xref: /qemu/hw/nvme/ctrl.c (revision 8afc43ea)
1 /*
2  * QEMU NVM Express Controller
3  *
4  * Copyright (c) 2012, Intel Corporation
5  *
6  * Written by Keith Busch <keith.busch@intel.com>
7  *
8  * This code is licensed under the GNU GPL v2 or later.
9  */
10 
11 /**
12  * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
13  *
14  *  https://nvmexpress.org/developers/nvme-specification/
15  *
16  *
17  * Notes on coding style
18  * ---------------------
19  * While QEMU coding style prefers lowercase hexadecimals in constants, the
20  * NVMe subsystem use thes format from the NVMe specifications in the comments
21  * (i.e. 'h' suffix instead of '0x' prefix).
22  *
23  * Usage
24  * -----
25  * See docs/system/nvme.rst for extensive documentation.
26  *
27  * Add options:
28  *      -drive file=<file>,if=none,id=<drive_id>
29  *      -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
30  *      -device nvme,serial=<serial>,id=<bus_name>, \
31  *              cmb_size_mb=<cmb_size_mb[optional]>, \
32  *              [pmrdev=<mem_backend_file_id>,] \
33  *              max_ioqpairs=<N[optional]>, \
34  *              aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
35  *              mdts=<N[optional]>,vsl=<N[optional]>, \
36  *              zoned.zasl=<N[optional]>, \
37  *              zoned.auto_transition=<on|off[optional]>, \
38  *              sriov_max_vfs=<N[optional]> \
39  *              sriov_vq_flexible=<N[optional]> \
40  *              sriov_vi_flexible=<N[optional]> \
41  *              sriov_max_vi_per_vf=<N[optional]> \
42  *              sriov_max_vq_per_vf=<N[optional]> \
43  *              subsys=<subsys_id>
44  *      -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
45  *              zoned=<true|false[optional]>, \
46  *              subsys=<subsys_id>,detached=<true|false[optional]>
47  *
48  * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
49  * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
50  * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
51  * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
52  *
53  * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
54  * For example:
55  * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
56  *  size=<size> .... -device nvme,...,pmrdev=<mem_id>
57  *
58  * The PMR will use BAR 4/5 exclusively.
59  *
60  * To place controller(s) and namespace(s) to a subsystem, then provide
61  * nvme-subsys device as above.
62  *
63  * nvme subsystem device parameters
64  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
65  * - `nqn`
66  *   This parameter provides the `<nqn_id>` part of the string
67  *   `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
68  *   of subsystem controllers. Note that `<nqn_id>` should be unique per
69  *   subsystem, but this is not enforced by QEMU. If not specified, it will
70  *   default to the value of the `id` parameter (`<subsys_id>`).
71  *
72  * nvme device parameters
73  * ~~~~~~~~~~~~~~~~~~~~~~
74  * - `subsys`
75  *   Specifying this parameter attaches the controller to the subsystem and
76  *   the SUBNQN field in the controller will report the NQN of the subsystem
77  *   device. This also enables multi controller capability represented in
78  *   Identify Controller data structure in CMIC (Controller Multi-path I/O and
79  *   Namespace Sharing Capabilities).
80  *
81  * - `aerl`
82  *   The Asynchronous Event Request Limit (AERL). Indicates the maximum number
83  *   of concurrently outstanding Asynchronous Event Request commands support
84  *   by the controller. This is a 0's based value.
85  *
86  * - `aer_max_queued`
87  *   This is the maximum number of events that the device will enqueue for
88  *   completion when there are no outstanding AERs. When the maximum number of
89  *   enqueued events are reached, subsequent events will be dropped.
90  *
91  * - `mdts`
92  *   Indicates the maximum data transfer size for a command that transfers data
93  *   between host-accessible memory and the controller. The value is specified
94  *   as a power of two (2^n) and is in units of the minimum memory page size
95  *   (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
96  *
97  * - `vsl`
98  *   Indicates the maximum data size limit for the Verify command. Like `mdts`,
99  *   this value is specified as a power of two (2^n) and is in units of the
100  *   minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
101  *   KiB).
102  *
103  * - `zoned.zasl`
104  *   Indicates the maximum data transfer size for the Zone Append command. Like
105  *   `mdts`, the value is specified as a power of two (2^n) and is in units of
106  *   the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
107  *   defaulting to the value of `mdts`).
108  *
109  * - `zoned.auto_transition`
110  *   Indicates if zones in zone state implicitly opened can be automatically
111  *   transitioned to zone state closed for resource management purposes.
112  *   Defaults to 'on'.
113  *
114  * - `sriov_max_vfs`
115  *   Indicates the maximum number of PCIe virtual functions supported
116  *   by the controller. The default value is 0. Specifying a non-zero value
117  *   enables reporting of both SR-IOV and ARI capabilities by the NVMe device.
118  *   Virtual function controllers will not report SR-IOV capability.
119  *
120  *   NOTE: Single Root I/O Virtualization support is experimental.
121  *   All the related parameters may be subject to change.
122  *
123  * - `sriov_vq_flexible`
124  *   Indicates the total number of flexible queue resources assignable to all
125  *   the secondary controllers. Implicitly sets the number of primary
126  *   controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`.
127  *
128  * - `sriov_vi_flexible`
129  *   Indicates the total number of flexible interrupt resources assignable to
130  *   all the secondary controllers. Implicitly sets the number of primary
131  *   controller's private resources to `(msix_qsize - sriov_vi_flexible)`.
132  *
133  * - `sriov_max_vi_per_vf`
134  *   Indicates the maximum number of virtual interrupt resources assignable
135  *   to a secondary controller. The default 0 resolves to
136  *   `(sriov_vi_flexible / sriov_max_vfs)`.
137  *
138  * - `sriov_max_vq_per_vf`
139  *   Indicates the maximum number of virtual queue resources assignable to
140  *   a secondary controller. The default 0 resolves to
141  *   `(sriov_vq_flexible / sriov_max_vfs)`.
142  *
143  * nvme namespace device parameters
144  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
145  * - `shared`
146  *   When the parent nvme device (as defined explicitly by the 'bus' parameter
147  *   or implicitly by the most recently defined NvmeBus) is linked to an
148  *   nvme-subsys device, the namespace will be attached to all controllers in
149  *   the subsystem. If set to 'off' (the default), the namespace will remain a
150  *   private namespace and may only be attached to a single controller at a
151  *   time.
152  *
153  * - `detached`
154  *   This parameter is only valid together with the `subsys` parameter. If left
155  *   at the default value (`false/off`), the namespace will be attached to all
156  *   controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
157  *   namespace will be available in the subsystem but not attached to any
158  *   controllers.
159  *
160  * Setting `zoned` to true selects Zoned Command Set at the namespace.
161  * In this case, the following namespace properties are available to configure
162  * zoned operation:
163  *     zoned.zone_size=<zone size in bytes, default: 128MiB>
164  *         The number may be followed by K, M, G as in kilo-, mega- or giga-.
165  *
166  *     zoned.zone_capacity=<zone capacity in bytes, default: zone size>
167  *         The value 0 (default) forces zone capacity to be the same as zone
168  *         size. The value of this property may not exceed zone size.
169  *
170  *     zoned.descr_ext_size=<zone descriptor extension size, default 0>
171  *         This value needs to be specified in 64B units. If it is zero,
172  *         namespace(s) will not support zone descriptor extensions.
173  *
174  *     zoned.max_active=<Maximum Active Resources (zones), default: 0>
175  *         The default value means there is no limit to the number of
176  *         concurrently active zones.
177  *
178  *     zoned.max_open=<Maximum Open Resources (zones), default: 0>
179  *         The default value means there is no limit to the number of
180  *         concurrently open zones.
181  *
182  *     zoned.cross_read=<enable RAZB, default: false>
183  *         Setting this property to true enables Read Across Zone Boundaries.
184  */
185 
186 #include "qemu/osdep.h"
187 #include "qemu/cutils.h"
188 #include "qemu/error-report.h"
189 #include "qemu/log.h"
190 #include "qemu/units.h"
191 #include "qemu/range.h"
192 #include "qapi/error.h"
193 #include "qapi/visitor.h"
194 #include "sysemu/sysemu.h"
195 #include "sysemu/block-backend.h"
196 #include "sysemu/hostmem.h"
197 #include "hw/pci/msix.h"
198 #include "hw/pci/pcie_sriov.h"
199 #include "migration/vmstate.h"
200 
201 #include "nvme.h"
202 #include "dif.h"
203 #include "trace.h"
204 
205 #define NVME_MAX_IOQPAIRS 0xffff
206 #define NVME_DB_SIZE  4
207 #define NVME_SPEC_VER 0x00010400
208 #define NVME_CMB_BIR 2
209 #define NVME_PMR_BIR 4
210 #define NVME_TEMPERATURE 0x143
211 #define NVME_TEMPERATURE_WARNING 0x157
212 #define NVME_TEMPERATURE_CRITICAL 0x175
213 #define NVME_NUM_FW_SLOTS 1
214 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
215 #define NVME_MAX_VFS 127
216 #define NVME_VF_RES_GRANULARITY 1
217 #define NVME_VF_OFFSET 0x1
218 #define NVME_VF_STRIDE 1
219 
220 #define NVME_GUEST_ERR(trace, fmt, ...) \
221     do { \
222         (trace_##trace)(__VA_ARGS__); \
223         qemu_log_mask(LOG_GUEST_ERROR, #trace \
224             " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
225     } while (0)
226 
227 static const bool nvme_feature_support[NVME_FID_MAX] = {
228     [NVME_ARBITRATION]              = true,
229     [NVME_POWER_MANAGEMENT]         = true,
230     [NVME_TEMPERATURE_THRESHOLD]    = true,
231     [NVME_ERROR_RECOVERY]           = true,
232     [NVME_VOLATILE_WRITE_CACHE]     = true,
233     [NVME_NUMBER_OF_QUEUES]         = true,
234     [NVME_INTERRUPT_COALESCING]     = true,
235     [NVME_INTERRUPT_VECTOR_CONF]    = true,
236     [NVME_WRITE_ATOMICITY]          = true,
237     [NVME_ASYNCHRONOUS_EVENT_CONF]  = true,
238     [NVME_TIMESTAMP]                = true,
239     [NVME_HOST_BEHAVIOR_SUPPORT]    = true,
240     [NVME_COMMAND_SET_PROFILE]      = true,
241     [NVME_FDP_MODE]                 = true,
242     [NVME_FDP_EVENTS]               = true,
243 };
244 
245 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
246     [NVME_TEMPERATURE_THRESHOLD]    = NVME_FEAT_CAP_CHANGE,
247     [NVME_ERROR_RECOVERY]           = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
248     [NVME_VOLATILE_WRITE_CACHE]     = NVME_FEAT_CAP_CHANGE,
249     [NVME_NUMBER_OF_QUEUES]         = NVME_FEAT_CAP_CHANGE,
250     [NVME_ASYNCHRONOUS_EVENT_CONF]  = NVME_FEAT_CAP_CHANGE,
251     [NVME_TIMESTAMP]                = NVME_FEAT_CAP_CHANGE,
252     [NVME_HOST_BEHAVIOR_SUPPORT]    = NVME_FEAT_CAP_CHANGE,
253     [NVME_COMMAND_SET_PROFILE]      = NVME_FEAT_CAP_CHANGE,
254     [NVME_FDP_MODE]                 = NVME_FEAT_CAP_CHANGE,
255     [NVME_FDP_EVENTS]               = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
256 };
257 
258 static const uint32_t nvme_cse_acs[256] = {
259     [NVME_ADM_CMD_DELETE_SQ]        = NVME_CMD_EFF_CSUPP,
260     [NVME_ADM_CMD_CREATE_SQ]        = NVME_CMD_EFF_CSUPP,
261     [NVME_ADM_CMD_GET_LOG_PAGE]     = NVME_CMD_EFF_CSUPP,
262     [NVME_ADM_CMD_DELETE_CQ]        = NVME_CMD_EFF_CSUPP,
263     [NVME_ADM_CMD_CREATE_CQ]        = NVME_CMD_EFF_CSUPP,
264     [NVME_ADM_CMD_IDENTIFY]         = NVME_CMD_EFF_CSUPP,
265     [NVME_ADM_CMD_ABORT]            = NVME_CMD_EFF_CSUPP,
266     [NVME_ADM_CMD_SET_FEATURES]     = NVME_CMD_EFF_CSUPP,
267     [NVME_ADM_CMD_GET_FEATURES]     = NVME_CMD_EFF_CSUPP,
268     [NVME_ADM_CMD_ASYNC_EV_REQ]     = NVME_CMD_EFF_CSUPP,
269     [NVME_ADM_CMD_NS_ATTACHMENT]    = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
270     [NVME_ADM_CMD_VIRT_MNGMT]       = NVME_CMD_EFF_CSUPP,
271     [NVME_ADM_CMD_DBBUF_CONFIG]     = NVME_CMD_EFF_CSUPP,
272     [NVME_ADM_CMD_FORMAT_NVM]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
273     [NVME_ADM_CMD_DIRECTIVE_RECV]   = NVME_CMD_EFF_CSUPP,
274     [NVME_ADM_CMD_DIRECTIVE_SEND]   = NVME_CMD_EFF_CSUPP,
275 };
276 
277 static const uint32_t nvme_cse_iocs_none[256];
278 
279 static const uint32_t nvme_cse_iocs_nvm[256] = {
280     [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
281     [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
282     [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
283     [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
284     [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
285     [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
286     [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
287     [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
288     [NVME_CMD_IO_MGMT_RECV]         = NVME_CMD_EFF_CSUPP,
289     [NVME_CMD_IO_MGMT_SEND]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
290 };
291 
292 static const uint32_t nvme_cse_iocs_zoned[256] = {
293     [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
294     [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
295     [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
296     [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
297     [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
298     [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
299     [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
300     [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
301     [NVME_CMD_ZONE_APPEND]          = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
302     [NVME_CMD_ZONE_MGMT_SEND]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
303     [NVME_CMD_ZONE_MGMT_RECV]       = NVME_CMD_EFF_CSUPP,
304 };
305 
306 static void nvme_process_sq(void *opaque);
307 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst);
308 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n);
309 
310 static uint16_t nvme_sqid(NvmeRequest *req)
311 {
312     return le16_to_cpu(req->sq->sqid);
313 }
314 
315 static inline uint16_t nvme_make_pid(NvmeNamespace *ns, uint16_t rg,
316                                      uint16_t ph)
317 {
318     uint16_t rgif = ns->endgrp->fdp.rgif;
319 
320     if (!rgif) {
321         return ph;
322     }
323 
324     return (rg << (16 - rgif)) | ph;
325 }
326 
327 static inline bool nvme_ph_valid(NvmeNamespace *ns, uint16_t ph)
328 {
329     return ph < ns->fdp.nphs;
330 }
331 
332 static inline bool nvme_rg_valid(NvmeEnduranceGroup *endgrp, uint16_t rg)
333 {
334     return rg < endgrp->fdp.nrg;
335 }
336 
337 static inline uint16_t nvme_pid2ph(NvmeNamespace *ns, uint16_t pid)
338 {
339     uint16_t rgif = ns->endgrp->fdp.rgif;
340 
341     if (!rgif) {
342         return pid;
343     }
344 
345     return pid & ((1 << (15 - rgif)) - 1);
346 }
347 
348 static inline uint16_t nvme_pid2rg(NvmeNamespace *ns, uint16_t pid)
349 {
350     uint16_t rgif = ns->endgrp->fdp.rgif;
351 
352     if (!rgif) {
353         return 0;
354     }
355 
356     return pid >> (16 - rgif);
357 }
358 
359 static inline bool nvme_parse_pid(NvmeNamespace *ns, uint16_t pid,
360                                   uint16_t *ph, uint16_t *rg)
361 {
362     *rg = nvme_pid2rg(ns, pid);
363     *ph = nvme_pid2ph(ns, pid);
364 
365     return nvme_ph_valid(ns, *ph) && nvme_rg_valid(ns->endgrp, *rg);
366 }
367 
368 static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
369                                    NvmeZoneState state)
370 {
371     if (QTAILQ_IN_USE(zone, entry)) {
372         switch (nvme_get_zone_state(zone)) {
373         case NVME_ZONE_STATE_EXPLICITLY_OPEN:
374             QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
375             break;
376         case NVME_ZONE_STATE_IMPLICITLY_OPEN:
377             QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
378             break;
379         case NVME_ZONE_STATE_CLOSED:
380             QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
381             break;
382         case NVME_ZONE_STATE_FULL:
383             QTAILQ_REMOVE(&ns->full_zones, zone, entry);
384         default:
385             ;
386         }
387     }
388 
389     nvme_set_zone_state(zone, state);
390 
391     switch (state) {
392     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
393         QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
394         break;
395     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
396         QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
397         break;
398     case NVME_ZONE_STATE_CLOSED:
399         QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
400         break;
401     case NVME_ZONE_STATE_FULL:
402         QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
403     case NVME_ZONE_STATE_READ_ONLY:
404         break;
405     default:
406         zone->d.za = 0;
407     }
408 }
409 
410 static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act,
411                                          uint32_t opn, uint32_t zrwa)
412 {
413     if (ns->params.max_active_zones != 0 &&
414         ns->nr_active_zones + act > ns->params.max_active_zones) {
415         trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
416         return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
417     }
418 
419     if (ns->params.max_open_zones != 0 &&
420         ns->nr_open_zones + opn > ns->params.max_open_zones) {
421         trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
422         return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
423     }
424 
425     if (zrwa > ns->zns.numzrwa) {
426         return NVME_NOZRWA | NVME_DNR;
427     }
428 
429     return NVME_SUCCESS;
430 }
431 
432 /*
433  * Check if we can open a zone without exceeding open/active limits.
434  * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
435  */
436 static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
437 {
438     return nvme_zns_check_resources(ns, act, opn, 0);
439 }
440 
441 static NvmeFdpEvent *nvme_fdp_alloc_event(NvmeCtrl *n, NvmeFdpEventBuffer *ebuf)
442 {
443     NvmeFdpEvent *ret = NULL;
444     bool is_full = ebuf->next == ebuf->start && ebuf->nelems;
445 
446     ret = &ebuf->events[ebuf->next++];
447     if (unlikely(ebuf->next == NVME_FDP_MAX_EVENTS)) {
448         ebuf->next = 0;
449     }
450     if (is_full) {
451         ebuf->start = ebuf->next;
452     } else {
453         ebuf->nelems++;
454     }
455 
456     memset(ret, 0, sizeof(NvmeFdpEvent));
457     ret->timestamp = nvme_get_timestamp(n);
458 
459     return ret;
460 }
461 
462 static inline int log_event(NvmeRuHandle *ruh, uint8_t event_type)
463 {
464     return (ruh->event_filter >> nvme_fdp_evf_shifts[event_type]) & 0x1;
465 }
466 
467 static bool nvme_update_ruh(NvmeCtrl *n, NvmeNamespace *ns, uint16_t pid)
468 {
469     NvmeEnduranceGroup *endgrp = ns->endgrp;
470     NvmeRuHandle *ruh;
471     NvmeReclaimUnit *ru;
472     NvmeFdpEvent *e = NULL;
473     uint16_t ph, rg, ruhid;
474 
475     if (!nvme_parse_pid(ns, pid, &ph, &rg)) {
476         return false;
477     }
478 
479     ruhid = ns->fdp.phs[ph];
480 
481     ruh = &endgrp->fdp.ruhs[ruhid];
482     ru = &ruh->rus[rg];
483 
484     if (ru->ruamw) {
485         if (log_event(ruh, FDP_EVT_RU_NOT_FULLY_WRITTEN)) {
486             e = nvme_fdp_alloc_event(n, &endgrp->fdp.host_events);
487             e->type = FDP_EVT_RU_NOT_FULLY_WRITTEN;
488             e->flags = FDPEF_PIV | FDPEF_NSIDV | FDPEF_LV;
489             e->pid = cpu_to_le16(pid);
490             e->nsid = cpu_to_le32(ns->params.nsid);
491             e->rgid = cpu_to_le16(rg);
492             e->ruhid = cpu_to_le16(ruhid);
493         }
494 
495         /* log (eventual) GC overhead of prematurely swapping the RU */
496         nvme_fdp_stat_inc(&endgrp->fdp.mbmw, nvme_l2b(ns, ru->ruamw));
497     }
498 
499     ru->ruamw = ruh->ruamw;
500 
501     return true;
502 }
503 
504 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
505 {
506     hwaddr hi, lo;
507 
508     if (!n->cmb.cmse) {
509         return false;
510     }
511 
512     lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
513     hi = lo + int128_get64(n->cmb.mem.size);
514 
515     return addr >= lo && addr < hi;
516 }
517 
518 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
519 {
520     hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
521     return &n->cmb.buf[addr - base];
522 }
523 
524 static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
525 {
526     hwaddr hi;
527 
528     if (!n->pmr.cmse) {
529         return false;
530     }
531 
532     hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
533 
534     return addr >= n->pmr.cba && addr < hi;
535 }
536 
537 static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
538 {
539     return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
540 }
541 
542 static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr)
543 {
544     hwaddr hi, lo;
545 
546     /*
547      * The purpose of this check is to guard against invalid "local" access to
548      * the iomem (i.e. controller registers). Thus, we check against the range
549      * covered by the 'bar0' MemoryRegion since that is currently composed of
550      * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however,
551      * that if the device model is ever changed to allow the CMB to be located
552      * in BAR0 as well, then this must be changed.
553      */
554     lo = n->bar0.addr;
555     hi = lo + int128_get64(n->bar0.size);
556 
557     return addr >= lo && addr < hi;
558 }
559 
560 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
561 {
562     hwaddr hi = addr + size - 1;
563     if (hi < addr) {
564         return 1;
565     }
566 
567     if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
568         memcpy(buf, nvme_addr_to_cmb(n, addr), size);
569         return 0;
570     }
571 
572     if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
573         memcpy(buf, nvme_addr_to_pmr(n, addr), size);
574         return 0;
575     }
576 
577     return pci_dma_read(PCI_DEVICE(n), addr, buf, size);
578 }
579 
580 static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size)
581 {
582     hwaddr hi = addr + size - 1;
583     if (hi < addr) {
584         return 1;
585     }
586 
587     if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
588         memcpy(nvme_addr_to_cmb(n, addr), buf, size);
589         return 0;
590     }
591 
592     if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
593         memcpy(nvme_addr_to_pmr(n, addr), buf, size);
594         return 0;
595     }
596 
597     return pci_dma_write(PCI_DEVICE(n), addr, buf, size);
598 }
599 
600 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
601 {
602     return nsid &&
603         (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES);
604 }
605 
606 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
607 {
608     return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
609 }
610 
611 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
612 {
613     return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
614 }
615 
616 static void nvme_inc_cq_tail(NvmeCQueue *cq)
617 {
618     cq->tail++;
619     if (cq->tail >= cq->size) {
620         cq->tail = 0;
621         cq->phase = !cq->phase;
622     }
623 }
624 
625 static void nvme_inc_sq_head(NvmeSQueue *sq)
626 {
627     sq->head = (sq->head + 1) % sq->size;
628 }
629 
630 static uint8_t nvme_cq_full(NvmeCQueue *cq)
631 {
632     return (cq->tail + 1) % cq->size == cq->head;
633 }
634 
635 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
636 {
637     return sq->head == sq->tail;
638 }
639 
640 static void nvme_irq_check(NvmeCtrl *n)
641 {
642     PCIDevice *pci = PCI_DEVICE(n);
643     uint32_t intms = ldl_le_p(&n->bar.intms);
644 
645     if (msix_enabled(pci)) {
646         return;
647     }
648     if (~intms & n->irq_status) {
649         pci_irq_assert(pci);
650     } else {
651         pci_irq_deassert(pci);
652     }
653 }
654 
655 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
656 {
657     PCIDevice *pci = PCI_DEVICE(n);
658 
659     if (cq->irq_enabled) {
660         if (msix_enabled(pci)) {
661             trace_pci_nvme_irq_msix(cq->vector);
662             msix_notify(pci, cq->vector);
663         } else {
664             trace_pci_nvme_irq_pin();
665             assert(cq->vector < 32);
666             n->irq_status |= 1 << cq->vector;
667             nvme_irq_check(n);
668         }
669     } else {
670         trace_pci_nvme_irq_masked();
671     }
672 }
673 
674 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
675 {
676     if (cq->irq_enabled) {
677         if (msix_enabled(PCI_DEVICE(n))) {
678             return;
679         } else {
680             assert(cq->vector < 32);
681             if (!n->cq_pending) {
682                 n->irq_status &= ~(1 << cq->vector);
683             }
684             nvme_irq_check(n);
685         }
686     }
687 }
688 
689 static void nvme_req_clear(NvmeRequest *req)
690 {
691     req->ns = NULL;
692     req->opaque = NULL;
693     req->aiocb = NULL;
694     memset(&req->cqe, 0x0, sizeof(req->cqe));
695     req->status = NVME_SUCCESS;
696 }
697 
698 static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
699 {
700     if (dma) {
701         pci_dma_sglist_init(&sg->qsg, PCI_DEVICE(n), 0);
702         sg->flags = NVME_SG_DMA;
703     } else {
704         qemu_iovec_init(&sg->iov, 0);
705     }
706 
707     sg->flags |= NVME_SG_ALLOC;
708 }
709 
710 static inline void nvme_sg_unmap(NvmeSg *sg)
711 {
712     if (!(sg->flags & NVME_SG_ALLOC)) {
713         return;
714     }
715 
716     if (sg->flags & NVME_SG_DMA) {
717         qemu_sglist_destroy(&sg->qsg);
718     } else {
719         qemu_iovec_destroy(&sg->iov);
720     }
721 
722     memset(sg, 0x0, sizeof(*sg));
723 }
724 
725 /*
726  * When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
727  * holds both data and metadata. This function splits the data and metadata
728  * into two separate QSG/IOVs.
729  */
730 static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
731                           NvmeSg *mdata)
732 {
733     NvmeSg *dst = data;
734     uint32_t trans_len, count = ns->lbasz;
735     uint64_t offset = 0;
736     bool dma = sg->flags & NVME_SG_DMA;
737     size_t sge_len;
738     size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
739     int sg_idx = 0;
740 
741     assert(sg->flags & NVME_SG_ALLOC);
742 
743     while (sg_len) {
744         sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
745 
746         trans_len = MIN(sg_len, count);
747         trans_len = MIN(trans_len, sge_len - offset);
748 
749         if (dst) {
750             if (dma) {
751                 qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
752                                 trans_len);
753             } else {
754                 qemu_iovec_add(&dst->iov,
755                                sg->iov.iov[sg_idx].iov_base + offset,
756                                trans_len);
757             }
758         }
759 
760         sg_len -= trans_len;
761         count -= trans_len;
762         offset += trans_len;
763 
764         if (count == 0) {
765             dst = (dst == data) ? mdata : data;
766             count = (dst == data) ? ns->lbasz : ns->lbaf.ms;
767         }
768 
769         if (sge_len == offset) {
770             offset = 0;
771             sg_idx++;
772         }
773     }
774 }
775 
776 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
777                                   size_t len)
778 {
779     if (!len) {
780         return NVME_SUCCESS;
781     }
782 
783     trace_pci_nvme_map_addr_cmb(addr, len);
784 
785     if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
786         return NVME_DATA_TRAS_ERROR;
787     }
788 
789     qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
790 
791     return NVME_SUCCESS;
792 }
793 
794 static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
795                                   size_t len)
796 {
797     if (!len) {
798         return NVME_SUCCESS;
799     }
800 
801     if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
802         return NVME_DATA_TRAS_ERROR;
803     }
804 
805     qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
806 
807     return NVME_SUCCESS;
808 }
809 
810 static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
811 {
812     bool cmb = false, pmr = false;
813 
814     if (!len) {
815         return NVME_SUCCESS;
816     }
817 
818     trace_pci_nvme_map_addr(addr, len);
819 
820     if (nvme_addr_is_iomem(n, addr)) {
821         return NVME_DATA_TRAS_ERROR;
822     }
823 
824     if (nvme_addr_is_cmb(n, addr)) {
825         cmb = true;
826     } else if (nvme_addr_is_pmr(n, addr)) {
827         pmr = true;
828     }
829 
830     if (cmb || pmr) {
831         if (sg->flags & NVME_SG_DMA) {
832             return NVME_INVALID_USE_OF_CMB | NVME_DNR;
833         }
834 
835         if (sg->iov.niov + 1 > IOV_MAX) {
836             goto max_mappings_exceeded;
837         }
838 
839         if (cmb) {
840             return nvme_map_addr_cmb(n, &sg->iov, addr, len);
841         } else {
842             return nvme_map_addr_pmr(n, &sg->iov, addr, len);
843         }
844     }
845 
846     if (!(sg->flags & NVME_SG_DMA)) {
847         return NVME_INVALID_USE_OF_CMB | NVME_DNR;
848     }
849 
850     if (sg->qsg.nsg + 1 > IOV_MAX) {
851         goto max_mappings_exceeded;
852     }
853 
854     qemu_sglist_add(&sg->qsg, addr, len);
855 
856     return NVME_SUCCESS;
857 
858 max_mappings_exceeded:
859     NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings,
860                    "number of mappings exceed 1024");
861     return NVME_INTERNAL_DEV_ERROR | NVME_DNR;
862 }
863 
864 static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
865 {
866     return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
867 }
868 
869 static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
870                              uint64_t prp2, uint32_t len)
871 {
872     hwaddr trans_len = n->page_size - (prp1 % n->page_size);
873     trans_len = MIN(len, trans_len);
874     int num_prps = (len >> n->page_bits) + 1;
875     uint16_t status;
876     int ret;
877 
878     trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
879 
880     nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
881 
882     status = nvme_map_addr(n, sg, prp1, trans_len);
883     if (status) {
884         goto unmap;
885     }
886 
887     len -= trans_len;
888     if (len) {
889         if (len > n->page_size) {
890             uint64_t prp_list[n->max_prp_ents];
891             uint32_t nents, prp_trans;
892             int i = 0;
893 
894             /*
895              * The first PRP list entry, pointed to by PRP2 may contain offset.
896              * Hence, we need to calculate the number of entries in based on
897              * that offset.
898              */
899             nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
900             prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
901             ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
902             if (ret) {
903                 trace_pci_nvme_err_addr_read(prp2);
904                 status = NVME_DATA_TRAS_ERROR;
905                 goto unmap;
906             }
907             while (len != 0) {
908                 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
909 
910                 if (i == nents - 1 && len > n->page_size) {
911                     if (unlikely(prp_ent & (n->page_size - 1))) {
912                         trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
913                         status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
914                         goto unmap;
915                     }
916 
917                     i = 0;
918                     nents = (len + n->page_size - 1) >> n->page_bits;
919                     nents = MIN(nents, n->max_prp_ents);
920                     prp_trans = nents * sizeof(uint64_t);
921                     ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
922                                          prp_trans);
923                     if (ret) {
924                         trace_pci_nvme_err_addr_read(prp_ent);
925                         status = NVME_DATA_TRAS_ERROR;
926                         goto unmap;
927                     }
928                     prp_ent = le64_to_cpu(prp_list[i]);
929                 }
930 
931                 if (unlikely(prp_ent & (n->page_size - 1))) {
932                     trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
933                     status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
934                     goto unmap;
935                 }
936 
937                 trans_len = MIN(len, n->page_size);
938                 status = nvme_map_addr(n, sg, prp_ent, trans_len);
939                 if (status) {
940                     goto unmap;
941                 }
942 
943                 len -= trans_len;
944                 i++;
945             }
946         } else {
947             if (unlikely(prp2 & (n->page_size - 1))) {
948                 trace_pci_nvme_err_invalid_prp2_align(prp2);
949                 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
950                 goto unmap;
951             }
952             status = nvme_map_addr(n, sg, prp2, len);
953             if (status) {
954                 goto unmap;
955             }
956         }
957     }
958 
959     return NVME_SUCCESS;
960 
961 unmap:
962     nvme_sg_unmap(sg);
963     return status;
964 }
965 
966 /*
967  * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
968  * number of bytes mapped in len.
969  */
970 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
971                                   NvmeSglDescriptor *segment, uint64_t nsgld,
972                                   size_t *len, NvmeCmd *cmd)
973 {
974     dma_addr_t addr, trans_len;
975     uint32_t dlen;
976     uint16_t status;
977 
978     for (int i = 0; i < nsgld; i++) {
979         uint8_t type = NVME_SGL_TYPE(segment[i].type);
980 
981         switch (type) {
982         case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
983             break;
984         case NVME_SGL_DESCR_TYPE_SEGMENT:
985         case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
986             return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
987         default:
988             return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
989         }
990 
991         dlen = le32_to_cpu(segment[i].len);
992 
993         if (!dlen) {
994             continue;
995         }
996 
997         if (*len == 0) {
998             /*
999              * All data has been mapped, but the SGL contains additional
1000              * segments and/or descriptors. The controller might accept
1001              * ignoring the rest of the SGL.
1002              */
1003             uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
1004             if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
1005                 break;
1006             }
1007 
1008             trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
1009             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1010         }
1011 
1012         trans_len = MIN(*len, dlen);
1013 
1014         addr = le64_to_cpu(segment[i].addr);
1015 
1016         if (UINT64_MAX - addr < dlen) {
1017             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1018         }
1019 
1020         status = nvme_map_addr(n, sg, addr, trans_len);
1021         if (status) {
1022             return status;
1023         }
1024 
1025         *len -= trans_len;
1026     }
1027 
1028     return NVME_SUCCESS;
1029 }
1030 
1031 static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
1032                              size_t len, NvmeCmd *cmd)
1033 {
1034     /*
1035      * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
1036      * dynamically allocating a potentially huge SGL. The spec allows the SGL
1037      * to be larger (as in number of bytes required to describe the SGL
1038      * descriptors and segment chain) than the command transfer size, so it is
1039      * not bounded by MDTS.
1040      */
1041     const int SEG_CHUNK_SIZE = 256;
1042 
1043     NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
1044     uint64_t nsgld;
1045     uint32_t seg_len;
1046     uint16_t status;
1047     hwaddr addr;
1048     int ret;
1049 
1050     sgld = &sgl;
1051     addr = le64_to_cpu(sgl.addr);
1052 
1053     trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
1054 
1055     nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
1056 
1057     /*
1058      * If the entire transfer can be described with a single data block it can
1059      * be mapped directly.
