req->status;
5993 }
5994 
5995 static void nvme_update_virt_res(NvmeCtrl *n, NvmeSecCtrlEntry *sctrl,
5996                                  uint8_t rt, int nr)
5997 {
5998     int prev_nr, prev_total;
5999 
6000     if (rt) {
6001         prev_nr = le16_to_cpu(sctrl->nvi);
6002         prev_total = le32_to_cpu(n->pri_ctrl_cap.virfa);
6003         sctrl->nvi = cpu_to_le16(nr);
6004         n->pri_ctrl_cap.virfa = cpu_to_le32(prev_total + nr - prev_nr);
6005     } else {
6006         prev_nr = le16_to_cpu(sctrl->nvq);
6007         prev_total = le32_to_cpu(n->pri_ctrl_cap.vqrfa);
6008         sctrl->nvq = cpu_to_le16(nr);
6009         n->pri_ctrl_cap.vqrfa = cpu_to_le32(prev_total + nr - prev_nr);
6010     }
6011 }
6012 
6013 static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl *n, NvmeRequest *req,
6014                                             uint16_t cntlid, uint8_t rt, int nr)
6015 {
6016     int num_total, num_prim, num_sec, num_free, diff, limit;
6017     NvmeSecCtrlEntry *sctrl;
6018 
6019     sctrl = nvme_sctrl_for_cntlid(n, cntlid);
6020     if (!sctrl) {
6021         return NVME_INVALID_CTRL_ID | NVME_DNR;
6022     }
6023 
6024     if (sctrl->scs) {
6025         return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
6026     }
6027 
6028     limit = le16_to_cpu(rt ? n->pri_ctrl_cap.vifrsm : n->pri_ctrl_cap.vqfrsm);
6029     if (nr > limit) {
6030         return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
6031     }
6032 
6033     nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
6034     num_free = num_total - num_prim - num_sec;
6035     diff = nr - le16_to_cpu(rt ? sctrl->nvi : sctrl->nvq);
6036 
6037     if (diff > num_free) {
6038         return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6039     }
6040 
6041     nvme_update_virt_res(n, sctrl, rt, nr);
6042     req->cqe.result = cpu_to_le32(nr);
6043 
6044     return req->status;
6045 }
6046 
6047 static uint16_t nvme_virt_set_state(NvmeCtrl *n, uint16_t cntlid, bool online)
6048 {
6049     NvmeCtrl *sn = NULL;
6050     NvmeSecCtrlEntry *sctrl;
6051     int vf_index;
6052 
6053     sctrl = nvme_sctrl_for_cntlid(n, cntlid);
6054     if (!sctrl) {
6055         return NVME_INVALID_CTRL_ID | NVME_DNR;
6056     }
6057 
6058     if (!pci_is_vf(&n->parent_obj)) {
6059         vf_index = le16_to_cpu(sctrl->vfn) - 1;
6060         sn = NVME(pcie_sriov_get_vf_at_index(&n->parent_obj, vf_index));
6061     }
6062 
6063     if (online) {
6064         if (!sctrl->nvi || (le16_to_cpu(sctrl->nvq) < 2) || !sn) {
6065             return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
6066         }
6067 
6068         if (!sctrl->scs) {
6069             sctrl->scs = 0x1;
6070             nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
6071         }
6072     } else {
6073         nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_INTERRUPT, 0);
6074         nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_QUEUE, 0);
6075 
6076         if (sctrl->scs) {
6077             sctrl->scs = 0x0;
6078             if (sn) {
6079                 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
6080             }
6081         }
6082     }
6083 
6084     return NVME_SUCCESS;
6085 }
6086 
6087 static uint16_t nvme_virt_mngmt(NvmeCtrl *n, NvmeRequest *req)
6088 {
6089     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6090     uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
6091     uint8_t act = dw10 & 0xf;
6092     uint8_t rt = (dw10 >> 8) & 0x7;
6093     uint16_t cntlid = (dw10 >> 16) & 0xffff;
6094     int nr = dw11 & 0xffff;
6095 
6096     trace_pci_nvme_virt_mngmt(nvme_cid(req), act, cntlid, rt ? "VI" : "VQ", nr);
6097 
6098     if (rt != NVME_VIRT_RES_QUEUE && rt != NVME_VIRT_RES_INTERRUPT) {
6099         return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6100     }
6101 
6102     switch (act) {
6103     case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN:
6104         return nvme_assign_virt_res_to_sec(n, req, cntlid, rt, nr);
6105     case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC:
6106         return nvme_assign_virt_res_to_prim(n, req, cntlid, rt, nr);
6107     case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE:
6108         return nvme_virt_set_state(n, cntlid, true);
6109     case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE:
6110         return nvme_virt_set_state(n, cntlid, false);
6111     default:
6112         return NVME_INVALID_FIELD | NVME_DNR;
6113     }
6114 }
6115 
6116 static uint16_t nvme_dbbuf_config(NvmeCtrl *n, const NvmeRequest *req)
6117 {
6118     uint64_t dbs_addr = le64_to_cpu(req->cmd.dptr.prp1);
6119     uint64_t eis_addr = le64_to_cpu(req->cmd.dptr.prp2);
6120     int i;
6121 
6122     /* Address should be page aligned */
6123     if (dbs_addr & (n->page_size - 1) || eis_addr & (n->page_size - 1)) {
6124         return NVME_INVALID_FIELD | NVME_DNR;
6125     }
6126 
6127     /* Save shadow buffer base addr for use during queue creation */
6128     n->dbbuf_dbs = dbs_addr;
6129     n->dbbuf_eis = eis_addr;
6130     n->dbbuf_enabled = true;
6131 
6132     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6133         NvmeSQueue *sq = n->sq[i];
6134         NvmeCQueue *cq = n->cq[i];
6135 
6136         if (sq) {
6137             /*
6138              * CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3)
6139              * nvme_process_db() uses this hard-coded way to calculate
6140              * doorbell offsets. Be consistent with that here.
