xref: /qemu/hw/nvme/ctrl.c (revision 7a21bee2)
1 /*
2  * QEMU NVM Express Controller
3  *
4  * Copyright (c) 2012, Intel Corporation
5  *
6  * Written by Keith Busch <keith.busch@intel.com>
7  *
8  * This code is licensed under the GNU GPL v2 or later.
9  */
10 
11 /**
12  * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
13  *
14  *  https://nvmexpress.org/developers/nvme-specification/
15  *
16  *
17  * Notes on coding style
18  * ---------------------
19  * While QEMU coding style prefers lowercase hexadecimals in constants, the
20  * NVMe subsystem use thes format from the NVMe specifications in the comments
21  * (i.e. 'h' suffix instead of '0x' prefix).
22  *
23  * Usage
24  * -----
25  * See docs/system/nvme.rst for extensive documentation.
26  *
27  * Add options:
28  *      -drive file=<file>,if=none,id=<drive_id>
29  *      -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
30  *      -device nvme,serial=<serial>,id=<bus_name>, \
31  *              cmb_size_mb=<cmb_size_mb[optional]>, \
32  *              [pmrdev=<mem_backend_file_id>,] \
33  *              max_ioqpairs=<N[optional]>, \
34  *              aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
35  *              mdts=<N[optional]>,vsl=<N[optional]>, \
36  *              zoned.zasl=<N[optional]>, \
37  *              zoned.auto_transition=<on|off[optional]>, \
38  *              sriov_max_vfs=<N[optional]> \
39  *              sriov_vq_flexible=<N[optional]> \
40  *              sriov_vi_flexible=<N[optional]> \
41  *              sriov_max_vi_per_vf=<N[optional]> \
42  *              sriov_max_vq_per_vf=<N[optional]> \
43  *              subsys=<subsys_id>
44  *      -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
45  *              zoned=<true|false[optional]>, \
46  *              subsys=<subsys_id>,detached=<true|false[optional]>
47  *
48  * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
49  * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
50  * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
51  * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
52  *
53  * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
54  * For example:
55  * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
56  *  size=<size> .... -device nvme,...,pmrdev=<mem_id>
57  *
58  * The PMR will use BAR 4/5 exclusively.
59  *
60  * To place controller(s) and namespace(s) to a subsystem, then provide
61  * nvme-subsys device as above.
62  *
63  * nvme subsystem device parameters
64  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
65  * - `nqn`
66  *   This parameter provides the `<nqn_id>` part of the string
67  *   `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
68  *   of subsystem controllers. Note that `<nqn_id>` should be unique per
69  *   subsystem, but this is not enforced by QEMU. If not specified, it will
70  *   default to the value of the `id` parameter (`<subsys_id>`).
71  *
72  * nvme device parameters
73  * ~~~~~~~~~~~~~~~~~~~~~~
74  * - `subsys`
75  *   Specifying this parameter attaches the controller to the subsystem and
76  *   the SUBNQN field in the controller will report the NQN of the subsystem
77  *   device. This also enables multi controller capability represented in
78  *   Identify Controller data structure in CMIC (Controller Multi-path I/O and
79  *   Namespace Sharing Capabilities).
80  *
81  * - `aerl`
82  *   The Asynchronous Event Request Limit (AERL). Indicates the maximum number
83  *   of concurrently outstanding Asynchronous Event Request commands support
84  *   by the controller. This is a 0's based value.
85  *
86  * - `aer_max_queued`
87  *   This is the maximum number of events that the device will enqueue for
88  *   completion when there are no outstanding AERs. When the maximum number of
89  *   enqueued events are reached, subsequent events will be dropped.
90  *
91  * - `mdts`
92  *   Indicates the maximum data transfer size for a command that transfers data
93  *   between host-accessible memory and the controller. The value is specified
94  *   as a power of two (2^n) and is in units of the minimum memory page size
95  *   (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
96  *
97  * - `vsl`
98  *   Indicates the maximum data size limit for the Verify command. Like `mdts`,
99  *   this value is specified as a power of two (2^n) and is in units of the
100  *   minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
101  *   KiB).
102  *
103  * - `zoned.zasl`
104  *   Indicates the maximum data transfer size for the Zone Append command. Like
105  *   `mdts`, the value is specified as a power of two (2^n) and is in units of
106  *   the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
107  *   defaulting to the value of `mdts`).
108  *
109  * - `zoned.auto_transition`
110  *   Indicates if zones in zone state implicitly opened can be automatically
111  *   transitioned to zone state closed for resource management purposes.
112  *   Defaults to 'on'.
113  *
114  * - `sriov_max_vfs`
115  *   Indicates the maximum number of PCIe virtual functions supported
116  *   by the controller. The default value is 0. Specifying a non-zero value
117  *   enables reporting of both SR-IOV and ARI capabilities by the NVMe device.
118  *   Virtual function controllers will not report SR-IOV capability.
119  *
120  *   NOTE: Single Root I/O Virtualization support is experimental.
121  *   All the related parameters may be subject to change.
122  *
123  * - `sriov_vq_flexible`
124  *   Indicates the total number of flexible queue resources assignable to all
125  *   the secondary controllers. Implicitly sets the number of primary
126  *   controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`.
127  *
128  * - `sriov_vi_flexible`
129  *   Indicates the total number of flexible interrupt resources assignable to
130  *   all the secondary controllers. Implicitly sets the number of primary
131  *   controller's private resources to `(msix_qsize - sriov_vi_flexible)`.
132  *
133  * - `sriov_max_vi_per_vf`
134  *   Indicates the maximum number of virtual interrupt resources assignable
135  *   to a secondary controller. The default 0 resolves to
136  *   `(sriov_vi_flexible / sriov_max_vfs)`.
137  *
138  * - `sriov_max_vq_per_vf`
139  *   Indicates the maximum number of virtual queue resources assignable to
140  *   a secondary controller. The default 0 resolves to
141  *   `(sriov_vq_flexible / sriov_max_vfs)`.
142  *
143  * nvme namespace device parameters
144  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
145  * - `shared`
146  *   When the parent nvme device (as defined explicitly by the 'bus' parameter
147  *   or implicitly by the most recently defined NvmeBus) is linked to an
148  *   nvme-subsys device, the namespace will be attached to all controllers in
149  *   the subsystem. If set to 'off' (the default), the namespace will remain a
150  *   private namespace and may only be attached to a single controller at a
151  *   time.
152  *
153  * - `detached`
154  *   This parameter is only valid together with the `subsys` parameter. If left
155  *   at the default value (`false/off`), the namespace will be attached to all
156  *   controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
157  *   namespace will be available in the subsystem but not attached to any
158  *   controllers.
159  *
160  * Setting `zoned` to true selects Zoned Command Set at the namespace.
161  * In this case, the following namespace properties are available to configure
162  * zoned operation:
163  *     zoned.zone_size=<zone size in bytes, default: 128MiB>
164  *         The number may be followed by K, M, G as in kilo-, mega- or giga-.
165  *
166  *     zoned.zone_capacity=<zone capacity in bytes, default: zone size>
167  *         The value 0 (default) forces zone capacity to be the same as zone
168  *         size. The value of this property may not exceed zone size.
169  *
170  *     zoned.descr_ext_size=<zone descriptor extension size, default 0>
171  *         This value needs to be specified in 64B units. If it is zero,
172  *         namespace(s) will not support zone descriptor extensions.
173  *
174  *     zoned.max_active=<Maximum Active Resources (zones), default: 0>
175  *         The default value means there is no limit to the number of
176  *         concurrently active zones.
177  *
178  *     zoned.max_open=<Maximum Open Resources (zones), default: 0>
179  *         The default value means there is no limit to the number of
180  *         concurrently open zones.
181  *
182  *     zoned.cross_read=<enable RAZB, default: false>
183  *         Setting this property to true enables Read Across Zone Boundaries.
184  */
185 
186 #include "qemu/osdep.h"
187 #include "qemu/cutils.h"
188 #include "qemu/error-report.h"
189 #include "qemu/log.h"
190 #include "qemu/units.h"
191 #include "qemu/range.h"
192 #include "qapi/error.h"
193 #include "qapi/visitor.h"
194 #include "sysemu/sysemu.h"
195 #include "sysemu/block-backend.h"
196 #include "sysemu/hostmem.h"
197 #include "hw/pci/msix.h"
198 #include "hw/pci/pcie_sriov.h"
199 #include "migration/vmstate.h"
200 
201 #include "nvme.h"
202 #include "dif.h"
203 #include "trace.h"
204 
205 #define NVME_MAX_IOQPAIRS 0xffff
206 #define NVME_DB_SIZE  4
207 #define NVME_SPEC_VER 0x00010400
208 #define NVME_CMB_BIR 2
209 #define NVME_PMR_BIR 4
210 #define NVME_TEMPERATURE 0x143
211 #define NVME_TEMPERATURE_WARNING 0x157
212 #define NVME_TEMPERATURE_CRITICAL 0x175
213 #define NVME_NUM_FW_SLOTS 1
214 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
215 #define NVME_MAX_VFS 127
216 #define NVME_VF_RES_GRANULARITY 1
217 #define NVME_VF_OFFSET 0x1
218 #define NVME_VF_STRIDE 1
219 
220 #define NVME_GUEST_ERR(trace, fmt, ...) \
221     do { \
222         (trace_##trace)(__VA_ARGS__); \
223         qemu_log_mask(LOG_GUEST_ERROR, #trace \
224             " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
225     } while (0)
226 
227 static const bool nvme_feature_support[NVME_FID_MAX] = {
228     [NVME_ARBITRATION]              = true,
229     [NVME_POWER_MANAGEMENT]         = true,
230     [NVME_TEMPERATURE_THRESHOLD]    = true,
231     [NVME_ERROR_RECOVERY]           = true,
232     [NVME_VOLATILE_WRITE_CACHE]     = true,
233     [NVME_NUMBER_OF_QUEUES]         = true,
234     [NVME_INTERRUPT_COALESCING]     = true,
235     [NVME_INTERRUPT_VECTOR_CONF]    = true,
236     [NVME_WRITE_ATOMICITY]          = true,
237     [NVME_ASYNCHRONOUS_EVENT_CONF]  = true,
238     [NVME_TIMESTAMP]                = true,
239     [NVME_HOST_BEHAVIOR_SUPPORT]    = true,
240     [NVME_COMMAND_SET_PROFILE]      = true,
241 };
242 
243 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
244     [NVME_TEMPERATURE_THRESHOLD]    = NVME_FEAT_CAP_CHANGE,
245     [NVME_ERROR_RECOVERY]           = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
246     [NVME_VOLATILE_WRITE_CACHE]     = NVME_FEAT_CAP_CHANGE,
247     [NVME_NUMBER_OF_QUEUES]         = NVME_FEAT_CAP_CHANGE,
248     [NVME_ASYNCHRONOUS_EVENT_CONF]  = NVME_FEAT_CAP_CHANGE,
249     [NVME_TIMESTAMP]                = NVME_FEAT_CAP_CHANGE,
250     [NVME_HOST_BEHAVIOR_SUPPORT]    = NVME_FEAT_CAP_CHANGE,
251     [NVME_COMMAND_SET_PROFILE]      = NVME_FEAT_CAP_CHANGE,
252 };
253 
254 static const uint32_t nvme_cse_acs[256] = {
255     [NVME_ADM_CMD_DELETE_SQ]        = NVME_CMD_EFF_CSUPP,
256     [NVME_ADM_CMD_CREATE_SQ]        = NVME_CMD_EFF_CSUPP,
257     [NVME_ADM_CMD_GET_LOG_PAGE]     = NVME_CMD_EFF_CSUPP,
258     [NVME_ADM_CMD_DELETE_CQ]        = NVME_CMD_EFF_CSUPP,
259     [NVME_ADM_CMD_CREATE_CQ]        = NVME_CMD_EFF_CSUPP,
260     [NVME_ADM_CMD_IDENTIFY]         = NVME_CMD_EFF_CSUPP,
261     [NVME_ADM_CMD_ABORT]            = NVME_CMD_EFF_CSUPP,
262     [NVME_ADM_CMD_SET_FEATURES]     = NVME_CMD_EFF_CSUPP,
263     [NVME_ADM_CMD_GET_FEATURES]     = NVME_CMD_EFF_CSUPP,
264     [NVME_ADM_CMD_ASYNC_EV_REQ]     = NVME_CMD_EFF_CSUPP,
265     [NVME_ADM_CMD_NS_ATTACHMENT]    = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
266     [NVME_ADM_CMD_VIRT_MNGMT]       = NVME_CMD_EFF_CSUPP,
267     [NVME_ADM_CMD_DBBUF_CONFIG]     = NVME_CMD_EFF_CSUPP,
268     [NVME_ADM_CMD_FORMAT_NVM]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
269 };
270 
271 static const uint32_t nvme_cse_iocs_none[256];
272 
273 static const uint32_t nvme_cse_iocs_nvm[256] = {
274     [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
275     [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
276     [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
277     [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
278     [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
279     [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
280     [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
281     [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
282 };
283 
284 static const uint32_t nvme_cse_iocs_zoned[256] = {
285     [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
286     [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
287     [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
288     [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
289     [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
290     [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
291     [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
292     [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
293     [NVME_CMD_ZONE_APPEND]          = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
294     [NVME_CMD_ZONE_MGMT_SEND]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
295     [NVME_CMD_ZONE_MGMT_RECV]       = NVME_CMD_EFF_CSUPP,
296 };
297 
298 static void nvme_process_sq(void *opaque);
299 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst);
300 
301 static uint16_t nvme_sqid(NvmeRequest *req)
302 {
303     return le16_to_cpu(req->sq->sqid);
304 }
305 
306 static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
307                                    NvmeZoneState state)
308 {
309     if (QTAILQ_IN_USE(zone, entry)) {
310         switch (nvme_get_zone_state(zone)) {
311         case NVME_ZONE_STATE_EXPLICITLY_OPEN:
312             QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
313             break;
314         case NVME_ZONE_STATE_IMPLICITLY_OPEN:
315             QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
316             break;
317         case NVME_ZONE_STATE_CLOSED:
318             QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
319             break;
320         case NVME_ZONE_STATE_FULL:
321             QTAILQ_REMOVE(&ns->full_zones, zone, entry);
322         default:
323             ;
324         }
325     }
326 
327     nvme_set_zone_state(zone, state);
328 
329     switch (state) {
330     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
331         QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
332         break;
333     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
334         QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
335         break;
336     case NVME_ZONE_STATE_CLOSED:
337         QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
338         break;
339     case NVME_ZONE_STATE_FULL:
340         QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
341     case NVME_ZONE_STATE_READ_ONLY:
342         break;
343     default:
344         zone->d.za = 0;
345     }
346 }
347 
348 static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act,
349                                          uint32_t opn, uint32_t zrwa)
350 {
351     if (ns->params.max_active_zones != 0 &&
352         ns->nr_active_zones + act > ns->params.max_active_zones) {
353         trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
354         return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
355     }
356 
357     if (ns->params.max_open_zones != 0 &&
358         ns->nr_open_zones + opn > ns->params.max_open_zones) {
359         trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
360         return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
361     }
362 
363     if (zrwa > ns->zns.numzrwa) {
364         return NVME_NOZRWA | NVME_DNR;
365     }
366 
367     return NVME_SUCCESS;
368 }
369 
370 /*
371  * Check if we can open a zone without exceeding open/active limits.
372  * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
373  */
374 static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
375 {
376     return nvme_zns_check_resources(ns, act, opn, 0);
377 }
378 
379 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
380 {
381     hwaddr hi, lo;
382 
383     if (!n->cmb.cmse) {
384         return false;
385     }
386 
387     lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
388     hi = lo + int128_get64(n->cmb.mem.size);
389 
390     return addr >= lo && addr < hi;
391 }
392 
393 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
394 {
395     hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
396     return &n->cmb.buf[addr - base];
397 }
398 
399 static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
400 {
401     hwaddr hi;
402 
403     if (!n->pmr.cmse) {
404         return false;
405     }
406 
407     hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
408 
409     return addr >= n->pmr.cba && addr < hi;
410 }
411 
412 static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
413 {
414     return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
415 }
416 
417 static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr)
418 {
419     hwaddr hi, lo;
420 
421     /*
422      * The purpose of this check is to guard against invalid "local" access to
423      * the iomem (i.e. controller registers). Thus, we check against the range
424      * covered by the 'bar0' MemoryRegion since that is currently composed of
425      * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however,
426      * that if the device model is ever changed to allow the CMB to be located
427      * in BAR0 as well, then this must be changed.
428      */
429     lo = n->bar0.addr;
430     hi = lo + int128_get64(n->bar0.size);
431 
432     return addr >= lo && addr < hi;
433 }
434 
435 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
436 {
437     hwaddr hi = addr + size - 1;
438     if (hi < addr) {
439         return 1;
440     }
441 
442     if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
443         memcpy(buf, nvme_addr_to_cmb(n, addr), size);
444         return 0;
445     }
446 
447     if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
448         memcpy(buf, nvme_addr_to_pmr(n, addr), size);
449         return 0;
450     }
451 
452     return pci_dma_read(&n->parent_obj, addr, buf, size);
453 }
454 
455 static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size)
456 {
457     hwaddr hi = addr + size - 1;
458     if (hi < addr) {
459         return 1;
460     }
461 
462     if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
463         memcpy(nvme_addr_to_cmb(n, addr), buf, size);
464         return 0;
465     }
466 
467     if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
468         memcpy(nvme_addr_to_pmr(n, addr), buf, size);
469         return 0;
470     }
471 
472     return pci_dma_write(&n->parent_obj, addr, buf, size);
473 }
474 
475 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
476 {
477     return nsid &&
478         (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES);
479 }
480 
481 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
482 {
483     return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
484 }
485 
486 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
487 {
488     return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
489 }
490 
491 static void nvme_inc_cq_tail(NvmeCQueue *cq)
492 {
493     cq->tail++;
494     if (cq->tail >= cq->size) {
495         cq->tail = 0;
496         cq->phase = !cq->phase;
497     }
498 }
499 
500 static void nvme_inc_sq_head(NvmeSQueue *sq)
501 {
502     sq->head = (sq->head + 1) % sq->size;
503 }
504 
505 static uint8_t nvme_cq_full(NvmeCQueue *cq)
506 {
507     return (cq->tail + 1) % cq->size == cq->head;
508 }
509 
510 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
511 {
512     return sq->head == sq->tail;
513 }
514 
515 static void nvme_irq_check(NvmeCtrl *n)
516 {
517     uint32_t intms = ldl_le_p(&n->bar.intms);
518 
519     if (msix_enabled(&(n->parent_obj))) {
520         return;
521     }
522     if (~intms & n->irq_status) {
523         pci_irq_assert(&n->parent_obj);
524     } else {
525         pci_irq_deassert(&n->parent_obj);
526     }
527 }
528 
529 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
530 {
531     if (cq->irq_enabled) {
532         if (msix_enabled(&(n->parent_obj))) {
533             trace_pci_nvme_irq_msix(cq->vector);
534             msix_notify(&(n->parent_obj), cq->vector);
535         } else {
536             trace_pci_nvme_irq_pin();
537             assert(cq->vector < 32);
538             n->irq_status |= 1 << cq->vector;
539             nvme_irq_check(n);
540         }
541     } else {
542         trace_pci_nvme_irq_masked();
543     }
544 }
545 
546 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
547 {
548     if (cq->irq_enabled) {
549         if (msix_enabled(&(n->parent_obj))) {
550             return;
551         } else {
552             assert(cq->vector < 32);
553             if (!n->cq_pending) {
554                 n->irq_status &= ~(1 << cq->vector);
555             }
556             nvme_irq_check(n);
557         }
558     }
559 }
560 
561 static void nvme_req_clear(NvmeRequest *req)
562 {
563     req->ns = NULL;
564     req->opaque = NULL;
565     req->aiocb = NULL;
566     memset(&req->cqe, 0x0, sizeof(req->cqe));
567     req->status = NVME_SUCCESS;
568 }
569 
570 static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
571 {
572     if (dma) {
573         pci_dma_sglist_init(&sg->qsg, &n->parent_obj, 0);
574         sg->flags = NVME_SG_DMA;
575     } else {
576         qemu_iovec_init(&sg->iov, 0);
577     }
578 
579     sg->flags |= NVME_SG_ALLOC;
580 }
581 
582 static inline void nvme_sg_unmap(NvmeSg *sg)
583 {
584     if (!(sg->flags & NVME_SG_ALLOC)) {
585         return;
586     }
587 
588     if (sg->flags & NVME_SG_DMA) {
589         qemu_sglist_destroy(&sg->qsg);
590     } else {
591         qemu_iovec_destroy(&sg->iov);
592     }
593 
594     memset(sg, 0x0, sizeof(*sg));
595 }
596 
597 /*
598  * When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
599  * holds both data and metadata. This function splits the data and metadata
600  * into two separate QSG/IOVs.
601  */
602 static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
603                           NvmeSg *mdata)
604 {
605     NvmeSg *dst = data;
606     uint32_t trans_len, count = ns->lbasz;
607     uint64_t offset = 0;
608     bool dma = sg->flags & NVME_SG_DMA;
609     size_t sge_len;
610     size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
611     int sg_idx = 0;
612 
613     assert(sg->flags & NVME_SG_ALLOC);
614 
615     while (sg_len) {
616         sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
617 
618         trans_len = MIN(sg_len, count);
619         trans_len = MIN(trans_len, sge_len - offset);
620 
621         if (dst) {
622             if (dma) {
623                 qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
624                                 trans_len);
625             } else {
626                 qemu_iovec_add(&dst->iov,
627                                sg->iov.iov[sg_idx].iov_base + offset,
628                                trans_len);
629             }
630         }
631 
632         sg_len -= trans_len;
633         count -= trans_len;
634         offset += trans_len;
635 
636         if (count == 0) {
637             dst = (dst == data) ? mdata : data;
638             count = (dst == data) ? ns->lbasz : ns->lbaf.ms;
639         }
640 
641         if (sge_len == offset) {
642             offset = 0;
643             sg_idx++;
644         }
645     }
646 }
647 
648 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
649                                   size_t len)
650 {
651     if (!len) {
652         return NVME_SUCCESS;
653     }
654 
655     trace_pci_nvme_map_addr_cmb(addr, len);
656 
657     if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
658         return NVME_DATA_TRAS_ERROR;
659     }
660 
661     qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
662 
663     return NVME_SUCCESS;
664 }
665 
666 static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
667                                   size_t len)
668 {
669     if (!len) {
670         return NVME_SUCCESS;
671     }
672 
673     if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
674         return NVME_DATA_TRAS_ERROR;
675     }
676 
677     qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
678 
679     return NVME_SUCCESS;
680 }
681 
682 static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
683 {
684     bool cmb = false, pmr = false;
685 
686     if (!len) {
687         return NVME_SUCCESS;
688     }
689 
690     trace_pci_nvme_map_addr(addr, len);
691 
692     if (nvme_addr_is_iomem(n, addr)) {
693         return NVME_DATA_TRAS_ERROR;
694     }
695 
696     if (nvme_addr_is_cmb(n, addr)) {
697         cmb = true;
698     } else if (nvme_addr_is_pmr(n, addr)) {
699         pmr = true;
700     }
701 
702     if (cmb || pmr) {
703         if (sg->flags & NVME_SG_DMA) {
704             return NVME_INVALID_USE_OF_CMB | NVME_DNR;
705         }
706 
707         if (sg->iov.niov + 1 > IOV_MAX) {
708             goto max_mappings_exceeded;
709         }
710 
711         if (cmb) {
712             return nvme_map_addr_cmb(n, &sg->iov, addr, len);
713         } else {
714             return nvme_map_addr_pmr(n, &sg->iov, addr, len);
715         }
716     }
717 
718     if (!(sg->flags & NVME_SG_DMA)) {
719         return NVME_INVALID_USE_OF_CMB | NVME_DNR;
720     }
721 
722     if (sg->qsg.nsg + 1 > IOV_MAX) {
723         goto max_mappings_exceeded;
724     }
725 
726     qemu_sglist_add(&sg->qsg, addr, len);
727 
728     return NVME_SUCCESS;
729 
730 max_mappings_exceeded:
731     NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings,
732                    "number of mappings exceed 1024");
733     return NVME_INTERNAL_DEV_ERROR | NVME_DNR;
734 }
735 
736 static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
737 {
738     return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
739 }
740 
741 static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
742                              uint64_t prp2, uint32_t len)
743 {
744     hwaddr trans_len = n->page_size - (prp1 % n->page_size);
745     trans_len = MIN(len, trans_len);
746     int num_prps = (len >> n->page_bits) + 1;
747     uint16_t status;
748     int ret;
749 
750     trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
751 
752     nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
753 
754     status = nvme_map_addr(n, sg, prp1, trans_len);
755     if (status) {
756         goto unmap;
757     }
758 
759     len -= trans_len;
760     if (len) {
761         if (len > n->page_size) {
762             uint64_t prp_list[n->max_prp_ents];
763             uint32_t nents, prp_trans;
764             int i = 0;
765 
766             /*
767              * The first PRP list entry, pointed to by PRP2 may contain offset.
768              * Hence, we need to calculate the number of entries in based on
769              * that offset.
770              */
771             nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
772             prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
773             ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
774             if (ret) {
775                 trace_pci_nvme_err_addr_read(prp2);
776                 status = NVME_DATA_TRAS_ERROR;
777                 goto unmap;
778             }
779             while (len != 0) {
780                 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
781 
782                 if (i == nents - 1 && len > n->page_size) {
783                     if (unlikely(prp_ent & (n->page_size - 1))) {
784                         trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
785                         status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
786                         goto unmap;
787                     }
788 
789                     i = 0;
790                     nents = (len + n->page_size - 1) >> n->page_bits;
791                     nents = MIN(nents, n->max_prp_ents);
792                     prp_trans = nents * sizeof(uint64_t);
793                     ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
794                                          prp_trans);
795                     if (ret) {
796                         trace_pci_nvme_err_addr_read(prp_ent);
797                         status = NVME_DATA_TRAS_ERROR;
798                         goto unmap;
799                     }
800                     prp_ent = le64_to_cpu(prp_list[i]);
801                 }
802 
803                 if (unlikely(prp_ent & (n->page_size - 1))) {
804                     trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
805                     status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
806                     goto unmap;
807                 }
808 
809                 trans_len = MIN(len, n->page_size);
810                 status = nvme_map_addr(n, sg, prp_ent, trans_len);
811                 if (status) {
812                     goto unmap;
813                 }
814 
815                 len -= trans_len;
816                 i++;
817             }
818         } else {
819             if (unlikely(prp2 & (n->page_size - 1))) {
820                 trace_pci_nvme_err_invalid_prp2_align(prp2);
821                 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
822                 goto unmap;
823             }
824             status = nvme_map_addr(n, sg, prp2, len);
825             if (status) {
826                 goto unmap;
827             }
828         }
829     }
830 
831     return NVME_SUCCESS;
832 
833 unmap:
834     nvme_sg_unmap(sg);
835     return status;
836 }
837 
838 /*
839  * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
840  * number of bytes mapped in len.
841  */
842 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
843                                   NvmeSglDescriptor *segment, uint64_t nsgld,
844                                   size_t *len, NvmeCmd *cmd)
845 {
846     dma_addr_t addr, trans_len;
847     uint32_t dlen;
848     uint16_t status;
849 
850     for (int i = 0; i < nsgld; i++) {
851         uint8_t type = NVME_SGL_TYPE(segment[i].type);
852 
853         switch (type) {
854         case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
855             break;
856         case NVME_SGL_DESCR_TYPE_SEGMENT:
857         case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
858             return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
859         default:
860             return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
861         }
862 
863         dlen = le32_to_cpu(segment[i].len);
864 
865         if (!dlen) {
866             continue;
867         }
868 
869         if (*len == 0) {
870             /*
871              * All data has been mapped, but the SGL contains additional
872              * segments and/or descriptors. The controller might accept
873              * ignoring the rest of the SGL.
874              */
875             uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
876             if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
877                 break;
878             }
879 
880             trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
881             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
882         }
883 
884         trans_len = MIN(*len, dlen);
885 
886         addr = le64_to_cpu(segment[i].addr);
887 
888         if (UINT64_MAX - addr < dlen) {
889             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
890         }
891 
892         status = nvme_map_addr(n, sg, addr, trans_len);
893         if (status) {
894             return status;
895         }
896 
897         *len -= trans_len;
898     }
899 
900     return NVME_SUCCESS;
901 }
902 
903 static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
904                              size_t len, NvmeCmd *cmd)
905 {
906     /*
907      * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
908      * dynamically allocating a potentially huge SGL. The spec allows the SGL
909      * to be larger (as in number of bytes required to describe the SGL
910      * descriptors and segment chain) than the command transfer size, so it is
911      * not bounded by MDTS.
912      */
913     const int SEG_CHUNK_SIZE = 256;
914 
915     NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
916     uint64_t nsgld;
917     uint32_t seg_len;
918     uint16_t status;
919     hwaddr addr;
920     int ret;
921 
922     sgld = &sgl;
923     addr = le64_to_cpu(sgl.addr);
924 
925     trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
926 
927     nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
928 
929     /*
930      * If the entire transfer can be described with a single data block it can
931      * be mapped directly.
932      */
933     if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
934         status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
935         if (status) {
936             goto unmap;
937         }
938 
939         goto out;
940     }
941 
942     for (;;) {
943         switch (NVME_SGL_TYPE(sgld->type)) {
944         case NVME_SGL_DESCR_TYPE_SEGMENT:
945         case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
946             break;
947         default:
948             return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
949         }
950 
951         seg_len = le32_to_cpu(sgld->len);
952 
953         /* check the length of the (Last) Segment descriptor */
954         if (!seg_len || seg_len & 0xf) {
955             return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
956         }
957 
958         if (UINT64_MAX - addr < seg_len) {
959             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
960         }
961 
962         nsgld = seg_len / sizeof(NvmeSglDescriptor);
963 
964         while (nsgld > SEG_CHUNK_SIZE) {
965             if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
966                 trace_pci_nvme_err_addr_read(addr);
967                 status = NVME_DATA_TRAS_ERROR;
968                 goto unmap;
969             }
970 
971             status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
972                                        &len, cmd);
973             if (status) {
974                 goto unmap;
975             }
976 
977             nsgld -= SEG_CHUNK_SIZE;
978             addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
979         }
980 
981         ret = nvme_addr_read(n, addr, segment, nsgld *
982                              sizeof(NvmeSglDescriptor));
983         if (ret) {
984             trace_pci_nvme_err_addr_read(addr);
985             status = NVME_DATA_TRAS_ERROR;
986             goto unmap;
987         }
988 
989         last_sgld = &segment[nsgld - 1];
990 
991         /*
992          * If the segment ends with a Data Block, then we are done.
