xref: /qemu/hw/nvme/ctrl.c (revision d01c0046)
1 /*
2  * QEMU NVM Express Controller
3  *
4  * Copyright (c) 2012, Intel Corporation
5  *
6  * Written by Keith Busch <keith.busch@intel.com>
7  *
8  * This code is licensed under the GNU GPL v2 or later.
9  */
10 
11 /**
12  * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
13  *
14  *  https://nvmexpress.org/developers/nvme-specification/
15  *
16  *
17  * Notes on coding style
18  * ---------------------
19  * While QEMU coding style prefers lowercase hexadecimals in constants, the
20  * NVMe subsystem use thes format from the NVMe specifications in the comments
21  * (i.e. 'h' suffix instead of '0x' prefix).
22  *
23  * Usage
24  * -----
25  * See docs/system/nvme.rst for extensive documentation.
26  *
27  * Add options:
28  *      -drive file=<file>,if=none,id=<drive_id>
29  *      -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
30  *      -device nvme,serial=<serial>,id=<bus_name>, \
31  *              cmb_size_mb=<cmb_size_mb[optional]>, \
32  *              [pmrdev=<mem_backend_file_id>,] \
33  *              max_ioqpairs=<N[optional]>, \
34  *              aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
35  *              mdts=<N[optional]>,vsl=<N[optional]>, \
36  *              zoned.zasl=<N[optional]>, \
37  *              zoned.auto_transition=<on|off[optional]>, \
38  *              sriov_max_vfs=<N[optional]> \
39  *              sriov_vq_flexible=<N[optional]> \
40  *              sriov_vi_flexible=<N[optional]> \
41  *              sriov_max_vi_per_vf=<N[optional]> \
42  *              sriov_max_vq_per_vf=<N[optional]> \
43  *              subsys=<subsys_id>
44  *      -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
45  *              zoned=<true|false[optional]>, \
46  *              subsys=<subsys_id>,detached=<true|false[optional]>
47  *
48  * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
49  * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
50  * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
51  * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
52  *
53  * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
54  * For example:
55  * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
56  *  size=<size> .... -device nvme,...,pmrdev=<mem_id>
57  *
58  * The PMR will use BAR 4/5 exclusively.
59  *
60  * To place controller(s) and namespace(s) to a subsystem, then provide
61  * nvme-subsys device as above.
62  *
63  * nvme subsystem device parameters
64  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
65  * - `nqn`
66  *   This parameter provides the `<nqn_id>` part of the string
67  *   `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
68  *   of subsystem controllers. Note that `<nqn_id>` should be unique per
69  *   subsystem, but this is not enforced by QEMU. If not specified, it will
70  *   default to the value of the `id` parameter (`<subsys_id>`).
71  *
72  * nvme device parameters
73  * ~~~~~~~~~~~~~~~~~~~~~~
74  * - `subsys`
75  *   Specifying this parameter attaches the controller to the subsystem and
76  *   the SUBNQN field in the controller will report the NQN of the subsystem
77  *   device. This also enables multi controller capability represented in
78  *   Identify Controller data structure in CMIC (Controller Multi-path I/O and
79  *   Namespace Sharing Capabilities).
80  *
81  * - `aerl`
82  *   The Asynchronous Event Request Limit (AERL). Indicates the maximum number
83  *   of concurrently outstanding Asynchronous Event Request commands support
84  *   by the controller. This is a 0's based value.
85  *
86  * - `aer_max_queued`
87  *   This is the maximum number of events that the device will enqueue for
88  *   completion when there are no outstanding AERs. When the maximum number of
89  *   enqueued events are reached, subsequent events will be dropped.
90  *
91  * - `mdts`
92  *   Indicates the maximum data transfer size for a command that transfers data
93  *   between host-accessible memory and the controller. The value is specified
94  *   as a power of two (2^n) and is in units of the minimum memory page size
95  *   (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
96  *
97  * - `vsl`
98  *   Indicates the maximum data size limit for the Verify command. Like `mdts`,
99  *   this value is specified as a power of two (2^n) and is in units of the
100  *   minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
101  *   KiB).
102  *
103  * - `zoned.zasl`
104  *   Indicates the maximum data transfer size for the Zone Append command. Like
105  *   `mdts`, the value is specified as a power of two (2^n) and is in units of
106  *   the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
107  *   defaulting to the value of `mdts`).
108  *
109  * - `zoned.auto_transition`
110  *   Indicates if zones in zone state implicitly opened can be automatically
111  *   transitioned to zone state closed for resource management purposes.
112  *   Defaults to 'on'.
113  *
114  * - `sriov_max_vfs`
115  *   Indicates the maximum number of PCIe virtual functions supported
116  *   by the controller. The default value is 0. Specifying a non-zero value
117  *   enables reporting of both SR-IOV and ARI capabilities by the NVMe device.
118  *   Virtual function controllers will not report SR-IOV capability.
119  *
120  *   NOTE: Single Root I/O Virtualization support is experimental.
121  *   All the related parameters may be subject to change.
122  *
123  * - `sriov_vq_flexible`
124  *   Indicates the total number of flexible queue resources assignable to all
125  *   the secondary controllers. Implicitly sets the number of primary
126  *   controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`.
127  *
128  * - `sriov_vi_flexible`
129  *   Indicates the total number of flexible interrupt resources assignable to
130  *   all the secondary controllers. Implicitly sets the number of primary
131  *   controller's private resources to `(msix_qsize - sriov_vi_flexible)`.
132  *
133  * - `sriov_max_vi_per_vf`
134  *   Indicates the maximum number of virtual interrupt resources assignable
135  *   to a secondary controller. The default 0 resolves to
136  *   `(sriov_vi_flexible / sriov_max_vfs)`.
137  *
138  * - `sriov_max_vq_per_vf`
139  *   Indicates the maximum number of virtual queue resources assignable to
140  *   a secondary controller. The default 0 resolves to
141  *   `(sriov_vq_flexible / sriov_max_vfs)`.
142  *
143  * nvme namespace device parameters
144  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
145  * - `shared`
146  *   When the parent nvme device (as defined explicitly by the 'bus' parameter
147  *   or implicitly by the most recently defined NvmeBus) is linked to an
148  *   nvme-subsys device, the namespace will be attached to all controllers in
149  *   the subsystem. If set to 'off' (the default), the namespace will remain a
150  *   private namespace and may only be attached to a single controller at a
151  *   time.
152  *
153  * - `detached`
154  *   This parameter is only valid together with the `subsys` parameter. If left
155  *   at the default value (`false/off`), the namespace will be attached to all
156  *   controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
157  *   namespace will be available in the subsystem but not attached to any
158  *   controllers.
159  *
160  * Setting `zoned` to true selects Zoned Command Set at the namespace.
161  * In this case, the following namespace properties are available to configure
162  * zoned operation:
163  *     zoned.zone_size=<zone size in bytes, default: 128MiB>
164  *         The number may be followed by K, M, G as in kilo-, mega- or giga-.
165  *
166  *     zoned.zone_capacity=<zone capacity in bytes, default: zone size>
167  *         The value 0 (default) forces zone capacity to be the same as zone
168  *         size. The value of this property may not exceed zone size.
169  *
170  *     zoned.descr_ext_size=<zone descriptor extension size, default 0>
171  *         This value needs to be specified in 64B units. If it is zero,
172  *         namespace(s) will not support zone descriptor extensions.
173  *
174  *     zoned.max_active=<Maximum Active Resources (zones), default: 0>
175  *         The default value means there is no limit to the number of
176  *         concurrently active zones.
177  *
178  *     zoned.max_open=<Maximum Open Resources (zones), default: 0>
179  *         The default value means there is no limit to the number of
180  *         concurrently open zones.
181  *
182  *     zoned.cross_read=<enable RAZB, default: false>
183  *         Setting this property to true enables Read Across Zone Boundaries.
184  */
185 
186 #include "qemu/osdep.h"
187 #include "qemu/cutils.h"
188 #include "qemu/error-report.h"
189 #include "qemu/log.h"
190 #include "qemu/units.h"
191 #include "qemu/range.h"
192 #include "qapi/error.h"
193 #include "qapi/visitor.h"
194 #include "sysemu/sysemu.h"
195 #include "sysemu/block-backend.h"
196 #include "sysemu/hostmem.h"
197 #include "hw/pci/msix.h"
198 #include "hw/pci/pcie_sriov.h"
199 #include "migration/vmstate.h"
200 
201 #include "nvme.h"
202 #include "dif.h"
203 #include "trace.h"
204 
205 #define NVME_MAX_IOQPAIRS 0xffff
206 #define NVME_DB_SIZE  4
207 #define NVME_SPEC_VER 0x00010400
208 #define NVME_CMB_BIR 2
209 #define NVME_PMR_BIR 4
210 #define NVME_TEMPERATURE 0x143
211 #define NVME_TEMPERATURE_WARNING 0x157
212 #define NVME_TEMPERATURE_CRITICAL 0x175
213 #define NVME_NUM_FW_SLOTS 1
214 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
215 #define NVME_MAX_VFS 127
216 #define NVME_VF_RES_GRANULARITY 1
217 #define NVME_VF_OFFSET 0x1
218 #define NVME_VF_STRIDE 1
219 
220 #define NVME_GUEST_ERR(trace, fmt, ...) \
221     do { \
222         (trace_##trace)(__VA_ARGS__); \
223         qemu_log_mask(LOG_GUEST_ERROR, #trace \
224             " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
225     } while (0)
226 
227 static const bool nvme_feature_support[NVME_FID_MAX] = {
228     [NVME_ARBITRATION]              = true,
229     [NVME_POWER_MANAGEMENT]         = true,
230     [NVME_TEMPERATURE_THRESHOLD]    = true,
231     [NVME_ERROR_RECOVERY]           = true,
232     [NVME_VOLATILE_WRITE_CACHE]     = true,
233     [NVME_NUMBER_OF_QUEUES]         = true,
234     [NVME_INTERRUPT_COALESCING]     = true,
235     [NVME_INTERRUPT_VECTOR_CONF]    = true,
236     [NVME_WRITE_ATOMICITY]          = true,
237     [NVME_ASYNCHRONOUS_EVENT_CONF]  = true,
238     [NVME_TIMESTAMP]                = true,
239     [NVME_HOST_BEHAVIOR_SUPPORT]    = true,
240     [NVME_COMMAND_SET_PROFILE]      = true,
241 };
242 
243 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
244     [NVME_TEMPERATURE_THRESHOLD]    = NVME_FEAT_CAP_CHANGE,
245     [NVME_ERROR_RECOVERY]           = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
246     [NVME_VOLATILE_WRITE_CACHE]     = NVME_FEAT_CAP_CHANGE,
247     [NVME_NUMBER_OF_QUEUES]         = NVME_FEAT_CAP_CHANGE,
248     [NVME_ASYNCHRONOUS_EVENT_CONF]  = NVME_FEAT_CAP_CHANGE,
249     [NVME_TIMESTAMP]                = NVME_FEAT_CAP_CHANGE,
250     [NVME_HOST_BEHAVIOR_SUPPORT]    = NVME_FEAT_CAP_CHANGE,
251     [NVME_COMMAND_SET_PROFILE]      = NVME_FEAT_CAP_CHANGE,
252 };
253 
254 static const uint32_t nvme_cse_acs[256] = {
255     [NVME_ADM_CMD_DELETE_SQ]        = NVME_CMD_EFF_CSUPP,
256     [NVME_ADM_CMD_CREATE_SQ]        = NVME_CMD_EFF_CSUPP,
257     [NVME_ADM_CMD_GET_LOG_PAGE]     = NVME_CMD_EFF_CSUPP,
258     [NVME_ADM_CMD_DELETE_CQ]        = NVME_CMD_EFF_CSUPP,
259     [NVME_ADM_CMD_CREATE_CQ]        = NVME_CMD_EFF_CSUPP,
260     [NVME_ADM_CMD_IDENTIFY]         = NVME_CMD_EFF_CSUPP,
261     [NVME_ADM_CMD_ABORT]            = NVME_CMD_EFF_CSUPP,
262     [NVME_ADM_CMD_SET_FEATURES]     = NVME_CMD_EFF_CSUPP,
263     [NVME_ADM_CMD_GET_FEATURES]     = NVME_CMD_EFF_CSUPP,
264     [NVME_ADM_CMD_ASYNC_EV_REQ]     = NVME_CMD_EFF_CSUPP,
265     [NVME_ADM_CMD_NS_ATTACHMENT]    = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
266     [NVME_ADM_CMD_VIRT_MNGMT]       = NVME_CMD_EFF_CSUPP,
267     [NVME_ADM_CMD_DBBUF_CONFIG]     = NVME_CMD_EFF_CSUPP,
268     [NVME_ADM_CMD_FORMAT_NVM]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
269 };
270 
271 static const uint32_t nvme_cse_iocs_none[256];
272 
273 static const uint32_t nvme_cse_iocs_nvm[256] = {
274     [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
275     [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
276     [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
277     [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
278     [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
279     [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
280     [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
281     [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
282 };
283 
284 static const uint32_t nvme_cse_iocs_zoned[256] = {
285     [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
286     [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
287     [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
288     [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
289     [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
290     [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
291     [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
292     [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
293     [NVME_CMD_ZONE_APPEND]          = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
294     [NVME_CMD_ZONE_MGMT_SEND]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
295     [NVME_CMD_ZONE_MGMT_RECV]       = NVME_CMD_EFF_CSUPP,
296 };
297 
298 static void nvme_process_sq(void *opaque);
299 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst);
300 
301 static uint16_t nvme_sqid(NvmeRequest *req)
302 {
303     return le16_to_cpu(req->sq->sqid);
304 }
305 
306 static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
307                                    NvmeZoneState state)
308 {
309     if (QTAILQ_IN_USE(zone, entry)) {
310         switch (nvme_get_zone_state(zone)) {
311         case NVME_ZONE_STATE_EXPLICITLY_OPEN:
312             QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
313             break;
314         case NVME_ZONE_STATE_IMPLICITLY_OPEN:
315             QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
316             break;
317         case NVME_ZONE_STATE_CLOSED:
318             QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
319             break;
320         case NVME_ZONE_STATE_FULL:
321             QTAILQ_REMOVE(&ns->full_zones, zone, entry);
322         default:
323             ;
324         }
325     }
326 
327     nvme_set_zone_state(zone, state);
328 
329     switch (state) {
330     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
331         QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
332         break;
333     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
334         QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
335         break;
336     case NVME_ZONE_STATE_CLOSED:
337         QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
338         break;
339     case NVME_ZONE_STATE_FULL:
340         QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
341     case NVME_ZONE_STATE_READ_ONLY:
342         break;
343     default:
344         zone->d.za = 0;
345     }
346 }
347 
348 static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act,
349                                          uint32_t opn, uint32_t zrwa)
350 {
351     if (ns->params.max_active_zones != 0 &&
352         ns->nr_active_zones + act > ns->params.max_active_zones) {
353         trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
354         return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
355     }
356 
357     if (ns->params.max_open_zones != 0 &&
358         ns->nr_open_zones + opn > ns->params.max_open_zones) {
359         trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
360         return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
361     }
362 
363     if (zrwa > ns->zns.numzrwa) {
364         return NVME_NOZRWA | NVME_DNR;
365     }
366 
367     return NVME_SUCCESS;
368 }
369 
370 /*
371  * Check if we can open a zone without exceeding open/active limits.
372  * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
373  */
374 static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
375 {
376     return nvme_zns_check_resources(ns, act, opn, 0);
377 }
378 
379 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
380 {
381     hwaddr hi, lo;
382 
383     if (!n->cmb.cmse) {
384         return false;
385     }
386 
387     lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
388     hi = lo + int128_get64(n->cmb.mem.size);
389 
390     return addr >= lo && addr < hi;
391 }
392 
393 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
394 {
395     hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
396     return &n->cmb.buf[addr - base];
397 }
398 
399 static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
400 {
401     hwaddr hi;
402 
403     if (!n->pmr.cmse) {
404         return false;
405     }
406 
407     hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
408 
409     return addr >= n->pmr.cba && addr < hi;
410 }
411 
412 static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
413 {
414     return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
415 }
416 
417 static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr)
418 {
419     hwaddr hi, lo;
420 
421     /*
422      * The purpose of this check is to guard against invalid "local" access to
423      * the iomem (i.e. controller registers). Thus, we check against the range
424      * covered by the 'bar0' MemoryRegion since that is currently composed of
425      * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however,
426      * that if the device model is ever changed to allow the CMB to be located
427      * in BAR0 as well, then this must be changed.
428      */
429     lo = n->bar0.addr;
430     hi = lo + int128_get64(n->bar0.size);
431 
432     return addr >= lo && addr < hi;
433 }
434 
435 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
436 {
437     hwaddr hi = addr + size - 1;
438     if (hi < addr) {
439         return 1;
440     }
441 
442     if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
443         memcpy(buf, nvme_addr_to_cmb(n, addr), size);
444         return 0;
445     }
446 
447     if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
448         memcpy(buf, nvme_addr_to_pmr(n, addr), size);
449         return 0;
450     }
451 
452     return pci_dma_read(&n->parent_obj, addr, buf, size);
453 }
454 
455 static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size)
456 {
457     hwaddr hi = addr + size - 1;
458     if (hi < addr) {
459         return 1;
460     }
461 
462     if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
463         memcpy(nvme_addr_to_cmb(n, addr), buf, size);
464         return 0;
465     }
466 
467     if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
468         memcpy(nvme_addr_to_pmr(n, addr), buf, size);
469         return 0;
470     }
471 
472     return pci_dma_write(&n->parent_obj, addr, buf, size);
473 }
474 
475 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
476 {
477     return nsid &&
478         (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES);
479 }
480 
481 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
482 {
483     return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
484 }
485 
486 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
487 {
488     return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
489 }
490 
491 static void nvme_inc_cq_tail(NvmeCQueue *cq)
492 {
493     cq->tail++;
494     if (cq->tail >= cq->size) {
495         cq->tail = 0;
496         cq->phase = !cq->phase;
497     }
498 }
499 
500 static void nvme_inc_sq_head(NvmeSQueue *sq)
501 {
502     sq->head = (sq->head + 1) % sq->size;
503 }
504 
505 static uint8_t nvme_cq_full(NvmeCQueue *cq)
506 {
507     return (cq->tail + 1) % cq->size == cq->head;
508 }
509 
510 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
511 {
512     return sq->head == sq->tail;
513 }
514 
515 static void nvme_irq_check(NvmeCtrl *n)
516 {
517     uint32_t intms = ldl_le_p(&n->bar.intms);
518 
519     if (msix_enabled(&(n->parent_obj))) {
520         return;
521     }
522     if (~intms & n->irq_status) {
523         pci_irq_assert(&n->parent_obj);
524     } else {
525         pci_irq_deassert(&n->parent_obj);
526     }
527 }
528 
529 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
530 {
531     if (cq->irq_enabled) {
532         if (msix_enabled(&(n->parent_obj))) {
533             trace_pci_nvme_irq_msix(cq->vector);
534             msix_notify(&(n->parent_obj), cq->vector);
535         } else {
536             trace_pci_nvme_irq_pin();
537             assert(cq->vector < 32);
538             n->irq_status |= 1 << cq->vector;
539             nvme_irq_check(n);
540         }
541     } else {
542         trace_pci_nvme_irq_masked();
543     }
544 }
545 
546 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
547 {
548     if (cq->irq_enabled) {
549         if (msix_enabled(&(n->parent_obj))) {
550             return;
551         } else {
552             assert(cq->vector < 32);
553             if (!n->cq_pending) {
554                 n->irq_status &= ~(1 << cq->vector);
555             }
556             nvme_irq_check(n);
557         }
558     }
559 }
560 
561 static void nvme_req_clear(NvmeRequest *req)
562 {
563     req->ns = NULL;
564     req->opaque = NULL;
565     req->aiocb = NULL;
566     memset(&req->cqe, 0x0, sizeof(req->cqe));
567     req->status = NVME_SUCCESS;
568 }
569 
570 static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
571 {
572     if (dma) {
573         pci_dma_sglist_init(&sg->qsg, &n->parent_obj, 0);
574         sg->flags = NVME_SG_DMA;
575     } else {
576         qemu_iovec_init(&sg->iov, 0);
577     }
578 
579     sg->flags |= NVME_SG_ALLOC;
580 }
581 
582 static inline void nvme_sg_unmap(NvmeSg *sg)
583 {
584     if (!(sg->flags & NVME_SG_ALLOC)) {
585         return;
586     }
587 
588     if (sg->flags & NVME_SG_DMA) {
589         qemu_sglist_destroy(&sg->qsg);
590     } else {
591         qemu_iovec_destroy(&sg->iov);
592     }
593 
594     memset(sg, 0x0, sizeof(*sg));
595 }
596 
597 /*
598  * When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
599  * holds both data and metadata. This function splits the data and metadata
600  * into two separate QSG/IOVs.
601  */
602 static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
603                           NvmeSg *mdata)
604 {
605     NvmeSg *dst = data;
606     uint32_t trans_len, count = ns->lbasz;
607     uint64_t offset = 0;
608     bool dma = sg->flags & NVME_SG_DMA;
609     size_t sge_len;
610     size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
611     int sg_idx = 0;
612 
613     assert(sg->flags & NVME_SG_ALLOC);
614 
615     while (sg_len) {
616         sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
617 
618         trans_len = MIN(sg_len, count);
619         trans_len = MIN(trans_len, sge_len - offset);
620 
621         if (dst) {
622             if (dma) {
623                 qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
624                                 trans_len);
625             } else {
626                 qemu_iovec_add(&dst->iov,
627                                sg->iov.iov[sg_idx].iov_base + offset,
628                                trans_len);
629             }
630         }
631 
632         sg_len -= trans_len;
633         count -= trans_len;
634         offset += trans_len;
635 
636         if (count == 0) {
637             dst = (dst == data) ? mdata : data;
638             count = (dst == data) ? ns->lbasz : ns->lbaf.ms;
639         }
640 
641         if (sge_len == offset) {
642             offset = 0;
643             sg_idx++;
644         }
645     }
646 }
647 
648 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
649                                   size_t len)
650 {
651     if (!len) {
652         return NVME_SUCCESS;
653     }
654 
655     trace_pci_nvme_map_addr_cmb(addr, len);
656 
657     if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
658         return NVME_DATA_TRAS_ERROR;
659     }
660 
661     qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
662 
663     return NVME_SUCCESS;
664 }
665 
666 static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
667                                   size_t len)
668 {
669     if (!len) {
670         return NVME_SUCCESS;
671     }
672 
673     if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
674         return NVME_DATA_TRAS_ERROR;
675     }
676 
677     qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
678 
679     return NVME_SUCCESS;
680 }
681 
682 static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
683 {
684     bool cmb = false, pmr = false;
685 
686     if (!len) {
687         return NVME_SUCCESS;
688     }
689 
690     trace_pci_nvme_map_addr(addr, len);
691 
692     if (nvme_addr_is_iomem(n, addr)) {
693         return NVME_DATA_TRAS_ERROR;
694     }
695 
696     if (nvme_addr_is_cmb(n, addr)) {
697         cmb = true;
698     } else if (nvme_addr_is_pmr(n, addr)) {
699         pmr = true;
700     }
701 
702     if (cmb || pmr) {
703         if (sg->flags & NVME_SG_DMA) {
704             return NVME_INVALID_USE_OF_CMB | NVME_DNR;
705         }
706 
707         if (sg->iov.niov + 1 > IOV_MAX) {
708             goto max_mappings_exceeded;
709         }
710 
711         if (cmb) {
712             return nvme_map_addr_cmb(n, &sg->iov, addr, len);
713         } else {
714             return nvme_map_addr_pmr(n, &sg->iov, addr, len);
715         }
716     }
717 
718     if (!(sg->flags & NVME_SG_DMA)) {
719         return NVME_INVALID_USE_OF_CMB | NVME_DNR;
720     }
721 
722     if (sg->qsg.nsg + 1 > IOV_MAX) {
723         goto max_mappings_exceeded;
724     }
725 
726     qemu_sglist_add(&sg->qsg, addr, len);
727 
728     return NVME_SUCCESS;
729 
730 max_mappings_exceeded:
731     NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings,
732                    "number of mappings exceed 1024");
733     return NVME_INTERNAL_DEV_ERROR | NVME_DNR;
734 }
735 
736 static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
737 {
738     return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
739 }
740 
741 static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
742                              uint64_t prp2, uint32_t len)
743 {
744     hwaddr trans_len = n->page_size - (prp1 % n->page_size);
745     trans_len = MIN(len, trans_len);
746     int num_prps = (len >> n->page_bits) + 1;
747     uint16_t status;
748     int ret;
749 
750     trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
751 
752     nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
753 
754     status = nvme_map_addr(n, sg, prp1, trans_len);
755     if (status) {
756         goto unmap;
757     }
758 
759     len -= trans_len;
760     if (len) {
761         if (len > n->page_size) {
762             uint64_t prp_list[n->max_prp_ents];
763             uint32_t nents, prp_trans;
764             int i = 0;
765 
766             /*
767              * The first PRP list entry, pointed to by PRP2 may contain offset.
768              * Hence, we need to calculate the number of entries in based on
769              * that offset.
770              */
771             nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
772             prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
773             ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
774             if (ret) {
775                 trace_pci_nvme_err_addr_read(prp2);
776                 status = NVME_DATA_TRAS_ERROR;
777                 goto unmap;
778             }
779             while (len != 0) {
780                 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
781 
782                 if (i == nents - 1 && len > n->page_size) {
783                     if (unlikely(prp_ent & (n->page_size - 1))) {
784                         trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
785                         status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
786                         goto unmap;
787                     }
788 
789                     i = 0;
790                     nents = (len + n->page_size - 1) >> n->page_bits;
791                     nents = MIN(nents, n->max_prp_ents);
792                     prp_trans = nents * sizeof(uint64_t);
793                     ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
794                                          prp_trans);
795                     if (ret) {
796                         trace_pci_nvme_err_addr_read(prp_ent);
797                         status = NVME_DATA_TRAS_ERROR;
798                         goto unmap;
799                     }
800                     prp_ent = le64_to_cpu(prp_list[i]);
801                 }
802 
803                 if (unlikely(prp_ent & (n->page_size - 1))) {
804                     trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
805                     status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
806                     goto unmap;
807                 }
808 
809                 trans_len = MIN(len, n->page_size);
810                 status = nvme_map_addr(n, sg, prp_ent, trans_len);
811                 if (status) {
812                     goto unmap;
813                 }
814 
815                 len -= trans_len;
816                 i++;
817             }
818         } else {
819             if (unlikely(prp2 & (n->page_size - 1))) {
820                 trace_pci_nvme_err_invalid_prp2_align(prp2);
821                 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
822                 goto unmap;
823             }
824             status = nvme_map_addr(n, sg, prp2, len);
825             if (status) {
826                 goto unmap;
827             }
828         }
829     }
830 
831     return NVME_SUCCESS;
832 
833 unmap:
834     nvme_sg_unmap(sg);
835     return status;
836 }
837 
838 /*
839  * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
840  * number of bytes mapped in len.
841  */
842 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
843                                   NvmeSglDescriptor *segment, uint64_t nsgld,
844                                   size_t *len, NvmeCmd *cmd)
845 {
846     dma_addr_t addr, trans_len;
847     uint32_t dlen;
848     uint16_t status;
849 
850     for (int i = 0; i < nsgld; i++) {
851         uint8_t type = NVME_SGL_TYPE(segment[i].type);
852 
853         switch (type) {
854         case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
855             break;
856         case NVME_SGL_DESCR_TYPE_SEGMENT:
857         case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
858             return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
859         default:
860             return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
861         }
862 
863         dlen = le32_to_cpu(segment[i].len);
864 
865         if (!dlen) {
866             continue;
867         }
868 
869         if (*len == 0) {
870             /*
871              * All data has been mapped, but the SGL contains additional
872              * segments and/or descriptors. The controller might accept
873              * ignoring the rest of the SGL.
874              */
875             uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
876             if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
877                 break;
878             }
879 
880             trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
881             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
882         }
883 
884         trans_len = MIN(*len, dlen);
885 
886         addr = le64_to_cpu(segment[i].addr);
887 
888         if (UINT64_MAX - addr < dlen) {
889             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
890         }
891 
892         status = nvme_map_addr(n, sg, addr, trans_len);
893         if (status) {
894             return status;
895         }
896 
897         *len -= trans_len;
898     }
899 
900     return NVME_SUCCESS;
901 }
902 
903 static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
904                              size_t len, NvmeCmd *cmd)
905 {
906     /*
907      * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
908      * dynamically allocating a potentially huge SGL. The spec allows the SGL
909      * to be larger (as in number of bytes required to describe the SGL
910      * descriptors and segment chain) than the command transfer size, so it is
911      * not bounded by MDTS.
912      */
913     const int SEG_CHUNK_SIZE = 256;
914 
915     NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
916     uint64_t nsgld;
917     uint32_t seg_len;
918     uint16_t status;
919     hwaddr addr;
920     int ret;
921 
922     sgld = &sgl;
923     addr = le64_to_cpu(sgl.addr);
924 
925     trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
926 
927     nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
928 
929     /*
930      * If the entire transfer can be described with a single data block it can
931      * be mapped directly.
932      */
933     if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
934         status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
935         if (status) {
936             goto unmap;
937         }
938 
939         goto out;
940     }
941 
942     for (;;) {
943         switch (NVME_SGL_TYPE(sgld->type)) {
944         case NVME_SGL_DESCR_TYPE_SEGMENT:
945         case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
946             break;
947         default:
948             return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
949         }
950 
951         seg_len = le32_to_cpu(sgld->len);
952 
953         /* check the length of the (Last) Segment descriptor */
954         if (!seg_len || seg_len & 0xf) {
955             return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
956         }
957 
958         if (UINT64_MAX - addr < seg_len) {
959             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
960         }
961 
962         nsgld = seg_len / sizeof(NvmeSglDescriptor);
963 
964         while (nsgld > SEG_CHUNK_SIZE) {
965             if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
966                 trace_pci_nvme_err_addr_read(addr);
967                 status = NVME_DATA_TRAS_ERROR;
968                 goto unmap;
969             }
970 
971             status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
972                                        &len, cmd);
973             if (status) {
974                 goto unmap;
975             }
976 
977             nsgld -= SEG_CHUNK_SIZE;
978             addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
979         }
980 
981         ret = nvme_addr_read(n, addr, segment, nsgld *
982                              sizeof(NvmeSglDescriptor));
983         if (ret) {
984             trace_pci_nvme_err_addr_read(addr);
985             status = NVME_DATA_TRAS_ERROR;
986             goto unmap;
987         }
988 
989         last_sgld = &segment[nsgld - 1];
990 
991         /*
992          * If the segment ends with a Data Block, then we are done.