1060      */
1061     if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
1062         status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
1063         if (status) {
1064             goto unmap;
1065         }
1066 
1067         goto out;
1068     }
1069 
1070     for (;;) {
1071         switch (NVME_SGL_TYPE(sgld->type)) {
1072         case NVME_SGL_DESCR_TYPE_SEGMENT:
1073         case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
1074             break;
1075         default:
1076             return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1077         }
1078 
1079         seg_len = le32_to_cpu(sgld->len);
1080 
1081         /* check the length of the (Last) Segment descriptor */
1082         if (!seg_len || seg_len & 0xf) {
1083             return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1084         }
1085 
1086         if (UINT64_MAX - addr < seg_len) {
1087             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1088         }
1089 
1090         nsgld = seg_len / sizeof(NvmeSglDescriptor);
1091 
1092         while (nsgld > SEG_CHUNK_SIZE) {
1093             if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
1094                 trace_pci_nvme_err_addr_read(addr);
1095                 status = NVME_DATA_TRAS_ERROR;
1096                 goto unmap;
1097             }
1098 
1099             status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
1100                                        &len, cmd);
1101             if (status) {
1102                 goto unmap;
1103             }
1104 
1105             nsgld -= SEG_CHUNK_SIZE;
1106             addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
1107         }
1108 
1109         ret = nvme_addr_read(n, addr, segment, nsgld *
1110                              sizeof(NvmeSglDescriptor));
1111         if (ret) {
1112             trace_pci_nvme_err_addr_read(addr);
1113             status = NVME_DATA_TRAS_ERROR;
1114             goto unmap;
1115         }
1116 
1117         last_sgld = &segment[nsgld - 1];
1118 
1119         /*
1120          * If the segment ends with a Data Block, then we are done.
1121          */
1122         if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
1123             status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
1124             if (status) {
1125                 goto unmap;
1126             }
1127 
1128             goto out;
1129         }
1130 
1131         /*
1132          * If the last descriptor was not a Data Block, then the current
1133          * segment must not be a Last Segment.
1134          */
1135         if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
1136             status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1137             goto unmap;
1138         }
1139 
1140         sgld = last_sgld;
1141         addr = le64_to_cpu(sgld->addr);
1142 
1143         /*
1144          * Do not map the last descriptor; it will be a Segment or Last Segment
1145          * descriptor and is handled by the next iteration.
1146          */
1147         status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
1148         if (status) {
1149             goto unmap;
1150         }
1151     }
1152 
1153 out:
1154     /* if there is any residual left in len, the SGL was too short */
1155     if (len) {
1156         status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1157         goto unmap;
1158     }
1159 
1160     return NVME_SUCCESS;
1161 
1162 unmap:
1163     nvme_sg_unmap(sg);
1164     return status;
1165 }
1166 
1167 uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1168                        NvmeCmd *cmd)
1169 {
1170     uint64_t prp1, prp2;
1171 
1172     switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
1173     case NVME_PSDT_PRP:
1174         prp1 = le64_to_cpu(cmd->dptr.prp1);
1175         prp2 = le64_to_cpu(cmd->dptr.prp2);
1176 
1177         return nvme_map_prp(n, sg, prp1, prp2, len);
1178     case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
1179     case NVME_PSDT_SGL_MPTR_SGL:
1180         return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
1181     default:
1182         return NVME_INVALID_FIELD;
1183     }
1184 }
1185 
1186 static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1187                               NvmeCmd *cmd)
1188 {
1189     int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
1190     hwaddr mptr = le64_to_cpu(cmd->mptr);
1191     uint16_t status;
1192 
1193     if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
1194         NvmeSglDescriptor sgl;
1195 
1196         if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
1197             return NVME_DATA_TRAS_ERROR;
1198         }
1199 
1200         status = nvme_map_sgl(n, sg, sgl, len, cmd);
1201         if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
1202             status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
1203         }
1204 
1205         return status;
1206     }
1207 
1208     nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
1209     status = nvme_map_addr(n, sg, mptr, len);
1210     if (status) {
1211         nvme_sg_unmap(sg);
1212     }
1213 
1214     return status;
1215 }
1216 
1217 static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1218 {
1219     NvmeNamespace *ns = req->ns;
1220     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1221     bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1222     bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1223     size_t len = nvme_l2b(ns, nlb);
1224     uint16_t status;
1225 
1226     if (nvme_ns_ext(ns) &&
1227         !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1228         NvmeSg sg;
1229 
1230         len += nvme_m2b(ns, nlb);
1231 
1232         status = nvme_map_dptr(n, &sg, len, &req->cmd);
1233         if (status) {
1234             return status;
1235         }
1236 
1237         nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1238         nvme_sg_split(&sg, ns, &req->sg, NULL);
1239         nvme_sg_unmap(&sg);
1240 
1241         return NVME_SUCCESS;
1242     }
1243 
1244     return nvme_map_dptr(n, &req->sg, len, &req->cmd);
1245 }
1246 
1247 static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1248 {
1249     NvmeNamespace *ns = req->ns;
1250     size_t len = nvme_m2b(ns, nlb);
1251     uint16_t status;
1252 
1253     if (nvme_ns_ext(ns)) {
1254         NvmeSg sg;
1255 
1256         len += nvme_l2b(ns, nlb);
1257 
1258         status = nvme_map_dptr(n, &sg, len, &req->cmd);
1259         if (status) {
1260             return status;
1261         }
1262 
1263         nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1264         nvme_sg_split(&sg, ns, NULL, &req->sg);
1265         nvme_sg_unmap(&sg);
1266 
1267         return NVME_SUCCESS;
1268     }
1269 
1270     return nvme_map_mptr(n, &req->sg, len, &req->cmd);
1271 }
1272 
1273 static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
1274                                     uint32_t len, uint32_t bytes,
1275                                     int32_t skip_bytes, int64_t offset,
1276                                     NvmeTxDirection dir)
1277 {
1278     hwaddr addr;
1279     uint32_t trans_len, count = bytes;
1280     bool dma = sg->flags & NVME_SG_DMA;
1281     int64_t sge_len;
1282     int sg_idx = 0;
1283     int ret;
1284 
1285     assert(sg->flags & NVME_SG_ALLOC);
1286 
1287     while (len) {
1288         sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
1289 
1290         if (sge_len - offset < 0) {
1291             offset -= sge_len;
1292             sg_idx++;
1293             continue;
1294         }
1295 
1296         if (sge_len == offset) {
1297             offset = 0;
1298             sg_idx++;
1299             continue;
1300         }
1301 
1302         trans_len = MIN(len, count);
1303         trans_len = MIN(trans_len, sge_len - offset);
1304 
1305         if (dma) {
1306             addr = sg->qsg.sg[sg_idx].base + offset;
1307         } else {
1308             addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
1309         }
1310 
1311         if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1312             ret = nvme_addr_read(n, addr, ptr, trans_len);
1313         } else {
1314             ret = nvme_addr_write(n, addr, ptr, trans_len);
1315         }
1316 
1317         if (ret) {
1318             return NVME_DATA_TRAS_ERROR;
1319         }
1320 
1321         ptr += trans_len;
1322         len -= trans_len;
1323         count -= trans_len;
1324         offset += trans_len;
1325 
1326         if (count == 0) {
1327             count = bytes;
1328             offset += skip_bytes;
1329         }
1330     }
1331 
1332     return NVME_SUCCESS;
1333 }
1334 
1335 static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len,
1336                         NvmeTxDirection dir)
1337 {
1338     assert(sg->flags & NVME_SG_ALLOC);
1339 
1340     if (sg->flags & NVME_SG_DMA) {
1341         const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
1342         dma_addr_t residual;
1343 
1344         if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1345             dma_buf_write(ptr, len, &residual, &sg->qsg, attrs);
1346         } else {
1347             dma_buf_read(ptr, len, &residual, &sg->qsg, attrs);
1348         }
1349 
1350         if (unlikely(residual)) {
1351             trace_pci_nvme_err_invalid_dma();
1352             return NVME_INVALID_FIELD | NVME_DNR;
1353         }
1354     } else {
1355         size_t bytes;
1356 
1357         if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1358             bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
1359         } else {
1360             bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
1361         }
1362 
1363         if (unlikely(bytes != len)) {
1364             trace_pci_nvme_err_invalid_dma();
1365             return NVME_INVALID_FIELD | NVME_DNR;
1366         }
1367     }
1368 
1369     return NVME_SUCCESS;
1370 }
1371 
1372 static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len,
1373                                 NvmeRequest *req)
1374 {
1375     uint16_t status;
1376 
1377     status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1378     if (status) {
1379         return status;
1380     }
1381 
1382     return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
1383 }
1384 
1385 static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len,
1386                                 NvmeRequest *req)
1387 {
1388     uint16_t status;
1389 
1390     status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1391     if (status) {
1392         return status;
1393     }
1394 
1395     return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
1396 }
1397 
1398 uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len,
1399                           NvmeTxDirection dir, NvmeRequest *req)
1400 {
1401     NvmeNamespace *ns = req->ns;
1402     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1403     bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1404     bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1405 
1406     if (nvme_ns_ext(ns) &&
1407         !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1408         return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz,
1409                                    ns->lbaf.ms, 0, dir);
1410     }
1411 
1412     return nvme_tx(n, &req->sg, ptr, len, dir);
1413 }
1414 
1415 uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len,
1416                            NvmeTxDirection dir, NvmeRequest *req)
1417 {
1418     NvmeNamespace *ns = req->ns;
1419     uint16_t status;
1420 
1421     if (nvme_ns_ext(ns)) {
1422         return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms,
1423                                    ns->lbasz, ns->lbasz, dir);
1424     }
1425 
1426     nvme_sg_unmap(&req->sg);
1427 
1428     status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
1429     if (status) {
1430         return status;
1431     }
1432 
1433     return nvme_tx(n, &req->sg, ptr, len, dir);
1434 }
1435 
1436 static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
1437                                  uint32_t align, BlockCompletionFunc *cb,
1438                                  NvmeRequest *req)
1439 {
1440     assert(req->sg.flags & NVME_SG_ALLOC);
1441 
1442     if (req->sg.flags & NVME_SG_DMA) {
1443         req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, align, cb, req);
1444     } else {
1445         req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
1446     }
1447 }
1448 
1449 static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
1450                                   uint32_t align, BlockCompletionFunc *cb,
1451                                   NvmeRequest *req)
1452 {
1453     assert(req->sg.flags & NVME_SG_ALLOC);
1454 
1455     if (req->sg.flags & NVME_SG_DMA) {
1456         req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, align, cb, req);
1457     } else {
1458         req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
1459     }
1460 }
1461 
1462 static void nvme_update_cq_eventidx(const NvmeCQueue *cq)
1463 {
1464     uint32_t v = cpu_to_le32(cq->head);
1465 
1466     trace_pci_nvme_update_cq_eventidx(cq->cqid, cq->head);
1467 
1468     pci_dma_write(PCI_DEVICE(cq->ctrl), cq->ei_addr, &v, sizeof(v));
1469 }
1470 
1471 static void nvme_update_cq_head(NvmeCQueue *cq)
1472 {
1473     uint32_t v;
1474 
1475     pci_dma_read(PCI_DEVICE(cq->ctrl), cq->db_addr, &v, sizeof(v));
1476 
1477     cq->head = le32_to_cpu(v);
1478 
1479     trace_pci_nvme_update_cq_head(cq->cqid, cq->head);
1480 }
1481 
1482 static void nvme_post_cqes(void *opaque)
1483 {
1484     NvmeCQueue *cq = opaque;
1485     NvmeCtrl *n = cq->ctrl;
1486     NvmeRequest *req, *next;
1487     bool pending = cq->head != cq->tail;
1488     int ret;
1489 
1490     QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
1491         NvmeSQueue *sq;
1492         hwaddr addr;
1493 
1494         if (n->dbbuf_enabled) {
1495             nvme_update_cq_eventidx(cq);
1496             nvme_update_cq_head(cq);
1497         }
1498 
1499         if (nvme_cq_full(cq)) {
1500             break;
1501         }
1502 
1503         sq = req->sq;
1504         req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
1505         req->cqe.sq_id = cpu_to_le16(sq->sqid);
1506         req->cqe.sq_head = cpu_to_le16(sq->head);
1507         addr = cq->dma_addr + cq->tail * n->cqe_size;
1508         ret = pci_dma_write(PCI_DEVICE(n), addr, (void *)&req->cqe,
1509                             sizeof(req->cqe));
1510         if (ret) {
1511             trace_pci_nvme_err_addr_write(addr);
1512             trace_pci_nvme_err_cfs();
1513             stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
1514             break;
1515         }
1516         QTAILQ_REMOVE(&cq->req_list, req, entry);
1517         nvme_inc_cq_tail(cq);
1518         nvme_sg_unmap(&req->sg);
1519         QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
1520     }
1521     if (cq->tail != cq->head) {
1522         if (cq->irq_enabled && !pending) {
1523             n->cq_pending++;
1524         }
1525 
1526         nvme_irq_assert(n, cq);
1527     }
1528 }
1529 
1530 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
1531 {
1532     assert(cq->cqid == req->sq->cqid);
1533     trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
1534                                           le32_to_cpu(req->cqe.result),
1535                                           le32_to_cpu(req->cqe.dw1),
1536                                           req->status);
1537 
1538     if (req->status) {
1539         trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
1540                                       req->status, req->cmd.opcode);
1541     }
1542 
1543     QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
1544     QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
1545 
1546     qemu_bh_schedule(cq->bh);
1547 }
1548 
1549 static void nvme_process_aers(void *opaque)
1550 {
1551     NvmeCtrl *n = opaque;
1552     NvmeAsyncEvent *event, *next;
1553 
1554     trace_pci_nvme_process_aers(n->aer_queued);
1555 
1556     QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
1557         NvmeRequest *req;
1558         NvmeAerResult *result;
1559 
1560         /* can't post cqe if there is nothing to complete */
1561         if (!n->outstanding_aers) {
1562             trace_pci_nvme_no_outstanding_aers();
1563             break;
1564         }
1565 
1566         /* ignore if masked (cqe posted, but event not cleared) */
1567         if (n->aer_mask & (1 << event->result.event_type)) {
1568             trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
1569             continue;
1570         }
1571 
1572         QTAILQ_REMOVE(&n->aer_queue, event, entry);
1573         n->aer_queued--;
1574 
1575         n->aer_mask |= 1 << event->result.event_type;
1576         n->outstanding_aers--;
1577 
1578         req = n->aer_reqs[n->outstanding_aers];
1579 
1580         result = (NvmeAerResult *) &req->cqe.result;
1581         result->event_type = event->result.event_type;
1582         result->event_info = event->result.event_info;
1583         result->log_page = event->result.log_page;
1584         g_free(event);
1585 
1586         trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
1587                                     result->log_page);
1588 
1589         nvme_enqueue_req_completion(&n->admin_cq, req);
1590     }
1591 }
1592 
1593 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
1594                                uint8_t event_info, uint8_t log_page)
1595 {
1596     NvmeAsyncEvent *event;
1597 
1598     trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
1599 
1600     if (n->aer_queued == n->params.aer_max_queued) {
1601         trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
1602         return;
1603     }
1604 
1605     event = g_new(NvmeAsyncEvent, 1);
1606     event->result = (NvmeAerResult) {
1607         .event_type = event_type,
1608         .event_info = event_info,
1609         .log_page   = log_page,
1610     };
1611 
1612     QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
1613     n->aer_queued++;
1614 
1615     nvme_process_aers(n);
1616 }
1617 
1618 static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
1619 {
1620     uint8_t aer_info;
1621 
1622     /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
1623     if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
1624         return;
1625     }
1626 
1627     switch (event) {
1628     case NVME_SMART_SPARE:
1629         aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
1630         break;
1631     case NVME_SMART_TEMPERATURE:
1632         aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
1633         break;
1634     case NVME_SMART_RELIABILITY:
1635     case NVME_SMART_MEDIA_READ_ONLY:
1636     case NVME_SMART_FAILED_VOLATILE_MEDIA:
1637     case NVME_SMART_PMR_UNRELIABLE:
1638         aer_info = NVME_AER_INFO_SMART_RELIABILITY;
1639         break;
1640     default:
1641         return;
1642     }
1643 
1644     nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
1645 }
1646 
1647 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
1648 {
1649     n->aer_mask &= ~(1 << event_type);
1650     if (!QTAILQ_EMPTY(&n->aer_queue)) {
1651         nvme_process_aers(n);
1652     }
1653 }
1654 
1655 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
1656 {
1657     uint8_t mdts = n->params.mdts;
1658 
1659     if (mdts && len > n->page_size << mdts) {
1660         trace_pci_nvme_err_mdts(len);
1661         return NVME_INVALID_FIELD | NVME_DNR;
1662     }
1663 
1664     return NVME_SUCCESS;
1665 }
1666 
1667 static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
1668                                          uint32_t nlb)
1669 {
1670     uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
1671 
1672     if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
1673         trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
1674         return NVME_LBA_RANGE | NVME_DNR;
1675     }
1676 
1677     return NVME_SUCCESS;
1678 }
1679 
1680 static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba,
1681                                  uint32_t nlb, int flags)
1682 {
1683     BlockDriverState *bs = blk_bs(ns->blkconf.blk);
1684 
1685     int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
1686     int64_t offset = nvme_l2b(ns, slba);
1687     int ret;
1688 
1689     /*
1690      * `pnum` holds the number of bytes after offset that shares the same
1691      * allocation status as the byte at offset. If `pnum` is different from
1692      * `bytes`, we should check the allocation status of the next range and
1693      * continue this until all bytes have been checked.
1694      */
1695     do {
1696         bytes -= pnum;
1697 
1698         ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
1699         if (ret < 0) {
1700             return ret;
1701         }
1702 
1703 
1704         trace_pci_nvme_block_status(offset, bytes, pnum, ret,
1705                                     !!(ret & BDRV_BLOCK_ZERO));
1706 
1707         if (!(ret & flags)) {
1708             return 1;
1709         }
1710 
1711         offset += pnum;
1712     } while (pnum != bytes);
1713 
1714     return 0;
1715 }
1716 
1717 static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
1718                                  uint32_t nlb)
1719 {
1720     int ret;
1721     Error *err = NULL;
1722 
1723     ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA);
1724     if (ret) {
1725         if (ret < 0) {
1726             error_setg_errno(&err, -ret, "unable to get block status");
1727             error_report_err(err);
1728 
1729             return NVME_INTERNAL_DEV_ERROR;
1730         }
1731 
1732         return NVME_DULB;
1733     }
1734 
1735     return NVME_SUCCESS;
1736 }
1737 
1738 static void nvme_aio_err(NvmeRequest *req, int ret)
1739 {
1740     uint16_t status = NVME_SUCCESS;
1741     Error *local_err = NULL;
1742 
1743     switch (req->cmd.opcode) {
1744     case NVME_CMD_READ:
1745         status = NVME_UNRECOVERED_READ;
1746         break;
1747     case NVME_CMD_FLUSH:
1748     case NVME_CMD_WRITE:
1749     case NVME_CMD_WRITE_ZEROES:
1750     case NVME_CMD_ZONE_APPEND:
1751         status = NVME_WRITE_FAULT;
1752         break;
1753     default:
1754         status = NVME_INTERNAL_DEV_ERROR;
1755         break;
1756     }
1757 
1758     trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
1759 
1760     error_setg_errno(&local_err, -ret, "aio failed");
1761     error_report_err(local_err);
1762 
1763     /*
1764      * Set the command status code to the first encountered error but allow a
1765      * subsequent Internal Device Error to trump it.
1766      */
1767     if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
1768         return;
1769     }
1770 
1771     req->status = status;
1772 }
1773 
1774 static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
1775 {
1776     return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
1777                                     slba / ns->zone_size;
1778 }
1779 
1780 static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
1781 {
1782     uint32_t zone_idx = nvme_zone_idx(ns, slba);
1783 
1784     if (zone_idx >= ns->num_zones) {
1785         return NULL;
1786     }
1787 
1788     return &ns->zone_array[zone_idx];
1789 }
1790 
1791 static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
1792 {
1793     uint64_t zslba = zone->d.zslba;
1794 
1795     switch (nvme_get_zone_state(zone)) {
1796     case NVME_ZONE_STATE_EMPTY:
1797     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1798     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1799     case NVME_ZONE_STATE_CLOSED:
1800         return NVME_SUCCESS;
1801     case NVME_ZONE_STATE_FULL:
1802         trace_pci_nvme_err_zone_is_full(zslba);
1803         return NVME_ZONE_FULL;
1804     case NVME_ZONE_STATE_OFFLINE:
1805         trace_pci_nvme_err_zone_is_offline(zslba);
1806         return NVME_ZONE_OFFLINE;
1807     case NVME_ZONE_STATE_READ_ONLY:
1808         trace_pci_nvme_err_zone_is_read_only(zslba);
1809         return NVME_ZONE_READ_ONLY;
1810     default:
1811         assert(false);
1812     }
1813 
1814     return NVME_INTERNAL_DEV_ERROR;
1815 }
1816 
1817 static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
1818                                       uint64_t slba, uint32_t nlb)
1819 {
1820     uint64_t zcap = nvme_zone_wr_boundary(zone);
1821     uint16_t status;
1822 
1823     status = nvme_check_zone_state_for_write(zone);
1824     if (status) {
1825         return status;
1826     }
1827 
1828     if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1829         uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas;
1830 
1831         if (slba < zone->w_ptr || slba + nlb > ezrwa) {
1832             trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr);
1833             return NVME_ZONE_INVALID_WRITE;
1834         }
1835     } else {
1836         if (unlikely(slba != zone->w_ptr)) {
1837             trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba,
1838                                                zone->w_ptr);
1839             return NVME_ZONE_INVALID_WRITE;
1840         }
1841     }
1842 
1843     if (unlikely((slba + nlb) > zcap)) {
1844         trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
1845         return NVME_ZONE_BOUNDARY_ERROR;
1846     }
1847 
1848     return NVME_SUCCESS;
1849 }
1850 
1851 static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
1852 {
1853     switch (nvme_get_zone_state(zone)) {
1854     case NVME_ZONE_STATE_EMPTY:
1855     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1856     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1857     case NVME_ZONE_STATE_FULL:
1858     case NVME_ZONE_STATE_CLOSED:
1859     case NVME_ZONE_STATE_READ_ONLY:
1860         return NVME_SUCCESS;
1861     case NVME_ZONE_STATE_OFFLINE:
1862         trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
1863         return NVME_ZONE_OFFLINE;
1864     default:
1865         assert(false);
1866     }
1867 
1868     return NVME_INTERNAL_DEV_ERROR;
1869 }
1870 
1871 static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
1872                                      uint32_t nlb)
1873 {
1874     NvmeZone *zone;
1875     uint64_t bndry, end;
1876     uint16_t status;
1877 
1878     zone = nvme_get_zone_by_slba(ns, slba);
1879     assert(zone);
1880 
1881     bndry = nvme_zone_rd_boundary(ns, zone);
1882     end = slba + nlb;
1883 
1884     status = nvme_check_zone_state_for_read(zone);
1885     if (status) {
1886         ;
1887     } else if (unlikely(end > bndry)) {
1888         if (!ns->params.cross_zone_read) {
1889             status = NVME_ZONE_BOUNDARY_ERROR;
1890         } else {
1891             /*
1892              * Read across zone boundary - check that all subsequent
1893              * zones that are being read have an appropriate state.
1894              */
1895             do {
1896                 zone++;
1897                 status = nvme_check_zone_state_for_read(zone);
1898                 if (status) {
1899                     break;
1900                 }
1901             } while (end > nvme_zone_rd_boundary(ns, zone));
1902         }
1903     }
1904 
1905     return status;
1906 }
1907 
1908 static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
1909 {
1910     switch (nvme_get_zone_state(zone)) {
1911     case NVME_ZONE_STATE_FULL:
1912         return NVME_SUCCESS;
1913 
1914     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1915     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1916         nvme_aor_dec_open(ns);
1917         /* fallthrough */
1918     case NVME_ZONE_STATE_CLOSED:
1919         nvme_aor_dec_active(ns);
1920 
1921         if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1922             zone->d.za &= ~NVME_ZA_ZRWA_VALID;
1923             if (ns->params.numzrwa) {
1924                 ns->zns.numzrwa++;
1925             }
1926         }
1927 
1928         /* fallthrough */
1929     case NVME_ZONE_STATE_EMPTY:
1930         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
1931         return NVME_SUCCESS;
1932 
1933     default:
1934         return NVME_ZONE_INVAL_TRANSITION;
1935     }
1936 }
1937 
1938 static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
1939 {
1940     switch (nvme_get_zone_state(zone)) {
1941     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1942     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1943         nvme_aor_dec_open(ns);
1944         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
1945         /* fall through */
1946     case NVME_ZONE_STATE_CLOSED:
1947         return NVME_SUCCESS;
1948 
1949     default:
1950         return NVME_ZONE_INVAL_TRANSITION;
1951     }
1952 }
1953 
1954 static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone)
1955 {
1956     switch (nvme_get_zone_state(zone)) {
1957     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1958     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1959         nvme_aor_dec_open(ns);
1960         /* fallthrough */
1961     case NVME_ZONE_STATE_CLOSED:
1962         nvme_aor_dec_active(ns);
1963 
1964         if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1965             if (ns->params.numzrwa) {
1966                 ns->zns.numzrwa++;
1967             }
1968         }
1969 
1970         /* fallthrough */
1971     case NVME_ZONE_STATE_FULL:
1972         zone->w_ptr = zone->d.zslba;
1973         zone->d.wp = zone->w_ptr;
1974         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
1975         /* fallthrough */
1976     case NVME_ZONE_STATE_EMPTY:
1977         return NVME_SUCCESS;
1978 
1979     default:
1980         return NVME_ZONE_INVAL_TRANSITION;
1981     }
1982 }
1983 
1984 static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
1985 {
1986     NvmeZone *zone;
1987 
1988     if (ns->params.max_open_zones &&
1989         ns->nr_open_zones == ns->params.max_open_zones) {
1990         zone = QTAILQ_FIRST(&ns->imp_open_zones);
1991         if (zone) {
1992             /*
1993              * Automatically close this implicitly open zone.
1994              */
1995             QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
1996             nvme_zrm_close(ns, zone);
1997         }
1998     }
1999 }
2000 
2001 enum {
2002     NVME_ZRM_AUTO = 1 << 0,
2003     NVME_ZRM_ZRWA = 1 << 1,
2004 };
2005 
2006 static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns,
2007                                     NvmeZone *zone, int flags)
2008 {
2009     int act = 0;
2010     uint16_t status;
2011 
2012     switch (nvme_get_zone_state(zone)) {
2013     case NVME_ZONE_STATE_EMPTY:
2014         act = 1;
2015 
2016         /* fallthrough */
2017 
2018     case NVME_ZONE_STATE_CLOSED:
2019         if (n->params.auto_transition_zones) {
2020             nvme_zrm_auto_transition_zone(ns);
2021         }
2022         status = nvme_zns_check_resources(ns, act, 1,
2023                                           (flags & NVME_ZRM_ZRWA) ? 1 : 0);
2024         if (status) {
2025             return status;
2026         }
2027 
2028         if (act) {
2029             nvme_aor_inc_active(ns);
2030         }
2031 
2032         nvme_aor_inc_open(ns);
2033 
2034         if (flags & NVME_ZRM_AUTO) {
2035             nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
2036             return NVME_SUCCESS;
2037         }
2038 
2039         /* fallthrough */
2040 
2041     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
2042         if (flags & NVME_ZRM_AUTO) {
2043             return NVME_SUCCESS;
2044         }
2045 
2046         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
2047 
2048         /* fallthrough */
2049 
2050     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
2051         if (flags & NVME_ZRM_ZRWA) {
2052             ns->zns.numzrwa--;
2053 
2054             zone->d.za |= NVME_ZA_ZRWA_VALID;
2055         }
2056 
2057         return NVME_SUCCESS;
2058 
2059     default:
2060         return NVME_ZONE_INVAL_TRANSITION;
2061     }
2062 }
2063 
2064 static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns,
2065                                      NvmeZone *zone)
2066 {
2067     return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO);
2068 }
2069 
2070 static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
2071                                  uint32_t nlb)
2072 {
2073     zone->d.wp += nlb;
2074 
2075     if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
2076         nvme_zrm_finish(ns, zone);
2077     }
2078 }
2079 
2080 static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone,
2081                                            uint32_t nlbc)
2082 {
2083     uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg);
2084 
2085     nlbc = nzrwafgs * ns->zns.zrwafg;
2086 
2087     trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc);
2088 
2089     zone->w_ptr += nlbc;
2090 
2091     nvme_advance_zone_wp(ns, zone, nlbc);
2092 }
2093 
2094 static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
2095 {
2096     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2097     NvmeZone *zone;
2098     uint64_t slba;
2099     uint32_t nlb;
2100 
2101     slba = le64_to_cpu(rw->slba);
2102     nlb = le16_to_cpu(rw->nlb) + 1;
2103     zone = nvme_get_zone_by_slba(ns, slba);
2104     assert(zone);
2105 
2106     if (zone->d.za & NVME_ZA_ZRWA_VALID) {
2107         uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1;
2108         uint64_t elba = slba + nlb - 1;
2109 
2110         if (elba > ezrwa) {
2111             nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa);
2112         }
2113 
2114         return;
2115     }
2116 
2117     nvme_advance_zone_wp(ns, zone, nlb);
2118 }
2119 
2120 static inline bool nvme_is_write(NvmeRequest *req)
2121 {
2122     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2123 
2124     return rw->opcode == NVME_CMD_WRITE ||
2125            rw->opcode == NVME_CMD_ZONE_APPEND ||
2126            rw->opcode == NVME_CMD_WRITE_ZEROES;
2127 }
2128 
2129 static AioContext *nvme_get_aio_context(BlockAIOCB *acb)
2130 {
2131     return qemu_get_aio_context();
2132 }
2133 
2134 static void nvme_misc_cb(void *opaque, int ret)
2135 {
2136     NvmeRequest *req = opaque;
2137 
2138     trace_pci_nvme_misc_cb(nvme_cid(req));
2139 
2140     if (ret) {
2141         nvme_aio_err(req, ret);
2142     }
2143 
2144     nvme_enqueue_req_completion(nvme_cq(req), req);
2145 }
2146 
2147 void nvme_rw_complete_cb(void *opaque, int ret)
2148 {
2149     NvmeRequest *req = opaque;
2150     NvmeNamespace *ns = req->ns;
2151     BlockBackend *blk = ns->blkconf.blk;
2152     BlockAcctCookie *acct = &req->acct;
2153     BlockAcctStats *stats = blk_get_stats(blk);
2154 
2155     trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
2156 
2157     if (ret) {
2158         block_acct_failed(stats, acct);
2159         nvme_aio_err(req, ret);
2160     } else {
2161         block_acct_done(stats, acct);
2162     }
2163 
2164     if (ns->params.zoned && nvme_is_write(req)) {
2165         nvme_finalize_zoned_write(ns, req);
2166     }
2167 
2168     nvme_enqueue_req_completion(nvme_cq(req), req);
2169 }
2170 
2171 static void nvme_rw_cb(void *opaque, int ret)
2172 {
2173     NvmeRequest *req = opaque;
2174     NvmeNamespace *ns = req->ns;
2175 
2176     BlockBackend *blk = ns->blkconf.blk;
2177 
2178     trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
2179 
2180     if (ret) {
2181         goto out;
2182     }
2183 
2184     if (ns->lbaf.ms) {
2185         NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2186         uint64_t slba = le64_to_cpu(rw->slba);
2187         uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
2188         uint64_t offset = nvme_moff(ns, slba);
2189 
2190         if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
2191             size_t mlen = nvme_m2b(ns, nlb);
2192 
2193             req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
2194                                                BDRV_REQ_MAY_UNMAP,
2195                                                nvme_rw_complete_cb, req);
2196             return;
2197         }
2198 
2199         if (nvme_ns_ext(ns) || req->cmd.mptr) {
2200             uint16_t status;
2201 
2202             nvme_sg_unmap(&req->sg);
2203             status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
2204             if (status) {
2205                 ret = -EFAULT;
2206                 goto out;
2207             }
2208 
2209             if (req->cmd.opcode == NVME_CMD_READ) {
2210                 return nvme_blk_read(blk, offset, 1, nvme_rw_complete_cb, req);
2211             }
2212 
2213             return nvme_blk_write(blk, offset, 1, nvme_rw_complete_cb, req);
2214         }
2215     }
2216 
2217 out:
2218     nvme_rw_complete_cb(req, ret);
2219 }
2220 
2221 static void nvme_verify_cb(void *opaque, int ret)
2222 {
2223     NvmeBounceContext *ctx = opaque;
2224     NvmeRequest *req = ctx->req;
2225     NvmeNamespace *ns = req->ns;
2226     BlockBackend *blk = ns->blkconf.blk;
2227     BlockAcctCookie *acct = &req->acct;
2228     BlockAcctStats *stats = blk_get_stats(blk);
2229     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2230     uint64_t slba = le64_to_cpu(rw->slba);
2231     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2232     uint16_t apptag = le16_to_cpu(rw->apptag);
2233     uint16_t appmask = le16_to_cpu(rw->appmask);
2234     uint64_t reftag = le32_to_cpu(rw->reftag);
2235     uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2236     uint16_t status;
2237 
2238     reftag |= cdw3 << 32;
2239 
2240     trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag);
2241 
2242     if (ret) {
2243         block_acct_failed(stats, acct);
2244         nvme_aio_err(req, ret);
2245         goto out;
2246     }
2247 
2248     block_acct_done(stats, acct);
2249 
2250     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2251         status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
2252                                        ctx->mdata.iov.size, slba);
2253         if (status) {
2254             req->status = status;
2255             goto out;
2256         }
2257 
2258         req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2259                                      ctx->mdata.bounce, ctx->mdata.iov.size,
2260                                      prinfo, slba, apptag, appmask, &reftag);
2261     }
2262 
2263 out:
2264     qemu_iovec_destroy(&ctx->data.iov);
2265     g_free(ctx->data.bounce);
2266 
2267     qemu_iovec_destroy(&ctx->mdata.iov);
2268     g_free(ctx->mdata.bounce);
2269 
2270     g_free(ctx);
2271 
2272     nvme_enqueue_req_completion(nvme_cq(req), req);
2273 }
2274 
2275 
2276 static void nvme_verify_mdata_in_cb(void *opaque, int ret)
2277 {
2278     NvmeBounceContext *ctx = opaque;
2279     NvmeRequest *req = ctx->req;
2280     NvmeNamespace *ns = req->ns;
2281     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2282     uint64_t slba = le64_to_cpu(rw->slba);
2283     uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2284     size_t mlen = nvme_m2b(ns, nlb);
2285     uint64_t offset = nvme_moff(ns, slba);
2286     BlockBackend *blk = ns->blkconf.blk;
2287 
2288     trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
2289 
2290     if (ret) {
2291         goto out;
2292     }
2293 
2294     ctx->mdata.bounce = g_malloc(mlen);
2295 
2296     qemu_iovec_reset(&ctx->mdata.iov);
2297     qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2298 
2299     req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2300                                 nvme_verify_cb, ctx);
2301     return;
2302 
2303 out:
2304     nvme_verify_cb(ctx, ret);
2305 }
2306 
2307 struct nvme_compare_ctx {
2308     struct {
2309         QEMUIOVector iov;
2310         uint8_t *bounce;
2311     } data;
2312 
2313     struct {
2314         QEMUIOVector iov;
2315         uint8_t *bounce;
2316     } mdata;
2317 };
2318 
2319 static void nvme_compare_mdata_cb(void *opaque, int ret)
2320 {
2321     NvmeRequest *req = opaque;
2322     NvmeNamespace *ns = req->ns;
2323     NvmeCtrl *n = nvme_ctrl(req);
2324     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2325     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2326     uint16_t apptag = le16_to_cpu(rw->apptag);
2327     uint16_t appmask = le16_to_cpu(rw->appmask);
2328     uint64_t reftag = le32_to_cpu(rw->reftag);
2329     uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2330     struct nvme_compare_ctx *ctx = req->opaque;
2331     g_autofree uint8_t *buf = NULL;
2332     BlockBackend *blk = ns->blkconf.blk;
2333     BlockAcctCookie *acct = &req->acct;
2334     BlockAcctStats *stats = blk_get_stats(blk);
2335     uint16_t status = NVME_SUCCESS;
2336 
2337     reftag |= cdw3 << 32;
2338 
2339     trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
2340 
2341     if (ret) {
2342         block_acct_failed(stats, acct);
2343         nvme_aio_err(req, ret);
2344         goto out;
2345     }
2346 
2347     buf = g_malloc(ctx->mdata.iov.size);
2348 
2349     status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
2350                                NVME_TX_DIRECTION_TO_DEVICE, req);
2351     if (status) {
2352         req->status = status;
2353         goto out;
2354     }
2355 
2356     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2357         uint64_t slba = le64_to_cpu(rw->slba);
2358         uint8_t *bufp;
2359         uint8_t *mbufp = ctx->mdata.bounce;
2360         uint8_t *end = mbufp + ctx->mdata.iov.size;
2361         int16_t pil = 0;
2362 
2363         status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2364                                 ctx->mdata.bounce, ctx->mdata.iov.size, prinfo,
2365                                 slba, apptag, appmask, &reftag);
2366         if (status) {
2367             req->status = status;
2368             goto out;
2369         }
2370 
2371         /*
2372          * When formatted with protection information, do not compare the DIF
2373          * tuple.