993          */
994         if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
995             status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
996             if (status) {
997                 goto unmap;
998             }
999 
1000             goto out;
1001         }
1002 
1003         /*
1004          * If the last descriptor was not a Data Block, then the current
1005          * segment must not be a Last Segment.
1006          */
1007         if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
1008             status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1009             goto unmap;
1010         }
1011 
1012         sgld = last_sgld;
1013         addr = le64_to_cpu(sgld->addr);
1014 
1015         /*
1016          * Do not map the last descriptor; it will be a Segment or Last Segment
1017          * descriptor and is handled by the next iteration.
1018          */
1019         status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
1020         if (status) {
1021             goto unmap;
1022         }
1023     }
1024 
1025 out:
1026     /* if there is any residual left in len, the SGL was too short */
1027     if (len) {
1028         status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1029         goto unmap;
1030     }
1031 
1032     return NVME_SUCCESS;
1033 
1034 unmap:
1035     nvme_sg_unmap(sg);
1036     return status;
1037 }
1038 
1039 uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1040                        NvmeCmd *cmd)
1041 {
1042     uint64_t prp1, prp2;
1043 
1044     switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
1045     case NVME_PSDT_PRP:
1046         prp1 = le64_to_cpu(cmd->dptr.prp1);
1047         prp2 = le64_to_cpu(cmd->dptr.prp2);
1048 
1049         return nvme_map_prp(n, sg, prp1, prp2, len);
1050     case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
1051     case NVME_PSDT_SGL_MPTR_SGL:
1052         return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
1053     default:
1054         return NVME_INVALID_FIELD;
1055     }
1056 }
1057 
1058 static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1059                               NvmeCmd *cmd)
1060 {
1061     int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
1062     hwaddr mptr = le64_to_cpu(cmd->mptr);
1063     uint16_t status;
1064 
1065     if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
1066         NvmeSglDescriptor sgl;
1067 
1068         if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
1069             return NVME_DATA_TRAS_ERROR;
1070         }
1071 
1072         status = nvme_map_sgl(n, sg, sgl, len, cmd);
1073         if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
1074             status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
1075         }
1076 
1077         return status;
1078     }
1079 
1080     nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
1081     status = nvme_map_addr(n, sg, mptr, len);
1082     if (status) {
1083         nvme_sg_unmap(sg);
1084     }
1085 
1086     return status;
1087 }
1088 
1089 static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1090 {
1091     NvmeNamespace *ns = req->ns;
1092     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1093     bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1094     bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1095     size_t len = nvme_l2b(ns, nlb);
1096     uint16_t status;
1097 
1098     if (nvme_ns_ext(ns) &&
1099         !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1100         NvmeSg sg;
1101 
1102         len += nvme_m2b(ns, nlb);
1103 
1104         status = nvme_map_dptr(n, &sg, len, &req->cmd);
1105         if (status) {
1106             return status;
1107         }
1108 
1109         nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1110         nvme_sg_split(&sg, ns, &req->sg, NULL);
1111         nvme_sg_unmap(&sg);
1112 
1113         return NVME_SUCCESS;
1114     }
1115 
1116     return nvme_map_dptr(n, &req->sg, len, &req->cmd);
1117 }
1118 
1119 static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1120 {
1121     NvmeNamespace *ns = req->ns;
1122     size_t len = nvme_m2b(ns, nlb);
1123     uint16_t status;
1124 
1125     if (nvme_ns_ext(ns)) {
1126         NvmeSg sg;
1127 
1128         len += nvme_l2b(ns, nlb);
1129 
1130         status = nvme_map_dptr(n, &sg, len, &req->cmd);
1131         if (status) {
1132             return status;
1133         }
1134 
1135         nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1136         nvme_sg_split(&sg, ns, NULL, &req->sg);
1137         nvme_sg_unmap(&sg);
1138 
1139         return NVME_SUCCESS;
1140     }
1141 
1142     return nvme_map_mptr(n, &req->sg, len, &req->cmd);
1143 }
1144 
1145 static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
1146                                     uint32_t len, uint32_t bytes,
1147                                     int32_t skip_bytes, int64_t offset,
1148                                     NvmeTxDirection dir)
1149 {
1150     hwaddr addr;
1151     uint32_t trans_len, count = bytes;
1152     bool dma = sg->flags & NVME_SG_DMA;
1153     int64_t sge_len;
1154     int sg_idx = 0;
1155     int ret;
1156 
1157     assert(sg->flags & NVME_SG_ALLOC);
1158 
1159     while (len) {
1160         sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
1161 
1162         if (sge_len - offset < 0) {
1163             offset -= sge_len;
1164             sg_idx++;
1165             continue;
1166         }
1167 
1168         if (sge_len == offset) {
1169             offset = 0;
1170             sg_idx++;
1171             continue;
1172         }
1173 
1174         trans_len = MIN(len, count);
1175         trans_len = MIN(trans_len, sge_len - offset);
1176 
1177         if (dma) {
1178             addr = sg->qsg.sg[sg_idx].base + offset;
1179         } else {
1180             addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
1181         }
1182 
1183         if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1184             ret = nvme_addr_read(n, addr, ptr, trans_len);
1185         } else {
1186             ret = nvme_addr_write(n, addr, ptr, trans_len);
1187         }
1188 
1189         if (ret) {
1190             return NVME_DATA_TRAS_ERROR;
1191         }
1192 
1193         ptr += trans_len;
1194         len -= trans_len;
1195         count -= trans_len;
1196         offset += trans_len;
1197 
1198         if (count == 0) {
1199             count = bytes;
1200             offset += skip_bytes;
1201         }
1202     }
1203 
1204     return NVME_SUCCESS;
1205 }
1206 
1207 static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len,
1208                         NvmeTxDirection dir)
1209 {
1210     assert(sg->flags & NVME_SG_ALLOC);
1211 
1212     if (sg->flags & NVME_SG_DMA) {
1213         const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
1214         dma_addr_t residual;
1215 
1216         if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1217             dma_buf_write(ptr, len, &residual, &sg->qsg, attrs);
1218         } else {
1219             dma_buf_read(ptr, len, &residual, &sg->qsg, attrs);
1220         }
1221 
1222         if (unlikely(residual)) {
1223             trace_pci_nvme_err_invalid_dma();
1224             return NVME_INVALID_FIELD | NVME_DNR;
1225         }
1226     } else {
1227         size_t bytes;
1228 
1229         if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1230             bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
1231         } else {
1232             bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
1233         }
1234 
1235         if (unlikely(bytes != len)) {
1236             trace_pci_nvme_err_invalid_dma();
1237             return NVME_INVALID_FIELD | NVME_DNR;
1238         }
1239     }
1240 
1241     return NVME_SUCCESS;
1242 }
1243 
1244 static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len,
1245                                 NvmeRequest *req)
1246 {
1247     uint16_t status;
1248 
1249     status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1250     if (status) {
1251         return status;
1252     }
1253 
1254     return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
1255 }
1256 
1257 static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len,
1258                                 NvmeRequest *req)
1259 {
1260     uint16_t status;
1261 
1262     status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1263     if (status) {
1264         return status;
1265     }
1266 
1267     return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
1268 }
1269 
1270 uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len,
1271                           NvmeTxDirection dir, NvmeRequest *req)
1272 {
1273     NvmeNamespace *ns = req->ns;
1274     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1275     bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1276     bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1277 
1278     if (nvme_ns_ext(ns) &&
1279         !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1280         return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz,
1281                                    ns->lbaf.ms, 0, dir);
1282     }
1283 
1284     return nvme_tx(n, &req->sg, ptr, len, dir);
1285 }
1286 
1287 uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len,
1288                            NvmeTxDirection dir, NvmeRequest *req)
1289 {
1290     NvmeNamespace *ns = req->ns;
1291     uint16_t status;
1292 
1293     if (nvme_ns_ext(ns)) {
1294         return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms,
1295                                    ns->lbasz, ns->lbasz, dir);
1296     }
1297 
1298     nvme_sg_unmap(&req->sg);
1299 
1300     status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
1301     if (status) {
1302         return status;
1303     }
1304 
1305     return nvme_tx(n, &req->sg, ptr, len, dir);
1306 }
1307 
1308 static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
1309                                  BlockCompletionFunc *cb, NvmeRequest *req)
1310 {
1311     assert(req->sg.flags & NVME_SG_ALLOC);
1312 
1313     if (req->sg.flags & NVME_SG_DMA) {
1314         req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1315                                   cb, req);
1316     } else {
1317         req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
1318     }
1319 }
1320 
1321 static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
1322                                   BlockCompletionFunc *cb, NvmeRequest *req)
1323 {
1324     assert(req->sg.flags & NVME_SG_ALLOC);
1325 
1326     if (req->sg.flags & NVME_SG_DMA) {
1327         req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1328                                    cb, req);
1329     } else {
1330         req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
1331     }
1332 }
1333 
1334 static void nvme_update_cq_head(NvmeCQueue *cq)
1335 {
1336     pci_dma_read(&cq->ctrl->parent_obj, cq->db_addr, &cq->head,
1337             sizeof(cq->head));
1338     trace_pci_nvme_shadow_doorbell_cq(cq->cqid, cq->head);
1339 }
1340 
1341 static void nvme_post_cqes(void *opaque)
1342 {
1343     NvmeCQueue *cq = opaque;
1344     NvmeCtrl *n = cq->ctrl;
1345     NvmeRequest *req, *next;
1346     bool pending = cq->head != cq->tail;
1347     int ret;
1348 
1349     QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
1350         NvmeSQueue *sq;
1351         hwaddr addr;
1352 
1353         if (n->dbbuf_enabled) {
1354             nvme_update_cq_head(cq);
1355         }
1356 
1357         if (nvme_cq_full(cq)) {
1358             break;
1359         }
1360 
1361         sq = req->sq;
1362         req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
1363         req->cqe.sq_id = cpu_to_le16(sq->sqid);
1364         req->cqe.sq_head = cpu_to_le16(sq->head);
1365         addr = cq->dma_addr + cq->tail * n->cqe_size;
1366         ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
1367                             sizeof(req->cqe));
1368         if (ret) {
1369             trace_pci_nvme_err_addr_write(addr);
1370             trace_pci_nvme_err_cfs();
1371             stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
1372             break;
1373         }
1374         QTAILQ_REMOVE(&cq->req_list, req, entry);
1375         nvme_inc_cq_tail(cq);
1376         nvme_sg_unmap(&req->sg);
1377         QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
1378     }
1379     if (cq->tail != cq->head) {
1380         if (cq->irq_enabled && !pending) {
1381             n->cq_pending++;
1382         }
1383 
1384         nvme_irq_assert(n, cq);
1385     }
1386 }
1387 
1388 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
1389 {
1390     assert(cq->cqid == req->sq->cqid);
1391     trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
1392                                           le32_to_cpu(req->cqe.result),
1393                                           le32_to_cpu(req->cqe.dw1),
1394                                           req->status);
1395 
1396     if (req->status) {
1397         trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
1398                                       req->status, req->cmd.opcode);
1399     }
1400 
1401     QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
1402     QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
1403 
1404     if (req->sq->ioeventfd_enabled) {
1405         /* Post CQE directly since we are in main loop thread */
1406         nvme_post_cqes(cq);
1407     } else {
1408         /* Schedule the timer to post CQE later since we are in vcpu thread */
1409         timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1410     }
1411 }
1412 
1413 static void nvme_process_aers(void *opaque)
1414 {
1415     NvmeCtrl *n = opaque;
1416     NvmeAsyncEvent *event, *next;
1417 
1418     trace_pci_nvme_process_aers(n->aer_queued);
1419 
1420     QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
1421         NvmeRequest *req;
1422         NvmeAerResult *result;
1423 
1424         /* can't post cqe if there is nothing to complete */
1425         if (!n->outstanding_aers) {
1426             trace_pci_nvme_no_outstanding_aers();
1427             break;
1428         }
1429 
1430         /* ignore if masked (cqe posted, but event not cleared) */
1431         if (n->aer_mask & (1 << event->result.event_type)) {
1432             trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
1433             continue;
1434         }
1435 
1436         QTAILQ_REMOVE(&n->aer_queue, event, entry);
1437         n->aer_queued--;
1438 
1439         n->aer_mask |= 1 << event->result.event_type;
1440         n->outstanding_aers--;
1441 
1442         req = n->aer_reqs[n->outstanding_aers];
1443 
1444         result = (NvmeAerResult *) &req->cqe.result;
1445         result->event_type = event->result.event_type;
1446         result->event_info = event->result.event_info;
1447         result->log_page = event->result.log_page;
1448         g_free(event);
1449 
1450         trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
1451                                     result->log_page);
1452 
1453         nvme_enqueue_req_completion(&n->admin_cq, req);
1454     }
1455 }
1456 
1457 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
1458                                uint8_t event_info, uint8_t log_page)
1459 {
1460     NvmeAsyncEvent *event;
1461 
1462     trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
1463 
1464     if (n->aer_queued == n->params.aer_max_queued) {
1465         trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
1466         return;
1467     }
1468 
1469     event = g_new(NvmeAsyncEvent, 1);
1470     event->result = (NvmeAerResult) {
1471         .event_type = event_type,
1472         .event_info = event_info,
1473         .log_page   = log_page,
1474     };
1475 
1476     QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
1477     n->aer_queued++;
1478 
1479     nvme_process_aers(n);
1480 }
1481 
1482 static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
1483 {
1484     uint8_t aer_info;
1485 
1486     /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
1487     if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
1488         return;
1489     }
1490 
1491     switch (event) {
1492     case NVME_SMART_SPARE:
1493         aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
1494         break;
1495     case NVME_SMART_TEMPERATURE:
1496         aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
1497         break;
1498     case NVME_SMART_RELIABILITY:
1499     case NVME_SMART_MEDIA_READ_ONLY:
1500     case NVME_SMART_FAILED_VOLATILE_MEDIA:
1501     case NVME_SMART_PMR_UNRELIABLE:
1502         aer_info = NVME_AER_INFO_SMART_RELIABILITY;
1503         break;
1504     default:
1505         return;
1506     }
1507 
1508     nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
1509 }
1510 
1511 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
1512 {
1513     n->aer_mask &= ~(1 << event_type);
1514     if (!QTAILQ_EMPTY(&n->aer_queue)) {
1515         nvme_process_aers(n);
1516     }
1517 }
1518 
1519 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
1520 {
1521     uint8_t mdts = n->params.mdts;
1522 
1523     if (mdts && len > n->page_size << mdts) {
1524         trace_pci_nvme_err_mdts(len);
1525         return NVME_INVALID_FIELD | NVME_DNR;
1526     }
1527 
1528     return NVME_SUCCESS;
1529 }
1530 
1531 static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
1532                                          uint32_t nlb)
1533 {
1534     uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
1535 
1536     if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
1537         trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
1538         return NVME_LBA_RANGE | NVME_DNR;
1539     }
1540 
1541     return NVME_SUCCESS;
1542 }
1543 
1544 static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba,
1545                                  uint32_t nlb, int flags)
1546 {
1547     BlockDriverState *bs = blk_bs(ns->blkconf.blk);
1548 
1549     int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
1550     int64_t offset = nvme_l2b(ns, slba);
1551     int ret;
1552 
1553     /*
1554      * `pnum` holds the number of bytes after offset that shares the same
1555      * allocation status as the byte at offset. If `pnum` is different from
1556      * `bytes`, we should check the allocation status of the next range and
1557      * continue this until all bytes have been checked.
1558      */
1559     do {
1560         bytes -= pnum;
1561 
1562         ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
1563         if (ret < 0) {
1564             return ret;
1565         }
1566 
1567 
1568         trace_pci_nvme_block_status(offset, bytes, pnum, ret,
1569                                     !!(ret & BDRV_BLOCK_ZERO));
1570 
1571         if (!(ret & flags)) {
1572             return 1;
1573         }
1574 
1575         offset += pnum;
1576     } while (pnum != bytes);
1577 
1578     return 0;
1579 }
1580 
1581 static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
1582                                  uint32_t nlb)
1583 {
1584     int ret;
1585     Error *err = NULL;
1586 
1587     ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA);
1588     if (ret) {
1589         if (ret < 0) {
1590             error_setg_errno(&err, -ret, "unable to get block status");
1591             error_report_err(err);
1592 
1593             return NVME_INTERNAL_DEV_ERROR;
1594         }
1595 
1596         return NVME_DULB;
1597     }
1598 
1599     return NVME_SUCCESS;
1600 }
1601 
1602 static void nvme_aio_err(NvmeRequest *req, int ret)
1603 {
1604     uint16_t status = NVME_SUCCESS;
1605     Error *local_err = NULL;
1606 
1607     switch (req->cmd.opcode) {
1608     case NVME_CMD_READ:
1609         status = NVME_UNRECOVERED_READ;
1610         break;
1611     case NVME_CMD_FLUSH:
1612     case NVME_CMD_WRITE:
1613     case NVME_CMD_WRITE_ZEROES:
1614     case NVME_CMD_ZONE_APPEND:
1615         status = NVME_WRITE_FAULT;
1616         break;
1617     default:
1618         status = NVME_INTERNAL_DEV_ERROR;
1619         break;
1620     }
1621 
1622     trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
1623 
1624     error_setg_errno(&local_err, -ret, "aio failed");
1625     error_report_err(local_err);
1626 
1627     /*
1628      * Set the command status code to the first encountered error but allow a
1629      * subsequent Internal Device Error to trump it.
1630      */
1631     if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
1632         return;
1633     }
1634 
1635     req->status = status;
1636 }
1637 
1638 static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
1639 {
1640     return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
1641                                     slba / ns->zone_size;
1642 }
1643 
1644 static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
1645 {
1646     uint32_t zone_idx = nvme_zone_idx(ns, slba);
1647 
1648     if (zone_idx >= ns->num_zones) {
1649         return NULL;
1650     }
1651 
1652     return &ns->zone_array[zone_idx];
1653 }
1654 
1655 static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
1656 {
1657     uint64_t zslba = zone->d.zslba;
1658 
1659     switch (nvme_get_zone_state(zone)) {
1660     case NVME_ZONE_STATE_EMPTY:
1661     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1662     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1663     case NVME_ZONE_STATE_CLOSED:
1664         return NVME_SUCCESS;
1665     case NVME_ZONE_STATE_FULL:
1666         trace_pci_nvme_err_zone_is_full(zslba);
1667         return NVME_ZONE_FULL;
1668     case NVME_ZONE_STATE_OFFLINE:
1669         trace_pci_nvme_err_zone_is_offline(zslba);
1670         return NVME_ZONE_OFFLINE;
1671     case NVME_ZONE_STATE_READ_ONLY:
1672         trace_pci_nvme_err_zone_is_read_only(zslba);
1673         return NVME_ZONE_READ_ONLY;
1674     default:
1675         assert(false);
1676     }
1677 
1678     return NVME_INTERNAL_DEV_ERROR;
1679 }
1680 
1681 static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
1682                                       uint64_t slba, uint32_t nlb)
1683 {
1684     uint64_t zcap = nvme_zone_wr_boundary(zone);
1685     uint16_t status;
1686 
1687     status = nvme_check_zone_state_for_write(zone);
1688     if (status) {
1689         return status;
1690     }
1691 
1692     if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1693         uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas;
1694 
1695         if (slba < zone->w_ptr || slba + nlb > ezrwa) {
1696             trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr);
1697             return NVME_ZONE_INVALID_WRITE;
1698         }
1699     } else {
1700         if (unlikely(slba != zone->w_ptr)) {
1701             trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba,
1702                                                zone->w_ptr);
1703             return NVME_ZONE_INVALID_WRITE;
1704         }
1705     }
1706 
1707     if (unlikely((slba + nlb) > zcap)) {
1708         trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
1709         return NVME_ZONE_BOUNDARY_ERROR;
1710     }
1711 
1712     return NVME_SUCCESS;
1713 }
1714 
1715 static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
1716 {
1717     switch (nvme_get_zone_state(zone)) {
1718     case NVME_ZONE_STATE_EMPTY:
1719     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1720     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1721     case NVME_ZONE_STATE_FULL:
1722     case NVME_ZONE_STATE_CLOSED:
1723     case NVME_ZONE_STATE_READ_ONLY:
1724         return NVME_SUCCESS;
1725     case NVME_ZONE_STATE_OFFLINE:
1726         trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
1727         return NVME_ZONE_OFFLINE;
1728     default:
1729         assert(false);
1730     }
1731 
1732     return NVME_INTERNAL_DEV_ERROR;
1733 }
1734 
1735 static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
1736                                      uint32_t nlb)
1737 {
1738     NvmeZone *zone;
1739     uint64_t bndry, end;
1740     uint16_t status;
1741 
1742     zone = nvme_get_zone_by_slba(ns, slba);
1743     assert(zone);
1744 
1745     bndry = nvme_zone_rd_boundary(ns, zone);
1746     end = slba + nlb;
1747 
1748     status = nvme_check_zone_state_for_read(zone);
1749     if (status) {
1750         ;
1751     } else if (unlikely(end > bndry)) {
1752         if (!ns->params.cross_zone_read) {
1753             status = NVME_ZONE_BOUNDARY_ERROR;
1754         } else {
1755             /*
1756              * Read across zone boundary - check that all subsequent
1757              * zones that are being read have an appropriate state.
1758              */
1759             do {
1760                 zone++;
1761                 status = nvme_check_zone_state_for_read(zone);
1762                 if (status) {
1763                     break;
1764                 }
1765             } while (end > nvme_zone_rd_boundary(ns, zone));
1766         }
1767     }
1768 
1769     return status;
1770 }
1771 
1772 static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
1773 {
1774     switch (nvme_get_zone_state(zone)) {
1775     case NVME_ZONE_STATE_FULL:
1776         return NVME_SUCCESS;
1777 
1778     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1779     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1780         nvme_aor_dec_open(ns);
1781         /* fallthrough */
1782     case NVME_ZONE_STATE_CLOSED:
1783         nvme_aor_dec_active(ns);
1784 
1785         if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1786             zone->d.za &= ~NVME_ZA_ZRWA_VALID;
1787             if (ns->params.numzrwa) {
1788                 ns->zns.numzrwa++;
1789             }
1790         }
1791 
1792         /* fallthrough */
1793     case NVME_ZONE_STATE_EMPTY:
1794         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
1795         return NVME_SUCCESS;
1796 
1797     default:
1798         return NVME_ZONE_INVAL_TRANSITION;
1799     }
1800 }
1801 
1802 static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
1803 {
1804     switch (nvme_get_zone_state(zone)) {
1805     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1806     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1807         nvme_aor_dec_open(ns);
1808         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
1809         /* fall through */
1810     case NVME_ZONE_STATE_CLOSED:
1811         return NVME_SUCCESS;
1812 
1813     default:
1814         return NVME_ZONE_INVAL_TRANSITION;
1815     }
1816 }
1817 
1818 static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone)
1819 {
1820     switch (nvme_get_zone_state(zone)) {
1821     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1822     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1823         nvme_aor_dec_open(ns);
1824         /* fallthrough */
1825     case NVME_ZONE_STATE_CLOSED:
1826         nvme_aor_dec_active(ns);
1827 
1828         if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1829             if (ns->params.numzrwa) {
1830                 ns->zns.numzrwa++;
1831             }
1832         }
1833 
1834         /* fallthrough */
1835     case NVME_ZONE_STATE_FULL:
1836         zone->w_ptr = zone->d.zslba;
1837         zone->d.wp = zone->w_ptr;
1838         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
1839         /* fallthrough */
1840     case NVME_ZONE_STATE_EMPTY:
1841         return NVME_SUCCESS;
1842 
1843     default:
1844         return NVME_ZONE_INVAL_TRANSITION;
1845     }
1846 }
1847 
1848 static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
1849 {
1850     NvmeZone *zone;
1851 
1852     if (ns->params.max_open_zones &&
1853         ns->nr_open_zones == ns->params.max_open_zones) {
1854         zone = QTAILQ_FIRST(&ns->imp_open_zones);
1855         if (zone) {
1856             /*
1857              * Automatically close this implicitly open zone.
1858              */
1859             QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
1860             nvme_zrm_close(ns, zone);
1861         }
1862     }
1863 }
1864 
1865 enum {
1866     NVME_ZRM_AUTO = 1 << 0,
1867     NVME_ZRM_ZRWA = 1 << 1,
1868 };
1869 
1870 static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns,
1871                                     NvmeZone *zone, int flags)
1872 {
1873     int act = 0;
1874     uint16_t status;
1875 
1876     switch (nvme_get_zone_state(zone)) {
1877     case NVME_ZONE_STATE_EMPTY:
1878         act = 1;
1879 
1880         /* fallthrough */
1881 
1882     case NVME_ZONE_STATE_CLOSED:
1883         if (n->params.auto_transition_zones) {
1884             nvme_zrm_auto_transition_zone(ns);
1885         }
1886         status = nvme_zns_check_resources(ns, act, 1,
1887                                           (flags & NVME_ZRM_ZRWA) ? 1 : 0);
1888         if (status) {
1889             return status;
1890         }
1891 
1892         if (act) {
1893             nvme_aor_inc_active(ns);
1894         }
1895 
1896         nvme_aor_inc_open(ns);
1897 
1898         if (flags & NVME_ZRM_AUTO) {
1899             nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
1900             return NVME_SUCCESS;
1901         }
1902 
1903         /* fallthrough */
1904 
1905     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1906         if (flags & NVME_ZRM_AUTO) {
1907             return NVME_SUCCESS;
1908         }
1909 
1910         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
1911 
1912         /* fallthrough */
1913 
1914     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1915         if (flags & NVME_ZRM_ZRWA) {
1916             ns->zns.numzrwa--;
1917 
1918             zone->d.za |= NVME_ZA_ZRWA_VALID;
1919         }
1920 
1921         return NVME_SUCCESS;
1922 
1923     default:
1924         return NVME_ZONE_INVAL_TRANSITION;
1925     }
1926 }
1927 
1928 static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns,
1929                                      NvmeZone *zone)
1930 {
1931     return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO);
1932 }
1933 
1934 static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
1935                                  uint32_t nlb)
1936 {
1937     zone->d.wp += nlb;
1938 
1939     if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
1940         nvme_zrm_finish(ns, zone);
1941     }
1942 }
1943 
1944 static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone,
1945                                            uint32_t nlbc)
1946 {
1947     uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg);
1948 
1949     nlbc = nzrwafgs * ns->zns.zrwafg;
1950 
1951     trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc);
1952 
1953     zone->w_ptr += nlbc;
1954 
1955     nvme_advance_zone_wp(ns, zone, nlbc);
1956 }
1957 
1958 static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
1959 {
1960     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1961     NvmeZone *zone;
1962     uint64_t slba;
1963     uint32_t nlb;
1964 
1965     slba = le64_to_cpu(rw->slba);
1966     nlb = le16_to_cpu(rw->nlb) + 1;
1967     zone = nvme_get_zone_by_slba(ns, slba);
1968     assert(zone);
1969 
1970     if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1971         uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1;
1972         uint64_t elba = slba + nlb - 1;
1973 
1974         if (elba > ezrwa) {
1975             nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa);
1976         }
1977 
1978         return;
1979     }
1980 
1981     nvme_advance_zone_wp(ns, zone, nlb);
1982 }
1983 
1984 static inline bool nvme_is_write(NvmeRequest *req)
1985 {
1986     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1987 
1988     return rw->opcode == NVME_CMD_WRITE ||
1989            rw->opcode == NVME_CMD_ZONE_APPEND ||
1990            rw->opcode == NVME_CMD_WRITE_ZEROES;
1991 }
1992 
1993 static AioContext *nvme_get_aio_context(BlockAIOCB *acb)
1994 {
1995     return qemu_get_aio_context();
1996 }
1997 
1998 static void nvme_misc_cb(void *opaque, int ret)
1999 {
2000     NvmeRequest *req = opaque;
2001 
2002     trace_pci_nvme_misc_cb(nvme_cid(req));
2003 
2004     if (ret) {
2005         nvme_aio_err(req, ret);
2006     }
2007 
2008     nvme_enqueue_req_completion(nvme_cq(req), req);
2009 }
2010 
2011 void nvme_rw_complete_cb(void *opaque, int ret)
2012 {
2013     NvmeRequest *req = opaque;
2014     NvmeNamespace *ns = req->ns;
2015     BlockBackend *blk = ns->blkconf.blk;
2016     BlockAcctCookie *acct = &req->acct;
2017     BlockAcctStats *stats = blk_get_stats(blk);
2018 
2019     trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
2020 
2021     if (ret) {
2022         block_acct_failed(stats, acct);
2023         nvme_aio_err(req, ret);
2024     } else {
2025         block_acct_done(stats, acct);
2026     }
2027 
2028     if (ns->params.zoned && nvme_is_write(req)) {
2029         nvme_finalize_zoned_write(ns, req);
2030     }
2031 
2032     nvme_enqueue_req_completion(nvme_cq(req), req);
2033 }
2034 
2035 static void nvme_rw_cb(void *opaque, int ret)
2036 {
2037     NvmeRequest *req = opaque;
2038     NvmeNamespace *ns = req->ns;
2039 
2040     BlockBackend *blk = ns->blkconf.blk;
2041 
2042     trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
2043 
2044     if (ret) {
2045         goto out;
2046     }
2047 
2048     if (ns->lbaf.ms) {
2049         NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2050         uint64_t slba = le64_to_cpu(rw->slba);
2051         uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
2052         uint64_t offset = nvme_moff(ns, slba);
2053 
2054         if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
2055             size_t mlen = nvme_m2b(ns, nlb);
2056 
2057             req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
2058                                                BDRV_REQ_MAY_UNMAP,
2059                                                nvme_rw_complete_cb, req);
2060             return;
2061         }
2062 
2063         if (nvme_ns_ext(ns) || req->cmd.mptr) {
2064             uint16_t status;
2065 
2066             nvme_sg_unmap(&req->sg);
2067             status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
2068             if (status) {
2069                 ret = -EFAULT;
2070                 goto out;
2071             }
2072 
2073             if (req->cmd.opcode == NVME_CMD_READ) {
2074                 return nvme_blk_read(blk, offset, nvme_rw_complete_cb, req);
2075             }
2076 
2077             return nvme_blk_write(blk, offset, nvme_rw_complete_cb, req);
2078         }
2079     }
2080 
2081 out:
2082     nvme_rw_complete_cb(req, ret);
2083 }
2084 
2085 static void nvme_verify_cb(void *opaque, int ret)
2086 {
2087     NvmeBounceContext *ctx = opaque;
2088     NvmeRequest *req = ctx->req;
2089     NvmeNamespace *ns = req->ns;
2090     BlockBackend *blk = ns->blkconf.blk;
2091     BlockAcctCookie *acct = &req->acct;
2092     BlockAcctStats *stats = blk_get_stats(blk);
2093     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2094     uint64_t slba = le64_to_cpu(rw->slba);
2095     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2096     uint16_t apptag = le16_to_cpu(rw->apptag);
2097     uint16_t appmask = le16_to_cpu(rw->appmask);
2098     uint64_t reftag = le32_to_cpu(rw->reftag);
2099     uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2100     uint16_t status;
2101 
2102     reftag |= cdw3 << 32;
2103 
2104     trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag);
2105 
2106     if (ret) {
2107         block_acct_failed(stats, acct);
2108         nvme_aio_err(req, ret);
2109         goto out;
2110     }
2111 
2112     block_acct_done(stats, acct);
2113 
2114     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2115         status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
2116                                        ctx->mdata.iov.size, slba);
2117         if (status) {
2118             req->status = status;
2119             goto out;
2120         }
2121 
2122         req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2123                                      ctx->mdata.bounce, ctx->mdata.iov.size,
2124                                      prinfo, slba, apptag, appmask, &reftag);
2125     }
2126 
2127 out:
2128     qemu_iovec_destroy(&ctx->data.iov);
2129     g_free(ctx->data.bounce);
2130 
2131     qemu_iovec_destroy(&ctx->mdata.iov);
2132     g_free(ctx->mdata.bounce);
2133 
2134     g_free(ctx);
2135 
2136     nvme_enqueue_req_completion(nvme_cq(req), req);
2137 }
2138 
2139 
2140 static void nvme_verify_mdata_in_cb(void *opaque, int ret)
2141 {
2142     NvmeBounceContext *ctx = opaque;
2143     NvmeRequest *req = ctx->req;
2144     NvmeNamespace *ns = req->ns;
2145     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2146     uint64_t slba = le64_to_cpu(rw->slba);
2147     uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2148     size_t mlen = nvme_m2b(ns, nlb);
2149     uint64_t offset = nvme_moff(ns, slba);
2150     BlockBackend *blk = ns->blkconf.blk;
2151 
2152     trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
2153 
2154     if (ret) {
2155         goto out;
2156     }
2157 
2158     ctx->mdata.bounce = g_malloc(mlen);
2159 
2160     qemu_iovec_reset(&ctx->mdata.iov);
2161     qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2162 
2163     req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2164                                 nvme_verify_cb, ctx);
2165     return;
2166 
2167 out:
2168     nvme_verify_cb(ctx, ret);
2169 }
2170 
2171 struct nvme_compare_ctx {
2172     struct {
2173         QEMUIOVector iov;
2174         uint8_t *bounce;
2175     } data;
2176 
2177     struct {
2178         QEMUIOVector iov;
2179         uint8_t *bounce;
2180     } mdata;
2181 };
2182 
2183 static void nvme_compare_mdata_cb(void *opaque, int ret)
2184 {
2185     NvmeRequest *req = opaque;
2186     NvmeNamespace *ns = req->ns;
2187     NvmeCtrl *n = nvme_ctrl(req);
2188     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2189     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2190     uint16_t apptag = le16_to_cpu(rw->apptag);
2191     uint16_t appmask = le16_to_cpu(rw->appmask);
2192     uint64_t reftag = le32_to_cpu(rw->reftag);
2193     uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2194     struct nvme_compare_ctx *ctx = req->opaque;
2195     g_autofree uint8_t *buf = NULL;
2196     BlockBackend *blk = ns->blkconf.blk;
2197     BlockAcctCookie *acct = &req->acct;
2198     BlockAcctStats *stats = blk_get_stats(blk);
2199     uint16_t status = NVME_SUCCESS;
2200 
2201     reftag |= cdw3 << 32;
2202 
2203     trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
2204 
2205     if (ret) {
2206         block_acct_failed(stats, acct);
2207         nvme_aio_err(req, ret);
2208         goto out;
2209     }
2210 
2211     buf = g_malloc(ctx->mdata.iov.size);
2212 
2213     status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
2214                                NVME_TX_DIRECTION_TO_DEVICE, req);
2215     if (status) {
2216         req->status = status;
2217         goto out;
2218     }
2219 
2220     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2221         uint64_t slba = le64_to_cpu(rw->slba);
2222         uint8_t *bufp;
2223         uint8_t *mbufp = ctx->mdata.bounce;
2224         uint8_t *end = mbufp + ctx->mdata.iov.size;
2225         int16_t pil = 0;
2226 
2227         status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2228                                 ctx->mdata.bounce, ctx->mdata.iov.size, prinfo,
2229                                 slba, apptag, appmask, &reftag);
2230         if (status) {
2231             req->status = status;
2232             goto out;
2233         }
2234 
2235         /*
2236          * When formatted with protection information, do not compare the DIF
2237          * tuple.