6141              */
6142             sq->db_addr = dbs_addr + (i << 3);
6143             sq->ei_addr = eis_addr + (i << 3);
6144             pci_dma_write(&n->parent_obj, sq->db_addr, &sq->tail,
6145                     sizeof(sq->tail));
6146 
6147             if (n->params.ioeventfd && sq->sqid != 0) {
6148                 if (!nvme_init_sq_ioeventfd(sq)) {
6149                     sq->ioeventfd_enabled = true;
6150                 }
6151             }
6152         }
6153 
6154         if (cq) {
6155             /* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */
6156             cq->db_addr = dbs_addr + (i << 3) + (1 << 2);
6157             cq->ei_addr = eis_addr + (i << 3) + (1 << 2);
6158             pci_dma_write(&n->parent_obj, cq->db_addr, &cq->head,
6159                     sizeof(cq->head));
6160 
6161             if (n->params.ioeventfd && cq->cqid != 0) {
6162                 if (!nvme_init_cq_ioeventfd(cq)) {
6163                     cq->ioeventfd_enabled = true;
6164                 }
6165             }
6166         }
6167     }
6168 
6169     trace_pci_nvme_dbbuf_config(dbs_addr, eis_addr);
6170 
6171     return NVME_SUCCESS;
6172 }
6173 
6174 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
6175 {
6176     trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
6177                              nvme_adm_opc_str(req->cmd.opcode));
6178 
6179     if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
6180         trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
6181         return NVME_INVALID_OPCODE | NVME_DNR;
6182     }
6183 
6184     /* SGLs shall not be used for Admin commands in NVMe over PCIe */
6185     if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
6186         return NVME_INVALID_FIELD | NVME_DNR;
6187     }
6188 
6189     if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
6190         return NVME_INVALID_FIELD;
6191     }
6192 
6193     switch (req->cmd.opcode) {
6194     case NVME_ADM_CMD_DELETE_SQ:
6195         return nvme_del_sq(n, req);
6196     case NVME_ADM_CMD_CREATE_SQ:
6197         return nvme_create_sq(n, req);
6198     case NVME_ADM_CMD_GET_LOG_PAGE:
6199         return nvme_get_log(n, req);
6200     case NVME_ADM_CMD_DELETE_CQ:
6201         return nvme_del_cq(n, req);
6202     case NVME_ADM_CMD_CREATE_CQ:
6203         return nvme_create_cq(n, req);
6204     case NVME_ADM_CMD_IDENTIFY:
6205         return nvme_identify(n, req);
6206     case NVME_ADM_CMD_ABORT:
6207         return nvme_abort(n, req);
6208     case NVME_ADM_CMD_SET_FEATURES:
6209         return nvme_set_feature(n, req);
6210     case NVME_ADM_CMD_GET_FEATURES:
6211         return nvme_get_feature(n, req);
6212     case NVME_ADM_CMD_ASYNC_EV_REQ:
6213         return nvme_aer(n, req);
6214     case NVME_ADM_CMD_NS_ATTACHMENT:
6215         return nvme_ns_attachment(n, req);
6216     case NVME_ADM_CMD_VIRT_MNGMT:
6217         return nvme_virt_mngmt(n, req);
6218     case NVME_ADM_CMD_DBBUF_CONFIG:
6219         return nvme_dbbuf_config(n, req);
6220     case NVME_ADM_CMD_FORMAT_NVM:
6221         return nvme_format(n, req);
6222     default:
6223         assert(false);
6224     }
6225 
6226     return NVME_INVALID_OPCODE | NVME_DNR;
6227 }
6228 
6229 static void nvme_update_sq_eventidx(const NvmeSQueue *sq)
6230 {
6231     pci_dma_write(&sq->ctrl->parent_obj, sq->ei_addr, &sq->tail,
6232                   sizeof(sq->tail));
6233     trace_pci_nvme_eventidx_sq(sq->sqid, sq->tail);
6234 }
6235 
6236 static void nvme_update_sq_tail(NvmeSQueue *sq)
6237 {
6238     pci_dma_read(&sq->ctrl->parent_obj, sq->db_addr, &sq->tail,
6239                  sizeof(sq->tail));
6240     trace_pci_nvme_shadow_doorbell_sq(sq->sqid, sq->tail);
6241 }
6242 
6243 static void nvme_process_sq(void *opaque)
6244 {
6245     NvmeSQueue *sq = opaque;
6246     NvmeCtrl *n = sq->ctrl;
6247     NvmeCQueue *cq = n->cq[sq->cqid];
6248 
6249     uint16_t status;
6250     hwaddr addr;
6251     NvmeCmd cmd;
6252     NvmeRequest *req;
6253 
6254     if (n->dbbuf_enabled) {
6255         nvme_update_sq_tail(sq);
6256     }
6257 
6258     while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
6259         addr = sq->dma_addr + sq->head * n->sqe_size;
6260         if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
6261             trace_pci_nvme_err_addr_read(addr);
6262             trace_pci_nvme_err_cfs();
6263             stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
6264             break;
6265         }
6266         nvme_inc_sq_head(sq);
6267 
6268         req = QTAILQ_FIRST(&sq->req_list);
6269         QTAILQ_REMOVE(&sq->req_list, req, entry);
6270         QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
6271         nvme_req_clear(req);
6272         req->cqe.cid = cmd.cid;
6273         memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
6274 
6275         status = sq->sqid ? nvme_io_cmd(n, req) :
6276             nvme_admin_cmd(n, req);
6277         if (status != NVME_NO_COMPLETE) {
6278             req->status = status;
6279             nvme_enqueue_req_completion(cq, req);
6280         }
6281 
6282         if (n->dbbuf_enabled) {
6283             nvme_update_sq_eventidx(sq);
6284             nvme_update_sq_tail(sq);
6285         }
6286     }
6287 }
6288 
6289 static void nvme_update_msixcap_ts(PCIDevice *pci_dev, uint32_t table_size)
6290 {
6291     uint8_t *config;
6292 
6293     if (!msix_present(pci_dev)) {
6294         return;
6295     }
6296 
6297     assert(table_size > 0 && table_size <= pci_dev->msix_entries_nr);
6298 
6299     config = pci_dev->config + pci_dev->msix_cap;
6300     pci_set_word_by_mask(config + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_QSIZE,
6301                          table_size - 1);
6302 }
6303 
6304 static void nvme_activate_virt_res(NvmeCtrl *n)
6305 {
6306     PCIDevice *pci_dev = &n->parent_obj;
6307     NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
6308     NvmeSecCtrlEntry *sctrl;
6309 
6310     /* -1 to account for the admin queue */
6311     if (pci_is_vf(pci_dev)) {
6312         sctrl = nvme_sctrl(n);
6313         cap->vqprt = sctrl->nvq;
6314         cap->viprt = sctrl->nvi;
6315         n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
6316         n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
6317     } else {
6318         cap->vqrfap = n->next_pri_ctrl_cap.vqrfap;
6319         cap->virfap = n->next_pri_ctrl_cap.virfap;
6320         n->conf_ioqpairs = le16_to_cpu(cap->vqprt) +
6321                            le16_to_cpu(cap->vqrfap) - 1;
6322         n->conf_msix_qsize = le16_to_cpu(cap->viprt) +
6323                              le16_to_cpu(cap->virfap);
6324     }
6325 }
6326 
6327 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst)
6328 {
6329     PCIDevice *pci_dev = &n->parent_obj;
6330     NvmeSecCtrlEntry *sctrl;
6331     NvmeNamespace *ns;
6332     int i;
6333 
6334     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6335         ns = nvme_ns(n, i);
6336         if (!ns) {
6337             continue;
6338         }
6339 
6340         nvme_ns_drain(ns);
6341     }
6342 
6343     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6344         if (n->sq[i] != NULL) {
6345             nvme_free_sq(n->sq[i], n);
6346         }
6347     }
6348     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6349         if (n->cq[i] != NULL) {
6350             nvme_free_cq(n->cq[i], n);
6351         }
6352     }
6353 
6354     while (!QTAILQ_EMPTY(&n->aer_queue)) {
6355         NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
6356         QTAILQ_REMOVE(&n->aer_queue, event, entry);
6357         g_free(event);
6358     }
6359 
6360     if (n->params.sriov_max_vfs) {
6361         if (!pci_is_vf(pci_dev)) {
6362             for (i = 0; i < n->sec_ctrl_list.numcntl; i++) {
6363                 sctrl = &n->sec_ctrl_list.sec[i];
6364                 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
6365             }
6366 
6367             if (rst != NVME_RESET_CONTROLLER) {
6368                 pcie_sriov_pf_disable_vfs(pci_dev);
6369             }
6370         }
6371 
6372         if (rst != NVME_RESET_CONTROLLER) {
6373             nvme_activate_virt_res(n);
6374         }
6375     }
6376 
6377     n->aer_queued = 0;
6378     n->aer_mask = 0;
6379     n->outstanding_aers = 0;
6380     n->qs_created = false;
6381 
6382     nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
6383 
6384     if (pci_is_vf(pci_dev)) {
6385         sctrl = nvme_sctrl(n);
6386 
6387         stl_le_p(&n->bar.csts, sctrl->scs ? 0 : NVME_CSTS_FAILED);
6388     } else {
6389         stl_le_p(&n->bar.csts, 0);
6390     }
6391 
6392     stl_le_p(&n->bar.intms, 0);
6393     stl_le_p(&n->bar.intmc, 0);
6394     stl_le_p(&n->bar.cc, 0);
6395 
6396     n->dbbuf_dbs = 0;
6397     n->dbbuf_eis = 0;
6398     n->dbbuf_enabled = false;
6399 }
6400 
6401 static void nvme_ctrl_shutdown(NvmeCtrl *n)
6402 {
6403     NvmeNamespace *ns;
6404     int i;
6405 
6406     if (n->pmr.dev) {
6407         memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
6408     }
6409 
6410     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6411         ns = nvme_ns(n, i);