993          */
994         if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
995             status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
996             if (status) {
997                 goto unmap;
998             }
999 
1000             goto out;
1001         }
1002 
1003         /*
1004          * If the last descriptor was not a Data Block, then the current
1005          * segment must not be a Last Segment.
1006          */
1007         if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
1008             status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1009             goto unmap;
1010         }
1011 
1012         sgld = last_sgld;
1013         addr = le64_to_cpu(sgld->addr);
1014 
1015         /*
1016          * Do not map the last descriptor; it will be a Segment or Last Segment
1017          * descriptor and is handled by the next iteration.
1018          */
1019         status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
1020         if (status) {
1021             goto unmap;
1022         }
1023     }
1024 
1025 out:
1026     /* if there is any residual left in len, the SGL was too short */
1027     if (len) {
1028         status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1029         goto unmap;
1030     }
1031 
1032     return NVME_SUCCESS;
1033 
1034 unmap:
1035     nvme_sg_unmap(sg);
1036     return status;
1037 }
1038 
1039 uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1040                        NvmeCmd *cmd)
1041 {
1042     uint64_t prp1, prp2;
1043 
1044     switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
1045     case NVME_PSDT_PRP:
1046         prp1 = le64_to_cpu(cmd->dptr.prp1);
1047         prp2 = le64_to_cpu(cmd->dptr.prp2);
1048 
1049         return nvme_map_prp(n, sg, prp1, prp2, len);
1050     case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
1051     case NVME_PSDT_SGL_MPTR_SGL:
1052         return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
1053     default:
1054         return NVME_INVALID_FIELD;
1055     }
1056 }
1057 
1058 static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1059                               NvmeCmd *cmd)
1060 {
1061     int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
1062     hwaddr mptr = le64_to_cpu(cmd->mptr);
1063     uint16_t status;
1064 
1065     if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
1066         NvmeSglDescriptor sgl;
1067 
1068         if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
1069             return NVME_DATA_TRAS_ERROR;
1070         }
1071 
1072         status = nvme_map_sgl(n, sg, sgl, len, cmd);
1073         if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
1074             status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
1075         }
1076 
1077         return status;
1078     }
1079 
1080     nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
1081     status = nvme_map_addr(n, sg, mptr, len);
1082     if (status) {
1083         nvme_sg_unmap(sg);
1084     }
1085 
1086     return status;
1087 }
1088 
1089 static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1090 {
1091     NvmeNamespace *ns = req->ns;
1092     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1093     bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1094     bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1095     size_t len = nvme_l2b(ns, nlb);
1096     uint16_t status;
1097 
1098     if (nvme_ns_ext(ns) &&
1099         !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1100         NvmeSg sg;
1101 
1102         len += nvme_m2b(ns, nlb);
1103 
1104         status = nvme_map_dptr(n, &sg, len, &req->cmd);
1105         if (status) {
1106             return status;
1107         }
1108 
1109         nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1110         nvme_sg_split(&sg, ns, &req->sg, NULL);
1111         nvme_sg_unmap(&sg);
1112 
1113         return NVME_SUCCESS;
1114     }
1115 
1116     return nvme_map_dptr(n, &req->sg, len, &req->cmd);
1117 }
1118 
1119 static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1120 {
1121     NvmeNamespace *ns = req->ns;
1122     size_t len = nvme_m2b(ns, nlb);
1123     uint16_t status;
1124 
1125     if (nvme_ns_ext(ns)) {
1126         NvmeSg sg;
1127 
1128         len += nvme_l2b(ns, nlb);
1129 
1130         status = nvme_map_dptr(n, &sg, len, &req->cmd);
1131         if (status) {
1132             return status;
1133         }
1134 
1135         nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1136         nvme_sg_split(&sg, ns, NULL, &req->sg);
1137         nvme_sg_unmap(&sg);
1138 
1139         return NVME_SUCCESS;
1140     }
1141 
1142     return nvme_map_mptr(n, &req->sg, len, &req->cmd);
1143 }
1144 
1145 static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
1146                                     uint32_t len, uint32_t bytes,
1147                                     int32_t skip_bytes, int64_t offset,
1148                                     NvmeTxDirection dir)
1149 {
1150     hwaddr addr;
1151     uint32_t trans_len, count = bytes;
1152     bool dma = sg->flags & NVME_SG_DMA;
1153     int64_t sge_len;
1154     int sg_idx = 0;
1155     int ret;
1156 
1157     assert(sg->flags & NVME_SG_ALLOC);
1158 
1159     while (len) {
1160         sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
1161 
1162         if (sge_len - offset < 0) {
1163             offset -= sge_len;
1164             sg_idx++;
1165             continue;
1166         }
1167 
1168         if (sge_len == offset) {
1169             offset = 0;
1170             sg_idx++;
1171             continue;
1172         }
1173 
1174         trans_len = MIN(len, count);
1175         trans_len = MIN(trans_len, sge_len - offset);
1176 
1177         if (dma) {
1178             addr = sg->qsg.sg[sg_idx].base + offset;
1179         } else {
1180             addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
1181         }
1182 
1183         if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1184             ret = nvme_addr_read(n, addr, ptr, trans_len);
1185         } else {
1186             ret = nvme_addr_write(n, addr, ptr, trans_len);
1187         }
1188 
1189         if (ret) {
1190             return NVME_DATA_TRAS_ERROR;
1191         }
1192 
1193         ptr += trans_len;
1194         len -= trans_len;
1195         count -= trans_len;
1196         offset += trans_len;
1197 
1198         if (count == 0) {
1199             count = bytes;
1200             offset += skip_bytes;
1201         }
1202     }
1203 
1204     return NVME_SUCCESS;
1205 }
1206 
1207 static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len,
1208                         NvmeTxDirection dir)
1209 {
1210     assert(sg->flags & NVME_SG_ALLOC);
1211 
1212     if (sg->flags & NVME_SG_DMA) {
1213         const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
1214         dma_addr_t residual;
1215 
1216         if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1217             dma_buf_write(ptr, len, &residual, &sg->qsg, attrs);
1218         } else {
1219             dma_buf_read(ptr, len, &residual, &sg->qsg, attrs);
1220         }
1221 
1222         if (unlikely(residual)) {
1223             trace_pci_nvme_err_invalid_dma();
1224             return NVME_INVALID_FIELD | NVME_DNR;
1225         }
1226     } else {
1227         size_t bytes;
1228 
1229         if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1230             bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
1231         } else {
1232             bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
1233         }
1234 
1235         if (unlikely(bytes != len)) {
1236             trace_pci_nvme_err_invalid_dma();
1237             return NVME_INVALID_FIELD | NVME_DNR;
1238         }
1239     }
1240 
1241     return NVME_SUCCESS;
1242 }
1243 
1244 static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len,
1245                                 NvmeRequest *req)
1246 {
1247     uint16_t status;
1248 
1249     status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1250     if (status) {
1251         return status;
1252     }
1253 
1254     return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
1255 }
1256 
1257 static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len,
1258                                 NvmeRequest *req)
1259 {
1260     uint16_t status;
1261 
1262     status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1263     if (status) {
1264         return status;
1265     }
1266 
1267     return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
1268 }
1269 
1270 uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len,
1271                           NvmeTxDirection dir, NvmeRequest *req)
1272 {
1273     NvmeNamespace *ns = req->ns;
1274     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1275     bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1276     bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1277 
1278     if (nvme_ns_ext(ns) &&
1279         !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1280         return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz,
1281                                    ns->lbaf.ms, 0, dir);
1282     }
1283 
1284     return nvme_tx(n, &req->sg, ptr, len, dir);
1285 }
1286 
1287 uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len,
1288                            NvmeTxDirection dir, NvmeRequest *req)
1289 {
1290     NvmeNamespace *ns = req->ns;
1291     uint16_t status;
1292 
1293     if (nvme_ns_ext(ns)) {
1294         return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms,
1295                                    ns->lbasz, ns->lbasz, dir);
1296     }
1297 
1298     nvme_sg_unmap(&req->sg);
1299 
1300     status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
1301     if (status) {
1302         return status;
1303     }
1304 
1305     return nvme_tx(n, &req->sg, ptr, len, dir);
1306 }
1307 
1308 static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
1309                                  BlockCompletionFunc *cb, NvmeRequest *req)
1310 {
1311     assert(req->sg.flags & NVME_SG_ALLOC);
1312 
1313     if (req->sg.flags & NVME_SG_DMA) {
1314         req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1315                                   cb, req);
1316     } else {
1317         req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
1318     }
1319 }
1320 
1321 static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
1322                                   BlockCompletionFunc *cb, NvmeRequest *req)
1323 {
1324     assert(req->sg.flags & NVME_SG_ALLOC);
1325 
1326     if (req->sg.flags & NVME_SG_DMA) {
1327         req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1328                                    cb, req);
1329     } else {
1330         req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
1331     }
1332 }
1333 
1334 static void nvme_update_cq_head(NvmeCQueue *cq)
1335 {
1336     pci_dma_read(&cq->ctrl->parent_obj, cq->db_addr, &cq->head,
1337             sizeof(cq->head));
1338     trace_pci_nvme_shadow_doorbell_cq(cq->cqid, cq->head);
1339 }
1340 
1341 static void nvme_post_cqes(void *opaque)
1342 {
1343     NvmeCQueue *cq = opaque;
1344     NvmeCtrl *n = cq->ctrl;
1345     NvmeRequest *req, *next;
1346     bool pending = cq->head != cq->tail;
1347     int ret;
1348 
1349     QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
1350         NvmeSQueue *sq;
1351         hwaddr addr;
1352 
1353         if (n->dbbuf_enabled) {
1354             nvme_update_cq_head(cq);
1355         }
1356 
1357         if (nvme_cq_full(cq)) {
1358             break;
1359         }
1360 
1361         sq = req->sq;
1362         req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
1363         req->cqe.sq_id = cpu_to_le16(sq->sqid);
1364         req->cqe.sq_head = cpu_to_le16(sq->head);
1365         addr = cq->dma_addr + cq->tail * n->cqe_size;
1366         ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
1367                             sizeof(req->cqe));
1368         if (ret) {
1369             trace_pci_nvme_err_addr_write(addr);
1370             trace_pci_nvme_err_cfs();
1371             stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
1372             break;
1373         }
1374         QTAILQ_REMOVE(&cq->req_list, req, entry);
1375         nvme_inc_cq_tail(cq);
1376         nvme_sg_unmap(&req->sg);
1377         QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
1378     }
1379     if (cq->tail != cq->head) {
1380         if (cq->irq_enabled && !pending) {
1381             n->cq_pending++;
1382         }
1383 
1384         nvme_irq_assert(n, cq);
1385     }
1386 }
1387 
1388 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
1389 {
1390     assert(cq->cqid == req->sq->cqid);
1391     trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
1392                                           le32_to_cpu(req->cqe.result),
1393                                           le32_to_cpu(req->cqe.dw1),
1394                                           req->status);
1395 
1396     if (req->status) {
1397         trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
1398                                       req->status, req->cmd.opcode);
1399     }
1400 
1401     QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
1402     QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
1403 
1404     qemu_bh_schedule(cq->bh);
1405 }
1406 
1407 static void nvme_process_aers(void *opaque)
1408 {
1409     NvmeCtrl *n = opaque;
1410     NvmeAsyncEvent *event, *next;
1411 
1412     trace_pci_nvme_process_aers(n->aer_queued);
1413 
1414     QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
1415         NvmeRequest *req;
1416         NvmeAerResult *result;
1417 
1418         /* can't post cqe if there is nothing to complete */
1419         if (!n->outstanding_aers) {
1420             trace_pci_nvme_no_outstanding_aers();
1421             break;
1422         }
1423 
1424         /* ignore if masked (cqe posted, but event not cleared) */
1425         if (n->aer_mask & (1 << event->result.event_type)) {
1426             trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
1427             continue;
1428         }
1429 
1430         QTAILQ_REMOVE(&n->aer_queue, event, entry);
1431         n->aer_queued--;
1432 
1433         n->aer_mask |= 1 << event->result.event_type;
1434         n->outstanding_aers--;
1435 
1436         req = n->aer_reqs[n->outstanding_aers];
1437 
1438         result = (NvmeAerResult *) &req->cqe.result;
1439         result->event_type = event->result.event_type;
1440         result->event_info = event->result.event_info;
1441         result->log_page = event->result.log_page;
1442         g_free(event);
1443 
1444         trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
1445                                     result->log_page);
1446 
1447         nvme_enqueue_req_completion(&n->admin_cq, req);
1448     }
1449 }
1450 
1451 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
1452                                uint8_t event_info, uint8_t log_page)
1453 {
1454     NvmeAsyncEvent *event;
1455 
1456     trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
1457 
1458     if (n->aer_queued == n->params.aer_max_queued) {
1459         trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
1460         return;
1461     }
1462 
1463     event = g_new(NvmeAsyncEvent, 1);
1464     event->result = (NvmeAerResult) {
1465         .event_type = event_type,
1466         .event_info = event_info,
1467         .log_page   = log_page,
1468     };
1469 
1470     QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
1471     n->aer_queued++;
1472 
1473     nvme_process_aers(n);
1474 }
1475 
1476 static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
1477 {
1478     uint8_t aer_info;
1479 
1480     /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
1481     if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
1482         return;
1483     }
1484 
1485     switch (event) {
1486     case NVME_SMART_SPARE:
1487         aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
1488         break;
1489     case NVME_SMART_TEMPERATURE:
1490         aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
1491         break;
1492     case NVME_SMART_RELIABILITY:
1493     case NVME_SMART_MEDIA_READ_ONLY:
1494     case NVME_SMART_FAILED_VOLATILE_MEDIA:
1495     case NVME_SMART_PMR_UNRELIABLE:
1496         aer_info = NVME_AER_INFO_SMART_RELIABILITY;
1497         break;
1498     default:
1499         return;
1500     }
1501 
1502     nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
1503 }
1504 
1505 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
1506 {
1507     n->aer_mask &= ~(1 << event_type);
1508     if (!QTAILQ_EMPTY(&n->aer_queue)) {
1509         nvme_process_aers(n);
1510     }
1511 }
1512 
1513 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
1514 {
1515     uint8_t mdts = n->params.mdts;
1516 
1517     if (mdts && len > n->page_size << mdts) {
1518         trace_pci_nvme_err_mdts(len);
1519         return NVME_INVALID_FIELD | NVME_DNR;
1520     }
1521 
1522     return NVME_SUCCESS;
1523 }
1524 
1525 static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
1526                                          uint32_t nlb)
1527 {
1528     uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
1529 
1530     if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
1531         trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
1532         return NVME_LBA_RANGE | NVME_DNR;
1533     }
1534 
1535     return NVME_SUCCESS;
1536 }
1537 
1538 static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba,
1539                                  uint32_t nlb, int flags)
1540 {
1541     BlockDriverState *bs = blk_bs(ns->blkconf.blk);
1542 
1543     int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
1544     int64_t offset = nvme_l2b(ns, slba);
1545     int ret;
1546 
1547     /*
1548      * `pnum` holds the number of bytes after offset that shares the same
1549      * allocation status as the byte at offset. If `pnum` is different from
1550      * `bytes`, we should check the allocation status of the next range and
1551      * continue this until all bytes have been checked.
1552      */
1553     do {
1554         bytes -= pnum;
1555 
1556         ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
1557         if (ret < 0) {
1558             return ret;
1559         }
1560 
1561 
1562         trace_pci_nvme_block_status(offset, bytes, pnum, ret,
1563                                     !!(ret & BDRV_BLOCK_ZERO));
1564 
1565         if (!(ret & flags)) {
1566             return 1;
1567         }
1568 
1569         offset += pnum;
1570     } while (pnum != bytes);
1571 
1572     return 0;
1573 }
1574 
1575 static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
1576                                  uint32_t nlb)
1577 {
1578     int ret;
1579     Error *err = NULL;
1580 
1581     ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA);
1582     if (ret) {
1583         if (ret < 0) {
1584             error_setg_errno(&err, -ret, "unable to get block status");
1585             error_report_err(err);
1586 
1587             return NVME_INTERNAL_DEV_ERROR;
1588         }
1589 
1590         return NVME_DULB;
1591     }
1592 
1593     return NVME_SUCCESS;
1594 }
1595 
1596 static void nvme_aio_err(NvmeRequest *req, int ret)
1597 {
1598     uint16_t status = NVME_SUCCESS;
1599     Error *local_err = NULL;
1600 
1601     switch (req->cmd.opcode) {
1602     case NVME_CMD_READ:
1603         status = NVME_UNRECOVERED_READ;
1604         break;
1605     case NVME_CMD_FLUSH:
1606     case NVME_CMD_WRITE:
1607     case NVME_CMD_WRITE_ZEROES:
1608     case NVME_CMD_ZONE_APPEND:
1609         status = NVME_WRITE_FAULT;
1610         break;
1611     default:
1612         status = NVME_INTERNAL_DEV_ERROR;
1613         break;
1614     }
1615 
1616     trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
1617 
1618     error_setg_errno(&local_err, -ret, "aio failed");
1619     error_report_err(local_err);
1620 
1621     /*
1622      * Set the command status code to the first encountered error but allow a
1623      * subsequent Internal Device Error to trump it.
1624      */
1625     if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
1626         return;
1627     }
1628 
1629     req->status = status;
1630 }
1631 
1632 static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
1633 {
1634     return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
1635                                     slba / ns->zone_size;
1636 }
1637 
1638 static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
1639 {
1640     uint32_t zone_idx = nvme_zone_idx(ns, slba);
1641 
1642     if (zone_idx >= ns->num_zones) {
1643         return NULL;
1644     }
1645 
1646     return &ns->zone_array[zone_idx];
1647 }
1648 
1649 static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
1650 {
1651     uint64_t zslba = zone->d.zslba;
1652 
1653     switch (nvme_get_zone_state(zone)) {
1654     case NVME_ZONE_STATE_EMPTY:
1655     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1656     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1657     case NVME_ZONE_STATE_CLOSED:
1658         return NVME_SUCCESS;
1659     case NVME_ZONE_STATE_FULL:
1660         trace_pci_nvme_err_zone_is_full(zslba);
1661         return NVME_ZONE_FULL;
1662     case NVME_ZONE_STATE_OFFLINE:
1663         trace_pci_nvme_err_zone_is_offline(zslba);
1664         return NVME_ZONE_OFFLINE;
1665     case NVME_ZONE_STATE_READ_ONLY:
1666         trace_pci_nvme_err_zone_is_read_only(zslba);
1667         return NVME_ZONE_READ_ONLY;
1668     default:
1669         assert(false);
1670     }
1671 
1672     return NVME_INTERNAL_DEV_ERROR;
1673 }
1674 
1675 static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
1676                                       uint64_t slba, uint32_t nlb)
1677 {
1678     uint64_t zcap = nvme_zone_wr_boundary(zone);
1679     uint16_t status;
1680 
1681     status = nvme_check_zone_state_for_write(zone);
1682     if (status) {
1683         return status;
1684     }
1685 
1686     if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1687         uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas;
1688 
1689         if (slba < zone->w_ptr || slba + nlb > ezrwa) {
1690             trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr);
1691             return NVME_ZONE_INVALID_WRITE;
1692         }
1693     } else {
1694         if (unlikely(slba != zone->w_ptr)) {
1695             trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba,
1696                                                zone->w_ptr);
1697             return NVME_ZONE_INVALID_WRITE;
1698         }
1699     }
1700 
1701     if (unlikely((slba + nlb) > zcap)) {
1702         trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
1703         return NVME_ZONE_BOUNDARY_ERROR;
1704     }
1705 
1706     return NVME_SUCCESS;
1707 }
1708 
1709 static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
1710 {
1711     switch (nvme_get_zone_state(zone)) {
1712     case NVME_ZONE_STATE_EMPTY:
1713     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1714     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1715     case NVME_ZONE_STATE_FULL:
1716     case NVME_ZONE_STATE_CLOSED:
1717     case NVME_ZONE_STATE_READ_ONLY:
1718         return NVME_SUCCESS;
1719     case NVME_ZONE_STATE_OFFLINE:
1720         trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
1721         return NVME_ZONE_OFFLINE;
1722     default:
1723         assert(false);
1724     }
1725 
1726     return NVME_INTERNAL_DEV_ERROR;
1727 }
1728 
1729 static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
1730                                      uint32_t nlb)
1731 {
1732     NvmeZone *zone;
1733     uint64_t bndry, end;
1734     uint16_t status;
1735 
1736     zone = nvme_get_zone_by_slba(ns, slba);
1737     assert(zone);
1738 
1739     bndry = nvme_zone_rd_boundary(ns, zone);
1740     end = slba + nlb;
1741 
1742     status = nvme_check_zone_state_for_read(zone);
1743     if (status) {
1744         ;
1745     } else if (unlikely(end > bndry)) {
1746         if (!ns->params.cross_zone_read) {
1747             status = NVME_ZONE_BOUNDARY_ERROR;
1748         } else {
1749             /*
1750              * Read across zone boundary - check that all subsequent
1751              * zones that are being read have an appropriate state.
1752              */
1753             do {
1754                 zone++;
1755                 status = nvme_check_zone_state_for_read(zone);
1756                 if (status) {
1757                     break;
1758                 }
1759             } while (end > nvme_zone_rd_boundary(ns, zone));
1760         }
1761     }
1762 
1763     return status;
1764 }
1765 
1766 static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
1767 {
1768     switch (nvme_get_zone_state(zone)) {
1769     case NVME_ZONE_STATE_FULL:
1770         return NVME_SUCCESS;
1771 
1772     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1773     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1774         nvme_aor_dec_open(ns);
1775         /* fallthrough */
1776     case NVME_ZONE_STATE_CLOSED:
1777         nvme_aor_dec_active(ns);
1778 
1779         if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1780             zone->d.za &= ~NVME_ZA_ZRWA_VALID;
1781             if (ns->params.numzrwa) {
1782                 ns->zns.numzrwa++;
1783             }
1784         }
1785 
1786         /* fallthrough */
1787     case NVME_ZONE_STATE_EMPTY:
1788         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
1789         return NVME_SUCCESS;
1790 
1791     default:
1792         return NVME_ZONE_INVAL_TRANSITION;
1793     }
1794 }
1795 
1796 static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
1797 {
1798     switch (nvme_get_zone_state(zone)) {
1799     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1800     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1801         nvme_aor_dec_open(ns);
1802         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
1803         /* fall through */
1804     case NVME_ZONE_STATE_CLOSED:
1805         return NVME_SUCCESS;
1806 
1807     default:
1808         return NVME_ZONE_INVAL_TRANSITION;
1809     }
1810 }
1811 
1812 static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone)
1813 {
1814     switch (nvme_get_zone_state(zone)) {
1815     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1816     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1817         nvme_aor_dec_open(ns);
1818         /* fallthrough */
1819     case NVME_ZONE_STATE_CLOSED:
1820         nvme_aor_dec_active(ns);
1821 
1822         if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1823             if (ns->params.numzrwa) {
1824                 ns->zns.numzrwa++;
1825             }
1826         }
1827 
1828         /* fallthrough */
1829     case NVME_ZONE_STATE_FULL:
1830         zone->w_ptr = zone->d.zslba;
1831         zone->d.wp = zone->w_ptr;
1832         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
1833         /* fallthrough */
1834     case NVME_ZONE_STATE_EMPTY:
1835         return NVME_SUCCESS;
1836 
1837     default:
1838         return NVME_ZONE_INVAL_TRANSITION;
1839     }
1840 }
1841 
1842 static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
1843 {
1844     NvmeZone *zone;
1845 
1846     if (ns->params.max_open_zones &&
1847         ns->nr_open_zones == ns->params.max_open_zones) {
1848         zone = QTAILQ_FIRST(&ns->imp_open_zones);
1849         if (zone) {
1850             /*
1851              * Automatically close this implicitly open zone.
1852              */
1853             QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
1854             nvme_zrm_close(ns, zone);
1855         }
1856     }
1857 }
1858 
1859 enum {
1860     NVME_ZRM_AUTO = 1 << 0,
1861     NVME_ZRM_ZRWA = 1 << 1,
1862 };
1863 
1864 static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns,
1865                                     NvmeZone *zone, int flags)
1866 {
1867     int act = 0;
1868     uint16_t status;
1869 
1870     switch (nvme_get_zone_state(zone)) {
1871     case NVME_ZONE_STATE_EMPTY:
1872         act = 1;
1873 
1874         /* fallthrough */
1875 
1876     case NVME_ZONE_STATE_CLOSED:
1877         if (n->params.auto_transition_zones) {
1878             nvme_zrm_auto_transition_zone(ns);
1879         }
1880         status = nvme_zns_check_resources(ns, act, 1,
1881                                           (flags & NVME_ZRM_ZRWA) ? 1 : 0);
1882         if (status) {
1883             return status;
1884         }
1885 
1886         if (act) {
1887             nvme_aor_inc_active(ns);
1888         }
1889 
1890         nvme_aor_inc_open(ns);
1891 
1892         if (flags & NVME_ZRM_AUTO) {
1893             nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
1894             return NVME_SUCCESS;
1895         }
1896 
1897         /* fallthrough */
1898 
1899     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1900         if (flags & NVME_ZRM_AUTO) {
1901             return NVME_SUCCESS;
1902         }
1903 
1904         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
1905 
1906         /* fallthrough */
1907 
1908     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1909         if (flags & NVME_ZRM_ZRWA) {
1910             ns->zns.numzrwa--;
1911 
1912             zone->d.za |= NVME_ZA_ZRWA_VALID;
1913         }
1914 
1915         return NVME_SUCCESS;
1916 
1917     default:
1918         return NVME_ZONE_INVAL_TRANSITION;
1919     }
1920 }
1921 
1922 static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns,
1923                                      NvmeZone *zone)
1924 {
1925     return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO);
1926 }
1927 
1928 static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
1929                                  uint32_t nlb)
1930 {
1931     zone->d.wp += nlb;
1932 
1933     if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
1934         nvme_zrm_finish(ns, zone);
1935     }
1936 }
1937 
1938 static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone,
1939                                            uint32_t nlbc)
1940 {
1941     uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg);
1942 
1943     nlbc = nzrwafgs * ns->zns.zrwafg;
1944 
1945     trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc);
1946 
1947     zone->w_ptr += nlbc;
1948 
1949     nvme_advance_zone_wp(ns, zone, nlbc);
1950 }
1951 
1952 static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
1953 {
1954     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1955     NvmeZone *zone;
1956     uint64_t slba;
1957     uint32_t nlb;
1958 
1959     slba = le64_to_cpu(rw->slba);
1960     nlb = le16_to_cpu(rw->nlb) + 1;
1961     zone = nvme_get_zone_by_slba(ns, slba);
1962     assert(zone);
1963 
1964     if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1965         uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1;
1966         uint64_t elba = slba + nlb - 1;
1967 
1968         if (elba > ezrwa) {
1969             nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa);
1970         }
1971 
1972         return;
1973     }
1974 
1975     nvme_advance_zone_wp(ns, zone, nlb);
1976 }
1977 
1978 static inline bool nvme_is_write(NvmeRequest *req)
1979 {
1980     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1981 
1982     return rw->opcode == NVME_CMD_WRITE ||
1983            rw->opcode == NVME_CMD_ZONE_APPEND ||
1984            rw->opcode == NVME_CMD_WRITE_ZEROES;
1985 }
1986 
1987 static AioContext *nvme_get_aio_context(BlockAIOCB *acb)
1988 {
1989     return qemu_get_aio_context();
1990 }
1991 
1992 static void nvme_misc_cb(void *opaque, int ret)
1993 {
1994     NvmeRequest *req = opaque;
1995 
1996     trace_pci_nvme_misc_cb(nvme_cid(req));
1997 
1998     if (ret) {
1999         nvme_aio_err(req, ret);
2000     }
2001 
2002     nvme_enqueue_req_completion(nvme_cq(req), req);
2003 }
2004 
2005 void nvme_rw_complete_cb(void *opaque, int ret)
2006 {
2007     NvmeRequest *req = opaque;
2008     NvmeNamespace *ns = req->ns;
2009     BlockBackend *blk = ns->blkconf.blk;
2010     BlockAcctCookie *acct = &req->acct;
2011     BlockAcctStats *stats = blk_get_stats(blk);
2012 
2013     trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
2014 
2015     if (ret) {
2016         block_acct_failed(stats, acct);
2017         nvme_aio_err(req, ret);
2018     } else {
2019         block_acct_done(stats, acct);
2020     }
2021 
2022     if (ns->params.zoned && nvme_is_write(req)) {
2023         nvme_finalize_zoned_write(ns, req);
2024     }
2025 
2026     nvme_enqueue_req_completion(nvme_cq(req), req);
2027 }
2028 
2029 static void nvme_rw_cb(void *opaque, int ret)
2030 {
2031     NvmeRequest *req = opaque;
2032     NvmeNamespace *ns = req->ns;
2033 
2034     BlockBackend *blk = ns->blkconf.blk;
2035 
2036     trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
2037 
2038     if (ret) {
2039         goto out;
2040     }
2041 
2042     if (ns->lbaf.ms) {
2043         NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2044         uint64_t slba = le64_to_cpu(rw->slba);
2045         uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
2046         uint64_t offset = nvme_moff(ns, slba);
2047 
2048         if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
2049             size_t mlen = nvme_m2b(ns, nlb);
2050 
2051             req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
2052                                                BDRV_REQ_MAY_UNMAP,
2053                                                nvme_rw_complete_cb, req);
2054             return;
2055         }
2056 
2057         if (nvme_ns_ext(ns) || req->cmd.mptr) {
2058             uint16_t status;
2059 
2060             nvme_sg_unmap(&req->sg);
2061             status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
2062             if (status) {
2063                 ret = -EFAULT;
2064                 goto out;
2065             }
2066 
2067             if (req->cmd.opcode == NVME_CMD_READ) {
2068                 return nvme_blk_read(blk, offset, nvme_rw_complete_cb, req);
2069             }
2070 
2071             return nvme_blk_write(blk, offset, nvme_rw_complete_cb, req);
2072         }
2073     }
2074 
2075 out:
2076     nvme_rw_complete_cb(req, ret);
2077 }
2078 
2079 static void nvme_verify_cb(void *opaque, int ret)
2080 {
2081     NvmeBounceContext *ctx = opaque;
2082     NvmeRequest *req = ctx->req;
2083     NvmeNamespace *ns = req->ns;
2084     BlockBackend *blk = ns->blkconf.blk;
2085     BlockAcctCookie *acct = &req->acct;
2086     BlockAcctStats *stats = blk_get_stats(blk);
2087     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2088     uint64_t slba = le64_to_cpu(rw->slba);
2089     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2090     uint16_t apptag = le16_to_cpu(rw->apptag);
2091     uint16_t appmask = le16_to_cpu(rw->appmask);
2092     uint64_t reftag = le32_to_cpu(rw->reftag);
2093     uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2094     uint16_t status;
2095 
2096     reftag |= cdw3 << 32;
2097 
2098     trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag);
2099 
2100     if (ret) {
2101         block_acct_failed(stats, acct);
2102         nvme_aio_err(req, ret);
2103         goto out;
2104     }
2105 
2106     block_acct_done(stats, acct);
2107 
2108     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2109         status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
2110                                        ctx->mdata.iov.size, slba);
2111         if (status) {
2112             req->status = status;
2113             goto out;
2114         }
2115 
2116         req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2117                                      ctx->mdata.bounce, ctx->mdata.iov.size,
2118                                      prinfo, slba, apptag, appmask, &reftag);
2119     }
2120 
2121 out:
2122     qemu_iovec_destroy(&ctx->data.iov);
2123     g_free(ctx->data.bounce);
2124 
2125     qemu_iovec_destroy(&ctx->mdata.iov);
2126     g_free(ctx->mdata.bounce);
2127 
2128     g_free(ctx);
2129 
2130     nvme_enqueue_req_completion(nvme_cq(req), req);
2131 }
2132 
2133 
2134 static void nvme_verify_mdata_in_cb(void *opaque, int ret)
2135 {
2136     NvmeBounceContext *ctx = opaque;
2137     NvmeRequest *req = ctx->req;
2138     NvmeNamespace *ns = req->ns;
2139     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2140     uint64_t slba = le64_to_cpu(rw->slba);
2141     uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2142     size_t mlen = nvme_m2b(ns, nlb);
2143     uint64_t offset = nvme_moff(ns, slba);
2144     BlockBackend *blk = ns->blkconf.blk;
2145 
2146     trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
2147 
2148     if (ret) {
2149         goto out;
2150     }
2151 
2152     ctx->mdata.bounce = g_malloc(mlen);
2153 
2154     qemu_iovec_reset(&ctx->mdata.iov);
2155     qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2156 
2157     req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2158                                 nvme_verify_cb, ctx);
2159     return;
2160 
2161 out:
2162     nvme_verify_cb(ctx, ret);
2163 }
2164 
2165 struct nvme_compare_ctx {
2166     struct {
2167         QEMUIOVector iov;
2168         uint8_t *bounce;
2169     } data;
2170 
2171     struct {
2172         QEMUIOVector iov;
2173         uint8_t *bounce;
2174     } mdata;
2175 };
2176 
2177 static void nvme_compare_mdata_cb(void *opaque, int ret)
2178 {
2179     NvmeRequest *req = opaque;
2180     NvmeNamespace *ns = req->ns;
2181     NvmeCtrl *n = nvme_ctrl(req);
2182     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2183     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2184     uint16_t apptag = le16_to_cpu(rw->apptag);
2185     uint16_t appmask = le16_to_cpu(rw->appmask);
2186     uint64_t reftag = le32_to_cpu(rw->reftag);
2187     uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2188     struct nvme_compare_ctx *ctx = req->opaque;
2189     g_autofree uint8_t *buf = NULL;
2190     BlockBackend *blk = ns->blkconf.blk;
2191     BlockAcctCookie *acct = &req->acct;
2192     BlockAcctStats *stats = blk_get_stats(blk);
2193     uint16_t status = NVME_SUCCESS;
2194 
2195     reftag |= cdw3 << 32;
2196 
2197     trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
2198 
2199     if (ret) {
2200         block_acct_failed(stats, acct);
2201         nvme_aio_err(req, ret);
2202         goto out;
2203     }
2204 
2205     buf = g_malloc(ctx->mdata.iov.size);
2206 
2207     status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
2208                                NVME_TX_DIRECTION_TO_DEVICE, req);
2209     if (status) {
2210         req->status = status;
2211         goto out;
2212     }
2213 
2214     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2215         uint64_t slba = le64_to_cpu(rw->slba);
2216         uint8_t *bufp;
2217         uint8_t *mbufp = ctx->mdata.bounce;
2218         uint8_t *end = mbufp + ctx->mdata.iov.size;
2219         int16_t pil = 0;
2220 
2221         status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2222                                 ctx->mdata.bounce, ctx->mdata.iov.size, prinfo,
2223                                 slba, apptag, appmask, &reftag);
2224         if (status) {
2225             req->status = status;
2226             goto out;
2227         }
2228 
2229         /*
2230          * When formatted with protection information, do not compare the DIF
2231          * tuple.