2238          */
2239         if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
2240             pil = ns->lbaf.ms - nvme_pi_tuple_size(ns);
2241         }
2242 
2243         for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) {
2244             if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) {
2245                 req->status = NVME_CMP_FAILURE;
2246                 goto out;
2247             }
2248         }
2249 
2250         goto out;
2251     }
2252 
2253     if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
2254         req->status = NVME_CMP_FAILURE;
2255         goto out;
2256     }
2257 
2258     block_acct_done(stats, acct);
2259 
2260 out:
2261     qemu_iovec_destroy(&ctx->data.iov);
2262     g_free(ctx->data.bounce);
2263 
2264     qemu_iovec_destroy(&ctx->mdata.iov);
2265     g_free(ctx->mdata.bounce);
2266 
2267     g_free(ctx);
2268 
2269     nvme_enqueue_req_completion(nvme_cq(req), req);
2270 }
2271 
2272 static void nvme_compare_data_cb(void *opaque, int ret)
2273 {
2274     NvmeRequest *req = opaque;
2275     NvmeCtrl *n = nvme_ctrl(req);
2276     NvmeNamespace *ns = req->ns;
2277     BlockBackend *blk = ns->blkconf.blk;
2278     BlockAcctCookie *acct = &req->acct;
2279     BlockAcctStats *stats = blk_get_stats(blk);
2280 
2281     struct nvme_compare_ctx *ctx = req->opaque;
2282     g_autofree uint8_t *buf = NULL;
2283     uint16_t status;
2284 
2285     trace_pci_nvme_compare_data_cb(nvme_cid(req));
2286 
2287     if (ret) {
2288         block_acct_failed(stats, acct);
2289         nvme_aio_err(req, ret);
2290         goto out;
2291     }
2292 
2293     buf = g_malloc(ctx->data.iov.size);
2294 
2295     status = nvme_bounce_data(n, buf, ctx->data.iov.size,
2296                               NVME_TX_DIRECTION_TO_DEVICE, req);
2297     if (status) {
2298         req->status = status;
2299         goto out;
2300     }
2301 
2302     if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
2303         req->status = NVME_CMP_FAILURE;
2304         goto out;
2305     }
2306 
2307     if (ns->lbaf.ms) {
2308         NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2309         uint64_t slba = le64_to_cpu(rw->slba);
2310         uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2311         size_t mlen = nvme_m2b(ns, nlb);
2312         uint64_t offset = nvme_moff(ns, slba);
2313 
2314         ctx->mdata.bounce = g_malloc(mlen);
2315 
2316         qemu_iovec_init(&ctx->mdata.iov, 1);
2317         qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2318 
2319         req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2320                                     nvme_compare_mdata_cb, req);
2321         return;
2322     }
2323 
2324     block_acct_done(stats, acct);
2325 
2326 out:
2327     qemu_iovec_destroy(&ctx->data.iov);
2328     g_free(ctx->data.bounce);
2329     g_free(ctx);
2330 
2331     nvme_enqueue_req_completion(nvme_cq(req), req);
2332 }
2333 
2334 typedef struct NvmeDSMAIOCB {
2335     BlockAIOCB common;
2336     BlockAIOCB *aiocb;
2337     NvmeRequest *req;
2338     QEMUBH *bh;
2339     int ret;
2340 
2341     NvmeDsmRange *range;
2342     unsigned int nr;
2343     unsigned int idx;
2344 } NvmeDSMAIOCB;
2345 
2346 static void nvme_dsm_cancel(BlockAIOCB *aiocb)
2347 {
2348     NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common);
2349 
2350     /* break nvme_dsm_cb loop */
2351     iocb->idx = iocb->nr;
2352     iocb->ret = -ECANCELED;
2353 
2354     if (iocb->aiocb) {
2355         blk_aio_cancel_async(iocb->aiocb);
2356         iocb->aiocb = NULL;
2357     } else {
2358         /*
2359          * We only reach this if nvme_dsm_cancel() has already been called or
2360          * the command ran to completion and nvme_dsm_bh is scheduled to run.
2361          */
2362         assert(iocb->idx == iocb->nr);
2363     }
2364 }
2365 
2366 static const AIOCBInfo nvme_dsm_aiocb_info = {
2367     .aiocb_size   = sizeof(NvmeDSMAIOCB),
2368     .cancel_async = nvme_dsm_cancel,
2369 };
2370 
2371 static void nvme_dsm_bh(void *opaque)
2372 {
2373     NvmeDSMAIOCB *iocb = opaque;
2374 
2375     iocb->common.cb(iocb->common.opaque, iocb->ret);
2376 
2377     qemu_bh_delete(iocb->bh);
2378     iocb->bh = NULL;
2379     qemu_aio_unref(iocb);
2380 }
2381 
2382 static void nvme_dsm_cb(void *opaque, int ret);
2383 
2384 static void nvme_dsm_md_cb(void *opaque, int ret)
2385 {
2386     NvmeDSMAIOCB *iocb = opaque;
2387     NvmeRequest *req = iocb->req;
2388     NvmeNamespace *ns = req->ns;
2389     NvmeDsmRange *range;
2390     uint64_t slba;
2391     uint32_t nlb;
2392 
2393     if (ret < 0) {
2394         iocb->ret = ret;
2395         goto done;
2396     }
2397 
2398     if (!ns->lbaf.ms) {
2399         nvme_dsm_cb(iocb, 0);
2400         return;
2401     }
2402 
2403     range = &iocb->range[iocb->idx - 1];
2404     slba = le64_to_cpu(range->slba);
2405     nlb = le32_to_cpu(range->nlb);
2406 
2407     /*
2408      * Check that all block were discarded (zeroed); otherwise we do not zero
2409      * the metadata.
2410      */
2411 
2412     ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO);
2413     if (ret) {
2414         if (ret < 0) {
2415             iocb->ret = ret;
2416             goto done;
2417         }
2418 
2419         nvme_dsm_cb(iocb, 0);
2420         return;
2421     }
2422 
2423     iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba),
2424                                         nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP,
2425                                         nvme_dsm_cb, iocb);
2426     return;
2427 
2428 done:
2429     iocb->aiocb = NULL;
2430     qemu_bh_schedule(iocb->bh);
2431 }
2432 
2433 static void nvme_dsm_cb(void *opaque, int ret)
2434 {
2435     NvmeDSMAIOCB *iocb = opaque;
2436     NvmeRequest *req = iocb->req;
2437     NvmeCtrl *n = nvme_ctrl(req);
2438     NvmeNamespace *ns = req->ns;
2439     NvmeDsmRange *range;
2440     uint64_t slba;
2441     uint32_t nlb;
2442 
2443     if (ret < 0) {
2444         iocb->ret = ret;
2445         goto done;
2446     }
2447 
2448 next:
2449     if (iocb->idx == iocb->nr) {
2450         goto done;
2451     }
2452 
2453     range = &iocb->range[iocb->idx++];
2454     slba = le64_to_cpu(range->slba);
2455     nlb = le32_to_cpu(range->nlb);
2456 
2457     trace_pci_nvme_dsm_deallocate(slba, nlb);
2458 
2459     if (nlb > n->dmrsl) {
2460         trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
2461         goto next;
2462     }
2463 
2464     if (nvme_check_bounds(ns, slba, nlb)) {
2465         trace_pci_nvme_err_invalid_lba_range(slba, nlb,
2466                                              ns->id_ns.nsze);
2467         goto next;
2468     }
2469 
2470     iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba),
2471                                    nvme_l2b(ns, nlb),
2472                                    nvme_dsm_md_cb, iocb);
2473     return;
2474 
2475 done:
2476     iocb->aiocb = NULL;
2477     qemu_bh_schedule(iocb->bh);
2478 }
2479 
2480 static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
2481 {
2482     NvmeNamespace *ns = req->ns;
2483     NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
2484     uint32_t attr = le32_to_cpu(dsm->attributes);
2485     uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
2486     uint16_t status = NVME_SUCCESS;
2487 
2488     trace_pci_nvme_dsm(nr, attr);
2489 
2490     if (attr & NVME_DSMGMT_AD) {
2491         NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk,
2492                                          nvme_misc_cb, req);
2493 
2494         iocb->req = req;
2495         iocb->bh = qemu_bh_new(nvme_dsm_bh, iocb);
2496         iocb->ret = 0;
2497         iocb->range = g_new(NvmeDsmRange, nr);
2498         iocb->nr = nr;
2499         iocb->idx = 0;
2500 
2501         status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr,
2502                           req);
2503         if (status) {
2504             return status;
2505         }
2506 
2507         req->aiocb = &iocb->common;
2508         nvme_dsm_cb(iocb, 0);
2509 
2510         return NVME_NO_COMPLETE;
2511     }
2512 
2513     return status;
2514 }
2515 
2516 static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
2517 {
2518     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2519     NvmeNamespace *ns = req->ns;
2520     BlockBackend *blk = ns->blkconf.blk;
2521     uint64_t slba = le64_to_cpu(rw->slba);
2522     uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2523     size_t len = nvme_l2b(ns, nlb);
2524     int64_t offset = nvme_l2b(ns, slba);
2525     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2526     uint32_t reftag = le32_to_cpu(rw->reftag);
2527     NvmeBounceContext *ctx = NULL;
2528     uint16_t status;
2529 
2530     trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
2531 
2532     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2533         status = nvme_check_prinfo(ns, prinfo, slba, reftag);
2534         if (status) {
2535             return status;
2536         }
2537 
2538         if (prinfo & NVME_PRINFO_PRACT) {
2539             return NVME_INVALID_PROT_INFO | NVME_DNR;
2540         }
2541     }
2542 
2543     if (len > n->page_size << n->params.vsl) {
2544         return NVME_INVALID_FIELD | NVME_DNR;
2545     }
2546 
2547     status = nvme_check_bounds(ns, slba, nlb);
2548     if (status) {
2549         return status;
2550     }
2551 
2552     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2553         status = nvme_check_dulbe(ns, slba, nlb);
2554         if (status) {
2555             return status;
2556         }
2557     }
2558 
2559     ctx = g_new0(NvmeBounceContext, 1);
2560     ctx->req = req;
2561 
2562     ctx->data.bounce = g_malloc(len);
2563 
2564     qemu_iovec_init(&ctx->data.iov, 1);
2565     qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
2566 
2567     block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
2568                      BLOCK_ACCT_READ);
2569 
2570     req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
2571                                 nvme_verify_mdata_in_cb, ctx);
2572     return NVME_NO_COMPLETE;
2573 }
2574 
2575 typedef struct NvmeCopyAIOCB {
2576     BlockAIOCB common;
2577     BlockAIOCB *aiocb;
2578     NvmeRequest *req;
2579     QEMUBH *bh;
2580     int ret;
2581 
2582     void *ranges;
2583     unsigned int format;
2584     int nr;
2585     int idx;
2586 
2587     uint8_t *bounce;
2588     QEMUIOVector iov;
2589     struct {
2590         BlockAcctCookie read;
2591         BlockAcctCookie write;
2592     } acct;
2593 
2594     uint64_t reftag;
2595     uint64_t slba;
2596 
2597     NvmeZone *zone;
2598 } NvmeCopyAIOCB;
2599 
2600 static void nvme_copy_cancel(BlockAIOCB *aiocb)
2601 {
2602     NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common);
2603 
2604     iocb->ret = -ECANCELED;
2605 
2606     if (iocb->aiocb) {
2607         blk_aio_cancel_async(iocb->aiocb);
2608         iocb->aiocb = NULL;
2609     }
2610 }
2611 
2612 static const AIOCBInfo nvme_copy_aiocb_info = {
2613     .aiocb_size   = sizeof(NvmeCopyAIOCB),
2614     .cancel_async = nvme_copy_cancel,
2615 };
2616 
2617 static void nvme_copy_bh(void *opaque)
2618 {
2619     NvmeCopyAIOCB *iocb = opaque;
2620     NvmeRequest *req = iocb->req;
2621     NvmeNamespace *ns = req->ns;
2622     BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk);
2623 
2624     if (iocb->idx != iocb->nr) {
2625         req->cqe.result = cpu_to_le32(iocb->idx);
2626     }
2627 
2628     qemu_iovec_destroy(&iocb->iov);
2629     g_free(iocb->bounce);
2630 
2631     qemu_bh_delete(iocb->bh);
2632     iocb->bh = NULL;
2633 
2634     if (iocb->ret < 0) {
2635         block_acct_failed(stats, &iocb->acct.read);
2636         block_acct_failed(stats, &iocb->acct.write);
2637     } else {
2638         block_acct_done(stats, &iocb->acct.read);
2639         block_acct_done(stats, &iocb->acct.write);
2640     }
2641 
2642     iocb->common.cb(iocb->common.opaque, iocb->ret);
2643     qemu_aio_unref(iocb);
2644 }
2645 
2646 static void nvme_copy_cb(void *opaque, int ret);
2647 
2648 static void nvme_copy_source_range_parse_format0(void *ranges, int idx,
2649                                                  uint64_t *slba, uint32_t *nlb,
2650                                                  uint16_t *apptag,
2651                                                  uint16_t *appmask,
2652                                                  uint64_t *reftag)
2653 {
2654     NvmeCopySourceRangeFormat0 *_ranges = ranges;
2655 
2656     if (slba) {
2657         *slba = le64_to_cpu(_ranges[idx].slba);
2658     }
2659 
2660     if (nlb) {
2661         *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2662     }
2663 
2664     if (apptag) {
2665         *apptag = le16_to_cpu(_ranges[idx].apptag);
2666     }
2667 
2668     if (appmask) {
2669         *appmask = le16_to_cpu(_ranges[idx].appmask);
2670     }
2671 
2672     if (reftag) {
2673         *reftag = le32_to_cpu(_ranges[idx].reftag);
2674     }
2675 }
2676 
2677 static void nvme_copy_source_range_parse_format1(void *ranges, int idx,
2678                                                  uint64_t *slba, uint32_t *nlb,
2679                                                  uint16_t *apptag,
2680                                                  uint16_t *appmask,
2681                                                  uint64_t *reftag)
2682 {
2683     NvmeCopySourceRangeFormat1 *_ranges = ranges;
2684 
2685     if (slba) {
2686         *slba = le64_to_cpu(_ranges[idx].slba);
2687     }
2688 
2689     if (nlb) {
2690         *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2691     }
2692 
2693     if (apptag) {
2694         *apptag = le16_to_cpu(_ranges[idx].apptag);
2695     }
2696 
2697     if (appmask) {
2698         *appmask = le16_to_cpu(_ranges[idx].appmask);
2699     }
2700 
2701     if (reftag) {
2702         *reftag = 0;
2703 
2704         *reftag |= (uint64_t)_ranges[idx].sr[4] << 40;
2705         *reftag |= (uint64_t)_ranges[idx].sr[5] << 32;
2706         *reftag |= (uint64_t)_ranges[idx].sr[6] << 24;
2707         *reftag |= (uint64_t)_ranges[idx].sr[7] << 16;
2708         *reftag |= (uint64_t)_ranges[idx].sr[8] << 8;
2709         *reftag |= (uint64_t)_ranges[idx].sr[9];
2710     }
2711 }
2712 
2713 static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format,
2714                                          uint64_t *slba, uint32_t *nlb,
2715                                          uint16_t *apptag, uint16_t *appmask,
2716                                          uint64_t *reftag)
2717 {
2718     switch (format) {
2719     case NVME_COPY_FORMAT_0:
2720         nvme_copy_source_range_parse_format0(ranges, idx, slba, nlb, apptag,
2721                                              appmask, reftag);
2722         break;
2723 
2724     case NVME_COPY_FORMAT_1:
2725         nvme_copy_source_range_parse_format1(ranges, idx, slba, nlb, apptag,
2726                                              appmask, reftag);
2727         break;
2728 
2729     default:
2730         abort();
2731     }
2732 }
2733 
2734 static void nvme_copy_out_completed_cb(void *opaque, int ret)
2735 {
2736     NvmeCopyAIOCB *iocb = opaque;
2737     NvmeRequest *req = iocb->req;
2738     NvmeNamespace *ns = req->ns;
2739     uint32_t nlb;
2740 
2741     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2742                                  &nlb, NULL, NULL, NULL);
2743 
2744     if (ret < 0) {
2745         iocb->ret = ret;
2746         goto out;
2747     } else if (iocb->ret < 0) {
2748         goto out;
2749     }
2750 
2751     if (ns->params.zoned) {
2752         nvme_advance_zone_wp(ns, iocb->zone, nlb);
2753     }
2754 
2755     iocb->idx++;
2756     iocb->slba += nlb;
2757 out:
2758     nvme_copy_cb(iocb, iocb->ret);
2759 }
2760 
2761 static void nvme_copy_out_cb(void *opaque, int ret)
2762 {
2763     NvmeCopyAIOCB *iocb = opaque;
2764     NvmeRequest *req = iocb->req;
2765     NvmeNamespace *ns = req->ns;
2766     uint32_t nlb;
2767     size_t mlen;
2768     uint8_t *mbounce;
2769 
2770     if (ret < 0) {
2771         iocb->ret = ret;
2772         goto out;
2773     } else if (iocb->ret < 0) {
2774         goto out;
2775     }
2776 
2777     if (!ns->lbaf.ms) {
2778         nvme_copy_out_completed_cb(iocb, 0);
2779         return;
2780     }
2781 
2782     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2783                                  &nlb, NULL, NULL, NULL);
2784 
2785     mlen = nvme_m2b(ns, nlb);
2786     mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2787 
2788     qemu_iovec_reset(&iocb->iov);
2789     qemu_iovec_add(&iocb->iov, mbounce, mlen);
2790 
2791     iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba),
2792                                   &iocb->iov, 0, nvme_copy_out_completed_cb,
2793                                   iocb);
2794 
2795     return;
2796 
2797 out:
2798     nvme_copy_cb(iocb, ret);
2799 }
2800 
2801 static void nvme_copy_in_completed_cb(void *opaque, int ret)
2802 {
2803     NvmeCopyAIOCB *iocb = opaque;
2804     NvmeRequest *req = iocb->req;
2805     NvmeNamespace *ns = req->ns;
2806     uint32_t nlb;
2807     uint64_t slba;
2808     uint16_t apptag, appmask;
2809     uint64_t reftag;
2810     size_t len;
2811     uint16_t status;
2812 
2813     if (ret < 0) {
2814         iocb->ret = ret;
2815         goto out;
2816     } else if (iocb->ret < 0) {
2817         goto out;
2818     }
2819 
2820     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2821                                  &nlb, &apptag, &appmask, &reftag);
2822     len = nvme_l2b(ns, nlb);
2823 
2824     trace_pci_nvme_copy_out(iocb->slba, nlb);
2825 
2826     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2827         NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2828 
2829         uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
2830         uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
2831 
2832         size_t mlen = nvme_m2b(ns, nlb);
2833         uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2834 
2835         status = nvme_dif_mangle_mdata(ns, mbounce, mlen, slba);
2836         if (status) {
2837             goto invalid;
2838         }
2839         status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor,
2840                                 slba, apptag, appmask, &reftag);
2841         if (status) {
2842             goto invalid;
2843         }
2844 
2845         apptag = le16_to_cpu(copy->apptag);
2846         appmask = le16_to_cpu(copy->appmask);
2847 
2848         if (prinfow & NVME_PRINFO_PRACT) {
2849             status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag);
2850             if (status) {
2851                 goto invalid;
2852             }
2853 
2854             nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen,
2855                                         apptag, &iocb->reftag);
2856         } else {
2857             status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen,
2858                                     prinfow, iocb->slba, apptag, appmask,
2859                                     &iocb->reftag);
2860             if (status) {
2861                 goto invalid;
2862             }
2863         }
2864     }
2865 
2866     status = nvme_check_bounds(ns, iocb->slba, nlb);
2867     if (status) {
2868         goto invalid;
2869     }
2870 
2871     if (ns->params.zoned) {
2872         status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb);
2873         if (status) {
2874             goto invalid;
2875         }
2876 
2877         if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) {
2878             iocb->zone->w_ptr += nlb;
2879         }
2880     }
2881 
2882     qemu_iovec_reset(&iocb->iov);
2883     qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2884 
2885     iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba),
2886                                   &iocb->iov, 0, nvme_copy_out_cb, iocb);
2887 
2888     return;
2889 
2890 invalid:
2891     req->status = status;
2892     iocb->aiocb = NULL;
2893     if (iocb->bh) {
2894         qemu_bh_schedule(iocb->bh);
2895     }
2896 
2897     return;
2898 
2899 out:
2900     nvme_copy_cb(iocb, ret);
2901 }
2902 
2903 static void nvme_copy_in_cb(void *opaque, int ret)
2904 {
2905     NvmeCopyAIOCB *iocb = opaque;
2906     NvmeRequest *req = iocb->req;
2907     NvmeNamespace *ns = req->ns;
2908     uint64_t slba;
2909     uint32_t nlb;
2910 
2911     if (ret < 0) {
2912         iocb->ret = ret;
2913         goto out;
2914     } else if (iocb->ret < 0) {
2915         goto out;
2916     }
2917 
2918     if (!ns->lbaf.ms) {
2919         nvme_copy_in_completed_cb(iocb, 0);
2920         return;
2921     }
2922 
2923     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2924                                  &nlb, NULL, NULL, NULL);
2925 
2926     qemu_iovec_reset(&iocb->iov);
2927     qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb),
2928                    nvme_m2b(ns, nlb));
2929 
2930     iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba),
2931                                  &iocb->iov, 0, nvme_copy_in_completed_cb,
2932                                  iocb);
2933     return;
2934 
2935 out:
2936     nvme_copy_cb(iocb, iocb->ret);
2937 }
2938 
2939 static void nvme_copy_cb(void *opaque, int ret)
2940 {
2941     NvmeCopyAIOCB *iocb = opaque;
2942     NvmeRequest *req = iocb->req;
2943     NvmeNamespace *ns = req->ns;
2944     uint64_t slba;
2945     uint32_t nlb;
2946     size_t len;
2947     uint16_t status;
2948 
2949     if (ret < 0) {
2950         iocb->ret = ret;
2951         goto done;
2952     } else if (iocb->ret < 0) {
2953         goto done;
2954     }
2955 
2956     if (iocb->idx == iocb->nr) {
2957         goto done;
2958     }
2959 
2960     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2961                                  &nlb, NULL, NULL, NULL);
2962     len = nvme_l2b(ns, nlb);
2963 
2964     trace_pci_nvme_copy_source_range(slba, nlb);
2965 
2966     if (nlb > le16_to_cpu(ns->id_ns.mssrl)) {
2967         status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
2968         goto invalid;
2969     }
2970 
2971     status = nvme_check_bounds(ns, slba, nlb);
2972     if (status) {
2973         goto invalid;
2974     }
2975 
2976     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2977         status = nvme_check_dulbe(ns, slba, nlb);
2978         if (status) {
2979             goto invalid;
2980         }
2981     }
2982 
2983     if (ns->params.zoned) {
2984         status = nvme_check_zone_read(ns, slba, nlb);
2985         if (status) {
2986             goto invalid;
2987         }
2988     }
2989 
2990     qemu_iovec_reset(&iocb->iov);
2991     qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2992 
2993     iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_l2b(ns, slba),
2994                                  &iocb->iov, 0, nvme_copy_in_cb, iocb);
2995     return;
2996 
2997 invalid:
2998     req->status = status;
2999 done:
3000     iocb->aiocb = NULL;
3001     if (iocb->bh) {
3002         qemu_bh_schedule(iocb->bh);
3003     }
3004 }
3005 
3006 
3007 static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
3008 {
3009     NvmeNamespace *ns = req->ns;
3010     NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
3011     NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk,
3012                                       nvme_misc_cb, req);
3013     uint16_t nr = copy->nr + 1;
3014     uint8_t format = copy->control[0] & 0xf;
3015     uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
3016     uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
3017     size_t len = sizeof(NvmeCopySourceRangeFormat0);
3018 
3019     uint16_t status;
3020 
3021     trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
3022 
3023     iocb->ranges = NULL;
3024     iocb->zone = NULL;
3025 
3026     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
3027         ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) {
3028         status = NVME_INVALID_FIELD | NVME_DNR;
3029         goto invalid;
3030     }
3031 
3032     if (!(n->id_ctrl.ocfs & (1 << format))) {
3033         trace_pci_nvme_err_copy_invalid_format(format);
3034         status = NVME_INVALID_FIELD | NVME_DNR;
3035         goto invalid;
3036     }
3037 
3038     if (nr > ns->id_ns.msrc + 1) {
3039         status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
3040         goto invalid;
3041     }
3042 
3043     if (ns->pif && format != 0x1) {
3044         status = NVME_INVALID_FORMAT | NVME_DNR;
3045         goto invalid;
3046     }
3047 
3048     if (ns->pif) {
3049         len = sizeof(NvmeCopySourceRangeFormat1);
3050     }
3051 
3052     iocb->format = format;
3053     iocb->ranges = g_malloc_n(nr, len);
3054     status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req);
3055     if (status) {
3056         goto invalid;
3057     }
3058 
3059     iocb->slba = le64_to_cpu(copy->sdlba);
3060 
3061     if (ns->params.zoned) {
3062         iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba);
3063         if (!iocb->zone) {
3064             status = NVME_LBA_RANGE | NVME_DNR;
3065             goto invalid;
3066         }
3067 
3068         status = nvme_zrm_auto(n, ns, iocb->zone);
3069         if (status) {
3070             goto invalid;
3071         }
3072     }
3073 
3074     iocb->req = req;
3075     iocb->bh = qemu_bh_new(nvme_copy_bh, iocb);
3076     iocb->ret = 0;
3077     iocb->nr = nr;
3078     iocb->idx = 0;
3079     iocb->reftag = le32_to_cpu(copy->reftag);
3080     iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32;
3081     iocb->bounce = g_malloc_n(le16_to_cpu(ns->id_ns.mssrl),
3082                               ns->lbasz + ns->lbaf.ms);
3083 
3084     qemu_iovec_init(&iocb->iov, 1);
3085 
3086     block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.read, 0,
3087                      BLOCK_ACCT_READ);
3088     block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.write, 0,
3089                      BLOCK_ACCT_WRITE);
3090 
3091     req->aiocb = &iocb->common;
3092     nvme_copy_cb(iocb, 0);
3093 
3094     return NVME_NO_COMPLETE;
3095 
3096 invalid:
3097     g_free(iocb->ranges);
3098     qemu_aio_unref(iocb);
3099     return status;
3100 }
3101 
3102 static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
3103 {
3104     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3105     NvmeNamespace *ns = req->ns;
3106     BlockBackend *blk = ns->blkconf.blk;
3107     uint64_t slba = le64_to_cpu(rw->slba);
3108     uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
3109     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3110     size_t data_len = nvme_l2b(ns, nlb);
3111     size_t len = data_len;
3112     int64_t offset = nvme_l2b(ns, slba);
3113     struct nvme_compare_ctx *ctx = NULL;
3114     uint16_t status;
3115 
3116     trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
3117 
3118     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) {
3119         return NVME_INVALID_PROT_INFO | NVME_DNR;
3120     }
3121 
3122     if (nvme_ns_ext(ns)) {
3123         len += nvme_m2b(ns, nlb);
3124     }
3125 
3126     status = nvme_check_mdts(n, len);
3127     if (status) {
3128         return status;
3129     }
3130 
3131     status = nvme_check_bounds(ns, slba, nlb);
3132     if (status) {
3133         return status;
3134     }
3135 
3136     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3137         status = nvme_check_dulbe(ns, slba, nlb);
3138         if (status) {
3139             return status;
3140         }
3141     }
3142 
3143     status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
3144     if (status) {
3145         return status;
3146     }
3147 
3148     ctx = g_new(struct nvme_compare_ctx, 1);
3149     ctx->data.bounce = g_malloc(data_len);
3150 
3151     req->opaque = ctx;
3152 
3153     qemu_iovec_init(&ctx->data.iov, 1);
3154     qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
3155 
3156     block_acct_start(blk_get_stats(blk), &req->acct, data_len,
3157                      BLOCK_ACCT_READ);
3158     req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0,
3159                                 nvme_compare_data_cb, req);
3160 
3161     return NVME_NO_COMPLETE;
3162 }
3163 
3164 typedef struct NvmeFlushAIOCB {
3165     BlockAIOCB common;
3166     BlockAIOCB *aiocb;
3167     NvmeRequest *req;
3168     QEMUBH *bh;
3169     int ret;
3170 
3171     NvmeNamespace *ns;
3172     uint32_t nsid;
3173     bool broadcast;
3174 } NvmeFlushAIOCB;
3175 
3176 static void nvme_flush_cancel(BlockAIOCB *acb)
3177 {
3178     NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common);
3179 
3180     iocb->ret = -ECANCELED;
3181 
3182     if (iocb->aiocb) {
3183         blk_aio_cancel_async(iocb->aiocb);
3184     }
3185 }
3186 
3187 static const AIOCBInfo nvme_flush_aiocb_info = {
3188     .aiocb_size = sizeof(NvmeFlushAIOCB),
3189     .cancel_async = nvme_flush_cancel,
3190     .get_aio_context = nvme_get_aio_context,
3191 };
3192 
3193 static void nvme_flush_ns_cb(void *opaque, int ret)
3194 {
3195     NvmeFlushAIOCB *iocb = opaque;
3196     NvmeNamespace *ns = iocb->ns;
3197 
3198     if (ret < 0) {
3199         iocb->ret = ret;
3200         goto out;
3201     } else if (iocb->ret < 0) {
3202         goto out;
3203     }
3204 
3205     if (ns) {
3206         trace_pci_nvme_flush_ns(iocb->nsid);
3207 
3208         iocb->ns = NULL;
3209         iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb);
3210         return;
3211     }
3212 
3213 out:
3214     iocb->aiocb = NULL;
3215     qemu_bh_schedule(iocb->bh);
3216 }
3217 
3218 static void nvme_flush_bh(void *opaque)
3219 {
3220     NvmeFlushAIOCB *iocb = opaque;
3221     NvmeRequest *req = iocb->req;
3222     NvmeCtrl *n = nvme_ctrl(req);
3223     int i;
3224 
3225     if (iocb->ret < 0) {
3226         goto done;
3227     }
3228 
3229     if (iocb->broadcast) {
3230         for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
3231             iocb->ns = nvme_ns(n, i);
3232             if (iocb->ns) {
3233                 iocb->nsid = i;
3234                 break;
3235             }
3236         }
3237     }
3238 
3239     if (!iocb->ns) {
3240         goto done;
3241     }
3242 
3243     nvme_flush_ns_cb(iocb, 0);
3244     return;
3245 