6412         if (!ns) {
6413             continue;
6414         }
6415 
6416         nvme_ns_shutdown(ns);
6417     }
6418 }
6419 
6420 static void nvme_select_iocs(NvmeCtrl *n)
6421 {
6422     NvmeNamespace *ns;
6423     int i;
6424 
6425     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6426         ns = nvme_ns(n, i);
6427         if (!ns) {
6428             continue;
6429         }
6430 
6431         nvme_select_iocs_ns(n, ns);
6432     }
6433 }
6434 
6435 static int nvme_start_ctrl(NvmeCtrl *n)
6436 {
6437     uint64_t cap = ldq_le_p(&n->bar.cap);
6438     uint32_t cc = ldl_le_p(&n->bar.cc);
6439     uint32_t aqa = ldl_le_p(&n->bar.aqa);
6440     uint64_t asq = ldq_le_p(&n->bar.asq);
6441     uint64_t acq = ldq_le_p(&n->bar.acq);
6442     uint32_t page_bits = NVME_CC_MPS(cc) + 12;
6443     uint32_t page_size = 1 << page_bits;
6444     NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
6445 
6446     if (pci_is_vf(&n->parent_obj) && !sctrl->scs) {
6447         trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl->nvi),
6448                                                 le16_to_cpu(sctrl->nvq),
6449                                                 sctrl->scs ? "ONLINE" :
6450                                                              "OFFLINE");
6451         return -1;
6452     }
6453     if (unlikely(n->cq[0])) {
6454         trace_pci_nvme_err_startfail_cq();
6455         return -1;
6456     }
6457     if (unlikely(n->sq[0])) {
6458         trace_pci_nvme_err_startfail_sq();
6459         return -1;
6460     }
6461     if (unlikely(asq & (page_size - 1))) {
6462         trace_pci_nvme_err_startfail_asq_misaligned(asq);
6463         return -1;
6464     }
6465     if (unlikely(acq & (page_size - 1))) {
6466         trace_pci_nvme_err_startfail_acq_misaligned(acq);
6467         return -1;
6468     }
6469     if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) {
6470         trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc));
6471         return -1;
6472     }
6473     if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) {
6474         trace_pci_nvme_err_startfail_page_too_small(
6475                     NVME_CC_MPS(cc),
6476                     NVME_CAP_MPSMIN(cap));
6477         return -1;
6478     }
6479     if (unlikely(NVME_CC_MPS(cc) >
6480                  NVME_CAP_MPSMAX(cap))) {
6481         trace_pci_nvme_err_startfail_page_too_large(
6482                     NVME_CC_MPS(cc),
6483                     NVME_CAP_MPSMAX(cap));
6484         return -1;
6485     }
6486     if (unlikely(NVME_CC_IOCQES(cc) <
6487                  NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
6488         trace_pci_nvme_err_startfail_cqent_too_small(
6489                     NVME_CC_IOCQES(cc),
6490                     NVME_CTRL_CQES_MIN(cap));
6491         return -1;
6492     }
6493     if (unlikely(NVME_CC_IOCQES(cc) >
6494                  NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
6495         trace_pci_nvme_err_startfail_cqent_too_large(
6496                     NVME_CC_IOCQES(cc),
6497                     NVME_CTRL_CQES_MAX(cap));
6498         return -1;
6499     }
6500     if (unlikely(NVME_CC_IOSQES(cc) <
6501                  NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
6502         trace_pci_nvme_err_startfail_sqent_too_small(
6503                     NVME_CC_IOSQES(cc),
6504                     NVME_CTRL_SQES_MIN(cap));
6505         return -1;
6506     }
6507     if (unlikely(NVME_CC_IOSQES(cc) >
6508                  NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
6509         trace_pci_nvme_err_startfail_sqent_too_large(
6510                     NVME_CC_IOSQES(cc),
6511                     NVME_CTRL_SQES_MAX(cap));
6512         return -1;
6513     }
6514     if (unlikely(!NVME_AQA_ASQS(aqa))) {
6515         trace_pci_nvme_err_startfail_asqent_sz_zero();
6516         return -1;
6517     }
6518     if (unlikely(!NVME_AQA_ACQS(aqa))) {
6519         trace_pci_nvme_err_startfail_acqent_sz_zero();
6520         return -1;
6521     }
6522 
6523     n->page_bits = page_bits;
6524     n->page_size = page_size;
6525     n->max_prp_ents = n->page_size / sizeof(uint64_t);
6526     n->cqe_size = 1 << NVME_CC_IOCQES(cc);
6527     n->sqe_size = 1 << NVME_CC_IOSQES(cc);
6528     nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1);
6529     nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1);
6530 
6531     nvme_set_timestamp(n, 0ULL);
6532 
6533     nvme_select_iocs(n);
6534 
6535     return 0;
6536 }
6537 
6538 static void nvme_cmb_enable_regs(NvmeCtrl *n)
6539 {
6540     uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc);
6541     uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz);
6542 
6543     NVME_CMBLOC_SET_CDPCILS(cmbloc, 1);
6544     NVME_CMBLOC_SET_CDPMLS(cmbloc, 1);
6545     NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR);
6546     stl_le_p(&n->bar.cmbloc, cmbloc);
6547 
6548     NVME_CMBSZ_SET_SQS(cmbsz, 1);
6549     NVME_CMBSZ_SET_CQS(cmbsz, 0);
6550     NVME_CMBSZ_SET_LISTS(cmbsz, 1);
6551     NVME_CMBSZ_SET_RDS(cmbsz, 1);
6552     NVME_CMBSZ_SET_WDS(cmbsz, 1);
6553     NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */
6554     NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb);
6555     stl_le_p(&n->bar.cmbsz, cmbsz);
6556 }
6557 
6558 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
6559                            unsigned size)
6560 {
6561     uint64_t cap = ldq_le_p(&n->bar.cap);
6562     uint32_t cc = ldl_le_p(&n->bar.cc);
6563     uint32_t intms = ldl_le_p(&n->bar.intms);
6564     uint32_t csts = ldl_le_p(&n->bar.csts);
6565     uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts);
6566 
6567     if (unlikely(offset & (sizeof(uint32_t) - 1))) {
6568         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
6569                        "MMIO write not 32-bit aligned,"
6570                        " offset=0x%"PRIx64"", offset);
6571         /* should be ignored, fall through for now */
6572     }
6573 
6574     if (unlikely(size < sizeof(uint32_t))) {
6575         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
6576                        "MMIO write smaller than 32-bits,"
6577                        " offset=0x%"PRIx64", size=%u",
6578                        offset, size);
6579         /* should be ignored, fall through for now */
6580     }
6581 
6582     switch (offset) {
6583     case NVME_REG_INTMS:
6584         if (unlikely(msix_enabled(&(n->parent_obj)))) {
6585             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
6586                            "undefined access to interrupt mask set"
6587                            " when MSI-X is enabled");
6588             /* should be ignored, fall through for now */
6589         }
6590         intms |= data;
6591         stl_le_p(&n->bar.intms, intms);
6592         n->bar.intmc = n->bar.intms;
6593         trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms);
6594         nvme_irq_check(n);
6595         break;
6596     case NVME_REG_INTMC:
6597         if (unlikely(msix_enabled(&(n->parent_obj)))) {
6598             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
6599                            "undefined access to interrupt mask clr"
6600                            " when MSI-X is enabled");
6601             /* should be ignored, fall through for now */
6602         }
6603         intms &= ~data;
6604         stl_le_p(&n->bar.intms, intms);
6605         n->bar.intmc = n->bar.intms;
6606         trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms);
6607         nvme_irq_check(n);
6608         break;
6609     case NVME_REG_CC:
6610         stl_le_p(&n->bar.cc, data);
6611 
6612         trace_pci_nvme_mmio_cfg(data & 0xffffffff);
6613 
6614         if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) {
6615             trace_pci_nvme_mmio_shutdown_set();
6616             nvme_ctrl_shutdown(n);
6617             csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
6618             csts |= NVME_CSTS_SHST_COMPLETE;
6619         } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) {
6620             trace_pci_nvme_mmio_shutdown_cleared();
6621             csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
6622         }
6623 
6624         if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) {
6625             if (unlikely(nvme_start_ctrl(n))) {
6626                 trace_pci_nvme_err_startfail();
6627                 csts = NVME_CSTS_FAILED;
6628             } else {
6629                 trace_pci_nvme_mmio_start_success();
6630                 csts = NVME_CSTS_READY;
6631             }
6632         } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) {
6633             trace_pci_nvme_mmio_stopped();
6634             nvme_ctrl_reset(n, NVME_RESET_CONTROLLER);
6635 
6636             break;
6637         }
6638 
6639         stl_le_p(&n->bar.csts, csts);
6640 
6641         break;
6642     case NVME_REG_CSTS:
6643         if (data & (1 << 4)) {
6644             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
6645                            "attempted to W1C CSTS.NSSRO"