2232          */
2233         if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
2234             pil = ns->lbaf.ms - nvme_pi_tuple_size(ns);
2235         }
2236 
2237         for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) {
2238             if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) {
2239                 req->status = NVME_CMP_FAILURE;
2240                 goto out;
2241             }
2242         }
2243 
2244         goto out;
2245     }
2246 
2247     if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
2248         req->status = NVME_CMP_FAILURE;
2249         goto out;
2250     }
2251 
2252     block_acct_done(stats, acct);
2253 
2254 out:
2255     qemu_iovec_destroy(&ctx->data.iov);
2256     g_free(ctx->data.bounce);
2257 
2258     qemu_iovec_destroy(&ctx->mdata.iov);
2259     g_free(ctx->mdata.bounce);
2260 
2261     g_free(ctx);
2262 
2263     nvme_enqueue_req_completion(nvme_cq(req), req);
2264 }
2265 
2266 static void nvme_compare_data_cb(void *opaque, int ret)
2267 {
2268     NvmeRequest *req = opaque;
2269     NvmeCtrl *n = nvme_ctrl(req);
2270     NvmeNamespace *ns = req->ns;
2271     BlockBackend *blk = ns->blkconf.blk;
2272     BlockAcctCookie *acct = &req->acct;
2273     BlockAcctStats *stats = blk_get_stats(blk);
2274 
2275     struct nvme_compare_ctx *ctx = req->opaque;
2276     g_autofree uint8_t *buf = NULL;
2277     uint16_t status;
2278 
2279     trace_pci_nvme_compare_data_cb(nvme_cid(req));
2280 
2281     if (ret) {
2282         block_acct_failed(stats, acct);
2283         nvme_aio_err(req, ret);
2284         goto out;
2285     }
2286 
2287     buf = g_malloc(ctx->data.iov.size);
2288 
2289     status = nvme_bounce_data(n, buf, ctx->data.iov.size,
2290                               NVME_TX_DIRECTION_TO_DEVICE, req);
2291     if (status) {
2292         req->status = status;
2293         goto out;
2294     }
2295 
2296     if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
2297         req->status = NVME_CMP_FAILURE;
2298         goto out;
2299     }
2300 
2301     if (ns->lbaf.ms) {
2302         NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2303         uint64_t slba = le64_to_cpu(rw->slba);
2304         uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2305         size_t mlen = nvme_m2b(ns, nlb);
2306         uint64_t offset = nvme_moff(ns, slba);
2307 
2308         ctx->mdata.bounce = g_malloc(mlen);
2309 
2310         qemu_iovec_init(&ctx->mdata.iov, 1);
2311         qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2312 
2313         req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2314                                     nvme_compare_mdata_cb, req);
2315         return;
2316     }
2317 
2318     block_acct_done(stats, acct);
2319 
2320 out:
2321     qemu_iovec_destroy(&ctx->data.iov);
2322     g_free(ctx->data.bounce);
2323     g_free(ctx);
2324 
2325     nvme_enqueue_req_completion(nvme_cq(req), req);
2326 }
2327 
2328 typedef struct NvmeDSMAIOCB {
2329     BlockAIOCB common;
2330     BlockAIOCB *aiocb;
2331     NvmeRequest *req;
2332     int ret;
2333 
2334     NvmeDsmRange *range;
2335     unsigned int nr;
2336     unsigned int idx;
2337 } NvmeDSMAIOCB;
2338 
2339 static void nvme_dsm_cancel(BlockAIOCB *aiocb)
2340 {
2341     NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common);
2342 
2343     /* break nvme_dsm_cb loop */
2344     iocb->idx = iocb->nr;
2345     iocb->ret = -ECANCELED;
2346 
2347     if (iocb->aiocb) {
2348         blk_aio_cancel_async(iocb->aiocb);
2349         iocb->aiocb = NULL;
2350     } else {
2351         /*
2352          * We only reach this if nvme_dsm_cancel() has already been called or
2353          * the command ran to completion.
2354          */
2355         assert(iocb->idx == iocb->nr);
2356     }
2357 }
2358 
2359 static const AIOCBInfo nvme_dsm_aiocb_info = {
2360     .aiocb_size   = sizeof(NvmeDSMAIOCB),
2361     .cancel_async = nvme_dsm_cancel,
2362 };
2363 
2364 static void nvme_dsm_cb(void *opaque, int ret);
2365 
2366 static void nvme_dsm_md_cb(void *opaque, int ret)
2367 {
2368     NvmeDSMAIOCB *iocb = opaque;
2369     NvmeRequest *req = iocb->req;
2370     NvmeNamespace *ns = req->ns;
2371     NvmeDsmRange *range;
2372     uint64_t slba;
2373     uint32_t nlb;
2374 
2375     if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
2376         goto done;
2377     }
2378 
2379     range = &iocb->range[iocb->idx - 1];
2380     slba = le64_to_cpu(range->slba);
2381     nlb = le32_to_cpu(range->nlb);
2382 
2383     /*
2384      * Check that all block were discarded (zeroed); otherwise we do not zero
2385      * the metadata.
2386      */
2387 
2388     ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO);
2389     if (ret) {
2390         if (ret < 0) {
2391             goto done;
2392         }
2393 
2394         nvme_dsm_cb(iocb, 0);
2395         return;
2396     }
2397 
2398     iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba),
2399                                         nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP,
2400                                         nvme_dsm_cb, iocb);
2401     return;
2402 
2403 done:
2404     nvme_dsm_cb(iocb, ret);
2405 }
2406 
2407 static void nvme_dsm_cb(void *opaque, int ret)
2408 {
2409     NvmeDSMAIOCB *iocb = opaque;
2410     NvmeRequest *req = iocb->req;
2411     NvmeCtrl *n = nvme_ctrl(req);
2412     NvmeNamespace *ns = req->ns;
2413     NvmeDsmRange *range;
2414     uint64_t slba;
2415     uint32_t nlb;
2416 
2417     if (iocb->ret < 0) {
2418         goto done;
2419     } else if (ret < 0) {
2420         iocb->ret = ret;
2421         goto done;
2422     }
2423 
2424 next:
2425     if (iocb->idx == iocb->nr) {
2426         goto done;
2427     }
2428 
2429     range = &iocb->range[iocb->idx++];
2430     slba = le64_to_cpu(range->slba);
2431     nlb = le32_to_cpu(range->nlb);
2432 
2433     trace_pci_nvme_dsm_deallocate(slba, nlb);
2434 
2435     if (nlb > n->dmrsl) {
2436         trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
2437         goto next;
2438     }
2439 
2440     if (nvme_check_bounds(ns, slba, nlb)) {
2441         trace_pci_nvme_err_invalid_lba_range(slba, nlb,
2442                                              ns->id_ns.nsze);
2443         goto next;
2444     }
2445 
2446     iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba),
2447                                    nvme_l2b(ns, nlb),
2448                                    nvme_dsm_md_cb, iocb);
2449     return;
2450 
2451 done:
2452     iocb->aiocb = NULL;
2453     iocb->common.cb(iocb->common.opaque, iocb->ret);
2454     qemu_aio_unref(iocb);
2455 }
2456 
2457 static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
2458 {
2459     NvmeNamespace *ns = req->ns;
2460     NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
2461     uint32_t attr = le32_to_cpu(dsm->attributes);
2462     uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
2463     uint16_t status = NVME_SUCCESS;
2464 
2465     trace_pci_nvme_dsm(nr, attr);
2466 
2467     if (attr & NVME_DSMGMT_AD) {
2468         NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk,
2469                                          nvme_misc_cb, req);
2470 
2471         iocb->req = req;
2472         iocb->ret = 0;
2473         iocb->range = g_new(NvmeDsmRange, nr);
2474         iocb->nr = nr;
2475         iocb->idx = 0;
2476 
2477         status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr,
2478                           req);
2479         if (status) {
2480             return status;
2481         }
2482 
2483         req->aiocb = &iocb->common;
2484         nvme_dsm_cb(iocb, 0);
2485 
2486         return NVME_NO_COMPLETE;
2487     }
2488 
2489     return status;
2490 }
2491 
2492 static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
2493 {
2494     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2495     NvmeNamespace *ns = req->ns;
2496     BlockBackend *blk = ns->blkconf.blk;
2497     uint64_t slba = le64_to_cpu(rw->slba);
2498     uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2499     size_t len = nvme_l2b(ns, nlb);
2500     int64_t offset = nvme_l2b(ns, slba);
2501     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2502     uint32_t reftag = le32_to_cpu(rw->reftag);
2503     NvmeBounceContext *ctx = NULL;
2504     uint16_t status;
2505 
2506     trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
2507 
2508     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2509         status = nvme_check_prinfo(ns, prinfo, slba, reftag);
2510         if (status) {
2511             return status;
2512         }
2513 
2514         if (prinfo & NVME_PRINFO_PRACT) {
2515             return NVME_INVALID_PROT_INFO | NVME_DNR;
2516         }
2517     }
2518 
2519     if (len > n->page_size << n->params.vsl) {
2520         return NVME_INVALID_FIELD | NVME_DNR;
2521     }
2522 
2523     status = nvme_check_bounds(ns, slba, nlb);
2524     if (status) {
2525         return status;
2526     }
2527 
2528     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2529         status = nvme_check_dulbe(ns, slba, nlb);
2530         if (status) {
2531             return status;
2532         }
2533     }
2534 
2535     ctx = g_new0(NvmeBounceContext, 1);
2536     ctx->req = req;
2537 
2538     ctx->data.bounce = g_malloc(len);
2539 
2540     qemu_iovec_init(&ctx->data.iov, 1);
2541     qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
2542 
2543     block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
2544                      BLOCK_ACCT_READ);
2545 
2546     req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
2547                                 nvme_verify_mdata_in_cb, ctx);
2548     return NVME_NO_COMPLETE;
2549 }
2550 
2551 typedef struct NvmeCopyAIOCB {
2552     BlockAIOCB common;
2553     BlockAIOCB *aiocb;
2554     NvmeRequest *req;
2555     int ret;
2556 
2557     void *ranges;
2558     unsigned int format;
2559     int nr;
2560     int idx;
2561 
2562     uint8_t *bounce;
2563     QEMUIOVector iov;
2564     struct {
2565         BlockAcctCookie read;
2566         BlockAcctCookie write;
2567     } acct;
2568 
2569     uint64_t reftag;
2570     uint64_t slba;
2571 
2572     NvmeZone *zone;
2573 } NvmeCopyAIOCB;
2574 
2575 static void nvme_copy_cancel(BlockAIOCB *aiocb)
2576 {
2577     NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common);
2578 
2579     iocb->ret = -ECANCELED;
2580 
2581     if (iocb->aiocb) {
2582         blk_aio_cancel_async(iocb->aiocb);
2583         iocb->aiocb = NULL;
2584     }
2585 }
2586 
2587 static const AIOCBInfo nvme_copy_aiocb_info = {
2588     .aiocb_size   = sizeof(NvmeCopyAIOCB),
2589     .cancel_async = nvme_copy_cancel,
2590 };
2591 
2592 static void nvme_copy_done(NvmeCopyAIOCB *iocb)
2593 {
2594     NvmeRequest *req = iocb->req;
2595     NvmeNamespace *ns = req->ns;
2596     BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk);
2597 
2598     if (iocb->idx != iocb->nr) {
2599         req->cqe.result = cpu_to_le32(iocb->idx);
2600     }
2601 
2602     qemu_iovec_destroy(&iocb->iov);
2603     g_free(iocb->bounce);
2604 
2605     if (iocb->ret < 0) {
2606         block_acct_failed(stats, &iocb->acct.read);
2607         block_acct_failed(stats, &iocb->acct.write);
2608     } else {
2609         block_acct_done(stats, &iocb->acct.read);
2610         block_acct_done(stats, &iocb->acct.write);
2611     }
2612 
2613     iocb->common.cb(iocb->common.opaque, iocb->ret);
2614     qemu_aio_unref(iocb);
2615 }
2616 
2617 static void nvme_do_copy(NvmeCopyAIOCB *iocb);
2618 
2619 static void nvme_copy_source_range_parse_format0(void *ranges, int idx,
2620                                                  uint64_t *slba, uint32_t *nlb,
2621                                                  uint16_t *apptag,
2622                                                  uint16_t *appmask,
2623                                                  uint64_t *reftag)
2624 {
2625     NvmeCopySourceRangeFormat0 *_ranges = ranges;
2626 
2627     if (slba) {
2628         *slba = le64_to_cpu(_ranges[idx].slba);
2629     }
2630 
2631     if (nlb) {
2632         *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2633     }
2634 
2635     if (apptag) {
2636         *apptag = le16_to_cpu(_ranges[idx].apptag);
2637     }
2638 
2639     if (appmask) {
2640         *appmask = le16_to_cpu(_ranges[idx].appmask);
2641     }
2642 
2643     if (reftag) {
2644         *reftag = le32_to_cpu(_ranges[idx].reftag);
2645     }
2646 }
2647 
2648 static void nvme_copy_source_range_parse_format1(void *ranges, int idx,
2649                                                  uint64_t *slba, uint32_t *nlb,
2650                                                  uint16_t *apptag,
2651                                                  uint16_t *appmask,
2652                                                  uint64_t *reftag)
2653 {
2654     NvmeCopySourceRangeFormat1 *_ranges = ranges;
2655 
2656     if (slba) {
2657         *slba = le64_to_cpu(_ranges[idx].slba);
2658     }
2659 
2660     if (nlb) {
2661         *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2662     }
2663 
2664     if (apptag) {
2665         *apptag = le16_to_cpu(_ranges[idx].apptag);
2666     }
2667 
2668     if (appmask) {
2669         *appmask = le16_to_cpu(_ranges[idx].appmask);
2670     }
2671 
2672     if (reftag) {
2673         *reftag = 0;
2674 
2675         *reftag |= (uint64_t)_ranges[idx].sr[4] << 40;
2676         *reftag |= (uint64_t)_ranges[idx].sr[5] << 32;
2677         *reftag |= (uint64_t)_ranges[idx].sr[6] << 24;
2678         *reftag |= (uint64_t)_ranges[idx].sr[7] << 16;
2679         *reftag |= (uint64_t)_ranges[idx].sr[8] << 8;
2680         *reftag |= (uint64_t)_ranges[idx].sr[9];
2681     }
2682 }
2683 
2684 static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format,
2685                                          uint64_t *slba, uint32_t *nlb,
2686                                          uint16_t *apptag, uint16_t *appmask,
2687                                          uint64_t *reftag)
2688 {
2689     switch (format) {
2690     case NVME_COPY_FORMAT_0:
2691         nvme_copy_source_range_parse_format0(ranges, idx, slba, nlb, apptag,
2692                                              appmask, reftag);
2693         break;
2694 
2695     case NVME_COPY_FORMAT_1:
2696         nvme_copy_source_range_parse_format1(ranges, idx, slba, nlb, apptag,
2697                                              appmask, reftag);
2698         break;
2699 
2700     default:
2701         abort();
2702     }
2703 }
2704 
2705 static void nvme_copy_out_completed_cb(void *opaque, int ret)
2706 {
2707     NvmeCopyAIOCB *iocb = opaque;
2708     NvmeRequest *req = iocb->req;
2709     NvmeNamespace *ns = req->ns;
2710     uint32_t nlb;
2711 
2712     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2713                                  &nlb, NULL, NULL, NULL);
2714 
2715     if (ret < 0) {
2716         iocb->ret = ret;
2717         goto out;
2718     } else if (iocb->ret < 0) {
2719         goto out;
2720     }
2721 
2722     if (ns->params.zoned) {
2723         nvme_advance_zone_wp(ns, iocb->zone, nlb);
2724     }
2725 
2726     iocb->idx++;
2727     iocb->slba += nlb;
2728 out:
2729     nvme_do_copy(iocb);
2730 }
2731 
2732 static void nvme_copy_out_cb(void *opaque, int ret)
2733 {
2734     NvmeCopyAIOCB *iocb = opaque;
2735     NvmeRequest *req = iocb->req;
2736     NvmeNamespace *ns = req->ns;
2737     uint32_t nlb;
2738     size_t mlen;
2739     uint8_t *mbounce;
2740 
2741     if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
2742         goto out;
2743     }
2744 
2745     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2746                                  &nlb, NULL, NULL, NULL);
2747 
2748     mlen = nvme_m2b(ns, nlb);
2749     mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2750 
2751     qemu_iovec_reset(&iocb->iov);
2752     qemu_iovec_add(&iocb->iov, mbounce, mlen);
2753 
2754     iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba),
2755                                   &iocb->iov, 0, nvme_copy_out_completed_cb,
2756                                   iocb);
2757 
2758     return;
2759 
2760 out:
2761     nvme_copy_out_completed_cb(iocb, ret);
2762 }
2763 
2764 static void nvme_copy_in_completed_cb(void *opaque, int ret)
2765 {
2766     NvmeCopyAIOCB *iocb = opaque;
2767     NvmeRequest *req = iocb->req;
2768     NvmeNamespace *ns = req->ns;
2769     uint32_t nlb;
2770     uint64_t slba;
2771     uint16_t apptag, appmask;
2772     uint64_t reftag;
2773     size_t len;
2774     uint16_t status;
2775 
2776     if (ret < 0) {
2777         iocb->ret = ret;
2778         goto out;
2779     } else if (iocb->ret < 0) {
2780         goto out;
2781     }
2782 
2783     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2784                                  &nlb, &apptag, &appmask, &reftag);
2785     len = nvme_l2b(ns, nlb);
2786 
2787     trace_pci_nvme_copy_out(iocb->slba, nlb);
2788 
2789     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2790         NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2791 
2792         uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
2793         uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
2794 
2795         size_t mlen = nvme_m2b(ns, nlb);
2796         uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2797 
2798         status = nvme_dif_mangle_mdata(ns, mbounce, mlen, slba);
2799         if (status) {
2800             goto invalid;
2801         }
2802         status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor,
2803                                 slba, apptag, appmask, &reftag);
2804         if (status) {
2805             goto invalid;
2806         }
2807 
2808         apptag = le16_to_cpu(copy->apptag);
2809         appmask = le16_to_cpu(copy->appmask);
2810 
2811         if (prinfow & NVME_PRINFO_PRACT) {
2812             status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag);
2813             if (status) {
2814                 goto invalid;
2815             }
2816 
2817             nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen,
2818                                         apptag, &iocb->reftag);
2819         } else {
2820             status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen,
2821                                     prinfow, iocb->slba, apptag, appmask,
2822                                     &iocb->reftag);
2823             if (status) {
2824                 goto invalid;
2825             }
2826         }
2827     }
2828 
2829     status = nvme_check_bounds(ns, iocb->slba, nlb);
2830     if (status) {
2831         goto invalid;
2832     }
2833 
2834     if (ns->params.zoned) {
2835         status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb);
2836         if (status) {
2837             goto invalid;
2838         }
2839 
2840         if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) {
2841             iocb->zone->w_ptr += nlb;
2842         }
2843     }
2844 
2845     qemu_iovec_reset(&iocb->iov);
2846     qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2847 
2848     iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba),
2849                                   &iocb->iov, 0, nvme_copy_out_cb, iocb);
2850 
2851     return;
2852 
2853 invalid:
2854     req->status = status;
2855     iocb->ret = -1;
2856 out:
2857     nvme_do_copy(iocb);
2858 }
2859 
2860 static void nvme_copy_in_cb(void *opaque, int ret)
2861 {
2862     NvmeCopyAIOCB *iocb = opaque;
2863     NvmeRequest *req = iocb->req;
2864     NvmeNamespace *ns = req->ns;
2865     uint64_t slba;
2866     uint32_t nlb;
2867 
2868     if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
2869         goto out;
2870     }
2871 
2872     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2873                                  &nlb, NULL, NULL, NULL);
2874 
2875     qemu_iovec_reset(&iocb->iov);
2876     qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb),
2877                    nvme_m2b(ns, nlb));
2878 
2879     iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba),
2880                                  &iocb->iov, 0, nvme_copy_in_completed_cb,
2881                                  iocb);
2882     return;
2883 
2884 out:
2885     nvme_copy_in_completed_cb(iocb, ret);
2886 }
2887 
2888 static void nvme_do_copy(NvmeCopyAIOCB *iocb)
2889 {
2890     NvmeRequest *req = iocb->req;
2891     NvmeNamespace *ns = req->ns;
2892     uint64_t slba;
2893     uint32_t nlb;
2894     size_t len;
2895     uint16_t status;
2896 
2897     if (iocb->ret < 0) {
2898         goto done;
2899     }
2900 
2901     if (iocb->idx == iocb->nr) {
2902         goto done;
2903     }
2904 
2905     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2906                                  &nlb, NULL, NULL, NULL);
2907     len = nvme_l2b(ns, nlb);
2908 
2909     trace_pci_nvme_copy_source_range(slba, nlb);
2910 
2911     if (nlb > le16_to_cpu(ns->id_ns.mssrl)) {
2912         status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
2913         goto invalid;
2914     }
2915 
2916     status = nvme_check_bounds(ns, slba, nlb);
2917     if (status) {
2918         goto invalid;
2919     }
2920 
2921     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2922         status = nvme_check_dulbe(ns, slba, nlb);
2923         if (status) {
2924             goto invalid;
2925         }
2926     }
2927 
2928     if (ns->params.zoned) {
2929         status = nvme_check_zone_read(ns, slba, nlb);
2930         if (status) {
2931             goto invalid;
2932         }
2933     }
2934 
2935     qemu_iovec_reset(&iocb->iov);
2936     qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2937 
2938     iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_l2b(ns, slba),
2939                                  &iocb->iov, 0, nvme_copy_in_cb, iocb);
2940     return;
2941 
2942 invalid:
2943     req->status = status;
2944     iocb->ret = -1;
2945 done:
2946     nvme_copy_done(iocb);
2947 }
2948 
2949 static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
2950 {
2951     NvmeNamespace *ns = req->ns;
2952     NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2953     NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk,
2954                                       nvme_misc_cb, req);
2955     uint16_t nr = copy->nr + 1;
2956     uint8_t format = copy->control[0] & 0xf;
2957     uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
2958     uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
2959     size_t len = sizeof(NvmeCopySourceRangeFormat0);
2960 
2961     uint16_t status;
2962 
2963     trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
2964 
2965     iocb->ranges = NULL;
2966     iocb->zone = NULL;
2967 
2968     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
2969         ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) {
2970         status = NVME_INVALID_FIELD | NVME_DNR;
2971         goto invalid;
2972     }
2973 
2974     if (!(n->id_ctrl.ocfs & (1 << format))) {
2975         trace_pci_nvme_err_copy_invalid_format(format);
2976         status = NVME_INVALID_FIELD | NVME_DNR;
2977         goto invalid;
2978     }
2979 
2980     if (nr > ns->id_ns.msrc + 1) {
2981         status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
2982         goto invalid;
2983     }
2984 
2985     if ((ns->pif == 0x0 && format != 0x0) ||
2986         (ns->pif != 0x0 && format != 0x1)) {
2987         status = NVME_INVALID_FORMAT | NVME_DNR;
2988         goto invalid;
2989     }
2990 
2991     if (ns->pif) {
2992         len = sizeof(NvmeCopySourceRangeFormat1);
2993     }
2994 
2995     iocb->format = format;
2996     iocb->ranges = g_malloc_n(nr, len);
2997     status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req);
2998     if (status) {
2999         goto invalid;
3000     }
3001 
3002     iocb->slba = le64_to_cpu(copy->sdlba);
3003 
3004     if (ns->params.zoned) {
3005         iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba);
3006         if (!iocb->zone) {
3007             status = NVME_LBA_RANGE | NVME_DNR;
3008             goto invalid;
3009         }
3010 
3011         status = nvme_zrm_auto(n, ns, iocb->zone);
3012         if (status) {
3013             goto invalid;
3014         }
3015     }
3016 
3017     iocb->req = req;
3018     iocb->ret = 0;
3019     iocb->nr = nr;
3020     iocb->idx = 0;
3021     iocb->reftag = le32_to_cpu(copy->reftag);
3022     iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32;
3023     iocb->bounce = g_malloc_n(le16_to_cpu(ns->id_ns.mssrl),
3024                               ns->lbasz + ns->lbaf.ms);
3025 
3026     qemu_iovec_init(&iocb->iov, 1);
3027 
3028     block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.read, 0,
3029                      BLOCK_ACCT_READ);
3030     block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.write, 0,
3031                      BLOCK_ACCT_WRITE);
3032 
3033     req->aiocb = &iocb->common;
3034     nvme_do_copy(iocb);
3035 
3036     return NVME_NO_COMPLETE;
3037 
3038 invalid:
3039     g_free(iocb->ranges);
3040     qemu_aio_unref(iocb);
3041     return status;
3042 }
3043 
3044 static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
3045 {
3046     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3047     NvmeNamespace *ns = req->ns;
3048     BlockBackend *blk = ns->blkconf.blk;
3049     uint64_t slba = le64_to_cpu(rw->slba);
3050     uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
3051     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3052     size_t data_len = nvme_l2b(ns, nlb);
3053     size_t len = data_len;
3054     int64_t offset = nvme_l2b(ns, slba);
3055     struct nvme_compare_ctx *ctx = NULL;
3056     uint16_t status;
3057 
3058     trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
3059 
3060     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) {
3061         return NVME_INVALID_PROT_INFO | NVME_DNR;
3062     }
3063 
3064     if (nvme_ns_ext(ns)) {
3065         len += nvme_m2b(ns, nlb);
3066     }
3067 
3068     status = nvme_check_mdts(n, len);
3069     if (status) {
3070         return status;
3071     }
3072 
3073     status = nvme_check_bounds(ns, slba, nlb);
3074     if (status) {
3075         return status;
3076     }
3077 
3078     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3079         status = nvme_check_dulbe(ns, slba, nlb);
3080         if (status) {
3081             return status;
3082         }
3083     }
3084 
3085     status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
3086     if (status) {
3087         return status;
3088     }
3089 
3090     ctx = g_new(struct nvme_compare_ctx, 1);
3091     ctx->data.bounce = g_malloc(data_len);
3092 
3093     req->opaque = ctx;
3094 
3095     qemu_iovec_init(&ctx->data.iov, 1);
3096     qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
3097 
3098     block_acct_start(blk_get_stats(blk), &req->acct, data_len,
3099                      BLOCK_ACCT_READ);
3100     req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0,
3101                                 nvme_compare_data_cb, req);
3102 
3103     return NVME_NO_COMPLETE;
3104 }
3105 
3106 typedef struct NvmeFlushAIOCB {
3107     BlockAIOCB common;
3108     BlockAIOCB *aiocb;
3109     NvmeRequest *req;
3110     int ret;
3111 
3112     NvmeNamespace *ns;
3113     uint32_t nsid;
3114     bool broadcast;
3115 } NvmeFlushAIOCB;
3116 
3117 static void nvme_flush_cancel(BlockAIOCB *acb)
3118 {
3119     NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common);
3120 
3121     iocb->ret = -ECANCELED;
3122 
3123     if (iocb->aiocb) {
3124         blk_aio_cancel_async(iocb->aiocb);
3125         iocb->aiocb = NULL;
3126     }
3127 }
3128 
3129 static const AIOCBInfo nvme_flush_aiocb_info = {
3130     .aiocb_size = sizeof(NvmeFlushAIOCB),
3131     .cancel_async = nvme_flush_cancel,
3132     .get_aio_context = nvme_get_aio_context,
3133 };
3134 
3135 static void nvme_do_flush(NvmeFlushAIOCB *iocb);
3136 
3137 static void nvme_flush_ns_cb(void *opaque, int ret)
3138 {
3139     NvmeFlushAIOCB *iocb = opaque;
3140     NvmeNamespace *ns = iocb->ns;
3141 
3142     if (ret < 0) {
3143         iocb->ret = ret;
3144         goto out;
3145     } else if (iocb->ret < 0) {
3146         goto out;
3147     }
3148 
3149     if (ns) {
3150         trace_pci_nvme_flush_ns(iocb->nsid);
3151 
3152         iocb->ns = NULL;
3153         iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb);
3154         return;
3155     }
3156 
3157 out:
3158     nvme_do_flush(iocb);
3159 }
3160 
3161 static void nvme_do_flush(NvmeFlushAIOCB *iocb)
3162 {
3163     NvmeRequest *req = iocb->req;
3164     NvmeCtrl *n = nvme_ctrl(req);
3165     int i;
3166 
3167     if (iocb->ret < 0) {
3168         goto done;
3169     }
3170 
3171     if (iocb->broadcast) {
3172         for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
3173             iocb->ns = nvme_ns(n, i);
3174             if (iocb->ns) {
3175                 iocb->nsid = i;
3176                 break;
3177             }
3178         }
3179     }
3180 
3181     if (!iocb->ns) {
3182         goto done;
3183     }
3184 
3185     nvme_flush_ns_cb(iocb, 0);
3186     return;
3187 
3188 done:
3189     iocb->common.cb(iocb->common.opaque, iocb->ret);
3190     qemu_aio_unref(iocb);
3191 }
3192 
3193 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
3194 {
3195     NvmeFlushAIOCB *iocb;
3196     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
3197     uint16_t status;
3198 
3199     iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req);
3200 
3201     iocb->req = req;
3202     iocb->ret = 0;
3203     iocb->ns = NULL;
3204     iocb->nsid = 0;
3205     iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
3206 
3207     if (!iocb->broadcast) {
3208         if (!nvme_nsid_valid(n, nsid)) {