2374          */
2375         if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
2376             pil = ns->lbaf.ms - nvme_pi_tuple_size(ns);
2377         }
2378 
2379         for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) {
2380             if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) {
2381                 req->status = NVME_CMP_FAILURE | NVME_DNR;
2382                 goto out;
2383             }
2384         }
2385 
2386         goto out;
2387     }
2388 
2389     if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
2390         req->status = NVME_CMP_FAILURE | NVME_DNR;
2391         goto out;
2392     }
2393 
2394     block_acct_done(stats, acct);
2395 
2396 out:
2397     qemu_iovec_destroy(&ctx->data.iov);
2398     g_free(ctx->data.bounce);
2399 
2400     qemu_iovec_destroy(&ctx->mdata.iov);
2401     g_free(ctx->mdata.bounce);
2402 
2403     g_free(ctx);
2404 
2405     nvme_enqueue_req_completion(nvme_cq(req), req);
2406 }
2407 
2408 static void nvme_compare_data_cb(void *opaque, int ret)
2409 {
2410     NvmeRequest *req = opaque;
2411     NvmeCtrl *n = nvme_ctrl(req);
2412     NvmeNamespace *ns = req->ns;
2413     BlockBackend *blk = ns->blkconf.blk;
2414     BlockAcctCookie *acct = &req->acct;
2415     BlockAcctStats *stats = blk_get_stats(blk);
2416 
2417     struct nvme_compare_ctx *ctx = req->opaque;
2418     g_autofree uint8_t *buf = NULL;
2419     uint16_t status;
2420 
2421     trace_pci_nvme_compare_data_cb(nvme_cid(req));
2422 
2423     if (ret) {
2424         block_acct_failed(stats, acct);
2425         nvme_aio_err(req, ret);
2426         goto out;
2427     }
2428 
2429     buf = g_malloc(ctx->data.iov.size);
2430 
2431     status = nvme_bounce_data(n, buf, ctx->data.iov.size,
2432                               NVME_TX_DIRECTION_TO_DEVICE, req);
2433     if (status) {
2434         req->status = status;
2435         goto out;
2436     }
2437 
2438     if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
2439         req->status = NVME_CMP_FAILURE | NVME_DNR;
2440         goto out;
2441     }
2442 
2443     if (ns->lbaf.ms) {
2444         NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2445         uint64_t slba = le64_to_cpu(rw->slba);
2446         uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2447         size_t mlen = nvme_m2b(ns, nlb);
2448         uint64_t offset = nvme_moff(ns, slba);
2449 
2450         ctx->mdata.bounce = g_malloc(mlen);
2451 
2452         qemu_iovec_init(&ctx->mdata.iov, 1);
2453         qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2454 
2455         req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2456                                     nvme_compare_mdata_cb, req);
2457         return;
2458     }
2459 
2460     block_acct_done(stats, acct);
2461 
2462 out:
2463     qemu_iovec_destroy(&ctx->data.iov);
2464     g_free(ctx->data.bounce);
2465     g_free(ctx);
2466 
2467     nvme_enqueue_req_completion(nvme_cq(req), req);
2468 }
2469 
2470 typedef struct NvmeDSMAIOCB {
2471     BlockAIOCB common;
2472     BlockAIOCB *aiocb;
2473     NvmeRequest *req;
2474     int ret;
2475 
2476     NvmeDsmRange *range;
2477     unsigned int nr;
2478     unsigned int idx;
2479 } NvmeDSMAIOCB;
2480 
2481 static void nvme_dsm_cancel(BlockAIOCB *aiocb)
2482 {
2483     NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common);
2484 
2485     /* break nvme_dsm_cb loop */
2486     iocb->idx = iocb->nr;
2487     iocb->ret = -ECANCELED;
2488 
2489     if (iocb->aiocb) {
2490         blk_aio_cancel_async(iocb->aiocb);
2491         iocb->aiocb = NULL;
2492     } else {
2493         /*
2494          * We only reach this if nvme_dsm_cancel() has already been called or
2495          * the command ran to completion.
2496          */
2497         assert(iocb->idx == iocb->nr);
2498     }
2499 }
2500 
2501 static const AIOCBInfo nvme_dsm_aiocb_info = {
2502     .aiocb_size   = sizeof(NvmeDSMAIOCB),
2503     .cancel_async = nvme_dsm_cancel,
2504 };
2505 
2506 static void nvme_dsm_cb(void *opaque, int ret);
2507 
2508 static void nvme_dsm_md_cb(void *opaque, int ret)
2509 {
2510     NvmeDSMAIOCB *iocb = opaque;
2511     NvmeRequest *req = iocb->req;
2512     NvmeNamespace *ns = req->ns;
2513     NvmeDsmRange *range;
2514     uint64_t slba;
2515     uint32_t nlb;
2516 
2517     if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
2518         goto done;
2519     }
2520 
2521     range = &iocb->range[iocb->idx - 1];
2522     slba = le64_to_cpu(range->slba);
2523     nlb = le32_to_cpu(range->nlb);
2524 
2525     /*
2526      * Check that all block were discarded (zeroed); otherwise we do not zero
2527      * the metadata.
2528      */
2529 
2530     ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO);
2531     if (ret) {
2532         if (ret < 0) {
2533             goto done;
2534         }
2535 
2536         nvme_dsm_cb(iocb, 0);
2537         return;
2538     }
2539 
2540     iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba),
2541                                         nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP,
2542                                         nvme_dsm_cb, iocb);
2543     return;
2544 
2545 done:
2546     nvme_dsm_cb(iocb, ret);
2547 }
2548 
2549 static void nvme_dsm_cb(void *opaque, int ret)
2550 {
2551     NvmeDSMAIOCB *iocb = opaque;
2552     NvmeRequest *req = iocb->req;
2553     NvmeCtrl *n = nvme_ctrl(req);
2554     NvmeNamespace *ns = req->ns;
2555     NvmeDsmRange *range;
2556     uint64_t slba;
2557     uint32_t nlb;
2558 
2559     if (iocb->ret < 0) {
2560         goto done;
2561     } else if (ret < 0) {
2562         iocb->ret = ret;
2563         goto done;
2564     }
2565 
2566 next:
2567     if (iocb->idx == iocb->nr) {
2568         goto done;
2569     }
2570 
2571     range = &iocb->range[iocb->idx++];
2572     slba = le64_to_cpu(range->slba);
2573     nlb = le32_to_cpu(range->nlb);
2574 
2575     trace_pci_nvme_dsm_deallocate(slba, nlb);
2576 
2577     if (nlb > n->dmrsl) {
2578         trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
2579         goto next;
2580     }
2581 
2582     if (nvme_check_bounds(ns, slba, nlb)) {
2583         trace_pci_nvme_err_invalid_lba_range(slba, nlb,
2584                                              ns->id_ns.nsze);
2585         goto next;
2586     }
2587 
2588     iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba),
2589                                    nvme_l2b(ns, nlb),
2590                                    nvme_dsm_md_cb, iocb);
2591     return;
2592 
2593 done:
2594     iocb->aiocb = NULL;
2595     iocb->common.cb(iocb->common.opaque, iocb->ret);
2596     qemu_aio_unref(iocb);
2597 }
2598 
2599 static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
2600 {
2601     NvmeNamespace *ns = req->ns;
2602     NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
2603     uint32_t attr = le32_to_cpu(dsm->attributes);
2604     uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
2605     uint16_t status = NVME_SUCCESS;
2606 
2607     trace_pci_nvme_dsm(nr, attr);
2608 
2609     if (attr & NVME_DSMGMT_AD) {
2610         NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk,
2611                                          nvme_misc_cb, req);
2612 
2613         iocb->req = req;
2614         iocb->ret = 0;
2615         iocb->range = g_new(NvmeDsmRange, nr);
2616         iocb->nr = nr;
2617         iocb->idx = 0;
2618 
2619         status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr,
2620                           req);
2621         if (status) {
2622             g_free(iocb->range);
2623             qemu_aio_unref(iocb);
2624 
2625             return status;
2626         }
2627 
2628         req->aiocb = &iocb->common;
2629         nvme_dsm_cb(iocb, 0);
2630 
2631         return NVME_NO_COMPLETE;
2632     }
2633 
2634     return status;
2635 }
2636 
2637 static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
2638 {
2639     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2640     NvmeNamespace *ns = req->ns;
2641     BlockBackend *blk = ns->blkconf.blk;
2642     uint64_t slba = le64_to_cpu(rw->slba);
2643     uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2644     size_t len = nvme_l2b(ns, nlb);
2645     int64_t offset = nvme_l2b(ns, slba);
2646     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2647     uint32_t reftag = le32_to_cpu(rw->reftag);
2648     NvmeBounceContext *ctx = NULL;
2649     uint16_t status;
2650 
2651     trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
2652 
2653     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2654         status = nvme_check_prinfo(ns, prinfo, slba, reftag);
2655         if (status) {
2656             return status;
2657         }
2658 
2659         if (prinfo & NVME_PRINFO_PRACT) {
2660             return NVME_INVALID_PROT_INFO | NVME_DNR;
2661         }
2662     }
2663 
2664     if (len > n->page_size << n->params.vsl) {
2665         return NVME_INVALID_FIELD | NVME_DNR;
2666     }
2667 
2668     status = nvme_check_bounds(ns, slba, nlb);
2669     if (status) {
2670         return status;
2671     }
2672 
2673     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2674         status = nvme_check_dulbe(ns, slba, nlb);
2675         if (status) {
2676             return status;
2677         }
2678     }
2679 
2680     ctx = g_new0(NvmeBounceContext, 1);
2681     ctx->req = req;
2682 
2683     ctx->data.bounce = g_malloc(len);
2684 
2685     qemu_iovec_init(&ctx->data.iov, 1);
2686     qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
2687 
2688     block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
2689                      BLOCK_ACCT_READ);
2690 
2691     req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
2692                                 nvme_verify_mdata_in_cb, ctx);
2693     return NVME_NO_COMPLETE;
2694 }
2695 
2696 typedef struct NvmeCopyAIOCB {
2697     BlockAIOCB common;
2698     BlockAIOCB *aiocb;
2699     NvmeRequest *req;
2700     int ret;
2701 
2702     void *ranges;
2703     unsigned int format;
2704     int nr;
2705     int idx;
2706 
2707     uint8_t *bounce;
2708     QEMUIOVector iov;
2709     struct {
2710         BlockAcctCookie read;
2711         BlockAcctCookie write;
2712     } acct;
2713 
2714     uint64_t reftag;
2715     uint64_t slba;
2716 
2717     NvmeZone *zone;
2718 } NvmeCopyAIOCB;
2719 
2720 static void nvme_copy_cancel(BlockAIOCB *aiocb)
2721 {
2722     NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common);
2723 
2724     iocb->ret = -ECANCELED;
2725 
2726     if (iocb->aiocb) {
2727         blk_aio_cancel_async(iocb->aiocb);
2728         iocb->aiocb = NULL;
2729     }
2730 }
2731 
2732 static const AIOCBInfo nvme_copy_aiocb_info = {
2733     .aiocb_size   = sizeof(NvmeCopyAIOCB),
2734     .cancel_async = nvme_copy_cancel,
2735 };
2736 
2737 static void nvme_copy_done(NvmeCopyAIOCB *iocb)
2738 {
2739     NvmeRequest *req = iocb->req;
2740     NvmeNamespace *ns = req->ns;
2741     BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk);
2742 
2743     if (iocb->idx != iocb->nr) {
2744         req->cqe.result = cpu_to_le32(iocb->idx);
2745     }
2746 
2747     qemu_iovec_destroy(&iocb->iov);
2748     g_free(iocb->bounce);
2749 
2750     if (iocb->ret < 0) {
2751         block_acct_failed(stats, &iocb->acct.read);
2752         block_acct_failed(stats, &iocb->acct.write);
2753     } else {
2754         block_acct_done(stats, &iocb->acct.read);
2755         block_acct_done(stats, &iocb->acct.write);
2756     }
2757 
2758     iocb->common.cb(iocb->common.opaque, iocb->ret);
2759     qemu_aio_unref(iocb);
2760 }
2761 
2762 static void nvme_do_copy(NvmeCopyAIOCB *iocb);
2763 
2764 static void nvme_copy_source_range_parse_format0(void *ranges, int idx,
2765                                                  uint64_t *slba, uint32_t *nlb,
2766                                                  uint16_t *apptag,
2767                                                  uint16_t *appmask,
2768                                                  uint64_t *reftag)
2769 {
2770     NvmeCopySourceRangeFormat0 *_ranges = ranges;
2771 
2772     if (slba) {
2773         *slba = le64_to_cpu(_ranges[idx].slba);
2774     }
2775 
2776     if (nlb) {
2777         *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2778     }
2779 
2780     if (apptag) {
2781         *apptag = le16_to_cpu(_ranges[idx].apptag);
2782     }
2783 
2784     if (appmask) {
2785         *appmask = le16_to_cpu(_ranges[idx].appmask);
2786     }
2787 
2788     if (reftag) {
2789         *reftag = le32_to_cpu(_ranges[idx].reftag);
2790     }
2791 }
2792 
2793 static void nvme_copy_source_range_parse_format1(void *ranges, int idx,
2794                                                  uint64_t *slba, uint32_t *nlb,
2795                                                  uint16_t *apptag,
2796                                                  uint16_t *appmask,
2797                                                  uint64_t *reftag)
2798 {
2799     NvmeCopySourceRangeFormat1 *_ranges = ranges;
2800 
2801     if (slba) {
2802         *slba = le64_to_cpu(_ranges[idx].slba);
2803     }
2804 
2805     if (nlb) {
2806         *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2807     }
2808 
2809     if (apptag) {
2810         *apptag = le16_to_cpu(_ranges[idx].apptag);
2811     }
2812 
2813     if (appmask) {
2814         *appmask = le16_to_cpu(_ranges[idx].appmask);
2815     }
2816 
2817     if (reftag) {
2818         *reftag = 0;
2819 
2820         *reftag |= (uint64_t)_ranges[idx].sr[4] << 40;
2821         *reftag |= (uint64_t)_ranges[idx].sr[5] << 32;
2822         *reftag |= (uint64_t)_ranges[idx].sr[6] << 24;
2823         *reftag |= (uint64_t)_ranges[idx].sr[7] << 16;
2824         *reftag |= (uint64_t)_ranges[idx].sr[8] << 8;
2825         *reftag |= (uint64_t)_ranges[idx].sr[9];
2826     }
2827 }
2828 
2829 static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format,
2830                                          uint64_t *slba, uint32_t *nlb,
2831                                          uint16_t *apptag, uint16_t *appmask,
2832                                          uint64_t *reftag)
2833 {
2834     switch (format) {
2835     case NVME_COPY_FORMAT_0:
2836         nvme_copy_source_range_parse_format0(ranges, idx, slba, nlb, apptag,
2837                                              appmask, reftag);
2838         break;
2839 
2840     case NVME_COPY_FORMAT_1:
2841         nvme_copy_source_range_parse_format1(ranges, idx, slba, nlb, apptag,
2842                                              appmask, reftag);
2843         break;
2844 
2845     default:
2846         abort();
2847     }
2848 }
2849 
2850 static void nvme_copy_out_completed_cb(void *opaque, int ret)
2851 {
2852     NvmeCopyAIOCB *iocb = opaque;
2853     NvmeRequest *req = iocb->req;
2854     NvmeNamespace *ns = req->ns;
2855     uint32_t nlb;
2856 
2857     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2858                                  &nlb, NULL, NULL, NULL);
2859 
2860     if (ret < 0) {
2861         iocb->ret = ret;
2862         goto out;
2863     } else if (iocb->ret < 0) {
2864         goto out;
2865     }
2866 
2867     if (ns->params.zoned) {
2868         nvme_advance_zone_wp(ns, iocb->zone, nlb);
2869     }
2870 
2871     iocb->idx++;
2872     iocb->slba += nlb;
2873 out:
2874     nvme_do_copy(iocb);
2875 }
2876 
2877 static void nvme_copy_out_cb(void *opaque, int ret)
2878 {
2879     NvmeCopyAIOCB *iocb = opaque;
2880     NvmeRequest *req = iocb->req;
2881     NvmeNamespace *ns = req->ns;
2882     uint32_t nlb;
2883     size_t mlen;
2884     uint8_t *mbounce;
2885 
2886     if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
2887         goto out;
2888     }
2889 
2890     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2891                                  &nlb, NULL, NULL, NULL);
2892 
2893     mlen = nvme_m2b(ns, nlb);
2894     mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2895 
2896     qemu_iovec_reset(&iocb->iov);
2897     qemu_iovec_add(&iocb->iov, mbounce, mlen);
2898 
2899     iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba),
2900                                   &iocb->iov, 0, nvme_copy_out_completed_cb,
2901                                   iocb);
2902 
2903     return;
2904 
2905 out:
2906     nvme_copy_out_completed_cb(iocb, ret);
2907 }
2908 
2909 static void nvme_copy_in_completed_cb(void *opaque, int ret)
2910 {
2911     NvmeCopyAIOCB *iocb = opaque;
2912     NvmeRequest *req = iocb->req;
2913     NvmeNamespace *ns = req->ns;
2914     uint32_t nlb;
2915     uint64_t slba;
2916     uint16_t apptag, appmask;
2917     uint64_t reftag;
2918     size_t len;
2919     uint16_t status;
2920 
2921     if (ret < 0) {
2922         iocb->ret = ret;
2923         goto out;
2924     } else if (iocb->ret < 0) {
2925         goto out;
2926     }
2927 
2928     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2929                                  &nlb, &apptag, &appmask, &reftag);
2930     len = nvme_l2b(ns, nlb);
2931 
2932     trace_pci_nvme_copy_out(iocb->slba, nlb);
2933 
2934     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2935         NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2936 
2937         uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
2938         uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
2939 
2940         size_t mlen = nvme_m2b(ns, nlb);
2941         uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2942 
2943         status = nvme_dif_mangle_mdata(ns, mbounce, mlen, slba);
2944         if (status) {
2945             goto invalid;
2946         }
2947         status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor,
2948                                 slba, apptag, appmask, &reftag);
2949         if (status) {
2950             goto invalid;
2951         }
2952 
2953         apptag = le16_to_cpu(copy->apptag);
2954         appmask = le16_to_cpu(copy->appmask);
2955 
2956         if (prinfow & NVME_PRINFO_PRACT) {
2957             status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag);
2958             if (status) {
2959                 goto invalid;
2960             }
2961 
2962             nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen,
2963                                         apptag, &iocb->reftag);
2964         } else {
2965             status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen,
2966                                     prinfow, iocb->slba, apptag, appmask,
2967                                     &iocb->reftag);
2968             if (status) {
2969                 goto invalid;
2970             }
2971         }
2972     }
2973 
2974     status = nvme_check_bounds(ns, iocb->slba, nlb);
2975     if (status) {
2976         goto invalid;
2977     }
2978 
2979     if (ns->params.zoned) {
2980         status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb);
2981         if (status) {
2982             goto invalid;
2983         }
2984 
2985         if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) {
2986             iocb->zone->w_ptr += nlb;
2987         }
2988     }
2989 
2990     qemu_iovec_reset(&iocb->iov);
2991     qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2992 
2993     iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba),
2994                                   &iocb->iov, 0, nvme_copy_out_cb, iocb);
2995 
2996     return;
2997 
2998 invalid:
2999     req->status = status;
3000     iocb->ret = -1;
3001 out:
3002     nvme_do_copy(iocb);
3003 }
3004 
3005 static void nvme_copy_in_cb(void *opaque, int ret)
3006 {
3007     NvmeCopyAIOCB *iocb = opaque;
3008     NvmeRequest *req = iocb->req;
3009     NvmeNamespace *ns = req->ns;
3010     uint64_t slba;
3011     uint32_t nlb;
3012 
3013     if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
3014         goto out;
3015     }
3016 
3017     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
3018                                  &nlb, NULL, NULL, NULL);
3019 
3020     qemu_iovec_reset(&iocb->iov);
3021     qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb),
3022                    nvme_m2b(ns, nlb));
3023 
3024     iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba),
3025                                  &iocb->iov, 0, nvme_copy_in_completed_cb,
3026                                  iocb);
3027     return;
3028 
3029 out:
3030     nvme_copy_in_completed_cb(iocb, ret);
3031 }
3032 
3033 static void nvme_do_copy(NvmeCopyAIOCB *iocb)
3034 {
3035     NvmeRequest *req = iocb->req;
3036     NvmeNamespace *ns = req->ns;
3037     uint64_t slba;
3038     uint32_t nlb;
3039     size_t len;
3040     uint16_t status;
3041 
3042     if (iocb->ret < 0) {
3043         goto done;
3044     }
3045 
3046     if (iocb->idx == iocb->nr) {
3047         goto done;
3048     }
3049 
3050     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
3051                                  &nlb, NULL, NULL, NULL);
3052     len = nvme_l2b(ns, nlb);
3053 
3054     trace_pci_nvme_copy_source_range(slba, nlb);
3055 
3056     if (nlb > le16_to_cpu(ns->id_ns.mssrl)) {
3057         status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
3058         goto invalid;
3059     }
3060 
3061     status = nvme_check_bounds(ns, slba, nlb);
3062     if (status) {
3063         goto invalid;
3064     }
3065 
3066     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3067         status = nvme_check_dulbe(ns, slba, nlb);
3068         if (status) {
3069             goto invalid;
3070         }
3071     }
3072 
3073     if (ns->params.zoned) {
3074         status = nvme_check_zone_read(ns, slba, nlb);
3075         if (status) {
3076             goto invalid;
3077         }
3078     }
3079 
3080     qemu_iovec_reset(&iocb->iov);
3081     qemu_iovec_add(&iocb->iov, iocb->bounce, len);
3082 
3083     iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_l2b(ns, slba),
3084                                  &iocb->iov, 0, nvme_copy_in_cb, iocb);
3085     return;
3086 
3087 invalid:
3088     req->status = status;
3089     iocb->ret = -1;
3090 done:
3091     nvme_copy_done(iocb);
3092 }
3093 
3094 static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
3095 {
3096     NvmeNamespace *ns = req->ns;
3097     NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
3098     NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk,
3099                                       nvme_misc_cb, req);
3100     uint16_t nr = copy->nr + 1;
3101     uint8_t format = copy->control[0] & 0xf;
3102     uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
3103     uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
3104     size_t len = sizeof(NvmeCopySourceRangeFormat0);
3105 
3106     uint16_t status;
3107 
3108     trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
3109 
3110     iocb->ranges = NULL;
3111     iocb->zone = NULL;
3112 
3113     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
3114         ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) {
3115         status = NVME_INVALID_FIELD | NVME_DNR;
3116         goto invalid;
3117     }
3118 
3119     if (!(n->id_ctrl.ocfs & (1 << format))) {
3120         trace_pci_nvme_err_copy_invalid_format(format);
3121         status = NVME_INVALID_FIELD | NVME_DNR;
3122         goto invalid;
3123     }
3124 
3125     if (nr > ns->id_ns.msrc + 1) {
3126         status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
3127         goto invalid;
3128     }
3129 
3130     if ((ns->pif == 0x0 && format != 0x0) ||
3131         (ns->pif != 0x0 && format != 0x1)) {
3132         status = NVME_INVALID_FORMAT | NVME_DNR;
3133         goto invalid;
3134     }
3135 
3136     if (ns->pif) {
3137         len = sizeof(NvmeCopySourceRangeFormat1);
3138     }
3139 
3140     iocb->format = format;
3141     iocb->ranges = g_malloc_n(nr, len);
3142     status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req);
3143     if (status) {
3144         goto invalid;
3145     }
3146 
3147     iocb->slba = le64_to_cpu(copy->sdlba);
3148 
3149     if (ns->params.zoned) {
3150         iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba);
3151         if (!iocb->zone) {
3152             status = NVME_LBA_RANGE | NVME_DNR;
3153             goto invalid;
3154         }
3155 
3156         status = nvme_zrm_auto(n, ns, iocb->zone);
3157         if (status) {
3158             goto invalid;
3159         }
3160     }
3161 
3162     iocb->req = req;
3163     iocb->ret = 0;
3164     iocb->nr = nr;
3165     iocb->idx = 0;
3166     iocb->reftag = le32_to_cpu(copy->reftag);
3167     iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32;
3168     iocb->bounce = g_malloc_n(le16_to_cpu(ns->id_ns.mssrl),
3169                               ns->lbasz + ns->lbaf.ms);
3170 
3171     qemu_iovec_init(&iocb->iov, 1);
3172 
3173     block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.read, 0,
3174                      BLOCK_ACCT_READ);
3175     block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.write, 0,
3176                      BLOCK_ACCT_WRITE);
3177 
3178     req->aiocb = &iocb->common;
3179     nvme_do_copy(iocb);
3180 
3181     return NVME_NO_COMPLETE;
3182 
3183 invalid:
3184     g_free(iocb->ranges);
3185     qemu_aio_unref(iocb);
3186     return status;
3187 }
3188 
3189 static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
3190 {
3191     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3192     NvmeNamespace *ns = req->ns;
3193     BlockBackend *blk = ns->blkconf.blk;
3194     uint64_t slba = le64_to_cpu(rw->slba);
3195     uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
3196     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3197     size_t data_len = nvme_l2b(ns, nlb);
3198     size_t len = data_len;
3199     int64_t offset = nvme_l2b(ns, slba);
3200     struct nvme_compare_ctx *ctx = NULL;
3201     uint16_t status;
3202 
3203     trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
3204 
3205     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) {
3206         return NVME_INVALID_PROT_INFO | NVME_DNR;
3207     }
3208 
3209     if (nvme_ns_ext(ns)) {
3210         len += nvme_m2b(ns, nlb);
3211     }
3212 
3213     status = nvme_check_mdts(n, len);
3214     if (status) {
3215         return status;
3216     }
3217 
3218     status = nvme_check_bounds(ns, slba, nlb);
3219     if (status) {
3220         return status;
3221     }
3222 
3223     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3224         status = nvme_check_dulbe(ns, slba, nlb);
3225         if (status) {
3226             return status;
3227         }
3228     }
3229 
3230     status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
3231     if (status) {
3232         return status;
3233     }
3234 
3235     ctx = g_new(struct nvme_compare_ctx, 1);
3236     ctx->data.bounce = g_malloc(data_len);
3237 
3238     req->opaque = ctx;
3239 
3240     qemu_iovec_init(&ctx->data.iov, 1);
3241     qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
3242 
3243     block_acct_start(blk_get_stats(blk), &req->acct, data_len,
3244                      BLOCK_ACCT_READ);
3245     req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0,
3246                                 nvme_compare_data_cb, req);
3247 
3248     return NVME_NO_COMPLETE;
3249 }
3250 
3251 typedef struct NvmeFlushAIOCB {
3252     BlockAIOCB common;
3253     BlockAIOCB *aiocb;
3254     NvmeRequest *req;
3255     int ret;
3256 
3257     NvmeNamespace *ns;
3258     uint32_t nsid;
3259     bool broadcast;
3260 } NvmeFlushAIOCB;
3261 
3262 static void nvme_flush_cancel(BlockAIOCB *acb)
3263 {
3264     NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common);
3265 
3266     iocb->ret = -ECANCELED;
3267 
3268     if (iocb->aiocb) {
3269         blk_aio_cancel_async(iocb->aiocb);
3270         iocb->aiocb = NULL;
3271     }
3272 }
3273 
3274 static const AIOCBInfo nvme_flush_aiocb_info = {
3275     .aiocb_size = sizeof(NvmeFlushAIOCB),
3276     .cancel_async = nvme_flush_cancel,
3277     .get_aio_context = nvme_get_aio_context,
3278 };
3279 
3280 static void nvme_do_flush(NvmeFlushAIOCB *iocb);
3281 
3282 static void nvme_flush_ns_cb(void *opaque, int ret)
3283 {
3284     NvmeFlushAIOCB *iocb = opaque;
3285     NvmeNamespace *ns = iocb->ns;
3286 
3287     if (ret < 0) {
3288         iocb->ret = ret;
3289         goto out;
3290     } else if (iocb->ret < 0) {
3291         goto out;
3292     }
3293 
3294     if (ns) {
3295         trace_pci_nvme_flush_ns(iocb->nsid);
3296 
3297         iocb->ns = NULL;
3298         iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb);
3299         return;
3300     }
3301 
3302 out:
3303     nvme_do_flush(iocb);
3304 }
3305 
3306 static void nvme_do_flush(NvmeFlushAIOCB *iocb)
3307 {
3308     NvmeRequest *req = iocb->req;
3309     NvmeCtrl *n = nvme_ctrl(req);
3310     int i;
3311 
3312     if (iocb->ret < 0) {
3313         goto done;
3314     }
3315 
3316     if (iocb->broadcast) {
3317         for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
3318             iocb->ns = nvme_ns(n, i);
3319             if (iocb->ns) {
3320                 iocb->nsid = i;
3321                 break;
3322             }
3323         }
3324     }
3325 
3326     if (!iocb->ns) {
3327         goto done;
3328     }
3329 
3330     nvme_flush_ns_cb(iocb, 0);
3331     return;
3332 
3333 done:
3334     iocb->common.cb(iocb->common.opaque, iocb->ret);
3335     qemu_aio_unref(iocb);
3336 }
3337 
3338 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
3339 {
3340     NvmeFlushAIOCB *iocb;
3341     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
3342     uint16_t status;
3343 
3344     iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req);
3345 
3346     iocb->req = req;
3347     iocb->ret = 0;
3348     iocb->ns = NULL;
3349     iocb->nsid = 0;
3350     iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
3351 
3352     if (!iocb->broadcast) {
3353         if (!nvme_nsid_valid(n, nsid)) {
3354             status = NVME_INVALID_NSID | NVME_DNR;
3355             goto out;
3356         }
3357 
3358         iocb->ns = nvme_ns(n, nsid);
3359         if (!iocb->ns) {
3360             status = NVME_INVALID_FIELD | NVME_DNR;
3361             goto out;
3362         }
3363 
3364         iocb->nsid = nsid;
3365     }
3366 
3367     req->aiocb = &iocb->common;
3368     nvme_do_flush(iocb);
3369 
3370     return NVME_NO_COMPLETE;
3371 
3372 out:
3373     qemu_aio_unref(iocb);
3374 
3375     return status;
3376 }
3377 
3378 static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
3379 {
3380     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3381     NvmeNamespace *ns = req->ns;
3382     uint64_t slba = le64_to_cpu(rw->slba);
3383     uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3384     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3385     uint64_t data_size = nvme_l2b(ns, nlb);
3386     uint64_t mapped_size = data_size;
3387     uint64_t data_offset;
3388     BlockBackend *blk = ns->blkconf.blk;
3389     uint16_t status;
3390 
3391     if (nvme_ns_ext(ns)) {
3392         mapped_size += nvme_m2b(ns, nlb);
3393 
3394         if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3395             bool pract = prinfo & NVME_PRINFO_PRACT;
3396 
3397             if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3398                 mapped_size = data_size;
3399             }
3400         }
3401     }
3402 
3403     trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
3404 
3405     status = nvme_check_mdts(n, mapped_size);
3406     if (status) {
3407         goto invalid;
3408     }
3409 
3410     status = nvme_check_bounds(ns, slba, nlb);
3411     if (status) {
3412         goto invalid;
3413     }
3414 
3415     if (ns->params.zoned) {
3416         status = nvme_check_zone_read(ns, slba, nlb);
3417         if (status) {
3418             trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
3419             goto invalid;
3420         }
3421     }
3422 
3423     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3424         status = nvme_check_dulbe(ns, slba, nlb);
3425         if (status) {
3426             goto invalid;
3427         }
3428     }
3429 
3430     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3431         return nvme_dif_rw(n, req);
3432     }
3433 
3434     status = nvme_map_data(n, nlb, req);
3435     if (status) {
3436         goto invalid;
3437     }
3438 
3439     data_offset = nvme_l2b(ns, slba);
3440 
3441     block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3442                      BLOCK_ACCT_READ);