6646                            " but CAP.NSSRS is zero (not supported)");
6647         } else if (data != 0) {
6648             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
6649                            "attempted to set a read only bit"
6650                            " of controller status");
6651         }
6652         break;
6653     case NVME_REG_NSSR:
6654         if (data == 0x4e564d65) {
6655             trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
6656         } else {
6657             /* The spec says that writes of other values have no effect */
6658             return;
6659         }
6660         break;
6661     case NVME_REG_AQA:
6662         stl_le_p(&n->bar.aqa, data);
6663         trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
6664         break;
6665     case NVME_REG_ASQ:
6666         stn_le_p(&n->bar.asq, size, data);
6667         trace_pci_nvme_mmio_asqaddr(data);
6668         break;
6669     case NVME_REG_ASQ + 4:
6670         stl_le_p((uint8_t *)&n->bar.asq + 4, data);
6671         trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq));
6672         break;
6673     case NVME_REG_ACQ:
6674         trace_pci_nvme_mmio_acqaddr(data);
6675         stn_le_p(&n->bar.acq, size, data);
6676         break;
6677     case NVME_REG_ACQ + 4:
6678         stl_le_p((uint8_t *)&n->bar.acq + 4, data);
6679         trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq));
6680         break;
6681     case NVME_REG_CMBLOC:
6682         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
6683                        "invalid write to reserved CMBLOC"
6684                        " when CMBSZ is zero, ignored");
6685         return;
6686     case NVME_REG_CMBSZ:
6687         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
6688                        "invalid write to read only CMBSZ, ignored");
6689         return;
6690     case NVME_REG_CMBMSC:
6691         if (!NVME_CAP_CMBS(cap)) {
6692             return;
6693         }
6694 
6695         stn_le_p(&n->bar.cmbmsc, size, data);
6696         n->cmb.cmse = false;
6697 
6698         if (NVME_CMBMSC_CRE(data)) {
6699             nvme_cmb_enable_regs(n);
6700 
6701             if (NVME_CMBMSC_CMSE(data)) {
6702                 uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc);
6703                 hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT;
6704                 if (cba + int128_get64(n->cmb.mem.size) < cba) {
6705                     uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts);
6706                     NVME_CMBSTS_SET_CBAI(cmbsts, 1);
6707                     stl_le_p(&n->bar.cmbsts, cmbsts);
6708                     return;
6709                 }
6710 
6711                 n->cmb.cba = cba;
6712                 n->cmb.cmse = true;
6713             }
6714         } else {
6715             n->bar.cmbsz = 0;
6716             n->bar.cmbloc = 0;
6717         }
6718 
6719         return;
6720     case NVME_REG_CMBMSC + 4:
6721         stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data);
6722         return;
6723 
6724     case NVME_REG_PMRCAP:
6725         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
6726                        "invalid write to PMRCAP register, ignored");
6727         return;
6728     case NVME_REG_PMRCTL:
6729         if (!NVME_CAP_PMRS(cap)) {
6730             return;
6731         }
6732 
6733         stl_le_p(&n->bar.pmrctl, data);
6734         if (NVME_PMRCTL_EN(data)) {
6735             memory_region_set_enabled(&n->pmr.dev->mr, true);
6736             pmrsts = 0;
6737         } else {
6738             memory_region_set_enabled(&n->pmr.dev->mr, false);
6739             NVME_PMRSTS_SET_NRDY(pmrsts, 1);
6740             n->pmr.cmse = false;
6741         }
6742         stl_le_p(&n->bar.pmrsts, pmrsts);
6743         return;
6744     case NVME_REG_PMRSTS:
6745         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
6746                        "invalid write to PMRSTS register, ignored");
6747         return;
6748     case NVME_REG_PMREBS:
6749         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
6750                        "invalid write to PMREBS register, ignored");
6751         return;
6752     case NVME_REG_PMRSWTP:
6753         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
6754                        "invalid write to PMRSWTP register, ignored");
6755         return;
6756     case NVME_REG_PMRMSCL:
6757         if (!NVME_CAP_PMRS(cap)) {
6758             return;
6759         }
6760 
6761         stl_le_p(&n->bar.pmrmscl, data);
6762         n->pmr.cmse = false;
6763 
6764         if (NVME_PMRMSCL_CMSE(data)) {
6765             uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu);
6766             hwaddr cba = pmrmscu << 32 |
6767                 (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT);
6768             if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
6769                 NVME_PMRSTS_SET_CBAI(pmrsts, 1);
6770                 stl_le_p(&n->bar.pmrsts, pmrsts);
6771                 return;
6772             }
6773 
6774             n->pmr.cmse = true;
6775             n->pmr.cba = cba;
6776         }
6777 
6778         return;
6779     case NVME_REG_PMRMSCU:
6780         if (!NVME_CAP_PMRS(cap)) {
6781             return;
6782         }
6783 
6784         stl_le_p(&n->bar.pmrmscu, data);
6785         return;
6786     default:
6787         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
6788                        "invalid MMIO write,"
6789                        " offset=0x%"PRIx64", data=%"PRIx64"",
6790                        offset, data);
6791         break;
6792     }
6793 }
6794 
6795 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
6796 {
6797     NvmeCtrl *n = (NvmeCtrl *)opaque;
6798     uint8_t *ptr = (uint8_t *)&n->bar;
6799 
6800     trace_pci_nvme_mmio_read(addr, size);
6801 
6802     if (unlikely(addr & (sizeof(uint32_t) - 1))) {
6803         NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
6804                        "MMIO read not 32-bit aligned,"
6805                        " offset=0x%"PRIx64"", addr);
6806         /* should RAZ, fall through for now */
6807     } else if (unlikely(size < sizeof(uint32_t))) {
6808         NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
6809                        "MMIO read smaller than 32-bits,"
6810                        " offset=0x%"PRIx64"", addr);
6811         /* should RAZ, fall through for now */
6812     }
6813 
6814     if (addr > sizeof(n->bar) - size) {
6815         NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
6816                        "MMIO read beyond last register,"
6817                        " offset=0x%"PRIx64", returning 0", addr);
6818 
6819         return 0;
6820     }
6821 
6822     if (pci_is_vf(&n->parent_obj) && !nvme_sctrl(n)->scs &&
6823         addr != NVME_REG_CSTS) {
6824         trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
6825         return 0;
6826     }
6827 
6828     /*
6829      * When PMRWBM bit 1 is set then read from
6830      * from PMRSTS should ensure prior writes
6831      * made it to persistent media
6832      */
6833     if (addr == NVME_REG_PMRSTS &&
6834         (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) {
6835         memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
6836     }
6837 
6838     return ldn_le_p(ptr + addr, size);
6839 }
6840 
6841 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
6842 {
6843     uint32_t qid;
6844 
6845     if (unlikely(addr & ((1 << 2) - 1))) {
6846         NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
6847                        "doorbell write not 32-bit aligned,"
6848                        " offset=0x%"PRIx64", ignoring", addr);
6849         return;
6850     }
6851 
6852     if (((addr - 0x1000) >> 2) & 1) {
6853         /* Completion queue doorbell write */
6854 
6855         uint16_t new_head = val & 0xffff;
6856         int start_sqs;
6857         NvmeCQueue *cq;
6858 
6859         qid = (addr - (0x1000 + (1 << 2))) >> 3;
6860         if (unlikely(nvme_check_cqid(n, qid))) {
6861             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
6862                            "completion queue doorbell write"
6863                            " for nonexistent queue,"
6864                            " sqid=%"PRIu32", ignoring", qid);
6865 
6866             /*
6867              * NVM Express v1.3d, Section 4.1 state: "If host software writes
6868              * an invalid value to the Submission Queue Tail Doorbell or
6869              * Completion Queue Head Doorbell regiter and an Asynchronous Event
6870              * Request command is outstanding, then an asynchronous event is
6871              * posted to the Admin Completion Queue with a status code of
6872              * Invalid Doorbell Write Value."
6873              *
6874              * Also note that the spec includes the "Invalid Doorbell Register"
6875              * status code, but nowhere does it specify when to use it.
6876              * However, it seems reasonable to use it here in a similar
6877              * fashion.