3209             status = NVME_INVALID_NSID | NVME_DNR;
3210             goto out;
3211         }
3212 
3213         iocb->ns = nvme_ns(n, nsid);
3214         if (!iocb->ns) {
3215             status = NVME_INVALID_FIELD | NVME_DNR;
3216             goto out;
3217         }
3218 
3219         iocb->nsid = nsid;
3220     }
3221 
3222     req->aiocb = &iocb->common;
3223     nvme_do_flush(iocb);
3224 
3225     return NVME_NO_COMPLETE;
3226 
3227 out:
3228     qemu_aio_unref(iocb);
3229 
3230     return status;
3231 }
3232 
3233 static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
3234 {
3235     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3236     NvmeNamespace *ns = req->ns;
3237     uint64_t slba = le64_to_cpu(rw->slba);
3238     uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3239     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3240     uint64_t data_size = nvme_l2b(ns, nlb);
3241     uint64_t mapped_size = data_size;
3242     uint64_t data_offset;
3243     BlockBackend *blk = ns->blkconf.blk;
3244     uint16_t status;
3245 
3246     if (nvme_ns_ext(ns)) {
3247         mapped_size += nvme_m2b(ns, nlb);
3248 
3249         if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3250             bool pract = prinfo & NVME_PRINFO_PRACT;
3251 
3252             if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3253                 mapped_size = data_size;
3254             }
3255         }
3256     }
3257 
3258     trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
3259 
3260     status = nvme_check_mdts(n, mapped_size);
3261     if (status) {
3262         goto invalid;
3263     }
3264 
3265     status = nvme_check_bounds(ns, slba, nlb);
3266     if (status) {
3267         goto invalid;
3268     }
3269 
3270     if (ns->params.zoned) {
3271         status = nvme_check_zone_read(ns, slba, nlb);
3272         if (status) {
3273             trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
3274             goto invalid;
3275         }
3276     }
3277 
3278     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3279         status = nvme_check_dulbe(ns, slba, nlb);
3280         if (status) {
3281             goto invalid;
3282         }
3283     }
3284 
3285     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3286         return nvme_dif_rw(n, req);
3287     }
3288 
3289     status = nvme_map_data(n, nlb, req);
3290     if (status) {
3291         goto invalid;
3292     }
3293 
3294     data_offset = nvme_l2b(ns, slba);
3295 
3296     block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3297                      BLOCK_ACCT_READ);
3298     nvme_blk_read(blk, data_offset, nvme_rw_cb, req);
3299     return NVME_NO_COMPLETE;
3300 
3301 invalid:
3302     block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
3303     return status | NVME_DNR;
3304 }
3305 
3306 static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
3307                               bool wrz)
3308 {
3309     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3310     NvmeNamespace *ns = req->ns;
3311     uint64_t slba = le64_to_cpu(rw->slba);
3312     uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3313     uint16_t ctrl = le16_to_cpu(rw->control);
3314     uint8_t prinfo = NVME_RW_PRINFO(ctrl);
3315     uint64_t data_size = nvme_l2b(ns, nlb);
3316     uint64_t mapped_size = data_size;
3317     uint64_t data_offset;
3318     NvmeZone *zone;
3319     NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
3320     BlockBackend *blk = ns->blkconf.blk;
3321     uint16_t status;
3322 
3323     if (nvme_ns_ext(ns)) {
3324         mapped_size += nvme_m2b(ns, nlb);
3325 
3326         if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3327             bool pract = prinfo & NVME_PRINFO_PRACT;
3328 
3329             if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3330                 mapped_size -= nvme_m2b(ns, nlb);
3331             }
3332         }
3333     }
3334 
3335     trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
3336                          nvme_nsid(ns), nlb, mapped_size, slba);
3337 
3338     if (!wrz) {
3339         status = nvme_check_mdts(n, mapped_size);
3340         if (status) {
3341             goto invalid;
3342         }
3343     }
3344 
3345     status = nvme_check_bounds(ns, slba, nlb);
3346     if (status) {
3347         goto invalid;
3348     }
3349 
3350     if (ns->params.zoned) {
3351         zone = nvme_get_zone_by_slba(ns, slba);
3352         assert(zone);
3353 
3354         if (append) {
3355             bool piremap = !!(ctrl & NVME_RW_PIREMAP);
3356 
3357             if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3358                 return NVME_INVALID_ZONE_OP | NVME_DNR;
3359             }
3360 
3361             if (unlikely(slba != zone->d.zslba)) {
3362                 trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
3363                 status = NVME_INVALID_FIELD;
3364                 goto invalid;
3365             }
3366 
3367             if (n->params.zasl &&
3368                 data_size > (uint64_t)n->page_size << n->params.zasl) {
3369                 trace_pci_nvme_err_zasl(data_size);
3370                 return NVME_INVALID_FIELD | NVME_DNR;
3371             }
3372 
3373             slba = zone->w_ptr;
3374             rw->slba = cpu_to_le64(slba);
3375             res->slba = cpu_to_le64(slba);
3376 
3377             switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3378             case NVME_ID_NS_DPS_TYPE_1:
3379                 if (!piremap) {
3380                     return NVME_INVALID_PROT_INFO | NVME_DNR;
3381                 }
3382 
3383                 /* fallthrough */
3384 
3385             case NVME_ID_NS_DPS_TYPE_2:
3386                 if (piremap) {
3387                     uint32_t reftag = le32_to_cpu(rw->reftag);
3388                     rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
3389                 }
3390 
3391                 break;
3392 
3393             case NVME_ID_NS_DPS_TYPE_3:
3394                 if (piremap) {
3395                     return NVME_INVALID_PROT_INFO | NVME_DNR;
3396                 }
3397 
3398                 break;
3399             }
3400         }
3401 
3402         status = nvme_check_zone_write(ns, zone, slba, nlb);
3403         if (status) {
3404             goto invalid;
3405         }
3406 
3407         status = nvme_zrm_auto(n, ns, zone);
3408         if (status) {
3409             goto invalid;
3410         }
3411 
3412         if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3413             zone->w_ptr += nlb;
3414         }
3415     }
3416 
3417     data_offset = nvme_l2b(ns, slba);
3418 
3419     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3420         return nvme_dif_rw(n, req);
3421     }
3422 
3423     if (!wrz) {
3424         status = nvme_map_data(n, nlb, req);
3425         if (status) {
3426             goto invalid;
3427         }
3428 
3429         block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3430                          BLOCK_ACCT_WRITE);
3431         nvme_blk_write(blk, data_offset, nvme_rw_cb, req);
3432     } else {
3433         req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
3434                                            BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
3435                                            req);
3436     }
3437 
3438     return NVME_NO_COMPLETE;
3439 
3440 invalid:
3441     block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
3442     return status | NVME_DNR;
3443 }
3444 
3445 static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
3446 {
3447     return nvme_do_write(n, req, false, false);
3448 }
3449 
3450 static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
3451 {
3452     return nvme_do_write(n, req, false, true);
3453 }
3454 
3455 static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
3456 {
3457     return nvme_do_write(n, req, true, false);
3458 }
3459 
3460 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
3461                                             uint64_t *slba, uint32_t *zone_idx)
3462 {
3463     uint32_t dw10 = le32_to_cpu(c->cdw10);
3464     uint32_t dw11 = le32_to_cpu(c->cdw11);
3465 
3466     if (!ns->params.zoned) {
3467         trace_pci_nvme_err_invalid_opc(c->opcode);
3468         return NVME_INVALID_OPCODE | NVME_DNR;
3469     }
3470 
3471     *slba = ((uint64_t)dw11) << 32 | dw10;
3472     if (unlikely(*slba >= ns->id_ns.nsze)) {
3473         trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
3474         *slba = 0;
3475         return NVME_LBA_RANGE | NVME_DNR;
3476     }
3477 
3478     *zone_idx = nvme_zone_idx(ns, *slba);
3479     assert(*zone_idx < ns->num_zones);
3480 
3481     return NVME_SUCCESS;
3482 }
3483 
3484 typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
3485                                  NvmeRequest *);
3486 
3487 enum NvmeZoneProcessingMask {
3488     NVME_PROC_CURRENT_ZONE    = 0,
3489     NVME_PROC_OPENED_ZONES    = 1 << 0,
3490     NVME_PROC_CLOSED_ZONES    = 1 << 1,
3491     NVME_PROC_READ_ONLY_ZONES = 1 << 2,
3492     NVME_PROC_FULL_ZONES      = 1 << 3,
3493 };
3494 
3495 static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
3496                                NvmeZoneState state, NvmeRequest *req)
3497 {
3498     NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3499     int flags = 0;
3500 
3501     if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) {
3502         uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3503 
3504         if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3505             return NVME_INVALID_ZONE_OP | NVME_DNR;
3506         }
3507 
3508         if (zone->w_ptr % ns->zns.zrwafg) {
3509             return NVME_NOZRWA | NVME_DNR;
3510         }
3511 
3512         flags = NVME_ZRM_ZRWA;
3513     }
3514 
3515     return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags);
3516 }
3517 
3518 static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
3519                                 NvmeZoneState state, NvmeRequest *req)
3520 {
3521     return nvme_zrm_close(ns, zone);
3522 }
3523 
3524 static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
3525                                  NvmeZoneState state, NvmeRequest *req)
3526 {
3527     return nvme_zrm_finish(ns, zone);
3528 }
3529 
3530 static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
3531                                   NvmeZoneState state, NvmeRequest *req)
3532 {
3533     switch (state) {
3534     case NVME_ZONE_STATE_READ_ONLY:
3535         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
3536         /* fall through */
3537     case NVME_ZONE_STATE_OFFLINE:
3538         return NVME_SUCCESS;
3539     default:
3540         return NVME_ZONE_INVAL_TRANSITION;
3541     }
3542 }
3543 
3544 static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
3545 {
3546     uint16_t status;
3547     uint8_t state = nvme_get_zone_state(zone);
3548 
3549     if (state == NVME_ZONE_STATE_EMPTY) {
3550         status = nvme_aor_check(ns, 1, 0);
3551         if (status) {
3552             return status;
3553         }
3554         nvme_aor_inc_active(ns);
3555         zone->d.za |= NVME_ZA_ZD_EXT_VALID;
3556         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
3557         return NVME_SUCCESS;
3558     }
3559 
3560     return NVME_ZONE_INVAL_TRANSITION;
3561 }
3562 
3563 static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
3564                                     enum NvmeZoneProcessingMask proc_mask,
3565                                     op_handler_t op_hndlr, NvmeRequest *req)
3566 {
3567     uint16_t status = NVME_SUCCESS;
3568     NvmeZoneState zs = nvme_get_zone_state(zone);
3569     bool proc_zone;
3570 
3571     switch (zs) {
3572     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3573     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3574         proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
3575         break;
3576     case NVME_ZONE_STATE_CLOSED:
3577         proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
3578         break;
3579     case NVME_ZONE_STATE_READ_ONLY:
3580         proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
3581         break;
3582     case NVME_ZONE_STATE_FULL:
3583         proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
3584         break;
3585     default:
3586         proc_zone = false;
3587     }
3588 
3589     if (proc_zone) {
3590         status = op_hndlr(ns, zone, zs, req);
3591     }
3592 
3593     return status;
3594 }
3595 
3596 static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
3597                                 enum NvmeZoneProcessingMask proc_mask,
3598                                 op_handler_t op_hndlr, NvmeRequest *req)
3599 {
3600     NvmeZone *next;
3601     uint16_t status = NVME_SUCCESS;
3602     int i;
3603 
3604     if (!proc_mask) {
3605         status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
3606     } else {
3607         if (proc_mask & NVME_PROC_CLOSED_ZONES) {
3608             QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
3609                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3610                                              req);
3611                 if (status && status != NVME_NO_COMPLETE) {
3612                     goto out;
3613                 }
3614             }
3615         }
3616         if (proc_mask & NVME_PROC_OPENED_ZONES) {
3617             QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
3618                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3619                                              req);
3620                 if (status && status != NVME_NO_COMPLETE) {
3621                     goto out;
3622                 }
3623             }
3624 
3625             QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
3626                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3627                                              req);
3628                 if (status && status != NVME_NO_COMPLETE) {
3629                     goto out;
3630                 }
3631             }
3632         }
3633         if (proc_mask & NVME_PROC_FULL_ZONES) {
3634             QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
3635                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3636                                              req);
3637                 if (status && status != NVME_NO_COMPLETE) {
3638                     goto out;
3639                 }
3640             }
3641         }
3642 
3643         if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
3644             for (i = 0; i < ns->num_zones; i++, zone++) {
3645                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3646                                              req);
3647                 if (status && status != NVME_NO_COMPLETE) {
3648                     goto out;
3649                 }
3650             }
3651         }
3652     }
3653 
3654 out:
3655     return status;
3656 }
3657 
3658 typedef struct NvmeZoneResetAIOCB {
3659     BlockAIOCB common;
3660     BlockAIOCB *aiocb;
3661     NvmeRequest *req;
3662     int ret;
3663 
3664     bool all;
3665     int idx;
3666     NvmeZone *zone;
3667 } NvmeZoneResetAIOCB;
3668 
3669 static void nvme_zone_reset_cancel(BlockAIOCB *aiocb)
3670 {
3671     NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common);
3672     NvmeRequest *req = iocb->req;
3673     NvmeNamespace *ns = req->ns;
3674 
3675     iocb->idx = ns->num_zones;
3676 
3677     iocb->ret = -ECANCELED;
3678 
3679     if (iocb->aiocb) {
3680         blk_aio_cancel_async(iocb->aiocb);
3681         iocb->aiocb = NULL;
3682     }
3683 }
3684 
3685 static const AIOCBInfo nvme_zone_reset_aiocb_info = {
3686     .aiocb_size = sizeof(NvmeZoneResetAIOCB),
3687     .cancel_async = nvme_zone_reset_cancel,
3688 };
3689 
3690 static void nvme_zone_reset_cb(void *opaque, int ret);
3691 
3692 static void nvme_zone_reset_epilogue_cb(void *opaque, int ret)
3693 {
3694     NvmeZoneResetAIOCB *iocb = opaque;
3695     NvmeRequest *req = iocb->req;
3696     NvmeNamespace *ns = req->ns;
3697     int64_t moff;
3698     int count;
3699 
3700     if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
3701         goto out;
3702     }
3703 
3704     moff = nvme_moff(ns, iocb->zone->d.zslba);
3705     count = nvme_m2b(ns, ns->zone_size);
3706 
3707     iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count,
3708                                         BDRV_REQ_MAY_UNMAP,
3709                                         nvme_zone_reset_cb, iocb);
3710     return;
3711 
3712 out:
3713     nvme_zone_reset_cb(iocb, ret);
3714 }
3715 
3716 static void nvme_zone_reset_cb(void *opaque, int ret)
3717 {
3718     NvmeZoneResetAIOCB *iocb = opaque;
3719     NvmeRequest *req = iocb->req;
3720     NvmeNamespace *ns = req->ns;
3721 
3722     if (iocb->ret < 0) {
3723         goto done;
3724     } else if (ret < 0) {
3725         iocb->ret = ret;
3726         goto done;
3727     }
3728 
3729     if (iocb->zone) {
3730         nvme_zrm_reset(ns, iocb->zone);
3731 
3732         if (!iocb->all) {
3733             goto done;
3734         }
3735     }
3736 
3737     while (iocb->idx < ns->num_zones) {
3738         NvmeZone *zone = &ns->zone_array[iocb->idx++];
3739 
3740         switch (nvme_get_zone_state(zone)) {
3741         case NVME_ZONE_STATE_EMPTY:
3742             if (!iocb->all) {
3743                 goto done;
3744             }
3745 
3746             continue;
3747 
3748         case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3749         case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3750         case NVME_ZONE_STATE_CLOSED:
3751         case NVME_ZONE_STATE_FULL:
3752             iocb->zone = zone;
3753             break;
3754 
3755         default:
3756             continue;
3757         }
3758 
3759         trace_pci_nvme_zns_zone_reset(zone->d.zslba);
3760 
3761         iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk,
3762                                             nvme_l2b(ns, zone->d.zslba),
3763                                             nvme_l2b(ns, ns->zone_size),
3764                                             BDRV_REQ_MAY_UNMAP,
3765                                             nvme_zone_reset_epilogue_cb,
3766                                             iocb);
3767         return;
3768     }
3769 
3770 done:
3771     iocb->aiocb = NULL;
3772 
3773     iocb->common.cb(iocb->common.opaque, iocb->ret);
3774     qemu_aio_unref(iocb);
3775 }
3776 
3777 static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone,
3778                                                uint64_t elba, NvmeRequest *req)
3779 {
3780     NvmeNamespace *ns = req->ns;
3781     uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3782     uint64_t wp = zone->d.wp;
3783     uint32_t nlb = elba - wp + 1;
3784     uint16_t status;
3785 
3786 
3787     if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3788         return NVME_INVALID_ZONE_OP | NVME_DNR;
3789     }
3790 
3791     if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3792         return NVME_INVALID_FIELD | NVME_DNR;
3793     }
3794 
3795     if (elba < wp || elba > wp + ns->zns.zrwas) {
3796         return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR;
3797     }
3798 
3799     if (nlb % ns->zns.zrwafg) {
3800         return NVME_INVALID_FIELD | NVME_DNR;
3801     }
3802 
3803     status = nvme_zrm_auto(n, ns, zone);
3804     if (status) {
3805         return status;
3806     }
3807 
3808     zone->w_ptr += nlb;
3809 
3810     nvme_advance_zone_wp(ns, zone, nlb);
3811 
3812     return NVME_SUCCESS;
3813 }
3814 
3815 static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
3816 {
3817     NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3818     NvmeNamespace *ns = req->ns;
3819     NvmeZone *zone;
3820     NvmeZoneResetAIOCB *iocb;
3821     uint8_t *zd_ext;
3822     uint64_t slba = 0;
3823     uint32_t zone_idx = 0;
3824     uint16_t status;
3825     uint8_t action = cmd->zsa;
3826     bool all;
3827     enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
3828 
3829     all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL;
3830 
3831     req->status = NVME_SUCCESS;
3832 
3833     if (!all) {
3834         status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx);
3835         if (status) {
3836             return status;
3837         }
3838     }
3839 
3840     zone = &ns->zone_array[zone_idx];
3841     if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) {
3842         trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
3843         return NVME_INVALID_FIELD | NVME_DNR;
3844     }
3845 
3846     switch (action) {
3847 
3848     case NVME_ZONE_ACTION_OPEN:
3849         if (all) {
3850             proc_mask = NVME_PROC_CLOSED_ZONES;
3851         }
3852         trace_pci_nvme_open_zone(slba, zone_idx, all);
3853         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
3854         break;
3855 
3856     case NVME_ZONE_ACTION_CLOSE:
3857         if (all) {
3858             proc_mask = NVME_PROC_OPENED_ZONES;
3859         }
3860         trace_pci_nvme_close_zone(slba, zone_idx, all);
3861         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
3862         break;
3863 
3864     case NVME_ZONE_ACTION_FINISH:
3865         if (all) {
3866             proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
3867         }
3868         trace_pci_nvme_finish_zone(slba, zone_idx, all);
3869         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
3870         break;
3871 
3872     case NVME_ZONE_ACTION_RESET:
3873         trace_pci_nvme_reset_zone(slba, zone_idx, all);
3874 
3875         iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk,
3876                            nvme_misc_cb, req);
3877 
3878         iocb->req = req;
3879         iocb->ret = 0;
3880         iocb->all = all;
3881         iocb->idx = zone_idx;
3882         iocb->zone = NULL;
3883 
3884         req->aiocb = &iocb->common;
3885         nvme_zone_reset_cb(iocb, 0);
3886 
3887         return NVME_NO_COMPLETE;
3888 
3889     case NVME_ZONE_ACTION_OFFLINE:
3890         if (all) {
3891             proc_mask = NVME_PROC_READ_ONLY_ZONES;
3892         }
3893         trace_pci_nvme_offline_zone(slba, zone_idx, all);
3894         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
3895         break;
3896 
3897     case NVME_ZONE_ACTION_SET_ZD_EXT:
3898         trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
3899         if (all || !ns->params.zd_extension_size) {
3900             return NVME_INVALID_FIELD | NVME_DNR;
3901         }
3902         zd_ext = nvme_get_zd_extension(ns, zone_idx);
3903         status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
3904         if (status) {
3905             trace_pci_nvme_err_zd_extension_map_error(zone_idx);
3906             return status;
3907         }
3908 
3909         status = nvme_set_zd_ext(ns, zone);
3910         if (status == NVME_SUCCESS) {
3911             trace_pci_nvme_zd_extension_set(zone_idx);
3912             return status;
3913         }
3914         break;
3915 
3916     case NVME_ZONE_ACTION_ZRWA_FLUSH:
3917         if (all) {
3918             return NVME_INVALID_FIELD | NVME_DNR;
3919         }
3920 
3921         return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req);
3922 
3923     default:
3924         trace_pci_nvme_err_invalid_mgmt_action(action);
3925         status = NVME_INVALID_FIELD;
3926     }
3927 
3928     if (status == NVME_ZONE_INVAL_TRANSITION) {
3929         trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
3930                                                          zone->d.za);
3931     }
3932     if (status) {
3933         status |= NVME_DNR;
3934     }
3935 
3936     return status;
3937 }
3938 
3939 static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
3940 {
3941     NvmeZoneState zs = nvme_get_zone_state(zl);
3942 
3943     switch (zafs) {
3944     case NVME_ZONE_REPORT_ALL:
3945         return true;
3946     case NVME_ZONE_REPORT_EMPTY:
3947         return zs == NVME_ZONE_STATE_EMPTY;
3948     case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
3949         return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
3950     case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
3951         return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
3952     case NVME_ZONE_REPORT_CLOSED:
3953         return zs == NVME_ZONE_STATE_CLOSED;
3954     case NVME_ZONE_REPORT_FULL:
3955         return zs == NVME_ZONE_STATE_FULL;
3956     case NVME_ZONE_REPORT_READ_ONLY:
3957         return zs == NVME_ZONE_STATE_READ_ONLY;
3958     case NVME_ZONE_REPORT_OFFLINE:
3959         return zs == NVME_ZONE_STATE_OFFLINE;
3960     default:
3961         return false;
3962     }
3963 }
3964 
3965 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
3966 {
3967     NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
3968     NvmeNamespace *ns = req->ns;
3969     /* cdw12 is zero-based number of dwords to return. Convert to bytes */
3970     uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
3971     uint32_t dw13 = le32_to_cpu(cmd->cdw13);
3972     uint32_t zone_idx, zra, zrasf, partial;
3973     uint64_t max_zones, nr_zones = 0;
3974     uint16_t status;
3975     uint64_t slba;
3976     NvmeZoneDescr *z;
3977     NvmeZone *zone;
3978     NvmeZoneReportHeader *header;
3979     void *buf, *buf_p;
3980     size_t zone_entry_sz;
3981     int i;
3982 
3983     req->status = NVME_SUCCESS;
3984 
3985     status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
3986     if (status) {
3987         return status;
3988     }
3989 
3990     zra = dw13 & 0xff;
3991     if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
3992         return NVME_INVALID_FIELD | NVME_DNR;
3993     }
3994     if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
3995         return NVME_INVALID_FIELD | NVME_DNR;
3996     }
3997 
3998     zrasf = (dw13 >> 8) & 0xff;
3999     if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
4000         return NVME_INVALID_FIELD | NVME_DNR;
4001     }
4002 
4003     if (data_size < sizeof(NvmeZoneReportHeader)) {
4004         return NVME_INVALID_FIELD | NVME_DNR;
4005     }
4006 
4007     status = nvme_check_mdts(n, data_size);
4008     if (status) {
4009         return status;
4010     }
4011 
4012     partial = (dw13 >> 16) & 0x01;
4013 
4014     zone_entry_sz = sizeof(NvmeZoneDescr);
4015     if (zra == NVME_ZONE_REPORT_EXTENDED) {
4016         zone_entry_sz += ns->params.zd_extension_size;
4017     }
4018 
4019     max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
4020     buf = g_malloc0(data_size);
4021 
4022     zone = &ns->zone_array[zone_idx];
4023     for (i = zone_idx; i < ns->num_zones; i++) {
4024         if (partial && nr_zones >= max_zones) {
4025             break;
4026         }
4027         if (nvme_zone_matches_filter(zrasf, zone++)) {
4028             nr_zones++;
4029         }
4030     }
4031     header = (NvmeZoneReportHeader *)buf;
4032     header->nr_zones = cpu_to_le64(nr_zones);
4033 
4034     buf_p = buf + sizeof(NvmeZoneReportHeader);
4035     for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
4036         zone = &ns->zone_array[zone_idx];
4037         if (nvme_zone_matches_filter(zrasf, zone)) {
4038             z = (NvmeZoneDescr *)buf_p;
4039             buf_p += sizeof(NvmeZoneDescr);
4040 
4041             z->zt = zone->d.zt;
4042             z->zs = zone->d.zs;
4043             z->zcap = cpu_to_le64(zone->d.zcap);
4044             z->zslba = cpu_to_le64(zone->d.zslba);
4045             z->za = zone->d.za;
4046 
4047             if (nvme_wp_is_valid(zone)) {
4048                 z->wp = cpu_to_le64(zone->d.wp);
4049             } else {
4050                 z->wp = cpu_to_le64(~0ULL);
4051             }
4052 
4053             if (zra == NVME_ZONE_REPORT_EXTENDED) {
4054                 if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
4055                     memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
4056                            ns->params.zd_extension_size);
4057                 }
4058                 buf_p += ns->params.zd_extension_size;
4059             }
4060 
4061             max_zones--;
4062         }
4063     }
4064 
4065     status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
4066 
4067     g_free(buf);
4068 
4069     return status;
4070 }
4071 
4072 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
4073 {
4074     NvmeNamespace *ns;
4075     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4076 
4077     trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
4078                           req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
4079 
4080     if (!nvme_nsid_valid(n, nsid)) {
4081         return NVME_INVALID_NSID | NVME_DNR;
4082     }
4083 
4084     /*
4085      * In the base NVM command set, Flush may apply to all namespaces
4086      * (indicated by NSID being set to FFFFFFFFh). But if that feature is used
4087      * along with TP 4056 (Namespace Types), it may be pretty screwed up.
4088      *
4089      * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
4090      * opcode with a specific command since we cannot determine a unique I/O
4091      * command set. Opcode 0h could have any other meaning than something
4092      * equivalent to flushing and say it DOES have completely different
4093      * semantics in some other command set - does an NSID of FFFFFFFFh then
4094      * mean "for all namespaces, apply whatever command set specific command
4095      * that uses the 0h opcode?" Or does it mean "for all namespaces, apply
4096      * whatever command that uses the 0h opcode if, and only if, it allows NSID
4097      * to be FFFFFFFFh"?