3443     nvme_blk_read(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req);
3444     return NVME_NO_COMPLETE;
3445 
3446 invalid:
3447     block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
3448     return status | NVME_DNR;
3449 }
3450 
3451 static void nvme_do_write_fdp(NvmeCtrl *n, NvmeRequest *req, uint64_t slba,
3452                               uint32_t nlb)
3453 {
3454     NvmeNamespace *ns = req->ns;
3455     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3456     uint64_t data_size = nvme_l2b(ns, nlb);
3457     uint32_t dw12 = le32_to_cpu(req->cmd.cdw12);
3458     uint8_t dtype = (dw12 >> 20) & 0xf;
3459     uint16_t pid = le16_to_cpu(rw->dspec);
3460     uint16_t ph, rg, ruhid;
3461     NvmeReclaimUnit *ru;
3462 
3463     if (dtype != NVME_DIRECTIVE_DATA_PLACEMENT ||
3464         !nvme_parse_pid(ns, pid, &ph, &rg)) {
3465         ph = 0;
3466         rg = 0;
3467     }
3468 
3469     ruhid = ns->fdp.phs[ph];
3470     ru = &ns->endgrp->fdp.ruhs[ruhid].rus[rg];
3471 
3472     nvme_fdp_stat_inc(&ns->endgrp->fdp.hbmw, data_size);
3473     nvme_fdp_stat_inc(&ns->endgrp->fdp.mbmw, data_size);
3474 
3475     while (nlb) {
3476         if (nlb < ru->ruamw) {
3477             ru->ruamw -= nlb;
3478             break;
3479         }
3480 
3481         nlb -= ru->ruamw;
3482         nvme_update_ruh(n, ns, pid);
3483     }
3484 }
3485 
3486 static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
3487                               bool wrz)
3488 {
3489     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3490     NvmeNamespace *ns = req->ns;
3491     uint64_t slba = le64_to_cpu(rw->slba);
3492     uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3493     uint16_t ctrl = le16_to_cpu(rw->control);
3494     uint8_t prinfo = NVME_RW_PRINFO(ctrl);
3495     uint64_t data_size = nvme_l2b(ns, nlb);
3496     uint64_t mapped_size = data_size;
3497     uint64_t data_offset;
3498     NvmeZone *zone;
3499     NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
3500     BlockBackend *blk = ns->blkconf.blk;
3501     uint16_t status;
3502 
3503     if (nvme_ns_ext(ns)) {
3504         mapped_size += nvme_m2b(ns, nlb);
3505 
3506         if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3507             bool pract = prinfo & NVME_PRINFO_PRACT;
3508 
3509             if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3510                 mapped_size -= nvme_m2b(ns, nlb);
3511             }
3512         }
3513     }
3514 
3515     trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
3516                          nvme_nsid(ns), nlb, mapped_size, slba);
3517 
3518     if (!wrz) {
3519         status = nvme_check_mdts(n, mapped_size);
3520         if (status) {
3521             goto invalid;
3522         }
3523     }
3524 
3525     status = nvme_check_bounds(ns, slba, nlb);
3526     if (status) {
3527         goto invalid;
3528     }
3529 
3530     if (ns->params.zoned) {
3531         zone = nvme_get_zone_by_slba(ns, slba);
3532         assert(zone);
3533 
3534         if (append) {
3535             bool piremap = !!(ctrl & NVME_RW_PIREMAP);
3536 
3537             if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3538                 return NVME_INVALID_ZONE_OP | NVME_DNR;
3539             }
3540 
3541             if (unlikely(slba != zone->d.zslba)) {
3542                 trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
3543                 status = NVME_INVALID_FIELD;
3544                 goto invalid;
3545             }
3546 
3547             if (n->params.zasl &&
3548                 data_size > (uint64_t)n->page_size << n->params.zasl) {
3549                 trace_pci_nvme_err_zasl(data_size);
3550                 return NVME_INVALID_FIELD | NVME_DNR;
3551             }
3552 
3553             slba = zone->w_ptr;
3554             rw->slba = cpu_to_le64(slba);
3555             res->slba = cpu_to_le64(slba);
3556 
3557             switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3558             case NVME_ID_NS_DPS_TYPE_1:
3559                 if (!piremap) {
3560                     return NVME_INVALID_PROT_INFO | NVME_DNR;
3561                 }
3562 
3563                 /* fallthrough */
3564 
3565             case NVME_ID_NS_DPS_TYPE_2:
3566                 if (piremap) {
3567                     uint32_t reftag = le32_to_cpu(rw->reftag);
3568                     rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
3569                 }
3570 
3571                 break;
3572 
3573             case NVME_ID_NS_DPS_TYPE_3:
3574                 if (piremap) {
3575                     return NVME_INVALID_PROT_INFO | NVME_DNR;
3576                 }
3577 
3578                 break;
3579             }
3580         }
3581 
3582         status = nvme_check_zone_write(ns, zone, slba, nlb);
3583         if (status) {
3584             goto invalid;
3585         }
3586 
3587         status = nvme_zrm_auto(n, ns, zone);
3588         if (status) {
3589             goto invalid;
3590         }
3591 
3592         if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3593             zone->w_ptr += nlb;
3594         }
3595     } else if (ns->endgrp && ns->endgrp->fdp.enabled) {
3596         nvme_do_write_fdp(n, req, slba, nlb);
3597     }
3598 
3599     data_offset = nvme_l2b(ns, slba);
3600 
3601     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3602         return nvme_dif_rw(n, req);
3603     }
3604 
3605     if (!wrz) {
3606         status = nvme_map_data(n, nlb, req);
3607         if (status) {
3608             goto invalid;
3609         }
3610 
3611         block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3612                          BLOCK_ACCT_WRITE);
3613         nvme_blk_write(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req);
3614     } else {
3615         req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
3616                                            BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
3617                                            req);
3618     }
3619 
3620     return NVME_NO_COMPLETE;
3621 
3622 invalid:
3623     block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
3624     return status | NVME_DNR;
3625 }
3626 
3627 static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
3628 {
3629     return nvme_do_write(n, req, false, false);
3630 }
3631 
3632 static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
3633 {
3634     return nvme_do_write(n, req, false, true);
3635 }
3636 
3637 static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
3638 {
3639     return nvme_do_write(n, req, true, false);
3640 }
3641 
3642 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
3643                                             uint64_t *slba, uint32_t *zone_idx)
3644 {
3645     uint32_t dw10 = le32_to_cpu(c->cdw10);
3646     uint32_t dw11 = le32_to_cpu(c->cdw11);
3647 
3648     if (!ns->params.zoned) {
3649         trace_pci_nvme_err_invalid_opc(c->opcode);
3650         return NVME_INVALID_OPCODE | NVME_DNR;
3651     }
3652 
3653     *slba = ((uint64_t)dw11) << 32 | dw10;
3654     if (unlikely(*slba >= ns->id_ns.nsze)) {
3655         trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
3656         *slba = 0;
3657         return NVME_LBA_RANGE | NVME_DNR;
3658     }
3659 
3660     *zone_idx = nvme_zone_idx(ns, *slba);
3661     assert(*zone_idx < ns->num_zones);
3662 
3663     return NVME_SUCCESS;
3664 }
3665 
3666 typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
3667                                  NvmeRequest *);
3668 
3669 enum NvmeZoneProcessingMask {
3670     NVME_PROC_CURRENT_ZONE    = 0,
3671     NVME_PROC_OPENED_ZONES    = 1 << 0,
3672     NVME_PROC_CLOSED_ZONES    = 1 << 1,
3673     NVME_PROC_READ_ONLY_ZONES = 1 << 2,
3674     NVME_PROC_FULL_ZONES      = 1 << 3,
3675 };
3676 
3677 static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
3678                                NvmeZoneState state, NvmeRequest *req)
3679 {
3680     NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3681     int flags = 0;
3682 
3683     if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) {
3684         uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3685 
3686         if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3687             return NVME_INVALID_ZONE_OP | NVME_DNR;
3688         }
3689 
3690         if (zone->w_ptr % ns->zns.zrwafg) {
3691             return NVME_NOZRWA | NVME_DNR;
3692         }
3693 
3694         flags = NVME_ZRM_ZRWA;
3695     }
3696 
3697     return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags);
3698 }
3699 
3700 static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
3701                                 NvmeZoneState state, NvmeRequest *req)
3702 {
3703     return nvme_zrm_close(ns, zone);
3704 }
3705 
3706 static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
3707                                  NvmeZoneState state, NvmeRequest *req)
3708 {
3709     return nvme_zrm_finish(ns, zone);
3710 }
3711 
3712 static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
3713                                   NvmeZoneState state, NvmeRequest *req)
3714 {
3715     switch (state) {
3716     case NVME_ZONE_STATE_READ_ONLY:
3717         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
3718         /* fall through */
3719     case NVME_ZONE_STATE_OFFLINE:
3720         return NVME_SUCCESS;
3721     default:
3722         return NVME_ZONE_INVAL_TRANSITION;
3723     }
3724 }
3725 
3726 static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
3727 {
3728     uint16_t status;
3729     uint8_t state = nvme_get_zone_state(zone);
3730 
3731     if (state == NVME_ZONE_STATE_EMPTY) {
3732         status = nvme_aor_check(ns, 1, 0);
3733         if (status) {
3734             return status;
3735         }
3736         nvme_aor_inc_active(ns);
3737         zone->d.za |= NVME_ZA_ZD_EXT_VALID;
3738         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
3739         return NVME_SUCCESS;
3740     }
3741 
3742     return NVME_ZONE_INVAL_TRANSITION;
3743 }
3744 
3745 static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
3746                                     enum NvmeZoneProcessingMask proc_mask,
3747                                     op_handler_t op_hndlr, NvmeRequest *req)
3748 {
3749     uint16_t status = NVME_SUCCESS;
3750     NvmeZoneState zs = nvme_get_zone_state(zone);
3751     bool proc_zone;
3752 
3753     switch (zs) {
3754     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3755     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3756         proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
3757         break;
3758     case NVME_ZONE_STATE_CLOSED:
3759         proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
3760         break;
3761     case NVME_ZONE_STATE_READ_ONLY:
3762         proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
3763         break;
3764     case NVME_ZONE_STATE_FULL:
3765         proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
3766         break;
3767     default:
3768         proc_zone = false;
3769     }
3770 
3771     if (proc_zone) {
3772         status = op_hndlr(ns, zone, zs, req);
3773     }
3774 
3775     return status;
3776 }
3777 
3778 static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
3779                                 enum NvmeZoneProcessingMask proc_mask,
3780                                 op_handler_t op_hndlr, NvmeRequest *req)
3781 {
3782     NvmeZone *next;
3783     uint16_t status = NVME_SUCCESS;
3784     int i;
3785 
3786     if (!proc_mask) {
3787         status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
3788     } else {
3789         if (proc_mask & NVME_PROC_CLOSED_ZONES) {
3790             QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
3791                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3792                                              req);
3793                 if (status && status != NVME_NO_COMPLETE) {
3794                     goto out;
3795                 }
3796             }
3797         }
3798         if (proc_mask & NVME_PROC_OPENED_ZONES) {
3799             QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
3800                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3801                                              req);
3802                 if (status && status != NVME_NO_COMPLETE) {
3803                     goto out;
3804                 }
3805             }
3806 
3807             QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
3808                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3809                                              req);
3810                 if (status && status != NVME_NO_COMPLETE) {
3811                     goto out;
3812                 }
3813             }
3814         }
3815         if (proc_mask & NVME_PROC_FULL_ZONES) {
3816             QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
3817                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3818                                              req);
3819                 if (status && status != NVME_NO_COMPLETE) {
3820                     goto out;
3821                 }
3822             }
3823         }
3824 
3825         if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
3826             for (i = 0; i < ns->num_zones; i++, zone++) {
3827                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3828                                              req);
3829                 if (status && status != NVME_NO_COMPLETE) {
3830                     goto out;
3831                 }
3832             }
3833         }
3834     }
3835 
3836 out:
3837     return status;
3838 }
3839 
3840 typedef struct NvmeZoneResetAIOCB {
3841     BlockAIOCB common;
3842     BlockAIOCB *aiocb;
3843     NvmeRequest *req;
3844     int ret;
3845 
3846     bool all;
3847     int idx;
3848     NvmeZone *zone;
3849 } NvmeZoneResetAIOCB;
3850 
3851 static void nvme_zone_reset_cancel(BlockAIOCB *aiocb)
3852 {
3853     NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common);
3854     NvmeRequest *req = iocb->req;
3855     NvmeNamespace *ns = req->ns;
3856 
3857     iocb->idx = ns->num_zones;
3858 
3859     iocb->ret = -ECANCELED;
3860 
3861     if (iocb->aiocb) {
3862         blk_aio_cancel_async(iocb->aiocb);
3863         iocb->aiocb = NULL;
3864     }
3865 }
3866 
3867 static const AIOCBInfo nvme_zone_reset_aiocb_info = {
3868     .aiocb_size = sizeof(NvmeZoneResetAIOCB),
3869     .cancel_async = nvme_zone_reset_cancel,
3870 };
3871 
3872 static void nvme_zone_reset_cb(void *opaque, int ret);
3873 
3874 static void nvme_zone_reset_epilogue_cb(void *opaque, int ret)
3875 {
3876     NvmeZoneResetAIOCB *iocb = opaque;
3877     NvmeRequest *req = iocb->req;
3878     NvmeNamespace *ns = req->ns;
3879     int64_t moff;
3880     int count;
3881 
3882     if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
3883         goto out;
3884     }
3885 
3886     moff = nvme_moff(ns, iocb->zone->d.zslba);
3887     count = nvme_m2b(ns, ns->zone_size);
3888 
3889     iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count,
3890                                         BDRV_REQ_MAY_UNMAP,
3891                                         nvme_zone_reset_cb, iocb);
3892     return;
3893 
3894 out:
3895     nvme_zone_reset_cb(iocb, ret);
3896 }
3897 
3898 static void nvme_zone_reset_cb(void *opaque, int ret)
3899 {
3900     NvmeZoneResetAIOCB *iocb = opaque;
3901     NvmeRequest *req = iocb->req;
3902     NvmeNamespace *ns = req->ns;
3903 
3904     if (iocb->ret < 0) {
3905         goto done;
3906     } else if (ret < 0) {
3907         iocb->ret = ret;
3908         goto done;
3909     }
3910 
3911     if (iocb->zone) {
3912         nvme_zrm_reset(ns, iocb->zone);
3913 
3914         if (!iocb->all) {
3915             goto done;
3916         }
3917     }
3918 
3919     while (iocb->idx < ns->num_zones) {
3920         NvmeZone *zone = &ns->zone_array[iocb->idx++];
3921 
3922         switch (nvme_get_zone_state(zone)) {
3923         case NVME_ZONE_STATE_EMPTY:
3924             if (!iocb->all) {
3925                 goto done;
3926             }
3927 
3928             continue;
3929 
3930         case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3931         case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3932         case NVME_ZONE_STATE_CLOSED:
3933         case NVME_ZONE_STATE_FULL:
3934             iocb->zone = zone;
3935             break;
3936 
3937         default:
3938             continue;
3939         }
3940 
3941         trace_pci_nvme_zns_zone_reset(zone->d.zslba);
3942 
3943         iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk,
3944                                             nvme_l2b(ns, zone->d.zslba),
3945                                             nvme_l2b(ns, ns->zone_size),
3946                                             BDRV_REQ_MAY_UNMAP,
3947                                             nvme_zone_reset_epilogue_cb,
3948                                             iocb);
3949         return;
3950     }
3951 
3952 done:
3953     iocb->aiocb = NULL;
3954 
3955     iocb->common.cb(iocb->common.opaque, iocb->ret);
3956     qemu_aio_unref(iocb);
3957 }
3958 
3959 static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone,
3960                                                uint64_t elba, NvmeRequest *req)
3961 {
3962     NvmeNamespace *ns = req->ns;
3963     uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3964     uint64_t wp = zone->d.wp;
3965     uint32_t nlb = elba - wp + 1;
3966     uint16_t status;
3967 
3968 
3969     if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3970         return NVME_INVALID_ZONE_OP | NVME_DNR;
3971     }
3972 
3973     if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3974         return NVME_INVALID_FIELD | NVME_DNR;
3975     }
3976 
3977     if (elba < wp || elba > wp + ns->zns.zrwas) {
3978         return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR;
3979     }
3980 
3981     if (nlb % ns->zns.zrwafg) {
3982         return NVME_INVALID_FIELD | NVME_DNR;
3983     }
3984 
3985     status = nvme_zrm_auto(n, ns, zone);
3986     if (status) {
3987         return status;
3988     }
3989 
3990     zone->w_ptr += nlb;
3991 
3992     nvme_advance_zone_wp(ns, zone, nlb);
3993 
3994     return NVME_SUCCESS;
3995 }
3996 
3997 static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
3998 {
3999     NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
4000     NvmeNamespace *ns = req->ns;
4001     NvmeZone *zone;
4002     NvmeZoneResetAIOCB *iocb;
4003     uint8_t *zd_ext;
4004     uint64_t slba = 0;
4005     uint32_t zone_idx = 0;
4006     uint16_t status;
4007     uint8_t action = cmd->zsa;
4008     bool all;
4009     enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
4010 
4011     all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL;
4012 
4013     req->status = NVME_SUCCESS;
4014 
4015     if (!all) {
4016         status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx);
4017         if (status) {
4018             return status;
4019         }
4020     }
4021 
4022     zone = &ns->zone_array[zone_idx];
4023     if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) {
4024         trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
4025         return NVME_INVALID_FIELD | NVME_DNR;
4026     }
4027 
4028     switch (action) {
4029 
4030     case NVME_ZONE_ACTION_OPEN:
4031         if (all) {
4032             proc_mask = NVME_PROC_CLOSED_ZONES;
4033         }
4034         trace_pci_nvme_open_zone(slba, zone_idx, all);
4035         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
4036         break;
4037 
4038     case NVME_ZONE_ACTION_CLOSE:
4039         if (all) {
4040             proc_mask = NVME_PROC_OPENED_ZONES;
4041         }
4042         trace_pci_nvme_close_zone(slba, zone_idx, all);
4043         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
4044         break;
4045 
4046     case NVME_ZONE_ACTION_FINISH:
4047         if (all) {
4048             proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
4049         }
4050         trace_pci_nvme_finish_zone(slba, zone_idx, all);
4051         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
4052         break;
4053 
4054     case NVME_ZONE_ACTION_RESET:
4055         trace_pci_nvme_reset_zone(slba, zone_idx, all);
4056 
4057         iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk,
4058                            nvme_misc_cb, req);
4059 
4060         iocb->req = req;
4061         iocb->ret = 0;
4062         iocb->all = all;
4063         iocb->idx = zone_idx;
4064         iocb->zone = NULL;
4065 
4066         req->aiocb = &iocb->common;
4067         nvme_zone_reset_cb(iocb, 0);
4068 
4069         return NVME_NO_COMPLETE;
4070 
4071     case NVME_ZONE_ACTION_OFFLINE:
4072         if (all) {
4073             proc_mask = NVME_PROC_READ_ONLY_ZONES;
4074         }
4075         trace_pci_nvme_offline_zone(slba, zone_idx, all);
4076         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
4077         break;
4078 
4079     case NVME_ZONE_ACTION_SET_ZD_EXT:
4080         trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
4081         if (all || !ns->params.zd_extension_size) {
4082             return NVME_INVALID_FIELD | NVME_DNR;
4083         }
4084         zd_ext = nvme_get_zd_extension(ns, zone_idx);
4085         status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
4086         if (status) {
4087             trace_pci_nvme_err_zd_extension_map_error(zone_idx);
4088             return status;
4089         }
4090 
4091         status = nvme_set_zd_ext(ns, zone);
4092         if (status == NVME_SUCCESS) {
4093             trace_pci_nvme_zd_extension_set(zone_idx);
4094             return status;
4095         }
4096         break;
4097 
4098     case NVME_ZONE_ACTION_ZRWA_FLUSH:
4099         if (all) {
4100             return NVME_INVALID_FIELD | NVME_DNR;
4101         }
4102 
4103         return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req);
4104 
4105     default:
4106         trace_pci_nvme_err_invalid_mgmt_action(action);
4107         status = NVME_INVALID_FIELD;
4108     }
4109 
4110     if (status == NVME_ZONE_INVAL_TRANSITION) {
4111         trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
4112                                                          zone->d.za);
4113     }
4114     if (status) {
4115         status |= NVME_DNR;
4116     }
4117 
4118     return status;
4119 }
4120 
4121 static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
4122 {
4123     NvmeZoneState zs = nvme_get_zone_state(zl);
4124 
4125     switch (zafs) {
4126     case NVME_ZONE_REPORT_ALL:
4127         return true;
4128     case NVME_ZONE_REPORT_EMPTY:
4129         return zs == NVME_ZONE_STATE_EMPTY;
4130     case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
4131         return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
4132     case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
4133         return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
4134     case NVME_ZONE_REPORT_CLOSED:
4135         return zs == NVME_ZONE_STATE_CLOSED;
4136     case NVME_ZONE_REPORT_FULL:
4137         return zs == NVME_ZONE_STATE_FULL;
4138     case NVME_ZONE_REPORT_READ_ONLY:
4139         return zs == NVME_ZONE_STATE_READ_ONLY;
4140     case NVME_ZONE_REPORT_OFFLINE:
4141         return zs == NVME_ZONE_STATE_OFFLINE;
4142     default:
4143         return false;
4144     }
4145 }
4146 
4147 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
4148 {
4149     NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
4150     NvmeNamespace *ns = req->ns;
4151     /* cdw12 is zero-based number of dwords to return. Convert to bytes */
4152     uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
4153     uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4154     uint32_t zone_idx, zra, zrasf, partial;
4155     uint64_t max_zones, nr_zones = 0;
4156     uint16_t status;
4157     uint64_t slba;
4158     NvmeZoneDescr *z;
4159     NvmeZone *zone;
4160     NvmeZoneReportHeader *header;
4161     void *buf, *buf_p;
4162     size_t zone_entry_sz;
4163     int i;
4164 
4165     req->status = NVME_SUCCESS;
4166 
4167     status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
4168     if (status) {
4169         return status;
4170     }
4171 
4172     zra = dw13 & 0xff;
4173     if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
4174         return NVME_INVALID_FIELD | NVME_DNR;
4175     }
4176     if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
4177         return NVME_INVALID_FIELD | NVME_DNR;
4178     }
4179 
4180     zrasf = (dw13 >> 8) & 0xff;
4181     if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
4182         return NVME_INVALID_FIELD | NVME_DNR;
4183     }
4184 
4185     if (data_size < sizeof(NvmeZoneReportHeader)) {
4186         return NVME_INVALID_FIELD | NVME_DNR;
4187     }
4188 
4189     status = nvme_check_mdts(n, data_size);
4190     if (status) {
4191         return status;
4192     }
4193 
4194     partial = (dw13 >> 16) & 0x01;
4195 
4196     zone_entry_sz = sizeof(NvmeZoneDescr);
4197     if (zra == NVME_ZONE_REPORT_EXTENDED) {
4198         zone_entry_sz += ns->params.zd_extension_size;
4199     }
4200 
4201     max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
4202     buf = g_malloc0(data_size);
4203 
4204     zone = &ns->zone_array[zone_idx];
4205     for (i = zone_idx; i < ns->num_zones; i++) {
4206         if (partial && nr_zones >= max_zones) {
4207             break;
4208         }
4209         if (nvme_zone_matches_filter(zrasf, zone++)) {
4210             nr_zones++;
4211         }
4212     }
4213     header = buf;
4214     header->nr_zones = cpu_to_le64(nr_zones);
4215 
4216     buf_p = buf + sizeof(NvmeZoneReportHeader);
4217     for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
4218         zone = &ns->zone_array[zone_idx];
4219         if (nvme_zone_matches_filter(zrasf, zone)) {
4220             z = buf_p;
4221             buf_p += sizeof(NvmeZoneDescr);
4222 
4223             z->zt = zone->d.zt;
4224             z->zs = zone->d.zs;
4225             z->zcap = cpu_to_le64(zone->d.zcap);
4226             z->zslba = cpu_to_le64(zone->d.zslba);
4227             z->za = zone->d.za;
4228 
4229             if (nvme_wp_is_valid(zone)) {
4230                 z->wp = cpu_to_le64(zone->d.wp);
4231             } else {
4232                 z->wp = cpu_to_le64(~0ULL);
4233             }
4234 
4235             if (zra == NVME_ZONE_REPORT_EXTENDED) {
4236                 if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
4237                     memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
4238                            ns->params.zd_extension_size);
4239                 }
4240                 buf_p += ns->params.zd_extension_size;
4241             }
4242 
4243             max_zones--;
4244         }
4245     }
4246 
4247     status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
4248 
4249     g_free(buf);
4250 
4251     return status;
4252 }
4253 
4254 static uint16_t nvme_io_mgmt_recv_ruhs(NvmeCtrl *n, NvmeRequest *req,
4255                                        size_t len)
4256 {
4257     NvmeNamespace *ns = req->ns;
4258     NvmeEnduranceGroup *endgrp;
4259     NvmeRuhStatus *hdr;
4260     NvmeRuhStatusDescr *ruhsd;
4261     unsigned int nruhsd;
4262     uint16_t rg, ph, *ruhid;
4263     size_t trans_len;
4264     g_autofree uint8_t *buf = NULL;
4265 
4266     if (!n->subsys) {
4267         return NVME_INVALID_FIELD | NVME_DNR;
4268     }
4269 
4270     if (ns->params.nsid == 0 || ns->params.nsid == 0xffffffff) {
4271         return NVME_INVALID_NSID | NVME_DNR;
4272     }
4273 
4274     if (!n->subsys->endgrp.fdp.enabled) {
4275         return NVME_FDP_DISABLED | NVME_DNR;
4276     }
4277 
4278     endgrp = ns->endgrp;
4279 
4280     nruhsd = ns->fdp.nphs * endgrp->fdp.nrg;
4281     trans_len = sizeof(NvmeRuhStatus) + nruhsd * sizeof(NvmeRuhStatusDescr);
4282     buf = g_malloc(trans_len);
4283 
4284     trans_len = MIN(trans_len, len);
4285 
4286     hdr = (NvmeRuhStatus *)buf;
4287     ruhsd = (NvmeRuhStatusDescr *)(buf + sizeof(NvmeRuhStatus));
4288 
4289     hdr->nruhsd = cpu_to_le16(nruhsd);
4290 
4291     ruhid = ns->fdp.phs;
4292 
4293     for (ph = 0; ph < ns->fdp.nphs; ph++, ruhid++) {
4294         NvmeRuHandle *ruh = &endgrp->fdp.ruhs[*ruhid];
4295 
4296         for (rg = 0; rg < endgrp->fdp.nrg; rg++, ruhsd++) {
4297             uint16_t pid = nvme_make_pid(ns, rg, ph);
4298 
4299             ruhsd->pid = cpu_to_le16(pid);
4300             ruhsd->ruhid = *ruhid;
4301             ruhsd->earutr = 0;
4302             ruhsd->ruamw = cpu_to_le64(ruh->rus[rg].ruamw);
4303         }
4304     }
4305 
4306     return nvme_c2h(n, buf, trans_len, req);
4307 }
4308 
4309 static uint16_t nvme_io_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
4310 {
4311     NvmeCmd *cmd = &req->cmd;
4312     uint32_t cdw10 = le32_to_cpu(cmd->cdw10);
4313     uint32_t numd = le32_to_cpu(cmd->cdw11);
4314     uint8_t mo = (cdw10 & 0xff);
4315     size_t len = (numd + 1) << 2;
4316 
4317     switch (mo) {
4318     case NVME_IOMR_MO_NOP:
4319         return 0;
4320     case NVME_IOMR_MO_RUH_STATUS:
4321         return nvme_io_mgmt_recv_ruhs(n, req, len);
4322     default:
4323         return NVME_INVALID_FIELD | NVME_DNR;
4324     };
4325 }
4326 
4327 static uint16_t nvme_io_mgmt_send_ruh_update(NvmeCtrl *n, NvmeRequest *req)
4328 {
4329     NvmeCmd *cmd = &req->cmd;
4330     NvmeNamespace *ns = req->ns;
4331     uint32_t cdw10 = le32_to_cpu(cmd->cdw10);
4332     uint16_t ret = NVME_SUCCESS;
4333     uint32_t npid = (cdw10 >> 1) + 1;
4334     unsigned int i = 0;
4335     g_autofree uint16_t *pids = NULL;
4336     uint32_t maxnpid = n->subsys->endgrp.fdp.nrg * n->subsys->endgrp.fdp.nruh;
4337 
4338     if (unlikely(npid >= MIN(NVME_FDP_MAXPIDS, maxnpid))) {
4339         return NVME_INVALID_FIELD | NVME_DNR;
4340     }
4341 
4342     pids = g_new(uint16_t, npid);
4343 
4344     ret = nvme_h2c(n, pids, npid * sizeof(uint16_t), req);
4345     if (ret) {
4346         return ret;
4347     }
4348 
4349     for (; i < npid; i++) {
4350         if (!nvme_update_ruh(n, ns, pids[i])) {
4351             return NVME_INVALID_FIELD | NVME_DNR;
4352         }
4353     }
4354 
4355     return ret;
4356 }
4357 
4358 static uint16_t nvme_io_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
4359 {
4360     NvmeCmd *cmd = &req->cmd;
4361     uint32_t cdw10 = le32_to_cpu(cmd->cdw10);
4362     uint8_t mo = (cdw10 & 0xff);
4363 
4364     switch (mo) {
4365     case NVME_IOMS_MO_NOP:
4366         return 0;
4367     case NVME_IOMS_MO_RUH_UPDATE:
4368         return nvme_io_mgmt_send_ruh_update(n, req);
4369     default:
4370         return NVME_INVALID_FIELD | NVME_DNR;
4371     };
4372 }
4373 
4374 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
4375 {
4376     NvmeNamespace *ns;
4377     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4378 
4379     trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
4380                           req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
4381 
4382     if (!nvme_nsid_valid(n, nsid)) {
4383         return NVME_INVALID_NSID | NVME_DNR;
4384     }
4385 
4386     /*
4387      * In the base NVM command set, Flush may apply to all namespaces
4388      * (indicated by NSID being set to FFFFFFFFh). But if that feature is used
4389      * along with TP 4056 (Namespace Types), it may be pretty screwed up.
4390      *
4391      * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
4392      * opcode with a specific command since we cannot determine a unique I/O
4393      * command set. Opcode 0h could have any other meaning than something
4394      * equivalent to flushing and say it DOES have completely different
4395      * semantics in some other command set - does an NSID of FFFFFFFFh then
4396      * mean "for all namespaces, apply whatever command set specific command
4397      * that uses the 0h opcode?" Or does it mean "for all namespaces, apply
4398      * whatever command that uses the 0h opcode if, and only if, it allows NSID
4399      * to be FFFFFFFFh"?
4400      *
4401      * Anyway (and luckily), for now, we do not care about this since the
4402      * device only supports namespace types that includes the NVM Flush command
4403      * (NVM and Zoned), so always do an NVM Flush.