6878              */
6879             if (n->outstanding_aers) {
6880                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6881                                    NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
6882                                    NVME_LOG_ERROR_INFO);
6883             }
6884 
6885             return;
6886         }
6887 
6888         cq = n->cq[qid];
6889         if (unlikely(new_head >= cq->size)) {
6890             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
6891                            "completion queue doorbell write value"
6892                            " beyond queue size, sqid=%"PRIu32","
6893                            " new_head=%"PRIu16", ignoring",
6894                            qid, new_head);
6895 
6896             if (n->outstanding_aers) {
6897                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6898                                    NVME_AER_INFO_ERR_INVALID_DB_VALUE,
6899                                    NVME_LOG_ERROR_INFO);
6900             }
6901 
6902             return;
6903         }
6904 
6905         trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
6906 
6907         start_sqs = nvme_cq_full(cq) ? 1 : 0;
6908         cq->head = new_head;
6909         if (!qid && n->dbbuf_enabled) {
6910             pci_dma_write(&n->parent_obj, cq->db_addr, &cq->head,
6911                           sizeof(cq->head));
6912         }
6913         if (start_sqs) {
6914             NvmeSQueue *sq;
6915             QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
6916                 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
6917             }
6918             timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
6919         }
6920 
6921         if (cq->tail == cq->head) {
6922             if (cq->irq_enabled) {
6923                 n->cq_pending--;
6924             }
6925 
6926             nvme_irq_deassert(n, cq);
6927         }
6928     } else {
6929         /* Submission queue doorbell write */
6930 
6931         uint16_t new_tail = val & 0xffff;
6932         NvmeSQueue *sq;
6933 
6934         qid = (addr - 0x1000) >> 3;
6935         if (unlikely(nvme_check_sqid(n, qid))) {
6936             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
6937                            "submission queue doorbell write"
6938                            " for nonexistent queue,"
6939                            " sqid=%"PRIu32", ignoring", qid);
6940 
6941             if (n->outstanding_aers) {
6942                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6943                                    NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
6944                                    NVME_LOG_ERROR_INFO);
6945             }
6946 
6947             return;
6948         }
6949 
6950         sq = n->sq[qid];
6951         if (unlikely(new_tail >= sq->size)) {
6952             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
6953                            "submission queue doorbell write value"
6954                            " beyond queue size, sqid=%"PRIu32","
6955                            " new_tail=%"PRIu16", ignoring",
6956                            qid, new_tail);
6957 
6958             if (n->outstanding_aers) {
6959                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6960                                    NVME_AER_INFO_ERR_INVALID_DB_VALUE,
6961                                    NVME_LOG_ERROR_INFO);
6962             }
6963 
6964             return;
6965         }
6966 
6967         trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
6968 
6969         sq->tail = new_tail;
6970         if (!qid && n->dbbuf_enabled) {
6971             /*
6972              * The spec states "the host shall also update the controller's
6973              * corresponding doorbell property to match the value of that entry
6974              * in the Shadow Doorbell buffer."
6975              *
6976              * Since this context is currently a VM trap, we can safely enforce
6977              * the requirement from the device side in case the host is
6978              * misbehaving.
6979              *
6980              * Note, we shouldn't have to do this, but various drivers
6981              * including ones that run on Linux, are not updating Admin Queues,
6982              * so we can't trust reading it for an appropriate sq tail.
6983              */
6984             pci_dma_write(&n->parent_obj, sq->db_addr, &sq->tail,
6985                           sizeof(sq->tail));
6986         }
6987         timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
6988     }
6989 }
6990 
6991 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
6992                             unsigned size)
6993 {
6994     NvmeCtrl *n = (NvmeCtrl *)opaque;
6995 
6996     trace_pci_nvme_mmio_write(addr, data, size);
6997 
6998     if (pci_is_vf(&n->parent_obj) && !nvme_sctrl(n)->scs &&
6999         addr != NVME_REG_CSTS) {
7000         trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
7001         return;
7002     }
7003 
7004     if (addr < sizeof(n->bar)) {
7005         nvme_write_bar(n, addr, data, size);
7006     } else {
7007         nvme_process_db(n, addr, data);
7008     }
7009 }
7010 
7011 static const MemoryRegionOps nvme_mmio_ops = {
7012     .read = nvme_mmio_read,
7013     .write = nvme_mmio_write,
7014     .endianness = DEVICE_LITTLE_ENDIAN,
7015     .impl = {
7016         .min_access_size = 2,
7017         .max_access_size = 8,
7018     },
7019 };
7020 
7021 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
7022                            unsigned size)
7023 {
7024     NvmeCtrl *n = (NvmeCtrl *)opaque;
7025     stn_le_p(&n->cmb.buf[addr], size, data);
7026 }
7027 
7028 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
7029 {
7030     NvmeCtrl *n = (NvmeCtrl *)opaque;
7031     return ldn_le_p(&n->cmb.buf[addr], size);
7032 }
7033 
7034 static const MemoryRegionOps nvme_cmb_ops = {
7035     .read = nvme_cmb_read,
7036     .write = nvme_cmb_write,
7037     .endianness = DEVICE_LITTLE_ENDIAN,
7038     .impl = {
7039         .min_access_size = 1,
7040         .max_access_size = 8,
7041     },
7042 };
7043 
7044 static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
7045 {
7046     NvmeParams *params = &n->params;
7047 
7048     if (params->num_queues) {
7049         warn_report("num_queues is deprecated; please use max_ioqpairs "
7050                     "instead");
7051 
7052         params->max_ioqpairs = params->num_queues - 1;
7053     }
7054 
7055     if (n->namespace.blkconf.blk && n->subsys) {
7056         error_setg(errp, "subsystem support is unavailable with legacy "
7057                    "namespace ('drive' property)");
7058         return;
7059     }
7060 
7061     if (params->max_ioqpairs < 1 ||
7062         params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
7063         error_setg(errp, "max_ioqpairs must be between 1 and %d",
7064                    NVME_MAX_IOQPAIRS);
7065         return;
7066     }
7067 
7068     if (params->msix_qsize < 1 ||
7069         params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
7070         error_setg(errp, "msix_qsize must be between 1 and %d",
7071                    PCI_MSIX_FLAGS_QSIZE + 1);
7072         return;
7073     }
7074 
7075     if (!params->serial) {
7076         error_setg(errp, "serial property not set");
7077         return;
7078     }
7079 
7080     if (n->pmr.dev) {
7081         if (host_memory_backend_is_mapped(n->pmr.dev)) {
7082             error_setg(errp, "can't use already busy memdev: %s",
7083                        object_get_canonical_path_component(OBJECT(n->pmr.dev)));
7084             return;
7085         }
7086 
7087         if (!is_power_of_2(n->pmr.dev->size)) {
7088             error_setg(errp, "pmr backend size needs to be power of 2 in size");
7089             return;
7090         }
7091 
7092         host_memory_backend_set_mapped(n->pmr.dev, true);
7093     }
7094 
7095     if (n->params.zasl > n->params.mdts) {
7096         error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
7097                    "than or equal to mdts (Maximum Data Transfer Size)");
7098         return;
7099     }
7100 
7101     if (!n->params.vsl) {
7102         error_setg(errp, "vsl must be non-zero");
7103         return;