3246 done:
3247     qemu_bh_delete(iocb->bh);
3248     iocb->bh = NULL;
3249 
3250     iocb->common.cb(iocb->common.opaque, iocb->ret);
3251 
3252     qemu_aio_unref(iocb);
3253 
3254     return;
3255 }
3256 
3257 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
3258 {
3259     NvmeFlushAIOCB *iocb;
3260     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
3261     uint16_t status;
3262 
3263     iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req);
3264 
3265     iocb->req = req;
3266     iocb->bh = qemu_bh_new(nvme_flush_bh, iocb);
3267     iocb->ret = 0;
3268     iocb->ns = NULL;
3269     iocb->nsid = 0;
3270     iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
3271 
3272     if (!iocb->broadcast) {
3273         if (!nvme_nsid_valid(n, nsid)) {
3274             status = NVME_INVALID_NSID | NVME_DNR;
3275             goto out;
3276         }
3277 
3278         iocb->ns = nvme_ns(n, nsid);
3279         if (!iocb->ns) {
3280             status = NVME_INVALID_FIELD | NVME_DNR;
3281             goto out;
3282         }
3283 
3284         iocb->nsid = nsid;
3285     }
3286 
3287     req->aiocb = &iocb->common;
3288     qemu_bh_schedule(iocb->bh);
3289 
3290     return NVME_NO_COMPLETE;
3291 
3292 out:
3293     qemu_bh_delete(iocb->bh);
3294     iocb->bh = NULL;
3295     qemu_aio_unref(iocb);
3296 
3297     return status;
3298 }
3299 
3300 static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
3301 {
3302     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3303     NvmeNamespace *ns = req->ns;
3304     uint64_t slba = le64_to_cpu(rw->slba);
3305     uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3306     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3307     uint64_t data_size = nvme_l2b(ns, nlb);
3308     uint64_t mapped_size = data_size;
3309     uint64_t data_offset;
3310     BlockBackend *blk = ns->blkconf.blk;
3311     uint16_t status;
3312 
3313     if (nvme_ns_ext(ns)) {
3314         mapped_size += nvme_m2b(ns, nlb);
3315 
3316         if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3317             bool pract = prinfo & NVME_PRINFO_PRACT;
3318 
3319             if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3320                 mapped_size = data_size;
3321             }
3322         }
3323     }
3324 
3325     trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
3326 
3327     status = nvme_check_mdts(n, mapped_size);
3328     if (status) {
3329         goto invalid;
3330     }
3331 
3332     status = nvme_check_bounds(ns, slba, nlb);
3333     if (status) {
3334         goto invalid;
3335     }
3336 
3337     if (ns->params.zoned) {
3338         status = nvme_check_zone_read(ns, slba, nlb);
3339         if (status) {
3340             trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
3341             goto invalid;
3342         }
3343     }
3344 
3345     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3346         status = nvme_check_dulbe(ns, slba, nlb);
3347         if (status) {
3348             goto invalid;
3349         }
3350     }
3351 
3352     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3353         return nvme_dif_rw(n, req);
3354     }
3355 
3356     status = nvme_map_data(n, nlb, req);
3357     if (status) {
3358         goto invalid;
3359     }
3360 
3361     data_offset = nvme_l2b(ns, slba);
3362 
3363     block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3364                      BLOCK_ACCT_READ);
3365     nvme_blk_read(blk, data_offset, nvme_rw_cb, req);
3366     return NVME_NO_COMPLETE;
3367 
3368 invalid:
3369     block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
3370     return status | NVME_DNR;
3371 }
3372 
3373 static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
3374                               bool wrz)
3375 {
3376     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3377     NvmeNamespace *ns = req->ns;
3378     uint64_t slba = le64_to_cpu(rw->slba);
3379     uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3380     uint16_t ctrl = le16_to_cpu(rw->control);
3381     uint8_t prinfo = NVME_RW_PRINFO(ctrl);
3382     uint64_t data_size = nvme_l2b(ns, nlb);
3383     uint64_t mapped_size = data_size;
3384     uint64_t data_offset;
3385     NvmeZone *zone;
3386     NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
3387     BlockBackend *blk = ns->blkconf.blk;
3388     uint16_t status;
3389 
3390     if (nvme_ns_ext(ns)) {
3391         mapped_size += nvme_m2b(ns, nlb);
3392 
3393         if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3394             bool pract = prinfo & NVME_PRINFO_PRACT;
3395 
3396             if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3397                 mapped_size -= nvme_m2b(ns, nlb);
3398             }
3399         }
3400     }
3401 
3402     trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
3403                          nvme_nsid(ns), nlb, mapped_size, slba);
3404 
3405     if (!wrz) {
3406         status = nvme_check_mdts(n, mapped_size);
3407         if (status) {
3408             goto invalid;
3409         }
3410     }
3411 
3412     status = nvme_check_bounds(ns, slba, nlb);
3413     if (status) {
3414         goto invalid;
3415     }
3416 
3417     if (ns->params.zoned) {
3418         zone = nvme_get_zone_by_slba(ns, slba);
3419         assert(zone);
3420 
3421         if (append) {
3422             bool piremap = !!(ctrl & NVME_RW_PIREMAP);
3423 
3424             if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3425                 return NVME_INVALID_ZONE_OP | NVME_DNR;
3426             }
3427 
3428             if (unlikely(slba != zone->d.zslba)) {
3429                 trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
3430                 status = NVME_INVALID_FIELD;
3431                 goto invalid;
3432             }
3433 
3434             if (n->params.zasl &&
3435                 data_size > (uint64_t)n->page_size << n->params.zasl) {
3436                 trace_pci_nvme_err_zasl(data_size);
3437                 return NVME_INVALID_FIELD | NVME_DNR;
3438             }
3439 
3440             slba = zone->w_ptr;
3441             rw->slba = cpu_to_le64(slba);
3442             res->slba = cpu_to_le64(slba);
3443 
3444             switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3445             case NVME_ID_NS_DPS_TYPE_1:
3446                 if (!piremap) {
3447                     return NVME_INVALID_PROT_INFO | NVME_DNR;
3448                 }
3449 
3450                 /* fallthrough */
3451 
3452             case NVME_ID_NS_DPS_TYPE_2:
3453                 if (piremap) {
3454                     uint32_t reftag = le32_to_cpu(rw->reftag);
3455                     rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
3456                 }
3457 
3458                 break;
3459 
3460             case NVME_ID_NS_DPS_TYPE_3:
3461                 if (piremap) {
3462                     return NVME_INVALID_PROT_INFO | NVME_DNR;
3463                 }
3464 
3465                 break;
3466             }
3467         }
3468 
3469         status = nvme_check_zone_write(ns, zone, slba, nlb);
3470         if (status) {
3471             goto invalid;
3472         }
3473 
3474         status = nvme_zrm_auto(n, ns, zone);
3475         if (status) {
3476             goto invalid;
3477         }
3478 
3479         if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3480             zone->w_ptr += nlb;
3481         }
3482     }
3483 
3484     data_offset = nvme_l2b(ns, slba);
3485 
3486     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3487         return nvme_dif_rw(n, req);
3488     }
3489 
3490     if (!wrz) {
3491         status = nvme_map_data(n, nlb, req);
3492         if (status) {
3493             goto invalid;
3494         }
3495 
3496         block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3497                          BLOCK_ACCT_WRITE);
3498         nvme_blk_write(blk, data_offset, nvme_rw_cb, req);
3499     } else {
3500         req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
3501                                            BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
3502                                            req);
3503     }
3504 
3505     return NVME_NO_COMPLETE;
3506 
3507 invalid:
3508     block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
3509     return status | NVME_DNR;
3510 }
3511 
3512 static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
3513 {
3514     return nvme_do_write(n, req, false, false);
3515 }
3516 
3517 static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
3518 {
3519     return nvme_do_write(n, req, false, true);
3520 }
3521 
3522 static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
3523 {
3524     return nvme_do_write(n, req, true, false);
3525 }
3526 
3527 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
3528                                             uint64_t *slba, uint32_t *zone_idx)
3529 {
3530     uint32_t dw10 = le32_to_cpu(c->cdw10);
3531     uint32_t dw11 = le32_to_cpu(c->cdw11);
3532 
3533     if (!ns->params.zoned) {
3534         trace_pci_nvme_err_invalid_opc(c->opcode);
3535         return NVME_INVALID_OPCODE | NVME_DNR;
3536     }
3537 
3538     *slba = ((uint64_t)dw11) << 32 | dw10;
3539     if (unlikely(*slba >= ns->id_ns.nsze)) {
3540         trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
3541         *slba = 0;
3542         return NVME_LBA_RANGE | NVME_DNR;
3543     }
3544 
3545     *zone_idx = nvme_zone_idx(ns, *slba);
3546     assert(*zone_idx < ns->num_zones);
3547 
3548     return NVME_SUCCESS;
3549 }
3550 
3551 typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
3552                                  NvmeRequest *);
3553 
3554 enum NvmeZoneProcessingMask {
3555     NVME_PROC_CURRENT_ZONE    = 0,
3556     NVME_PROC_OPENED_ZONES    = 1 << 0,
3557     NVME_PROC_CLOSED_ZONES    = 1 << 1,
3558     NVME_PROC_READ_ONLY_ZONES = 1 << 2,
3559     NVME_PROC_FULL_ZONES      = 1 << 3,
3560 };
3561 
3562 static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
3563                                NvmeZoneState state, NvmeRequest *req)
3564 {
3565     NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3566     int flags = 0;
3567 
3568     if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) {
3569         uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3570 
3571         if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3572             return NVME_INVALID_ZONE_OP | NVME_DNR;
3573         }
3574 
3575         if (zone->w_ptr % ns->zns.zrwafg) {
3576             return NVME_NOZRWA | NVME_DNR;
3577         }
3578 
3579         flags = NVME_ZRM_ZRWA;
3580     }
3581 
3582     return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags);
3583 }
3584 
3585 static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
3586                                 NvmeZoneState state, NvmeRequest *req)
3587 {
3588     return nvme_zrm_close(ns, zone);
3589 }
3590 
3591 static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
3592                                  NvmeZoneState state, NvmeRequest *req)
3593 {
3594     return nvme_zrm_finish(ns, zone);
3595 }
3596 
3597 static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
3598                                   NvmeZoneState state, NvmeRequest *req)
3599 {
3600     switch (state) {
3601     case NVME_ZONE_STATE_READ_ONLY:
3602         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
3603         /* fall through */
3604     case NVME_ZONE_STATE_OFFLINE:
3605         return NVME_SUCCESS;
3606     default:
3607         return NVME_ZONE_INVAL_TRANSITION;
3608     }
3609 }
3610 
3611 static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
3612 {
3613     uint16_t status;
3614     uint8_t state = nvme_get_zone_state(zone);
3615 
3616     if (state == NVME_ZONE_STATE_EMPTY) {
3617         status = nvme_aor_check(ns, 1, 0);
3618         if (status) {
3619             return status;
3620         }
3621         nvme_aor_inc_active(ns);
3622         zone->d.za |= NVME_ZA_ZD_EXT_VALID;
3623         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
3624         return NVME_SUCCESS;
3625     }
3626 
3627     return NVME_ZONE_INVAL_TRANSITION;
3628 }
3629 
3630 static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
3631                                     enum NvmeZoneProcessingMask proc_mask,
3632                                     op_handler_t op_hndlr, NvmeRequest *req)
3633 {
3634     uint16_t status = NVME_SUCCESS;
3635     NvmeZoneState zs = nvme_get_zone_state(zone);
3636     bool proc_zone;
3637 
3638     switch (zs) {
3639     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3640     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3641         proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
3642         break;
3643     case NVME_ZONE_STATE_CLOSED:
3644         proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
3645         break;
3646     case NVME_ZONE_STATE_READ_ONLY:
3647         proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
3648         break;
3649     case NVME_ZONE_STATE_FULL:
3650         proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
3651         break;
3652     default:
3653         proc_zone = false;
3654     }
3655 
3656     if (proc_zone) {
3657         status = op_hndlr(ns, zone, zs, req);
3658     }
3659 
3660     return status;
3661 }
3662 
3663 static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
3664                                 enum NvmeZoneProcessingMask proc_mask,
3665                                 op_handler_t op_hndlr, NvmeRequest *req)
3666 {
3667     NvmeZone *next;
3668     uint16_t status = NVME_SUCCESS;
3669     int i;
3670 
3671     if (!proc_mask) {
3672         status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
3673     } else {
3674         if (proc_mask & NVME_PROC_CLOSED_ZONES) {
3675             QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
3676                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3677                                              req);
3678                 if (status && status != NVME_NO_COMPLETE) {
3679                     goto out;
3680                 }
3681             }
3682         }
3683         if (proc_mask & NVME_PROC_OPENED_ZONES) {
3684             QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
3685                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3686                                              req);
3687                 if (status && status != NVME_NO_COMPLETE) {
3688                     goto out;
3689                 }
3690             }
3691 
3692             QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
3693                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3694                                              req);
3695                 if (status && status != NVME_NO_COMPLETE) {
3696                     goto out;
3697                 }
3698             }
3699         }
3700         if (proc_mask & NVME_PROC_FULL_ZONES) {
3701             QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
3702                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3703                                              req);
3704                 if (status && status != NVME_NO_COMPLETE) {
3705                     goto out;
3706                 }
3707             }
3708         }
3709 
3710         if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
3711             for (i = 0; i < ns->num_zones; i++, zone++) {
3712                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3713                                              req);
3714                 if (status && status != NVME_NO_COMPLETE) {
3715                     goto out;
3716                 }
3717             }
3718         }
3719     }
3720 
3721 out:
3722     return status;
3723 }
3724 
3725 typedef struct NvmeZoneResetAIOCB {
3726     BlockAIOCB common;
3727     BlockAIOCB *aiocb;
3728     NvmeRequest *req;
3729     QEMUBH *bh;
3730     int ret;
3731 
3732     bool all;
3733     int idx;
3734     NvmeZone *zone;
3735 } NvmeZoneResetAIOCB;
3736 
3737 static void nvme_zone_reset_cancel(BlockAIOCB *aiocb)
3738 {
3739     NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common);
3740     NvmeRequest *req = iocb->req;
3741     NvmeNamespace *ns = req->ns;
3742 
3743     iocb->idx = ns->num_zones;
3744 
3745     iocb->ret = -ECANCELED;
3746 
3747     if (iocb->aiocb) {
3748         blk_aio_cancel_async(iocb->aiocb);
3749         iocb->aiocb = NULL;
3750     }
3751 }
3752 
3753 static const AIOCBInfo nvme_zone_reset_aiocb_info = {
3754     .aiocb_size = sizeof(NvmeZoneResetAIOCB),
3755     .cancel_async = nvme_zone_reset_cancel,
3756 };
3757 
3758 static void nvme_zone_reset_bh(void *opaque)
3759 {
3760     NvmeZoneResetAIOCB *iocb = opaque;
3761 
3762     iocb->common.cb(iocb->common.opaque, iocb->ret);
3763 
3764     qemu_bh_delete(iocb->bh);
3765     iocb->bh = NULL;
3766     qemu_aio_unref(iocb);
3767 }
3768 
3769 static void nvme_zone_reset_cb(void *opaque, int ret);
3770 
3771 static void nvme_zone_reset_epilogue_cb(void *opaque, int ret)
3772 {
3773     NvmeZoneResetAIOCB *iocb = opaque;
3774     NvmeRequest *req = iocb->req;
3775     NvmeNamespace *ns = req->ns;
3776     int64_t moff;
3777     int count;
3778 
3779     if (ret < 0) {
3780         nvme_zone_reset_cb(iocb, ret);
3781         return;
3782     }
3783 
3784     if (!ns->lbaf.ms) {
3785         nvme_zone_reset_cb(iocb, 0);
3786         return;
3787     }
3788 
3789     moff = nvme_moff(ns, iocb->zone->d.zslba);
3790     count = nvme_m2b(ns, ns->zone_size);
3791 
3792     iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count,
3793                                         BDRV_REQ_MAY_UNMAP,
3794                                         nvme_zone_reset_cb, iocb);
3795     return;
3796 }
3797 
3798 static void nvme_zone_reset_cb(void *opaque, int ret)
3799 {
3800     NvmeZoneResetAIOCB *iocb = opaque;
3801     NvmeRequest *req = iocb->req;
3802     NvmeNamespace *ns = req->ns;
3803 
3804     if (ret < 0) {
3805         iocb->ret = ret;
3806         goto done;
3807     }
3808 
3809     if (iocb->zone) {
3810         nvme_zrm_reset(ns, iocb->zone);
3811 
3812         if (!iocb->all) {
3813             goto done;
3814         }
3815     }
3816 
3817     while (iocb->idx < ns->num_zones) {
3818         NvmeZone *zone = &ns->zone_array[iocb->idx++];
3819 
3820         switch (nvme_get_zone_state(zone)) {
3821         case NVME_ZONE_STATE_EMPTY:
3822             if (!iocb->all) {
3823                 goto done;
3824             }
3825 
3826             continue;
3827 
3828         case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3829         case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3830         case NVME_ZONE_STATE_CLOSED:
3831         case NVME_ZONE_STATE_FULL:
3832             iocb->zone = zone;
3833             break;
3834 
3835         default:
3836             continue;
3837         }
3838 
3839         trace_pci_nvme_zns_zone_reset(zone->d.zslba);
3840 
3841         iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk,
3842                                             nvme_l2b(ns, zone->d.zslba),
3843                                             nvme_l2b(ns, ns->zone_size),
3844                                             BDRV_REQ_MAY_UNMAP,
3845                                             nvme_zone_reset_epilogue_cb,
3846                                             iocb);
3847         return;
3848     }
3849 
3850 done:
3851     iocb->aiocb = NULL;
3852     if (iocb->bh) {
3853         qemu_bh_schedule(iocb->bh);
3854     }
3855 }
3856 
3857 static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone,
3858                                                uint64_t elba, NvmeRequest *req)
3859 {
3860     NvmeNamespace *ns = req->ns;
3861     uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3862     uint64_t wp = zone->d.wp;
3863     uint32_t nlb = elba - wp + 1;
3864     uint16_t status;
3865 
3866 
3867     if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3868         return NVME_INVALID_ZONE_OP | NVME_DNR;
3869     }
3870 
3871     if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3872         return NVME_INVALID_FIELD | NVME_DNR;
3873     }
3874 
3875     if (elba < wp || elba > wp + ns->zns.zrwas) {
3876         return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR;
3877     }
3878 
3879     if (nlb % ns->zns.zrwafg) {
3880         return NVME_INVALID_FIELD | NVME_DNR;
3881     }
3882 
3883     status = nvme_zrm_auto(n, ns, zone);
3884     if (status) {
3885         return status;
3886     }
3887 
3888     zone->w_ptr += nlb;
3889 
3890     nvme_advance_zone_wp(ns, zone, nlb);
3891 
3892     return NVME_SUCCESS;
3893 }
3894 
3895 static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
3896 {
3897     NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3898     NvmeNamespace *ns = req->ns;
3899     NvmeZone *zone;
3900     NvmeZoneResetAIOCB *iocb;
3901     uint8_t *zd_ext;
3902     uint64_t slba = 0;
3903     uint32_t zone_idx = 0;
3904     uint16_t status;
3905     uint8_t action = cmd->zsa;
3906     bool all;
3907     enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
3908 
3909     all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL;
3910 
3911     req->status = NVME_SUCCESS;
3912 
3913     if (!all) {
3914         status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx);
3915         if (status) {
3916             return status;
3917         }
3918     }
3919 
3920     zone = &ns->zone_array[zone_idx];
3921     if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) {
3922         trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
3923         return NVME_INVALID_FIELD | NVME_DNR;
3924     }
3925 
3926     switch (action) {
3927 
3928     case NVME_ZONE_ACTION_OPEN:
3929         if (all) {
3930             proc_mask = NVME_PROC_CLOSED_ZONES;
3931         }
3932         trace_pci_nvme_open_zone(slba, zone_idx, all);
3933         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
3934         break;
3935 
3936     case NVME_ZONE_ACTION_CLOSE:
3937         if (all) {
3938             proc_mask = NVME_PROC_OPENED_ZONES;
3939         }
3940         trace_pci_nvme_close_zone(slba, zone_idx, all);
3941         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
3942         break;
3943 
3944     case NVME_ZONE_ACTION_FINISH:
3945         if (all) {
3946             proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
3947         }
3948         trace_pci_nvme_finish_zone(slba, zone_idx, all);
3949         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
3950         break;
3951 
3952     case NVME_ZONE_ACTION_RESET:
3953         trace_pci_nvme_reset_zone(slba, zone_idx, all);
3954 
3955         iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk,
3956                            nvme_misc_cb, req);
3957 
3958         iocb->req = req;
3959         iocb->bh = qemu_bh_new(nvme_zone_reset_bh, iocb);
3960         iocb->ret = 0;
3961         iocb->all = all;
3962         iocb->idx = zone_idx;
3963         iocb->zone = NULL;
3964 
3965         req->aiocb = &iocb->common;
3966         nvme_zone_reset_cb(iocb, 0);
3967 
3968         return NVME_NO_COMPLETE;
3969 
3970     case NVME_ZONE_ACTION_OFFLINE:
3971         if (all) {
3972             proc_mask = NVME_PROC_READ_ONLY_ZONES;
3973         }
3974         trace_pci_nvme_offline_zone(slba, zone_idx, all);
3975         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
3976         break;
3977 
3978     case NVME_ZONE_ACTION_SET_ZD_EXT:
3979         trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
3980         if (all || !ns->params.zd_extension_size) {
3981             return NVME_INVALID_FIELD | NVME_DNR;
3982         }
3983         zd_ext = nvme_get_zd_extension(ns, zone_idx);
3984         status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
3985         if (status) {
3986             trace_pci_nvme_err_zd_extension_map_error(zone_idx);
3987             return status;
3988         }
3989 
3990         status = nvme_set_zd_ext(ns, zone);
3991         if (status == NVME_SUCCESS) {
3992             trace_pci_nvme_zd_extension_set(zone_idx);
3993             return status;
3994         }
3995         break;
3996 
3997     case NVME_ZONE_ACTION_ZRWA_FLUSH:
3998         if (all) {
3999             return NVME_INVALID_FIELD | NVME_DNR;
4000         }
4001 
4002         return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req);
4003 
4004     default:
4005         trace_pci_nvme_err_invalid_mgmt_action(action);
4006         status = NVME_INVALID_FIELD;
4007     }
4008 
4009     if (status == NVME_ZONE_INVAL_TRANSITION) {
4010         trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
4011                                                          zone->d.za);
4012     }
4013     if (status) {
4014         status |= NVME_DNR;
4015     }
4016 
4017     return status;
4018 }
4019 
4020 static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
4021 {
4022     NvmeZoneState zs = nvme_get_zone_state(zl);
4023 
4024     switch (zafs) {
4025     case NVME_ZONE_REPORT_ALL:
4026         return true;
4027     case NVME_ZONE_REPORT_EMPTY:
4028         return zs == NVME_ZONE_STATE_EMPTY;
4029     case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
4030         return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
4031     case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
4032         return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
4033     case NVME_ZONE_REPORT_CLOSED:
4034         return zs == NVME_ZONE_STATE_CLOSED;
4035     case NVME_ZONE_REPORT_FULL:
4036         return zs == NVME_ZONE_STATE_FULL;
4037     case NVME_ZONE_REPORT_READ_ONLY:
4038         return zs == NVME_ZONE_STATE_READ_ONLY;
4039     case NVME_ZONE_REPORT_OFFLINE:
4040         return zs == NVME_ZONE_STATE_OFFLINE;
4041     default:
4042         return false;
4043     }
4044 }
4045 
4046 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
4047 {
4048     NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
4049     NvmeNamespace *ns = req->ns;
4050     /* cdw12 is zero-based number of dwords to return. Convert to bytes */
4051     uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
4052     uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4053     uint32_t zone_idx, zra, zrasf, partial;
4054     uint64_t max_zones, nr_zones = 0;
4055     uint16_t status;
4056     uint64_t slba;
4057     NvmeZoneDescr *z;
4058     NvmeZone *zone;
4059     NvmeZoneReportHeader *header;
4060     void *buf, *buf_p;
4061     size_t zone_entry_sz;
4062     int i;
4063 
4064     req->status = NVME_SUCCESS;
4065 
4066     status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
4067     if (status) {
4068         return status;
4069     }
4070 
4071     zra = dw13 & 0xff;
4072     if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
4073         return NVME_INVALID_FIELD | NVME_DNR;
4074     }
4075     if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
4076         return NVME_INVALID_FIELD | NVME_DNR;
4077     }
4078 
4079     zrasf = (dw13 >> 8) & 0xff;
4080     if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
4081         return NVME_INVALID_FIELD | NVME_DNR;
4082     }
4083 
4084     if (data_size < sizeof(NvmeZoneReportHeader)) {
4085         return NVME_INVALID_FIELD | NVME_DNR;
4086     }
4087 
4088     status = nvme_check_mdts(n, data_size);
4089     if (status) {
4090         return status;
4091     }
4092 
4093     partial = (dw13 >> 16) & 0x01;
4094 
4095     zone_entry_sz = sizeof(NvmeZoneDescr);
4096     if (zra == NVME_ZONE_REPORT_EXTENDED) {
4097         zone_entry_sz += ns->params.zd_extension_size;
4098     }
4099 
4100     max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
4101     buf = g_malloc0(data_size);
4102 
4103     zone = &ns->zone_array[zone_idx];
4104     for (i = zone_idx; i < ns->num_zones; i++) {
4105         if (partial && nr_zones >= max_zones) {
4106             break;
4107         }
4108         if (nvme_zone_matches_filter(zrasf, zone++)) {
4109             nr_zones++;
4110         }
4111     }
4112     header = (NvmeZoneReportHeader *)buf;
4113     header->nr_zones = cpu_to_le64(nr_zones);
4114 
4115     buf_p = buf + sizeof(NvmeZoneReportHeader);
4116     for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
4117         zone = &ns->zone_array[zone_idx];
4118         if (nvme_zone_matches_filter(zrasf, zone)) {
4119             z = (NvmeZoneDescr *)buf_p;
4120             buf_p += sizeof(NvmeZoneDescr);
4121 
4122             z->zt = zone->d.zt;
4123             z->zs = zone->d.zs;
4124             z->zcap = cpu_to_le64(zone->d.zcap);
4125             z->zslba = cpu_to_le64(zone->d.zslba);
4126             z->za = zone->d.za;
4127 
4128             if (nvme_wp_is_valid(zone)) {
4129                 z->wp = cpu_to_le64(zone->d.wp);
4130             } else {
4131                 z->wp = cpu_to_le64(~0ULL);
4132             }
4133 
4134             if (zra == NVME_ZONE_REPORT_EXTENDED) {
4135                 if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
4136                     memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
4137                            ns->params.zd_extension_size);
4138                 }
4139                 buf_p += ns->params.zd_extension_size;
4140             }
4141 
4142             max_zones--;
4143         }
4144     }
4145 
4146     status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
4147 
4148     g_free(buf);
4149 
4150     return status;
4151 }
4152 
4153 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
4154 {
4155     NvmeNamespace *ns;
4156     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4157 
4158     trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
4159                           req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
4160 
4161     if (!nvme_nsid_valid(n, nsid)) {
4162         return NVME_INVALID_NSID | NVME_DNR;
4163     }
4164 
4165     /*
4166      * In the base NVM command set, Flush may apply to all namespaces
4167      * (indicated by NSID being set to FFFFFFFFh). But if that feature is used
4168      * along with TP 4056 (Namespace Types), it may be pretty screwed up.