4098      *
4099      * Anyway (and luckily), for now, we do not care about this since the
4100      * device only supports namespace types that includes the NVM Flush command
4101      * (NVM and Zoned), so always do an NVM Flush.
4102      */
4103     if (req->cmd.opcode == NVME_CMD_FLUSH) {
4104         return nvme_flush(n, req);
4105     }
4106 
4107     ns = nvme_ns(n, nsid);
4108     if (unlikely(!ns)) {
4109         return NVME_INVALID_FIELD | NVME_DNR;
4110     }
4111 
4112     if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
4113         trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
4114         return NVME_INVALID_OPCODE | NVME_DNR;
4115     }
4116 
4117     if (ns->status) {
4118         return ns->status;
4119     }
4120 
4121     if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
4122         return NVME_INVALID_FIELD;
4123     }
4124 
4125     req->ns = ns;
4126 
4127     switch (req->cmd.opcode) {
4128     case NVME_CMD_WRITE_ZEROES:
4129         return nvme_write_zeroes(n, req);
4130     case NVME_CMD_ZONE_APPEND:
4131         return nvme_zone_append(n, req);
4132     case NVME_CMD_WRITE:
4133         return nvme_write(n, req);
4134     case NVME_CMD_READ:
4135         return nvme_read(n, req);
4136     case NVME_CMD_COMPARE:
4137         return nvme_compare(n, req);
4138     case NVME_CMD_DSM:
4139         return nvme_dsm(n, req);
4140     case NVME_CMD_VERIFY:
4141         return nvme_verify(n, req);
4142     case NVME_CMD_COPY:
4143         return nvme_copy(n, req);
4144     case NVME_CMD_ZONE_MGMT_SEND:
4145         return nvme_zone_mgmt_send(n, req);
4146     case NVME_CMD_ZONE_MGMT_RECV:
4147         return nvme_zone_mgmt_recv(n, req);
4148     default:
4149         assert(false);
4150     }
4151 
4152     return NVME_INVALID_OPCODE | NVME_DNR;
4153 }
4154 
4155 static void nvme_cq_notifier(EventNotifier *e)
4156 {
4157     NvmeCQueue *cq = container_of(e, NvmeCQueue, notifier);
4158     NvmeCtrl *n = cq->ctrl;
4159 
4160     if (!event_notifier_test_and_clear(e)) {
4161         return;
4162     }
4163 
4164     nvme_update_cq_head(cq);
4165 
4166     if (cq->tail == cq->head) {
4167         if (cq->irq_enabled) {
4168             n->cq_pending--;
4169         }
4170 
4171         nvme_irq_deassert(n, cq);
4172     }
4173 
4174     qemu_bh_schedule(cq->bh);
4175 }
4176 
4177 static int nvme_init_cq_ioeventfd(NvmeCQueue *cq)
4178 {
4179     NvmeCtrl *n = cq->ctrl;
4180     uint16_t offset = (cq->cqid << 3) + (1 << 2);
4181     int ret;
4182 
4183     ret = event_notifier_init(&cq->notifier, 0);
4184     if (ret < 0) {
4185         return ret;
4186     }
4187 
4188     event_notifier_set_handler(&cq->notifier, nvme_cq_notifier);
4189     memory_region_add_eventfd(&n->iomem,
4190                               0x1000 + offset, 4, false, 0, &cq->notifier);
4191 
4192     return 0;
4193 }
4194 
4195 static void nvme_sq_notifier(EventNotifier *e)
4196 {
4197     NvmeSQueue *sq = container_of(e, NvmeSQueue, notifier);
4198 
4199     if (!event_notifier_test_and_clear(e)) {
4200         return;
4201     }
4202 
4203     nvme_process_sq(sq);
4204 }
4205 
4206 static int nvme_init_sq_ioeventfd(NvmeSQueue *sq)
4207 {
4208     NvmeCtrl *n = sq->ctrl;
4209     uint16_t offset = sq->sqid << 3;
4210     int ret;
4211 
4212     ret = event_notifier_init(&sq->notifier, 0);
4213     if (ret < 0) {
4214         return ret;
4215     }
4216 
4217     event_notifier_set_handler(&sq->notifier, nvme_sq_notifier);
4218     memory_region_add_eventfd(&n->iomem,
4219                               0x1000 + offset, 4, false, 0, &sq->notifier);
4220 
4221     return 0;
4222 }
4223 
4224 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
4225 {
4226     uint16_t offset = sq->sqid << 3;
4227 
4228     n->sq[sq->sqid] = NULL;
4229     qemu_bh_delete(sq->bh);
4230     if (sq->ioeventfd_enabled) {
4231         memory_region_del_eventfd(&n->iomem,
4232                                   0x1000 + offset, 4, false, 0, &sq->notifier);
4233         event_notifier_set_handler(&sq->notifier, NULL);
4234         event_notifier_cleanup(&sq->notifier);
4235     }
4236     g_free(sq->io_req);
4237     if (sq->sqid) {
4238         g_free(sq);
4239     }
4240 }
4241 
4242 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
4243 {
4244     NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4245     NvmeRequest *r, *next;
4246     NvmeSQueue *sq;
4247     NvmeCQueue *cq;
4248     uint16_t qid = le16_to_cpu(c->qid);
4249 
4250     if (unlikely(!qid || nvme_check_sqid(n, qid))) {
4251         trace_pci_nvme_err_invalid_del_sq(qid);
4252         return NVME_INVALID_QID | NVME_DNR;
4253     }
4254 
4255     trace_pci_nvme_del_sq(qid);
4256 
4257     sq = n->sq[qid];
4258     while (!QTAILQ_EMPTY(&sq->out_req_list)) {
4259         r = QTAILQ_FIRST(&sq->out_req_list);
4260         assert(r->aiocb);
4261         blk_aio_cancel(r->aiocb);
4262     }
4263 
4264     assert(QTAILQ_EMPTY(&sq->out_req_list));
4265 
4266     if (!nvme_check_cqid(n, sq->cqid)) {
4267         cq = n->cq[sq->cqid];
4268         QTAILQ_REMOVE(&cq->sq_list, sq, entry);
4269 
4270         nvme_post_cqes(cq);
4271         QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
4272             if (r->sq == sq) {
4273                 QTAILQ_REMOVE(&cq->req_list, r, entry);
4274                 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
4275             }
4276         }
4277     }
4278 
4279     nvme_free_sq(sq, n);
4280     return NVME_SUCCESS;
4281 }
4282 
4283 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
4284                          uint16_t sqid, uint16_t cqid, uint16_t size)
4285 {
4286     int i;
4287     NvmeCQueue *cq;
4288 
4289     sq->ctrl = n;
4290     sq->dma_addr = dma_addr;
4291     sq->sqid = sqid;
4292     sq->size = size;
4293     sq->cqid = cqid;
4294     sq->head = sq->tail = 0;
4295     sq->io_req = g_new0(NvmeRequest, sq->size);
4296 
4297     QTAILQ_INIT(&sq->req_list);
4298     QTAILQ_INIT(&sq->out_req_list);
4299     for (i = 0; i < sq->size; i++) {
4300         sq->io_req[i].sq = sq;
4301         QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
4302     }
4303 
4304     sq->bh = qemu_bh_new(nvme_process_sq, sq);
4305 
4306     if (n->dbbuf_enabled) {
4307         sq->db_addr = n->dbbuf_dbs + (sqid << 3);
4308         sq->ei_addr = n->dbbuf_eis + (sqid << 3);
4309 
4310         if (n->params.ioeventfd && sq->sqid != 0) {
4311             if (!nvme_init_sq_ioeventfd(sq)) {
4312                 sq->ioeventfd_enabled = true;
4313             }
4314         }
4315     }
4316 
4317     assert(n->cq[cqid]);
4318     cq = n->cq[cqid];
4319     QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
4320     n->sq[sqid] = sq;
4321 }
4322 
4323 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
4324 {
4325     NvmeSQueue *sq;
4326     NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
4327 
4328     uint16_t cqid = le16_to_cpu(c->cqid);
4329     uint16_t sqid = le16_to_cpu(c->sqid);
4330     uint16_t qsize = le16_to_cpu(c->qsize);
4331     uint16_t qflags = le16_to_cpu(c->sq_flags);
4332     uint64_t prp1 = le64_to_cpu(c->prp1);
4333 
4334     trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
4335 
4336     if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
4337         trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
4338         return NVME_INVALID_CQID | NVME_DNR;
4339     }
4340     if (unlikely(!sqid || sqid > n->conf_ioqpairs || n->sq[sqid] != NULL)) {
4341         trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
4342         return NVME_INVALID_QID | NVME_DNR;
4343     }
4344     if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4345         trace_pci_nvme_err_invalid_create_sq_size(qsize);
4346         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4347     }
4348     if (unlikely(prp1 & (n->page_size - 1))) {
4349         trace_pci_nvme_err_invalid_create_sq_addr(prp1);
4350         return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4351     }
4352     if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
4353         trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
4354         return NVME_INVALID_FIELD | NVME_DNR;
4355     }
4356     sq = g_malloc0(sizeof(*sq));
4357     nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
4358     return NVME_SUCCESS;
4359 }
4360 
4361 struct nvme_stats {
4362     uint64_t units_read;
4363     uint64_t units_written;
4364     uint64_t read_commands;
4365     uint64_t write_commands;
4366 };
4367 
4368 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
4369 {
4370     BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
4371 
4372     stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
4373     stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
4374     stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
4375     stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
4376 }
4377 
4378 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4379                                 uint64_t off, NvmeRequest *req)
4380 {
4381     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4382     struct nvme_stats stats = { 0 };
4383     NvmeSmartLog smart = { 0 };
4384     uint32_t trans_len;
4385     NvmeNamespace *ns;
4386     time_t current_ms;
4387 
4388     if (off >= sizeof(smart)) {
4389         return NVME_INVALID_FIELD | NVME_DNR;
4390     }
4391 
4392     if (nsid != 0xffffffff) {
4393         ns = nvme_ns(n, nsid);
4394         if (!ns) {
4395             return NVME_INVALID_NSID | NVME_DNR;
4396         }
4397         nvme_set_blk_stats(ns, &stats);
4398     } else {
4399         int i;
4400 
4401         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4402             ns = nvme_ns(n, i);
4403             if (!ns) {
4404                 continue;
4405             }
4406             nvme_set_blk_stats(ns, &stats);
4407         }
4408     }
4409 
4410     trans_len = MIN(sizeof(smart) - off, buf_len);
4411     smart.critical_warning = n->smart_critical_warning;
4412 
4413     smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read,
4414                                                         1000));
4415     smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written,
4416                                                            1000));
4417     smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
4418     smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
4419 
4420     smart.temperature = cpu_to_le16(n->temperature);
4421 
4422     if ((n->temperature >= n->features.temp_thresh_hi) ||
4423         (n->temperature <= n->features.temp_thresh_low)) {
4424         smart.critical_warning |= NVME_SMART_TEMPERATURE;
4425     }
4426 
4427     current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4428     smart.power_on_hours[0] =
4429         cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
4430 
4431     if (!rae) {
4432         nvme_clear_events(n, NVME_AER_TYPE_SMART);
4433     }
4434 
4435     return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
4436 }
4437 
4438 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
4439                                  NvmeRequest *req)
4440 {
4441     uint32_t trans_len;
4442     NvmeFwSlotInfoLog fw_log = {
4443         .afi = 0x1,
4444     };
4445 
4446     if (off >= sizeof(fw_log)) {
4447         return NVME_INVALID_FIELD | NVME_DNR;
4448     }
4449 
4450     strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
4451     trans_len = MIN(sizeof(fw_log) - off, buf_len);
4452 
4453     return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
4454 }
4455 
4456 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4457                                 uint64_t off, NvmeRequest *req)
4458 {
4459     uint32_t trans_len;
4460     NvmeErrorLog errlog;
4461 
4462     if (off >= sizeof(errlog)) {
4463         return NVME_INVALID_FIELD | NVME_DNR;
4464     }
4465 
4466     if (!rae) {
4467         nvme_clear_events(n, NVME_AER_TYPE_ERROR);
4468     }
4469 
4470     memset(&errlog, 0x0, sizeof(errlog));
4471     trans_len = MIN(sizeof(errlog) - off, buf_len);
4472 
4473     return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
4474 }
4475 
4476 static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4477                                     uint64_t off, NvmeRequest *req)
4478 {
4479     uint32_t nslist[1024];
4480     uint32_t trans_len;
4481     int i = 0;
4482     uint32_t nsid;
4483 
4484     if (off >= sizeof(nslist)) {
4485         trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist));
4486         return NVME_INVALID_FIELD | NVME_DNR;
4487     }
4488 
4489     memset(nslist, 0x0, sizeof(nslist));
4490     trans_len = MIN(sizeof(nslist) - off, buf_len);
4491 
4492     while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
4493             NVME_CHANGED_NSID_SIZE) {
4494         /*
4495          * If more than 1024 namespaces, the first entry in the log page should
4496          * be set to FFFFFFFFh and the others to 0 as spec.
4497          */
4498         if (i == ARRAY_SIZE(nslist)) {
4499             memset(nslist, 0x0, sizeof(nslist));
4500             nslist[0] = 0xffffffff;
4501             break;
4502         }
4503 
4504         nslist[i++] = nsid;
4505         clear_bit(nsid, n->changed_nsids);
4506     }
4507 
4508     /*
4509      * Remove all the remaining list entries in case returns directly due to
4510      * more than 1024 namespaces.
4511      */
4512     if (nslist[0] == 0xffffffff) {
4513         bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
4514     }
4515 
4516     if (!rae) {
4517         nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
4518     }
4519 
4520     return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
4521 }
4522 
4523 static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
4524                                  uint64_t off, NvmeRequest *req)
4525 {
4526     NvmeEffectsLog log = {};
4527     const uint32_t *src_iocs = NULL;
4528     uint32_t trans_len;
4529 
4530     if (off >= sizeof(log)) {
4531         trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
4532         return NVME_INVALID_FIELD | NVME_DNR;
4533     }
4534 
4535     switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) {
4536     case NVME_CC_CSS_NVM:
4537         src_iocs = nvme_cse_iocs_nvm;
4538         /* fall through */
4539     case NVME_CC_CSS_ADMIN_ONLY:
4540         break;
4541     case NVME_CC_CSS_CSI:
4542         switch (csi) {
4543         case NVME_CSI_NVM:
4544             src_iocs = nvme_cse_iocs_nvm;
4545             break;
4546         case NVME_CSI_ZONED:
4547             src_iocs = nvme_cse_iocs_zoned;
4548             break;
4549         }
4550     }
4551 
4552     memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
4553 
4554     if (src_iocs) {
4555         memcpy(log.iocs, src_iocs, sizeof(log.iocs));
4556     }
4557 
4558     trans_len = MIN(sizeof(log) - off, buf_len);
4559 
4560     return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
4561 }
4562 
4563 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
4564 {
4565     NvmeCmd *cmd = &req->cmd;
4566 
4567     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
4568     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
4569     uint32_t dw12 = le32_to_cpu(cmd->cdw12);
4570     uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4571     uint8_t  lid = dw10 & 0xff;
4572     uint8_t  lsp = (dw10 >> 8) & 0xf;
4573     uint8_t  rae = (dw10 >> 15) & 0x1;
4574     uint8_t  csi = le32_to_cpu(cmd->cdw14) >> 24;
4575     uint32_t numdl, numdu;
4576     uint64_t off, lpol, lpou;
4577     size_t   len;
4578     uint16_t status;
4579 
4580     numdl = (dw10 >> 16);
4581     numdu = (dw11 & 0xffff);
4582     lpol = dw12;
4583     lpou = dw13;
4584 
4585     len = (((numdu << 16) | numdl) + 1) << 2;
4586     off = (lpou << 32ULL) | lpol;
4587 
4588     if (off & 0x3) {
4589         return NVME_INVALID_FIELD | NVME_DNR;
4590     }
4591 
4592     trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
4593 
4594     status = nvme_check_mdts(n, len);
4595     if (status) {
4596         return status;
4597     }
4598 
4599     switch (lid) {
4600     case NVME_LOG_ERROR_INFO:
4601         return nvme_error_info(n, rae, len, off, req);
4602     case NVME_LOG_SMART_INFO:
4603         return nvme_smart_info(n, rae, len, off, req);
4604     case NVME_LOG_FW_SLOT_INFO:
4605         return nvme_fw_log_info(n, len, off, req);
4606     case NVME_LOG_CHANGED_NSLIST:
4607         return nvme_changed_nslist(n, rae, len, off, req);
4608     case NVME_LOG_CMD_EFFECTS:
4609         return nvme_cmd_effects(n, csi, len, off, req);
4610     default:
4611         trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
4612         return NVME_INVALID_FIELD | NVME_DNR;
4613     }
4614 }
4615 
4616 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
4617 {
4618     uint16_t offset = (cq->cqid << 3) + (1 << 2);
4619 
4620     n->cq[cq->cqid] = NULL;
4621     qemu_bh_delete(cq->bh);
4622     if (cq->ioeventfd_enabled) {
4623         memory_region_del_eventfd(&n->iomem,
4624                                   0x1000 + offset, 4, false, 0, &cq->notifier);
4625         event_notifier_set_handler(&cq->notifier, NULL);
4626         event_notifier_cleanup(&cq->notifier);
4627     }
4628     if (msix_enabled(&n->parent_obj)) {
4629         msix_vector_unuse(&n->parent_obj, cq->vector);
4630     }
4631     if (cq->cqid) {
4632         g_free(cq);
4633     }
4634 }
4635 
4636 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
4637 {
4638     NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4639     NvmeCQueue *cq;
4640     uint16_t qid = le16_to_cpu(c->qid);
4641 
4642     if (unlikely(!qid || nvme_check_cqid(n, qid))) {
4643         trace_pci_nvme_err_invalid_del_cq_cqid(qid);
4644         return NVME_INVALID_CQID | NVME_DNR;
4645     }
4646 
4647     cq = n->cq[qid];
4648     if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
4649         trace_pci_nvme_err_invalid_del_cq_notempty(qid);
4650         return NVME_INVALID_QUEUE_DEL;
4651     }
4652 
4653     if (cq->irq_enabled && cq->tail != cq->head) {
4654         n->cq_pending--;
4655     }
4656 
4657     nvme_irq_deassert(n, cq);
4658     trace_pci_nvme_del_cq(qid);
4659     nvme_free_cq(cq, n);
4660     return NVME_SUCCESS;
4661 }
4662 
4663 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
4664                          uint16_t cqid, uint16_t vector, uint16_t size,
4665                          uint16_t irq_enabled)
4666 {
4667     if (msix_enabled(&n->parent_obj)) {
4668         msix_vector_use(&n->parent_obj, vector);
4669     }
4670     cq->ctrl = n;
4671     cq->cqid = cqid;
4672     cq->size = size;
4673     cq->dma_addr = dma_addr;
4674     cq->phase = 1;
4675     cq->irq_enabled = irq_enabled;
4676     cq->vector = vector;
4677     cq->head = cq->tail = 0;
4678     QTAILQ_INIT(&cq->req_list);
4679     QTAILQ_INIT(&cq->sq_list);
4680     if (n->dbbuf_enabled) {
4681         cq->db_addr = n->dbbuf_dbs + (cqid << 3) + (1 << 2);
4682         cq->ei_addr = n->dbbuf_eis + (cqid << 3) + (1 << 2);
4683 
4684         if (n->params.ioeventfd && cqid != 0) {
4685             if (!nvme_init_cq_ioeventfd(cq)) {
4686                 cq->ioeventfd_enabled = true;
4687             }
4688         }
4689     }
4690     n->cq[cqid] = cq;
4691     cq->bh = qemu_bh_new(nvme_post_cqes, cq);
4692 }
4693 
4694 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
4695 {
4696     NvmeCQueue *cq;
4697     NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
4698     uint16_t cqid = le16_to_cpu(c->cqid);
4699     uint16_t vector = le16_to_cpu(c->irq_vector);
4700     uint16_t qsize = le16_to_cpu(c->qsize);
4701     uint16_t qflags = le16_to_cpu(c->cq_flags);
4702     uint64_t prp1 = le64_to_cpu(c->prp1);
4703 
4704     trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
4705                              NVME_CQ_FLAGS_IEN(qflags) != 0);
4706 
4707     if (unlikely(!cqid || cqid > n->conf_ioqpairs || n->cq[cqid] != NULL)) {
4708         trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
4709         return NVME_INVALID_QID | NVME_DNR;
4710     }
4711     if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4712         trace_pci_nvme_err_invalid_create_cq_size(qsize);
4713         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4714     }
4715     if (unlikely(prp1 & (n->page_size - 1))) {
4716         trace_pci_nvme_err_invalid_create_cq_addr(prp1);
4717         return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4718     }
4719     if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
4720         trace_pci_nvme_err_invalid_create_cq_vector(vector);
4721         return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4722     }
4723     if (unlikely(vector >= n->conf_msix_qsize)) {
4724         trace_pci_nvme_err_invalid_create_cq_vector(vector);
4725         return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4726     }
4727     if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
4728         trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
4729         return NVME_INVALID_FIELD | NVME_DNR;
4730     }
4731 
4732     cq = g_malloc0(sizeof(*cq));
4733     nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
4734                  NVME_CQ_FLAGS_IEN(qflags));
4735 
4736     /*
4737      * It is only required to set qs_created when creating a completion queue;
4738      * creating a submission queue without a matching completion queue will
4739      * fail.
4740      */
4741     n->qs_created = true;
4742     return NVME_SUCCESS;
4743 }
4744 
4745 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
4746 {
4747     uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4748 
4749     return nvme_c2h(n, id, sizeof(id), req);
4750 }
4751 
4752 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
4753 {
4754     trace_pci_nvme_identify_ctrl();
4755 
4756     return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
4757 }
4758 
4759 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
4760 {
4761     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4762     uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4763     NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
4764 
4765     trace_pci_nvme_identify_ctrl_csi(c->csi);
4766 
4767     switch (c->csi) {
4768     case NVME_CSI_NVM:
4769         id_nvm->vsl = n->params.vsl;
4770         id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
4771         break;
4772 
4773     case NVME_CSI_ZONED:
4774         ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
4775         break;
4776 
4777     default:
4778         return NVME_INVALID_FIELD | NVME_DNR;
4779     }
4780 
4781     return nvme_c2h(n, id, sizeof(id), req);
4782 }
4783 
4784 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
4785 {
4786     NvmeNamespace *ns;
4787     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4788     uint32_t nsid = le32_to_cpu(c->nsid);
4789 
4790     trace_pci_nvme_identify_ns(nsid);
4791 
4792     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4793         return NVME_INVALID_NSID | NVME_DNR;
4794     }
4795 
4796     ns = nvme_ns(n, nsid);
4797     if (unlikely(!ns)) {
4798         if (!active) {
4799             ns = nvme_subsys_ns(n->subsys, nsid);
4800             if (!ns) {
4801                 return nvme_rpt_empty_id_struct(n, req);
4802             }
4803         } else {
4804             return nvme_rpt_empty_id_struct(n, req);
4805         }
4806     }
4807 
4808     if (active || ns->csi == NVME_CSI_NVM) {
4809         return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
4810     }
4811 
4812     return NVME_INVALID_CMD_SET | NVME_DNR;
4813 }
4814 
4815 static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req,
4816                                         bool attached)
4817 {
4818     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4819     uint32_t nsid = le32_to_cpu(c->nsid);
4820     uint16_t min_id = le16_to_cpu(c->ctrlid);
4821     uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
4822     uint16_t *ids = &list[1];
4823     NvmeNamespace *ns;
4824     NvmeCtrl *ctrl;
4825     int cntlid, nr_ids = 0;
4826 
4827     trace_pci_nvme_identify_ctrl_list(c->cns, min_id);
4828 
4829     if (!n->subsys) {
4830         return NVME_INVALID_FIELD | NVME_DNR;
4831     }
4832 
4833     if (attached) {
4834         if (nsid == NVME_NSID_BROADCAST) {
4835             return NVME_INVALID_FIELD | NVME_DNR;
4836         }
4837 
4838         ns = nvme_subsys_ns(n->subsys, nsid);
4839         if (!ns) {
4840             return NVME_INVALID_FIELD | NVME_DNR;
4841         }
4842     }
4843 
4844     for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
4845         ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
4846         if (!ctrl) {
4847             continue;
4848         }
4849 
4850         if (attached && !nvme_ns(ctrl, nsid)) {
4851             continue;
4852         }
4853 
4854         ids[nr_ids++] = cntlid;
4855     }
4856 
4857     list[0] = nr_ids;
4858 
4859     return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
4860 }
4861 
4862 static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl *n, NvmeRequest *req)
4863 {
4864     trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n->pri_ctrl_cap.cntlid));
4865 
4866     return nvme_c2h(n, (uint8_t *)&n->pri_ctrl_cap,
4867                     sizeof(NvmePriCtrlCap), req);
4868 }
4869 
4870 static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl *n, NvmeRequest *req)
4871 {
4872     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4873     uint16_t pri_ctrl_id = le16_to_cpu(n->pri_ctrl_cap.cntlid);
4874     uint16_t min_id = le16_to_cpu(c->ctrlid);
4875     uint8_t num_sec_ctrl = n->sec_ctrl_list.numcntl;
4876     NvmeSecCtrlList list = {0};
4877     uint8_t i;
4878 
4879     for (i = 0; i < num_sec_ctrl; i++) {
4880         if (n->sec_ctrl_list.sec[i].scid >= min_id) {
4881             list.numcntl = num_sec_ctrl - i;
4882             memcpy(&list.sec, n->sec_ctrl_list.sec + i,
4883                    list.numcntl * sizeof(NvmeSecCtrlEntry));
4884             break;
4885         }
4886     }
4887 
4888     trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id, list.numcntl);
4889 
4890     return nvme_c2h(n, (uint8_t *)&list, sizeof(list), req);
4891 }
4892 
4893 static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
4894                                      bool active)
4895 {
4896     NvmeNamespace *ns;
4897     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4898     uint32_t nsid = le32_to_cpu(c->nsid);
4899 
4900     trace_pci_nvme_identify_ns_csi(nsid, c->csi);
4901 
4902     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4903         return NVME_INVALID_NSID | NVME_DNR;
4904     }
4905 
4906     ns = nvme_ns(n, nsid);
4907     if (unlikely(!ns)) {
4908         if (!active) {
4909             ns = nvme_subsys_ns(n->subsys, nsid);
4910             if (!ns) {
4911                 return nvme_rpt_empty_id_struct(n, req);
4912             }
4913         } else {
4914             return nvme_rpt_empty_id_struct(n, req);
4915         }
4916     }
4917 
4918     if (c->csi == NVME_CSI_NVM) {
4919         return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm),
4920                         req);
4921     } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
4922         return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
4923                         req);
4924     }
4925 
4926     return NVME_INVALID_FIELD | NVME_DNR;
4927 }
4928 
4929 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
4930                                      bool active)
4931 {
4932     NvmeNamespace *ns;
4933     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4934     uint32_t min_nsid = le32_to_cpu(c->nsid);
4935     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4936     static const int data_len = sizeof(list);
4937     uint32_t *list_ptr = (uint32_t *)list;
4938     int i, j = 0;
4939 
4940     trace_pci_nvme_identify_nslist(min_nsid);
4941 
4942     /*
4943      * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
4944      * since the Active Namespace ID List should return namespaces with ids
4945      * *higher* than the NSID specified in the command. This is also specified
4946      * in the spec (NVM Express v1.3d, Section 5.15.4).