7104     }
7105 
7106     if (params->sriov_max_vfs) {
7107         if (!n->subsys) {
7108             error_setg(errp, "subsystem is required for the use of SR-IOV");
7109             return;
7110         }
7111 
7112         if (params->sriov_max_vfs > NVME_MAX_VFS) {
7113             error_setg(errp, "sriov_max_vfs must be between 0 and %d",
7114                        NVME_MAX_VFS);
7115             return;
7116         }
7117 
7118         if (params->cmb_size_mb) {
7119             error_setg(errp, "CMB is not supported with SR-IOV");
7120             return;
7121         }
7122 
7123         if (n->pmr.dev) {
7124             error_setg(errp, "PMR is not supported with SR-IOV");
7125             return;
7126         }
7127 
7128         if (!params->sriov_vq_flexible || !params->sriov_vi_flexible) {
7129             error_setg(errp, "both sriov_vq_flexible and sriov_vi_flexible"
7130                        " must be set for the use of SR-IOV");
7131             return;
7132         }
7133 
7134         if (params->sriov_vq_flexible < params->sriov_max_vfs * 2) {
7135             error_setg(errp, "sriov_vq_flexible must be greater than or equal"
7136                        " to %d (sriov_max_vfs * 2)", params->sriov_max_vfs * 2);
7137             return;
7138         }
7139 
7140         if (params->max_ioqpairs < params->sriov_vq_flexible + 2) {
7141             error_setg(errp, "(max_ioqpairs - sriov_vq_flexible) must be"
7142                        " greater than or equal to 2");
7143             return;
7144         }
7145 
7146         if (params->sriov_vi_flexible < params->sriov_max_vfs) {
7147             error_setg(errp, "sriov_vi_flexible must be greater than or equal"
7148                        " to %d (sriov_max_vfs)", params->sriov_max_vfs);
7149             return;
7150         }
7151 
7152         if (params->msix_qsize < params->sriov_vi_flexible + 1) {
7153             error_setg(errp, "(msix_qsize - sriov_vi_flexible) must be"
7154                        " greater than or equal to 1");
7155             return;
7156         }
7157 
7158         if (params->sriov_max_vi_per_vf &&
7159             (params->sriov_max_vi_per_vf - 1) % NVME_VF_RES_GRANULARITY) {
7160             error_setg(errp, "sriov_max_vi_per_vf must meet:"
7161                        " (sriov_max_vi_per_vf - 1) %% %d == 0 and"
7162                        " sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY);
7163             return;
7164         }
7165 
7166         if (params->sriov_max_vq_per_vf &&
7167             (params->sriov_max_vq_per_vf < 2 ||
7168              (params->sriov_max_vq_per_vf - 1) % NVME_VF_RES_GRANULARITY)) {
7169             error_setg(errp, "sriov_max_vq_per_vf must meet:"
7170                        " (sriov_max_vq_per_vf - 1) %% %d == 0 and"
7171                        " sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY);
7172             return;
7173         }
7174     }
7175 }
7176 
7177 static void nvme_init_state(NvmeCtrl *n)
7178 {
7179     NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7180     NvmeSecCtrlList *list = &n->sec_ctrl_list;
7181     NvmeSecCtrlEntry *sctrl;
7182     uint8_t max_vfs;
7183     int i;
7184 
7185     if (pci_is_vf(&n->parent_obj)) {
7186         sctrl = nvme_sctrl(n);
7187         max_vfs = 0;
7188         n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
7189         n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
7190     } else {
7191         max_vfs = n->params.sriov_max_vfs;
7192         n->conf_ioqpairs = n->params.max_ioqpairs;
7193         n->conf_msix_qsize = n->params.msix_qsize;
7194     }
7195 
7196     n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
7197     n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
7198     n->temperature = NVME_TEMPERATURE;
7199     n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
7200     n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
7201     n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
7202     QTAILQ_INIT(&n->aer_queue);
7203 
7204     list->numcntl = cpu_to_le16(max_vfs);
7205     for (i = 0; i < max_vfs; i++) {
7206         sctrl = &list->sec[i];
7207         sctrl->pcid = cpu_to_le16(n->cntlid);
7208         sctrl->vfn = cpu_to_le16(i + 1);
7209     }
7210 
7211     cap->cntlid = cpu_to_le16(n->cntlid);
7212     cap->crt = NVME_CRT_VQ | NVME_CRT_VI;
7213 
7214     if (pci_is_vf(&n->parent_obj)) {
7215         cap->vqprt = cpu_to_le16(1 + n->conf_ioqpairs);
7216     } else {
7217         cap->vqprt = cpu_to_le16(1 + n->params.max_ioqpairs -
7218                                  n->params.sriov_vq_flexible);
7219         cap->vqfrt = cpu_to_le32(n->params.sriov_vq_flexible);
7220         cap->vqrfap = cap->vqfrt;
7221         cap->vqgran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7222         cap->vqfrsm = n->params.sriov_max_vq_per_vf ?
7223                         cpu_to_le16(n->params.sriov_max_vq_per_vf) :
7224                         cap->vqfrt / MAX(max_vfs, 1);
7225     }
7226 
7227     if (pci_is_vf(&n->parent_obj)) {
7228         cap->viprt = cpu_to_le16(n->conf_msix_qsize);
7229     } else {
7230         cap->viprt = cpu_to_le16(n->params.msix_qsize -
7231                                  n->params.sriov_vi_flexible);
7232         cap->vifrt = cpu_to_le32(n->params.sriov_vi_flexible);
7233         cap->virfap = cap->vifrt;
7234         cap->vigran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7235         cap->vifrsm = n->params.sriov_max_vi_per_vf ?
7236                         cpu_to_le16(n->params.sriov_max_vi_per_vf) :
7237                         cap->vifrt / MAX(max_vfs, 1);
7238     }
7239 }
7240 
7241 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
7242 {
7243     uint64_t cmb_size = n->params.cmb_size_mb * MiB;
7244     uint64_t cap = ldq_le_p(&n->bar.cap);
7245 
7246     n->cmb.buf = g_malloc0(cmb_size);
7247     memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
7248                           "nvme-cmb", cmb_size);
7249     pci_register_bar(pci_dev, NVME_CMB_BIR,
7250                      PCI_BASE_ADDRESS_SPACE_MEMORY |
7251                      PCI_BASE_ADDRESS_MEM_TYPE_64 |
7252                      PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
7253 
7254     NVME_CAP_SET_CMBS(cap, 1);
7255     stq_le_p(&n->bar.cap, cap);
7256 
7257     if (n->params.legacy_cmb) {
7258         nvme_cmb_enable_regs(n);
7259         n->cmb.cmse = true;
7260     }
7261 }
7262 
7263 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
7264 {
7265     uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap);
7266 
7267     NVME_PMRCAP_SET_RDS(pmrcap, 1);
7268     NVME_PMRCAP_SET_WDS(pmrcap, 1);
7269     NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR);
7270     /* Turn on bit 1 support */
7271     NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02);
7272     NVME_PMRCAP_SET_CMSS(pmrcap, 1);
7273     stl_le_p(&n->bar.pmrcap, pmrcap);
7274 
7275     pci_register_bar(pci_dev, NVME_PMR_BIR,
7276                      PCI_BASE_ADDRESS_SPACE_MEMORY |
7277                      PCI_BASE_ADDRESS_MEM_TYPE_64 |
7278                      PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
7279 
7280     memory_region_set_enabled(&n->pmr.dev->mr, false);
7281 }
7282 
7283 static uint64_t nvme_bar_size(unsigned total_queues, unsigned total_irqs,
7284                               unsigned *msix_table_offset,
7285                               unsigned *msix_pba_offset)
7286 {
7287     uint64_t bar_size, msix_table_size, msix_pba_size;
7288 
7289     bar_size = sizeof(NvmeBar) + 2 * total_queues * NVME_DB_SIZE;
7290     bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
7291 
7292     if (msix_table_offset) {
7293         *msix_table_offset = bar_size;
7294     }
7295 
7296     msix_table_size = PCI_MSIX_ENTRY_SIZE * total_irqs;
7297     bar_size += msix_table_size;
7298     bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
7299 
7300     if (msix_pba_offset) {
7301         *msix_pba_offset = bar_size;
7302     }
7303 
7304     msix_pba_size = QEMU_ALIGN_UP(total_irqs, 64) / 8;
7305     bar_size += msix_pba_size;
7306 
7307     bar_size = pow2ceil(bar_size);
7308     return bar_size;
7309 }
7310 
7311 static void nvme_init_sriov(NvmeCtrl *n, PCIDevice *pci_dev, uint16_t offset)
7312 {
7313     uint16_t vf_dev_id = n->params.use_intel_id ?