4404      */
4405     if (req->cmd.opcode == NVME_CMD_FLUSH) {
4406         return nvme_flush(n, req);
4407     }
4408 
4409     ns = nvme_ns(n, nsid);
4410     if (unlikely(!ns)) {
4411         return NVME_INVALID_FIELD | NVME_DNR;
4412     }
4413 
4414     if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
4415         trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
4416         return NVME_INVALID_OPCODE | NVME_DNR;
4417     }
4418 
4419     if (ns->status) {
4420         return ns->status;
4421     }
4422 
4423     if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
4424         return NVME_INVALID_FIELD;
4425     }
4426 
4427     req->ns = ns;
4428 
4429     switch (req->cmd.opcode) {
4430     case NVME_CMD_WRITE_ZEROES:
4431         return nvme_write_zeroes(n, req);
4432     case NVME_CMD_ZONE_APPEND:
4433         return nvme_zone_append(n, req);
4434     case NVME_CMD_WRITE:
4435         return nvme_write(n, req);
4436     case NVME_CMD_READ:
4437         return nvme_read(n, req);
4438     case NVME_CMD_COMPARE:
4439         return nvme_compare(n, req);
4440     case NVME_CMD_DSM:
4441         return nvme_dsm(n, req);
4442     case NVME_CMD_VERIFY:
4443         return nvme_verify(n, req);
4444     case NVME_CMD_COPY:
4445         return nvme_copy(n, req);
4446     case NVME_CMD_ZONE_MGMT_SEND:
4447         return nvme_zone_mgmt_send(n, req);
4448     case NVME_CMD_ZONE_MGMT_RECV:
4449         return nvme_zone_mgmt_recv(n, req);
4450     case NVME_CMD_IO_MGMT_RECV:
4451         return nvme_io_mgmt_recv(n, req);
4452     case NVME_CMD_IO_MGMT_SEND:
4453         return nvme_io_mgmt_send(n, req);
4454     default:
4455         assert(false);
4456     }
4457 
4458     return NVME_INVALID_OPCODE | NVME_DNR;
4459 }
4460 
4461 static void nvme_cq_notifier(EventNotifier *e)
4462 {
4463     NvmeCQueue *cq = container_of(e, NvmeCQueue, notifier);
4464     NvmeCtrl *n = cq->ctrl;
4465 
4466     if (!event_notifier_test_and_clear(e)) {
4467         return;
4468     }
4469 
4470     nvme_update_cq_head(cq);
4471 
4472     if (cq->tail == cq->head) {
4473         if (cq->irq_enabled) {
4474             n->cq_pending--;
4475         }
4476 
4477         nvme_irq_deassert(n, cq);
4478     }
4479 
4480     qemu_bh_schedule(cq->bh);
4481 }
4482 
4483 static int nvme_init_cq_ioeventfd(NvmeCQueue *cq)
4484 {
4485     NvmeCtrl *n = cq->ctrl;
4486     uint16_t offset = (cq->cqid << 3) + (1 << 2);
4487     int ret;
4488 
4489     ret = event_notifier_init(&cq->notifier, 0);
4490     if (ret < 0) {
4491         return ret;
4492     }
4493 
4494     event_notifier_set_handler(&cq->notifier, nvme_cq_notifier);
4495     memory_region_add_eventfd(&n->iomem,
4496                               0x1000 + offset, 4, false, 0, &cq->notifier);
4497 
4498     return 0;
4499 }
4500 
4501 static void nvme_sq_notifier(EventNotifier *e)
4502 {
4503     NvmeSQueue *sq = container_of(e, NvmeSQueue, notifier);
4504 
4505     if (!event_notifier_test_and_clear(e)) {
4506         return;
4507     }
4508 
4509     nvme_process_sq(sq);
4510 }
4511 
4512 static int nvme_init_sq_ioeventfd(NvmeSQueue *sq)
4513 {
4514     NvmeCtrl *n = sq->ctrl;
4515     uint16_t offset = sq->sqid << 3;
4516     int ret;
4517 
4518     ret = event_notifier_init(&sq->notifier, 0);
4519     if (ret < 0) {
4520         return ret;
4521     }
4522 
4523     event_notifier_set_handler(&sq->notifier, nvme_sq_notifier);
4524     memory_region_add_eventfd(&n->iomem,
4525                               0x1000 + offset, 4, false, 0, &sq->notifier);
4526 
4527     return 0;
4528 }
4529 
4530 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
4531 {
4532     uint16_t offset = sq->sqid << 3;
4533 
4534     n->sq[sq->sqid] = NULL;
4535     qemu_bh_delete(sq->bh);
4536     if (sq->ioeventfd_enabled) {
4537         memory_region_del_eventfd(&n->iomem,
4538                                   0x1000 + offset, 4, false, 0, &sq->notifier);
4539         event_notifier_set_handler(&sq->notifier, NULL);
4540         event_notifier_cleanup(&sq->notifier);
4541     }
4542     g_free(sq->io_req);
4543     if (sq->sqid) {
4544         g_free(sq);
4545     }
4546 }
4547 
4548 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
4549 {
4550     NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4551     NvmeRequest *r, *next;
4552     NvmeSQueue *sq;
4553     NvmeCQueue *cq;
4554     uint16_t qid = le16_to_cpu(c->qid);
4555 
4556     if (unlikely(!qid || nvme_check_sqid(n, qid))) {
4557         trace_pci_nvme_err_invalid_del_sq(qid);
4558         return NVME_INVALID_QID | NVME_DNR;
4559     }
4560 
4561     trace_pci_nvme_del_sq(qid);
4562 
4563     sq = n->sq[qid];
4564     while (!QTAILQ_EMPTY(&sq->out_req_list)) {
4565         r = QTAILQ_FIRST(&sq->out_req_list);
4566         assert(r->aiocb);
4567         blk_aio_cancel(r->aiocb);
4568     }
4569 
4570     assert(QTAILQ_EMPTY(&sq->out_req_list));
4571 
4572     if (!nvme_check_cqid(n, sq->cqid)) {
4573         cq = n->cq[sq->cqid];
4574         QTAILQ_REMOVE(&cq->sq_list, sq, entry);
4575 
4576         nvme_post_cqes(cq);
4577         QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
4578             if (r->sq == sq) {
4579                 QTAILQ_REMOVE(&cq->req_list, r, entry);
4580                 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
4581             }
4582         }
4583     }
4584 
4585     nvme_free_sq(sq, n);
4586     return NVME_SUCCESS;
4587 }
4588 
4589 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
4590                          uint16_t sqid, uint16_t cqid, uint16_t size)
4591 {
4592     int i;
4593     NvmeCQueue *cq;
4594 
4595     sq->ctrl = n;
4596     sq->dma_addr = dma_addr;
4597     sq->sqid = sqid;
4598     sq->size = size;
4599     sq->cqid = cqid;
4600     sq->head = sq->tail = 0;
4601     sq->io_req = g_new0(NvmeRequest, sq->size);
4602 
4603     QTAILQ_INIT(&sq->req_list);
4604     QTAILQ_INIT(&sq->out_req_list);
4605     for (i = 0; i < sq->size; i++) {
4606         sq->io_req[i].sq = sq;
4607         QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
4608     }
4609 
4610     sq->bh = qemu_bh_new(nvme_process_sq, sq);
4611 
4612     if (n->dbbuf_enabled) {
4613         sq->db_addr = n->dbbuf_dbs + (sqid << 3);
4614         sq->ei_addr = n->dbbuf_eis + (sqid << 3);
4615 
4616         if (n->params.ioeventfd && sq->sqid != 0) {
4617             if (!nvme_init_sq_ioeventfd(sq)) {
4618                 sq->ioeventfd_enabled = true;
4619             }
4620         }
4621     }
4622 
4623     assert(n->cq[cqid]);
4624     cq = n->cq[cqid];
4625     QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
4626     n->sq[sqid] = sq;
4627 }
4628 
4629 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
4630 {
4631     NvmeSQueue *sq;
4632     NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
4633 
4634     uint16_t cqid = le16_to_cpu(c->cqid);
4635     uint16_t sqid = le16_to_cpu(c->sqid);
4636     uint16_t qsize = le16_to_cpu(c->qsize);
4637     uint16_t qflags = le16_to_cpu(c->sq_flags);
4638     uint64_t prp1 = le64_to_cpu(c->prp1);
4639 
4640     trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
4641 
4642     if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
4643         trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
4644         return NVME_INVALID_CQID | NVME_DNR;
4645     }
4646     if (unlikely(!sqid || sqid > n->conf_ioqpairs || n->sq[sqid] != NULL)) {
4647         trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
4648         return NVME_INVALID_QID | NVME_DNR;
4649     }
4650     if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4651         trace_pci_nvme_err_invalid_create_sq_size(qsize);
4652         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4653     }
4654     if (unlikely(prp1 & (n->page_size - 1))) {
4655         trace_pci_nvme_err_invalid_create_sq_addr(prp1);
4656         return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4657     }
4658     if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
4659         trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
4660         return NVME_INVALID_FIELD | NVME_DNR;
4661     }
4662     sq = g_malloc0(sizeof(*sq));
4663     nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
4664     return NVME_SUCCESS;
4665 }
4666 
4667 struct nvme_stats {
4668     uint64_t units_read;
4669     uint64_t units_written;
4670     uint64_t read_commands;
4671     uint64_t write_commands;
4672 };
4673 
4674 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
4675 {
4676     BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
4677 
4678     stats->units_read += s->nr_bytes[BLOCK_ACCT_READ];
4679     stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE];
4680     stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
4681     stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
4682 }
4683 
4684 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4685                                 uint64_t off, NvmeRequest *req)
4686 {
4687     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4688     struct nvme_stats stats = { 0 };
4689     NvmeSmartLog smart = { 0 };
4690     uint32_t trans_len;
4691     NvmeNamespace *ns;
4692     time_t current_ms;
4693     uint64_t u_read, u_written;
4694 
4695     if (off >= sizeof(smart)) {
4696         return NVME_INVALID_FIELD | NVME_DNR;
4697     }
4698 
4699     if (nsid != 0xffffffff) {
4700         ns = nvme_ns(n, nsid);
4701         if (!ns) {
4702             return NVME_INVALID_NSID | NVME_DNR;
4703         }
4704         nvme_set_blk_stats(ns, &stats);
4705     } else {
4706         int i;
4707 
4708         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4709             ns = nvme_ns(n, i);
4710             if (!ns) {
4711                 continue;
4712             }
4713             nvme_set_blk_stats(ns, &stats);
4714         }
4715     }
4716 
4717     trans_len = MIN(sizeof(smart) - off, buf_len);
4718     smart.critical_warning = n->smart_critical_warning;
4719 
4720     u_read = DIV_ROUND_UP(stats.units_read >> BDRV_SECTOR_BITS, 1000);
4721     u_written = DIV_ROUND_UP(stats.units_written >> BDRV_SECTOR_BITS, 1000);
4722 
4723     smart.data_units_read[0] = cpu_to_le64(u_read);
4724     smart.data_units_written[0] = cpu_to_le64(u_written);
4725     smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
4726     smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
4727 
4728     smart.temperature = cpu_to_le16(n->temperature);
4729 
4730     if ((n->temperature >= n->features.temp_thresh_hi) ||
4731         (n->temperature <= n->features.temp_thresh_low)) {
4732         smart.critical_warning |= NVME_SMART_TEMPERATURE;
4733     }
4734 
4735     current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4736     smart.power_on_hours[0] =
4737         cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
4738 
4739     if (!rae) {
4740         nvme_clear_events(n, NVME_AER_TYPE_SMART);
4741     }
4742 
4743     return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
4744 }
4745 
4746 static uint16_t nvme_endgrp_info(NvmeCtrl *n,  uint8_t rae, uint32_t buf_len,
4747                                  uint64_t off, NvmeRequest *req)
4748 {
4749     uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
4750     uint16_t endgrpid = (dw11 >> 16) & 0xffff;
4751     struct nvme_stats stats = {};
4752     NvmeEndGrpLog info = {};
4753     int i;
4754 
4755     if (!n->subsys || endgrpid != 0x1) {
4756         return NVME_INVALID_FIELD | NVME_DNR;
4757     }
4758 
4759     if (off >= sizeof(info)) {
4760         return NVME_INVALID_FIELD | NVME_DNR;
4761     }
4762 
4763     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4764         NvmeNamespace *ns = nvme_subsys_ns(n->subsys, i);
4765         if (!ns) {
4766             continue;
4767         }
4768 
4769         nvme_set_blk_stats(ns, &stats);
4770     }
4771 
4772     info.data_units_read[0] =
4773         cpu_to_le64(DIV_ROUND_UP(stats.units_read / 1000000000, 1000000000));
4774     info.data_units_written[0] =
4775         cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000));
4776     info.media_units_written[0] =
4777         cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000));
4778 
4779     info.host_read_commands[0] = cpu_to_le64(stats.read_commands);
4780     info.host_write_commands[0] = cpu_to_le64(stats.write_commands);
4781 
4782     buf_len = MIN(sizeof(info) - off, buf_len);
4783 
4784     return nvme_c2h(n, (uint8_t *)&info + off, buf_len, req);
4785 }
4786 
4787 
4788 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
4789                                  NvmeRequest *req)
4790 {
4791     uint32_t trans_len;
4792     NvmeFwSlotInfoLog fw_log = {
4793         .afi = 0x1,
4794     };
4795 
4796     if (off >= sizeof(fw_log)) {
4797         return NVME_INVALID_FIELD | NVME_DNR;
4798     }
4799 
4800     strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
4801     trans_len = MIN(sizeof(fw_log) - off, buf_len);
4802 
4803     return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
4804 }
4805 
4806 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4807                                 uint64_t off, NvmeRequest *req)
4808 {
4809     uint32_t trans_len;
4810     NvmeErrorLog errlog;
4811 
4812     if (off >= sizeof(errlog)) {
4813         return NVME_INVALID_FIELD | NVME_DNR;
4814     }
4815 
4816     if (!rae) {
4817         nvme_clear_events(n, NVME_AER_TYPE_ERROR);
4818     }
4819 
4820     memset(&errlog, 0x0, sizeof(errlog));
4821     trans_len = MIN(sizeof(errlog) - off, buf_len);
4822 
4823     return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
4824 }
4825 
4826 static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4827                                     uint64_t off, NvmeRequest *req)
4828 {
4829     uint32_t nslist[1024];
4830     uint32_t trans_len;
4831     int i = 0;
4832     uint32_t nsid;
4833 
4834     if (off >= sizeof(nslist)) {
4835         trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist));
4836         return NVME_INVALID_FIELD | NVME_DNR;
4837     }
4838 
4839     memset(nslist, 0x0, sizeof(nslist));
4840     trans_len = MIN(sizeof(nslist) - off, buf_len);
4841 
4842     while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
4843             NVME_CHANGED_NSID_SIZE) {
4844         /*
4845          * If more than 1024 namespaces, the first entry in the log page should
4846          * be set to FFFFFFFFh and the others to 0 as spec.
4847          */
4848         if (i == ARRAY_SIZE(nslist)) {
4849             memset(nslist, 0x0, sizeof(nslist));
4850             nslist[0] = 0xffffffff;
4851             break;
4852         }
4853 
4854         nslist[i++] = nsid;
4855         clear_bit(nsid, n->changed_nsids);
4856     }
4857 
4858     /*
4859      * Remove all the remaining list entries in case returns directly due to
4860      * more than 1024 namespaces.
4861      */
4862     if (nslist[0] == 0xffffffff) {
4863         bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
4864     }
4865 
4866     if (!rae) {
4867         nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
4868     }
4869 
4870     return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
4871 }
4872 
4873 static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
4874                                  uint64_t off, NvmeRequest *req)
4875 {
4876     NvmeEffectsLog log = {};
4877     const uint32_t *src_iocs = NULL;
4878     uint32_t trans_len;
4879 
4880     if (off >= sizeof(log)) {
4881         trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
4882         return NVME_INVALID_FIELD | NVME_DNR;
4883     }
4884 
4885     switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) {
4886     case NVME_CC_CSS_NVM:
4887         src_iocs = nvme_cse_iocs_nvm;
4888         /* fall through */
4889     case NVME_CC_CSS_ADMIN_ONLY:
4890         break;
4891     case NVME_CC_CSS_CSI:
4892         switch (csi) {
4893         case NVME_CSI_NVM:
4894             src_iocs = nvme_cse_iocs_nvm;
4895             break;
4896         case NVME_CSI_ZONED:
4897             src_iocs = nvme_cse_iocs_zoned;
4898             break;
4899         }
4900     }
4901 
4902     memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
4903 
4904     if (src_iocs) {
4905         memcpy(log.iocs, src_iocs, sizeof(log.iocs));
4906     }
4907 
4908     trans_len = MIN(sizeof(log) - off, buf_len);
4909 
4910     return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
4911 }
4912 
4913 static size_t sizeof_fdp_conf_descr(size_t nruh, size_t vss)
4914 {
4915     size_t entry_siz = sizeof(NvmeFdpDescrHdr) + nruh * sizeof(NvmeRuhDescr)
4916                        + vss;
4917     return ROUND_UP(entry_siz, 8);
4918 }
4919 
4920 static uint16_t nvme_fdp_confs(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len,
4921                                uint64_t off, NvmeRequest *req)
4922 {
4923     uint32_t log_size, trans_len;
4924     g_autofree uint8_t *buf = NULL;
4925     NvmeFdpDescrHdr *hdr;
4926     NvmeRuhDescr *ruhd;
4927     NvmeEnduranceGroup *endgrp;
4928     NvmeFdpConfsHdr *log;
4929     size_t nruh, fdp_descr_size;
4930     int i;
4931 
4932     if (endgrpid != 1 || !n->subsys) {
4933         return NVME_INVALID_FIELD | NVME_DNR;
4934     }
4935 
4936     endgrp = &n->subsys->endgrp;
4937 
4938     if (endgrp->fdp.enabled) {
4939         nruh = endgrp->fdp.nruh;
4940     } else {
4941         nruh = 1;
4942     }
4943 
4944     fdp_descr_size = sizeof_fdp_conf_descr(nruh, FDPVSS);
4945     log_size = sizeof(NvmeFdpConfsHdr) + fdp_descr_size;
4946 
4947     if (off >= log_size) {
4948         return NVME_INVALID_FIELD | NVME_DNR;
4949     }
4950 
4951     trans_len = MIN(log_size - off, buf_len);
4952 
4953     buf = g_malloc0(log_size);
4954     log = (NvmeFdpConfsHdr *)buf;
4955     hdr = (NvmeFdpDescrHdr *)(log + 1);
4956     ruhd = (NvmeRuhDescr *)(buf + sizeof(*log) + sizeof(*hdr));
4957 
4958     log->num_confs = cpu_to_le16(0);
4959     log->size = cpu_to_le32(log_size);
4960 
4961     hdr->descr_size = cpu_to_le16(fdp_descr_size);
4962     if (endgrp->fdp.enabled) {
4963         hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, VALID, 1);
4964         hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, RGIF, endgrp->fdp.rgif);
4965         hdr->nrg = cpu_to_le16(endgrp->fdp.nrg);
4966         hdr->nruh = cpu_to_le16(endgrp->fdp.nruh);
4967         hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1);
4968         hdr->nnss = cpu_to_le32(NVME_MAX_NAMESPACES);
4969         hdr->runs = cpu_to_le64(endgrp->fdp.runs);
4970 
4971         for (i = 0; i < nruh; i++) {
4972             ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED;
4973             ruhd++;
4974         }
4975     } else {
4976         /* 1 bit for RUH in PIF -> 2 RUHs max. */
4977         hdr->nrg = cpu_to_le16(1);
4978         hdr->nruh = cpu_to_le16(1);
4979         hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1);
4980         hdr->nnss = cpu_to_le32(1);
4981         hdr->runs = cpu_to_le64(96 * MiB);
4982 
4983         ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED;
4984     }
4985 
4986     return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req);
4987 }
4988 
4989 static uint16_t nvme_fdp_ruh_usage(NvmeCtrl *n, uint32_t endgrpid,
4990                                    uint32_t dw10, uint32_t dw12,
4991                                    uint32_t buf_len, uint64_t off,
4992                                    NvmeRequest *req)
4993 {
4994     NvmeRuHandle *ruh;
4995     NvmeRuhuLog *hdr;
4996     NvmeRuhuDescr *ruhud;
4997     NvmeEnduranceGroup *endgrp;
4998     g_autofree uint8_t *buf = NULL;
4999     uint32_t log_size, trans_len;
5000     uint16_t i;
5001 
5002     if (endgrpid != 1 || !n->subsys) {
5003         return NVME_INVALID_FIELD | NVME_DNR;
5004     }
5005 
5006     endgrp = &n->subsys->endgrp;
5007 
5008     if (!endgrp->fdp.enabled) {
5009         return NVME_FDP_DISABLED | NVME_DNR;
5010     }
5011 
5012     log_size = sizeof(NvmeRuhuLog) + endgrp->fdp.nruh * sizeof(NvmeRuhuDescr);
5013 
5014     if (off >= log_size) {
5015         return NVME_INVALID_FIELD | NVME_DNR;
5016     }
5017 
5018     trans_len = MIN(log_size - off, buf_len);
5019 
5020     buf = g_malloc0(log_size);
5021     hdr = (NvmeRuhuLog *)buf;
5022     ruhud = (NvmeRuhuDescr *)(hdr + 1);
5023 
5024     ruh = endgrp->fdp.ruhs;
5025     hdr->nruh = cpu_to_le16(endgrp->fdp.nruh);
5026 
5027     for (i = 0; i < endgrp->fdp.nruh; i++, ruhud++, ruh++) {
5028         ruhud->ruha = ruh->ruha;
5029     }
5030 
5031     return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req);
5032 }
5033 
5034 static uint16_t nvme_fdp_stats(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len,
5035                                uint64_t off, NvmeRequest *req)
5036 {
5037     NvmeEnduranceGroup *endgrp;
5038     NvmeFdpStatsLog log = {};
5039     uint32_t trans_len;
5040 
5041     if (off >= sizeof(NvmeFdpStatsLog)) {
5042         return NVME_INVALID_FIELD | NVME_DNR;
5043     }
5044 
5045     if (endgrpid != 1 || !n->subsys) {
5046         return NVME_INVALID_FIELD | NVME_DNR;
5047     }
5048 
5049     if (!n->subsys->endgrp.fdp.enabled) {
5050         return NVME_FDP_DISABLED | NVME_DNR;
5051     }
5052 
5053     endgrp = &n->subsys->endgrp;
5054 
5055     trans_len = MIN(sizeof(log) - off, buf_len);
5056 
5057     /* spec value is 128 bit, we only use 64 bit */
5058     log.hbmw[0] = cpu_to_le64(endgrp->fdp.hbmw);
5059     log.mbmw[0] = cpu_to_le64(endgrp->fdp.mbmw);
5060     log.mbe[0] = cpu_to_le64(endgrp->fdp.mbe);
5061 
5062     return nvme_c2h(n, (uint8_t *)&log + off, trans_len, req);
5063 }
5064 
5065 static uint16_t nvme_fdp_events(NvmeCtrl *n, uint32_t endgrpid,
5066                                 uint32_t buf_len, uint64_t off,
5067                                 NvmeRequest *req)
5068 {
5069     NvmeEnduranceGroup *endgrp;
5070     NvmeCmd *cmd = &req->cmd;
5071     bool host_events = (cmd->cdw10 >> 8) & 0x1;
5072     uint32_t log_size, trans_len;
5073     NvmeFdpEventBuffer *ebuf;
5074     g_autofree NvmeFdpEventsLog *elog = NULL;
5075     NvmeFdpEvent *event;
5076 
5077     if (endgrpid != 1 || !n->subsys) {
5078         return NVME_INVALID_FIELD | NVME_DNR;
5079     }
5080 
5081     endgrp = &n->subsys->endgrp;
5082 
5083     if (!endgrp->fdp.enabled) {
5084         return NVME_FDP_DISABLED | NVME_DNR;
5085     }
5086 
5087     if (host_events) {
5088         ebuf = &endgrp->fdp.host_events;
5089     } else {
5090         ebuf = &endgrp->fdp.ctrl_events;
5091     }
5092 
5093     log_size = sizeof(NvmeFdpEventsLog) + ebuf->nelems * sizeof(NvmeFdpEvent);
5094     trans_len = MIN(log_size - off, buf_len);
5095     elog = g_malloc0(log_size);
5096     elog->num_events = cpu_to_le32(ebuf->nelems);
5097     event = (NvmeFdpEvent *)(elog + 1);
5098 
5099     if (ebuf->nelems && ebuf->start == ebuf->next) {
5100         unsigned int nelems = (NVME_FDP_MAX_EVENTS - ebuf->start);
5101         /* wrap over, copy [start;NVME_FDP_MAX_EVENTS[ and [0; next[ */
5102         memcpy(event, &ebuf->events[ebuf->start],
5103                sizeof(NvmeFdpEvent) * nelems);
5104         memcpy(event + nelems, ebuf->events,
5105                sizeof(NvmeFdpEvent) * ebuf->next);
5106     } else if (ebuf->start < ebuf->next) {
5107         memcpy(event, &ebuf->events[ebuf->start],
5108                sizeof(NvmeFdpEvent) * (ebuf->next - ebuf->start));
5109     }
5110 
5111     return nvme_c2h(n, (uint8_t *)elog + off, trans_len, req);
5112 }
5113 
5114 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
5115 {
5116     NvmeCmd *cmd = &req->cmd;
5117 
5118     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5119     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5120     uint32_t dw12 = le32_to_cpu(cmd->cdw12);
5121     uint32_t dw13 = le32_to_cpu(cmd->cdw13);
5122     uint8_t  lid = dw10 & 0xff;
5123     uint8_t  lsp = (dw10 >> 8) & 0xf;
5124     uint8_t  rae = (dw10 >> 15) & 0x1;
5125     uint8_t  csi = le32_to_cpu(cmd->cdw14) >> 24;
5126     uint32_t numdl, numdu, lspi;
5127     uint64_t off, lpol, lpou;
5128     size_t   len;
5129     uint16_t status;
5130 
5131     numdl = (dw10 >> 16);
5132     numdu = (dw11 & 0xffff);
5133     lspi = (dw11 >> 16);
5134     lpol = dw12;
5135     lpou = dw13;
5136 
5137     len = (((numdu << 16) | numdl) + 1) << 2;
5138     off = (lpou << 32ULL) | lpol;
5139 
5140     if (off & 0x3) {
5141         return NVME_INVALID_FIELD | NVME_DNR;
5142     }
5143 
5144     trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
5145 
5146     status = nvme_check_mdts(n, len);
5147     if (status) {
5148         return status;
5149     }
5150 
5151     switch (lid) {
5152     case NVME_LOG_ERROR_INFO:
5153         return nvme_error_info(n, rae, len, off, req);
5154     case NVME_LOG_SMART_INFO:
5155         return nvme_smart_info(n, rae, len, off, req);
5156     case NVME_LOG_FW_SLOT_INFO:
5157         return nvme_fw_log_info(n, len, off, req);
5158     case NVME_LOG_CHANGED_NSLIST:
5159         return nvme_changed_nslist(n, rae, len, off, req);
5160     case NVME_LOG_CMD_EFFECTS:
5161         return nvme_cmd_effects(n, csi, len, off, req);
5162     case NVME_LOG_ENDGRP:
5163         return nvme_endgrp_info(n, rae, len, off, req);
5164     case NVME_LOG_FDP_CONFS:
5165         return nvme_fdp_confs(n, lspi, len, off, req);
5166     case NVME_LOG_FDP_RUH_USAGE:
5167         return nvme_fdp_ruh_usage(n, lspi, dw10, dw12, len, off, req);
5168     case NVME_LOG_FDP_STATS:
5169         return nvme_fdp_stats(n, lspi, len, off, req);
5170     case NVME_LOG_FDP_EVENTS:
5171         return nvme_fdp_events(n, lspi, len, off, req);
5172     default:
5173         trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
5174         return NVME_INVALID_FIELD | NVME_DNR;
5175     }
5176 }
5177 
5178 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
5179 {
5180     PCIDevice *pci = PCI_DEVICE(n);
5181     uint16_t offset = (cq->cqid << 3) + (1 << 2);
5182 
5183     n->cq[cq->cqid] = NULL;
5184     qemu_bh_delete(cq->bh);
5185     if (cq->ioeventfd_enabled) {
5186         memory_region_del_eventfd(&n->iomem,
5187                                   0x1000 + offset, 4, false, 0, &cq->notifier);
5188         event_notifier_set_handler(&cq->notifier, NULL);
5189         event_notifier_cleanup(&cq->notifier);
5190     }
5191     if (msix_enabled(pci)) {
5192         msix_vector_unuse(pci, cq->vector);
5193     }
5194     if (cq->cqid) {
5195         g_free(cq);
5196     }
5197 }
5198 
5199 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
5200 {
5201     NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
5202     NvmeCQueue *cq;
5203     uint16_t qid = le16_to_cpu(c->qid);
5204 
5205     if (unlikely(!qid || nvme_check_cqid(n, qid))) {
5206         trace_pci_nvme_err_invalid_del_cq_cqid(qid);
5207         return NVME_INVALID_CQID | NVME_DNR;
5208     }
5209 
5210     cq = n->cq[qid];
5211     if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
5212         trace_pci_nvme_err_invalid_del_cq_notempty(qid);
5213         return NVME_INVALID_QUEUE_DEL;
5214     }
5215 
5216     if (cq->irq_enabled && cq->tail != cq->head) {
5217         n->cq_pending--;
5218     }
5219 
5220     nvme_irq_deassert(n, cq);
5221     trace_pci_nvme_del_cq(qid);
5222     nvme_free_cq(cq, n);
5223     return NVME_SUCCESS;
5224 }
5225 
5226 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
5227                          uint16_t cqid, uint16_t vector, uint16_t size,
5228                          uint16_t irq_enabled)
5229 {
5230     PCIDevice *pci = PCI_DEVICE(n);
5231 
5232     if (msix_enabled(pci)) {
5233         msix_vector_use(pci, vector);
5234     }
5235     cq->ctrl = n;
5236     cq->cqid = cqid;
5237     cq->size = size;
5238     cq->dma_addr = dma_addr;
5239     cq->phase = 1;
5240     cq->irq_enabled = irq_enabled;
5241     cq->vector = vector;
5242     cq->head = cq->tail = 0;
5243     QTAILQ_INIT(&cq->req_list);
5244     QTAILQ_INIT(&cq->sq_list);
5245     if (n->dbbuf_enabled) {
5246         cq->db_addr = n->dbbuf_dbs + (cqid << 3) + (1 << 2);
5247         cq->ei_addr = n->dbbuf_eis + (cqid << 3) + (1 << 2);
5248 
5249         if (n->params.ioeventfd && cqid != 0) {
5250             if (!nvme_init_cq_ioeventfd(cq)) {
5251                 cq->ioeventfd_enabled = true;
5252             }
5253         }
5254     }
5255     n->cq[cqid] = cq;
5256     cq->bh = qemu_bh_new(nvme_post_cqes, cq);
5257 }
5258 
5259 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
5260 {
5261     NvmeCQueue *cq;
5262     NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
5263     uint16_t cqid = le16_to_cpu(c->cqid);
5264     uint16_t vector = le16_to_cpu(c->irq_vector);
5265     uint16_t qsize = le16_to_cpu(c->qsize);
5266     uint16_t qflags = le16_to_cpu(c->cq_flags);
5267     uint64_t prp1 = le64_to_cpu(c->prp1);
5268 
5269     trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
5270                              NVME_CQ_FLAGS_IEN(qflags) != 0);
5271 
5272     if (unlikely(!cqid || cqid > n->conf_ioqpairs || n->cq[cqid] != NULL)) {
5273         trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
5274         return NVME_INVALID_QID | NVME_DNR;
5275     }
5276     if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
5277         trace_pci_nvme_err_invalid_create_cq_size(qsize);
5278         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
5279     }
5280     if (unlikely(prp1 & (n->page_size - 1))) {
5281         trace_pci_nvme_err_invalid_create_cq_addr(prp1);
5282         return NVME_INVALID_PRP_OFFSET | NVME_DNR;
5283     }
5284     if (unlikely(!msix_enabled(PCI_DEVICE(n)) && vector)) {
5285         trace_pci_nvme_err_invalid_create_cq_vector(vector);
5286         return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
5287     }
5288     if (unlikely(vector >= n->conf_msix_qsize)) {
5289         trace_pci_nvme_err_invalid_create_cq_vector(vector);
5290         return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
5291     }
5292     if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
5293         trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
5294         return NVME_INVALID_FIELD | NVME_DNR;
5295     }
5296 
5297     cq = g_malloc0(sizeof(*cq));
5298     nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
5299                  NVME_CQ_FLAGS_IEN(qflags));
5300 
5301     /*
5302      * It is only required to set qs_created when creating a completion queue;
5303      * creating a submission queue without a matching completion queue will
5304      * fail.
5305      */
5306     n->qs_created = true;
5307     return NVME_SUCCESS;
5308 }
5309 
5310 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
5311 {
5312     uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
5313 
5314     return nvme_c2h(n, id, sizeof(id), req);
5315 }
5316 
5317 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
5318 {
5319     trace_pci_nvme_identify_ctrl();
5320 
5321     return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
5322 }
5323 
5324 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
5325 {
5326     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5327     uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
5328     NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
5329 
5330     trace_pci_nvme_identify_ctrl_csi(c->csi);
5331 
5332     switch (c->csi) {
5333     case NVME_CSI_NVM:
5334         id_nvm->vsl = n->params.vsl;
5335         id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
5336         break;
5337 
5338     case NVME_CSI_ZONED:
5339         ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
5340         break;
5341 
5342     default:
5343         return NVME_INVALID_FIELD | NVME_DNR;
5344     }
5345 
5346     return nvme_c2h(n, id, sizeof(id), req);
5347 }
5348 
5349 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
5350 {
5351     NvmeNamespace *ns;
5352     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5353     uint32_t nsid = le32_to_cpu(c->nsid);
5354 
5355     trace_pci_nvme_identify_ns(nsid);
5356 
5357     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5358         return NVME_INVALID_NSID | NVME_DNR;
5359     }
5360 
5361     ns = nvme_ns(n, nsid);
5362     if (unlikely(!ns)) {
5363         if (!active) {
5364             ns = nvme_subsys_ns(n->subsys, nsid);
5365             if (!ns) {
5366                 return nvme_rpt_empty_id_struct(n, req);
5367             }
5368         } else {
5369             return nvme_rpt_empty_id_struct(n, req);
5370         }
5371     }
5372 
5373     if (active || ns->csi == NVME_CSI_NVM) {
5374         return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
5375     }
5376 
5377     return NVME_INVALID_CMD_SET | NVME_DNR;
5378 }
5379 
5380 static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req,
5381                                         bool attached)
5382 {
5383     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5384     uint32_t nsid = le32_to_cpu(c->nsid);
5385     uint16_t min_id = le16_to_cpu(c->ctrlid);
5386     uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
5387     uint16_t *ids = &list[1];
5388     NvmeNamespace *ns;
5389     NvmeCtrl *ctrl;
5390     int cntlid, nr_ids = 0;
5391 
5392     trace_pci_nvme_identify_ctrl_list(c->cns, min_id);
5393 
5394     if (!n->subsys) {
5395         return NVME_INVALID_FIELD | NVME_DNR;
5396     }
5397 
5398     if (attached) {
5399         if (nsid == NVME_NSID_BROADCAST) {
5400             return NVME_INVALID_FIELD | NVME_DNR;
5401         }
5402 
5403         ns = nvme_subsys_ns(n->subsys, nsid);
5404         if (!ns) {
5405             return NVME_INVALID_FIELD | NVME_DNR;
5406         }
5407     }
5408 
5409     for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
5410         ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
5411         if (!ctrl) {
5412             continue;
5413         }
5414 
5415         if (attached && !nvme_ns(ctrl, nsid)) {
5416             continue;
5417         }
5418 
5419         ids[nr_ids++] = cntlid;
5420     }
5421 
5422     list[0] = nr_ids;
5423 
5424     return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
5425 }
5426 
5427 static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl *n, NvmeRequest *req)
5428 {
5429     trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n->pri_ctrl_cap.cntlid));
5430 
5431     return nvme_c2h(n, (uint8_t *)&n->pri_ctrl_cap,
5432                     sizeof(NvmePriCtrlCap), req);
5433 }
5434 
5435 static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl *n, NvmeRequest *req)
5436 {
5437     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5438     uint16_t pri_ctrl_id = le16_to_cpu(n->pri_ctrl_cap.cntlid);
5439     uint16_t min_id = le16_to_cpu(c->ctrlid);
5440     uint8_t num_sec_ctrl = n->sec_ctrl_list.numcntl;
5441     NvmeSecCtrlList list = {0};
5442     uint8_t i;
5443 
5444     for (i = 0; i < num_sec_ctrl; i++) {
5445         if (n->sec_ctrl_list.sec[i].scid >= min_id) {
5446             list.numcntl = num_sec_ctrl - i;
5447             memcpy(&list.sec, n->sec_ctrl_list.sec + i,
5448                    list.numcntl * sizeof(NvmeSecCtrlEntry));
5449             break;
5450         }
5451     }
5452 
5453     trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id, list.numcntl);
5454 
5455     return nvme_c2h(n, (uint8_t *)&list, sizeof(list), req);
5456 }
5457 
5458 static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
5459                                      bool active)
5460 {
5461     NvmeNamespace *ns;
5462     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5463     uint32_t nsid = le32_to_cpu(c->nsid);
5464 
5465     trace_pci_nvme_identify_ns_csi(nsid, c->csi);
5466 
5467     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5468         return NVME_INVALID_NSID | NVME_DNR;
5469     }
5470 
5471     ns = nvme_ns(n, nsid);
5472     if (unlikely(!ns)) {
5473         if (!active) {
5474             ns = nvme_subsys_ns(n->subsys, nsid);
5475             if (!ns) {
5476                 return nvme_rpt_empty_id_struct(n, req);
5477             }
5478         } else {
5479             return nvme_rpt_empty_id_struct(n, req);
5480         }
5481     }
5482 
5483     if (c->csi == NVME_CSI_NVM) {
5484         return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm),
5485                         req);
5486     } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
5487         return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
5488                         req);
5489     }
5490 
5491     return NVME_INVALID_FIELD | NVME_DNR;
5492 }
5493 
5494 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
5495                                      bool active)
5496 {
5497     NvmeNamespace *ns;
5498     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5499     uint32_t min_nsid = le32_to_cpu(c->nsid);
5500     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5501     static const int data_len = sizeof(list);
5502     uint32_t *list_ptr = (uint32_t *)list;
5503     int i, j = 0;
5504 
5505     trace_pci_nvme_identify_nslist(min_nsid);
5506 
5507     /*
5508      * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
5509      * since the Active Namespace ID List should return namespaces with ids
5510      * *higher* than the NSID specified in the command. This is also specified
5511      * in the spec (NVM Express v1.3d, Section 5.15.4).