4947      */
4948     if (min_nsid >= NVME_NSID_BROADCAST - 1) {
4949         return NVME_INVALID_NSID | NVME_DNR;
4950     }
4951 
4952     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4953         ns = nvme_ns(n, i);
4954         if (!ns) {
4955             if (!active) {
4956                 ns = nvme_subsys_ns(n->subsys, i);
4957                 if (!ns) {
4958                     continue;
4959                 }
4960             } else {
4961                 continue;
4962             }
4963         }
4964         if (ns->params.nsid <= min_nsid) {
4965             continue;
4966         }
4967         list_ptr[j++] = cpu_to_le32(ns->params.nsid);
4968         if (j == data_len / sizeof(uint32_t)) {
4969             break;
4970         }
4971     }
4972 
4973     return nvme_c2h(n, list, data_len, req);
4974 }
4975 
4976 static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
4977                                          bool active)
4978 {
4979     NvmeNamespace *ns;
4980     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4981     uint32_t min_nsid = le32_to_cpu(c->nsid);
4982     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4983     static const int data_len = sizeof(list);
4984     uint32_t *list_ptr = (uint32_t *)list;
4985     int i, j = 0;
4986 
4987     trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
4988 
4989     /*
4990      * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
4991      */
4992     if (min_nsid >= NVME_NSID_BROADCAST - 1) {
4993         return NVME_INVALID_NSID | NVME_DNR;
4994     }
4995 
4996     if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
4997         return NVME_INVALID_FIELD | NVME_DNR;
4998     }
4999 
5000     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5001         ns = nvme_ns(n, i);
5002         if (!ns) {
5003             if (!active) {
5004                 ns = nvme_subsys_ns(n->subsys, i);
5005                 if (!ns) {
5006                     continue;
5007                 }
5008             } else {
5009                 continue;
5010             }
5011         }
5012         if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
5013             continue;
5014         }
5015         list_ptr[j++] = cpu_to_le32(ns->params.nsid);
5016         if (j == data_len / sizeof(uint32_t)) {
5017             break;
5018         }
5019     }
5020 
5021     return nvme_c2h(n, list, data_len, req);
5022 }
5023 
5024 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
5025 {
5026     NvmeNamespace *ns;
5027     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5028     uint32_t nsid = le32_to_cpu(c->nsid);
5029     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5030     uint8_t *pos = list;
5031     struct {
5032         NvmeIdNsDescr hdr;
5033         uint8_t v[NVME_NIDL_UUID];
5034     } QEMU_PACKED uuid = {};
5035     struct {
5036         NvmeIdNsDescr hdr;
5037         uint64_t v;
5038     } QEMU_PACKED eui64 = {};
5039     struct {
5040         NvmeIdNsDescr hdr;
5041         uint8_t v;
5042     } QEMU_PACKED csi = {};
5043 
5044     trace_pci_nvme_identify_ns_descr_list(nsid);
5045 
5046     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5047         return NVME_INVALID_NSID | NVME_DNR;
5048     }
5049 
5050     ns = nvme_ns(n, nsid);
5051     if (unlikely(!ns)) {
5052         return NVME_INVALID_FIELD | NVME_DNR;
5053     }
5054 
5055     if (!qemu_uuid_is_null(&ns->params.uuid)) {
5056         uuid.hdr.nidt = NVME_NIDT_UUID;
5057         uuid.hdr.nidl = NVME_NIDL_UUID;
5058         memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
5059         memcpy(pos, &uuid, sizeof(uuid));
5060         pos += sizeof(uuid);
5061     }
5062 
5063     if (ns->params.eui64) {
5064         eui64.hdr.nidt = NVME_NIDT_EUI64;
5065         eui64.hdr.nidl = NVME_NIDL_EUI64;
5066         eui64.v = cpu_to_be64(ns->params.eui64);
5067         memcpy(pos, &eui64, sizeof(eui64));
5068         pos += sizeof(eui64);
5069     }
5070 
5071     csi.hdr.nidt = NVME_NIDT_CSI;
5072     csi.hdr.nidl = NVME_NIDL_CSI;
5073     csi.v = ns->csi;
5074     memcpy(pos, &csi, sizeof(csi));
5075     pos += sizeof(csi);
5076 
5077     return nvme_c2h(n, list, sizeof(list), req);
5078 }
5079 
5080 static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
5081 {
5082     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5083     static const int data_len = sizeof(list);
5084 
5085     trace_pci_nvme_identify_cmd_set();
5086 
5087     NVME_SET_CSI(*list, NVME_CSI_NVM);
5088     NVME_SET_CSI(*list, NVME_CSI_ZONED);
5089 
5090     return nvme_c2h(n, list, data_len, req);
5091 }
5092 
5093 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
5094 {
5095     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5096 
5097     trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
5098                             c->csi);
5099 
5100     switch (c->cns) {
5101     case NVME_ID_CNS_NS:
5102         return nvme_identify_ns(n, req, true);
5103     case NVME_ID_CNS_NS_PRESENT:
5104         return nvme_identify_ns(n, req, false);
5105     case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
5106         return nvme_identify_ctrl_list(n, req, true);
5107     case NVME_ID_CNS_CTRL_LIST:
5108         return nvme_identify_ctrl_list(n, req, false);
5109     case NVME_ID_CNS_PRIMARY_CTRL_CAP:
5110         return nvme_identify_pri_ctrl_cap(n, req);
5111     case NVME_ID_CNS_SECONDARY_CTRL_LIST:
5112         return nvme_identify_sec_ctrl_list(n, req);
5113     case NVME_ID_CNS_CS_NS:
5114         return nvme_identify_ns_csi(n, req, true);
5115     case NVME_ID_CNS_CS_NS_PRESENT:
5116         return nvme_identify_ns_csi(n, req, false);
5117     case NVME_ID_CNS_CTRL:
5118         return nvme_identify_ctrl(n, req);
5119     case NVME_ID_CNS_CS_CTRL:
5120         return nvme_identify_ctrl_csi(n, req);
5121     case NVME_ID_CNS_NS_ACTIVE_LIST:
5122         return nvme_identify_nslist(n, req, true);
5123     case NVME_ID_CNS_NS_PRESENT_LIST:
5124         return nvme_identify_nslist(n, req, false);
5125     case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
5126         return nvme_identify_nslist_csi(n, req, true);
5127     case NVME_ID_CNS_CS_NS_PRESENT_LIST:
5128         return nvme_identify_nslist_csi(n, req, false);
5129     case NVME_ID_CNS_NS_DESCR_LIST:
5130         return nvme_identify_ns_descr_list(n, req);
5131     case NVME_ID_CNS_IO_COMMAND_SET:
5132         return nvme_identify_cmd_set(n, req);
5133     default:
5134         trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
5135         return NVME_INVALID_FIELD | NVME_DNR;
5136     }
5137 }
5138 
5139 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
5140 {
5141     uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
5142 
5143     req->cqe.result = 1;
5144     if (nvme_check_sqid(n, sqid)) {
5145         return NVME_INVALID_FIELD | NVME_DNR;
5146     }
5147 
5148     return NVME_SUCCESS;
5149 }
5150 
5151 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
5152 {
5153     trace_pci_nvme_setfeat_timestamp(ts);
5154 
5155     n->host_timestamp = le64_to_cpu(ts);
5156     n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5157 }
5158 
5159 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
5160 {
5161     uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5162     uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
5163 
5164     union nvme_timestamp {
5165         struct {
5166             uint64_t timestamp:48;
5167             uint64_t sync:1;
5168             uint64_t origin:3;
5169             uint64_t rsvd1:12;
5170         };
5171         uint64_t all;
5172     };
5173 
5174     union nvme_timestamp ts;
5175     ts.all = 0;
5176     ts.timestamp = n->host_timestamp + elapsed_time;
5177 
5178     /* If the host timestamp is non-zero, set the timestamp origin */
5179     ts.origin = n->host_timestamp ? 0x01 : 0x00;
5180 
5181     trace_pci_nvme_getfeat_timestamp(ts.all);
5182 
5183     return cpu_to_le64(ts.all);
5184 }
5185 
5186 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5187 {
5188     uint64_t timestamp = nvme_get_timestamp(n);
5189 
5190     return nvme_c2h(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5191 }
5192 
5193 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
5194 {
5195     NvmeCmd *cmd = &req->cmd;
5196     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5197     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5198     uint32_t nsid = le32_to_cpu(cmd->nsid);
5199     uint32_t result;
5200     uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5201     NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
5202     uint16_t iv;
5203     NvmeNamespace *ns;
5204     int i;
5205 
5206     static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
5207         [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
5208     };
5209 
5210     trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
5211 
5212     if (!nvme_feature_support[fid]) {
5213         return NVME_INVALID_FIELD | NVME_DNR;
5214     }
5215 
5216     if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5217         if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5218             /*
5219              * The Reservation Notification Mask and Reservation Persistence
5220              * features require a status code of Invalid Field in Command when
5221              * NSID is FFFFFFFFh. Since the device does not support those
5222              * features we can always return Invalid Namespace or Format as we
5223              * should do for all other features.
5224              */
5225             return NVME_INVALID_NSID | NVME_DNR;
5226         }
5227 
5228         if (!nvme_ns(n, nsid)) {
5229             return NVME_INVALID_FIELD | NVME_DNR;
5230         }
5231     }
5232 
5233     switch (sel) {
5234     case NVME_GETFEAT_SELECT_CURRENT:
5235         break;
5236     case NVME_GETFEAT_SELECT_SAVED:
5237         /* no features are saveable by the controller; fallthrough */
5238     case NVME_GETFEAT_SELECT_DEFAULT:
5239         goto defaults;
5240     case NVME_GETFEAT_SELECT_CAP:
5241         result = nvme_feature_cap[fid];
5242         goto out;
5243     }
5244 
5245     switch (fid) {
5246     case NVME_TEMPERATURE_THRESHOLD:
5247         result = 0;
5248 
5249         /*
5250          * The controller only implements the Composite Temperature sensor, so
5251          * return 0 for all other sensors.
5252          */
5253         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5254             goto out;
5255         }
5256 
5257         switch (NVME_TEMP_THSEL(dw11)) {
5258         case NVME_TEMP_THSEL_OVER:
5259             result = n->features.temp_thresh_hi;
5260             goto out;
5261         case NVME_TEMP_THSEL_UNDER:
5262             result = n->features.temp_thresh_low;
5263             goto out;
5264         }
5265 
5266         return NVME_INVALID_FIELD | NVME_DNR;
5267     case NVME_ERROR_RECOVERY:
5268         if (!nvme_nsid_valid(n, nsid)) {
5269             return NVME_INVALID_NSID | NVME_DNR;
5270         }
5271 
5272         ns = nvme_ns(n, nsid);
5273         if (unlikely(!ns)) {
5274             return NVME_INVALID_FIELD | NVME_DNR;
5275         }
5276 
5277         result = ns->features.err_rec;
5278         goto out;
5279     case NVME_VOLATILE_WRITE_CACHE:
5280         result = 0;
5281         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5282             ns = nvme_ns(n, i);
5283             if (!ns) {
5284                 continue;
5285             }
5286 
5287             result = blk_enable_write_cache(ns->blkconf.blk);
5288             if (result) {
5289                 break;
5290             }
5291         }
5292         trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
5293         goto out;
5294     case NVME_ASYNCHRONOUS_EVENT_CONF:
5295         result = n->features.async_config;
5296         goto out;
5297     case NVME_TIMESTAMP:
5298         return nvme_get_feature_timestamp(n, req);
5299     case NVME_HOST_BEHAVIOR_SUPPORT:
5300         return nvme_c2h(n, (uint8_t *)&n->features.hbs,
5301                         sizeof(n->features.hbs), req);
5302     default:
5303         break;
5304     }
5305 
5306 defaults:
5307     switch (fid) {
5308     case NVME_TEMPERATURE_THRESHOLD:
5309         result = 0;
5310 
5311         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5312             break;
5313         }
5314 
5315         if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
5316             result = NVME_TEMPERATURE_WARNING;
5317         }
5318 
5319         break;
5320     case NVME_NUMBER_OF_QUEUES:
5321         result = (n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16);
5322         trace_pci_nvme_getfeat_numq(result);
5323         break;
5324     case NVME_INTERRUPT_VECTOR_CONF:
5325         iv = dw11 & 0xffff;
5326         if (iv >= n->conf_ioqpairs + 1) {
5327             return NVME_INVALID_FIELD | NVME_DNR;
5328         }
5329 
5330         result = iv;
5331         if (iv == n->admin_cq.vector) {
5332             result |= NVME_INTVC_NOCOALESCING;
5333         }
5334         break;
5335     default:
5336         result = nvme_feature_default[fid];
5337         break;
5338     }
5339 
5340 out:
5341     req->cqe.result = cpu_to_le32(result);
5342     return NVME_SUCCESS;
5343 }
5344 
5345 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5346 {
5347     uint16_t ret;
5348     uint64_t timestamp;
5349 
5350     ret = nvme_h2c(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5351     if (ret) {
5352         return ret;
5353     }
5354 
5355     nvme_set_timestamp(n, timestamp);
5356 
5357     return NVME_SUCCESS;
5358 }
5359 
5360 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
5361 {
5362     NvmeNamespace *ns = NULL;
5363 
5364     NvmeCmd *cmd = &req->cmd;
5365     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5366     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5367     uint32_t nsid = le32_to_cpu(cmd->nsid);
5368     uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5369     uint8_t save = NVME_SETFEAT_SAVE(dw10);
5370     uint16_t status;
5371     int i;
5372 
5373     trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
5374 
5375     if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
5376         return NVME_FID_NOT_SAVEABLE | NVME_DNR;
5377     }
5378 
5379     if (!nvme_feature_support[fid]) {
5380         return NVME_INVALID_FIELD | NVME_DNR;
5381     }
5382 
5383     if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5384         if (nsid != NVME_NSID_BROADCAST) {
5385             if (!nvme_nsid_valid(n, nsid)) {
5386                 return NVME_INVALID_NSID | NVME_DNR;
5387             }
5388 
5389             ns = nvme_ns(n, nsid);
5390             if (unlikely(!ns)) {
5391                 return NVME_INVALID_FIELD | NVME_DNR;
5392             }
5393         }
5394     } else if (nsid && nsid != NVME_NSID_BROADCAST) {
5395         if (!nvme_nsid_valid(n, nsid)) {
5396             return NVME_INVALID_NSID | NVME_DNR;
5397         }
5398 
5399         return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
5400     }
5401 
5402     if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
5403         return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
5404     }
5405 
5406     switch (fid) {
5407     case NVME_TEMPERATURE_THRESHOLD:
5408         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5409             break;
5410         }
5411 
5412         switch (NVME_TEMP_THSEL(dw11)) {
5413         case NVME_TEMP_THSEL_OVER:
5414             n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
5415             break;
5416         case NVME_TEMP_THSEL_UNDER:
5417             n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
5418             break;
5419         default:
5420             return NVME_INVALID_FIELD | NVME_DNR;
5421         }
5422 
5423         if ((n->temperature >= n->features.temp_thresh_hi) ||
5424             (n->temperature <= n->features.temp_thresh_low)) {
5425             nvme_smart_event(n, NVME_SMART_TEMPERATURE);
5426         }
5427 
5428         break;
5429     case NVME_ERROR_RECOVERY:
5430         if (nsid == NVME_NSID_BROADCAST) {
5431             for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5432                 ns = nvme_ns(n, i);
5433 
5434                 if (!ns) {
5435                     continue;
5436                 }
5437 
5438                 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
5439                     ns->features.err_rec = dw11;
5440                 }
5441             }
5442 
5443             break;
5444         }
5445 
5446         assert(ns);
5447         if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat))  {
5448             ns->features.err_rec = dw11;
5449         }
5450         break;
5451     case NVME_VOLATILE_WRITE_CACHE:
5452         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5453             ns = nvme_ns(n, i);
5454             if (!ns) {
5455                 continue;
5456             }
5457 
5458             if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
5459                 blk_flush(ns->blkconf.blk);
5460             }
5461 
5462             blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
5463         }
5464 
5465         break;
5466 
5467     case NVME_NUMBER_OF_QUEUES:
5468         if (n->qs_created) {
5469             return NVME_CMD_SEQ_ERROR | NVME_DNR;
5470         }
5471 
5472         /*
5473          * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
5474          * and NSQR.
5475          */
5476         if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
5477             return NVME_INVALID_FIELD | NVME_DNR;
5478         }
5479 
5480         trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1,
5481                                     ((dw11 >> 16) & 0xffff) + 1,
5482                                     n->conf_ioqpairs,
5483                                     n->conf_ioqpairs);
5484         req->cqe.result = cpu_to_le32((n->conf_ioqpairs - 1) |
5485                                       ((n->conf_ioqpairs - 1) << 16));
5486         break;
5487     case NVME_ASYNCHRONOUS_EVENT_CONF:
5488         n->features.async_config = dw11;
5489         break;
5490     case NVME_TIMESTAMP:
5491         return nvme_set_feature_timestamp(n, req);
5492     case NVME_HOST_BEHAVIOR_SUPPORT:
5493         status = nvme_h2c(n, (uint8_t *)&n->features.hbs,
5494                           sizeof(n->features.hbs), req);
5495         if (status) {
5496             return status;
5497         }
5498 
5499         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5500             ns = nvme_ns(n, i);
5501 
5502             if (!ns) {
5503                 continue;
5504             }
5505 
5506             ns->id_ns.nlbaf = ns->nlbaf - 1;
5507             if (!n->features.hbs.lbafee) {
5508                 ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15);
5509             }
5510         }
5511 
5512         return status;
5513     case NVME_COMMAND_SET_PROFILE:
5514         if (dw11 & 0x1ff) {
5515             trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
5516             return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
5517         }
5518         break;
5519     default:
5520         return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
5521     }
5522     return NVME_SUCCESS;
5523 }
5524 
5525 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
5526 {
5527     trace_pci_nvme_aer(nvme_cid(req));
5528 
5529     if (n->outstanding_aers > n->params.aerl) {
5530         trace_pci_nvme_aer_aerl_exceeded();
5531         return NVME_AER_LIMIT_EXCEEDED;
5532     }
5533 
5534     n->aer_reqs[n->outstanding_aers] = req;
5535     n->outstanding_aers++;
5536 
5537     if (!QTAILQ_EMPTY(&n->aer_queue)) {
5538         nvme_process_aers(n);
5539     }
5540 
5541     return NVME_NO_COMPLETE;
5542 }
5543 
5544 static void nvme_update_dmrsl(NvmeCtrl *n)
5545 {
5546     int nsid;
5547 
5548     for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
5549         NvmeNamespace *ns = nvme_ns(n, nsid);
5550         if (!ns) {
5551             continue;
5552         }
5553 
5554         n->dmrsl = MIN_NON_ZERO(n->dmrsl,
5555                                 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
5556     }
5557 }
5558 
5559 static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns)
5560 {
5561     uint32_t cc = ldl_le_p(&n->bar.cc);
5562 
5563     ns->iocs = nvme_cse_iocs_none;
5564     switch (ns->csi) {
5565     case NVME_CSI_NVM:
5566         if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) {
5567             ns->iocs = nvme_cse_iocs_nvm;
5568         }
5569         break;
5570     case NVME_CSI_ZONED:
5571         if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) {
5572             ns->iocs = nvme_cse_iocs_zoned;
5573         } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) {
5574             ns->iocs = nvme_cse_iocs_nvm;
5575         }
5576         break;
5577     }
5578 }
5579 
5580 static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
5581 {
5582     NvmeNamespace *ns;
5583     NvmeCtrl *ctrl;
5584     uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
5585     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5586     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5587     uint8_t sel = dw10 & 0xf;
5588     uint16_t *nr_ids = &list[0];
5589     uint16_t *ids = &list[1];
5590     uint16_t ret;
5591     int i;
5592 
5593     trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
5594 
5595     if (!nvme_nsid_valid(n, nsid)) {
5596         return NVME_INVALID_NSID | NVME_DNR;
5597     }
5598 
5599     ns = nvme_subsys_ns(n->subsys, nsid);
5600     if (!ns) {
5601         return NVME_INVALID_FIELD | NVME_DNR;
5602     }
5603 
5604     ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
5605     if (ret) {
5606         return ret;
5607     }
5608 
5609     if (!*nr_ids) {
5610         return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
5611     }
5612 
5613     *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1);
5614     for (i = 0; i < *nr_ids; i++) {
5615         ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
5616         if (!ctrl) {
5617             return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
5618         }
5619 
5620         switch (sel) {
5621         case NVME_NS_ATTACHMENT_ATTACH:
5622             if (nvme_ns(ctrl, nsid)) {
5623                 return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
5624             }
5625 
5626             if (ns->attached && !ns->params.shared) {
5627                 return NVME_NS_PRIVATE | NVME_DNR;
5628             }
5629 
5630             nvme_attach_ns(ctrl, ns);
5631             nvme_select_iocs_ns(ctrl, ns);
5632 
5633             break;
5634 
5635         case NVME_NS_ATTACHMENT_DETACH:
5636             if (!nvme_ns(ctrl, nsid)) {
5637                 return NVME_NS_NOT_ATTACHED | NVME_DNR;
5638             }
5639 
5640             ctrl->namespaces[nsid] = NULL;
5641             ns->attached--;
5642 
5643             nvme_update_dmrsl(ctrl);
5644 
5645             break;
5646 
5647         default:
5648             return NVME_INVALID_FIELD | NVME_DNR;
5649         }
5650 
5651         /*
5652          * Add namespace id to the changed namespace id list for event clearing
5653          * via Get Log Page command.
5654          */
5655         if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
5656             nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
5657                                NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
5658                                NVME_LOG_CHANGED_NSLIST);
5659         }
5660     }
5661 
5662     return NVME_SUCCESS;
5663 }
5664 
5665 typedef struct NvmeFormatAIOCB {
5666     BlockAIOCB common;
5667     BlockAIOCB *aiocb;
5668     NvmeRequest *req;
5669     int ret;
5670 
5671     NvmeNamespace *ns;
5672     uint32_t nsid;
5673     bool broadcast;
5674     int64_t offset;
5675 
5676     uint8_t lbaf;
5677     uint8_t mset;
5678     uint8_t pi;
5679     uint8_t pil;
5680 } NvmeFormatAIOCB;
5681 
5682 static void nvme_format_cancel(BlockAIOCB *aiocb)
5683 {
5684     NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common);
5685 
5686     iocb->ret = -ECANCELED;
5687 
5688     if (iocb->aiocb) {
5689         blk_aio_cancel_async(iocb->aiocb);
5690         iocb->aiocb = NULL;
5691     }
5692 }
5693 
5694 static const AIOCBInfo nvme_format_aiocb_info = {
5695     .aiocb_size = sizeof(NvmeFormatAIOCB),
5696     .cancel_async = nvme_format_cancel,
5697     .get_aio_context = nvme_get_aio_context,
5698 };
5699 
5700 static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset,
5701                             uint8_t pi, uint8_t pil)
5702 {
5703     uint8_t lbafl = lbaf & 0xf;
5704     uint8_t lbafu = lbaf >> 4;
5705 
5706     trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil);
5707 
5708     ns->id_ns.dps = (pil << 3) | pi;
5709     ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl;
5710 
5711     nvme_ns_init_format(ns);
5712 }
5713 
5714 static void nvme_do_format(NvmeFormatAIOCB *iocb);
5715 
5716 static void nvme_format_ns_cb(void *opaque, int ret)
5717 {
5718     NvmeFormatAIOCB *iocb = opaque;
5719     NvmeNamespace *ns = iocb->ns;
5720     int bytes;
5721 
5722     if (iocb->ret < 0) {
5723         goto done;
5724     } else if (ret < 0) {
5725         iocb->ret = ret;
5726         goto done;
5727     }
5728 
5729     assert(ns);
5730 
5731     if (iocb->offset < ns->size) {
5732         bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset);
5733 
5734         iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset,
5735                                             bytes, BDRV_REQ_MAY_UNMAP,
5736                                             nvme_format_ns_cb, iocb);
5737 
5738         iocb->offset += bytes;
5739         return;
5740     }
5741 
5742     nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil);
5743     ns->status = 0x0;
5744     iocb->ns = NULL;
5745     iocb->offset = 0;
5746 
5747 done:
5748     nvme_do_format(iocb);
5749 }
5750 
5751 static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi)
5752 {
5753     if (ns->params.zoned) {
5754         return NVME_INVALID_FORMAT | NVME_DNR;
5755     }
5756 
5757     if (lbaf > ns->id_ns.nlbaf) {
5758         return NVME_INVALID_FORMAT | NVME_DNR;
5759     }
5760 
5761     if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) {
5762         return NVME_INVALID_FORMAT | NVME_DNR;
5763     }
5764 
5765     if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
5766         return NVME_INVALID_FIELD | NVME_DNR;
5767     }
5768 
5769     return NVME_SUCCESS;
5770 }
5771 
5772 static void nvme_do_format(NvmeFormatAIOCB *iocb)
5773 {
5774     NvmeRequest *req = iocb->req;
5775     NvmeCtrl *n = nvme_ctrl(req);
5776     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5777     uint8_t lbaf = dw10 & 0xf;
5778     uint8_t pi = (dw10 >> 5) & 0x7;
5779     uint16_t status;
5780     int i;
5781 
5782     if (iocb->ret < 0) {
5783         goto done;
5784     }
5785 
5786     if (iocb->broadcast) {
5787         for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
5788             iocb->ns = nvme_ns(n, i);
5789             if (iocb->ns) {
5790                 iocb->nsid = i;
5791                 break;
5792             }
5793         }
5794     }
5795 
5796     if (!iocb->ns) {
5797         goto done;
5798     }
5799 
5800     status = nvme_format_check(iocb->ns, lbaf, pi);
5801     if (status) {
5802         req->status = status;
5803         goto done;
5804     }
5805 
5806     iocb->ns->status = NVME_FORMAT_IN_PROGRESS;
5807     nvme_format_ns_cb(iocb, 0);
5808     return;
5809 
5810 done:
5811     iocb->common.cb(iocb->common.opaque, iocb->ret);
5812     qemu_aio_unref(iocb);
5813 }
5814 
5815 static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
5816 {
5817     NvmeFormatAIOCB *iocb;
5818     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5819     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5820     uint8_t lbaf = dw10 & 0xf;
5821     uint8_t mset = (dw10 >> 4) & 0x1;
5822     uint8_t pi = (dw10 >> 5) & 0x7;
5823     uint8_t pil = (dw10 >> 8) & 0x1;
5824     uint8_t lbafu = (dw10 >> 12) & 0x3;
5825     uint16_t status;
5826 
5827     iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req);
5828 
5829     iocb->req = req;
5830     iocb->ret = 0;
5831     iocb->ns = NULL;
5832     iocb->nsid = 0;
5833     iocb->lbaf = lbaf;
5834     iocb->mset = mset;
5835     iocb->pi = pi;
5836     iocb->pil = pil;
5837     iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
5838     iocb->offset = 0;
5839 
5840     if (n->features.hbs.lbafee) {
5841         iocb->lbaf |= lbafu << 4;
5842     }
5843 
5844     if (!iocb->broadcast) {
5845         if (!nvme_nsid_valid(n, nsid)) {
5846             status = NVME_INVALID_NSID | NVME_DNR;
5847             goto out;
5848         }
5849 
5850         iocb->ns = nvme_ns(n, nsid);
5851         if (!iocb->ns) {
5852             status = NVME_INVALID_FIELD | NVME_DNR;
5853             goto out;
5854         }
5855     }
5856 
5857     req->aiocb = &iocb->common;
5858     nvme_do_format(iocb);
5859 
5860     return NVME_NO_COMPLETE;
5861 
5862 out:
5863     qemu_aio_unref(iocb);
5864 
5865     return status;
5866 }
5867 
5868 static void nvme_get_virt_res_num(NvmeCtrl *n, uint8_t rt, int *num_total,
5869                                   int *num_prim, int *num_sec)
5870 {
5871     *num_total = le32_to_cpu(rt ?
5872                              n->pri_ctrl_cap.vifrt : n->pri_ctrl_cap.vqfrt);
5873     *num_prim = le16_to_cpu(rt ?
5874                             n->pri_ctrl_cap.virfap : n->pri_ctrl_cap.vqrfap);
5875     *num_sec = le16_to_cpu(rt ? n->pri_ctrl_cap.virfa : n->pri_ctrl_cap.vqrfa);
5876 }
5877 
5878 static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl *n, NvmeRequest *req,
5879                                              uint16_t cntlid, uint8_t rt,
5880                                              int nr)
5881 {
5882     int num_total, num_prim, num_sec;
5883 
5884     if (cntlid != n->cntlid) {
5885         return NVME_INVALID_CTRL_ID | NVME_DNR;
5886     }
5887 
5888     nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
5889 
5890     if (nr > num_total) {
5891         return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
5892     }
5893 
5894     if (nr > num_total - num_sec) {
5895         return NVME_INVALID_RESOURCE_ID | NVME_DNR;
5896     }
5897 
5898     if (rt) {
5899         n->next_pri_ctrl_cap.virfap = cpu_to_le16(nr);
5900     } else {
5901         n->next_pri_ctrl_cap.vqrfap = cpu_to_le16(nr);
5902     }
5903 
5904     req->cqe.result = cpu_to_le32(nr);
5905     return req->status;
5906 }
5907 
5908 static void nvme_update_virt_res(NvmeCtrl *n, NvmeSecCtrlEntry *sctrl,
5909                                  uint8_t rt, int nr)
5910 {
5911     int prev_nr, prev_total;
5912 
5913     if (rt) {
5914         prev_nr = le16_to_cpu(sctrl->nvi);
5915         prev_total = le32_to_cpu(n->pri_ctrl_cap.virfa);
5916         sctrl->nvi = cpu_to_le16(nr);
5917         n->pri_ctrl_cap.virfa = cpu_to_le32(prev_total + nr - prev_nr);
5918     } else {
5919         prev_nr = le16_to_cpu(sctrl->nvq);
5920         prev_total = le32_to_cpu(n->pri_ctrl_cap.vqrfa);
5921         sctrl->nvq = cpu_to_le16(nr);
5922         n->pri_ctrl_cap.vqrfa = cpu_to_le32(prev_total + nr - prev_nr);
5923     }
5924 }
5925 
5926 static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl *n, NvmeRequest *req,
5927                                             uint16_t cntlid, uint8_t rt, int nr)
5928 {
5929     int num_total, num_prim, num_sec, num_free, diff, limit;
5930     NvmeSecCtrlEntry *sctrl;
5931 
5932     sctrl = nvme_sctrl_for_cntlid(n, cntlid);
5933     if (!sctrl) {
5934         return NVME_INVALID_CTRL_ID | NVME_DNR;
5935     }
5936 
5937     if (sctrl->scs) {
5938         return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
5939     }
5940 
5941     limit = le16_to_cpu(rt ? n->pri_ctrl_cap.vifrsm : n->pri_ctrl_cap.vqfrsm);
5942     if (nr > limit) {
5943         return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
5944     }
5945 
5946     nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
5947     num_free = num_total - num_prim - num_sec;
5948     diff = nr - le16_to_cpu(rt ? sctrl->nvi : sctrl->nvq);
5949 
5950     if (diff > num_free) {
5951         return NVME_INVALID_RESOURCE_ID | NVME_DNR;
5952     }
5953 
5954     nvme_update_virt_res(n, sctrl, rt, nr);
5955     req->cqe.result = cpu_to_le32(nr);
5956 
5957     return req->status;
5958 }
5959 
5960 static uint16_t nvme_virt_set_state(NvmeCtrl *n, uint16_t cntlid, bool online)
5961 {
5962     NvmeCtrl *sn = NULL;
5963     NvmeSecCtrlEntry *sctrl;
5964     int vf_index;
5965 
5966     sctrl = nvme_sctrl_for_cntlid(n, cntlid);
5967     if (!sctrl) {
5968         return NVME_INVALID_CTRL_ID | NVME_DNR;
5969     }
5970 
5971     if (!pci_is_vf(&n->parent_obj)) {
5972         vf_index = le16_to_cpu(sctrl->vfn) - 1;
5973         sn = NVME(pcie_sriov_get_vf_at_index(&n->parent_obj, vf_index));
5974     }
5975 
5976     if (online) {
5977         if (!sctrl->nvi || (le16_to_cpu(sctrl->nvq) < 2) || !sn) {
5978             return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
5979         }
5980 
5981         if (!sctrl->scs) {
5982             sctrl->scs = 0x1;
5983             nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
5984         }
5985     } else {
5986         nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_INTERRUPT, 0);
5987         nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_QUEUE, 0);
5988 
5989         if (sctrl->scs) {
5990             sctrl->scs = 0x0;
5991             if (sn) {
5992                 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
5993             }
5994         }
5995     }
5996 
5997     return NVME_SUCCESS;
5998 }
5999 
6000 static uint16_t nvme_virt_mngmt(NvmeCtrl *n, NvmeRequest *req)
6001 {
6002     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6003     uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
6004     uint8_t act = dw10 & 0xf;
6005     uint8_t rt = (dw10 >> 8) & 0x7;
6006     uint16_t cntlid = (dw10 >> 16) & 0xffff;
6007     int nr = dw11 & 0xffff;
6008 
6009     trace_pci_nvme_virt_mngmt(nvme_cid(req), act, cntlid, rt ? "VI" : "VQ", nr);
6010 
6011     if (rt != NVME_VIRT_RES_QUEUE && rt != NVME_VIRT_RES_INTERRUPT) {
6012         return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6013     }
6014 
6015     switch (act) {
6016     case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN:
6017         return nvme_assign_virt_res_to_sec(n, req, cntlid, rt, nr);
6018     case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC:
6019         return nvme_assign_virt_res_to_prim(n, req, cntlid, rt, nr);
6020     case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE:
6021         return nvme_virt_set_state(n, cntlid, true);
6022     case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE:
6023         return nvme_virt_set_state(n, cntlid, false);
6024     default:
6025         return NVME_INVALID_FIELD | NVME_DNR;
6026     }
6027 }
6028 
6029 static uint16_t nvme_dbbuf_config(NvmeCtrl *n, const NvmeRequest *req)
6030 {
6031     uint64_t dbs_addr = le64_to_cpu(req->cmd.dptr.prp1);
6032     uint64_t eis_addr = le64_to_cpu(req->cmd.dptr.prp2);
6033     int i;
6034 
6035     /* Address should be page aligned */
6036     if (dbs_addr & (n->page_size - 1) || eis_addr & (n->page_size - 1)) {
6037         return NVME_INVALID_FIELD | NVME_DNR;
6038     }
6039 
6040     /* Save shadow buffer base addr for use during queue creation */
6041     n->dbbuf_dbs = dbs_addr;
6042     n->dbbuf_eis = eis_addr;
6043     n->dbbuf_enabled = true;
6044 
6045     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6046         NvmeSQueue *sq = n->sq[i];
6047         NvmeCQueue *cq = n->cq[i];
6048 
6049         if (sq) {
6050             /*
6051              * CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3)
6052              * nvme_process_db() uses this hard-coded way to calculate
6053              * doorbell offsets. Be consistent with that here.