4169      *
4170      * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
4171      * opcode with a specific command since we cannot determine a unique I/O
4172      * command set. Opcode 0h could have any other meaning than something
4173      * equivalent to flushing and say it DOES have completely different
4174      * semantics in some other command set - does an NSID of FFFFFFFFh then
4175      * mean "for all namespaces, apply whatever command set specific command
4176      * that uses the 0h opcode?" Or does it mean "for all namespaces, apply
4177      * whatever command that uses the 0h opcode if, and only if, it allows NSID
4178      * to be FFFFFFFFh"?
4179      *
4180      * Anyway (and luckily), for now, we do not care about this since the
4181      * device only supports namespace types that includes the NVM Flush command
4182      * (NVM and Zoned), so always do an NVM Flush.
4183      */
4184     if (req->cmd.opcode == NVME_CMD_FLUSH) {
4185         return nvme_flush(n, req);
4186     }
4187 
4188     ns = nvme_ns(n, nsid);
4189     if (unlikely(!ns)) {
4190         return NVME_INVALID_FIELD | NVME_DNR;
4191     }
4192 
4193     if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
4194         trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
4195         return NVME_INVALID_OPCODE | NVME_DNR;
4196     }
4197 
4198     if (ns->status) {
4199         return ns->status;
4200     }
4201 
4202     if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
4203         return NVME_INVALID_FIELD;
4204     }
4205 
4206     req->ns = ns;
4207 
4208     switch (req->cmd.opcode) {
4209     case NVME_CMD_WRITE_ZEROES:
4210         return nvme_write_zeroes(n, req);
4211     case NVME_CMD_ZONE_APPEND:
4212         return nvme_zone_append(n, req);
4213     case NVME_CMD_WRITE:
4214         return nvme_write(n, req);
4215     case NVME_CMD_READ:
4216         return nvme_read(n, req);
4217     case NVME_CMD_COMPARE:
4218         return nvme_compare(n, req);
4219     case NVME_CMD_DSM:
4220         return nvme_dsm(n, req);
4221     case NVME_CMD_VERIFY:
4222         return nvme_verify(n, req);
4223     case NVME_CMD_COPY:
4224         return nvme_copy(n, req);
4225     case NVME_CMD_ZONE_MGMT_SEND:
4226         return nvme_zone_mgmt_send(n, req);
4227     case NVME_CMD_ZONE_MGMT_RECV:
4228         return nvme_zone_mgmt_recv(n, req);
4229     default:
4230         assert(false);
4231     }
4232 
4233     return NVME_INVALID_OPCODE | NVME_DNR;
4234 }
4235 
4236 static void nvme_cq_notifier(EventNotifier *e)
4237 {
4238     NvmeCQueue *cq = container_of(e, NvmeCQueue, notifier);
4239     NvmeCtrl *n = cq->ctrl;
4240 
4241     event_notifier_test_and_clear(&cq->notifier);
4242 
4243     nvme_update_cq_head(cq);
4244 
4245     if (cq->tail == cq->head) {
4246         if (cq->irq_enabled) {
4247             n->cq_pending--;
4248         }
4249 
4250         nvme_irq_deassert(n, cq);
4251     }
4252 
4253     nvme_post_cqes(cq);
4254 }
4255 
4256 static int nvme_init_cq_ioeventfd(NvmeCQueue *cq)
4257 {
4258     NvmeCtrl *n = cq->ctrl;
4259     uint16_t offset = (cq->cqid << 3) + (1 << 2);
4260     int ret;
4261 
4262     ret = event_notifier_init(&cq->notifier, 0);
4263     if (ret < 0) {
4264         return ret;
4265     }
4266 
4267     event_notifier_set_handler(&cq->notifier, nvme_cq_notifier);
4268     memory_region_add_eventfd(&n->iomem,
4269                               0x1000 + offset, 4, false, 0, &cq->notifier);
4270 
4271     return 0;
4272 }
4273 
4274 static void nvme_sq_notifier(EventNotifier *e)
4275 {
4276     NvmeSQueue *sq = container_of(e, NvmeSQueue, notifier);
4277 
4278     event_notifier_test_and_clear(&sq->notifier);
4279 
4280     nvme_process_sq(sq);
4281 }
4282 
4283 static int nvme_init_sq_ioeventfd(NvmeSQueue *sq)
4284 {
4285     NvmeCtrl *n = sq->ctrl;
4286     uint16_t offset = sq->sqid << 3;
4287     int ret;
4288 
4289     ret = event_notifier_init(&sq->notifier, 0);
4290     if (ret < 0) {
4291         return ret;
4292     }
4293 
4294     event_notifier_set_handler(&sq->notifier, nvme_sq_notifier);
4295     memory_region_add_eventfd(&n->iomem,
4296                               0x1000 + offset, 4, false, 0, &sq->notifier);
4297 
4298     return 0;
4299 }
4300 
4301 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
4302 {
4303     uint16_t offset = sq->sqid << 3;
4304 
4305     n->sq[sq->sqid] = NULL;
4306     timer_free(sq->timer);
4307     if (sq->ioeventfd_enabled) {
4308         memory_region_del_eventfd(&n->iomem,
4309                                   0x1000 + offset, 4, false, 0, &sq->notifier);
4310         event_notifier_cleanup(&sq->notifier);
4311     }
4312     g_free(sq->io_req);
4313     if (sq->sqid) {
4314         g_free(sq);
4315     }
4316 }
4317 
4318 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
4319 {
4320     NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4321     NvmeRequest *r, *next;
4322     NvmeSQueue *sq;
4323     NvmeCQueue *cq;
4324     uint16_t qid = le16_to_cpu(c->qid);
4325 
4326     if (unlikely(!qid || nvme_check_sqid(n, qid))) {
4327         trace_pci_nvme_err_invalid_del_sq(qid);
4328         return NVME_INVALID_QID | NVME_DNR;
4329     }
4330 
4331     trace_pci_nvme_del_sq(qid);
4332 
4333     sq = n->sq[qid];
4334     while (!QTAILQ_EMPTY(&sq->out_req_list)) {
4335         r = QTAILQ_FIRST(&sq->out_req_list);
4336         assert(r->aiocb);
4337         blk_aio_cancel(r->aiocb);
4338     }
4339 
4340     assert(QTAILQ_EMPTY(&sq->out_req_list));
4341 
4342     if (!nvme_check_cqid(n, sq->cqid)) {
4343         cq = n->cq[sq->cqid];
4344         QTAILQ_REMOVE(&cq->sq_list, sq, entry);
4345 
4346         nvme_post_cqes(cq);
4347         QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
4348             if (r->sq == sq) {
4349                 QTAILQ_REMOVE(&cq->req_list, r, entry);
4350                 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
4351             }
4352         }
4353     }
4354 
4355     nvme_free_sq(sq, n);
4356     return NVME_SUCCESS;
4357 }
4358 
4359 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
4360                          uint16_t sqid, uint16_t cqid, uint16_t size)
4361 {
4362     int i;
4363     NvmeCQueue *cq;
4364 
4365     sq->ctrl = n;
4366     sq->dma_addr = dma_addr;
4367     sq->sqid = sqid;
4368     sq->size = size;
4369     sq->cqid = cqid;
4370     sq->head = sq->tail = 0;
4371     sq->io_req = g_new0(NvmeRequest, sq->size);
4372 
4373     QTAILQ_INIT(&sq->req_list);
4374     QTAILQ_INIT(&sq->out_req_list);
4375     for (i = 0; i < sq->size; i++) {
4376         sq->io_req[i].sq = sq;
4377         QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
4378     }
4379     sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
4380 
4381     if (n->dbbuf_enabled) {
4382         sq->db_addr = n->dbbuf_dbs + (sqid << 3);
4383         sq->ei_addr = n->dbbuf_eis + (sqid << 3);
4384 
4385         if (n->params.ioeventfd && sq->sqid != 0) {
4386             if (!nvme_init_sq_ioeventfd(sq)) {
4387                 sq->ioeventfd_enabled = true;
4388             }
4389         }
4390     }
4391 
4392     assert(n->cq[cqid]);
4393     cq = n->cq[cqid];
4394     QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
4395     n->sq[sqid] = sq;
4396 }
4397 
4398 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
4399 {
4400     NvmeSQueue *sq;
4401     NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
4402 
4403     uint16_t cqid = le16_to_cpu(c->cqid);
4404     uint16_t sqid = le16_to_cpu(c->sqid);
4405     uint16_t qsize = le16_to_cpu(c->qsize);
4406     uint16_t qflags = le16_to_cpu(c->sq_flags);
4407     uint64_t prp1 = le64_to_cpu(c->prp1);
4408 
4409     trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
4410 
4411     if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
4412         trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
4413         return NVME_INVALID_CQID | NVME_DNR;
4414     }
4415     if (unlikely(!sqid || sqid > n->conf_ioqpairs || n->sq[sqid] != NULL)) {
4416         trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
4417         return NVME_INVALID_QID | NVME_DNR;
4418     }
4419     if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4420         trace_pci_nvme_err_invalid_create_sq_size(qsize);
4421         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4422     }
4423     if (unlikely(prp1 & (n->page_size - 1))) {
4424         trace_pci_nvme_err_invalid_create_sq_addr(prp1);
4425         return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4426     }
4427     if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
4428         trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
4429         return NVME_INVALID_FIELD | NVME_DNR;
4430     }
4431     sq = g_malloc0(sizeof(*sq));
4432     nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
4433     return NVME_SUCCESS;
4434 }
4435 
4436 struct nvme_stats {
4437     uint64_t units_read;
4438     uint64_t units_written;
4439     uint64_t read_commands;
4440     uint64_t write_commands;
4441 };
4442 
4443 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
4444 {
4445     BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
4446 
4447     stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
4448     stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
4449     stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
4450     stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
4451 }
4452 
4453 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4454                                 uint64_t off, NvmeRequest *req)
4455 {
4456     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4457     struct nvme_stats stats = { 0 };
4458     NvmeSmartLog smart = { 0 };
4459     uint32_t trans_len;
4460     NvmeNamespace *ns;
4461     time_t current_ms;
4462 
4463     if (off >= sizeof(smart)) {
4464         return NVME_INVALID_FIELD | NVME_DNR;
4465     }
4466 
4467     if (nsid != 0xffffffff) {
4468         ns = nvme_ns(n, nsid);
4469         if (!ns) {
4470             return NVME_INVALID_NSID | NVME_DNR;
4471         }
4472         nvme_set_blk_stats(ns, &stats);
4473     } else {
4474         int i;
4475 
4476         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4477             ns = nvme_ns(n, i);
4478             if (!ns) {
4479                 continue;
4480             }
4481             nvme_set_blk_stats(ns, &stats);
4482         }
4483     }
4484 
4485     trans_len = MIN(sizeof(smart) - off, buf_len);
4486     smart.critical_warning = n->smart_critical_warning;
4487 
4488     smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read,
4489                                                         1000));
4490     smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written,
4491                                                            1000));
4492     smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
4493     smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
4494 
4495     smart.temperature = cpu_to_le16(n->temperature);
4496 
4497     if ((n->temperature >= n->features.temp_thresh_hi) ||
4498         (n->temperature <= n->features.temp_thresh_low)) {
4499         smart.critical_warning |= NVME_SMART_TEMPERATURE;
4500     }
4501 
4502     current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4503     smart.power_on_hours[0] =
4504         cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
4505 
4506     if (!rae) {
4507         nvme_clear_events(n, NVME_AER_TYPE_SMART);
4508     }
4509 
4510     return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
4511 }
4512 
4513 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
4514                                  NvmeRequest *req)
4515 {
4516     uint32_t trans_len;
4517     NvmeFwSlotInfoLog fw_log = {
4518         .afi = 0x1,
4519     };
4520 
4521     if (off >= sizeof(fw_log)) {
4522         return NVME_INVALID_FIELD | NVME_DNR;
4523     }
4524 
4525     strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
4526     trans_len = MIN(sizeof(fw_log) - off, buf_len);
4527 
4528     return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
4529 }
4530 
4531 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4532                                 uint64_t off, NvmeRequest *req)
4533 {
4534     uint32_t trans_len;
4535     NvmeErrorLog errlog;
4536 
4537     if (off >= sizeof(errlog)) {
4538         return NVME_INVALID_FIELD | NVME_DNR;
4539     }
4540 
4541     if (!rae) {
4542         nvme_clear_events(n, NVME_AER_TYPE_ERROR);
4543     }
4544 
4545     memset(&errlog, 0x0, sizeof(errlog));
4546     trans_len = MIN(sizeof(errlog) - off, buf_len);
4547 
4548     return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
4549 }
4550 
4551 static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4552                                     uint64_t off, NvmeRequest *req)
4553 {
4554     uint32_t nslist[1024];
4555     uint32_t trans_len;
4556     int i = 0;
4557     uint32_t nsid;
4558 
4559     if (off >= sizeof(nslist)) {
4560         trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist));
4561         return NVME_INVALID_FIELD | NVME_DNR;
4562     }
4563 
4564     memset(nslist, 0x0, sizeof(nslist));
4565     trans_len = MIN(sizeof(nslist) - off, buf_len);
4566 
4567     while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
4568             NVME_CHANGED_NSID_SIZE) {
4569         /*
4570          * If more than 1024 namespaces, the first entry in the log page should
4571          * be set to FFFFFFFFh and the others to 0 as spec.
4572          */
4573         if (i == ARRAY_SIZE(nslist)) {
4574             memset(nslist, 0x0, sizeof(nslist));
4575             nslist[0] = 0xffffffff;
4576             break;
4577         }
4578 
4579         nslist[i++] = nsid;
4580         clear_bit(nsid, n->changed_nsids);
4581     }
4582 
4583     /*
4584      * Remove all the remaining list entries in case returns directly due to
4585      * more than 1024 namespaces.
4586      */
4587     if (nslist[0] == 0xffffffff) {
4588         bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
4589     }
4590 
4591     if (!rae) {
4592         nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
4593     }
4594 
4595     return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
4596 }
4597 
4598 static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
4599                                  uint64_t off, NvmeRequest *req)
4600 {
4601     NvmeEffectsLog log = {};
4602     const uint32_t *src_iocs = NULL;
4603     uint32_t trans_len;
4604 
4605     if (off >= sizeof(log)) {
4606         trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
4607         return NVME_INVALID_FIELD | NVME_DNR;
4608     }
4609 
4610     switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) {
4611     case NVME_CC_CSS_NVM:
4612         src_iocs = nvme_cse_iocs_nvm;
4613         /* fall through */
4614     case NVME_CC_CSS_ADMIN_ONLY:
4615         break;
4616     case NVME_CC_CSS_CSI:
4617         switch (csi) {
4618         case NVME_CSI_NVM:
4619             src_iocs = nvme_cse_iocs_nvm;
4620             break;
4621         case NVME_CSI_ZONED:
4622             src_iocs = nvme_cse_iocs_zoned;
4623             break;
4624         }
4625     }
4626 
4627     memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
4628 
4629     if (src_iocs) {
4630         memcpy(log.iocs, src_iocs, sizeof(log.iocs));
4631     }
4632 
4633     trans_len = MIN(sizeof(log) - off, buf_len);
4634 
4635     return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
4636 }
4637 
4638 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
4639 {
4640     NvmeCmd *cmd = &req->cmd;
4641 
4642     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
4643     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
4644     uint32_t dw12 = le32_to_cpu(cmd->cdw12);
4645     uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4646     uint8_t  lid = dw10 & 0xff;
4647     uint8_t  lsp = (dw10 >> 8) & 0xf;
4648     uint8_t  rae = (dw10 >> 15) & 0x1;
4649     uint8_t  csi = le32_to_cpu(cmd->cdw14) >> 24;
4650     uint32_t numdl, numdu;
4651     uint64_t off, lpol, lpou;
4652     size_t   len;
4653     uint16_t status;
4654 
4655     numdl = (dw10 >> 16);
4656     numdu = (dw11 & 0xffff);
4657     lpol = dw12;
4658     lpou = dw13;
4659 
4660     len = (((numdu << 16) | numdl) + 1) << 2;
4661     off = (lpou << 32ULL) | lpol;
4662 
4663     if (off & 0x3) {
4664         return NVME_INVALID_FIELD | NVME_DNR;
4665     }
4666 
4667     trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
4668 
4669     status = nvme_check_mdts(n, len);
4670     if (status) {
4671         return status;
4672     }
4673 
4674     switch (lid) {
4675     case NVME_LOG_ERROR_INFO:
4676         return nvme_error_info(n, rae, len, off, req);
4677     case NVME_LOG_SMART_INFO:
4678         return nvme_smart_info(n, rae, len, off, req);
4679     case NVME_LOG_FW_SLOT_INFO:
4680         return nvme_fw_log_info(n, len, off, req);
4681     case NVME_LOG_CHANGED_NSLIST:
4682         return nvme_changed_nslist(n, rae, len, off, req);
4683     case NVME_LOG_CMD_EFFECTS:
4684         return nvme_cmd_effects(n, csi, len, off, req);
4685     default:
4686         trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
4687         return NVME_INVALID_FIELD | NVME_DNR;
4688     }
4689 }
4690 
4691 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
4692 {
4693     uint16_t offset = (cq->cqid << 3) + (1 << 2);
4694 
4695     n->cq[cq->cqid] = NULL;
4696     timer_free(cq->timer);
4697     if (cq->ioeventfd_enabled) {
4698         memory_region_del_eventfd(&n->iomem,
4699                                   0x1000 + offset, 4, false, 0, &cq->notifier);
4700         event_notifier_cleanup(&cq->notifier);
4701     }
4702     if (msix_enabled(&n->parent_obj)) {
4703         msix_vector_unuse(&n->parent_obj, cq->vector);
4704     }
4705     if (cq->cqid) {
4706         g_free(cq);
4707     }
4708 }
4709 
4710 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
4711 {
4712     NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4713     NvmeCQueue *cq;
4714     uint16_t qid = le16_to_cpu(c->qid);
4715 
4716     if (unlikely(!qid || nvme_check_cqid(n, qid))) {
4717         trace_pci_nvme_err_invalid_del_cq_cqid(qid);
4718         return NVME_INVALID_CQID | NVME_DNR;
4719     }
4720 
4721     cq = n->cq[qid];
4722     if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
4723         trace_pci_nvme_err_invalid_del_cq_notempty(qid);
4724         return NVME_INVALID_QUEUE_DEL;
4725     }
4726 
4727     if (cq->irq_enabled && cq->tail != cq->head) {
4728         n->cq_pending--;
4729     }
4730 
4731     nvme_irq_deassert(n, cq);
4732     trace_pci_nvme_del_cq(qid);
4733     nvme_free_cq(cq, n);
4734     return NVME_SUCCESS;
4735 }
4736 
4737 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
4738                          uint16_t cqid, uint16_t vector, uint16_t size,
4739                          uint16_t irq_enabled)
4740 {
4741     int ret;
4742 
4743     if (msix_enabled(&n->parent_obj)) {
4744         ret = msix_vector_use(&n->parent_obj, vector);
4745         assert(ret == 0);
4746     }
4747     cq->ctrl = n;
4748     cq->cqid = cqid;
4749     cq->size = size;
4750     cq->dma_addr = dma_addr;
4751     cq->phase = 1;
4752     cq->irq_enabled = irq_enabled;
4753     cq->vector = vector;
4754     cq->head = cq->tail = 0;
4755     QTAILQ_INIT(&cq->req_list);
4756     QTAILQ_INIT(&cq->sq_list);
4757     if (n->dbbuf_enabled) {
4758         cq->db_addr = n->dbbuf_dbs + (cqid << 3) + (1 << 2);
4759         cq->ei_addr = n->dbbuf_eis + (cqid << 3) + (1 << 2);
4760 
4761         if (n->params.ioeventfd && cqid != 0) {
4762             if (!nvme_init_cq_ioeventfd(cq)) {
4763                 cq->ioeventfd_enabled = true;
4764             }
4765         }
4766     }
4767     n->cq[cqid] = cq;
4768     cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
4769 }
4770 
4771 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
4772 {
4773     NvmeCQueue *cq;
4774     NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
4775     uint16_t cqid = le16_to_cpu(c->cqid);
4776     uint16_t vector = le16_to_cpu(c->irq_vector);
4777     uint16_t qsize = le16_to_cpu(c->qsize);
4778     uint16_t qflags = le16_to_cpu(c->cq_flags);
4779     uint64_t prp1 = le64_to_cpu(c->prp1);
4780 
4781     trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
4782                              NVME_CQ_FLAGS_IEN(qflags) != 0);
4783 
4784     if (unlikely(!cqid || cqid > n->conf_ioqpairs || n->cq[cqid] != NULL)) {
4785         trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
4786         return NVME_INVALID_QID | NVME_DNR;
4787     }
4788     if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4789         trace_pci_nvme_err_invalid_create_cq_size(qsize);
4790         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4791     }
4792     if (unlikely(prp1 & (n->page_size - 1))) {
4793         trace_pci_nvme_err_invalid_create_cq_addr(prp1);
4794         return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4795     }
4796     if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
4797         trace_pci_nvme_err_invalid_create_cq_vector(vector);
4798         return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4799     }
4800     if (unlikely(vector >= n->conf_msix_qsize)) {
4801         trace_pci_nvme_err_invalid_create_cq_vector(vector);
4802         return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4803     }
4804     if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
4805         trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
4806         return NVME_INVALID_FIELD | NVME_DNR;
4807     }
4808 
4809     cq = g_malloc0(sizeof(*cq));
4810     nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
4811                  NVME_CQ_FLAGS_IEN(qflags));
4812 
4813     /*
4814      * It is only required to set qs_created when creating a completion queue;
4815      * creating a submission queue without a matching completion queue will
4816      * fail.
4817      */
4818     n->qs_created = true;
4819     return NVME_SUCCESS;
4820 }
4821 
4822 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
4823 {
4824     uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4825 
4826     return nvme_c2h(n, id, sizeof(id), req);
4827 }
4828 
4829 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
4830 {
4831     trace_pci_nvme_identify_ctrl();
4832 
4833     return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
4834 }
4835 
4836 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
4837 {
4838     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4839     uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4840     NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
4841 
4842     trace_pci_nvme_identify_ctrl_csi(c->csi);
4843 
4844     switch (c->csi) {
4845     case NVME_CSI_NVM:
4846         id_nvm->vsl = n->params.vsl;
4847         id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
4848         break;
4849 
4850     case NVME_CSI_ZONED:
4851         ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
4852         break;
4853 
4854     default:
4855         return NVME_INVALID_FIELD | NVME_DNR;
4856     }
4857 
4858     return nvme_c2h(n, id, sizeof(id), req);
4859 }
4860 
4861 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
4862 {
4863     NvmeNamespace *ns;
4864     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4865     uint32_t nsid = le32_to_cpu(c->nsid);
4866 
4867     trace_pci_nvme_identify_ns(nsid);
4868 
4869     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4870         return NVME_INVALID_NSID | NVME_DNR;
4871     }
4872 
4873     ns = nvme_ns(n, nsid);
4874     if (unlikely(!ns)) {
4875         if (!active) {
4876             ns = nvme_subsys_ns(n->subsys, nsid);
4877             if (!ns) {
4878                 return nvme_rpt_empty_id_struct(n, req);
4879             }
4880         } else {
4881             return nvme_rpt_empty_id_struct(n, req);
4882         }
4883     }
4884 
4885     if (active || ns->csi == NVME_CSI_NVM) {
4886         return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
4887     }
4888 
4889     return NVME_INVALID_CMD_SET | NVME_DNR;
4890 }
4891 
4892 static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req,
4893                                         bool attached)
4894 {
4895     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4896     uint32_t nsid = le32_to_cpu(c->nsid);
4897     uint16_t min_id = le16_to_cpu(c->ctrlid);
4898     uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
4899     uint16_t *ids = &list[1];
4900     NvmeNamespace *ns;
4901     NvmeCtrl *ctrl;
4902     int cntlid, nr_ids = 0;
4903 
4904     trace_pci_nvme_identify_ctrl_list(c->cns, min_id);
4905 
4906     if (!n->subsys) {
4907         return NVME_INVALID_FIELD | NVME_DNR;
4908     }
4909 
4910     if (attached) {
4911         if (nsid == NVME_NSID_BROADCAST) {
4912             return NVME_INVALID_FIELD | NVME_DNR;
4913         }
4914 
4915         ns = nvme_subsys_ns(n->subsys, nsid);
4916         if (!ns) {
4917             return NVME_INVALID_FIELD | NVME_DNR;
4918         }
4919     }
4920 
4921     for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
4922         ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
4923         if (!ctrl) {
4924             continue;
4925         }
4926 
4927         if (attached && !nvme_ns(ctrl, nsid)) {
4928             continue;
4929         }
4930 
4931         ids[nr_ids++] = cntlid;
4932     }
4933 
4934     list[0] = nr_ids;
4935 
4936     return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
4937 }
4938 
4939 static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl *n, NvmeRequest *req)
4940 {
4941     trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n->pri_ctrl_cap.cntlid));
4942 
4943     return nvme_c2h(n, (uint8_t *)&n->pri_ctrl_cap,
4944                     sizeof(NvmePriCtrlCap), req);
4945 }
4946 
4947 static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl *n, NvmeRequest *req)
4948 {
4949     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4950     uint16_t pri_ctrl_id = le16_to_cpu(n->pri_ctrl_cap.cntlid);
4951     uint16_t min_id = le16_to_cpu(c->ctrlid);
4952     uint8_t num_sec_ctrl = n->sec_ctrl_list.numcntl;
4953     NvmeSecCtrlList list = {0};
4954     uint8_t i;
4955 
4956     for (i = 0; i < num_sec_ctrl; i++) {
4957         if (n->sec_ctrl_list.sec[i].scid >= min_id) {
4958             list.numcntl = num_sec_ctrl - i;
4959             memcpy(&list.sec, n->sec_ctrl_list.sec + i,
4960                    list.numcntl * sizeof(NvmeSecCtrlEntry));
4961             break;
4962         }
4963     }
4964 
4965     trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id, list.numcntl);
4966 
4967     return nvme_c2h(n, (uint8_t *)&list, sizeof(list), req);
4968 }
4969 
4970 static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
4971                                      bool active)
4972 {
4973     NvmeNamespace *ns;
4974     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4975     uint32_t nsid = le32_to_cpu(c->nsid);
4976 
4977     trace_pci_nvme_identify_ns_csi(nsid, c->csi);
4978 
4979     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4980         return NVME_INVALID_NSID | NVME_DNR;
4981     }
4982 
4983     ns = nvme_ns(n, nsid);
4984     if (unlikely(!ns)) {
4985         if (!active) {
4986             ns = nvme_subsys_ns(n->subsys, nsid);
4987             if (!ns) {
4988                 return nvme_rpt_empty_id_struct(n, req);
4989             }
4990         } else {
4991             return nvme_rpt_empty_id_struct(n, req);
4992         }
4993     }
4994 
4995     if (c->csi == NVME_CSI_NVM) {
4996         return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm),
4997                         req);
4998     } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
4999         return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
5000                         req);
5001     }
5002 
5003     return NVME_INVALID_FIELD | NVME_DNR;
5004 }
5005 
5006 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
5007                                      bool active)
5008 {
5009     NvmeNamespace *ns;
5010     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5011     uint32_t min_nsid = le32_to_cpu(c->nsid);
5012     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5013     static const int data_len = sizeof(list);
5014     uint32_t *list_ptr = (uint32_t *)list;
5015     int i, j = 0;
5016 
5017     trace_pci_nvme_identify_nslist(min_nsid);
5018 
5019     /*
5020      * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
5021      * since the Active Namespace ID List should return namespaces with ids
5022      * *higher* than the NSID specified in the command. This is also specified
5023      * in the spec (NVM Express v1.3d, Section 5.15.4).