7314                          PCI_DEVICE_ID_INTEL_NVME : PCI_DEVICE_ID_REDHAT_NVME;
7315     NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7316     uint64_t bar_size = nvme_bar_size(le16_to_cpu(cap->vqfrsm),
7317                                       le16_to_cpu(cap->vifrsm),
7318                                       NULL, NULL);
7319 
7320     pcie_sriov_pf_init(pci_dev, offset, "nvme", vf_dev_id,
7321                        n->params.sriov_max_vfs, n->params.sriov_max_vfs,
7322                        NVME_VF_OFFSET, NVME_VF_STRIDE);
7323 
7324     pcie_sriov_pf_init_vf_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
7325                               PCI_BASE_ADDRESS_MEM_TYPE_64, bar_size);
7326 }
7327 
7328 static int nvme_add_pm_capability(PCIDevice *pci_dev, uint8_t offset)
7329 {
7330     Error *err = NULL;
7331     int ret;
7332 
7333     ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, offset,
7334                              PCI_PM_SIZEOF, &err);
7335     if (err) {
7336         error_report_err(err);
7337         return ret;
7338     }
7339 
7340     pci_set_word(pci_dev->config + offset + PCI_PM_PMC,
7341                  PCI_PM_CAP_VER_1_2);
7342     pci_set_word(pci_dev->config + offset + PCI_PM_CTRL,
7343                  PCI_PM_CTRL_NO_SOFT_RESET);
7344     pci_set_word(pci_dev->wmask + offset + PCI_PM_CTRL,
7345                  PCI_PM_CTRL_STATE_MASK);
7346 
7347     return 0;
7348 }
7349 
7350 static int nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
7351 {
7352     uint8_t *pci_conf = pci_dev->config;
7353     uint64_t bar_size;
7354     unsigned msix_table_offset, msix_pba_offset;
7355     int ret;
7356 
7357     Error *err = NULL;
7358 
7359     pci_conf[PCI_INTERRUPT_PIN] = 1;
7360     pci_config_set_prog_interface(pci_conf, 0x2);
7361 
7362     if (n->params.use_intel_id) {
7363         pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
7364         pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_NVME);
7365     } else {
7366         pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
7367         pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
7368     }
7369 
7370     pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
7371     nvme_add_pm_capability(pci_dev, 0x60);
7372     pcie_endpoint_cap_init(pci_dev, 0x80);
7373     pcie_cap_flr_init(pci_dev);
7374     if (n->params.sriov_max_vfs) {
7375         pcie_ari_init(pci_dev, 0x100, 1);
7376     }
7377 
7378     /* add one to max_ioqpairs to account for the admin queue pair */
7379     bar_size = nvme_bar_size(n->params.max_ioqpairs + 1, n->params.msix_qsize,
7380                              &msix_table_offset, &msix_pba_offset);
7381 
7382     memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
7383     memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
7384                           msix_table_offset);
7385     memory_region_add_subregion(&n->bar0, 0, &n->iomem);
7386 
7387     if (pci_is_vf(pci_dev)) {
7388         pcie_sriov_vf_register_bar(pci_dev, 0, &n->bar0);
7389     } else {
7390         pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
7391                          PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
7392     }
7393     ret = msix_init(pci_dev, n->params.msix_qsize,
7394                     &n->bar0, 0, msix_table_offset,
7395                     &n->bar0, 0, msix_pba_offset, 0, &err);
7396     if (ret < 0) {
7397         if (ret == -ENOTSUP) {
7398             warn_report_err(err);
7399         } else {
7400             error_propagate(errp, err);
7401             return ret;
7402         }
7403     }
7404 
7405     nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
7406 
7407     if (n->params.cmb_size_mb) {
7408         nvme_init_cmb(n, pci_dev);
7409     }
7410 
7411     if (n->pmr.dev) {
7412         nvme_init_pmr(n, pci_dev);
7413     }
7414 
7415     if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
7416         nvme_init_sriov(n, pci_dev, 0x120);
7417     }
7418 
7419     return 0;
7420 }
7421 
7422 static void nvme_init_subnqn(NvmeCtrl *n)
7423 {
7424     NvmeSubsystem *subsys = n->subsys;
7425     NvmeIdCtrl *id = &n->id_ctrl;
7426 
7427     if (!subsys) {
7428         snprintf((char *)id->subnqn, sizeof(id->subnqn),
7429                  "nqn.2019-08.org.qemu:%s", n->params.serial);
7430     } else {
7431         pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
7432     }
7433 }
7434 
7435 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
7436 {
7437     NvmeIdCtrl *id = &n->id_ctrl;
7438     uint8_t *pci_conf = pci_dev->config;
7439     uint64_t cap = ldq_le_p(&n->bar.cap);
7440     NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
7441 
7442     id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
7443     id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
7444     strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
7445     strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' ');
7446     strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
7447 
7448     id->cntlid = cpu_to_le16(n->cntlid);
7449 
7450     id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
7451     id->ctratt |= cpu_to_le32(NVME_CTRATT_ELBAS);
7452 
7453     id->rab = 6;
7454 
7455     if (n->params.use_intel_id) {
7456         id->ieee[0] = 0xb3;
7457         id->ieee[1] = 0x02;
7458         id->ieee[2] = 0x00;
7459     } else {
7460         id->ieee[0] = 0x00;
7461         id->ieee[1] = 0x54;
7462         id->ieee[2] = 0x52;
7463     }
7464 
7465     id->mdts = n->params.mdts;
7466     id->ver = cpu_to_le32(NVME_SPEC_VER);
7467     id->oacs =
7468         cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT | NVME_OACS_DBBUF);
7469     id->cntrltype = 0x1;
7470 
7471     /*
7472      * Because the controller always completes the Abort command immediately,
7473      * there can never be more than one concurrently executing Abort command,
7474      * so this value is never used for anything. Note that there can easily be
7475      * many Abort commands in the queues, but they are not considered
7476      * "executing" until processed by nvme_abort.
7477      *
7478      * The specification recommends a value of 3 for Abort Command Limit (four
7479      * concurrently outstanding Abort commands), so lets use that though it is
7480      * inconsequential.
7481      */
7482     id->acl = 3;
7483     id->aerl = n->params.aerl;
7484     id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
7485     id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
7486 
7487     /* recommended default value (~70 C) */
7488     id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
7489     id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
7490 
7491     id->sqes = (0x6 << 4) | 0x6;
7492     id->cqes = (0x4 << 4) | 0x4;
7493     id->nn = cpu_to_le32(NVME_MAX_NAMESPACES);
7494     id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
7495                            NVME_ONCS_FEATURES | NVME_ONCS_DSM |
7496                            NVME_ONCS_COMPARE | NVME_ONCS_COPY);
7497 
7498     /*
7499      * NOTE: If this device ever supports a command set that does NOT use 0x0
7500      * as a Flush-equivalent operation, support for the broadcast NSID in Flush
7501      * should probably be removed.
7502      *
7503      * See comment in nvme_io_cmd.
7504      */
7505     id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
7506 
7507     id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1);
7508     id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN);
7509 
7510     nvme_init_subnqn(n);
7511 
7512     id->psd[0].mp = cpu_to_le16(0x9c4);
7513     id->psd[0].enlat = cpu_to_le32(0x10);
7514     id->psd[0].exlat = cpu_to_le32(0x4);
7515 
7516     if (n->subsys) {
7517         id->cmic |= NVME_CMIC_MULTI_CTRL;
7518     }
7519 
7520     NVME_CAP_SET_MQES(cap, 0x7ff);
7521     NVME_CAP_SET_CQR(cap, 1);
7522     NVME_CAP_SET_TO(cap, 0xf);
7523     NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM);
7524     NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP);
7525     NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY);
7526     NVME_CAP_SET_MPSMAX(cap, 4);
7527     NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0);
7528     NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0);
7529     stq_le_p(&n->bar.cap, cap);
7530 
7531     stl_le_p(&n->bar.vs, NVME_SPEC_VER);
7532     n->bar.intmc = n->bar.intms = 0;
7533 
7534     if (pci_is_vf(&n->parent_obj) && !sctrl->scs) {
7535         stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
7536     }
7537 }
7538 
7539 static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
7540 {
7541     int cntlid;
7542 
7543     if (!n->subsys) {
7544         return 0;
7545     }
7546 
7547     cntlid = nvme_subsys_register_ctrl(n, errp);
7548     if (cntlid < 0) {
7549         return -1;
7550     }
7551 
7552     n->cntlid = cntlid;
7553 
7554     return 0;
7555 }
7556 
7557 void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns)
7558 {
7559     uint32_t nsid = ns->params.nsid;
7560     assert(nsid && nsid <= NVME_MAX_NAMESPACES);
7561 
7562     n->namespaces[nsid] = ns;
7563     ns->attached++;
7564 
7565     n->dmrsl = MIN_NON_ZERO(n->dmrsl,
7566                             BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
7567 }
7568 
7569 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
7570 {
7571     NvmeCtrl *n = NVME(pci_dev);
7572     NvmeNamespace *ns;
7573     Error *local_err = NULL;
7574     NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev));
7575 
7576     if (pci_is_vf(pci_dev)) {
7577         /*
7578          * VFs derive settings from the parent. PF's lifespan exceeds
7579          * that of VF's, so it's safe to share params.serial.