5512      */
5513     if (min_nsid >= NVME_NSID_BROADCAST - 1) {
5514         return NVME_INVALID_NSID | NVME_DNR;
5515     }
5516 
5517     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5518         ns = nvme_ns(n, i);
5519         if (!ns) {
5520             if (!active) {
5521                 ns = nvme_subsys_ns(n->subsys, i);
5522                 if (!ns) {
5523                     continue;
5524                 }
5525             } else {
5526                 continue;
5527             }
5528         }
5529         if (ns->params.nsid <= min_nsid) {
5530             continue;
5531         }
5532         list_ptr[j++] = cpu_to_le32(ns->params.nsid);
5533         if (j == data_len / sizeof(uint32_t)) {
5534             break;
5535         }
5536     }
5537 
5538     return nvme_c2h(n, list, data_len, req);
5539 }
5540 
5541 static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
5542                                          bool active)
5543 {
5544     NvmeNamespace *ns;
5545     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5546     uint32_t min_nsid = le32_to_cpu(c->nsid);
5547     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5548     static const int data_len = sizeof(list);
5549     uint32_t *list_ptr = (uint32_t *)list;
5550     int i, j = 0;
5551 
5552     trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
5553 
5554     /*
5555      * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
5556      */
5557     if (min_nsid >= NVME_NSID_BROADCAST - 1) {
5558         return NVME_INVALID_NSID | NVME_DNR;
5559     }
5560 
5561     if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
5562         return NVME_INVALID_FIELD | NVME_DNR;
5563     }
5564 
5565     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5566         ns = nvme_ns(n, i);
5567         if (!ns) {
5568             if (!active) {
5569                 ns = nvme_subsys_ns(n->subsys, i);
5570                 if (!ns) {
5571                     continue;
5572                 }
5573             } else {
5574                 continue;
5575             }
5576         }
5577         if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
5578             continue;
5579         }
5580         list_ptr[j++] = cpu_to_le32(ns->params.nsid);
5581         if (j == data_len / sizeof(uint32_t)) {
5582             break;
5583         }
5584     }
5585 
5586     return nvme_c2h(n, list, data_len, req);
5587 }
5588 
5589 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
5590 {
5591     NvmeNamespace *ns;
5592     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5593     uint32_t nsid = le32_to_cpu(c->nsid);
5594     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5595     uint8_t *pos = list;
5596     struct {
5597         NvmeIdNsDescr hdr;
5598         uint8_t v[NVME_NIDL_UUID];
5599     } QEMU_PACKED uuid = {};
5600     struct {
5601         NvmeIdNsDescr hdr;
5602         uint64_t v;
5603     } QEMU_PACKED eui64 = {};
5604     struct {
5605         NvmeIdNsDescr hdr;
5606         uint8_t v;
5607     } QEMU_PACKED csi = {};
5608 
5609     trace_pci_nvme_identify_ns_descr_list(nsid);
5610 
5611     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5612         return NVME_INVALID_NSID | NVME_DNR;
5613     }
5614 
5615     ns = nvme_ns(n, nsid);
5616     if (unlikely(!ns)) {
5617         return NVME_INVALID_FIELD | NVME_DNR;
5618     }
5619 
5620     if (!qemu_uuid_is_null(&ns->params.uuid)) {
5621         uuid.hdr.nidt = NVME_NIDT_UUID;
5622         uuid.hdr.nidl = NVME_NIDL_UUID;
5623         memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
5624         memcpy(pos, &uuid, sizeof(uuid));
5625         pos += sizeof(uuid);
5626     }
5627 
5628     if (ns->params.eui64) {
5629         eui64.hdr.nidt = NVME_NIDT_EUI64;
5630         eui64.hdr.nidl = NVME_NIDL_EUI64;
5631         eui64.v = cpu_to_be64(ns->params.eui64);
5632         memcpy(pos, &eui64, sizeof(eui64));
5633         pos += sizeof(eui64);
5634     }
5635 
5636     csi.hdr.nidt = NVME_NIDT_CSI;
5637     csi.hdr.nidl = NVME_NIDL_CSI;
5638     csi.v = ns->csi;
5639     memcpy(pos, &csi, sizeof(csi));
5640     pos += sizeof(csi);
5641 
5642     return nvme_c2h(n, list, sizeof(list), req);
5643 }
5644 
5645 static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
5646 {
5647     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5648     static const int data_len = sizeof(list);
5649 
5650     trace_pci_nvme_identify_cmd_set();
5651 
5652     NVME_SET_CSI(*list, NVME_CSI_NVM);
5653     NVME_SET_CSI(*list, NVME_CSI_ZONED);
5654 
5655     return nvme_c2h(n, list, data_len, req);
5656 }
5657 
5658 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
5659 {
5660     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5661 
5662     trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
5663                             c->csi);
5664 
5665     switch (c->cns) {
5666     case NVME_ID_CNS_NS:
5667         return nvme_identify_ns(n, req, true);
5668     case NVME_ID_CNS_NS_PRESENT:
5669         return nvme_identify_ns(n, req, false);
5670     case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
5671         return nvme_identify_ctrl_list(n, req, true);
5672     case NVME_ID_CNS_CTRL_LIST:
5673         return nvme_identify_ctrl_list(n, req, false);
5674     case NVME_ID_CNS_PRIMARY_CTRL_CAP:
5675         return nvme_identify_pri_ctrl_cap(n, req);
5676     case NVME_ID_CNS_SECONDARY_CTRL_LIST:
5677         return nvme_identify_sec_ctrl_list(n, req);
5678     case NVME_ID_CNS_CS_NS:
5679         return nvme_identify_ns_csi(n, req, true);
5680     case NVME_ID_CNS_CS_NS_PRESENT:
5681         return nvme_identify_ns_csi(n, req, false);
5682     case NVME_ID_CNS_CTRL:
5683         return nvme_identify_ctrl(n, req);
5684     case NVME_ID_CNS_CS_CTRL:
5685         return nvme_identify_ctrl_csi(n, req);
5686     case NVME_ID_CNS_NS_ACTIVE_LIST:
5687         return nvme_identify_nslist(n, req, true);
5688     case NVME_ID_CNS_NS_PRESENT_LIST:
5689         return nvme_identify_nslist(n, req, false);
5690     case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
5691         return nvme_identify_nslist_csi(n, req, true);
5692     case NVME_ID_CNS_CS_NS_PRESENT_LIST:
5693         return nvme_identify_nslist_csi(n, req, false);
5694     case NVME_ID_CNS_NS_DESCR_LIST:
5695         return nvme_identify_ns_descr_list(n, req);
5696     case NVME_ID_CNS_IO_COMMAND_SET:
5697         return nvme_identify_cmd_set(n, req);
5698     default:
5699         trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
5700         return NVME_INVALID_FIELD | NVME_DNR;
5701     }
5702 }
5703 
5704 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
5705 {
5706     uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
5707 
5708     req->cqe.result = 1;
5709     if (nvme_check_sqid(n, sqid)) {
5710         return NVME_INVALID_FIELD | NVME_DNR;
5711     }
5712 
5713     return NVME_SUCCESS;
5714 }
5715 
5716 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
5717 {
5718     trace_pci_nvme_setfeat_timestamp(ts);
5719 
5720     n->host_timestamp = le64_to_cpu(ts);
5721     n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5722 }
5723 
5724 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
5725 {
5726     uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5727     uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
5728 
5729     union nvme_timestamp {
5730         struct {
5731             uint64_t timestamp:48;
5732             uint64_t sync:1;
5733             uint64_t origin:3;
5734             uint64_t rsvd1:12;
5735         };
5736         uint64_t all;
5737     };
5738 
5739     union nvme_timestamp ts;
5740     ts.all = 0;
5741     ts.timestamp = n->host_timestamp + elapsed_time;
5742 
5743     /* If the host timestamp is non-zero, set the timestamp origin */
5744     ts.origin = n->host_timestamp ? 0x01 : 0x00;
5745 
5746     trace_pci_nvme_getfeat_timestamp(ts.all);
5747 
5748     return cpu_to_le64(ts.all);
5749 }
5750 
5751 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5752 {
5753     uint64_t timestamp = nvme_get_timestamp(n);
5754 
5755     return nvme_c2h(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5756 }
5757 
5758 static int nvme_get_feature_fdp(NvmeCtrl *n, uint32_t endgrpid,
5759                                 uint32_t *result)
5760 {
5761     *result = 0;
5762 
5763     if (!n->subsys || !n->subsys->endgrp.fdp.enabled) {
5764         return NVME_INVALID_FIELD | NVME_DNR;
5765     }
5766 
5767     *result = FIELD_DP16(0, FEAT_FDP, FDPE, 1);
5768     *result = FIELD_DP16(*result, FEAT_FDP, CONF_NDX, 0);
5769 
5770     return NVME_SUCCESS;
5771 }
5772 
5773 static uint16_t nvme_get_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns,
5774                                             NvmeRequest *req, uint32_t *result)
5775 {
5776     NvmeCmd *cmd = &req->cmd;
5777     uint32_t cdw11 = le32_to_cpu(cmd->cdw11);
5778     uint16_t ph = cdw11 & 0xffff;
5779     uint8_t noet = (cdw11 >> 16) & 0xff;
5780     uint16_t ruhid, ret;
5781     uint32_t nentries = 0;
5782     uint8_t s_events_ndx = 0;
5783     size_t s_events_siz = sizeof(NvmeFdpEventDescr) * noet;
5784     g_autofree NvmeFdpEventDescr *s_events = g_malloc0(s_events_siz);
5785     NvmeRuHandle *ruh;
5786     NvmeFdpEventDescr *s_event;
5787 
5788     if (!n->subsys || !n->subsys->endgrp.fdp.enabled) {
5789         return NVME_FDP_DISABLED | NVME_DNR;
5790     }
5791 
5792     if (!nvme_ph_valid(ns, ph)) {
5793         return NVME_INVALID_FIELD | NVME_DNR;
5794     }
5795 
5796     ruhid = ns->fdp.phs[ph];
5797     ruh = &n->subsys->endgrp.fdp.ruhs[ruhid];
5798 
5799     assert(ruh);
5800 
5801     if (unlikely(noet == 0)) {
5802         return NVME_INVALID_FIELD | NVME_DNR;
5803     }
5804 
5805     for (uint8_t event_type = 0; event_type < FDP_EVT_MAX; event_type++) {
5806         uint8_t shift = nvme_fdp_evf_shifts[event_type];
5807         if (!shift && event_type) {
5808             /*
5809              * only first entry (event_type == 0) has a shift value of 0
5810              * other entries are simply unpopulated.
5811              */
5812             continue;
5813         }
5814 
5815         nentries++;
5816 
5817         s_event = &s_events[s_events_ndx];
5818         s_event->evt = event_type;
5819         s_event->evta = (ruh->event_filter >> shift) & 0x1;
5820 
5821         /* break if all `noet` entries are filled */
5822         if ((++s_events_ndx) == noet) {
5823             break;
5824         }
5825     }
5826 
5827     ret = nvme_c2h(n, s_events, s_events_siz, req);
5828     if (ret) {
5829         return ret;
5830     }
5831 
5832     *result = nentries;
5833     return NVME_SUCCESS;
5834 }
5835 
5836 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
5837 {
5838     NvmeCmd *cmd = &req->cmd;
5839     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5840     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5841     uint32_t nsid = le32_to_cpu(cmd->nsid);
5842     uint32_t result;
5843     uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5844     NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
5845     uint16_t iv;
5846     NvmeNamespace *ns;
5847     int i;
5848     uint16_t endgrpid = 0, ret = NVME_SUCCESS;
5849 
5850     static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
5851         [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
5852     };
5853 
5854     trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
5855 
5856     if (!nvme_feature_support[fid]) {
5857         return NVME_INVALID_FIELD | NVME_DNR;
5858     }
5859 
5860     if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5861         if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5862             /*
5863              * The Reservation Notification Mask and Reservation Persistence
5864              * features require a status code of Invalid Field in Command when
5865              * NSID is FFFFFFFFh. Since the device does not support those
5866              * features we can always return Invalid Namespace or Format as we
5867              * should do for all other features.
5868              */
5869             return NVME_INVALID_NSID | NVME_DNR;
5870         }
5871 
5872         if (!nvme_ns(n, nsid)) {
5873             return NVME_INVALID_FIELD | NVME_DNR;
5874         }
5875     }
5876 
5877     switch (sel) {
5878     case NVME_GETFEAT_SELECT_CURRENT:
5879         break;
5880     case NVME_GETFEAT_SELECT_SAVED:
5881         /* no features are saveable by the controller; fallthrough */
5882     case NVME_GETFEAT_SELECT_DEFAULT:
5883         goto defaults;
5884     case NVME_GETFEAT_SELECT_CAP:
5885         result = nvme_feature_cap[fid];
5886         goto out;
5887     }
5888 
5889     switch (fid) {
5890     case NVME_TEMPERATURE_THRESHOLD:
5891         result = 0;
5892 
5893         /*
5894          * The controller only implements the Composite Temperature sensor, so
5895          * return 0 for all other sensors.
5896          */
5897         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5898             goto out;
5899         }
5900 
5901         switch (NVME_TEMP_THSEL(dw11)) {
5902         case NVME_TEMP_THSEL_OVER:
5903             result = n->features.temp_thresh_hi;
5904             goto out;
5905         case NVME_TEMP_THSEL_UNDER:
5906             result = n->features.temp_thresh_low;
5907             goto out;
5908         }
5909 
5910         return NVME_INVALID_FIELD | NVME_DNR;
5911     case NVME_ERROR_RECOVERY:
5912         if (!nvme_nsid_valid(n, nsid)) {
5913             return NVME_INVALID_NSID | NVME_DNR;
5914         }
5915 
5916         ns = nvme_ns(n, nsid);
5917         if (unlikely(!ns)) {
5918             return NVME_INVALID_FIELD | NVME_DNR;
5919         }
5920 
5921         result = ns->features.err_rec;
5922         goto out;
5923     case NVME_VOLATILE_WRITE_CACHE:
5924         result = 0;
5925         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5926             ns = nvme_ns(n, i);
5927             if (!ns) {
5928                 continue;
5929             }
5930 
5931             result = blk_enable_write_cache(ns->blkconf.blk);
5932             if (result) {
5933                 break;
5934             }
5935         }
5936         trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
5937         goto out;
5938     case NVME_ASYNCHRONOUS_EVENT_CONF:
5939         result = n->features.async_config;
5940         goto out;
5941     case NVME_TIMESTAMP:
5942         return nvme_get_feature_timestamp(n, req);
5943     case NVME_HOST_BEHAVIOR_SUPPORT:
5944         return nvme_c2h(n, (uint8_t *)&n->features.hbs,
5945                         sizeof(n->features.hbs), req);
5946     case NVME_FDP_MODE:
5947         endgrpid = dw11 & 0xff;
5948 
5949         if (endgrpid != 0x1) {
5950             return NVME_INVALID_FIELD | NVME_DNR;
5951         }
5952 
5953         ret = nvme_get_feature_fdp(n, endgrpid, &result);
5954         if (ret) {
5955             return ret;
5956         }
5957         goto out;
5958     case NVME_FDP_EVENTS:
5959         if (!nvme_nsid_valid(n, nsid)) {
5960             return NVME_INVALID_NSID | NVME_DNR;
5961         }
5962 
5963         ns = nvme_ns(n, nsid);
5964         if (unlikely(!ns)) {
5965             return NVME_INVALID_FIELD | NVME_DNR;
5966         }
5967 
5968         ret = nvme_get_feature_fdp_events(n, ns, req, &result);
5969         if (ret) {
5970             return ret;
5971         }
5972         goto out;
5973     default:
5974         break;
5975     }
5976 
5977 defaults:
5978     switch (fid) {
5979     case NVME_TEMPERATURE_THRESHOLD:
5980         result = 0;
5981 
5982         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5983             break;
5984         }
5985 
5986         if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
5987             result = NVME_TEMPERATURE_WARNING;
5988         }
5989 
5990         break;
5991     case NVME_NUMBER_OF_QUEUES:
5992         result = (n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16);
5993         trace_pci_nvme_getfeat_numq(result);
5994         break;
5995     case NVME_INTERRUPT_VECTOR_CONF:
5996         iv = dw11 & 0xffff;
5997         if (iv >= n->conf_ioqpairs + 1) {
5998             return NVME_INVALID_FIELD | NVME_DNR;
5999         }
6000 
6001         result = iv;
6002         if (iv == n->admin_cq.vector) {
6003             result |= NVME_INTVC_NOCOALESCING;
6004         }
6005         break;
6006     case NVME_FDP_MODE:
6007         endgrpid = dw11 & 0xff;
6008 
6009         if (endgrpid != 0x1) {
6010             return NVME_INVALID_FIELD | NVME_DNR;
6011         }
6012 
6013         ret = nvme_get_feature_fdp(n, endgrpid, &result);
6014         if (ret) {
6015             return ret;
6016         }
6017         goto out;
6018 
6019         break;
6020     default:
6021         result = nvme_feature_default[fid];
6022         break;
6023     }
6024 
6025 out:
6026     req->cqe.result = cpu_to_le32(result);
6027     return ret;
6028 }
6029 
6030 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
6031 {
6032     uint16_t ret;
6033     uint64_t timestamp;
6034 
6035     ret = nvme_h2c(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
6036     if (ret) {
6037         return ret;
6038     }
6039 
6040     nvme_set_timestamp(n, timestamp);
6041 
6042     return NVME_SUCCESS;
6043 }
6044 
6045 static uint16_t nvme_set_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns,
6046                                             NvmeRequest *req)
6047 {
6048     NvmeCmd *cmd = &req->cmd;
6049     uint32_t cdw11 = le32_to_cpu(cmd->cdw11);
6050     uint16_t ph = cdw11 & 0xffff;
6051     uint8_t noet = (cdw11 >> 16) & 0xff;
6052     uint16_t ret, ruhid;
6053     uint8_t enable = le32_to_cpu(cmd->cdw12) & 0x1;
6054     uint8_t event_mask = 0;
6055     unsigned int i;
6056     g_autofree uint8_t *events = g_malloc0(noet);
6057     NvmeRuHandle *ruh = NULL;
6058 
6059     assert(ns);
6060 
6061     if (!n->subsys || !n->subsys->endgrp.fdp.enabled) {
6062         return NVME_FDP_DISABLED | NVME_DNR;
6063     }
6064 
6065     if (!nvme_ph_valid(ns, ph)) {
6066         return NVME_INVALID_FIELD | NVME_DNR;
6067     }
6068 
6069     ruhid = ns->fdp.phs[ph];
6070     ruh = &n->subsys->endgrp.fdp.ruhs[ruhid];
6071 
6072     ret = nvme_h2c(n, events, noet, req);
6073     if (ret) {
6074         return ret;
6075     }
6076 
6077     for (i = 0; i < noet; i++) {
6078         event_mask |= (1 << nvme_fdp_evf_shifts[events[i]]);
6079     }
6080 
6081     if (enable) {
6082         ruh->event_filter |= event_mask;
6083     } else {
6084         ruh->event_filter = ruh->event_filter & ~event_mask;
6085     }
6086 
6087     return NVME_SUCCESS;
6088 }
6089 
6090 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
6091 {
6092     NvmeNamespace *ns = NULL;
6093 
6094     NvmeCmd *cmd = &req->cmd;
6095     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
6096     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
6097     uint32_t nsid = le32_to_cpu(cmd->nsid);
6098     uint8_t fid = NVME_GETSETFEAT_FID(dw10);
6099     uint8_t save = NVME_SETFEAT_SAVE(dw10);
6100     uint16_t status;
6101     int i;
6102 
6103     trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
6104 
6105     if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
6106         return NVME_FID_NOT_SAVEABLE | NVME_DNR;
6107     }
6108 
6109     if (!nvme_feature_support[fid]) {
6110         return NVME_INVALID_FIELD | NVME_DNR;
6111     }
6112 
6113     if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
6114         if (nsid != NVME_NSID_BROADCAST) {
6115             if (!nvme_nsid_valid(n, nsid)) {
6116                 return NVME_INVALID_NSID | NVME_DNR;
6117             }
6118 
6119             ns = nvme_ns(n, nsid);
6120             if (unlikely(!ns)) {
6121                 return NVME_INVALID_FIELD | NVME_DNR;
6122             }
6123         }
6124     } else if (nsid && nsid != NVME_NSID_BROADCAST) {
6125         if (!nvme_nsid_valid(n, nsid)) {
6126             return NVME_INVALID_NSID | NVME_DNR;
6127         }
6128 
6129         return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
6130     }
6131 
6132     if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
6133         return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
6134     }
6135 
6136     switch (fid) {
6137     case NVME_TEMPERATURE_THRESHOLD:
6138         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
6139             break;
6140         }
6141 
6142         switch (NVME_TEMP_THSEL(dw11)) {
6143         case NVME_TEMP_THSEL_OVER:
6144             n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
6145             break;
6146         case NVME_TEMP_THSEL_UNDER:
6147             n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
6148             break;
6149         default:
6150             return NVME_INVALID_FIELD | NVME_DNR;
6151         }
6152 
6153         if ((n->temperature >= n->features.temp_thresh_hi) ||
6154             (n->temperature <= n->features.temp_thresh_low)) {
6155             nvme_smart_event(n, NVME_SMART_TEMPERATURE);
6156         }
6157 
6158         break;
6159     case NVME_ERROR_RECOVERY:
6160         if (nsid == NVME_NSID_BROADCAST) {
6161             for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6162                 ns = nvme_ns(n, i);
6163 
6164                 if (!ns) {
6165                     continue;
6166                 }
6167 
6168                 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
6169                     ns->features.err_rec = dw11;
6170                 }
6171             }
6172 
6173             break;
6174         }
6175 
6176         assert(ns);
6177         if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat))  {
6178             ns->features.err_rec = dw11;
6179         }
6180         break;
6181     case NVME_VOLATILE_WRITE_CACHE:
6182         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6183             ns = nvme_ns(n, i);
6184             if (!ns) {
6185                 continue;
6186             }
6187 
6188             if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
6189                 blk_flush(ns->blkconf.blk);
6190             }
6191 
6192             blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
6193         }
6194 
6195         break;
6196 
6197     case NVME_NUMBER_OF_QUEUES:
6198         if (n->qs_created) {
6199             return NVME_CMD_SEQ_ERROR | NVME_DNR;
6200         }
6201 
6202         /*
6203          * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
6204          * and NSQR.
6205          */
6206         if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
6207             return NVME_INVALID_FIELD | NVME_DNR;
6208         }
6209 
6210         trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1,
6211                                     ((dw11 >> 16) & 0xffff) + 1,
6212                                     n->conf_ioqpairs,
6213                                     n->conf_ioqpairs);
6214         req->cqe.result = cpu_to_le32((n->conf_ioqpairs - 1) |
6215                                       ((n->conf_ioqpairs - 1) << 16));
6216         break;
6217     case NVME_ASYNCHRONOUS_EVENT_CONF:
6218         n->features.async_config = dw11;
6219         break;
6220     case NVME_TIMESTAMP:
6221         return nvme_set_feature_timestamp(n, req);
6222     case NVME_HOST_BEHAVIOR_SUPPORT:
6223         status = nvme_h2c(n, (uint8_t *)&n->features.hbs,
6224                           sizeof(n->features.hbs), req);
6225         if (status) {
6226             return status;
6227         }
6228 
6229         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6230             ns = nvme_ns(n, i);
6231 
6232             if (!ns) {
6233                 continue;
6234             }
6235 
6236             ns->id_ns.nlbaf = ns->nlbaf - 1;
6237             if (!n->features.hbs.lbafee) {
6238                 ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15);
6239             }
6240         }
6241 
6242         return status;
6243     case NVME_COMMAND_SET_PROFILE:
6244         if (dw11 & 0x1ff) {
6245             trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
6246             return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
6247         }
6248         break;
6249     case NVME_FDP_MODE:
6250         /* spec: abort with cmd seq err if there's one or more NS' in endgrp */
6251         return NVME_CMD_SEQ_ERROR | NVME_DNR;
6252     case NVME_FDP_EVENTS:
6253         return nvme_set_feature_fdp_events(n, ns, req);
6254     default:
6255         return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
6256     }
6257     return NVME_SUCCESS;
6258 }
6259 
6260 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
6261 {
6262     trace_pci_nvme_aer(nvme_cid(req));
6263 
6264     if (n->outstanding_aers > n->params.aerl) {
6265         trace_pci_nvme_aer_aerl_exceeded();
6266         return NVME_AER_LIMIT_EXCEEDED;
6267     }
6268 
6269     n->aer_reqs[n->outstanding_aers] = req;
6270     n->outstanding_aers++;
6271 
6272     if (!QTAILQ_EMPTY(&n->aer_queue)) {
6273         nvme_process_aers(n);
6274     }
6275 
6276     return NVME_NO_COMPLETE;
6277 }
6278 
6279 static void nvme_update_dmrsl(NvmeCtrl *n)
6280 {
6281     int nsid;
6282 
6283     for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
6284         NvmeNamespace *ns = nvme_ns(n, nsid);
6285         if (!ns) {
6286             continue;
6287         }
6288 
6289         n->dmrsl = MIN_NON_ZERO(n->dmrsl,
6290                                 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
6291     }
6292 }
6293 
6294 static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns)
6295 {
6296     uint32_t cc = ldl_le_p(&n->bar.cc);
6297 
6298     ns->iocs = nvme_cse_iocs_none;
6299     switch (ns->csi) {
6300     case NVME_CSI_NVM:
6301         if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) {
6302             ns->iocs = nvme_cse_iocs_nvm;
6303         }
6304         break;
6305     case NVME_CSI_ZONED:
6306         if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) {
6307             ns->iocs = nvme_cse_iocs_zoned;
6308         } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) {
6309             ns->iocs = nvme_cse_iocs_nvm;
6310         }
6311         break;
6312     }
6313 }
6314 
6315 static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
6316 {
6317     NvmeNamespace *ns;
6318     NvmeCtrl *ctrl;
6319     uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
6320     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
6321     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6322     uint8_t sel = dw10 & 0xf;
6323     uint16_t *nr_ids = &list[0];
6324     uint16_t *ids = &list[1];
6325     uint16_t ret;
6326     int i;
6327 
6328     trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
6329 
6330     if (!nvme_nsid_valid(n, nsid)) {
6331         return NVME_INVALID_NSID | NVME_DNR;
6332     }
6333 
6334     ns = nvme_subsys_ns(n->subsys, nsid);
6335     if (!ns) {
6336         return NVME_INVALID_FIELD | NVME_DNR;
6337     }
6338 
6339     ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
6340     if (ret) {
6341         return ret;
6342     }
6343 
6344     if (!*nr_ids) {
6345         return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
6346     }
6347 
6348     *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1);
6349     for (i = 0; i < *nr_ids; i++) {
6350         ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
6351         if (!ctrl) {
6352             return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
6353         }
6354 
6355         switch (sel) {
6356         case NVME_NS_ATTACHMENT_ATTACH:
6357             if (nvme_ns(ctrl, nsid)) {
6358                 return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
6359             }
6360 
6361             if (ns->attached && !ns->params.shared) {
6362                 return NVME_NS_PRIVATE | NVME_DNR;
6363             }
6364 
6365             nvme_attach_ns(ctrl, ns);
6366             nvme_select_iocs_ns(ctrl, ns);
6367 
6368             break;
6369 
6370         case NVME_NS_ATTACHMENT_DETACH:
6371             if (!nvme_ns(ctrl, nsid)) {
6372                 return NVME_NS_NOT_ATTACHED | NVME_DNR;
6373             }
6374 
6375             ctrl->namespaces[nsid] = NULL;
6376             ns->attached--;
6377 
6378             nvme_update_dmrsl(ctrl);
6379 
6380             break;
6381 
6382         default:
6383             return NVME_INVALID_FIELD | NVME_DNR;
6384         }
6385 
6386         /*
6387          * Add namespace id to the changed namespace id list for event clearing
6388          * via Get Log Page command.
6389          */
6390         if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
6391             nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
6392                                NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
6393                                NVME_LOG_CHANGED_NSLIST);
6394         }
6395     }
6396 
6397     return NVME_SUCCESS;
6398 }
6399 
6400 typedef struct NvmeFormatAIOCB {
6401     BlockAIOCB common;
6402     BlockAIOCB *aiocb;
6403     NvmeRequest *req;
6404     int ret;
6405 
6406     NvmeNamespace *ns;
6407     uint32_t nsid;
6408     bool broadcast;
6409     int64_t offset;
6410 
6411     uint8_t lbaf;
6412     uint8_t mset;
6413     uint8_t pi;
6414     uint8_t pil;
6415 } NvmeFormatAIOCB;
6416 
6417 static void nvme_format_cancel(BlockAIOCB *aiocb)
6418 {
6419     NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common);
6420 
6421     iocb->ret = -ECANCELED;
6422 
6423     if (iocb->aiocb) {
6424         blk_aio_cancel_async(iocb->aiocb);
6425         iocb->aiocb = NULL;
6426     }
6427 }
6428 
6429 static const AIOCBInfo nvme_format_aiocb_info = {
6430     .aiocb_size = sizeof(NvmeFormatAIOCB),
6431     .cancel_async = nvme_format_cancel,
6432     .get_aio_context = nvme_get_aio_context,
6433 };
6434 
6435 static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset,
6436                             uint8_t pi, uint8_t pil)
6437 {
6438     uint8_t lbafl = lbaf & 0xf;
6439     uint8_t lbafu = lbaf >> 4;
6440 
6441     trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil);
6442 
6443     ns->id_ns.dps = (pil << 3) | pi;
6444     ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl;
6445 
6446     nvme_ns_init_format(ns);
6447 }
6448 
6449 static void nvme_do_format(NvmeFormatAIOCB *iocb);
6450 
6451 static void nvme_format_ns_cb(void *opaque, int ret)
6452 {
6453     NvmeFormatAIOCB *iocb = opaque;
6454     NvmeNamespace *ns = iocb->ns;
6455     int bytes;
6456 
6457     if (iocb->ret < 0) {
6458         goto done;
6459     } else if (ret < 0) {
6460         iocb->ret = ret;
6461         goto done;
6462     }
6463 
6464     assert(ns);
6465 
6466     if (iocb->offset < ns->size) {
6467         bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset);
6468 
6469         iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset,
6470                                             bytes, BDRV_REQ_MAY_UNMAP,
6471                                             nvme_format_ns_cb, iocb);
6472 
6473         iocb->offset += bytes;
6474         return;
6475     }
6476 
6477     nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil);
6478     ns->status = 0x0;
6479     iocb->ns = NULL;
6480     iocb->offset = 0;
6481 
6482 done:
6483     nvme_do_format(iocb);
6484 }
6485 
6486 static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi)
6487 {
6488     if (ns->params.zoned) {
6489         return NVME_INVALID_FORMAT | NVME_DNR;
6490     }
6491 
6492     if (lbaf > ns->id_ns.nlbaf) {
6493         return NVME_INVALID_FORMAT | NVME_DNR;
6494     }
6495 
6496     if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) {
6497         return NVME_INVALID_FORMAT | NVME_DNR;
6498     }
6499 
6500     if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
6501         return NVME_INVALID_FIELD | NVME_DNR;
6502     }
6503 
6504     return NVME_SUCCESS;
6505 }
6506 
6507 static void nvme_do_format(NvmeFormatAIOCB *iocb)
6508 {
6509     NvmeRequest *req = iocb->req;
6510     NvmeCtrl *n = nvme_ctrl(req);
6511     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6512     uint8_t lbaf = dw10 & 0xf;
6513     uint8_t pi = (dw10 >> 5) & 0x7;
6514     uint16_t status;
6515     int i;
6516 
6517     if (iocb->ret < 0) {
6518         goto done;
6519     }
6520 
6521     if (iocb->broadcast) {
6522         for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
6523             iocb->ns = nvme_ns(n, i);
6524             if (iocb->ns) {
6525                 iocb->nsid = i;
6526                 break;
6527             }
6528         }
6529     }
6530 
6531     if (!iocb->ns) {
6532         goto done;
6533     }
6534 
6535     status = nvme_format_check(iocb->ns, lbaf, pi);
6536     if (status) {
6537         req->status = status;
6538         goto done;
6539     }
6540 
6541     iocb->ns->status = NVME_FORMAT_IN_PROGRESS;
6542     nvme_format_ns_cb(iocb, 0);
6543     return;
6544 
6545 done:
6546     iocb->common.cb(iocb->common.opaque, iocb->ret);
6547     qemu_aio_unref(iocb);
6548 }
6549 
6550 static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
6551 {
6552     NvmeFormatAIOCB *iocb;
6553     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
6554     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6555     uint8_t lbaf = dw10 & 0xf;
6556     uint8_t mset = (dw10 >> 4) & 0x1;
6557     uint8_t pi = (dw10 >> 5) & 0x7;
6558     uint8_t pil = (dw10 >> 8) & 0x1;
6559     uint8_t lbafu = (dw10 >> 12) & 0x3;
6560     uint16_t status;
6561 
6562     iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req);
6563 
6564     iocb->req = req;
6565     iocb->ret = 0;
6566     iocb->ns = NULL;
6567     iocb->nsid = 0;
6568     iocb->lbaf = lbaf;
6569     iocb->mset = mset;
6570     iocb->pi = pi;
6571     iocb->pil = pil;
6572     iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
6573     iocb->offset = 0;
6574 
6575     if (n->features.hbs.lbafee) {
6576         iocb->lbaf |= lbafu << 4;
6577     }
6578 
6579     if (!iocb->broadcast) {
6580         if (!nvme_nsid_valid(n, nsid)) {
6581             status = NVME_INVALID_NSID | NVME_DNR;
6582             goto out;
6583         }
6584 
6585         iocb->ns = nvme_ns(n, nsid);
6586         if (!iocb->ns) {
6587             status = NVME_INVALID_FIELD | NVME_DNR;
6588             goto out;
6589         }
6590     }
6591 
6592     req->aiocb = &iocb->common;
6593     nvme_do_format(iocb);
6594 
6595     return NVME_NO_COMPLETE;
6596 
6597 out:
6598     qemu_aio_unref(iocb);
6599 
6600     return status;
6601 }
6602 
6603 static void nvme_get_virt_res_num(NvmeCtrl *n, uint8_t rt, int *num_total,
6604                                   int *num_prim, int *num_sec)
6605 {
6606     *num_total = le32_to_cpu(rt ?