5024      */
5025     if (min_nsid >= NVME_NSID_BROADCAST - 1) {
5026         return NVME_INVALID_NSID | NVME_DNR;
5027     }
5028 
5029     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5030         ns = nvme_ns(n, i);
5031         if (!ns) {
5032             if (!active) {
5033                 ns = nvme_subsys_ns(n->subsys, i);
5034                 if (!ns) {
5035                     continue;
5036                 }
5037             } else {
5038                 continue;
5039             }
5040         }
5041         if (ns->params.nsid <= min_nsid) {
5042             continue;
5043         }
5044         list_ptr[j++] = cpu_to_le32(ns->params.nsid);
5045         if (j == data_len / sizeof(uint32_t)) {
5046             break;
5047         }
5048     }
5049 
5050     return nvme_c2h(n, list, data_len, req);
5051 }
5052 
5053 static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
5054                                          bool active)
5055 {
5056     NvmeNamespace *ns;
5057     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5058     uint32_t min_nsid = le32_to_cpu(c->nsid);
5059     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5060     static const int data_len = sizeof(list);
5061     uint32_t *list_ptr = (uint32_t *)list;
5062     int i, j = 0;
5063 
5064     trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
5065 
5066     /*
5067      * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
5068      */
5069     if (min_nsid >= NVME_NSID_BROADCAST - 1) {
5070         return NVME_INVALID_NSID | NVME_DNR;
5071     }
5072 
5073     if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
5074         return NVME_INVALID_FIELD | NVME_DNR;
5075     }
5076 
5077     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5078         ns = nvme_ns(n, i);
5079         if (!ns) {
5080             if (!active) {
5081                 ns = nvme_subsys_ns(n->subsys, i);
5082                 if (!ns) {
5083                     continue;
5084                 }
5085             } else {
5086                 continue;
5087             }
5088         }
5089         if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
5090             continue;
5091         }
5092         list_ptr[j++] = cpu_to_le32(ns->params.nsid);
5093         if (j == data_len / sizeof(uint32_t)) {
5094             break;
5095         }
5096     }
5097 
5098     return nvme_c2h(n, list, data_len, req);
5099 }
5100 
5101 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
5102 {
5103     NvmeNamespace *ns;
5104     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5105     uint32_t nsid = le32_to_cpu(c->nsid);
5106     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5107     uint8_t *pos = list;
5108     struct {
5109         NvmeIdNsDescr hdr;
5110         uint8_t v[NVME_NIDL_UUID];
5111     } QEMU_PACKED uuid = {};
5112     struct {
5113         NvmeIdNsDescr hdr;
5114         uint64_t v;
5115     } QEMU_PACKED eui64 = {};
5116     struct {
5117         NvmeIdNsDescr hdr;
5118         uint8_t v;
5119     } QEMU_PACKED csi = {};
5120 
5121     trace_pci_nvme_identify_ns_descr_list(nsid);
5122 
5123     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5124         return NVME_INVALID_NSID | NVME_DNR;
5125     }
5126 
5127     ns = nvme_ns(n, nsid);
5128     if (unlikely(!ns)) {
5129         return NVME_INVALID_FIELD | NVME_DNR;
5130     }
5131 
5132     if (!qemu_uuid_is_null(&ns->params.uuid)) {
5133         uuid.hdr.nidt = NVME_NIDT_UUID;
5134         uuid.hdr.nidl = NVME_NIDL_UUID;
5135         memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
5136         memcpy(pos, &uuid, sizeof(uuid));
5137         pos += sizeof(uuid);
5138     }
5139 
5140     if (ns->params.eui64) {
5141         eui64.hdr.nidt = NVME_NIDT_EUI64;
5142         eui64.hdr.nidl = NVME_NIDL_EUI64;
5143         eui64.v = cpu_to_be64(ns->params.eui64);
5144         memcpy(pos, &eui64, sizeof(eui64));
5145         pos += sizeof(eui64);
5146     }
5147 
5148     csi.hdr.nidt = NVME_NIDT_CSI;
5149     csi.hdr.nidl = NVME_NIDL_CSI;
5150     csi.v = ns->csi;
5151     memcpy(pos, &csi, sizeof(csi));
5152     pos += sizeof(csi);
5153 
5154     return nvme_c2h(n, list, sizeof(list), req);
5155 }
5156 
5157 static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
5158 {
5159     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5160     static const int data_len = sizeof(list);
5161 
5162     trace_pci_nvme_identify_cmd_set();
5163 
5164     NVME_SET_CSI(*list, NVME_CSI_NVM);
5165     NVME_SET_CSI(*list, NVME_CSI_ZONED);
5166 
5167     return nvme_c2h(n, list, data_len, req);
5168 }
5169 
5170 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
5171 {
5172     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5173 
5174     trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
5175                             c->csi);
5176 
5177     switch (c->cns) {
5178     case NVME_ID_CNS_NS:
5179         return nvme_identify_ns(n, req, true);
5180     case NVME_ID_CNS_NS_PRESENT:
5181         return nvme_identify_ns(n, req, false);
5182     case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
5183         return nvme_identify_ctrl_list(n, req, true);
5184     case NVME_ID_CNS_CTRL_LIST:
5185         return nvme_identify_ctrl_list(n, req, false);
5186     case NVME_ID_CNS_PRIMARY_CTRL_CAP:
5187         return nvme_identify_pri_ctrl_cap(n, req);
5188     case NVME_ID_CNS_SECONDARY_CTRL_LIST:
5189         return nvme_identify_sec_ctrl_list(n, req);
5190     case NVME_ID_CNS_CS_NS:
5191         return nvme_identify_ns_csi(n, req, true);
5192     case NVME_ID_CNS_CS_NS_PRESENT:
5193         return nvme_identify_ns_csi(n, req, false);
5194     case NVME_ID_CNS_CTRL:
5195         return nvme_identify_ctrl(n, req);
5196     case NVME_ID_CNS_CS_CTRL:
5197         return nvme_identify_ctrl_csi(n, req);
5198     case NVME_ID_CNS_NS_ACTIVE_LIST:
5199         return nvme_identify_nslist(n, req, true);
5200     case NVME_ID_CNS_NS_PRESENT_LIST:
5201         return nvme_identify_nslist(n, req, false);
5202     case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
5203         return nvme_identify_nslist_csi(n, req, true);
5204     case NVME_ID_CNS_CS_NS_PRESENT_LIST:
5205         return nvme_identify_nslist_csi(n, req, false);
5206     case NVME_ID_CNS_NS_DESCR_LIST:
5207         return nvme_identify_ns_descr_list(n, req);
5208     case NVME_ID_CNS_IO_COMMAND_SET:
5209         return nvme_identify_cmd_set(n, req);
5210     default:
5211         trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
5212         return NVME_INVALID_FIELD | NVME_DNR;
5213     }
5214 }
5215 
5216 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
5217 {
5218     uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
5219 
5220     req->cqe.result = 1;
5221     if (nvme_check_sqid(n, sqid)) {
5222         return NVME_INVALID_FIELD | NVME_DNR;
5223     }
5224 
5225     return NVME_SUCCESS;
5226 }
5227 
5228 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
5229 {
5230     trace_pci_nvme_setfeat_timestamp(ts);
5231 
5232     n->host_timestamp = le64_to_cpu(ts);
5233     n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5234 }
5235 
5236 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
5237 {
5238     uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5239     uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
5240 
5241     union nvme_timestamp {
5242         struct {
5243             uint64_t timestamp:48;
5244             uint64_t sync:1;
5245             uint64_t origin:3;
5246             uint64_t rsvd1:12;
5247         };
5248         uint64_t all;
5249     };
5250 
5251     union nvme_timestamp ts;
5252     ts.all = 0;
5253     ts.timestamp = n->host_timestamp + elapsed_time;
5254 
5255     /* If the host timestamp is non-zero, set the timestamp origin */
5256     ts.origin = n->host_timestamp ? 0x01 : 0x00;
5257 
5258     trace_pci_nvme_getfeat_timestamp(ts.all);
5259 
5260     return cpu_to_le64(ts.all);
5261 }
5262 
5263 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5264 {
5265     uint64_t timestamp = nvme_get_timestamp(n);
5266 
5267     return nvme_c2h(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5268 }
5269 
5270 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
5271 {
5272     NvmeCmd *cmd = &req->cmd;
5273     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5274     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5275     uint32_t nsid = le32_to_cpu(cmd->nsid);
5276     uint32_t result;
5277     uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5278     NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
5279     uint16_t iv;
5280     NvmeNamespace *ns;
5281     int i;
5282 
5283     static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
5284         [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
5285     };
5286 
5287     trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
5288 
5289     if (!nvme_feature_support[fid]) {
5290         return NVME_INVALID_FIELD | NVME_DNR;
5291     }
5292 
5293     if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5294         if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5295             /*
5296              * The Reservation Notification Mask and Reservation Persistence
5297              * features require a status code of Invalid Field in Command when
5298              * NSID is FFFFFFFFh. Since the device does not support those
5299              * features we can always return Invalid Namespace or Format as we
5300              * should do for all other features.
5301              */
5302             return NVME_INVALID_NSID | NVME_DNR;
5303         }
5304 
5305         if (!nvme_ns(n, nsid)) {
5306             return NVME_INVALID_FIELD | NVME_DNR;
5307         }
5308     }
5309 
5310     switch (sel) {
5311     case NVME_GETFEAT_SELECT_CURRENT:
5312         break;
5313     case NVME_GETFEAT_SELECT_SAVED:
5314         /* no features are saveable by the controller; fallthrough */
5315     case NVME_GETFEAT_SELECT_DEFAULT:
5316         goto defaults;
5317     case NVME_GETFEAT_SELECT_CAP:
5318         result = nvme_feature_cap[fid];
5319         goto out;
5320     }
5321 
5322     switch (fid) {
5323     case NVME_TEMPERATURE_THRESHOLD:
5324         result = 0;
5325 
5326         /*
5327          * The controller only implements the Composite Temperature sensor, so
5328          * return 0 for all other sensors.
5329          */
5330         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5331             goto out;
5332         }
5333 
5334         switch (NVME_TEMP_THSEL(dw11)) {
5335         case NVME_TEMP_THSEL_OVER:
5336             result = n->features.temp_thresh_hi;
5337             goto out;
5338         case NVME_TEMP_THSEL_UNDER:
5339             result = n->features.temp_thresh_low;
5340             goto out;
5341         }
5342 
5343         return NVME_INVALID_FIELD | NVME_DNR;
5344     case NVME_ERROR_RECOVERY:
5345         if (!nvme_nsid_valid(n, nsid)) {
5346             return NVME_INVALID_NSID | NVME_DNR;
5347         }
5348 
5349         ns = nvme_ns(n, nsid);
5350         if (unlikely(!ns)) {
5351             return NVME_INVALID_FIELD | NVME_DNR;
5352         }
5353 
5354         result = ns->features.err_rec;
5355         goto out;
5356     case NVME_VOLATILE_WRITE_CACHE:
5357         result = 0;
5358         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5359             ns = nvme_ns(n, i);
5360             if (!ns) {
5361                 continue;
5362             }
5363 
5364             result = blk_enable_write_cache(ns->blkconf.blk);
5365             if (result) {
5366                 break;
5367             }
5368         }
5369         trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
5370         goto out;
5371     case NVME_ASYNCHRONOUS_EVENT_CONF:
5372         result = n->features.async_config;
5373         goto out;
5374     case NVME_TIMESTAMP:
5375         return nvme_get_feature_timestamp(n, req);
5376     case NVME_HOST_BEHAVIOR_SUPPORT:
5377         return nvme_c2h(n, (uint8_t *)&n->features.hbs,
5378                         sizeof(n->features.hbs), req);
5379     default:
5380         break;
5381     }
5382 
5383 defaults:
5384     switch (fid) {
5385     case NVME_TEMPERATURE_THRESHOLD:
5386         result = 0;
5387 
5388         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5389             break;
5390         }
5391 
5392         if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
5393             result = NVME_TEMPERATURE_WARNING;
5394         }
5395 
5396         break;
5397     case NVME_NUMBER_OF_QUEUES:
5398         result = (n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16);
5399         trace_pci_nvme_getfeat_numq(result);
5400         break;
5401     case NVME_INTERRUPT_VECTOR_CONF:
5402         iv = dw11 & 0xffff;
5403         if (iv >= n->conf_ioqpairs + 1) {
5404             return NVME_INVALID_FIELD | NVME_DNR;
5405         }
5406 
5407         result = iv;
5408         if (iv == n->admin_cq.vector) {
5409             result |= NVME_INTVC_NOCOALESCING;
5410         }
5411         break;
5412     default:
5413         result = nvme_feature_default[fid];
5414         break;
5415     }
5416 
5417 out:
5418     req->cqe.result = cpu_to_le32(result);
5419     return NVME_SUCCESS;
5420 }
5421 
5422 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5423 {
5424     uint16_t ret;
5425     uint64_t timestamp;
5426 
5427     ret = nvme_h2c(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5428     if (ret) {
5429         return ret;
5430     }
5431 
5432     nvme_set_timestamp(n, timestamp);
5433 
5434     return NVME_SUCCESS;
5435 }
5436 
5437 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
5438 {
5439     NvmeNamespace *ns = NULL;
5440 
5441     NvmeCmd *cmd = &req->cmd;
5442     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5443     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5444     uint32_t nsid = le32_to_cpu(cmd->nsid);
5445     uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5446     uint8_t save = NVME_SETFEAT_SAVE(dw10);
5447     uint16_t status;
5448     int i;
5449 
5450     trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
5451 
5452     if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
5453         return NVME_FID_NOT_SAVEABLE | NVME_DNR;
5454     }
5455 
5456     if (!nvme_feature_support[fid]) {
5457         return NVME_INVALID_FIELD | NVME_DNR;
5458     }
5459 
5460     if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5461         if (nsid != NVME_NSID_BROADCAST) {
5462             if (!nvme_nsid_valid(n, nsid)) {
5463                 return NVME_INVALID_NSID | NVME_DNR;
5464             }
5465 
5466             ns = nvme_ns(n, nsid);
5467             if (unlikely(!ns)) {
5468                 return NVME_INVALID_FIELD | NVME_DNR;
5469             }
5470         }
5471     } else if (nsid && nsid != NVME_NSID_BROADCAST) {
5472         if (!nvme_nsid_valid(n, nsid)) {
5473             return NVME_INVALID_NSID | NVME_DNR;
5474         }
5475 
5476         return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
5477     }
5478 
5479     if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
5480         return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
5481     }
5482 
5483     switch (fid) {
5484     case NVME_TEMPERATURE_THRESHOLD:
5485         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5486             break;
5487         }
5488 
5489         switch (NVME_TEMP_THSEL(dw11)) {
5490         case NVME_TEMP_THSEL_OVER:
5491             n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
5492             break;
5493         case NVME_TEMP_THSEL_UNDER:
5494             n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
5495             break;
5496         default:
5497             return NVME_INVALID_FIELD | NVME_DNR;
5498         }
5499 
5500         if ((n->temperature >= n->features.temp_thresh_hi) ||
5501             (n->temperature <= n->features.temp_thresh_low)) {
5502             nvme_smart_event(n, NVME_SMART_TEMPERATURE);
5503         }
5504 
5505         break;
5506     case NVME_ERROR_RECOVERY:
5507         if (nsid == NVME_NSID_BROADCAST) {
5508             for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5509                 ns = nvme_ns(n, i);
5510 
5511                 if (!ns) {
5512                     continue;
5513                 }
5514 
5515                 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
5516                     ns->features.err_rec = dw11;
5517                 }
5518             }
5519 
5520             break;
5521         }
5522 
5523         assert(ns);
5524         if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat))  {
5525             ns->features.err_rec = dw11;
5526         }
5527         break;
5528     case NVME_VOLATILE_WRITE_CACHE:
5529         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5530             ns = nvme_ns(n, i);
5531             if (!ns) {
5532                 continue;
5533             }
5534 
5535             if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
5536                 blk_flush(ns->blkconf.blk);
5537             }
5538 
5539             blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
5540         }
5541 
5542         break;
5543 
5544     case NVME_NUMBER_OF_QUEUES:
5545         if (n->qs_created) {
5546             return NVME_CMD_SEQ_ERROR | NVME_DNR;
5547         }
5548 
5549         /*
5550          * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
5551          * and NSQR.
5552          */
5553         if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
5554             return NVME_INVALID_FIELD | NVME_DNR;
5555         }
5556 
5557         trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1,
5558                                     ((dw11 >> 16) & 0xffff) + 1,
5559                                     n->conf_ioqpairs,
5560                                     n->conf_ioqpairs);
5561         req->cqe.result = cpu_to_le32((n->conf_ioqpairs - 1) |
5562                                       ((n->conf_ioqpairs - 1) << 16));
5563         break;
5564     case NVME_ASYNCHRONOUS_EVENT_CONF:
5565         n->features.async_config = dw11;
5566         break;
5567     case NVME_TIMESTAMP:
5568         return nvme_set_feature_timestamp(n, req);
5569     case NVME_HOST_BEHAVIOR_SUPPORT:
5570         status = nvme_h2c(n, (uint8_t *)&n->features.hbs,
5571                           sizeof(n->features.hbs), req);
5572         if (status) {
5573             return status;
5574         }
5575 
5576         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5577             ns = nvme_ns(n, i);
5578 
5579             if (!ns) {
5580                 continue;
5581             }
5582 
5583             ns->id_ns.nlbaf = ns->nlbaf - 1;
5584             if (!n->features.hbs.lbafee) {
5585                 ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15);
5586             }
5587         }
5588 
5589         return status;
5590     case NVME_COMMAND_SET_PROFILE:
5591         if (dw11 & 0x1ff) {
5592             trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
5593             return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
5594         }
5595         break;
5596     default:
5597         return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
5598     }
5599     return NVME_SUCCESS;
5600 }
5601 
5602 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
5603 {
5604     trace_pci_nvme_aer(nvme_cid(req));
5605 
5606     if (n->outstanding_aers > n->params.aerl) {
5607         trace_pci_nvme_aer_aerl_exceeded();
5608         return NVME_AER_LIMIT_EXCEEDED;
5609     }
5610 
5611     n->aer_reqs[n->outstanding_aers] = req;
5612     n->outstanding_aers++;
5613 
5614     if (!QTAILQ_EMPTY(&n->aer_queue)) {
5615         nvme_process_aers(n);
5616     }
5617 
5618     return NVME_NO_COMPLETE;
5619 }
5620 
5621 static void nvme_update_dmrsl(NvmeCtrl *n)
5622 {
5623     int nsid;
5624 
5625     for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
5626         NvmeNamespace *ns = nvme_ns(n, nsid);
5627         if (!ns) {
5628             continue;
5629         }
5630 
5631         n->dmrsl = MIN_NON_ZERO(n->dmrsl,
5632                                 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
5633     }
5634 }
5635 
5636 static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns)
5637 {
5638     uint32_t cc = ldl_le_p(&n->bar.cc);
5639 
5640     ns->iocs = nvme_cse_iocs_none;
5641     switch (ns->csi) {
5642     case NVME_CSI_NVM:
5643         if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) {
5644             ns->iocs = nvme_cse_iocs_nvm;
5645         }
5646         break;
5647     case NVME_CSI_ZONED:
5648         if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) {
5649             ns->iocs = nvme_cse_iocs_zoned;
5650         } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) {
5651             ns->iocs = nvme_cse_iocs_nvm;
5652         }
5653         break;
5654     }
5655 }
5656 
5657 static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
5658 {
5659     NvmeNamespace *ns;
5660     NvmeCtrl *ctrl;
5661     uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
5662     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5663     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5664     uint8_t sel = dw10 & 0xf;
5665     uint16_t *nr_ids = &list[0];
5666     uint16_t *ids = &list[1];
5667     uint16_t ret;
5668     int i;
5669 
5670     trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
5671 
5672     if (!nvme_nsid_valid(n, nsid)) {
5673         return NVME_INVALID_NSID | NVME_DNR;
5674     }
5675 
5676     ns = nvme_subsys_ns(n->subsys, nsid);
5677     if (!ns) {
5678         return NVME_INVALID_FIELD | NVME_DNR;
5679     }
5680 
5681     ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
5682     if (ret) {
5683         return ret;
5684     }
5685 
5686     if (!*nr_ids) {
5687         return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
5688     }
5689 
5690     *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1);
5691     for (i = 0; i < *nr_ids; i++) {
5692         ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
5693         if (!ctrl) {
5694             return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
5695         }
5696 
5697         switch (sel) {
5698         case NVME_NS_ATTACHMENT_ATTACH:
5699             if (nvme_ns(ctrl, nsid)) {
5700                 return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
5701             }
5702 
5703             if (ns->attached && !ns->params.shared) {
5704                 return NVME_NS_PRIVATE | NVME_DNR;
5705             }
5706 
5707             nvme_attach_ns(ctrl, ns);
5708             nvme_select_iocs_ns(ctrl, ns);
5709 
5710             break;
5711 
5712         case NVME_NS_ATTACHMENT_DETACH:
5713             if (!nvme_ns(ctrl, nsid)) {
5714                 return NVME_NS_NOT_ATTACHED | NVME_DNR;
5715             }
5716 
5717             ctrl->namespaces[nsid] = NULL;
5718             ns->attached--;
5719 
5720             nvme_update_dmrsl(ctrl);
5721 
5722             break;
5723 
5724         default:
5725             return NVME_INVALID_FIELD | NVME_DNR;
5726         }
5727 
5728         /*
5729          * Add namespace id to the changed namespace id list for event clearing
5730          * via Get Log Page command.
5731          */
5732         if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
5733             nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
5734                                NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
5735                                NVME_LOG_CHANGED_NSLIST);
5736         }
5737     }
5738 
5739     return NVME_SUCCESS;
5740 }
5741 
5742 typedef struct NvmeFormatAIOCB {
5743     BlockAIOCB common;
5744     BlockAIOCB *aiocb;
5745     QEMUBH *bh;
5746     NvmeRequest *req;
5747     int ret;
5748 
5749     NvmeNamespace *ns;
5750     uint32_t nsid;
5751     bool broadcast;
5752     int64_t offset;
5753 
5754     uint8_t lbaf;
5755     uint8_t mset;
5756     uint8_t pi;
5757     uint8_t pil;
5758 } NvmeFormatAIOCB;
5759 
5760 static void nvme_format_bh(void *opaque);
5761 
5762 static void nvme_format_cancel(BlockAIOCB *aiocb)
5763 {
5764     NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common);
5765 
5766     if (iocb->aiocb) {
5767         blk_aio_cancel_async(iocb->aiocb);
5768     }
5769 }
5770 
5771 static const AIOCBInfo nvme_format_aiocb_info = {
5772     .aiocb_size = sizeof(NvmeFormatAIOCB),
5773     .cancel_async = nvme_format_cancel,
5774     .get_aio_context = nvme_get_aio_context,
5775 };
5776 
5777 static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset,
5778                             uint8_t pi, uint8_t pil)
5779 {
5780     uint8_t lbafl = lbaf & 0xf;
5781     uint8_t lbafu = lbaf >> 4;
5782 
5783     trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil);
5784 
5785     ns->id_ns.dps = (pil << 3) | pi;
5786     ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl;
5787 
5788     nvme_ns_init_format(ns);
5789 }
5790 
5791 static void nvme_format_ns_cb(void *opaque, int ret)
5792 {
5793     NvmeFormatAIOCB *iocb = opaque;
5794     NvmeNamespace *ns = iocb->ns;
5795     int bytes;
5796 
5797     if (ret < 0) {
5798         iocb->ret = ret;
5799         goto done;
5800     }
5801 
5802     assert(ns);
5803 
5804     if (iocb->offset < ns->size) {
5805         bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset);
5806 
5807         iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset,
5808                                             bytes, BDRV_REQ_MAY_UNMAP,
5809                                             nvme_format_ns_cb, iocb);
5810 
5811         iocb->offset += bytes;
5812         return;
5813     }
5814 
5815     nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil);
5816     ns->status = 0x0;
5817     iocb->ns = NULL;
5818     iocb->offset = 0;
5819 
5820 done:
5821     iocb->aiocb = NULL;
5822     qemu_bh_schedule(iocb->bh);
5823 }
5824 
5825 static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi)
5826 {
5827     if (ns->params.zoned) {
5828         return NVME_INVALID_FORMAT | NVME_DNR;
5829     }
5830 
5831     if (lbaf > ns->id_ns.nlbaf) {
5832         return NVME_INVALID_FORMAT | NVME_DNR;
5833     }
5834 
5835     if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) {
5836         return NVME_INVALID_FORMAT | NVME_DNR;
5837     }
5838 
5839     if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
5840         return NVME_INVALID_FIELD | NVME_DNR;
5841     }
5842 
5843     return NVME_SUCCESS;
5844 }
5845 
5846 static void nvme_format_bh(void *opaque)
5847 {
5848     NvmeFormatAIOCB *iocb = opaque;
5849     NvmeRequest *req = iocb->req;
5850     NvmeCtrl *n = nvme_ctrl(req);
5851     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5852     uint8_t lbaf = dw10 & 0xf;
5853     uint8_t pi = (dw10 >> 5) & 0x7;
5854     uint16_t status;
5855     int i;
5856 
5857     if (iocb->ret < 0) {
5858         goto done;
5859     }
5860 
5861     if (iocb->broadcast) {
5862         for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
5863             iocb->ns = nvme_ns(n, i);
5864             if (iocb->ns) {
5865                 iocb->nsid = i;
5866                 break;
5867             }
5868         }
5869     }
5870 
5871     if (!iocb->ns) {
5872         goto done;
5873     }
5874 
5875     status = nvme_format_check(iocb->ns, lbaf, pi);
5876     if (status) {
5877         req->status = status;
5878         goto done;
5879     }
5880 
5881     iocb->ns->status = NVME_FORMAT_IN_PROGRESS;
5882     nvme_format_ns_cb(iocb, 0);
5883     return;
5884 
5885 done:
5886     qemu_bh_delete(iocb->bh);
5887     iocb->bh = NULL;
5888 
5889     iocb->common.cb(iocb->common.opaque, iocb->ret);
5890 
5891     qemu_aio_unref(iocb);
5892 }
5893 
5894 static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
5895 {
5896     NvmeFormatAIOCB *iocb;
5897     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5898     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5899     uint8_t lbaf = dw10 & 0xf;
5900     uint8_t mset = (dw10 >> 4) & 0x1;
5901     uint8_t pi = (dw10 >> 5) & 0x7;
5902     uint8_t pil = (dw10 >> 8) & 0x1;
5903     uint8_t lbafu = (dw10 >> 12) & 0x3;
5904     uint16_t status;
5905 
5906     iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req);
5907 
5908     iocb->req = req;
5909     iocb->bh = qemu_bh_new(nvme_format_bh, iocb);
5910     iocb->ret = 0;
5911     iocb->ns = NULL;
5912     iocb->nsid = 0;
5913     iocb->lbaf = lbaf;
5914     iocb->mset = mset;
5915     iocb->pi = pi;
5916     iocb->pil = pil;
5917     iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
5918     iocb->offset = 0;
5919 
5920     if (n->features.hbs.lbafee) {
5921         iocb->lbaf |= lbafu << 4;
5922     }
5923 
5924     if (!iocb->broadcast) {
5925         if (!nvme_nsid_valid(n, nsid)) {
5926             status = NVME_INVALID_NSID | NVME_DNR;
5927             goto out;
5928         }
5929 
5930         iocb->ns = nvme_ns(n, nsid);
5931         if (!iocb->ns) {
5932             status = NVME_INVALID_FIELD | NVME_DNR;
5933             goto out;
5934         }
5935     }
5936 
5937     req->aiocb = &iocb->common;
5938     qemu_bh_schedule(iocb->bh);
5939 
5940     return NVME_NO_COMPLETE;
5941 
5942 out:
5943     qemu_bh_delete(iocb->bh);
5944     iocb->bh = NULL;
5945     qemu_aio_unref(iocb);
5946     return status;
5947 }
5948 
5949 static void nvme_get_virt_res_num(NvmeCtrl *n, uint8_t rt, int *num_total,
5950                                   int *num_prim, int *num_sec)
5951 {
5952     *num_total = le32_to_cpu(rt ?
5953                              n->pri_ctrl_cap.vifrt : n->pri_ctrl_cap.vqfrt);
5954     *num_prim = le16_to_cpu(rt ?
5955                             n->pri_ctrl_cap.virfap : n->pri_ctrl_cap.vqrfap);
5956     *num_sec = le16_to_cpu(rt ? n->pri_ctrl_cap.virfa : n->pri_ctrl_cap.vqrfa);
5957 }
5958 
5959 static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl *n, NvmeRequest *req,
5960                                              uint16_t cntlid, uint8_t rt,
5961                                              int nr)
5962 {
5963     int num_total, num_prim, num_sec;
5964 
5965     if (cntlid != n->cntlid) {
5966         return NVME_INVALID_CTRL_ID | NVME_DNR;
5967     }
5968 
5969     nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
5970 
5971     if (nr > num_total) {
5972         return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
5973     }
5974 
5975     if (nr > num_total - num_sec) {
5976         return NVME_INVALID_RESOURCE_ID | NVME_DNR;
5977     }
5978 
5979     if (rt) {
5980         n->next_pri_ctrl_cap.virfap = cpu_to_le16(nr);
5981     } else {
5982         n->next_pri_ctrl_cap.vqrfap = cpu_to_le16(nr);
5983     }
5984 
5985     req->cqe.result = cpu_to_le32(nr);
5986     return req->status;
5987 }
5988 
5989 static void nvme_update_virt_res(NvmeCtrl *n, NvmeSecCtrlEntry *sctrl,
5990                                  uint8_t rt, int nr)
5991 {
5992     int prev_nr, prev_total;
5993 
5994     if (rt) {
5995         prev_nr = le16_to_cpu(sctrl->nvi);
5996         prev_total = le32_to_cpu(n->pri_ctrl_cap.virfa);
5997         sctrl->nvi = cpu_to_le16(nr);
5998         n->pri_ctrl_cap.virfa = cpu_to_le32(prev_total + nr - prev_nr);
5999     } else {
6000         prev_nr = le16_to_cpu(sctrl->nvq);
6001         prev_total = le32_to_cpu(n->pri_ctrl_cap.vqrfa);
6002         sctrl->nvq = cpu_to_le16(nr);
6003         n->pri_ctrl_cap.vqrfa = cpu_to_le32(prev_total + nr - prev_nr);
6004     }
6005 }
6006 
6007 static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl *n, NvmeRequest *req,
6008                                             uint16_t cntlid, uint8_t rt, int nr)
6009 {
6010     int num_total, num_prim, num_sec, num_free, diff, limit;
6011     NvmeSecCtrlEntry *sctrl;
6012 
6013     sctrl = nvme_sctrl_for_cntlid(n, cntlid);
6014     if (!sctrl) {
6015         return NVME_INVALID_CTRL_ID | NVME_DNR;
6016     }
6017 
6018     if (sctrl->scs) {
6019         return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
6020     }
6021 
6022     limit = le16_to_cpu(rt ? n->pri_ctrl_cap.vifrsm : n->pri_ctrl_cap.vqfrsm);
6023     if (nr > limit) {
6024         return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
6025     }
6026 
6027     nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
6028     num_free = num_total - num_prim - num_sec;
6029     diff = nr - le16_to_cpu(rt ? sctrl->nvi : sctrl->nvq);
6030 
6031     if (diff > num_free) {
6032         return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6033     }
6034 
6035     nvme_update_virt_res(n, sctrl, rt, nr);
6036     req->cqe.result = cpu_to_le32(nr);
6037 
6038     return req->status;
6039 }
6040 
6041 static uint16_t nvme_virt_set_state(NvmeCtrl *n, uint16_t cntlid, bool online)
6042 {
6043     NvmeCtrl *sn = NULL;
6044     NvmeSecCtrlEntry *sctrl;
6045     int vf_index;
6046 
6047     sctrl = nvme_sctrl_for_cntlid(n, cntlid);
6048     if (!sctrl) {
6049         return NVME_INVALID_CTRL_ID | NVME_DNR;
6050     }
6051 
6052     if (!pci_is_vf(&n->parent_obj)) {
6053         vf_index = le16_to_cpu(sctrl->vfn) - 1;
6054         sn = NVME(pcie_sriov_get_vf_at_index(&n->parent_obj, vf_index));
6055     }
6056 
6057     if (online) {
6058         if (!sctrl->nvi || (le16_to_cpu(sctrl->nvq) < 2) || !sn) {
6059             return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
6060         }
6061 
6062         if (!sctrl->scs) {
6063             sctrl->scs = 0x1;
6064             nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
6065         }
6066     } else {
6067         nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_INTERRUPT, 0);
6068         nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_QUEUE, 0);
6069 
6070         if (sctrl->scs) {
6071             sctrl->scs = 0x0;
6072             if (sn) {
6073                 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
6074             }
6075         }
6076     }
6077 
6078     return NVME_SUCCESS;
6079 }
6080 
6081 static uint16_t nvme_virt_mngmt(NvmeCtrl *n, NvmeRequest *req)
6082 {
6083     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6084     uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
6085     uint8_t act = dw10 & 0xf;
6086     uint8_t rt = (dw10 >> 8) & 0x7;
6087     uint16_t cntlid = (dw10 >> 16) & 0xffff;
6088     int nr = dw11 & 0xffff;
6089 
6090     trace_pci_nvme_virt_mngmt(nvme_cid(req), act, cntlid, rt ? "VI" : "VQ", nr);
6091 
6092     if (rt != NVME_VIRT_RES_QUEUE && rt != NVME_VIRT_RES_INTERRUPT) {
6093         return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6094     }
6095 
6096     switch (act) {
6097     case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN:
6098         return nvme_assign_virt_res_to_sec(n, req, cntlid, rt, nr);
6099     case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC:
6100         return nvme_assign_virt_res_to_prim(n, req, cntlid, rt, nr);
6101     case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE:
6102         return nvme_virt_set_state(n, cntlid, true);
6103     case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE:
6104         return nvme_virt_set_state(n, cntlid, false);
6105     default:
6106         return NVME_INVALID_FIELD | NVME_DNR;
6107     }
6108 }
6109 
6110 static uint16_t nvme_dbbuf_config(NvmeCtrl *n, const NvmeRequest *req)
6111 {
6112     uint64_t dbs_addr = le64_to_cpu(req->cmd.dptr.prp1);
6113     uint64_t eis_addr = le64_to_cpu(req->cmd.dptr.prp2);
6114     int i;
6115 
6116     /* Address should be page aligned */
6117     if (dbs_addr & (n->page_size - 1) || eis_addr & (n->page_size - 1)) {
6118         return NVME_INVALID_FIELD | NVME_DNR;
6119     }
6120 
6121     /* Save shadow buffer base addr for use during queue creation */
6122     n->dbbuf_dbs = dbs_addr;
6123     n->dbbuf_eis = eis_addr;
6124     n->dbbuf_enabled = true;
6125 
6126     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6127         NvmeSQueue *sq = n->sq[i];
6128         NvmeCQueue *cq = n->cq[i];
6129 
6130         if (sq) {
6131             /*
6132              * CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3)
6133              * nvme_process_db() uses this hard-coded way to calculate
6134              * doorbell offsets. Be consistent with that here.