6054              */
6055             sq->db_addr = dbs_addr + (i << 3);
6056             sq->ei_addr = eis_addr + (i << 3);
6057             pci_dma_write(&n->parent_obj, sq->db_addr, &sq->tail,
6058                     sizeof(sq->tail));
6059 
6060             if (n->params.ioeventfd && sq->sqid != 0) {
6061                 if (!nvme_init_sq_ioeventfd(sq)) {
6062                     sq->ioeventfd_enabled = true;
6063                 }
6064             }
6065         }
6066 
6067         if (cq) {
6068             /* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */
6069             cq->db_addr = dbs_addr + (i << 3) + (1 << 2);
6070             cq->ei_addr = eis_addr + (i << 3) + (1 << 2);
6071             pci_dma_write(&n->parent_obj, cq->db_addr, &cq->head,
6072                     sizeof(cq->head));
6073 
6074             if (n->params.ioeventfd && cq->cqid != 0) {
6075                 if (!nvme_init_cq_ioeventfd(cq)) {
6076                     cq->ioeventfd_enabled = true;
6077                 }
6078             }
6079         }
6080     }
6081 
6082     trace_pci_nvme_dbbuf_config(dbs_addr, eis_addr);
6083 
6084     return NVME_SUCCESS;
6085 }
6086 
6087 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
6088 {
6089     trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
6090                              nvme_adm_opc_str(req->cmd.opcode));
6091 
6092     if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
6093         trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
6094         return NVME_INVALID_OPCODE | NVME_DNR;
6095     }
6096 
6097     /* SGLs shall not be used for Admin commands in NVMe over PCIe */
6098     if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
6099         return NVME_INVALID_FIELD | NVME_DNR;
6100     }
6101 
6102     if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
6103         return NVME_INVALID_FIELD;
6104     }
6105 
6106     switch (req->cmd.opcode) {
6107     case NVME_ADM_CMD_DELETE_SQ:
6108         return nvme_del_sq(n, req);
6109     case NVME_ADM_CMD_CREATE_SQ:
6110         return nvme_create_sq(n, req);
6111     case NVME_ADM_CMD_GET_LOG_PAGE:
6112         return nvme_get_log(n, req);
6113     case NVME_ADM_CMD_DELETE_CQ:
6114         return nvme_del_cq(n, req);
6115     case NVME_ADM_CMD_CREATE_CQ:
6116         return nvme_create_cq(n, req);
6117     case NVME_ADM_CMD_IDENTIFY:
6118         return nvme_identify(n, req);
6119     case NVME_ADM_CMD_ABORT:
6120         return nvme_abort(n, req);
6121     case NVME_ADM_CMD_SET_FEATURES:
6122         return nvme_set_feature(n, req);
6123     case NVME_ADM_CMD_GET_FEATURES:
6124         return nvme_get_feature(n, req);
6125     case NVME_ADM_CMD_ASYNC_EV_REQ:
6126         return nvme_aer(n, req);
6127     case NVME_ADM_CMD_NS_ATTACHMENT:
6128         return nvme_ns_attachment(n, req);
6129     case NVME_ADM_CMD_VIRT_MNGMT:
6130         return nvme_virt_mngmt(n, req);
6131     case NVME_ADM_CMD_DBBUF_CONFIG:
6132         return nvme_dbbuf_config(n, req);
6133     case NVME_ADM_CMD_FORMAT_NVM:
6134         return nvme_format(n, req);
6135     default:
6136         assert(false);
6137     }
6138 
6139     return NVME_INVALID_OPCODE | NVME_DNR;
6140 }
6141 
6142 static void nvme_update_sq_eventidx(const NvmeSQueue *sq)
6143 {
6144     pci_dma_write(&sq->ctrl->parent_obj, sq->ei_addr, &sq->tail,
6145                   sizeof(sq->tail));
6146     trace_pci_nvme_eventidx_sq(sq->sqid, sq->tail);
6147 }
6148 
6149 static void nvme_update_sq_tail(NvmeSQueue *sq)
6150 {
6151     pci_dma_read(&sq->ctrl->parent_obj, sq->db_addr, &sq->tail,
6152                  sizeof(sq->tail));
6153     trace_pci_nvme_shadow_doorbell_sq(sq->sqid, sq->tail);
6154 }
6155 
6156 static void nvme_process_sq(void *opaque)
6157 {
6158     NvmeSQueue *sq = opaque;
6159     NvmeCtrl *n = sq->ctrl;
6160     NvmeCQueue *cq = n->cq[sq->cqid];
6161 
6162     uint16_t status;
6163     hwaddr addr;
6164     NvmeCmd cmd;
6165     NvmeRequest *req;
6166 
6167     if (n->dbbuf_enabled) {
6168         nvme_update_sq_tail(sq);
6169     }
6170 
6171     while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
6172         addr = sq->dma_addr + sq->head * n->sqe_size;
6173         if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
6174             trace_pci_nvme_err_addr_read(addr);
6175             trace_pci_nvme_err_cfs();
6176             stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
6177             break;
6178         }
6179         nvme_inc_sq_head(sq);
6180 
6181         req = QTAILQ_FIRST(&sq->req_list);
6182         QTAILQ_REMOVE(&sq->req_list, req, entry);
6183         QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
6184         nvme_req_clear(req);
6185         req->cqe.cid = cmd.cid;
6186         memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
6187 
6188         status = sq->sqid ? nvme_io_cmd(n, req) :
6189             nvme_admin_cmd(n, req);
6190         if (status != NVME_NO_COMPLETE) {
6191             req->status = status;
6192             nvme_enqueue_req_completion(cq, req);
6193         }
6194 
6195         if (n->dbbuf_enabled) {
6196             nvme_update_sq_eventidx(sq);
6197             nvme_update_sq_tail(sq);
6198         }
6199     }
6200 }
6201 
6202 static void nvme_update_msixcap_ts(PCIDevice *pci_dev, uint32_t table_size)
6203 {
6204     uint8_t *config;
6205 
6206     if (!msix_present(pci_dev)) {
6207         return;
6208     }
6209 
6210     assert(table_size > 0 && table_size <= pci_dev->msix_entries_nr);
6211 
6212     config = pci_dev->config + pci_dev->msix_cap;
6213     pci_set_word_by_mask(config + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_QSIZE,
6214                          table_size - 1);
6215 }
6216 
6217 static void nvme_activate_virt_res(NvmeCtrl *n)
6218 {
6219     PCIDevice *pci_dev = &n->parent_obj;
6220     NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
6221     NvmeSecCtrlEntry *sctrl;
6222 
6223     /* -1 to account for the admin queue */
6224     if (pci_is_vf(pci_dev)) {
6225         sctrl = nvme_sctrl(n);
6226         cap->vqprt = sctrl->nvq;
6227         cap->viprt = sctrl->nvi;
6228         n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
6229         n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
6230     } else {
6231         cap->vqrfap = n->next_pri_ctrl_cap.vqrfap;
6232         cap->virfap = n->next_pri_ctrl_cap.virfap;
6233         n->conf_ioqpairs = le16_to_cpu(cap->vqprt) +
6234                            le16_to_cpu(cap->vqrfap) - 1;
6235         n->conf_msix_qsize = le16_to_cpu(cap->viprt) +
6236                              le16_to_cpu(cap->virfap);
6237     }
6238 }
6239 
6240 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst)
6241 {
6242     PCIDevice *pci_dev = &n->parent_obj;
6243     NvmeSecCtrlEntry *sctrl;
6244     NvmeNamespace *ns;
6245     int i;
6246 
6247     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6248         ns = nvme_ns(n, i);
6249         if (!ns) {
6250             continue;
6251         }
6252 
6253         nvme_ns_drain(ns);
6254     }
6255 
6256     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6257         if (n->sq[i] != NULL) {
6258             nvme_free_sq(n->sq[i], n);
6259         }
6260     }
6261     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6262         if (n->cq[i] != NULL) {
6263             nvme_free_cq(n->cq[i], n);
6264         }
6265     }
6266 
6267     while (!QTAILQ_EMPTY(&n->aer_queue)) {
6268         NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
6269         QTAILQ_REMOVE(&n->aer_queue, event, entry);
6270         g_free(event);
6271     }
6272 
6273     if (n->params.sriov_max_vfs) {
6274         if (!pci_is_vf(pci_dev)) {
6275             for (i = 0; i < n->sec_ctrl_list.numcntl; i++) {
6276                 sctrl = &n->sec_ctrl_list.sec[i];
6277                 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
6278             }
6279 
6280             if (rst != NVME_RESET_CONTROLLER) {
6281                 pcie_sriov_pf_disable_vfs(pci_dev);
6282             }
6283         }
6284 
6285         if (rst != NVME_RESET_CONTROLLER) {
6286             nvme_activate_virt_res(n);
6287         }
6288     }
6289 
6290     n->aer_queued = 0;
6291     n->aer_mask = 0;
6292     n->outstanding_aers = 0;
6293     n->qs_created = false;
6294 
6295     nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
6296 
6297     if (pci_is_vf(pci_dev)) {
6298         sctrl = nvme_sctrl(n);
6299 
6300         stl_le_p(&n->bar.csts, sctrl->scs ? 0 : NVME_CSTS_FAILED);
6301     } else {
6302         stl_le_p(&n->bar.csts, 0);
6303     }
6304 
6305     stl_le_p(&n->bar.intms, 0);
6306     stl_le_p(&n->bar.intmc, 0);
6307     stl_le_p(&n->bar.cc, 0);
6308 
6309     n->dbbuf_dbs = 0;
6310     n->dbbuf_eis = 0;
6311     n->dbbuf_enabled = false;
6312 }
6313 
6314 static void nvme_ctrl_shutdown(NvmeCtrl *n)
6315 {
6316     NvmeNamespace *ns;
6317     int i;
6318 
6319     if (n->pmr.dev) {
6320         memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
6321     }
6322 
6323     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6324         ns = nvme_ns(n, i);
6325         if (!ns) {
6326             continue;
6327         }
6328 
6329         nvme_ns_shutdown(ns);
6330     }
6331 }
6332 
6333 static void nvme_select_iocs(NvmeCtrl *n)
6334 {
6335     NvmeNamespace *ns;
6336     int i;
6337 
6338     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6339         ns = nvme_ns(n, i);
6340         if (!ns) {
6341             continue;
6342         }
6343 
6344         nvme_select_iocs_ns(n, ns);
6345     }
6346 }
6347 
6348 static int nvme_start_ctrl(NvmeCtrl *n)
6349 {
6350     uint64_t cap = ldq_le_p(&n->bar.cap);
6351     uint32_t cc = ldl_le_p(&n->bar.cc);
6352     uint32_t aqa = ldl_le_p(&n->bar.aqa);
6353     uint64_t asq = ldq_le_p(&n->bar.asq);
6354     uint64_t acq = ldq_le_p(&n->bar.acq);
6355     uint32_t page_bits = NVME_CC_MPS(cc) + 12;
6356     uint32_t page_size = 1 << page_bits;
6357     NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
6358 
6359     if (pci_is_vf(&n->parent_obj) && !sctrl->scs) {
6360         trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl->nvi),
6361                                                 le16_to_cpu(sctrl->nvq),
6362                                                 sctrl->scs ? "ONLINE" :
6363                                                              "OFFLINE");
6364         return -1;
6365     }
6366     if (unlikely(n->cq[0])) {
6367         trace_pci_nvme_err_startfail_cq();
6368         return -1;
6369     }
6370     if (unlikely(n->sq[0])) {
6371         trace_pci_nvme_err_startfail_sq();
6372         return -1;
6373     }
6374     if (unlikely(asq & (page_size - 1))) {
6375         trace_pci_nvme_err_startfail_asq_misaligned(asq);
6376         return -1;
6377     }
6378     if (unlikely(acq & (page_size - 1))) {
6379         trace_pci_nvme_err_startfail_acq_misaligned(acq);
6380         return -1;
6381     }
6382     if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) {
6383         trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc));
6384         return -1;
6385     }
6386     if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) {
6387         trace_pci_nvme_err_startfail_page_too_small(
6388                     NVME_CC_MPS(cc),
6389                     NVME_CAP_MPSMIN(cap));
6390         return -1;
6391     }
6392     if (unlikely(NVME_CC_MPS(cc) >
6393                  NVME_CAP_MPSMAX(cap))) {
6394         trace_pci_nvme_err_startfail_page_too_large(
6395                     NVME_CC_MPS(cc),
6396                     NVME_CAP_MPSMAX(cap));
6397         return -1;
6398     }
6399     if (unlikely(NVME_CC_IOCQES(cc) <
6400                  NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
6401         trace_pci_nvme_err_startfail_cqent_too_small(
6402                     NVME_CC_IOCQES(cc),
6403                     NVME_CTRL_CQES_MIN(cap));
6404         return -1;
6405     }
6406     if (unlikely(NVME_CC_IOCQES(cc) >
6407                  NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
6408         trace_pci_nvme_err_startfail_cqent_too_large(
6409                     NVME_CC_IOCQES(cc),
6410                     NVME_CTRL_CQES_MAX(cap));
6411         return -1;
6412     }
6413     if (unlikely(NVME_CC_IOSQES(cc) <
6414                  NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
6415         trace_pci_nvme_err_startfail_sqent_too_small(
6416                     NVME_CC_IOSQES(cc),
6417                     NVME_CTRL_SQES_MIN(cap));
6418         return -1;
6419     }
6420     if (unlikely(NVME_CC_IOSQES(cc) >
6421                  NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
6422         trace_pci_nvme_err_startfail_sqent_too_large(
6423                     NVME_CC_IOSQES(cc),
6424                     NVME_CTRL_SQES_MAX(cap));
6425         return -1;
6426     }
6427     if (unlikely(!NVME_AQA_ASQS(aqa))) {
6428         trace_pci_nvme_err_startfail_asqent_sz_zero();
6429         return -1;
6430     }
6431     if (unlikely(!NVME_AQA_ACQS(aqa))) {
6432         trace_pci_nvme_err_startfail_acqent_sz_zero();
6433         return -1;
6434     }
6435 
6436     n->page_bits = page_bits;
6437     n->page_size = page_size;
6438     n->max_prp_ents = n->page_size / sizeof(uint64_t);
6439     n->cqe_size = 1 << NVME_CC_IOCQES(cc);
6440     n->sqe_size = 1 << NVME_CC_IOSQES(cc);
6441     nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1);
6442     nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1);
6443 
6444     nvme_set_timestamp(n, 0ULL);
6445 
6446     nvme_select_iocs(n);
6447 
6448     return 0;
6449 }
6450 
6451 static void nvme_cmb_enable_regs(NvmeCtrl *n)
6452 {
6453     uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc);
6454     uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz);
6455 
6456     NVME_CMBLOC_SET_CDPCILS(cmbloc, 1);
6457     NVME_CMBLOC_SET_CDPMLS(cmbloc, 1);
6458     NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR);
6459     stl_le_p(&n->bar.cmbloc, cmbloc);
6460 
6461     NVME_CMBSZ_SET_SQS(cmbsz, 1);
6462     NVME_CMBSZ_SET_CQS(cmbsz, 0);
6463     NVME_CMBSZ_SET_LISTS(cmbsz, 1);
6464     NVME_CMBSZ_SET_RDS(cmbsz, 1);
6465     NVME_CMBSZ_SET_WDS(cmbsz, 1);
6466     NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */
6467     NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb);
6468     stl_le_p(&n->bar.cmbsz, cmbsz);
6469 }
6470 
6471 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
6472                            unsigned size)
6473 {
6474     uint64_t cap = ldq_le_p(&n->bar.cap);
6475     uint32_t cc = ldl_le_p(&n->bar.cc);
6476     uint32_t intms = ldl_le_p(&n->bar.intms);
6477     uint32_t csts = ldl_le_p(&n->bar.csts);
6478     uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts);
6479 
6480     if (unlikely(offset & (sizeof(uint32_t) - 1))) {
6481         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
6482                        "MMIO write not 32-bit aligned,"
6483                        " offset=0x%"PRIx64"", offset);
6484         /* should be ignored, fall through for now */
6485     }
6486 
6487     if (unlikely(size < sizeof(uint32_t))) {
6488         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
6489                        "MMIO write smaller than 32-bits,"
6490                        " offset=0x%"PRIx64", size=%u",
6491                        offset, size);
6492         /* should be ignored, fall through for now */
6493     }
6494 
6495     switch (offset) {
6496     case NVME_REG_INTMS:
6497         if (unlikely(msix_enabled(&(n->parent_obj)))) {
6498             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
6499                            "undefined access to interrupt mask set"
6500                            " when MSI-X is enabled");
6501             /* should be ignored, fall through for now */
6502         }
6503         intms |= data;
6504         stl_le_p(&n->bar.intms, intms);
6505         n->bar.intmc = n->bar.intms;
6506         trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms);
6507         nvme_irq_check(n);
6508         break;
6509     case NVME_REG_INTMC:
6510         if (unlikely(msix_enabled(&(n->parent_obj)))) {
6511             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
6512                            "undefined access to interrupt mask clr"
6513                            " when MSI-X is enabled");
6514             /* should be ignored, fall through for now */
6515         }
6516         intms &= ~data;
6517         stl_le_p(&n->bar.intms, intms);
6518         n->bar.intmc = n->bar.intms;
6519         trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms);
6520         nvme_irq_check(n);
6521         break;
6522     case NVME_REG_CC:
6523         stl_le_p(&n->bar.cc, data);
6524 
6525         trace_pci_nvme_mmio_cfg(data & 0xffffffff);
6526 
6527         if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) {
6528             trace_pci_nvme_mmio_shutdown_set();
6529             nvme_ctrl_shutdown(n);
6530             csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
6531             csts |= NVME_CSTS_SHST_COMPLETE;
6532         } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) {
6533             trace_pci_nvme_mmio_shutdown_cleared();
6534             csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
6535         }
6536 
6537         if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) {
6538             if (unlikely(nvme_start_ctrl(n))) {
6539                 trace_pci_nvme_err_startfail();
6540                 csts = NVME_CSTS_FAILED;
6541             } else {
6542                 trace_pci_nvme_mmio_start_success();
6543                 csts = NVME_CSTS_READY;
6544             }
6545         } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) {
6546             trace_pci_nvme_mmio_stopped();
6547             nvme_ctrl_reset(n, NVME_RESET_CONTROLLER);
6548 
6549             break;
6550         }
6551 
6552         stl_le_p(&n->bar.csts, csts);
6553 
6554         break;
6555     case NVME_REG_CSTS:
6556         if (data & (1 << 4)) {
6557             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
6558                            "attempted to W1C CSTS.NSSRO"
6559                            " but CAP.NSSRS is zero (not supported)");
6560         } else if (data != 0) {
6561             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
6562                            "attempted to set a read only bit"
6563                            " of controller status");
6564         }
6565         break;
6566     case NVME_REG_NSSR:
6567         if (data == 0x4e564d65) {
6568             trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
6569         } else {
6570             /* The spec says that writes of other values have no effect */
6571             return;
6572         }
6573         break;
6574     case NVME_REG_AQA:
6575         stl_le_p(&n->bar.aqa, data);
6576         trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
6577         break;
6578     case NVME_REG_ASQ:
6579         stn_le_p(&n->bar.asq, size, data);
6580         trace_pci_nvme_mmio_asqaddr(data);
6581         break;
6582     case NVME_REG_ASQ + 4:
6583         stl_le_p((uint8_t *)&n->bar.asq + 4, data);
6584         trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq));
6585         break;
6586     case NVME_REG_ACQ:
6587         trace_pci_nvme_mmio_acqaddr(data);
6588         stn_le_p(&n->bar.acq, size, data);
6589         break;
6590     case NVME_REG_ACQ + 4:
6591         stl_le_p((uint8_t *)&n->bar.acq + 4, data);
6592         trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq));
6593         break;
6594     case NVME_REG_CMBLOC:
6595         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
6596                        "invalid write to reserved CMBLOC"
6597                        " when CMBSZ is zero, ignored");
6598         return;
6599     case NVME_REG_CMBSZ:
6600         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
6601                        "invalid write to read only CMBSZ, ignored");
6602         return;
6603     case NVME_REG_CMBMSC:
6604         if (!NVME_CAP_CMBS(cap)) {
6605             return;
6606         }
6607 
6608         stn_le_p(&n->bar.cmbmsc, size, data);
6609         n->cmb.cmse = false;
6610 
6611         if (NVME_CMBMSC_CRE(data)) {
6612             nvme_cmb_enable_regs(n);
6613 
6614             if (NVME_CMBMSC_CMSE(data)) {
6615                 uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc);
6616                 hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT;
6617                 if (cba + int128_get64(n->cmb.mem.size) < cba) {
6618                     uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts);
6619                     NVME_CMBSTS_SET_CBAI(cmbsts, 1);
6620                     stl_le_p(&n->bar.cmbsts, cmbsts);
6621                     return;
6622                 }
6623 
6624                 n->cmb.cba = cba;
6625                 n->cmb.cmse = true;
6626             }
6627         } else {
6628             n->bar.cmbsz = 0;
6629             n->bar.cmbloc = 0;
6630         }
6631 
6632         return;
6633     case NVME_REG_CMBMSC + 4:
6634         stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data);
6635         return;
6636 
6637     case NVME_REG_PMRCAP:
6638         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
6639                        "invalid write to PMRCAP register, ignored");
6640         return;
6641     case NVME_REG_PMRCTL:
6642         if (!NVME_CAP_PMRS(cap)) {
6643             return;
6644         }
6645 
6646         stl_le_p(&n->bar.pmrctl, data);
6647         if (NVME_PMRCTL_EN(data)) {
6648             memory_region_set_enabled(&n->pmr.dev->mr, true);
6649             pmrsts = 0;
6650         } else {
6651             memory_region_set_enabled(&n->pmr.dev->mr, false);
6652             NVME_PMRSTS_SET_NRDY(pmrsts, 1);
6653             n->pmr.cmse = false;
6654         }
6655         stl_le_p(&n->bar.pmrsts, pmrsts);
6656         return;
6657     case NVME_REG_PMRSTS:
6658         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
6659                        "invalid write to PMRSTS register, ignored");
6660         return;
6661     case NVME_REG_PMREBS:
6662         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
6663                        "invalid write to PMREBS register, ignored");
6664         return;
6665     case NVME_REG_PMRSWTP:
6666         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
6667                        "invalid write to PMRSWTP register, ignored");
6668         return;
6669     case NVME_REG_PMRMSCL:
6670         if (!NVME_CAP_PMRS(cap)) {
6671             return;
6672         }
6673 
6674         stl_le_p(&n->bar.pmrmscl, data);
6675         n->pmr.cmse = false;
6676 
6677         if (NVME_PMRMSCL_CMSE(data)) {
6678             uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu);
6679             hwaddr cba = pmrmscu << 32 |
6680                 (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT);
6681             if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
6682                 NVME_PMRSTS_SET_CBAI(pmrsts, 1);
6683                 stl_le_p(&n->bar.pmrsts, pmrsts);
6684                 return;
6685             }
6686 
6687             n->pmr.cmse = true;
6688             n->pmr.cba = cba;
6689         }
6690 
6691         return;
6692     case NVME_REG_PMRMSCU:
6693         if (!NVME_CAP_PMRS(cap)) {
6694             return;
6695         }
6696 
6697         stl_le_p(&n->bar.pmrmscu, data);
6698         return;
6699     default:
6700         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
6701                        "invalid MMIO write,"
6702                        " offset=0x%"PRIx64", data=%"PRIx64"",
6703                        offset, data);
6704         break;
6705     }
6706 }
6707 
6708 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
6709 {
6710     NvmeCtrl *n = (NvmeCtrl *)opaque;
6711     uint8_t *ptr = (uint8_t *)&n->bar;
6712 
6713     trace_pci_nvme_mmio_read(addr, size);
6714 
6715     if (unlikely(addr & (sizeof(uint32_t) - 1))) {
6716         NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
6717                        "MMIO read not 32-bit aligned,"
6718                        " offset=0x%"PRIx64"", addr);
6719         /* should RAZ, fall through for now */
6720     } else if (unlikely(size < sizeof(uint32_t))) {
6721         NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
6722                        "MMIO read smaller than 32-bits,"
6723                        " offset=0x%"PRIx64"", addr);
6724         /* should RAZ, fall through for now */
6725     }
6726 
6727     if (addr > sizeof(n->bar) - size) {
6728         NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
6729                        "MMIO read beyond last register,"
6730                        " offset=0x%"PRIx64", returning 0", addr);
6731 
6732         return 0;
6733     }
6734 
6735     if (pci_is_vf(&n->parent_obj) && !nvme_sctrl(n)->scs &&
6736         addr != NVME_REG_CSTS) {
6737         trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
6738         return 0;
6739     }
6740 
6741     /*
6742      * When PMRWBM bit 1 is set then read from
6743      * from PMRSTS should ensure prior writes
6744      * made it to persistent media
6745      */
6746     if (addr == NVME_REG_PMRSTS &&
6747         (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) {
6748         memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
6749     }
6750 
6751     return ldn_le_p(ptr + addr, size);
6752 }
6753 
6754 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
6755 {
6756     uint32_t qid;
6757 
6758     if (unlikely(addr & ((1 << 2) - 1))) {
6759         NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
6760                        "doorbell write not 32-bit aligned,"
6761                        " offset=0x%"PRIx64", ignoring", addr);
6762         return;
6763     }
6764 
6765     if (((addr - 0x1000) >> 2) & 1) {
6766         /* Completion queue doorbell write */
6767 
6768         uint16_t new_head = val & 0xffff;
6769         int start_sqs;
6770         NvmeCQueue *cq;
6771 
6772         qid = (addr - (0x1000 + (1 << 2))) >> 3;
6773         if (unlikely(nvme_check_cqid(n, qid))) {
6774             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
6775                            "completion queue doorbell write"
6776                            " for nonexistent queue,"
6777                            " sqid=%"PRIu32", ignoring", qid);
6778 
6779             /*
6780              * NVM Express v1.3d, Section 4.1 state: "If host software writes
6781              * an invalid value to the Submission Queue Tail Doorbell or
6782              * Completion Queue Head Doorbell regiter and an Asynchronous Event
6783              * Request command is outstanding, then an asynchronous event is
6784              * posted to the Admin Completion Queue with a status code of
6785              * Invalid Doorbell Write Value."
6786              *
6787              * Also note that the spec includes the "Invalid Doorbell Register"
6788              * status code, but nowhere does it specify when to use it.
6789              * However, it seems reasonable to use it here in a similar
6790              * fashion.
6791              */
6792             if (n->outstanding_aers) {
6793                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6794                                    NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
6795                                    NVME_LOG_ERROR_INFO);
6796             }
6797 
6798             return;
6799         }
6800 
6801         cq = n->cq[qid];
6802         if (unlikely(new_head >= cq->size)) {
6803             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
6804                            "completion queue doorbell write value"
6805                            " beyond queue size, sqid=%"PRIu32","
6806                            " new_head=%"PRIu16", ignoring",
6807                            qid, new_head);
6808 
6809             if (n->outstanding_aers) {
6810                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6811                                    NVME_AER_INFO_ERR_INVALID_DB_VALUE,
6812                                    NVME_LOG_ERROR_INFO);
6813             }
6814 
6815             return;
6816         }
6817 
6818         trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
6819 
6820         start_sqs = nvme_cq_full(cq) ? 1 : 0;
6821         cq->head = new_head;
6822         if (!qid && n->dbbuf_enabled) {
6823             pci_dma_write(&n->parent_obj, cq->db_addr, &cq->head,
6824                           sizeof(cq->head));
6825         }
6826         if (start_sqs) {
6827             NvmeSQueue *sq;
6828             QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
6829                 qemu_bh_schedule(sq->bh);
6830             }
6831             qemu_bh_schedule(cq->bh);
6832         }
6833 
6834         if (cq->tail == cq->head) {
6835             if (cq->irq_enabled) {
6836                 n->cq_pending--;
6837             }
6838 
6839             nvme_irq_deassert(n, cq);
6840         }
6841     } else {
6842         /* Submission queue doorbell write */
6843 
6844         uint16_t new_tail = val & 0xffff;
6845         NvmeSQueue *sq;
6846 
6847         qid = (addr - 0x1000) >> 3;
6848         if (unlikely(nvme_check_sqid(n, qid))) {
6849             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
6850                            "submission queue doorbell write"
6851                            " for nonexistent queue,"
6852                            " sqid=%"PRIu32", ignoring", qid);
6853 
6854             if (n->outstanding_aers) {
6855                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6856                                    NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
6857                                    NVME_LOG_ERROR_INFO);
6858             }
6859 
6860             return;
6861         }
6862 
6863         sq = n->sq[qid];
6864         if (unlikely(new_tail >= sq->size)) {
6865             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
6866                            "submission queue doorbell write value"
6867                            " beyond queue size, sqid=%"PRIu32","
6868                            " new_tail=%"PRIu16", ignoring",
6869                            qid, new_tail);
6870 
6871             if (n->outstanding_aers) {
6872                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6873                                    NVME_AER_INFO_ERR_INVALID_DB_VALUE,
6874                                    NVME_LOG_ERROR_INFO);
6875             }
6876 
6877             return;
6878         }
6879 
6880         trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
6881 
6882         sq->tail = new_tail;
6883         if (!qid && n->dbbuf_enabled) {
6884             /*
6885              * The spec states "the host shall also update the controller's
6886              * corresponding doorbell property to match the value of that entry
6887              * in the Shadow Doorbell buffer."