7580          */
7581         memcpy(&n->params, &pn->params, sizeof(NvmeParams));
7582         n->subsys = pn->subsys;
7583     }
7584 
7585     nvme_check_constraints(n, &local_err);
7586     if (local_err) {
7587         error_propagate(errp, local_err);
7588         return;
7589     }
7590 
7591     qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS,
7592               &pci_dev->qdev, n->parent_obj.qdev.id);
7593 
7594     if (nvme_init_subsys(n, errp)) {
7595         error_propagate(errp, local_err);
7596         return;
7597     }
7598     nvme_init_state(n);
7599     if (nvme_init_pci(n, pci_dev, errp)) {
7600         return;
7601     }
7602     nvme_init_ctrl(n, pci_dev);
7603 
7604     /* setup a namespace if the controller drive property was given */
7605     if (n->namespace.blkconf.blk) {
7606         ns = &n->namespace;
7607         ns->params.nsid = 1;
7608 
7609         if (nvme_ns_setup(ns, errp)) {
7610             return;
7611         }
7612 
7613         nvme_attach_ns(n, ns);
7614     }
7615 }
7616 
7617 static void nvme_exit(PCIDevice *pci_dev)
7618 {
7619     NvmeCtrl *n = NVME(pci_dev);
7620     NvmeNamespace *ns;
7621     int i;
7622 
7623     nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
7624 
7625     if (n->subsys) {
7626         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7627             ns = nvme_ns(n, i);
7628             if (ns) {
7629                 ns->attached--;
7630             }
7631         }
7632 
7633         nvme_subsys_unregister_ctrl(n->subsys, n);
7634     }
7635 
7636     g_free(n->cq);
7637     g_free(n->sq);
7638     g_free(n->aer_reqs);
7639 
7640     if (n->params.cmb_size_mb) {
7641         g_free(n->cmb.buf);
7642     }
7643 
7644     if (n->pmr.dev) {
7645         host_memory_backend_set_mapped(n->pmr.dev, false);
7646     }
7647 
7648     if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
7649         pcie_sriov_pf_exit(pci_dev);
7650     }
7651 
7652     msix_uninit(pci_dev, &n->bar0, &n->bar0);
7653     memory_region_del_subregion(&n->bar0, &n->iomem);
7654 }
7655 
7656 static Property nvme_props[] = {
7657     DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
7658     DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
7659                      HostMemoryBackend *),
7660     DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
7661                      NvmeSubsystem *),
7662     DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
7663     DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
7664     DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
7665     DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
7666     DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
7667     DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
7668     DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
7669     DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
7670     DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
7671     DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
7672     DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
7673     DEFINE_PROP_BOOL("ioeventfd", NvmeCtrl, params.ioeventfd, false),
7674     DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
7675     DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl,
7676                      params.auto_transition_zones, true),
7677     DEFINE_PROP_UINT8("sriov_max_vfs", NvmeCtrl, params.sriov_max_vfs, 0),
7678     DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl,
7679                        params.sriov_vq_flexible, 0),
7680     DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl,
7681                        params.sriov_vi_flexible, 0),
7682     DEFINE_PROP_UINT8("sriov_max_vi_per_vf", NvmeCtrl,
7683                       params.sriov_max_vi_per_vf, 0),
7684     DEFINE_PROP_UINT8("sriov_max_vq_per_vf", NvmeCtrl,
7685                       params.sriov_max_vq_per_vf, 0),
7686     DEFINE_PROP_END_OF_LIST(),
7687 };
7688 
7689 static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
7690                                    void *opaque, Error **errp)
7691 {
7692     NvmeCtrl *n = NVME(obj);
7693     uint8_t value = n->smart_critical_warning;
7694 
7695     visit_type_uint8(v, name, &value, errp);
7696 }
7697 
7698 static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
7699                                    void *opaque, Error **errp)
7700 {
7701     NvmeCtrl *n = NVME(obj);
7702     uint8_t value, old_value, cap = 0, index, event;
7703 
7704     if (!visit_type_uint8(v, name, &value, errp)) {
7705         return;
7706     }
7707 
7708     cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
7709           | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
7710     if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) {
7711         cap |= NVME_SMART_PMR_UNRELIABLE;
7712     }
7713 
7714     if ((value & cap) != value) {
7715         error_setg(errp, "unsupported smart critical warning bits: 0x%x",
7716                    value & ~cap);
7717         return;
7718     }
7719 
7720     old_value = n->smart_critical_warning;
7721     n->smart_critical_warning = value;
7722 
7723     /* only inject new bits of smart critical warning */
7724     for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
7725         event = 1 << index;
7726         if (value & ~old_value & event)
7727             nvme_smart_event(n, event);
7728     }
7729 }
7730 
7731 static void nvme_pci_reset(DeviceState *qdev)
7732 {
7733     PCIDevice *pci_dev = PCI_DEVICE(qdev);
7734     NvmeCtrl *n = NVME(pci_dev);
7735 
7736     trace_pci_nvme_pci_reset();
7737     nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
7738 }
7739 
7740 static void nvme_sriov_pre_write_ctrl(PCIDevice *dev, uint32_t address,
7741                                       uint32_t val, int len)
7742 {
7743     NvmeCtrl *n = NVME(dev);
7744     NvmeSecCtrlEntry *sctrl;
7745     uint16_t sriov_cap = dev->exp.sriov_cap;
7746     uint32_t off = address - sriov_cap;
7747     int i, num_vfs;
7748 
7749     if (!sriov_cap) {
7750         return;
7751     }
7752 
7753     if (range_covers_byte(off, len, PCI_SRIOV_CTRL)) {
7754         if (!(val & PCI_SRIOV_CTRL_VFE)) {
7755             num_vfs = pci_get_word(dev->config + sriov_cap + PCI_SRIOV_NUM_VF);
7756             for (i = 0; i < num_vfs; i++) {
7757                 sctrl = &n->sec_ctrl_list.sec[i];
7758                 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
7759             }
7760         }
7761     }
7762 }
7763 
7764 static void nvme_pci_write_config(PCIDevice *dev, uint32_t address,
7765                                   uint32_t val, int len)
7766 {
7767     nvme_sriov_pre_write_ctrl(dev, address, val, len);
7768     pci_default_write_config(dev, address, val, len);
7769     pcie_cap_flr_write_config(dev, address, val, len);
7770 }
7771 
7772 static const VMStateDescription nvme_vmstate = {
7773     .name = "nvme",
7774     .unmigratable = 1,
7775 };
7776 
7777 static void nvme_class_init(ObjectClass *oc, void *data)
7778 {
7779     DeviceClass *dc = DEVICE_CLASS(oc);
7780     PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
7781 
7782     pc->realize = nvme_realize;
7783     pc->config_write = nvme_pci_write_config;
7784     pc->exit = nvme_exit;
7785     pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
7786     pc->revision = 2;
7787 
7788     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
7789     dc->desc = "Non-Volatile Memory Express";
7790     device_class_set_props(dc, nvme_props);
7791     dc->vmsd = &nvme_vmstate;
7792     dc->reset = nvme_pci_reset;
7793 }
7794 
7795 static void nvme_instance_init(Object *obj)
7796 {
7797     NvmeCtrl *n = NVME(obj);
7798 
7799     device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
7800                                   "bootindex", "/namespace@1,0",
7801                                   DEVICE(obj));
7802 
7803     object_property_add(obj, "smart_critical_warning", "uint8",
7804                         nvme_get_smart_warning,
7805                         nvme_set_smart_warning, NULL, NULL);
7806 }
7807 
7808 static const TypeInfo nvme_info = {
7809     .name          = TYPE_NVME,
7810     .parent        = TYPE_PCI_DEVICE,
7811     .instance_size = sizeof(NvmeCtrl),
7812     .instance_init = nvme_instance_init,
7813     .class_init    = nvme_class_init,
7814     .interfaces = (InterfaceInfo[]) {
7815         { INTERFACE_PCIE_DEVICE },
7816         { }
7817     },
7818 };
7819 
7820 static const TypeInfo nvme_bus_info = {
7821     .name = TYPE_NVME_BUS,
7822     .parent = TYPE_BUS,
7823     .instance_size = sizeof(NvmeBus),
7824 };
7825 
7826 static void nvme_register_types(void)
7827 {
7828     type_register_static(&nvme_info);
7829     type_register_static(&nvme_bus_info);
7830 }
7831 
7832 type_init(nvme_register_types)
7833