6607                              n->pri_ctrl_cap.vifrt : n->pri_ctrl_cap.vqfrt);
6608     *num_prim = le16_to_cpu(rt ?
6609                             n->pri_ctrl_cap.virfap : n->pri_ctrl_cap.vqrfap);
6610     *num_sec = le16_to_cpu(rt ? n->pri_ctrl_cap.virfa : n->pri_ctrl_cap.vqrfa);
6611 }
6612 
6613 static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl *n, NvmeRequest *req,
6614                                              uint16_t cntlid, uint8_t rt,
6615                                              int nr)
6616 {
6617     int num_total, num_prim, num_sec;
6618 
6619     if (cntlid != n->cntlid) {
6620         return NVME_INVALID_CTRL_ID | NVME_DNR;
6621     }
6622 
6623     nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
6624 
6625     if (nr > num_total) {
6626         return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
6627     }
6628 
6629     if (nr > num_total - num_sec) {
6630         return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6631     }
6632 
6633     if (rt) {
6634         n->next_pri_ctrl_cap.virfap = cpu_to_le16(nr);
6635     } else {
6636         n->next_pri_ctrl_cap.vqrfap = cpu_to_le16(nr);
6637     }
6638 
6639     req->cqe.result = cpu_to_le32(nr);
6640     return req->status;
6641 }
6642 
6643 static void nvme_update_virt_res(NvmeCtrl *n, NvmeSecCtrlEntry *sctrl,
6644                                  uint8_t rt, int nr)
6645 {
6646     int prev_nr, prev_total;
6647 
6648     if (rt) {
6649         prev_nr = le16_to_cpu(sctrl->nvi);
6650         prev_total = le32_to_cpu(n->pri_ctrl_cap.virfa);
6651         sctrl->nvi = cpu_to_le16(nr);
6652         n->pri_ctrl_cap.virfa = cpu_to_le32(prev_total + nr - prev_nr);
6653     } else {
6654         prev_nr = le16_to_cpu(sctrl->nvq);
6655         prev_total = le32_to_cpu(n->pri_ctrl_cap.vqrfa);
6656         sctrl->nvq = cpu_to_le16(nr);
6657         n->pri_ctrl_cap.vqrfa = cpu_to_le32(prev_total + nr - prev_nr);
6658     }
6659 }
6660 
6661 static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl *n, NvmeRequest *req,
6662                                             uint16_t cntlid, uint8_t rt, int nr)
6663 {
6664     int num_total, num_prim, num_sec, num_free, diff, limit;
6665     NvmeSecCtrlEntry *sctrl;
6666 
6667     sctrl = nvme_sctrl_for_cntlid(n, cntlid);
6668     if (!sctrl) {
6669         return NVME_INVALID_CTRL_ID | NVME_DNR;
6670     }
6671 
6672     if (sctrl->scs) {
6673         return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
6674     }
6675 
6676     limit = le16_to_cpu(rt ? n->pri_ctrl_cap.vifrsm : n->pri_ctrl_cap.vqfrsm);
6677     if (nr > limit) {
6678         return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
6679     }
6680 
6681     nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
6682     num_free = num_total - num_prim - num_sec;
6683     diff = nr - le16_to_cpu(rt ? sctrl->nvi : sctrl->nvq);
6684 
6685     if (diff > num_free) {
6686         return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6687     }
6688 
6689     nvme_update_virt_res(n, sctrl, rt, nr);
6690     req->cqe.result = cpu_to_le32(nr);
6691 
6692     return req->status;
6693 }
6694 
6695 static uint16_t nvme_virt_set_state(NvmeCtrl *n, uint16_t cntlid, bool online)
6696 {
6697     PCIDevice *pci = PCI_DEVICE(n);
6698     NvmeCtrl *sn = NULL;
6699     NvmeSecCtrlEntry *sctrl;
6700     int vf_index;
6701 
6702     sctrl = nvme_sctrl_for_cntlid(n, cntlid);
6703     if (!sctrl) {
6704         return NVME_INVALID_CTRL_ID | NVME_DNR;
6705     }
6706 
6707     if (!pci_is_vf(pci)) {
6708         vf_index = le16_to_cpu(sctrl->vfn) - 1;
6709         sn = NVME(pcie_sriov_get_vf_at_index(pci, vf_index));
6710     }
6711 
6712     if (online) {
6713         if (!sctrl->nvi || (le16_to_cpu(sctrl->nvq) < 2) || !sn) {
6714             return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
6715         }
6716 
6717         if (!sctrl->scs) {
6718             sctrl->scs = 0x1;
6719             nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
6720         }
6721     } else {
6722         nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_INTERRUPT, 0);
6723         nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_QUEUE, 0);
6724 
6725         if (sctrl->scs) {
6726             sctrl->scs = 0x0;
6727             if (sn) {
6728                 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
6729             }
6730         }
6731     }
6732 
6733     return NVME_SUCCESS;
6734 }
6735 
6736 static uint16_t nvme_virt_mngmt(NvmeCtrl *n, NvmeRequest *req)
6737 {
6738     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6739     uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
6740     uint8_t act = dw10 & 0xf;
6741     uint8_t rt = (dw10 >> 8) & 0x7;
6742     uint16_t cntlid = (dw10 >> 16) & 0xffff;
6743     int nr = dw11 & 0xffff;
6744 
6745     trace_pci_nvme_virt_mngmt(nvme_cid(req), act, cntlid, rt ? "VI" : "VQ", nr);
6746 
6747     if (rt != NVME_VIRT_RES_QUEUE && rt != NVME_VIRT_RES_INTERRUPT) {
6748         return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6749     }
6750 
6751     switch (act) {
6752     case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN:
6753         return nvme_assign_virt_res_to_sec(n, req, cntlid, rt, nr);
6754     case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC:
6755         return nvme_assign_virt_res_to_prim(n, req, cntlid, rt, nr);
6756     case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE:
6757         return nvme_virt_set_state(n, cntlid, true);
6758     case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE:
6759         return nvme_virt_set_state(n, cntlid, false);
6760     default:
6761         return NVME_INVALID_FIELD | NVME_DNR;
6762     }
6763 }
6764 
6765 static uint16_t nvme_dbbuf_config(NvmeCtrl *n, const NvmeRequest *req)
6766 {
6767     PCIDevice *pci = PCI_DEVICE(n);
6768     uint64_t dbs_addr = le64_to_cpu(req->cmd.dptr.prp1);
6769     uint64_t eis_addr = le64_to_cpu(req->cmd.dptr.prp2);
6770     int i;
6771 
6772     /* Address should be page aligned */
6773     if (dbs_addr & (n->page_size - 1) || eis_addr & (n->page_size - 1)) {
6774         return NVME_INVALID_FIELD | NVME_DNR;
6775     }
6776 
6777     /* Save shadow buffer base addr for use during queue creation */
6778     n->dbbuf_dbs = dbs_addr;
6779     n->dbbuf_eis = eis_addr;
6780     n->dbbuf_enabled = true;
6781 
6782     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6783         NvmeSQueue *sq = n->sq[i];
6784         NvmeCQueue *cq = n->cq[i];
6785 
6786         if (sq) {
6787             /*
6788              * CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3)
6789              * nvme_process_db() uses this hard-coded way to calculate
6790              * doorbell offsets. Be consistent with that here.
6791              */
6792             sq->db_addr = dbs_addr + (i << 3);
6793             sq->ei_addr = eis_addr + (i << 3);
6794             pci_dma_write(pci, sq->db_addr, &sq->tail, sizeof(sq->tail));
6795 
6796             if (n->params.ioeventfd && sq->sqid != 0) {
6797                 if (!nvme_init_sq_ioeventfd(sq)) {
6798                     sq->ioeventfd_enabled = true;
6799                 }
6800             }
6801         }
6802 
6803         if (cq) {
6804             /* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */
6805             cq->db_addr = dbs_addr + (i << 3) + (1 << 2);
6806             cq->ei_addr = eis_addr + (i << 3) + (1 << 2);
6807             pci_dma_write(pci, cq->db_addr, &cq->head, sizeof(cq->head));
6808 
6809             if (n->params.ioeventfd && cq->cqid != 0) {
6810                 if (!nvme_init_cq_ioeventfd(cq)) {
6811                     cq->ioeventfd_enabled = true;
6812                 }
6813             }
6814         }
6815     }
6816 
6817     trace_pci_nvme_dbbuf_config(dbs_addr, eis_addr);
6818 
6819     return NVME_SUCCESS;
6820 }
6821 
6822 static uint16_t nvme_directive_send(NvmeCtrl *n, NvmeRequest *req)
6823 {
6824     return NVME_INVALID_FIELD | NVME_DNR;
6825 }
6826 
6827 static uint16_t nvme_directive_receive(NvmeCtrl *n, NvmeRequest *req)
6828 {
6829     NvmeNamespace *ns;
6830     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6831     uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
6832     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
6833     uint8_t doper, dtype;
6834     uint32_t numd, trans_len;
6835     NvmeDirectiveIdentify id = {
6836         .supported = 1 << NVME_DIRECTIVE_IDENTIFY,
6837         .enabled = 1 << NVME_DIRECTIVE_IDENTIFY,
6838     };
6839 
6840     numd = dw10 + 1;
6841     doper = dw11 & 0xff;
6842     dtype = (dw11 >> 8) & 0xff;
6843 
6844     trans_len = MIN(sizeof(NvmeDirectiveIdentify), numd << 2);
6845 
6846     if (nsid == NVME_NSID_BROADCAST || dtype != NVME_DIRECTIVE_IDENTIFY ||
6847         doper != NVME_DIRECTIVE_RETURN_PARAMS) {
6848         return NVME_INVALID_FIELD | NVME_DNR;
6849     }
6850 
6851     ns = nvme_ns(n, nsid);
6852     if (!ns) {
6853         return NVME_INVALID_FIELD | NVME_DNR;
6854     }
6855 
6856     switch (dtype) {
6857     case NVME_DIRECTIVE_IDENTIFY:
6858         switch (doper) {
6859         case NVME_DIRECTIVE_RETURN_PARAMS:
6860             if (ns->endgrp->fdp.enabled) {
6861                 id.supported |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT;
6862                 id.enabled |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT;
6863                 id.persistent |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT;
6864             }
6865 
6866             return nvme_c2h(n, (uint8_t *)&id, trans_len, req);
6867 
6868         default:
6869             return NVME_INVALID_FIELD | NVME_DNR;
6870         }
6871 
6872     default:
6873         return NVME_INVALID_FIELD;
6874     }
6875 }
6876 
6877 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
6878 {
6879     trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
6880                              nvme_adm_opc_str(req->cmd.opcode));
6881 
6882     if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
6883         trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
6884         return NVME_INVALID_OPCODE | NVME_DNR;
6885     }
6886 
6887     /* SGLs shall not be used for Admin commands in NVMe over PCIe */
6888     if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
6889         return NVME_INVALID_FIELD | NVME_DNR;
6890     }
6891 
6892     if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
6893         return NVME_INVALID_FIELD;
6894     }
6895 
6896     switch (req->cmd.opcode) {
6897     case NVME_ADM_CMD_DELETE_SQ:
6898         return nvme_del_sq(n, req);
6899     case NVME_ADM_CMD_CREATE_SQ:
6900         return nvme_create_sq(n, req);
6901     case NVME_ADM_CMD_GET_LOG_PAGE:
6902         return nvme_get_log(n, req);
6903     case NVME_ADM_CMD_DELETE_CQ:
6904         return nvme_del_cq(n, req);
6905     case NVME_ADM_CMD_CREATE_CQ:
6906         return nvme_create_cq(n, req);
6907     case NVME_ADM_CMD_IDENTIFY:
6908         return nvme_identify(n, req);
6909     case NVME_ADM_CMD_ABORT:
6910         return nvme_abort(n, req);
6911     case NVME_ADM_CMD_SET_FEATURES:
6912         return nvme_set_feature(n, req);
6913     case NVME_ADM_CMD_GET_FEATURES:
6914         return nvme_get_feature(n, req);
6915     case NVME_ADM_CMD_ASYNC_EV_REQ:
6916         return nvme_aer(n, req);
6917     case NVME_ADM_CMD_NS_ATTACHMENT:
6918         return nvme_ns_attachment(n, req);
6919     case NVME_ADM_CMD_VIRT_MNGMT:
6920         return nvme_virt_mngmt(n, req);
6921     case NVME_ADM_CMD_DBBUF_CONFIG:
6922         return nvme_dbbuf_config(n, req);
6923     case NVME_ADM_CMD_FORMAT_NVM:
6924         return nvme_format(n, req);
6925     case NVME_ADM_CMD_DIRECTIVE_SEND:
6926         return nvme_directive_send(n, req);
6927     case NVME_ADM_CMD_DIRECTIVE_RECV:
6928         return nvme_directive_receive(n, req);
6929     default:
6930         assert(false);
6931     }
6932 
6933     return NVME_INVALID_OPCODE | NVME_DNR;
6934 }
6935 
6936 static void nvme_update_sq_eventidx(const NvmeSQueue *sq)
6937 {
6938     uint32_t v = cpu_to_le32(sq->tail);
6939 
6940     trace_pci_nvme_update_sq_eventidx(sq->sqid, sq->tail);
6941 
6942     pci_dma_write(PCI_DEVICE(sq->ctrl), sq->ei_addr, &v, sizeof(v));
6943 }
6944 
6945 static void nvme_update_sq_tail(NvmeSQueue *sq)
6946 {
6947     uint32_t v;
6948 
6949     pci_dma_read(PCI_DEVICE(sq->ctrl), sq->db_addr, &v, sizeof(v));
6950 
6951     sq->tail = le32_to_cpu(v);
6952 
6953     trace_pci_nvme_update_sq_tail(sq->sqid, sq->tail);
6954 }
6955 
6956 static void nvme_process_sq(void *opaque)
6957 {
6958     NvmeSQueue *sq = opaque;
6959     NvmeCtrl *n = sq->ctrl;
6960     NvmeCQueue *cq = n->cq[sq->cqid];
6961 
6962     uint16_t status;
6963     hwaddr addr;
6964     NvmeCmd cmd;
6965     NvmeRequest *req;
6966 
6967     if (n->dbbuf_enabled) {
6968         nvme_update_sq_tail(sq);
6969     }
6970 
6971     while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
6972         addr = sq->dma_addr + sq->head * n->sqe_size;
6973         if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
6974             trace_pci_nvme_err_addr_read(addr);
6975             trace_pci_nvme_err_cfs();
6976             stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
6977             break;
6978         }
6979         nvme_inc_sq_head(sq);
6980 
6981         req = QTAILQ_FIRST(&sq->req_list);
6982         QTAILQ_REMOVE(&sq->req_list, req, entry);
6983         QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
6984         nvme_req_clear(req);
6985         req->cqe.cid = cmd.cid;
6986         memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
6987 
6988         status = sq->sqid ? nvme_io_cmd(n, req) :
6989             nvme_admin_cmd(n, req);
6990         if (status != NVME_NO_COMPLETE) {
6991             req->status = status;
6992             nvme_enqueue_req_completion(cq, req);
6993         }
6994 
6995         if (n->dbbuf_enabled) {
6996             nvme_update_sq_eventidx(sq);
6997             nvme_update_sq_tail(sq);
6998         }
6999     }
7000 }
7001 
7002 static void nvme_update_msixcap_ts(PCIDevice *pci_dev, uint32_t table_size)
7003 {
7004     uint8_t *config;
7005 
7006     if (!msix_present(pci_dev)) {
7007         return;
7008     }
7009 
7010     assert(table_size > 0 && table_size <= pci_dev->msix_entries_nr);
7011 
7012     config = pci_dev->config + pci_dev->msix_cap;
7013     pci_set_word_by_mask(config + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_QSIZE,
7014                          table_size - 1);
7015 }
7016 
7017 static void nvme_activate_virt_res(NvmeCtrl *n)
7018 {
7019     PCIDevice *pci_dev = PCI_DEVICE(n);
7020     NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7021     NvmeSecCtrlEntry *sctrl;
7022 
7023     /* -1 to account for the admin queue */
7024     if (pci_is_vf(pci_dev)) {
7025         sctrl = nvme_sctrl(n);
7026         cap->vqprt = sctrl->nvq;
7027         cap->viprt = sctrl->nvi;
7028         n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
7029         n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
7030     } else {
7031         cap->vqrfap = n->next_pri_ctrl_cap.vqrfap;
7032         cap->virfap = n->next_pri_ctrl_cap.virfap;
7033         n->conf_ioqpairs = le16_to_cpu(cap->vqprt) +
7034                            le16_to_cpu(cap->vqrfap) - 1;
7035         n->conf_msix_qsize = le16_to_cpu(cap->viprt) +
7036                              le16_to_cpu(cap->virfap);
7037     }
7038 }
7039 
7040 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst)
7041 {
7042     PCIDevice *pci_dev = PCI_DEVICE(n);
7043     NvmeSecCtrlEntry *sctrl;
7044     NvmeNamespace *ns;
7045     int i;
7046 
7047     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7048         ns = nvme_ns(n, i);
7049         if (!ns) {
7050             continue;
7051         }
7052 
7053         nvme_ns_drain(ns);
7054     }
7055 
7056     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
7057         if (n->sq[i] != NULL) {
7058             nvme_free_sq(n->sq[i], n);
7059         }
7060     }
7061     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
7062         if (n->cq[i] != NULL) {
7063             nvme_free_cq(n->cq[i], n);
7064         }
7065     }
7066 
7067     while (!QTAILQ_EMPTY(&n->aer_queue)) {
7068         NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
7069         QTAILQ_REMOVE(&n->aer_queue, event, entry);
7070         g_free(event);
7071     }
7072 
7073     if (n->params.sriov_max_vfs) {
7074         if (!pci_is_vf(pci_dev)) {
7075             for (i = 0; i < n->sec_ctrl_list.numcntl; i++) {
7076                 sctrl = &n->sec_ctrl_list.sec[i];
7077                 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
7078             }
7079 
7080             if (rst != NVME_RESET_CONTROLLER) {
7081                 pcie_sriov_pf_disable_vfs(pci_dev);
7082             }
7083         }
7084 
7085         if (rst != NVME_RESET_CONTROLLER) {
7086             nvme_activate_virt_res(n);
7087         }
7088     }
7089 
7090     n->aer_queued = 0;
7091     n->aer_mask = 0;
7092     n->outstanding_aers = 0;
7093     n->qs_created = false;
7094 
7095     nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
7096 
7097     if (pci_is_vf(pci_dev)) {
7098         sctrl = nvme_sctrl(n);
7099 
7100         stl_le_p(&n->bar.csts, sctrl->scs ? 0 : NVME_CSTS_FAILED);
7101     } else {
7102         stl_le_p(&n->bar.csts, 0);
7103     }
7104 
7105     stl_le_p(&n->bar.intms, 0);
7106     stl_le_p(&n->bar.intmc, 0);
7107     stl_le_p(&n->bar.cc, 0);
7108 
7109     n->dbbuf_dbs = 0;
7110     n->dbbuf_eis = 0;
7111     n->dbbuf_enabled = false;
7112 }
7113 
7114 static void nvme_ctrl_shutdown(NvmeCtrl *n)
7115 {
7116     NvmeNamespace *ns;
7117     int i;
7118 
7119     if (n->pmr.dev) {
7120         memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
7121     }
7122 
7123     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7124         ns = nvme_ns(n, i);
7125         if (!ns) {
7126             continue;
7127         }
7128 
7129         nvme_ns_shutdown(ns);
7130     }
7131 }
7132 
7133 static void nvme_select_iocs(NvmeCtrl *n)
7134 {
7135     NvmeNamespace *ns;
7136     int i;
7137 
7138     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7139         ns = nvme_ns(n, i);
7140         if (!ns) {
7141             continue;
7142         }
7143 
7144         nvme_select_iocs_ns(n, ns);
7145     }
7146 }
7147 
7148 static int nvme_start_ctrl(NvmeCtrl *n)
7149 {
7150     uint64_t cap = ldq_le_p(&n->bar.cap);
7151     uint32_t cc = ldl_le_p(&n->bar.cc);
7152     uint32_t aqa = ldl_le_p(&n->bar.aqa);
7153     uint64_t asq = ldq_le_p(&n->bar.asq);
7154     uint64_t acq = ldq_le_p(&n->bar.acq);
7155     uint32_t page_bits = NVME_CC_MPS(cc) + 12;
7156     uint32_t page_size = 1 << page_bits;
7157     NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
7158 
7159     if (pci_is_vf(PCI_DEVICE(n)) && !sctrl->scs) {
7160         trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl->nvi),
7161                                                 le16_to_cpu(sctrl->nvq));
7162         return -1;
7163     }
7164     if (unlikely(n->cq[0])) {
7165         trace_pci_nvme_err_startfail_cq();
7166         return -1;
7167     }
7168     if (unlikely(n->sq[0])) {
7169         trace_pci_nvme_err_startfail_sq();
7170         return -1;
7171     }
7172     if (unlikely(asq & (page_size - 1))) {
7173         trace_pci_nvme_err_startfail_asq_misaligned(asq);
7174         return -1;
7175     }
7176     if (unlikely(acq & (page_size - 1))) {
7177         trace_pci_nvme_err_startfail_acq_misaligned(acq);
7178         return -1;
7179     }
7180     if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) {
7181         trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc));
7182         return -1;
7183     }
7184     if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) {
7185         trace_pci_nvme_err_startfail_page_too_small(
7186                     NVME_CC_MPS(cc),
7187                     NVME_CAP_MPSMIN(cap));
7188         return -1;
7189     }
7190     if (unlikely(NVME_CC_MPS(cc) >
7191                  NVME_CAP_MPSMAX(cap))) {
7192         trace_pci_nvme_err_startfail_page_too_large(
7193                     NVME_CC_MPS(cc),
7194                     NVME_CAP_MPSMAX(cap));
7195         return -1;
7196     }
7197     if (unlikely(NVME_CC_IOCQES(cc) <
7198                  NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
7199         trace_pci_nvme_err_startfail_cqent_too_small(
7200                     NVME_CC_IOCQES(cc),
7201                     NVME_CTRL_CQES_MIN(cap));
7202         return -1;
7203     }
7204     if (unlikely(NVME_CC_IOCQES(cc) >
7205                  NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
7206         trace_pci_nvme_err_startfail_cqent_too_large(
7207                     NVME_CC_IOCQES(cc),
7208                     NVME_CTRL_CQES_MAX(cap));
7209         return -1;
7210     }
7211     if (unlikely(NVME_CC_IOSQES(cc) <
7212                  NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
7213         trace_pci_nvme_err_startfail_sqent_too_small(
7214                     NVME_CC_IOSQES(cc),
7215                     NVME_CTRL_SQES_MIN(cap));
7216         return -1;
7217     }
7218     if (unlikely(NVME_CC_IOSQES(cc) >
7219                  NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
7220         trace_pci_nvme_err_startfail_sqent_too_large(
7221                     NVME_CC_IOSQES(cc),
7222                     NVME_CTRL_SQES_MAX(cap));
7223         return -1;
7224     }
7225     if (unlikely(!NVME_AQA_ASQS(aqa))) {
7226         trace_pci_nvme_err_startfail_asqent_sz_zero();
7227         return -1;
7228     }
7229     if (unlikely(!NVME_AQA_ACQS(aqa))) {
7230         trace_pci_nvme_err_startfail_acqent_sz_zero();
7231         return -1;
7232     }
7233 
7234     n->page_bits = page_bits;
7235     n->page_size = page_size;
7236     n->max_prp_ents = n->page_size / sizeof(uint64_t);
7237     n->cqe_size = 1 << NVME_CC_IOCQES(cc);
7238     n->sqe_size = 1 << NVME_CC_IOSQES(cc);
7239     nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1);
7240     nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1);
7241 
7242     nvme_set_timestamp(n, 0ULL);
7243 
7244     nvme_select_iocs(n);
7245 
7246     return 0;
7247 }
7248 
7249 static void nvme_cmb_enable_regs(NvmeCtrl *n)
7250 {
7251     uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc);
7252     uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz);
7253 
7254     NVME_CMBLOC_SET_CDPCILS(cmbloc, 1);
7255     NVME_CMBLOC_SET_CDPMLS(cmbloc, 1);
7256     NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR);
7257     stl_le_p(&n->bar.cmbloc, cmbloc);
7258 
7259     NVME_CMBSZ_SET_SQS(cmbsz, 1);
7260     NVME_CMBSZ_SET_CQS(cmbsz, 0);
7261     NVME_CMBSZ_SET_LISTS(cmbsz, 1);
7262     NVME_CMBSZ_SET_RDS(cmbsz, 1);
7263     NVME_CMBSZ_SET_WDS(cmbsz, 1);
7264     NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */
7265     NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb);
7266     stl_le_p(&n->bar.cmbsz, cmbsz);
7267 }
7268 
7269 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
7270                            unsigned size)
7271 {
7272     PCIDevice *pci = PCI_DEVICE(n);
7273     uint64_t cap = ldq_le_p(&n->bar.cap);
7274     uint32_t cc = ldl_le_p(&n->bar.cc);
7275     uint32_t intms = ldl_le_p(&n->bar.intms);
7276     uint32_t csts = ldl_le_p(&n->bar.csts);
7277     uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts);
7278 
7279     if (unlikely(offset & (sizeof(uint32_t) - 1))) {
7280         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
7281                        "MMIO write not 32-bit aligned,"
7282                        " offset=0x%"PRIx64"", offset);
7283         /* should be ignored, fall through for now */
7284     }
7285 
7286     if (unlikely(size < sizeof(uint32_t))) {
7287         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
7288                        "MMIO write smaller than 32-bits,"
7289                        " offset=0x%"PRIx64", size=%u",
7290                        offset, size);
7291         /* should be ignored, fall through for now */
7292     }
7293 
7294     switch (offset) {
7295     case NVME_REG_INTMS:
7296         if (unlikely(msix_enabled(pci))) {
7297             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
7298                            "undefined access to interrupt mask set"
7299                            " when MSI-X is enabled");
7300             /* should be ignored, fall through for now */
7301         }
7302         intms |= data;
7303         stl_le_p(&n->bar.intms, intms);
7304         n->bar.intmc = n->bar.intms;
7305         trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms);
7306         nvme_irq_check(n);
7307         break;
7308     case NVME_REG_INTMC:
7309         if (unlikely(msix_enabled(pci))) {
7310             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
7311                            "undefined access to interrupt mask clr"
7312                            " when MSI-X is enabled");
7313             /* should be ignored, fall through for now */
7314         }
7315         intms &= ~data;
7316         stl_le_p(&n->bar.intms, intms);
7317         n->bar.intmc = n->bar.intms;
7318         trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms);
7319         nvme_irq_check(n);
7320         break;
7321     case NVME_REG_CC:
7322         stl_le_p(&n->bar.cc, data);
7323 
7324         trace_pci_nvme_mmio_cfg(data & 0xffffffff);
7325 
7326         if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) {
7327             trace_pci_nvme_mmio_shutdown_set();
7328             nvme_ctrl_shutdown(n);
7329             csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
7330             csts |= NVME_CSTS_SHST_COMPLETE;
7331         } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) {
7332             trace_pci_nvme_mmio_shutdown_cleared();
7333             csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
7334         }
7335 
7336         if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) {
7337             if (unlikely(nvme_start_ctrl(n))) {
7338                 trace_pci_nvme_err_startfail();
7339                 csts = NVME_CSTS_FAILED;
7340             } else {
7341                 trace_pci_nvme_mmio_start_success();
7342                 csts = NVME_CSTS_READY;
7343             }
7344         } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) {
7345             trace_pci_nvme_mmio_stopped();
7346             nvme_ctrl_reset(n, NVME_RESET_CONTROLLER);
7347 
7348             break;
7349         }
7350 
7351         stl_le_p(&n->bar.csts, csts);
7352 
7353         break;
7354     case NVME_REG_CSTS:
7355         if (data & (1 << 4)) {
7356             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
7357                            "attempted to W1C CSTS.NSSRO"
7358                            " but CAP.NSSRS is zero (not supported)");
7359         } else if (data != 0) {
7360             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
7361                            "attempted to set a read only bit"
7362                            " of controller status");
7363         }
7364         break;
7365     case NVME_REG_NSSR:
7366         if (data == 0x4e564d65) {
7367             trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
7368         } else {
7369             /* The spec says that writes of other values have no effect */
7370             return;
7371         }
7372         break;
7373     case NVME_REG_AQA:
7374         stl_le_p(&n->bar.aqa, data);
7375         trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
7376         break;
7377     case NVME_REG_ASQ:
7378         stn_le_p(&n->bar.asq, size, data);
7379         trace_pci_nvme_mmio_asqaddr(data);
7380         break;
7381     case NVME_REG_ASQ + 4:
7382         stl_le_p((uint8_t *)&n->bar.asq + 4, data);
7383         trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq));
7384         break;
7385     case NVME_REG_ACQ:
7386         trace_pci_nvme_mmio_acqaddr(data);
7387         stn_le_p(&n->bar.acq, size, data);
7388         break;
7389     case NVME_REG_ACQ + 4:
7390         stl_le_p((uint8_t *)&n->bar.acq + 4, data);
7391         trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq));
7392         break;
7393     case NVME_REG_CMBLOC:
7394         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
7395                        "invalid write to reserved CMBLOC"
7396                        " when CMBSZ is zero, ignored");
7397         return;
7398     case NVME_REG_CMBSZ:
7399         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
7400                        "invalid write to read only CMBSZ, ignored");
7401         return;
7402     case NVME_REG_CMBMSC:
7403         if (!NVME_CAP_CMBS(cap)) {
7404             return;
7405         }
7406 
7407         stn_le_p(&n->bar.cmbmsc, size, data);
7408         n->cmb.cmse = false;
7409 
7410         if (NVME_CMBMSC_CRE(data)) {
7411             nvme_cmb_enable_regs(n);
7412 
7413             if (NVME_CMBMSC_CMSE(data)) {
7414                 uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc);
7415                 hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT;
7416                 if (cba + int128_get64(n->cmb.mem.size) < cba) {
7417                     uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts);
7418                     NVME_CMBSTS_SET_CBAI(cmbsts, 1);
7419                     stl_le_p(&n->bar.cmbsts, cmbsts);
7420                     return;
7421                 }
7422 
7423                 n->cmb.cba = cba;
7424                 n->cmb.cmse = true;
7425             }
7426         } else {
7427             n->bar.cmbsz = 0;
7428             n->bar.cmbloc = 0;
7429         }
7430 
7431         return;
7432     case NVME_REG_CMBMSC + 4:
7433         stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data);
7434         return;
7435 
7436     case NVME_REG_PMRCAP:
7437         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
7438                        "invalid write to PMRCAP register, ignored");
7439         return;
7440     case NVME_REG_PMRCTL:
7441         if (!NVME_CAP_PMRS(cap)) {
7442             return;
7443         }
7444 
7445         stl_le_p(&n->bar.pmrctl, data);
7446         if (NVME_PMRCTL_EN(data)) {
7447             memory_region_set_enabled(&n->pmr.dev->mr, true);
7448             pmrsts = 0;
7449         } else {
7450             memory_region_set_enabled(&n->pmr.dev->mr, false);
7451             NVME_PMRSTS_SET_NRDY(pmrsts, 1);
7452             n->pmr.cmse = false;
7453         }
7454         stl_le_p(&n->bar.pmrsts, pmrsts);
7455         return;
7456     case NVME_REG_PMRSTS:
7457         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
7458                        "invalid write to PMRSTS register, ignored");
7459         return;
7460     case NVME_REG_PMREBS:
7461         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
7462                        "invalid write to PMREBS register, ignored");
7463         return;
7464     case NVME_REG_PMRSWTP:
7465         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
7466                        "invalid write to PMRSWTP register, ignored");
7467         return;
7468     case NVME_REG_PMRMSCL:
7469         if (!NVME_CAP_PMRS(cap)) {
7470             return;
7471         }
7472 
7473         stl_le_p(&n->bar.pmrmscl, data);
7474         n->pmr.cmse = false;
7475 
7476         if (NVME_PMRMSCL_CMSE(data)) {
7477             uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu);
7478             hwaddr cba = pmrmscu << 32 |
7479                 (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT);
7480             if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
7481                 NVME_PMRSTS_SET_CBAI(pmrsts, 1);
7482                 stl_le_p(&n->bar.pmrsts, pmrsts);
7483                 return;
7484             }
7485 
7486             n->pmr.cmse = true;
7487             n->pmr.cba = cba;
7488         }
7489 
7490         return;
7491     case NVME_REG_PMRMSCU:
7492         if (!NVME_CAP_PMRS(cap)) {
7493             return;
7494         }
7495 
7496         stl_le_p(&n->bar.pmrmscu, data);
7497         return;
7498     default:
7499         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
7500                        "invalid MMIO write,"
7501                        " offset=0x%"PRIx64", data=%"PRIx64"",
7502                        offset, data);
7503         break;
7504     }
7505 }
7506 
7507 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
7508 {
7509     NvmeCtrl *n = (NvmeCtrl *)opaque;
7510     uint8_t *ptr = (uint8_t *)&n->bar;
7511 
7512     trace_pci_nvme_mmio_read(addr, size);
7513 
7514     if (unlikely(addr & (sizeof(uint32_t) - 1))) {
7515         NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
7516                        "MMIO read not 32-bit aligned,"
7517                        " offset=0x%"PRIx64"", addr);
7518         /* should RAZ, fall through for now */
7519     } else if (unlikely(size < sizeof(uint32_t))) {
7520         NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
7521                        "MMIO read smaller than 32-bits,"
7522                        " offset=0x%"PRIx64"", addr);
7523         /* should RAZ, fall through for now */
7524     }
7525 
7526     if (addr > sizeof(n->bar) - size) {
7527         NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
7528                        "MMIO read beyond last register,"
7529                        " offset=0x%"PRIx64", returning 0", addr);
7530 
7531         return 0;
7532     }
7533 
7534     if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs &&
7535         addr != NVME_REG_CSTS) {
7536         trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
7537         return 0;
7538     }
7539 
7540     /*
7541      * When PMRWBM bit 1 is set then read from
7542      * from PMRSTS should ensure prior writes
7543      * made it to persistent media
7544      */
7545     if (addr == NVME_REG_PMRSTS &&
7546         (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) {
7547         memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
7548     }
7549 
7550     return ldn_le_p(ptr + addr, size);
7551 }
7552 
7553 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
7554 {
7555     PCIDevice *pci = PCI_DEVICE(n);
7556     uint32_t qid;
7557 
7558     if (unlikely(addr & ((1 << 2) - 1))) {
7559         NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
7560                        "doorbell write not 32-bit aligned,"
7561                        " offset=0x%"PRIx64", ignoring", addr);
7562         return;
7563     }
7564 
7565     if (((addr - 0x1000) >> 2) & 1) {
7566         /* Completion queue doorbell write */
7567 
7568         uint16_t new_head = val & 0xffff;
7569         int start_sqs;
7570         NvmeCQueue *cq;
7571 
7572         qid = (addr - (0x1000 + (1 << 2))) >> 3;
7573         if (unlikely(nvme_check_cqid(n, qid))) {
7574             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
7575                            "completion queue doorbell write"
7576                            " for nonexistent queue,"
7577                            " sqid=%"PRIu32", ignoring", qid);
7578 
7579             /*
7580              * NVM Express v1.3d, Section 4.1 state: "If host software writes
7581              * an invalid value to the Submission Queue Tail Doorbell or
7582              * Completion Queue Head Doorbell regiter and an Asynchronous Event
7583              * Request command is outstanding, then an asynchronous event is
7584              * posted to the Admin Completion Queue with a status code of
7585              * Invalid Doorbell Write Value."