6888              *
6889              * Since this context is currently a VM trap, we can safely enforce
6890              * the requirement from the device side in case the host is
6891              * misbehaving.
6892              *
6893              * Note, we shouldn't have to do this, but various drivers
6894              * including ones that run on Linux, are not updating Admin Queues,
6895              * so we can't trust reading it for an appropriate sq tail.
6896              */
6897             pci_dma_write(&n->parent_obj, sq->db_addr, &sq->tail,
6898                           sizeof(sq->tail));
6899         }
6900 
6901         qemu_bh_schedule(sq->bh);
6902     }
6903 }
6904 
6905 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
6906                             unsigned size)
6907 {
6908     NvmeCtrl *n = (NvmeCtrl *)opaque;
6909 
6910     trace_pci_nvme_mmio_write(addr, data, size);
6911 
6912     if (pci_is_vf(&n->parent_obj) && !nvme_sctrl(n)->scs &&
6913         addr != NVME_REG_CSTS) {
6914         trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
6915         return;
6916     }
6917 
6918     if (addr < sizeof(n->bar)) {
6919         nvme_write_bar(n, addr, data, size);
6920     } else {
6921         nvme_process_db(n, addr, data);
6922     }
6923 }
6924 
6925 static const MemoryRegionOps nvme_mmio_ops = {
6926     .read = nvme_mmio_read,
6927     .write = nvme_mmio_write,
6928     .endianness = DEVICE_LITTLE_ENDIAN,
6929     .impl = {
6930         .min_access_size = 2,
6931         .max_access_size = 8,
6932     },
6933 };
6934 
6935 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
6936                            unsigned size)
6937 {
6938     NvmeCtrl *n = (NvmeCtrl *)opaque;
6939     stn_le_p(&n->cmb.buf[addr], size, data);
6940 }
6941 
6942 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
6943 {
6944     NvmeCtrl *n = (NvmeCtrl *)opaque;
6945     return ldn_le_p(&n->cmb.buf[addr], size);
6946 }
6947 
6948 static const MemoryRegionOps nvme_cmb_ops = {
6949     .read = nvme_cmb_read,
6950     .write = nvme_cmb_write,
6951     .endianness = DEVICE_LITTLE_ENDIAN,
6952     .impl = {
6953         .min_access_size = 1,
6954         .max_access_size = 8,
6955     },
6956 };
6957 
6958 static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
6959 {
6960     NvmeParams *params = &n->params;
6961 
6962     if (params->num_queues) {
6963         warn_report("num_queues is deprecated; please use max_ioqpairs "
6964                     "instead");
6965 
6966         params->max_ioqpairs = params->num_queues - 1;
6967     }
6968 
6969     if (n->namespace.blkconf.blk && n->subsys) {
6970         error_setg(errp, "subsystem support is unavailable with legacy "
6971                    "namespace ('drive' property)");
6972         return;
6973     }
6974 
6975     if (params->max_ioqpairs < 1 ||
6976         params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
6977         error_setg(errp, "max_ioqpairs must be between 1 and %d",
6978                    NVME_MAX_IOQPAIRS);
6979         return;
6980     }
6981 
6982     if (params->msix_qsize < 1 ||
6983         params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
6984         error_setg(errp, "msix_qsize must be between 1 and %d",
6985                    PCI_MSIX_FLAGS_QSIZE + 1);
6986         return;
6987     }
6988 
6989     if (!params->serial) {
6990         error_setg(errp, "serial property not set");
6991         return;
6992     }
6993 
6994     if (n->pmr.dev) {
6995         if (host_memory_backend_is_mapped(n->pmr.dev)) {
6996             error_setg(errp, "can't use already busy memdev: %s",
6997                        object_get_canonical_path_component(OBJECT(n->pmr.dev)));
6998             return;
6999         }
7000 
7001         if (!is_power_of_2(n->pmr.dev->size)) {
7002             error_setg(errp, "pmr backend size needs to be power of 2 in size");
7003             return;
7004         }
7005 
7006         host_memory_backend_set_mapped(n->pmr.dev, true);
7007     }
7008 
7009     if (n->params.zasl > n->params.mdts) {
7010         error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
7011                    "than or equal to mdts (Maximum Data Transfer Size)");
7012         return;
7013     }
7014 
7015     if (!n->params.vsl) {
7016         error_setg(errp, "vsl must be non-zero");
7017         return;
7018     }
7019 
7020     if (params->sriov_max_vfs) {
7021         if (!n->subsys) {
7022             error_setg(errp, "subsystem is required for the use of SR-IOV");
7023             return;
7024         }
7025 
7026         if (params->sriov_max_vfs > NVME_MAX_VFS) {
7027             error_setg(errp, "sriov_max_vfs must be between 0 and %d",
7028                        NVME_MAX_VFS);
7029             return;
7030         }
7031 
7032         if (params->cmb_size_mb) {
7033             error_setg(errp, "CMB is not supported with SR-IOV");
7034             return;
7035         }
7036 
7037         if (n->pmr.dev) {
7038             error_setg(errp, "PMR is not supported with SR-IOV");
7039             return;
7040         }
7041 
7042         if (!params->sriov_vq_flexible || !params->sriov_vi_flexible) {
7043             error_setg(errp, "both sriov_vq_flexible and sriov_vi_flexible"
7044                        " must be set for the use of SR-IOV");
7045             return;
7046         }
7047 
7048         if (params->sriov_vq_flexible < params->sriov_max_vfs * 2) {
7049             error_setg(errp, "sriov_vq_flexible must be greater than or equal"
7050                        " to %d (sriov_max_vfs * 2)", params->sriov_max_vfs * 2);
7051             return;
7052         }
7053 
7054         if (params->max_ioqpairs < params->sriov_vq_flexible + 2) {
7055             error_setg(errp, "(max_ioqpairs - sriov_vq_flexible) must be"
7056                        " greater than or equal to 2");
7057             return;
7058         }
7059 
7060         if (params->sriov_vi_flexible < params->sriov_max_vfs) {
7061             error_setg(errp, "sriov_vi_flexible must be greater than or equal"
7062                        " to %d (sriov_max_vfs)", params->sriov_max_vfs);
7063             return;
7064         }
7065 
7066         if (params->msix_qsize < params->sriov_vi_flexible + 1) {
7067             error_setg(errp, "(msix_qsize - sriov_vi_flexible) must be"
7068                        " greater than or equal to 1");
7069             return;
7070         }
7071 
7072         if (params->sriov_max_vi_per_vf &&
7073             (params->sriov_max_vi_per_vf - 1) % NVME_VF_RES_GRANULARITY) {
7074             error_setg(errp, "sriov_max_vi_per_vf must meet:"
7075                        " (sriov_max_vi_per_vf - 1) %% %d == 0 and"
7076                        " sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY);
7077             return;
7078         }
7079 
7080         if (params->sriov_max_vq_per_vf &&
7081             (params->sriov_max_vq_per_vf < 2 ||
7082              (params->sriov_max_vq_per_vf - 1) % NVME_VF_RES_GRANULARITY)) {
7083             error_setg(errp, "sriov_max_vq_per_vf must meet:"
7084                        " (sriov_max_vq_per_vf - 1) %% %d == 0 and"
7085                        " sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY);
7086             return;
7087         }
7088     }
7089 }
7090 
7091 static void nvme_init_state(NvmeCtrl *n)
7092 {
7093     NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7094     NvmeSecCtrlList *list = &n->sec_ctrl_list;
7095     NvmeSecCtrlEntry *sctrl;
7096     uint8_t max_vfs;
7097     int i;
7098 
7099     if (pci_is_vf(&n->parent_obj)) {
7100         sctrl = nvme_sctrl(n);
7101         max_vfs = 0;
7102         n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
7103         n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
7104     } else {
7105         max_vfs = n->params.sriov_max_vfs;
7106         n->conf_ioqpairs = n->params.max_ioqpairs;
7107         n->conf_msix_qsize = n->params.msix_qsize;
7108     }
7109 
7110     n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
7111     n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
7112     n->temperature = NVME_TEMPERATURE;
7113     n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
7114     n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
7115     n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
7116     QTAILQ_INIT(&n->aer_queue);
7117 
7118     list->numcntl = cpu_to_le16(max_vfs);
7119     for (i = 0; i < max_vfs; i++) {
7120         sctrl = &list->sec[i];
7121         sctrl->pcid = cpu_to_le16(n->cntlid);
7122         sctrl->vfn = cpu_to_le16(i + 1);
7123     }
7124 
7125     cap->cntlid = cpu_to_le16(n->cntlid);
7126     cap->crt = NVME_CRT_VQ | NVME_CRT_VI;
7127 
7128     if (pci_is_vf(&n->parent_obj)) {
7129         cap->vqprt = cpu_to_le16(1 + n->conf_ioqpairs);
7130     } else {
7131         cap->vqprt = cpu_to_le16(1 + n->params.max_ioqpairs -
7132                                  n->params.sriov_vq_flexible);
7133         cap->vqfrt = cpu_to_le32(n->params.sriov_vq_flexible);
7134         cap->vqrfap = cap->vqfrt;
7135         cap->vqgran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7136         cap->vqfrsm = n->params.sriov_max_vq_per_vf ?
7137                         cpu_to_le16(n->params.sriov_max_vq_per_vf) :
7138                         cap->vqfrt / MAX(max_vfs, 1);
7139     }
7140 
7141     if (pci_is_vf(&n->parent_obj)) {
7142         cap->viprt = cpu_to_le16(n->conf_msix_qsize);
7143     } else {
7144         cap->viprt = cpu_to_le16(n->params.msix_qsize -
7145                                  n->params.sriov_vi_flexible);
7146         cap->vifrt = cpu_to_le32(n->params.sriov_vi_flexible);
7147         cap->virfap = cap->vifrt;
7148         cap->vigran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7149         cap->vifrsm = n->params.sriov_max_vi_per_vf ?
7150                         cpu_to_le16(n->params.sriov_max_vi_per_vf) :
7151                         cap->vifrt / MAX(max_vfs, 1);
7152     }
7153 }
7154 
7155 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
7156 {
7157     uint64_t cmb_size = n->params.cmb_size_mb * MiB;
7158     uint64_t cap = ldq_le_p(&n->bar.cap);
7159 
7160     n->cmb.buf = g_malloc0(cmb_size);
7161     memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
7162                           "nvme-cmb", cmb_size);
7163     pci_register_bar(pci_dev, NVME_CMB_BIR,
7164                      PCI_BASE_ADDRESS_SPACE_MEMORY |
7165                      PCI_BASE_ADDRESS_MEM_TYPE_64 |
7166                      PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
7167 
7168     NVME_CAP_SET_CMBS(cap, 1);
7169     stq_le_p(&n->bar.cap, cap);
7170 
7171     if (n->params.legacy_cmb) {
7172         nvme_cmb_enable_regs(n);
7173         n->cmb.cmse = true;
7174     }
7175 }
7176 
7177 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
7178 {
7179     uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap);
7180 
7181     NVME_PMRCAP_SET_RDS(pmrcap, 1);
7182     NVME_PMRCAP_SET_WDS(pmrcap, 1);
7183     NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR);
7184     /* Turn on bit 1 support */
7185     NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02);
7186     NVME_PMRCAP_SET_CMSS(pmrcap, 1);
7187     stl_le_p(&n->bar.pmrcap, pmrcap);
7188 
7189     pci_register_bar(pci_dev, NVME_PMR_BIR,
7190                      PCI_BASE_ADDRESS_SPACE_MEMORY |
7191                      PCI_BASE_ADDRESS_MEM_TYPE_64 |
7192                      PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
7193 
7194     memory_region_set_enabled(&n->pmr.dev->mr, false);
7195 }
7196 
7197 static uint64_t nvme_bar_size(unsigned total_queues, unsigned total_irqs,
7198                               unsigned *msix_table_offset,
7199                               unsigned *msix_pba_offset)
7200 {
7201     uint64_t bar_size, msix_table_size, msix_pba_size;
7202 
7203     bar_size = sizeof(NvmeBar) + 2 * total_queues * NVME_DB_SIZE;
7204     bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
7205 
7206     if (msix_table_offset) {
7207         *msix_table_offset = bar_size;
7208     }
7209 
7210     msix_table_size = PCI_MSIX_ENTRY_SIZE * total_irqs;
7211     bar_size += msix_table_size;
7212     bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
7213 
7214     if (msix_pba_offset) {
7215         *msix_pba_offset = bar_size;
7216     }
7217 
7218     msix_pba_size = QEMU_ALIGN_UP(total_irqs, 64) / 8;
7219     bar_size += msix_pba_size;
7220 
7221     bar_size = pow2ceil(bar_size);
7222     return bar_size;
7223 }
7224 
7225 static void nvme_init_sriov(NvmeCtrl *n, PCIDevice *pci_dev, uint16_t offset)
7226 {
7227     uint16_t vf_dev_id = n->params.use_intel_id ?
7228                          PCI_DEVICE_ID_INTEL_NVME : PCI_DEVICE_ID_REDHAT_NVME;
7229     NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7230     uint64_t bar_size = nvme_bar_size(le16_to_cpu(cap->vqfrsm),
7231                                       le16_to_cpu(cap->vifrsm),
7232                                       NULL, NULL);
7233 
7234     pcie_sriov_pf_init(pci_dev, offset, "nvme", vf_dev_id,
7235                        n->params.sriov_max_vfs, n->params.sriov_max_vfs,
7236                        NVME_VF_OFFSET, NVME_VF_STRIDE);
7237 
7238     pcie_sriov_pf_init_vf_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
7239                               PCI_BASE_ADDRESS_MEM_TYPE_64, bar_size);
7240 }
7241 
7242 static int nvme_add_pm_capability(PCIDevice *pci_dev, uint8_t offset)
7243 {
7244     Error *err = NULL;
7245     int ret;
7246 
7247     ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, offset,
7248                              PCI_PM_SIZEOF, &err);
7249     if (err) {
7250         error_report_err(err);
7251         return ret;
7252     }
7253 
7254     pci_set_word(pci_dev->config + offset + PCI_PM_PMC,
7255                  PCI_PM_CAP_VER_1_2);
7256     pci_set_word(pci_dev->config + offset + PCI_PM_CTRL,
7257                  PCI_PM_CTRL_NO_SOFT_RESET);
7258     pci_set_word(pci_dev->wmask + offset + PCI_PM_CTRL,
7259                  PCI_PM_CTRL_STATE_MASK);
7260 
7261     return 0;
7262 }
7263 
7264 static int nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
7265 {
7266     uint8_t *pci_conf = pci_dev->config;
7267     uint64_t bar_size;
7268     unsigned msix_table_offset, msix_pba_offset;
7269     int ret;
7270 
7271     Error *err = NULL;
7272 
7273     pci_conf[PCI_INTERRUPT_PIN] = 1;
7274     pci_config_set_prog_interface(pci_conf, 0x2);
7275 
7276     if (n->params.use_intel_id) {
7277         pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
7278         pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_NVME);
7279     } else {
7280         pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
7281         pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
7282     }
7283 
7284     pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
7285     nvme_add_pm_capability(pci_dev, 0x60);
7286     pcie_endpoint_cap_init(pci_dev, 0x80);
7287     pcie_cap_flr_init(pci_dev);
7288     if (n->params.sriov_max_vfs) {
7289         pcie_ari_init(pci_dev, 0x100, 1);
7290     }
7291 
7292     /* add one to max_ioqpairs to account for the admin queue pair */
7293     bar_size = nvme_bar_size(n->params.max_ioqpairs + 1, n->params.msix_qsize,
7294                              &msix_table_offset, &msix_pba_offset);
7295 
7296     memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
7297     memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
7298                           msix_table_offset);
7299     memory_region_add_subregion(&n->bar0, 0, &n->iomem);
7300 
7301     if (pci_is_vf(pci_dev)) {
7302         pcie_sriov_vf_register_bar(pci_dev, 0, &n->bar0);
7303     } else {
7304         pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
7305                          PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
7306     }
7307     ret = msix_init(pci_dev, n->params.msix_qsize,
7308                     &n->bar0, 0, msix_table_offset,
7309                     &n->bar0, 0, msix_pba_offset, 0, &err);
7310     if (ret < 0) {
7311         if (ret == -ENOTSUP) {
7312             warn_report_err(err);
7313         } else {
7314             error_propagate(errp, err);
7315             return ret;
7316         }
7317     }
7318 
7319     nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
7320 
7321     if (n->params.cmb_size_mb) {
7322         nvme_init_cmb(n, pci_dev);
7323     }
7324 
7325     if (n->pmr.dev) {
7326         nvme_init_pmr(n, pci_dev);
7327     }
7328 
7329     if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
7330         nvme_init_sriov(n, pci_dev, 0x120);
7331     }
7332 
7333     return 0;
7334 }
7335 
7336 static void nvme_init_subnqn(NvmeCtrl *n)
7337 {
7338     NvmeSubsystem *subsys = n->subsys;
7339     NvmeIdCtrl *id = &n->id_ctrl;
7340 
7341     if (!subsys) {
7342         snprintf((char *)id->subnqn, sizeof(id->subnqn),
7343                  "nqn.2019-08.org.qemu:%s", n->params.serial);
7344     } else {
7345         pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
7346     }
7347 }
7348 
7349 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
7350 {
7351     NvmeIdCtrl *id = &n->id_ctrl;
7352     uint8_t *pci_conf = pci_dev->config;
7353     uint64_t cap = ldq_le_p(&n->bar.cap);
7354     NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
7355 
7356     id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
7357     id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
7358     strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
7359     strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' ');
7360     strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
7361 
7362     id->cntlid = cpu_to_le16(n->cntlid);
7363 
7364     id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
7365     id->ctratt |= cpu_to_le32(NVME_CTRATT_ELBAS);
7366 
7367     id->rab = 6;
7368 
7369     if (n->params.use_intel_id) {
7370         id->ieee[0] = 0xb3;
7371         id->ieee[1] = 0x02;
7372         id->ieee[2] = 0x00;
7373     } else {
7374         id->ieee[0] = 0x00;
7375         id->ieee[1] = 0x54;
7376         id->ieee[2] = 0x52;
7377     }
7378 
7379     id->mdts = n->params.mdts;
7380     id->ver = cpu_to_le32(NVME_SPEC_VER);
7381     id->oacs =
7382         cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT | NVME_OACS_DBBUF);
7383     id->cntrltype = 0x1;
7384 
7385     /*
7386      * Because the controller always completes the Abort command immediately,
7387      * there can never be more than one concurrently executing Abort command,
7388      * so this value is never used for anything. Note that there can easily be
7389      * many Abort commands in the queues, but they are not considered
7390      * "executing" until processed by nvme_abort.
7391      *
7392      * The specification recommends a value of 3 for Abort Command Limit (four
7393      * concurrently outstanding Abort commands), so lets use that though it is
7394      * inconsequential.
7395      */
7396     id->acl = 3;
7397     id->aerl = n->params.aerl;
7398     id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
7399     id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
7400 
7401     /* recommended default value (~70 C) */
7402     id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
7403     id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
7404 
7405     id->sqes = (0x6 << 4) | 0x6;
7406     id->cqes = (0x4 << 4) | 0x4;
7407     id->nn = cpu_to_le32(NVME_MAX_NAMESPACES);
7408     id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
7409                            NVME_ONCS_FEATURES | NVME_ONCS_DSM |
7410                            NVME_ONCS_COMPARE | NVME_ONCS_COPY);
7411 
7412     /*
7413      * NOTE: If this device ever supports a command set that does NOT use 0x0
7414      * as a Flush-equivalent operation, support for the broadcast NSID in Flush
7415      * should probably be removed.
7416      *
7417      * See comment in nvme_io_cmd.
7418      */
7419     id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
7420 
7421     id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1);
7422     id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN);
7423 
7424     nvme_init_subnqn(n);
7425 
7426     id->psd[0].mp = cpu_to_le16(0x9c4);
7427     id->psd[0].enlat = cpu_to_le32(0x10);
7428     id->psd[0].exlat = cpu_to_le32(0x4);
7429 
7430     if (n->subsys) {
7431         id->cmic |= NVME_CMIC_MULTI_CTRL;
7432     }
7433 
7434     NVME_CAP_SET_MQES(cap, 0x7ff);
7435     NVME_CAP_SET_CQR(cap, 1);
7436     NVME_CAP_SET_TO(cap, 0xf);
7437     NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM);
7438     NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP);
7439     NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY);
7440     NVME_CAP_SET_MPSMAX(cap, 4);
7441     NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0);
7442     NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0);
7443     stq_le_p(&n->bar.cap, cap);
7444 
7445     stl_le_p(&n->bar.vs, NVME_SPEC_VER);
7446     n->bar.intmc = n->bar.intms = 0;
7447 
7448     if (pci_is_vf(&n->parent_obj) && !sctrl->scs) {
7449         stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
7450     }
7451 }
7452 
7453 static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
7454 {
7455     int cntlid;
7456 
7457     if (!n->subsys) {
7458         return 0;
7459     }
7460 
7461     cntlid = nvme_subsys_register_ctrl(n, errp);
7462     if (cntlid < 0) {
7463         return -1;
7464     }
7465 
7466     n->cntlid = cntlid;
7467 
7468     return 0;
7469 }
7470 
7471 void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns)
7472 {
7473     uint32_t nsid = ns->params.nsid;
7474     assert(nsid && nsid <= NVME_MAX_NAMESPACES);
7475 
7476     n->namespaces[nsid] = ns;
7477     ns->attached++;
7478 
7479     n->dmrsl = MIN_NON_ZERO(n->dmrsl,
7480                             BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
7481 }
7482 
7483 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
7484 {
7485     NvmeCtrl *n = NVME(pci_dev);
7486     NvmeNamespace *ns;
7487     Error *local_err = NULL;
7488     NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev));
7489 
7490     if (pci_is_vf(pci_dev)) {
7491         /*
7492          * VFs derive settings from the parent. PF's lifespan exceeds
7493          * that of VF's, so it's safe to share params.serial.
7494          */
7495         memcpy(&n->params, &pn->params, sizeof(NvmeParams));
7496         n->subsys = pn->subsys;
7497     }
7498 
7499     nvme_check_constraints(n, &local_err);
7500     if (local_err) {
7501         error_propagate(errp, local_err);
7502         return;
7503     }
7504 
7505     qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS,
7506               &pci_dev->qdev, n->parent_obj.qdev.id);
7507 
7508     if (nvme_init_subsys(n, errp)) {
7509         error_propagate(errp, local_err);
7510         return;
7511     }
7512     nvme_init_state(n);
7513     if (nvme_init_pci(n, pci_dev, errp)) {
7514         return;
7515     }
7516     nvme_init_ctrl(n, pci_dev);
7517 
7518     /* setup a namespace if the controller drive property was given */
7519     if (n->namespace.blkconf.blk) {
7520         ns = &n->namespace;
7521         ns->params.nsid = 1;
7522 
7523         if (nvme_ns_setup(ns, errp)) {
7524             return;
7525         }
7526 
7527         nvme_attach_ns(n, ns);
7528     }
7529 }
7530 
7531 static void nvme_exit(PCIDevice *pci_dev)
7532 {
7533     NvmeCtrl *n = NVME(pci_dev);
7534     NvmeNamespace *ns;
7535     int i;
7536 
7537     nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
7538 
7539     if (n->subsys) {
7540         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7541             ns = nvme_ns(n, i);
7542             if (ns) {
7543                 ns->attached--;
7544             }
7545         }
7546 
7547         nvme_subsys_unregister_ctrl(n->subsys, n);
7548     }
7549 
7550     g_free(n->cq);
7551     g_free(n->sq);
7552     g_free(n->aer_reqs);
7553 
7554     if (n->params.cmb_size_mb) {
7555         g_free(n->cmb.buf);
7556     }
7557 
7558     if (n->pmr.dev) {
7559         host_memory_backend_set_mapped(n->pmr.dev, false);
7560     }
7561 
7562     if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
7563         pcie_sriov_pf_exit(pci_dev);
7564     }
7565 
7566     msix_uninit(pci_dev, &n->bar0, &n->bar0);
7567     memory_region_del_subregion(&n->bar0, &n->iomem);
7568 }
7569 
7570 static Property nvme_props[] = {
7571     DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
7572     DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
7573                      HostMemoryBackend *),
7574     DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
7575                      NvmeSubsystem *),
7576     DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
7577     DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
7578     DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
7579     DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
7580     DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
7581     DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
7582     DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
7583     DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
7584     DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
7585     DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
7586     DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
7587     DEFINE_PROP_BOOL("ioeventfd", NvmeCtrl, params.ioeventfd, false),
7588     DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
7589     DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl,
7590                      params.auto_transition_zones, true),
7591     DEFINE_PROP_UINT8("sriov_max_vfs", NvmeCtrl, params.sriov_max_vfs, 0),
7592     DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl,
7593                        params.sriov_vq_flexible, 0),
7594     DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl,
7595                        params.sriov_vi_flexible, 0),
7596     DEFINE_PROP_UINT8("sriov_max_vi_per_vf", NvmeCtrl,
7597                       params.sriov_max_vi_per_vf, 0),
7598     DEFINE_PROP_UINT8("sriov_max_vq_per_vf", NvmeCtrl,
7599                       params.sriov_max_vq_per_vf, 0),
7600     DEFINE_PROP_END_OF_LIST(),
7601 };
7602 
7603 static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
7604                                    void *opaque, Error **errp)
7605 {
7606     NvmeCtrl *n = NVME(obj);
7607     uint8_t value = n->smart_critical_warning;
7608 
7609     visit_type_uint8(v, name, &value, errp);
7610 }
7611 
7612 static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
7613                                    void *opaque, Error **errp)
7614 {
7615     NvmeCtrl *n = NVME(obj);
7616     uint8_t value, old_value, cap = 0, index, event;
7617 
7618     if (!visit_type_uint8(v, name, &value, errp)) {
7619         return;
7620     }
7621 
7622     cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
7623           | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
7624     if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) {
7625         cap |= NVME_SMART_PMR_UNRELIABLE;
7626     }
7627 
7628     if ((value & cap) != value) {
7629         error_setg(errp, "unsupported smart critical warning bits: 0x%x",
7630                    value & ~cap);
7631         return;
7632     }
7633 
7634     old_value = n->smart_critical_warning;
7635     n->smart_critical_warning = value;
7636 
7637     /* only inject new bits of smart critical warning */
7638     for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
7639         event = 1 << index;
7640         if (value & ~old_value & event)
7641             nvme_smart_event(n, event);
7642     }
7643 }
7644 
7645 static void nvme_pci_reset(DeviceState *qdev)
7646 {
7647     PCIDevice *pci_dev = PCI_DEVICE(qdev);
7648     NvmeCtrl *n = NVME(pci_dev);
7649 
7650     trace_pci_nvme_pci_reset();
7651     nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
7652 }
7653 
7654 static void nvme_sriov_pre_write_ctrl(PCIDevice *dev, uint32_t address,
7655                                       uint32_t val, int len)
7656 {
7657     NvmeCtrl *n = NVME(dev);
7658     NvmeSecCtrlEntry *sctrl;
7659     uint16_t sriov_cap = dev->exp.sriov_cap;
7660     uint32_t off = address - sriov_cap;
7661     int i, num_vfs;
7662 
7663     if (!sriov_cap) {
7664         return;
7665     }
7666 
7667     if (range_covers_byte(off, len, PCI_SRIOV_CTRL)) {
7668         if (!(val & PCI_SRIOV_CTRL_VFE)) {
7669             num_vfs = pci_get_word(dev->config + sriov_cap + PCI_SRIOV_NUM_VF);
7670             for (i = 0; i < num_vfs; i++) {
7671                 sctrl = &n->sec_ctrl_list.sec[i];
7672                 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
7673             }
7674         }
7675     }
7676 }
7677 
7678 static void nvme_pci_write_config(PCIDevice *dev, uint32_t address,
7679                                   uint32_t val, int len)
7680 {
7681     nvme_sriov_pre_write_ctrl(dev, address, val, len);
7682     pci_default_write_config(dev, address, val, len);
7683     pcie_cap_flr_write_config(dev, address, val, len);
7684 }
7685 
7686 static const VMStateDescription nvme_vmstate = {
7687     .name = "nvme",
7688     .unmigratable = 1,
7689 };
7690 
7691 static void nvme_class_init(ObjectClass *oc, void *data)
7692 {
7693     DeviceClass *dc = DEVICE_CLASS(oc);
7694     PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
7695 
7696     pc->realize = nvme_realize;
7697     pc->config_write = nvme_pci_write_config;
7698     pc->exit = nvme_exit;
7699     pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
7700     pc->revision = 2;
7701 
7702     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
7703     dc->desc = "Non-Volatile Memory Express";
7704     device_class_set_props(dc, nvme_props);
7705     dc->vmsd = &nvme_vmstate;
7706     dc->reset = nvme_pci_reset;
7707 }
7708 
7709 static void nvme_instance_init(Object *obj)
7710 {
7711     NvmeCtrl *n = NVME(obj);
7712 
7713     device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
7714                                   "bootindex", "/namespace@1,0",
7715                                   DEVICE(obj));
7716 
7717     object_property_add(obj, "smart_critical_warning", "uint8",
7718                         nvme_get_smart_warning,
7719                         nvme_set_smart_warning, NULL, NULL);
7720 }
7721 
7722 static const TypeInfo nvme_info = {
7723     .name          = TYPE_NVME,
7724     .parent        = TYPE_PCI_DEVICE,
7725     .instance_size = sizeof(NvmeCtrl),
7726     .instance_init = nvme_instance_init,
7727     .class_init    = nvme_class_init,
7728     .interfaces = (InterfaceInfo[]) {
7729         { INTERFACE_PCIE_DEVICE },
7730         { }
7731     },
7732 };
7733 
7734 static const TypeInfo nvme_bus_info = {
7735     .name = TYPE_NVME_BUS,
7736     .parent = TYPE_BUS,
7737     .instance_size = sizeof(NvmeBus),
7738 };
7739 
7740 static void nvme_register_types(void)
7741 {
7742     type_register_static(&nvme_info);
7743     type_register_static(&nvme_bus_info);
7744 }
7745 
7746 type_init(nvme_register_types)
7747