6135              */
6136             sq->db_addr = dbs_addr + (i << 3);
6137             sq->ei_addr = eis_addr + (i << 3);
6138             pci_dma_write(&n->parent_obj, sq->db_addr, &sq->tail,
6139                     sizeof(sq->tail));
6140 
6141             if (n->params.ioeventfd && sq->sqid != 0) {
6142                 if (!nvme_init_sq_ioeventfd(sq)) {
6143                     sq->ioeventfd_enabled = true;
6144                 }
6145             }
6146         }
6147 
6148         if (cq) {
6149             /* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */
6150             cq->db_addr = dbs_addr + (i << 3) + (1 << 2);
6151             cq->ei_addr = eis_addr + (i << 3) + (1 << 2);
6152             pci_dma_write(&n->parent_obj, cq->db_addr, &cq->head,
6153                     sizeof(cq->head));
6154 
6155             if (n->params.ioeventfd && cq->cqid != 0) {
6156                 if (!nvme_init_cq_ioeventfd(cq)) {
6157                     cq->ioeventfd_enabled = true;
6158                 }
6159             }
6160         }
6161     }
6162 
6163     trace_pci_nvme_dbbuf_config(dbs_addr, eis_addr);
6164 
6165     return NVME_SUCCESS;
6166 }
6167 
6168 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
6169 {
6170     trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
6171                              nvme_adm_opc_str(req->cmd.opcode));
6172 
6173     if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
6174         trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
6175         return NVME_INVALID_OPCODE | NVME_DNR;
6176     }
6177 
6178     /* SGLs shall not be used for Admin commands in NVMe over PCIe */
6179     if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
6180         return NVME_INVALID_FIELD | NVME_DNR;
6181     }
6182 
6183     if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
6184         return NVME_INVALID_FIELD;
6185     }
6186 
6187     switch (req->cmd.opcode) {
6188     case NVME_ADM_CMD_DELETE_SQ:
6189         return nvme_del_sq(n, req);
6190     case NVME_ADM_CMD_CREATE_SQ:
6191         return nvme_create_sq(n, req);
6192     case NVME_ADM_CMD_GET_LOG_PAGE:
6193         return nvme_get_log(n, req);
6194     case NVME_ADM_CMD_DELETE_CQ:
6195         return nvme_del_cq(n, req);
6196     case NVME_ADM_CMD_CREATE_CQ:
6197         return nvme_create_cq(n, req);
6198     case NVME_ADM_CMD_IDENTIFY:
6199         return nvme_identify(n, req);
6200     case NVME_ADM_CMD_ABORT:
6201         return nvme_abort(n, req);
6202     case NVME_ADM_CMD_SET_FEATURES:
6203         return nvme_set_feature(n, req);
6204     case NVME_ADM_CMD_GET_FEATURES:
6205         return nvme_get_feature(n, req);
6206     case NVME_ADM_CMD_ASYNC_EV_REQ:
6207         return nvme_aer(n, req);
6208     case NVME_ADM_CMD_NS_ATTACHMENT:
6209         return nvme_ns_attachment(n, req);
6210     case NVME_ADM_CMD_VIRT_MNGMT:
6211         return nvme_virt_mngmt(n, req);
6212     case NVME_ADM_CMD_DBBUF_CONFIG:
6213         return nvme_dbbuf_config(n, req);
6214     case NVME_ADM_CMD_FORMAT_NVM:
6215         return nvme_format(n, req);
6216     default:
6217         assert(false);
6218     }
6219 
6220     return NVME_INVALID_OPCODE | NVME_DNR;
6221 }
6222 
6223 static void nvme_update_sq_eventidx(const NvmeSQueue *sq)
6224 {
6225     pci_dma_write(&sq->ctrl->parent_obj, sq->ei_addr, &sq->tail,
6226                   sizeof(sq->tail));
6227     trace_pci_nvme_eventidx_sq(sq->sqid, sq->tail);
6228 }
6229 
6230 static void nvme_update_sq_tail(NvmeSQueue *sq)
6231 {
6232     pci_dma_read(&sq->ctrl->parent_obj, sq->db_addr, &sq->tail,
6233                  sizeof(sq->tail));
6234     trace_pci_nvme_shadow_doorbell_sq(sq->sqid, sq->tail);
6235 }
6236 
6237 static void nvme_process_sq(void *opaque)
6238 {
6239     NvmeSQueue *sq = opaque;
6240     NvmeCtrl *n = sq->ctrl;
6241     NvmeCQueue *cq = n->cq[sq->cqid];
6242 
6243     uint16_t status;
6244     hwaddr addr;
6245     NvmeCmd cmd;
6246     NvmeRequest *req;
6247 
6248     if (n->dbbuf_enabled) {
6249         nvme_update_sq_tail(sq);
6250     }
6251 
6252     while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
6253         addr = sq->dma_addr + sq->head * n->sqe_size;
6254         if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
6255             trace_pci_nvme_err_addr_read(addr);
6256             trace_pci_nvme_err_cfs();
6257             stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
6258             break;
6259         }
6260         nvme_inc_sq_head(sq);
6261 
6262         req = QTAILQ_FIRST(&sq->req_list);
6263         QTAILQ_REMOVE(&sq->req_list, req, entry);
6264         QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
6265         nvme_req_clear(req);
6266         req->cqe.cid = cmd.cid;
6267         memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
6268 
6269         status = sq->sqid ? nvme_io_cmd(n, req) :
6270             nvme_admin_cmd(n, req);
6271         if (status != NVME_NO_COMPLETE) {
6272             req->status = status;
6273             nvme_enqueue_req_completion(cq, req);
6274         }
6275 
6276         if (n->dbbuf_enabled) {
6277             nvme_update_sq_eventidx(sq);
6278             nvme_update_sq_tail(sq);
6279         }
6280     }
6281 }
6282 
6283 static void nvme_update_msixcap_ts(PCIDevice *pci_dev, uint32_t table_size)
6284 {
6285     uint8_t *config;
6286 
6287     if (!msix_present(pci_dev)) {
6288         return;
6289     }
6290 
6291     assert(table_size > 0 && table_size <= pci_dev->msix_entries_nr);
6292 
6293     config = pci_dev->config + pci_dev->msix_cap;
6294     pci_set_word_by_mask(config + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_QSIZE,
6295                          table_size - 1);
6296 }
6297 
6298 static void nvme_activate_virt_res(NvmeCtrl *n)
6299 {
6300     PCIDevice *pci_dev = &n->parent_obj;
6301     NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
6302     NvmeSecCtrlEntry *sctrl;
6303 
6304     /* -1 to account for the admin queue */
6305     if (pci_is_vf(pci_dev)) {
6306         sctrl = nvme_sctrl(n);
6307         cap->vqprt = sctrl->nvq;
6308         cap->viprt = sctrl->nvi;
6309         n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
6310         n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
6311     } else {
6312         cap->vqrfap = n->next_pri_ctrl_cap.vqrfap;
6313         cap->virfap = n->next_pri_ctrl_cap.virfap;
6314         n->conf_ioqpairs = le16_to_cpu(cap->vqprt) +
6315                            le16_to_cpu(cap->vqrfap) - 1;
6316         n->conf_msix_qsize = le16_to_cpu(cap->viprt) +
6317                              le16_to_cpu(cap->virfap);
6318     }
6319 }
6320 
6321 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst)
6322 {
6323     PCIDevice *pci_dev = &n->parent_obj;
6324     NvmeSecCtrlEntry *sctrl;
6325     NvmeNamespace *ns;
6326     int i;
6327 
6328     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6329         ns = nvme_ns(n, i);
6330         if (!ns) {
6331             continue;
6332         }
6333 
6334         nvme_ns_drain(ns);
6335     }
6336 
6337     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6338         if (n->sq[i] != NULL) {
6339             nvme_free_sq(n->sq[i], n);
6340         }
6341     }
6342     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6343         if (n->cq[i] != NULL) {
6344             nvme_free_cq(n->cq[i], n);
6345         }
6346     }
6347 
6348     while (!QTAILQ_EMPTY(&n->aer_queue)) {
6349         NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
6350         QTAILQ_REMOVE(&n->aer_queue, event, entry);
6351         g_free(event);
6352     }
6353 
6354     if (n->params.sriov_max_vfs) {
6355         if (!pci_is_vf(pci_dev)) {
6356             for (i = 0; i < n->sec_ctrl_list.numcntl; i++) {
6357                 sctrl = &n->sec_ctrl_list.sec[i];
6358                 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
6359             }
6360 
6361             if (rst != NVME_RESET_CONTROLLER) {
6362                 pcie_sriov_pf_disable_vfs(pci_dev);
6363             }
6364         }
6365 
6366         if (rst != NVME_RESET_CONTROLLER) {
6367             nvme_activate_virt_res(n);
6368         }
6369     }
6370 
6371     n->aer_queued = 0;
6372     n->aer_mask = 0;
6373     n->outstanding_aers = 0;
6374     n->qs_created = false;
6375 
6376     nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
6377 
6378     if (pci_is_vf(pci_dev)) {
6379         sctrl = nvme_sctrl(n);
6380 
6381         stl_le_p(&n->bar.csts, sctrl->scs ? 0 : NVME_CSTS_FAILED);
6382     } else {
6383         stl_le_p(&n->bar.csts, 0);
6384     }
6385 
6386     stl_le_p(&n->bar.intms, 0);
6387     stl_le_p(&n->bar.intmc, 0);
6388     stl_le_p(&n->bar.cc, 0);
6389 
6390     n->dbbuf_dbs = 0;
6391     n->dbbuf_eis = 0;
6392     n->dbbuf_enabled = false;
6393 }
6394 
6395 static void nvme_ctrl_shutdown(NvmeCtrl *n)
6396 {
6397     NvmeNamespace *ns;
6398     int i;
6399 
6400     if (n->pmr.dev) {
6401         memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
6402     }
6403 
6404     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6405         ns = nvme_ns(n, i);
6406         if (!ns) {
6407             continue;
6408         }
6409 
6410         nvme_ns_shutdown(ns);
6411     }
6412 }
6413 
6414 static void nvme_select_iocs(NvmeCtrl *n)
6415 {
6416     NvmeNamespace *ns;
6417     int i;
6418 
6419     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6420         ns = nvme_ns(n, i);
6421         if (!ns) {
6422             continue;
6423         }
6424 
6425         nvme_select_iocs_ns(n, ns);
6426     }
6427 }
6428 
6429 static int nvme_start_ctrl(NvmeCtrl *n)
6430 {
6431     uint64_t cap = ldq_le_p(&n->bar.cap);
6432     uint32_t cc = ldl_le_p(&n->bar.cc);
6433     uint32_t aqa = ldl_le_p(&n->bar.aqa);
6434     uint64_t asq = ldq_le_p(&n->bar.asq);
6435     uint64_t acq = ldq_le_p(&n->bar.acq);
6436     uint32_t page_bits = NVME_CC_MPS(cc) + 12;
6437     uint32_t page_size = 1 << page_bits;
6438     NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
6439 
6440     if (pci_is_vf(&n->parent_obj) && !sctrl->scs) {
6441         trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl->nvi),
6442                                                 le16_to_cpu(sctrl->nvq),
6443                                                 sctrl->scs ? "ONLINE" :
6444                                                              "OFFLINE");
6445         return -1;
6446     }
6447     if (unlikely(n->cq[0])) {
6448         trace_pci_nvme_err_startfail_cq();
6449         return -1;
6450     }
6451     if (unlikely(n->sq[0])) {
6452         trace_pci_nvme_err_startfail_sq();
6453         return -1;
6454     }
6455     if (unlikely(asq & (page_size - 1))) {
6456         trace_pci_nvme_err_startfail_asq_misaligned(asq);
6457         return -1;
6458     }
6459     if (unlikely(acq & (page_size - 1))) {
6460         trace_pci_nvme_err_startfail_acq_misaligned(acq);
6461         return -1;
6462     }
6463     if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) {
6464         trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc));
6465         return -1;
6466     }
6467     if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) {
6468         trace_pci_nvme_err_startfail_page_too_small(
6469                     NVME_CC_MPS(cc),
6470                     NVME_CAP_MPSMIN(cap));
6471         return -1;
6472     }
6473     if (unlikely(NVME_CC_MPS(cc) >
6474                  NVME_CAP_MPSMAX(cap))) {
6475         trace_pci_nvme_err_startfail_page_too_large(
6476                     NVME_CC_MPS(cc),
6477                     NVME_CAP_MPSMAX(cap));
6478         return -1;
6479     }
6480     if (unlikely(NVME_CC_IOCQES(cc) <
6481                  NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
6482         trace_pci_nvme_err_startfail_cqent_too_small(
6483                     NVME_CC_IOCQES(cc),
6484                     NVME_CTRL_CQES_MIN(cap));
6485         return -1;
6486     }
6487     if (unlikely(NVME_CC_IOCQES(cc) >
6488                  NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
6489         trace_pci_nvme_err_startfail_cqent_too_large(
6490                     NVME_CC_IOCQES(cc),
6491                     NVME_CTRL_CQES_MAX(cap));
6492         return -1;
6493     }
6494     if (unlikely(NVME_CC_IOSQES(cc) <
6495                  NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
6496         trace_pci_nvme_err_startfail_sqent_too_small(
6497                     NVME_CC_IOSQES(cc),
6498                     NVME_CTRL_SQES_MIN(cap));
6499         return -1;
6500     }
6501     if (unlikely(NVME_CC_IOSQES(cc) >
6502                  NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
6503         trace_pci_nvme_err_startfail_sqent_too_large(
6504                     NVME_CC_IOSQES(cc),
6505                     NVME_CTRL_SQES_MAX(cap));
6506         return -1;
6507     }
6508     if (unlikely(!NVME_AQA_ASQS(aqa))) {
6509         trace_pci_nvme_err_startfail_asqent_sz_zero();
6510         return -1;
6511     }
6512     if (unlikely(!NVME_AQA_ACQS(aqa))) {
6513         trace_pci_nvme_err_startfail_acqent_sz_zero();
6514         return -1;
6515     }
6516 
6517     n->page_bits = page_bits;
6518     n->page_size = page_size;
6519     n->max_prp_ents = n->page_size / sizeof(uint64_t);
6520     n->cqe_size = 1 << NVME_CC_IOCQES(cc);
6521     n->sqe_size = 1 << NVME_CC_IOSQES(cc);
6522     nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1);
6523     nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1);
6524 
6525     nvme_set_timestamp(n, 0ULL);
6526 
6527     nvme_select_iocs(n);
6528 
6529     return 0;
6530 }
6531 
6532 static void nvme_cmb_enable_regs(NvmeCtrl *n)
6533 {
6534     uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc);
6535     uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz);
6536 
6537     NVME_CMBLOC_SET_CDPCILS(cmbloc, 1);
6538     NVME_CMBLOC_SET_CDPMLS(cmbloc, 1);
6539     NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR);
6540     stl_le_p(&n->bar.cmbloc, cmbloc);
6541 
6542     NVME_CMBSZ_SET_SQS(cmbsz, 1);
6543     NVME_CMBSZ_SET_CQS(cmbsz, 0);
6544     NVME_CMBSZ_SET_LISTS(cmbsz, 1);
6545     NVME_CMBSZ_SET_RDS(cmbsz, 1);
6546     NVME_CMBSZ_SET_WDS(cmbsz, 1);
6547     NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */
6548     NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb);
6549     stl_le_p(&n->bar.cmbsz, cmbsz);
6550 }
6551 
6552 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
6553                            unsigned size)
6554 {
6555     uint64_t cap = ldq_le_p(&n->bar.cap);
6556     uint32_t cc = ldl_le_p(&n->bar.cc);
6557     uint32_t intms = ldl_le_p(&n->bar.intms);
6558     uint32_t csts = ldl_le_p(&n->bar.csts);
6559     uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts);
6560 
6561     if (unlikely(offset & (sizeof(uint32_t) - 1))) {
6562         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
6563                        "MMIO write not 32-bit aligned,"
6564                        " offset=0x%"PRIx64"", offset);
6565         /* should be ignored, fall through for now */
6566     }
6567 
6568     if (unlikely(size < sizeof(uint32_t))) {
6569         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
6570                        "MMIO write smaller than 32-bits,"
6571                        " offset=0x%"PRIx64", size=%u",
6572                        offset, size);
6573         /* should be ignored, fall through for now */
6574     }
6575 
6576     switch (offset) {
6577     case NVME_REG_INTMS:
6578         if (unlikely(msix_enabled(&(n->parent_obj)))) {
6579             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
6580                            "undefined access to interrupt mask set"
6581                            " when MSI-X is enabled");
6582             /* should be ignored, fall through for now */
6583         }
6584         intms |= data;
6585         stl_le_p(&n->bar.intms, intms);
6586         n->bar.intmc = n->bar.intms;
6587         trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms);
6588         nvme_irq_check(n);
6589         break;
6590     case NVME_REG_INTMC:
6591         if (unlikely(msix_enabled(&(n->parent_obj)))) {
6592             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
6593                            "undefined access to interrupt mask clr"
6594                            " when MSI-X is enabled");
6595             /* should be ignored, fall through for now */
6596         }
6597         intms &= ~data;
6598         stl_le_p(&n->bar.intms, intms);
6599         n->bar.intmc = n->bar.intms;
6600         trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms);
6601         nvme_irq_check(n);
6602         break;
6603     case NVME_REG_CC:
6604         stl_le_p(&n->bar.cc, data);
6605 
6606         trace_pci_nvme_mmio_cfg(data & 0xffffffff);
6607 
6608         if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) {
6609             trace_pci_nvme_mmio_shutdown_set();
6610             nvme_ctrl_shutdown(n);
6611             csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
6612             csts |= NVME_CSTS_SHST_COMPLETE;
6613         } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) {
6614             trace_pci_nvme_mmio_shutdown_cleared();
6615             csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
6616         }
6617 
6618         if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) {
6619             if (unlikely(nvme_start_ctrl(n))) {
6620                 trace_pci_nvme_err_startfail();
6621                 csts = NVME_CSTS_FAILED;
6622             } else {
6623                 trace_pci_nvme_mmio_start_success();
6624                 csts = NVME_CSTS_READY;
6625             }
6626         } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) {
6627             trace_pci_nvme_mmio_stopped();
6628             nvme_ctrl_reset(n, NVME_RESET_CONTROLLER);
6629 
6630             break;
6631         }
6632 
6633         stl_le_p(&n->bar.csts, csts);
6634 
6635         break;
6636     case NVME_REG_CSTS:
6637         if (data & (1 << 4)) {
6638             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
6639                            "attempted to W1C CSTS.NSSRO"
6640                            " but CAP.NSSRS is zero (not supported)");
6641         } else if (data != 0) {
6642             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
6643                            "attempted to set a read only bit"
6644                            " of controller status");
6645         }
6646         break;
6647     case NVME_REG_NSSR:
6648         if (data == 0x4e564d65) {
6649             trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
6650         } else {
6651             /* The spec says that writes of other values have no effect */
6652             return;
6653         }
6654         break;
6655     case NVME_REG_AQA:
6656         stl_le_p(&n->bar.aqa, data);
6657         trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
6658         break;
6659     case NVME_REG_ASQ:
6660         stn_le_p(&n->bar.asq, size, data);
6661         trace_pci_nvme_mmio_asqaddr(data);
6662         break;
6663     case NVME_REG_ASQ + 4:
6664         stl_le_p((uint8_t *)&n->bar.asq + 4, data);
6665         trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq));
6666         break;
6667     case NVME_REG_ACQ:
6668         trace_pci_nvme_mmio_acqaddr(data);
6669         stn_le_p(&n->bar.acq, size, data);
6670         break;
6671     case NVME_REG_ACQ + 4:
6672         stl_le_p((uint8_t *)&n->bar.acq + 4, data);
6673         trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq));
6674         break;
6675     case NVME_REG_CMBLOC:
6676         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
6677                        "invalid write to reserved CMBLOC"
6678                        " when CMBSZ is zero, ignored");
6679         return;
6680     case NVME_REG_CMBSZ:
6681         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
6682                        "invalid write to read only CMBSZ, ignored");
6683         return;
6684     case NVME_REG_CMBMSC:
6685         if (!NVME_CAP_CMBS(cap)) {
6686             return;
6687         }
6688 
6689         stn_le_p(&n->bar.cmbmsc, size, data);
6690         n->cmb.cmse = false;
6691 
6692         if (NVME_CMBMSC_CRE(data)) {
6693             nvme_cmb_enable_regs(n);
6694 
6695             if (NVME_CMBMSC_CMSE(data)) {
6696                 uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc);
6697                 hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT;
6698                 if (cba + int128_get64(n->cmb.mem.size) < cba) {
6699                     uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts);
6700                     NVME_CMBSTS_SET_CBAI(cmbsts, 1);
6701                     stl_le_p(&n->bar.cmbsts, cmbsts);
6702                     return;
6703                 }
6704 
6705                 n->cmb.cba = cba;
6706                 n->cmb.cmse = true;
6707             }
6708         } else {
6709             n->bar.cmbsz = 0;
6710             n->bar.cmbloc = 0;
6711         }
6712 
6713         return;
6714     case NVME_REG_CMBMSC + 4:
6715         stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data);
6716         return;
6717 
6718     case NVME_REG_PMRCAP:
6719         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
6720                        "invalid write to PMRCAP register, ignored");
6721         return;
6722     case NVME_REG_PMRCTL:
6723         if (!NVME_CAP_PMRS(cap)) {
6724             return;
6725         }
6726 
6727         stl_le_p(&n->bar.pmrctl, data);
6728         if (NVME_PMRCTL_EN(data)) {
6729             memory_region_set_enabled(&n->pmr.dev->mr, true);
6730             pmrsts = 0;
6731         } else {
6732             memory_region_set_enabled(&n->pmr.dev->mr, false);
6733             NVME_PMRSTS_SET_NRDY(pmrsts, 1);
6734             n->pmr.cmse = false;
6735         }
6736         stl_le_p(&n->bar.pmrsts, pmrsts);
6737         return;
6738     case NVME_REG_PMRSTS:
6739         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
6740                        "invalid write to PMRSTS register, ignored");
6741         return;
6742     case NVME_REG_PMREBS:
6743         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
6744                        "invalid write to PMREBS register, ignored");
6745         return;
6746     case NVME_REG_PMRSWTP:
6747         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
6748                        "invalid write to PMRSWTP register, ignored");
6749         return;
6750     case NVME_REG_PMRMSCL:
6751         if (!NVME_CAP_PMRS(cap)) {
6752             return;
6753         }
6754 
6755         stl_le_p(&n->bar.pmrmscl, data);
6756         n->pmr.cmse = false;
6757 
6758         if (NVME_PMRMSCL_CMSE(data)) {
6759             uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu);
6760             hwaddr cba = pmrmscu << 32 |
6761                 (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT);
6762             if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
6763                 NVME_PMRSTS_SET_CBAI(pmrsts, 1);
6764                 stl_le_p(&n->bar.pmrsts, pmrsts);
6765                 return;
6766             }
6767 
6768             n->pmr.cmse = true;
6769             n->pmr.cba = cba;
6770         }
6771 
6772         return;
6773     case NVME_REG_PMRMSCU:
6774         if (!NVME_CAP_PMRS(cap)) {
6775             return;
6776         }
6777 
6778         stl_le_p(&n->bar.pmrmscu, data);
6779         return;
6780     default:
6781         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
6782                        "invalid MMIO write,"
6783                        " offset=0x%"PRIx64", data=%"PRIx64"",
6784                        offset, data);
6785         break;
6786     }
6787 }
6788 
6789 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
6790 {
6791     NvmeCtrl *n = (NvmeCtrl *)opaque;
6792     uint8_t *ptr = (uint8_t *)&n->bar;
6793 
6794     trace_pci_nvme_mmio_read(addr, size);
6795 
6796     if (unlikely(addr & (sizeof(uint32_t) - 1))) {
6797         NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
6798                        "MMIO read not 32-bit aligned,"
6799                        " offset=0x%"PRIx64"", addr);
6800         /* should RAZ, fall through for now */
6801     } else if (unlikely(size < sizeof(uint32_t))) {
6802         NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
6803                        "MMIO read smaller than 32-bits,"
6804                        " offset=0x%"PRIx64"", addr);
6805         /* should RAZ, fall through for now */
6806     }
6807 
6808     if (addr > sizeof(n->bar) - size) {
6809         NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
6810                        "MMIO read beyond last register,"
6811                        " offset=0x%"PRIx64", returning 0", addr);
6812 
6813         return 0;
6814     }
6815 
6816     if (pci_is_vf(&n->parent_obj) && !nvme_sctrl(n)->scs &&
6817         addr != NVME_REG_CSTS) {
6818         trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
6819         return 0;
6820     }
6821 
6822     /*
6823      * When PMRWBM bit 1 is set then read from
6824      * from PMRSTS should ensure prior writes
6825      * made it to persistent media
6826      */
6827     if (addr == NVME_REG_PMRSTS &&
6828         (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) {
6829         memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
6830     }
6831 
6832     return ldn_le_p(ptr + addr, size);
6833 }
6834 
6835 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
6836 {
6837     uint32_t qid;
6838 
6839     if (unlikely(addr & ((1 << 2) - 1))) {
6840         NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
6841                        "doorbell write not 32-bit aligned,"
6842                        " offset=0x%"PRIx64", ignoring", addr);
6843         return;
6844     }
6845 
6846     if (((addr - 0x1000) >> 2) & 1) {
6847         /* Completion queue doorbell write */
6848 
6849         uint16_t new_head = val & 0xffff;
6850         int start_sqs;
6851         NvmeCQueue *cq;
6852 
6853         qid = (addr - (0x1000 + (1 << 2))) >> 3;
6854         if (unlikely(nvme_check_cqid(n, qid))) {
6855             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
6856                            "completion queue doorbell write"
6857                            " for nonexistent queue,"
6858                            " sqid=%"PRIu32", ignoring", qid);
6859 
6860             /*
6861              * NVM Express v1.3d, Section 4.1 state: "If host software writes
6862              * an invalid value to the Submission Queue Tail Doorbell or
6863              * Completion Queue Head Doorbell regiter and an Asynchronous Event
6864              * Request command is outstanding, then an asynchronous event is
6865              * posted to the Admin Completion Queue with a status code of
6866              * Invalid Doorbell Write Value."
6867              *
6868              * Also note that the spec includes the "Invalid Doorbell Register"
6869              * status code, but nowhere does it specify when to use it.
6870              * However, it seems reasonable to use it here in a similar
6871              * fashion.
6872              */
6873             if (n->outstanding_aers) {
6874                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6875                                    NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
6876                                    NVME_LOG_ERROR_INFO);
6877             }
6878 
6879             return;
6880         }
6881 
6882         cq = n->cq[qid];
6883         if (unlikely(new_head >= cq->size)) {
6884             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
6885                            "completion queue doorbell write value"
6886                            " beyond queue size, sqid=%"PRIu32","
6887                            " new_head=%"PRIu16", ignoring",
6888                            qid, new_head);
6889 
6890             if (n->outstanding_aers) {
6891                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6892                                    NVME_AER_INFO_ERR_INVALID_DB_VALUE,
6893                                    NVME_LOG_ERROR_INFO);
6894             }
6895 
6896             return;
6897         }
6898 
6899         trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
6900 
6901         start_sqs = nvme_cq_full(cq) ? 1 : 0;
6902         cq->head = new_head;
6903         if (!qid && n->dbbuf_enabled) {
6904             pci_dma_write(&n->parent_obj, cq->db_addr, &cq->head,
6905                           sizeof(cq->head));
6906         }
6907         if (start_sqs) {
6908             NvmeSQueue *sq;
6909             QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
6910                 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
6911             }
6912             timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
6913         }
6914 
6915         if (cq->tail == cq->head) {
6916             if (cq->irq_enabled) {
6917                 n->cq_pending--;
6918             }
6919 
6920             nvme_irq_deassert(n, cq);
6921         }
6922     } else {
6923         /* Submission queue doorbell write */
6924 
6925         uint16_t new_tail = val & 0xffff;
6926         NvmeSQueue *sq;
6927 
6928         qid = (addr - 0x1000) >> 3;
6929         if (unlikely(nvme_check_sqid(n, qid))) {
6930             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
6931                            "submission queue doorbell write"
6932                            " for nonexistent queue,"
6933                            " sqid=%"PRIu32", ignoring", qid);
6934 
6935             if (n->outstanding_aers) {
6936                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6937                                    NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
6938                                    NVME_LOG_ERROR_INFO);
6939             }
6940 
6941             return;
6942         }
6943 
6944         sq = n->sq[qid];
6945         if (unlikely(new_tail >= sq->size)) {
6946             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
6947                            "submission queue doorbell write value"
6948                            " beyond queue size, sqid=%"PRIu32","
6949                            " new_tail=%"PRIu16", ignoring",
6950                            qid, new_tail);
6951 
6952             if (n->outstanding_aers) {
6953                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6954                                    NVME_AER_INFO_ERR_INVALID_DB_VALUE,
6955                                    NVME_LOG_ERROR_INFO);
6956             }
6957 
6958             return;
6959         }
6960 
6961         trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
6962 
6963         sq->tail = new_tail;
6964         if (!qid && n->dbbuf_enabled) {
6965             /*
6966              * The spec states "the host shall also update the controller's
6967              * corresponding doorbell property to match the value of that entry
6968              * in the Shadow Doorbell buffer."