7586              *
7587              * Also note that the spec includes the "Invalid Doorbell Register"
7588              * status code, but nowhere does it specify when to use it.
7589              * However, it seems reasonable to use it here in a similar
7590              * fashion.
7591              */
7592             if (n->outstanding_aers) {
7593                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
7594                                    NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
7595                                    NVME_LOG_ERROR_INFO);
7596             }
7597 
7598             return;
7599         }
7600 
7601         cq = n->cq[qid];
7602         if (unlikely(new_head >= cq->size)) {
7603             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
7604                            "completion queue doorbell write value"
7605                            " beyond queue size, sqid=%"PRIu32","
7606                            " new_head=%"PRIu16", ignoring",
7607                            qid, new_head);
7608 
7609             if (n->outstanding_aers) {
7610                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
7611                                    NVME_AER_INFO_ERR_INVALID_DB_VALUE,
7612                                    NVME_LOG_ERROR_INFO);
7613             }
7614 
7615             return;
7616         }
7617 
7618         trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
7619 
7620         start_sqs = nvme_cq_full(cq) ? 1 : 0;
7621         cq->head = new_head;
7622         if (!qid && n->dbbuf_enabled) {
7623             pci_dma_write(pci, cq->db_addr, &cq->head, sizeof(cq->head));
7624         }
7625         if (start_sqs) {
7626             NvmeSQueue *sq;
7627             QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
7628                 qemu_bh_schedule(sq->bh);
7629             }
7630             qemu_bh_schedule(cq->bh);
7631         }
7632 
7633         if (cq->tail == cq->head) {
7634             if (cq->irq_enabled) {
7635                 n->cq_pending--;
7636             }
7637 
7638             nvme_irq_deassert(n, cq);
7639         }
7640     } else {
7641         /* Submission queue doorbell write */
7642 
7643         uint16_t new_tail = val & 0xffff;
7644         NvmeSQueue *sq;
7645 
7646         qid = (addr - 0x1000) >> 3;
7647         if (unlikely(nvme_check_sqid(n, qid))) {
7648             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
7649                            "submission queue doorbell write"
7650                            " for nonexistent queue,"
7651                            " sqid=%"PRIu32", ignoring", qid);
7652 
7653             if (n->outstanding_aers) {
7654                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
7655                                    NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
7656                                    NVME_LOG_ERROR_INFO);
7657             }
7658 
7659             return;
7660         }
7661 
7662         sq = n->sq[qid];
7663         if (unlikely(new_tail >= sq->size)) {
7664             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
7665                            "submission queue doorbell write value"
7666                            " beyond queue size, sqid=%"PRIu32","
7667                            " new_tail=%"PRIu16", ignoring",
7668                            qid, new_tail);
7669 
7670             if (n->outstanding_aers) {
7671                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
7672                                    NVME_AER_INFO_ERR_INVALID_DB_VALUE,
7673                                    NVME_LOG_ERROR_INFO);
7674             }
7675 
7676             return;
7677         }
7678 
7679         trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
7680 
7681         sq->tail = new_tail;
7682         if (!qid && n->dbbuf_enabled) {
7683             /*
7684              * The spec states "the host shall also update the controller's
7685              * corresponding doorbell property to match the value of that entry
7686              * in the Shadow Doorbell buffer."
7687              *
7688              * Since this context is currently a VM trap, we can safely enforce
7689              * the requirement from the device side in case the host is
7690              * misbehaving.
7691              *
7692              * Note, we shouldn't have to do this, but various drivers
7693              * including ones that run on Linux, are not updating Admin Queues,
7694              * so we can't trust reading it for an appropriate sq tail.
7695              */
7696             pci_dma_write(pci, sq->db_addr, &sq->tail, sizeof(sq->tail));
7697         }
7698 
7699         qemu_bh_schedule(sq->bh);
7700     }
7701 }
7702 
7703 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
7704                             unsigned size)
7705 {
7706     NvmeCtrl *n = (NvmeCtrl *)opaque;
7707 
7708     trace_pci_nvme_mmio_write(addr, data, size);
7709 
7710     if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs &&
7711         addr != NVME_REG_CSTS) {
7712         trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
7713         return;
7714     }
7715 
7716     if (addr < sizeof(n->bar)) {
7717         nvme_write_bar(n, addr, data, size);
7718     } else {
7719         nvme_process_db(n, addr, data);
7720     }
7721 }
7722 
7723 static const MemoryRegionOps nvme_mmio_ops = {
7724     .read = nvme_mmio_read,
7725     .write = nvme_mmio_write,
7726     .endianness = DEVICE_LITTLE_ENDIAN,
7727     .impl = {
7728         .min_access_size = 2,
7729         .max_access_size = 8,
7730     },
7731 };
7732 
7733 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
7734                            unsigned size)
7735 {
7736     NvmeCtrl *n = (NvmeCtrl *)opaque;
7737     stn_le_p(&n->cmb.buf[addr], size, data);
7738 }
7739 
7740 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
7741 {
7742     NvmeCtrl *n = (NvmeCtrl *)opaque;
7743     return ldn_le_p(&n->cmb.buf[addr], size);
7744 }
7745 
7746 static const MemoryRegionOps nvme_cmb_ops = {
7747     .read = nvme_cmb_read,
7748     .write = nvme_cmb_write,
7749     .endianness = DEVICE_LITTLE_ENDIAN,
7750     .impl = {
7751         .min_access_size = 1,
7752         .max_access_size = 8,
7753     },
7754 };
7755 
7756 static bool nvme_check_params(NvmeCtrl *n, Error **errp)
7757 {
7758     NvmeParams *params = &n->params;
7759 
7760     if (params->num_queues) {
7761         warn_report("num_queues is deprecated; please use max_ioqpairs "
7762                     "instead");
7763 
7764         params->max_ioqpairs = params->num_queues - 1;
7765     }
7766 
7767     if (n->namespace.blkconf.blk && n->subsys) {
7768         error_setg(errp, "subsystem support is unavailable with legacy "
7769                    "namespace ('drive' property)");
7770         return false;
7771     }
7772 
7773     if (params->max_ioqpairs < 1 ||
7774         params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
7775         error_setg(errp, "max_ioqpairs must be between 1 and %d",
7776                    NVME_MAX_IOQPAIRS);
7777         return false;
7778     }
7779 
7780     if (params->msix_qsize < 1 ||
7781         params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
7782         error_setg(errp, "msix_qsize must be between 1 and %d",
7783                    PCI_MSIX_FLAGS_QSIZE + 1);
7784         return false;
7785     }
7786 
7787     if (!params->serial) {
7788         error_setg(errp, "serial property not set");
7789         return false;
7790     }
7791 
7792     if (n->pmr.dev) {
7793         if (host_memory_backend_is_mapped(n->pmr.dev)) {
7794             error_setg(errp, "can't use already busy memdev: %s",
7795                        object_get_canonical_path_component(OBJECT(n->pmr.dev)));
7796             return false;
7797         }
7798 
7799         if (!is_power_of_2(n->pmr.dev->size)) {
7800             error_setg(errp, "pmr backend size needs to be power of 2 in size");
7801             return false;
7802         }
7803 
7804         host_memory_backend_set_mapped(n->pmr.dev, true);
7805     }
7806 
7807     if (n->params.zasl > n->params.mdts) {
7808         error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
7809                    "than or equal to mdts (Maximum Data Transfer Size)");
7810         return false;
7811     }
7812 
7813     if (!n->params.vsl) {
7814         error_setg(errp, "vsl must be non-zero");
7815         return false;
7816     }
7817 
7818     if (params->sriov_max_vfs) {
7819         if (!n->subsys) {
7820             error_setg(errp, "subsystem is required for the use of SR-IOV");
7821             return false;
7822         }
7823 
7824         if (params->sriov_max_vfs > NVME_MAX_VFS) {
7825             error_setg(errp, "sriov_max_vfs must be between 0 and %d",
7826                        NVME_MAX_VFS);
7827             return false;
7828         }
7829 
7830         if (params->cmb_size_mb) {
7831             error_setg(errp, "CMB is not supported with SR-IOV");
7832             return false;
7833         }
7834 
7835         if (n->pmr.dev) {
7836             error_setg(errp, "PMR is not supported with SR-IOV");
7837             return false;
7838         }
7839 
7840         if (!params->sriov_vq_flexible || !params->sriov_vi_flexible) {
7841             error_setg(errp, "both sriov_vq_flexible and sriov_vi_flexible"
7842                        " must be set for the use of SR-IOV");
7843             return false;
7844         }
7845 
7846         if (params->sriov_vq_flexible < params->sriov_max_vfs * 2) {
7847             error_setg(errp, "sriov_vq_flexible must be greater than or equal"
7848                        " to %d (sriov_max_vfs * 2)", params->sriov_max_vfs * 2);
7849             return false;
7850         }
7851 
7852         if (params->max_ioqpairs < params->sriov_vq_flexible + 2) {
7853             error_setg(errp, "(max_ioqpairs - sriov_vq_flexible) must be"
7854                        " greater than or equal to 2");
7855             return false;
7856         }
7857 
7858         if (params->sriov_vi_flexible < params->sriov_max_vfs) {
7859             error_setg(errp, "sriov_vi_flexible must be greater than or equal"
7860                        " to %d (sriov_max_vfs)", params->sriov_max_vfs);
7861             return false;
7862         }
7863 
7864         if (params->msix_qsize < params->sriov_vi_flexible + 1) {
7865             error_setg(errp, "(msix_qsize - sriov_vi_flexible) must be"
7866                        " greater than or equal to 1");
7867             return false;
7868         }
7869 
7870         if (params->sriov_max_vi_per_vf &&
7871             (params->sriov_max_vi_per_vf - 1) % NVME_VF_RES_GRANULARITY) {
7872             error_setg(errp, "sriov_max_vi_per_vf must meet:"
7873                        " (sriov_max_vi_per_vf - 1) %% %d == 0 and"
7874                        " sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY);
7875             return false;
7876         }
7877 
7878         if (params->sriov_max_vq_per_vf &&
7879             (params->sriov_max_vq_per_vf < 2 ||
7880              (params->sriov_max_vq_per_vf - 1) % NVME_VF_RES_GRANULARITY)) {
7881             error_setg(errp, "sriov_max_vq_per_vf must meet:"
7882                        " (sriov_max_vq_per_vf - 1) %% %d == 0 and"
7883                        " sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY);
7884             return false;
7885         }
7886     }
7887 
7888     return true;
7889 }
7890 
7891 static void nvme_init_state(NvmeCtrl *n)
7892 {
7893     NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7894     NvmeSecCtrlList *list = &n->sec_ctrl_list;
7895     NvmeSecCtrlEntry *sctrl;
7896     PCIDevice *pci = PCI_DEVICE(n);
7897     uint8_t max_vfs;
7898     int i;
7899 
7900     if (pci_is_vf(pci)) {
7901         sctrl = nvme_sctrl(n);
7902         max_vfs = 0;
7903         n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
7904         n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
7905     } else {
7906         max_vfs = n->params.sriov_max_vfs;
7907         n->conf_ioqpairs = n->params.max_ioqpairs;
7908         n->conf_msix_qsize = n->params.msix_qsize;
7909     }
7910 
7911     n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
7912     n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
7913     n->temperature = NVME_TEMPERATURE;
7914     n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
7915     n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
7916     n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
7917     QTAILQ_INIT(&n->aer_queue);
7918 
7919     list->numcntl = cpu_to_le16(max_vfs);
7920     for (i = 0; i < max_vfs; i++) {
7921         sctrl = &list->sec[i];
7922         sctrl->pcid = cpu_to_le16(n->cntlid);
7923         sctrl->vfn = cpu_to_le16(i + 1);
7924     }
7925 
7926     cap->cntlid = cpu_to_le16(n->cntlid);
7927     cap->crt = NVME_CRT_VQ | NVME_CRT_VI;
7928 
7929     if (pci_is_vf(pci)) {
7930         cap->vqprt = cpu_to_le16(1 + n->conf_ioqpairs);
7931     } else {
7932         cap->vqprt = cpu_to_le16(1 + n->params.max_ioqpairs -
7933                                  n->params.sriov_vq_flexible);
7934         cap->vqfrt = cpu_to_le32(n->params.sriov_vq_flexible);
7935         cap->vqrfap = cap->vqfrt;
7936         cap->vqgran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7937         cap->vqfrsm = n->params.sriov_max_vq_per_vf ?
7938                         cpu_to_le16(n->params.sriov_max_vq_per_vf) :
7939                         cap->vqfrt / MAX(max_vfs, 1);
7940     }
7941 
7942     if (pci_is_vf(pci)) {
7943         cap->viprt = cpu_to_le16(n->conf_msix_qsize);
7944     } else {
7945         cap->viprt = cpu_to_le16(n->params.msix_qsize -
7946                                  n->params.sriov_vi_flexible);
7947         cap->vifrt = cpu_to_le32(n->params.sriov_vi_flexible);
7948         cap->virfap = cap->vifrt;
7949         cap->vigran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7950         cap->vifrsm = n->params.sriov_max_vi_per_vf ?
7951                         cpu_to_le16(n->params.sriov_max_vi_per_vf) :
7952                         cap->vifrt / MAX(max_vfs, 1);
7953     }
7954 }
7955 
7956 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
7957 {
7958     uint64_t cmb_size = n->params.cmb_size_mb * MiB;
7959     uint64_t cap = ldq_le_p(&n->bar.cap);
7960 
7961     n->cmb.buf = g_malloc0(cmb_size);
7962     memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
7963                           "nvme-cmb", cmb_size);
7964     pci_register_bar(pci_dev, NVME_CMB_BIR,
7965                      PCI_BASE_ADDRESS_SPACE_MEMORY |
7966                      PCI_BASE_ADDRESS_MEM_TYPE_64 |
7967                      PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
7968 
7969     NVME_CAP_SET_CMBS(cap, 1);
7970     stq_le_p(&n->bar.cap, cap);
7971 
7972     if (n->params.legacy_cmb) {
7973         nvme_cmb_enable_regs(n);
7974         n->cmb.cmse = true;
7975     }
7976 }
7977 
7978 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
7979 {
7980     uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap);
7981 
7982     NVME_PMRCAP_SET_RDS(pmrcap, 1);
7983     NVME_PMRCAP_SET_WDS(pmrcap, 1);
7984     NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR);
7985     /* Turn on bit 1 support */
7986     NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02);
7987     NVME_PMRCAP_SET_CMSS(pmrcap, 1);
7988     stl_le_p(&n->bar.pmrcap, pmrcap);
7989 
7990     pci_register_bar(pci_dev, NVME_PMR_BIR,
7991                      PCI_BASE_ADDRESS_SPACE_MEMORY |
7992                      PCI_BASE_ADDRESS_MEM_TYPE_64 |
7993                      PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
7994 
7995     memory_region_set_enabled(&n->pmr.dev->mr, false);
7996 }
7997 
7998 static uint64_t nvme_bar_size(unsigned total_queues, unsigned total_irqs,
7999                               unsigned *msix_table_offset,
8000                               unsigned *msix_pba_offset)
8001 {
8002     uint64_t bar_size, msix_table_size, msix_pba_size;
8003 
8004     bar_size = sizeof(NvmeBar) + 2 * total_queues * NVME_DB_SIZE;
8005     bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
8006 
8007     if (msix_table_offset) {
8008         *msix_table_offset = bar_size;
8009     }
8010 
8011     msix_table_size = PCI_MSIX_ENTRY_SIZE * total_irqs;
8012     bar_size += msix_table_size;
8013     bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
8014 
8015     if (msix_pba_offset) {
8016         *msix_pba_offset = bar_size;
8017     }
8018 
8019     msix_pba_size = QEMU_ALIGN_UP(total_irqs, 64) / 8;
8020     bar_size += msix_pba_size;
8021 
8022     bar_size = pow2ceil(bar_size);
8023     return bar_size;
8024 }
8025 
8026 static void nvme_init_sriov(NvmeCtrl *n, PCIDevice *pci_dev, uint16_t offset)
8027 {
8028     uint16_t vf_dev_id = n->params.use_intel_id ?
8029                          PCI_DEVICE_ID_INTEL_NVME : PCI_DEVICE_ID_REDHAT_NVME;
8030     NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
8031     uint64_t bar_size = nvme_bar_size(le16_to_cpu(cap->vqfrsm),
8032                                       le16_to_cpu(cap->vifrsm),
8033                                       NULL, NULL);
8034 
8035     pcie_sriov_pf_init(pci_dev, offset, "nvme", vf_dev_id,
8036                        n->params.sriov_max_vfs, n->params.sriov_max_vfs,
8037                        NVME_VF_OFFSET, NVME_VF_STRIDE);
8038 
8039     pcie_sriov_pf_init_vf_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
8040                               PCI_BASE_ADDRESS_MEM_TYPE_64, bar_size);
8041 }
8042 
8043 static int nvme_add_pm_capability(PCIDevice *pci_dev, uint8_t offset)
8044 {
8045     Error *err = NULL;
8046     int ret;
8047 
8048     ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, offset,
8049                              PCI_PM_SIZEOF, &err);
8050     if (err) {
8051         error_report_err(err);
8052         return ret;
8053     }
8054 
8055     pci_set_word(pci_dev->config + offset + PCI_PM_PMC,
8056                  PCI_PM_CAP_VER_1_2);
8057     pci_set_word(pci_dev->config + offset + PCI_PM_CTRL,
8058                  PCI_PM_CTRL_NO_SOFT_RESET);
8059     pci_set_word(pci_dev->wmask + offset + PCI_PM_CTRL,
8060                  PCI_PM_CTRL_STATE_MASK);
8061 
8062     return 0;
8063 }
8064 
8065 static bool nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
8066 {
8067     ERRP_GUARD();
8068     uint8_t *pci_conf = pci_dev->config;
8069     uint64_t bar_size;
8070     unsigned msix_table_offset, msix_pba_offset;
8071     int ret;
8072 
8073     pci_conf[PCI_INTERRUPT_PIN] = 1;
8074     pci_config_set_prog_interface(pci_conf, 0x2);
8075 
8076     if (n->params.use_intel_id) {
8077         pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
8078         pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_NVME);
8079     } else {
8080         pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
8081         pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
8082     }
8083 
8084     pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
8085     nvme_add_pm_capability(pci_dev, 0x60);
8086     pcie_endpoint_cap_init(pci_dev, 0x80);
8087     pcie_cap_flr_init(pci_dev);
8088     if (n->params.sriov_max_vfs) {
8089         pcie_ari_init(pci_dev, 0x100, 1);
8090     }
8091 
8092     /* add one to max_ioqpairs to account for the admin queue pair */
8093     bar_size = nvme_bar_size(n->params.max_ioqpairs + 1, n->params.msix_qsize,
8094                              &msix_table_offset, &msix_pba_offset);
8095 
8096     memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
8097     memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
8098                           msix_table_offset);
8099     memory_region_add_subregion(&n->bar0, 0, &n->iomem);
8100 
8101     if (pci_is_vf(pci_dev)) {
8102         pcie_sriov_vf_register_bar(pci_dev, 0, &n->bar0);
8103     } else {
8104         pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
8105                          PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
8106     }
8107     ret = msix_init(pci_dev, n->params.msix_qsize,
8108                     &n->bar0, 0, msix_table_offset,
8109                     &n->bar0, 0, msix_pba_offset, 0, errp);
8110     if (ret == -ENOTSUP) {
8111         /* report that msix is not supported, but do not error out */
8112         warn_report_err(*errp);
8113         *errp = NULL;
8114     } else if (ret < 0) {
8115         /* propagate error to caller */
8116         return false;
8117     }
8118 
8119     nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
8120 
8121     if (n->params.cmb_size_mb) {
8122         nvme_init_cmb(n, pci_dev);
8123     }
8124 
8125     if (n->pmr.dev) {
8126         nvme_init_pmr(n, pci_dev);
8127     }
8128 
8129     if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
8130         nvme_init_sriov(n, pci_dev, 0x120);
8131     }
8132 
8133     return true;
8134 }
8135 
8136 static void nvme_init_subnqn(NvmeCtrl *n)
8137 {
8138     NvmeSubsystem *subsys = n->subsys;
8139     NvmeIdCtrl *id = &n->id_ctrl;
8140 
8141     if (!subsys) {
8142         snprintf((char *)id->subnqn, sizeof(id->subnqn),
8143                  "nqn.2019-08.org.qemu:%s", n->params.serial);
8144     } else {
8145         pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
8146     }
8147 }
8148 
8149 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
8150 {
8151     NvmeIdCtrl *id = &n->id_ctrl;
8152     uint8_t *pci_conf = pci_dev->config;
8153     uint64_t cap = ldq_le_p(&n->bar.cap);
8154     NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
8155     uint32_t ctratt;
8156 
8157     id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
8158     id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
8159     strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
8160     strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' ');
8161     strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
8162 
8163     id->cntlid = cpu_to_le16(n->cntlid);
8164 
8165     id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
8166     ctratt = NVME_CTRATT_ELBAS;
8167 
8168     id->rab = 6;
8169 
8170     if (n->params.use_intel_id) {
8171         id->ieee[0] = 0xb3;
8172         id->ieee[1] = 0x02;
8173         id->ieee[2] = 0x00;
8174     } else {
8175         id->ieee[0] = 0x00;
8176         id->ieee[1] = 0x54;
8177         id->ieee[2] = 0x52;
8178     }
8179 
8180     id->mdts = n->params.mdts;
8181     id->ver = cpu_to_le32(NVME_SPEC_VER);
8182     id->oacs =
8183         cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT | NVME_OACS_DBBUF |
8184                     NVME_OACS_DIRECTIVES);
8185     id->cntrltype = 0x1;
8186 
8187     /*
8188      * Because the controller always completes the Abort command immediately,
8189      * there can never be more than one concurrently executing Abort command,
8190      * so this value is never used for anything. Note that there can easily be
8191      * many Abort commands in the queues, but they are not considered
8192      * "executing" until processed by nvme_abort.
8193      *
8194      * The specification recommends a value of 3 for Abort Command Limit (four
8195      * concurrently outstanding Abort commands), so lets use that though it is
8196      * inconsequential.
8197      */
8198     id->acl = 3;
8199     id->aerl = n->params.aerl;
8200     id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
8201     id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
8202 
8203     /* recommended default value (~70 C) */
8204     id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
8205     id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
8206 
8207     id->sqes = (0x6 << 4) | 0x6;
8208     id->cqes = (0x4 << 4) | 0x4;
8209     id->nn = cpu_to_le32(NVME_MAX_NAMESPACES);
8210     id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
8211                            NVME_ONCS_FEATURES | NVME_ONCS_DSM |
8212                            NVME_ONCS_COMPARE | NVME_ONCS_COPY);
8213 
8214     /*
8215      * NOTE: If this device ever supports a command set that does NOT use 0x0
8216      * as a Flush-equivalent operation, support for the broadcast NSID in Flush
8217      * should probably be removed.
8218      *
8219      * See comment in nvme_io_cmd.
8220      */
8221     id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
8222 
8223     id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1);
8224     id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN);
8225 
8226     nvme_init_subnqn(n);
8227 
8228     id->psd[0].mp = cpu_to_le16(0x9c4);
8229     id->psd[0].enlat = cpu_to_le32(0x10);
8230     id->psd[0].exlat = cpu_to_le32(0x4);
8231 
8232     if (n->subsys) {
8233         id->cmic |= NVME_CMIC_MULTI_CTRL;
8234         ctratt |= NVME_CTRATT_ENDGRPS;
8235 
8236         id->endgidmax = cpu_to_le16(0x1);
8237 
8238         if (n->subsys->endgrp.fdp.enabled) {
8239             ctratt |= NVME_CTRATT_FDPS;
8240         }
8241     }
8242 
8243     id->ctratt = cpu_to_le32(ctratt);
8244 
8245     NVME_CAP_SET_MQES(cap, 0x7ff);
8246     NVME_CAP_SET_CQR(cap, 1);
8247     NVME_CAP_SET_TO(cap, 0xf);
8248     NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM);
8249     NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP);
8250     NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY);
8251     NVME_CAP_SET_MPSMAX(cap, 4);
8252     NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0);
8253     NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0);
8254     stq_le_p(&n->bar.cap, cap);
8255 
8256     stl_le_p(&n->bar.vs, NVME_SPEC_VER);
8257     n->bar.intmc = n->bar.intms = 0;
8258 
8259     if (pci_is_vf(pci_dev) && !sctrl->scs) {
8260         stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
8261     }
8262 }
8263 
8264 static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
8265 {
8266     int cntlid;
8267 
8268     if (!n->subsys) {
8269         return 0;
8270     }
8271 
8272     cntlid = nvme_subsys_register_ctrl(n, errp);
8273     if (cntlid < 0) {
8274         return -1;
8275     }
8276 
8277     n->cntlid = cntlid;
8278 
8279     return 0;
8280 }
8281 
8282 void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns)
8283 {
8284     uint32_t nsid = ns->params.nsid;
8285     assert(nsid && nsid <= NVME_MAX_NAMESPACES);
8286 
8287     n->namespaces[nsid] = ns;
8288     ns->attached++;
8289 
8290     n->dmrsl = MIN_NON_ZERO(n->dmrsl,
8291                             BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
8292 }
8293 
8294 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
8295 {
8296     NvmeCtrl *n = NVME(pci_dev);
8297     DeviceState *dev = DEVICE(pci_dev);
8298     NvmeNamespace *ns;
8299     NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev));
8300 
8301     if (pci_is_vf(pci_dev)) {
8302         /*
8303          * VFs derive settings from the parent. PF's lifespan exceeds
8304          * that of VF's, so it's safe to share params.serial.
8305          */
8306         memcpy(&n->params, &pn->params, sizeof(NvmeParams));
8307         n->subsys = pn->subsys;
8308     }
8309 
8310     if (!nvme_check_params(n, errp)) {
8311         return;
8312     }
8313 
8314     qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS, dev, dev->id);
8315 
8316     if (nvme_init_subsys(n, errp)) {
8317         return;
8318     }
8319     nvme_init_state(n);
8320     if (!nvme_init_pci(n, pci_dev, errp)) {
8321         return;
8322     }
8323     nvme_init_ctrl(n, pci_dev);
8324 
8325     /* setup a namespace if the controller drive property was given */
8326     if (n->namespace.blkconf.blk) {
8327         ns = &n->namespace;
8328         ns->params.nsid = 1;
8329 
8330         if (nvme_ns_setup(ns, errp)) {
8331             return;
8332         }
8333 
8334         nvme_attach_ns(n, ns);
8335     }
8336 }
8337 
8338 static void nvme_exit(PCIDevice *pci_dev)
8339 {
8340     NvmeCtrl *n = NVME(pci_dev);
8341     NvmeNamespace *ns;
8342     int i;
8343 
8344     nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
8345 
8346     if (n->subsys) {
8347         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
8348             ns = nvme_ns(n, i);
8349             if (ns) {
8350                 ns->attached--;
8351             }
8352         }
8353 
8354         nvme_subsys_unregister_ctrl(n->subsys, n);
8355     }
8356 
8357     g_free(n->cq);
8358     g_free(n->sq);
8359     g_free(n->aer_reqs);
8360 
8361     if (n->params.cmb_size_mb) {
8362         g_free(n->cmb.buf);
8363     }
8364 
8365     if (n->pmr.dev) {
8366         host_memory_backend_set_mapped(n->pmr.dev, false);
8367     }
8368 
8369     if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
8370         pcie_sriov_pf_exit(pci_dev);
8371     }
8372 
8373     msix_uninit(pci_dev, &n->bar0, &n->bar0);
8374     memory_region_del_subregion(&n->bar0, &n->iomem);
8375 }
8376 
8377 static Property nvme_props[] = {
8378     DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
8379     DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
8380                      HostMemoryBackend *),
8381     DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
8382                      NvmeSubsystem *),
8383     DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
8384     DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
8385     DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
8386     DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
8387     DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
8388     DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
8389     DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
8390     DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
8391     DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
8392     DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
8393     DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
8394     DEFINE_PROP_BOOL("ioeventfd", NvmeCtrl, params.ioeventfd, false),
8395     DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
8396     DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl,
8397                      params.auto_transition_zones, true),
8398     DEFINE_PROP_UINT8("sriov_max_vfs", NvmeCtrl, params.sriov_max_vfs, 0),
8399     DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl,
8400                        params.sriov_vq_flexible, 0),
8401     DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl,
8402                        params.sriov_vi_flexible, 0),
8403     DEFINE_PROP_UINT8("sriov_max_vi_per_vf", NvmeCtrl,
8404                       params.sriov_max_vi_per_vf, 0),
8405     DEFINE_PROP_UINT8("sriov_max_vq_per_vf", NvmeCtrl,
8406                       params.sriov_max_vq_per_vf, 0),
8407     DEFINE_PROP_END_OF_LIST(),
8408 };
8409 
8410 static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
8411                                    void *opaque, Error **errp)
8412 {
8413     NvmeCtrl *n = NVME(obj);
8414     uint8_t value = n->smart_critical_warning;
8415 
8416     visit_type_uint8(v, name, &value, errp);
8417 }
8418 
8419 static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
8420                                    void *opaque, Error **errp)
8421 {
8422     NvmeCtrl *n = NVME(obj);
8423     uint8_t value, old_value, cap = 0, index, event;
8424 
8425     if (!visit_type_uint8(v, name, &value, errp)) {
8426         return;
8427     }
8428 
8429     cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
8430           | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
8431     if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) {
8432         cap |= NVME_SMART_PMR_UNRELIABLE;
8433     }
8434 
8435     if ((value & cap) != value) {
8436         error_setg(errp, "unsupported smart critical warning bits: 0x%x",
8437                    value & ~cap);
8438         return;
8439     }
8440 
8441     old_value = n->smart_critical_warning;
8442     n->smart_critical_warning = value;
8443 
8444     /* only inject new bits of smart critical warning */
8445     for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
8446         event = 1 << index;
8447         if (value & ~old_value & event)
8448             nvme_smart_event(n, event);
8449     }
8450 }
8451 
8452 static void nvme_pci_reset(DeviceState *qdev)
8453 {
8454     PCIDevice *pci_dev = PCI_DEVICE(qdev);
8455     NvmeCtrl *n = NVME(pci_dev);
8456 
8457     trace_pci_nvme_pci_reset();
8458     nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
8459 }
8460 
8461 static void nvme_sriov_pre_write_ctrl(PCIDevice *dev, uint32_t address,
8462                                       uint32_t val, int len)
8463 {
8464     NvmeCtrl *n = NVME(dev);
8465     NvmeSecCtrlEntry *sctrl;
8466     uint16_t sriov_cap = dev->exp.sriov_cap;
8467     uint32_t off = address - sriov_cap;
8468     int i, num_vfs;
8469 
8470     if (!sriov_cap) {
8471         return;
8472     }
8473 
8474     if (range_covers_byte(off, len, PCI_SRIOV_CTRL)) {
8475         if (!(val & PCI_SRIOV_CTRL_VFE)) {
8476             num_vfs = pci_get_word(dev->config + sriov_cap + PCI_SRIOV_NUM_VF);
8477             for (i = 0; i < num_vfs; i++) {
8478                 sctrl = &n->sec_ctrl_list.sec[i];
8479                 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
8480             }
8481         }
8482     }
8483 }
8484 
8485 static void nvme_pci_write_config(PCIDevice *dev, uint32_t address,
8486                                   uint32_t val, int len)
8487 {
8488     nvme_sriov_pre_write_ctrl(dev, address, val, len);
8489     pci_default_write_config(dev, address, val, len);
8490     pcie_cap_flr_write_config(dev, address, val, len);
8491 }
8492 
8493 static const VMStateDescription nvme_vmstate = {
8494     .name = "nvme",
8495     .unmigratable = 1,
8496 };
8497 
8498 static void nvme_class_init(ObjectClass *oc, void *data)
8499 {
8500     DeviceClass *dc = DEVICE_CLASS(oc);
8501     PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
8502 
8503     pc->realize = nvme_realize;
8504     pc->config_write = nvme_pci_write_config;
8505     pc->exit = nvme_exit;
8506     pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
8507     pc->revision = 2;
8508 
8509     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
8510     dc->desc = "Non-Volatile Memory Express";
8511     device_class_set_props(dc, nvme_props);
8512     dc->vmsd = &nvme_vmstate;
8513     dc->reset = nvme_pci_reset;
8514 }
8515 
8516 static void nvme_instance_init(Object *obj)
8517 {
8518     NvmeCtrl *n = NVME(obj);
8519 
8520     device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
8521                                   "bootindex", "/namespace@1,0",
8522                                   DEVICE(obj));
8523 
8524     object_property_add(obj, "smart_critical_warning", "uint8",
8525                         nvme_get_smart_warning,
8526                         nvme_set_smart_warning, NULL, NULL);
8527 }
8528 
8529 static const TypeInfo nvme_info = {
8530     .name          = TYPE_NVME,
8531     .parent        = TYPE_PCI_DEVICE,
8532     .instance_size = sizeof(NvmeCtrl),
8533     .instance_init = nvme_instance_init,
8534     .class_init    = nvme_class_init,
8535     .interfaces = (InterfaceInfo[]) {
8536         { INTERFACE_PCIE_DEVICE },
8537         { }
8538     },
8539 };
8540 
8541 static const TypeInfo nvme_bus_info = {
8542     .name = TYPE_NVME_BUS,
8543     .parent = TYPE_BUS,
8544     .instance_size = sizeof(NvmeBus),
8545 };
8546 
8547 static void nvme_register_types(void)
8548 {
8549     type_register_static(&nvme_info);
8550     type_register_static(&nvme_bus_info);
8551 }
8552 
8553 type_init(nvme_register_types)
8554