6969              *
6970              * Since this context is currently a VM trap, we can safely enforce
6971              * the requirement from the device side in case the host is
6972              * misbehaving.
6973              *
6974              * Note, we shouldn't have to do this, but various drivers
6975              * including ones that run on Linux, are not updating Admin Queues,
6976              * so we can't trust reading it for an appropriate sq tail.
6977              */
6978             pci_dma_write(&n->parent_obj, sq->db_addr, &sq->tail,
6979                           sizeof(sq->tail));
6980         }
6981         timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
6982     }
6983 }
6984 
6985 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
6986                             unsigned size)
6987 {
6988     NvmeCtrl *n = (NvmeCtrl *)opaque;
6989 
6990     trace_pci_nvme_mmio_write(addr, data, size);
6991 
6992     if (pci_is_vf(&n->parent_obj) && !nvme_sctrl(n)->scs &&
6993         addr != NVME_REG_CSTS) {
6994         trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
6995         return;
6996     }
6997 
6998     if (addr < sizeof(n->bar)) {
6999         nvme_write_bar(n, addr, data, size);
7000     } else {
7001         nvme_process_db(n, addr, data);
7002     }
7003 }
7004 
7005 static const MemoryRegionOps nvme_mmio_ops = {
7006     .read = nvme_mmio_read,
7007     .write = nvme_mmio_write,
7008     .endianness = DEVICE_LITTLE_ENDIAN,
7009     .impl = {
7010         .min_access_size = 2,
7011         .max_access_size = 8,
7012     },
7013 };
7014 
7015 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
7016                            unsigned size)
7017 {
7018     NvmeCtrl *n = (NvmeCtrl *)opaque;
7019     stn_le_p(&n->cmb.buf[addr], size, data);
7020 }
7021 
7022 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
7023 {
7024     NvmeCtrl *n = (NvmeCtrl *)opaque;
7025     return ldn_le_p(&n->cmb.buf[addr], size);
7026 }
7027 
7028 static const MemoryRegionOps nvme_cmb_ops = {
7029     .read = nvme_cmb_read,
7030     .write = nvme_cmb_write,
7031     .endianness = DEVICE_LITTLE_ENDIAN,
7032     .impl = {
7033         .min_access_size = 1,
7034         .max_access_size = 8,
7035     },
7036 };
7037 
7038 static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
7039 {
7040     NvmeParams *params = &n->params;
7041 
7042     if (params->num_queues) {
7043         warn_report("num_queues is deprecated; please use max_ioqpairs "
7044                     "instead");
7045 
7046         params->max_ioqpairs = params->num_queues - 1;
7047     }
7048 
7049     if (n->namespace.blkconf.blk && n->subsys) {
7050         error_setg(errp, "subsystem support is unavailable with legacy "
7051                    "namespace ('drive' property)");
7052         return;
7053     }
7054 
7055     if (params->max_ioqpairs < 1 ||
7056         params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
7057         error_setg(errp, "max_ioqpairs must be between 1 and %d",
7058                    NVME_MAX_IOQPAIRS);
7059         return;
7060     }
7061 
7062     if (params->msix_qsize < 1 ||
7063         params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
7064         error_setg(errp, "msix_qsize must be between 1 and %d",
7065                    PCI_MSIX_FLAGS_QSIZE + 1);
7066         return;
7067     }
7068 
7069     if (!params->serial) {
7070         error_setg(errp, "serial property not set");
7071         return;
7072     }
7073 
7074     if (n->pmr.dev) {
7075         if (host_memory_backend_is_mapped(n->pmr.dev)) {
7076             error_setg(errp, "can't use already busy memdev: %s",
7077                        object_get_canonical_path_component(OBJECT(n->pmr.dev)));
7078             return;
7079         }
7080 
7081         if (!is_power_of_2(n->pmr.dev->size)) {
7082             error_setg(errp, "pmr backend size needs to be power of 2 in size");
7083             return;
7084         }
7085 
7086         host_memory_backend_set_mapped(n->pmr.dev, true);
7087     }
7088 
7089     if (n->params.zasl > n->params.mdts) {
7090         error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
7091                    "than or equal to mdts (Maximum Data Transfer Size)");
7092         return;
7093     }
7094 
7095     if (!n->params.vsl) {
7096         error_setg(errp, "vsl must be non-zero");
7097         return;
7098     }
7099 
7100     if (params->sriov_max_vfs) {
7101         if (!n->subsys) {
7102             error_setg(errp, "subsystem is required for the use of SR-IOV");
7103             return;
7104         }
7105 
7106         if (params->sriov_max_vfs > NVME_MAX_VFS) {
7107             error_setg(errp, "sriov_max_vfs must be between 0 and %d",
7108                        NVME_MAX_VFS);
7109             return;
7110         }
7111 
7112         if (params->cmb_size_mb) {
7113             error_setg(errp, "CMB is not supported with SR-IOV");
7114             return;
7115         }
7116 
7117         if (n->pmr.dev) {
7118             error_setg(errp, "PMR is not supported with SR-IOV");
7119             return;
7120         }
7121 
7122         if (!params->sriov_vq_flexible || !params->sriov_vi_flexible) {
7123             error_setg(errp, "both sriov_vq_flexible and sriov_vi_flexible"
7124                        " must be set for the use of SR-IOV");
7125             return;
7126         }
7127 
7128         if (params->sriov_vq_flexible < params->sriov_max_vfs * 2) {
7129             error_setg(errp, "sriov_vq_flexible must be greater than or equal"
7130                        " to %d (sriov_max_vfs * 2)", params->sriov_max_vfs * 2);
7131             return;
7132         }
7133 
7134         if (params->max_ioqpairs < params->sriov_vq_flexible + 2) {
7135             error_setg(errp, "(max_ioqpairs - sriov_vq_flexible) must be"
7136                        " greater than or equal to 2");
7137             return;
7138         }
7139 
7140         if (params->sriov_vi_flexible < params->sriov_max_vfs) {
7141             error_setg(errp, "sriov_vi_flexible must be greater than or equal"
7142                        " to %d (sriov_max_vfs)", params->sriov_max_vfs);
7143             return;
7144         }
7145 
7146         if (params->msix_qsize < params->sriov_vi_flexible + 1) {
7147             error_setg(errp, "(msix_qsize - sriov_vi_flexible) must be"
7148                        " greater than or equal to 1");
7149             return;
7150         }
7151 
7152         if (params->sriov_max_vi_per_vf &&
7153             (params->sriov_max_vi_per_vf - 1) % NVME_VF_RES_GRANULARITY) {
7154             error_setg(errp, "sriov_max_vi_per_vf must meet:"
7155                        " (sriov_max_vi_per_vf - 1) %% %d == 0 and"
7156                        " sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY);
7157             return;
7158         }
7159 
7160         if (params->sriov_max_vq_per_vf &&
7161             (params->sriov_max_vq_per_vf < 2 ||
7162              (params->sriov_max_vq_per_vf - 1) % NVME_VF_RES_GRANULARITY)) {
7163             error_setg(errp, "sriov_max_vq_per_vf must meet:"
7164                        " (sriov_max_vq_per_vf - 1) %% %d == 0 and"
7165                        " sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY);
7166             return;
7167         }
7168     }
7169 }
7170 
7171 static void nvme_init_state(NvmeCtrl *n)
7172 {
7173     NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7174     NvmeSecCtrlList *list = &n->sec_ctrl_list;
7175     NvmeSecCtrlEntry *sctrl;
7176     uint8_t max_vfs;
7177     int i;
7178 
7179     if (pci_is_vf(&n->parent_obj)) {
7180         sctrl = nvme_sctrl(n);
7181         max_vfs = 0;
7182         n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
7183         n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
7184     } else {
7185         max_vfs = n->params.sriov_max_vfs;
7186         n->conf_ioqpairs = n->params.max_ioqpairs;
7187         n->conf_msix_qsize = n->params.msix_qsize;
7188     }
7189 
7190     n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
7191     n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
7192     n->temperature = NVME_TEMPERATURE;
7193     n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
7194     n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
7195     n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
7196     QTAILQ_INIT(&n->aer_queue);
7197 
7198     list->numcntl = cpu_to_le16(max_vfs);
7199     for (i = 0; i < max_vfs; i++) {
7200         sctrl = &list->sec[i];
7201         sctrl->pcid = cpu_to_le16(n->cntlid);
7202         sctrl->vfn = cpu_to_le16(i + 1);
7203     }
7204 
7205     cap->cntlid = cpu_to_le16(n->cntlid);
7206     cap->crt = NVME_CRT_VQ | NVME_CRT_VI;
7207 
7208     if (pci_is_vf(&n->parent_obj)) {
7209         cap->vqprt = cpu_to_le16(1 + n->conf_ioqpairs);
7210     } else {
7211         cap->vqprt = cpu_to_le16(1 + n->params.max_ioqpairs -
7212                                  n->params.sriov_vq_flexible);
7213         cap->vqfrt = cpu_to_le32(n->params.sriov_vq_flexible);
7214         cap->vqrfap = cap->vqfrt;
7215         cap->vqgran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7216         cap->vqfrsm = n->params.sriov_max_vq_per_vf ?
7217                         cpu_to_le16(n->params.sriov_max_vq_per_vf) :
7218                         cap->vqfrt / MAX(max_vfs, 1);
7219     }
7220 
7221     if (pci_is_vf(&n->parent_obj)) {
7222         cap->viprt = cpu_to_le16(n->conf_msix_qsize);
7223     } else {
7224         cap->viprt = cpu_to_le16(n->params.msix_qsize -
7225                                  n->params.sriov_vi_flexible);
7226         cap->vifrt = cpu_to_le32(n->params.sriov_vi_flexible);
7227         cap->virfap = cap->vifrt;
7228         cap->vigran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7229         cap->vifrsm = n->params.sriov_max_vi_per_vf ?
7230                         cpu_to_le16(n->params.sriov_max_vi_per_vf) :
7231                         cap->vifrt / MAX(max_vfs, 1);
7232     }
7233 }
7234 
7235 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
7236 {
7237     uint64_t cmb_size = n->params.cmb_size_mb * MiB;
7238     uint64_t cap = ldq_le_p(&n->bar.cap);
7239 
7240     n->cmb.buf = g_malloc0(cmb_size);
7241     memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
7242                           "nvme-cmb", cmb_size);
7243     pci_register_bar(pci_dev, NVME_CMB_BIR,
7244                      PCI_BASE_ADDRESS_SPACE_MEMORY |
7245                      PCI_BASE_ADDRESS_MEM_TYPE_64 |
7246                      PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
7247 
7248     NVME_CAP_SET_CMBS(cap, 1);
7249     stq_le_p(&n->bar.cap, cap);
7250 
7251     if (n->params.legacy_cmb) {
7252         nvme_cmb_enable_regs(n);
7253         n->cmb.cmse = true;
7254     }
7255 }
7256 
7257 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
7258 {
7259     uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap);
7260 
7261     NVME_PMRCAP_SET_RDS(pmrcap, 1);
7262     NVME_PMRCAP_SET_WDS(pmrcap, 1);
7263     NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR);
7264     /* Turn on bit 1 support */
7265     NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02);
7266     NVME_PMRCAP_SET_CMSS(pmrcap, 1);
7267     stl_le_p(&n->bar.pmrcap, pmrcap);
7268 
7269     pci_register_bar(pci_dev, NVME_PMR_BIR,
7270                      PCI_BASE_ADDRESS_SPACE_MEMORY |
7271                      PCI_BASE_ADDRESS_MEM_TYPE_64 |
7272                      PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
7273 
7274     memory_region_set_enabled(&n->pmr.dev->mr, false);
7275 }
7276 
7277 static uint64_t nvme_bar_size(unsigned total_queues, unsigned total_irqs,
7278                               unsigned *msix_table_offset,
7279                               unsigned *msix_pba_offset)
7280 {
7281     uint64_t bar_size, msix_table_size, msix_pba_size;
7282 
7283     bar_size = sizeof(NvmeBar) + 2 * total_queues * NVME_DB_SIZE;
7284     bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
7285 
7286     if (msix_table_offset) {
7287         *msix_table_offset = bar_size;
7288     }
7289 
7290     msix_table_size = PCI_MSIX_ENTRY_SIZE * total_irqs;
7291     bar_size += msix_table_size;
7292     bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
7293 
7294     if (msix_pba_offset) {
7295         *msix_pba_offset = bar_size;
7296     }
7297 
7298     msix_pba_size = QEMU_ALIGN_UP(total_irqs, 64) / 8;
7299     bar_size += msix_pba_size;
7300 
7301     bar_size = pow2ceil(bar_size);
7302     return bar_size;
7303 }
7304 
7305 static void nvme_init_sriov(NvmeCtrl *n, PCIDevice *pci_dev, uint16_t offset)
7306 {
7307     uint16_t vf_dev_id = n->params.use_intel_id ?
7308                          PCI_DEVICE_ID_INTEL_NVME : PCI_DEVICE_ID_REDHAT_NVME;
7309     NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7310     uint64_t bar_size = nvme_bar_size(le16_to_cpu(cap->vqfrsm),
7311                                       le16_to_cpu(cap->vifrsm),
7312                                       NULL, NULL);
7313 
7314     pcie_sriov_pf_init(pci_dev, offset, "nvme", vf_dev_id,
7315                        n->params.sriov_max_vfs, n->params.sriov_max_vfs,
7316                        NVME_VF_OFFSET, NVME_VF_STRIDE);
7317 
7318     pcie_sriov_pf_init_vf_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
7319                               PCI_BASE_ADDRESS_MEM_TYPE_64, bar_size);
7320 }
7321 
7322 static int nvme_add_pm_capability(PCIDevice *pci_dev, uint8_t offset)
7323 {
7324     Error *err = NULL;
7325     int ret;
7326 
7327     ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, offset,
7328                              PCI_PM_SIZEOF, &err);
7329     if (err) {
7330         error_report_err(err);
7331         return ret;
7332     }
7333 
7334     pci_set_word(pci_dev->config + offset + PCI_PM_PMC,
7335                  PCI_PM_CAP_VER_1_2);
7336     pci_set_word(pci_dev->config + offset + PCI_PM_CTRL,
7337                  PCI_PM_CTRL_NO_SOFT_RESET);
7338     pci_set_word(pci_dev->wmask + offset + PCI_PM_CTRL,
7339                  PCI_PM_CTRL_STATE_MASK);
7340 
7341     return 0;
7342 }
7343 
7344 static int nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
7345 {
7346     uint8_t *pci_conf = pci_dev->config;
7347     uint64_t bar_size;
7348     unsigned msix_table_offset, msix_pba_offset;
7349     int ret;
7350 
7351     Error *err = NULL;
7352 
7353     pci_conf[PCI_INTERRUPT_PIN] = 1;
7354     pci_config_set_prog_interface(pci_conf, 0x2);
7355 
7356     if (n->params.use_intel_id) {
7357         pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
7358         pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_NVME);
7359     } else {
7360         pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
7361         pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
7362     }
7363 
7364     pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
7365     nvme_add_pm_capability(pci_dev, 0x60);
7366     pcie_endpoint_cap_init(pci_dev, 0x80);
7367     pcie_cap_flr_init(pci_dev);
7368     if (n->params.sriov_max_vfs) {
7369         pcie_ari_init(pci_dev, 0x100, 1);
7370     }
7371 
7372     /* add one to max_ioqpairs to account for the admin queue pair */
7373     bar_size = nvme_bar_size(n->params.max_ioqpairs + 1, n->params.msix_qsize,
7374                              &msix_table_offset, &msix_pba_offset);
7375 
7376     memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
7377     memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
7378                           msix_table_offset);
7379     memory_region_add_subregion(&n->bar0, 0, &n->iomem);
7380 
7381     if (pci_is_vf(pci_dev)) {
7382         pcie_sriov_vf_register_bar(pci_dev, 0, &n->bar0);
7383     } else {
7384         pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
7385                          PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
7386     }
7387     ret = msix_init(pci_dev, n->params.msix_qsize,
7388                     &n->bar0, 0, msix_table_offset,
7389                     &n->bar0, 0, msix_pba_offset, 0, &err);
7390     if (ret < 0) {
7391         if (ret == -ENOTSUP) {
7392             warn_report_err(err);
7393         } else {
7394             error_propagate(errp, err);
7395             return ret;
7396         }
7397     }
7398 
7399     nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
7400 
7401     if (n->params.cmb_size_mb) {
7402         nvme_init_cmb(n, pci_dev);
7403     }
7404 
7405     if (n->pmr.dev) {
7406         nvme_init_pmr(n, pci_dev);
7407     }
7408 
7409     if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
7410         nvme_init_sriov(n, pci_dev, 0x120);
7411     }
7412 
7413     return 0;
7414 }
7415 
7416 static void nvme_init_subnqn(NvmeCtrl *n)
7417 {
7418     NvmeSubsystem *subsys = n->subsys;
7419     NvmeIdCtrl *id = &n->id_ctrl;
7420 
7421     if (!subsys) {
7422         snprintf((char *)id->subnqn, sizeof(id->subnqn),
7423                  "nqn.2019-08.org.qemu:%s", n->params.serial);
7424     } else {
7425         pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
7426     }
7427 }
7428 
7429 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
7430 {
7431     NvmeIdCtrl *id = &n->id_ctrl;
7432     uint8_t *pci_conf = pci_dev->config;
7433     uint64_t cap = ldq_le_p(&n->bar.cap);
7434     NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
7435 
7436     id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
7437     id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
7438     strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
7439     strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' ');
7440     strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
7441 
7442     id->cntlid = cpu_to_le16(n->cntlid);
7443 
7444     id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
7445     id->ctratt |= cpu_to_le32(NVME_CTRATT_ELBAS);
7446 
7447     id->rab = 6;
7448 
7449     if (n->params.use_intel_id) {
7450         id->ieee[0] = 0xb3;
7451         id->ieee[1] = 0x02;
7452         id->ieee[2] = 0x00;
7453     } else {
7454         id->ieee[0] = 0x00;
7455         id->ieee[1] = 0x54;
7456         id->ieee[2] = 0x52;
7457     }
7458 
7459     id->mdts = n->params.mdts;
7460     id->ver = cpu_to_le32(NVME_SPEC_VER);
7461     id->oacs =
7462         cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT | NVME_OACS_DBBUF);
7463     id->cntrltype = 0x1;
7464 
7465     /*
7466      * Because the controller always completes the Abort command immediately,
7467      * there can never be more than one concurrently executing Abort command,
7468      * so this value is never used for anything. Note that there can easily be
7469      * many Abort commands in the queues, but they are not considered
7470      * "executing" until processed by nvme_abort.
7471      *
7472      * The specification recommends a value of 3 for Abort Command Limit (four
7473      * concurrently outstanding Abort commands), so lets use that though it is
7474      * inconsequential.
7475      */
7476     id->acl = 3;
7477     id->aerl = n->params.aerl;
7478     id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
7479     id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
7480 
7481     /* recommended default value (~70 C) */
7482     id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
7483     id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
7484 
7485     id->sqes = (0x6 << 4) | 0x6;
7486     id->cqes = (0x4 << 4) | 0x4;
7487     id->nn = cpu_to_le32(NVME_MAX_NAMESPACES);
7488     id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
7489                            NVME_ONCS_FEATURES | NVME_ONCS_DSM |
7490                            NVME_ONCS_COMPARE | NVME_ONCS_COPY);
7491 
7492     /*
7493      * NOTE: If this device ever supports a command set that does NOT use 0x0
7494      * as a Flush-equivalent operation, support for the broadcast NSID in Flush
7495      * should probably be removed.
7496      *
7497      * See comment in nvme_io_cmd.
7498      */
7499     id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
7500 
7501     id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1);
7502     id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN);
7503 
7504     nvme_init_subnqn(n);
7505 
7506     id->psd[0].mp = cpu_to_le16(0x9c4);
7507     id->psd[0].enlat = cpu_to_le32(0x10);
7508     id->psd[0].exlat = cpu_to_le32(0x4);
7509 
7510     if (n->subsys) {
7511         id->cmic |= NVME_CMIC_MULTI_CTRL;
7512     }
7513 
7514     NVME_CAP_SET_MQES(cap, 0x7ff);
7515     NVME_CAP_SET_CQR(cap, 1);
7516     NVME_CAP_SET_TO(cap, 0xf);
7517     NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM);
7518     NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP);
7519     NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY);
7520     NVME_CAP_SET_MPSMAX(cap, 4);
7521     NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0);
7522     NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0);
7523     stq_le_p(&n->bar.cap, cap);
7524 
7525     stl_le_p(&n->bar.vs, NVME_SPEC_VER);
7526     n->bar.intmc = n->bar.intms = 0;
7527 
7528     if (pci_is_vf(&n->parent_obj) && !sctrl->scs) {
7529         stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
7530     }
7531 }
7532 
7533 static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
7534 {
7535     int cntlid;
7536 
7537     if (!n->subsys) {
7538         return 0;
7539     }
7540 
7541     cntlid = nvme_subsys_register_ctrl(n, errp);
7542     if (cntlid < 0) {
7543         return -1;
7544     }
7545 
7546     n->cntlid = cntlid;
7547 
7548     return 0;
7549 }
7550 
7551 void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns)
7552 {
7553     uint32_t nsid = ns->params.nsid;
7554     assert(nsid && nsid <= NVME_MAX_NAMESPACES);
7555 
7556     n->namespaces[nsid] = ns;
7557     ns->attached++;
7558 
7559     n->dmrsl = MIN_NON_ZERO(n->dmrsl,
7560                             BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
7561 }
7562 
7563 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
7564 {
7565     NvmeCtrl *n = NVME(pci_dev);
7566     NvmeNamespace *ns;
7567     Error *local_err = NULL;
7568     NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev));
7569 
7570     if (pci_is_vf(pci_dev)) {
7571         /*
7572          * VFs derive settings from the parent. PF's lifespan exceeds
7573          * that of VF's, so it's safe to share params.serial.
7574          */
7575         memcpy(&n->params, &pn->params, sizeof(NvmeParams));
7576         n->subsys = pn->subsys;
7577     }
7578 
7579     nvme_check_constraints(n, &local_err);
7580     if (local_err) {
7581         error_propagate(errp, local_err);
7582         return;
7583     }
7584 
7585     qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS,
7586               &pci_dev->qdev, n->parent_obj.qdev.id);
7587 
7588     if (nvme_init_subsys(n, errp)) {
7589         error_propagate(errp, local_err);
7590         return;
7591     }
7592     nvme_init_state(n);
7593     if (nvme_init_pci(n, pci_dev, errp)) {
7594         return;
7595     }
7596     nvme_init_ctrl(n, pci_dev);
7597 
7598     /* setup a namespace if the controller drive property was given */
7599     if (n->namespace.blkconf.blk) {
7600         ns = &n->namespace;
7601         ns->params.nsid = 1;
7602 
7603         if (nvme_ns_setup(ns, errp)) {
7604             return;
7605         }
7606 
7607         nvme_attach_ns(n, ns);
7608     }
7609 }
7610 
7611 static void nvme_exit(PCIDevice *pci_dev)
7612 {
7613     NvmeCtrl *n = NVME(pci_dev);
7614     NvmeNamespace *ns;
7615     int i;
7616 
7617     nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
7618 
7619     if (n->subsys) {
7620         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7621             ns = nvme_ns(n, i);
7622             if (ns) {
7623                 ns->attached--;
7624             }
7625         }
7626 
7627         nvme_subsys_unregister_ctrl(n->subsys, n);
7628     }
7629 
7630     g_free(n->cq);
7631     g_free(n->sq);
7632     g_free(n->aer_reqs);
7633 
7634     if (n->params.cmb_size_mb) {
7635         g_free(n->cmb.buf);
7636     }
7637 
7638     if (n->pmr.dev) {
7639         host_memory_backend_set_mapped(n->pmr.dev, false);
7640     }
7641 
7642     if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
7643         pcie_sriov_pf_exit(pci_dev);
7644     }
7645 
7646     msix_uninit(pci_dev, &n->bar0, &n->bar0);
7647     memory_region_del_subregion(&n->bar0, &n->iomem);
7648 }
7649 
7650 static Property nvme_props[] = {
7651     DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
7652     DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
7653                      HostMemoryBackend *),
7654     DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
7655                      NvmeSubsystem *),
7656     DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
7657     DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
7658     DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
7659     DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
7660     DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
7661     DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
7662     DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
7663     DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
7664     DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
7665     DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
7666     DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
7667     DEFINE_PROP_BOOL("ioeventfd", NvmeCtrl, params.ioeventfd, true),
7668     DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
7669     DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl,
7670                      params.auto_transition_zones, true),
7671     DEFINE_PROP_UINT8("sriov_max_vfs", NvmeCtrl, params.sriov_max_vfs, 0),
7672     DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl,
7673                        params.sriov_vq_flexible, 0),
7674     DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl,
7675                        params.sriov_vi_flexible, 0),
7676     DEFINE_PROP_UINT8("sriov_max_vi_per_vf", NvmeCtrl,
7677                       params.sriov_max_vi_per_vf, 0),
7678     DEFINE_PROP_UINT8("sriov_max_vq_per_vf", NvmeCtrl,
7679                       params.sriov_max_vq_per_vf, 0),
7680     DEFINE_PROP_END_OF_LIST(),
7681 };
7682 
7683 static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
7684                                    void *opaque, Error **errp)
7685 {
7686     NvmeCtrl *n = NVME(obj);
7687     uint8_t value = n->smart_critical_warning;
7688 
7689     visit_type_uint8(v, name, &value, errp);
7690 }
7691 
7692 static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
7693                                    void *opaque, Error **errp)
7694 {
7695     NvmeCtrl *n = NVME(obj);
7696     uint8_t value, old_value, cap = 0, index, event;
7697 
7698     if (!visit_type_uint8(v, name, &value, errp)) {
7699         return;
7700     }
7701 
7702     cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
7703           | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
7704     if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) {
7705         cap |= NVME_SMART_PMR_UNRELIABLE;
7706     }
7707 
7708     if ((value & cap) != value) {
7709         error_setg(errp, "unsupported smart critical warning bits: 0x%x",
7710                    value & ~cap);
7711         return;
7712     }
7713 
7714     old_value = n->smart_critical_warning;
7715     n->smart_critical_warning = value;
7716 
7717     /* only inject new bits of smart critical warning */
7718     for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
7719         event = 1 << index;
7720         if (value & ~old_value & event)
7721             nvme_smart_event(n, event);
7722     }
7723 }
7724 
7725 static void nvme_pci_reset(DeviceState *qdev)
7726 {
7727     PCIDevice *pci_dev = PCI_DEVICE(qdev);
7728     NvmeCtrl *n = NVME(pci_dev);
7729 
7730     trace_pci_nvme_pci_reset();
7731     nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
7732 }
7733 
7734 static void nvme_sriov_pre_write_ctrl(PCIDevice *dev, uint32_t address,
7735                                       uint32_t val, int len)
7736 {
7737     NvmeCtrl *n = NVME(dev);
7738     NvmeSecCtrlEntry *sctrl;
7739     uint16_t sriov_cap = dev->exp.sriov_cap;
7740     uint32_t off = address - sriov_cap;
7741     int i, num_vfs;
7742 
7743     if (!sriov_cap) {
7744         return;
7745     }
7746 
7747     if (range_covers_byte(off, len, PCI_SRIOV_CTRL)) {
7748         if (!(val & PCI_SRIOV_CTRL_VFE)) {
7749             num_vfs = pci_get_word(dev->config + sriov_cap + PCI_SRIOV_NUM_VF);
7750             for (i = 0; i < num_vfs; i++) {
7751                 sctrl = &n->sec_ctrl_list.sec[i];
7752                 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
7753             }
7754         }
7755     }
7756 }
7757 
7758 static void nvme_pci_write_config(PCIDevice *dev, uint32_t address,
7759                                   uint32_t val, int len)
7760 {
7761     nvme_sriov_pre_write_ctrl(dev, address, val, len);
7762     pci_default_write_config(dev, address, val, len);
7763     pcie_cap_flr_write_config(dev, address, val, len);
7764 }
7765 
7766 static const VMStateDescription nvme_vmstate = {
7767     .name = "nvme",
7768     .unmigratable = 1,
7769 };
7770 
7771 static void nvme_class_init(ObjectClass *oc, void *data)
7772 {
7773     DeviceClass *dc = DEVICE_CLASS(oc);
7774     PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
7775 
7776     pc->realize = nvme_realize;
7777     pc->config_write = nvme_pci_write_config;
7778     pc->exit = nvme_exit;
7779     pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
7780     pc->revision = 2;
7781 
7782     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
7783     dc->desc = "Non-Volatile Memory Express";
7784     device_class_set_props(dc, nvme_props);
7785     dc->vmsd = &nvme_vmstate;
7786     dc->reset = nvme_pci_reset;
7787 }
7788 
7789 static void nvme_instance_init(Object *obj)
7790 {
7791     NvmeCtrl *n = NVME(obj);
7792 
7793     device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
7794                                   "bootindex", "/namespace@1,0",
7795                                   DEVICE(obj));
7796 
7797     object_property_add(obj, "smart_critical_warning", "uint8",
7798                         nvme_get_smart_warning,
7799                         nvme_set_smart_warning, NULL, NULL);
7800 }
7801 
7802 static const TypeInfo nvme_info = {
7803     .name          = TYPE_NVME,
7804     .parent        = TYPE_PCI_DEVICE,
7805     .instance_size = sizeof(NvmeCtrl),
7806     .instance_init = nvme_instance_init,
7807     .class_init    = nvme_class_init,
7808     .interfaces = (InterfaceInfo[]) {
7809         { INTERFACE_PCIE_DEVICE },
7810         { }
7811     },
7812 };
7813 
7814 static const TypeInfo nvme_bus_info = {
7815     .name = TYPE_NVME_BUS,
7816     .parent = TYPE_BUS,
7817     .instance_size = sizeof(NvmeBus),
7818 };
7819 
7820 static void nvme_register_types(void)
7821 {
7822     type_register_static(&nvme_info);
7823     type_register_static(&nvme_bus_info);
7824 }
7825 
7826 type_init(nvme_register_types)
7827