xref: /qemu/hw/nvram/fw_cfg.c (revision 814bb12a)
1 /*
2  * QEMU Firmware configuration device emulation
3  *
4  * Copyright (c) 2008 Gleb Natapov
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/dma.h"
28 #include "hw/boards.h"
29 #include "hw/isa/isa.h"
30 #include "hw/nvram/fw_cfg.h"
31 #include "hw/sysbus.h"
32 #include "trace.h"
33 #include "qemu/error-report.h"
34 #include "qemu/config-file.h"
35 #include "qemu/cutils.h"
36 
37 #define FW_CFG_NAME "fw_cfg"
38 #define FW_CFG_PATH "/machine/" FW_CFG_NAME
39 
40 #define TYPE_FW_CFG     "fw_cfg"
41 #define TYPE_FW_CFG_IO  "fw_cfg_io"
42 #define TYPE_FW_CFG_MEM "fw_cfg_mem"
43 
44 #define FW_CFG(obj)     OBJECT_CHECK(FWCfgState,    (obj), TYPE_FW_CFG)
45 #define FW_CFG_IO(obj)  OBJECT_CHECK(FWCfgIoState,  (obj), TYPE_FW_CFG_IO)
46 #define FW_CFG_MEM(obj) OBJECT_CHECK(FWCfgMemState, (obj), TYPE_FW_CFG_MEM)
47 
48 /* FW_CFG_VERSION bits */
49 #define FW_CFG_VERSION      0x01
50 #define FW_CFG_VERSION_DMA  0x02
51 
52 /* FW_CFG_DMA_CONTROL bits */
53 #define FW_CFG_DMA_CTL_ERROR   0x01
54 #define FW_CFG_DMA_CTL_READ    0x02
55 #define FW_CFG_DMA_CTL_SKIP    0x04
56 #define FW_CFG_DMA_CTL_SELECT  0x08
57 
58 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
59 
60 typedef struct FWCfgEntry {
61     uint32_t len;
62     uint8_t *data;
63     void *callback_opaque;
64     FWCfgReadCallback read_callback;
65 } FWCfgEntry;
66 
67 struct FWCfgState {
68     /*< private >*/
69     SysBusDevice parent_obj;
70     /*< public >*/
71 
72     FWCfgEntry entries[2][FW_CFG_MAX_ENTRY];
73     int entry_order[FW_CFG_MAX_ENTRY];
74     FWCfgFiles *files;
75     uint16_t cur_entry;
76     uint32_t cur_offset;
77     Notifier machine_ready;
78 
79     int fw_cfg_order_override;
80 
81     bool dma_enabled;
82     dma_addr_t dma_addr;
83     AddressSpace *dma_as;
84     MemoryRegion dma_iomem;
85 };
86 
87 struct FWCfgIoState {
88     /*< private >*/
89     FWCfgState parent_obj;
90     /*< public >*/
91 
92     MemoryRegion comb_iomem;
93     uint32_t iobase, dma_iobase;
94 };
95 
96 struct FWCfgMemState {
97     /*< private >*/
98     FWCfgState parent_obj;
99     /*< public >*/
100 
101     MemoryRegion ctl_iomem, data_iomem;
102     uint32_t data_width;
103     MemoryRegionOps wide_data_ops;
104 };
105 
106 #define JPG_FILE 0
107 #define BMP_FILE 1
108 
109 static char *read_splashfile(char *filename, gsize *file_sizep,
110                              int *file_typep)
111 {
112     GError *err = NULL;
113     gboolean res;
114     gchar *content;
115     int file_type;
116     unsigned int filehead;
117     int bmp_bpp;
118 
119     res = g_file_get_contents(filename, &content, file_sizep, &err);
120     if (res == FALSE) {
121         error_report("failed to read splash file '%s'", filename);
122         g_error_free(err);
123         return NULL;
124     }
125 
126     /* check file size */
127     if (*file_sizep < 30) {
128         goto error;
129     }
130 
131     /* check magic ID */
132     filehead = ((content[0] & 0xff) + (content[1] << 8)) & 0xffff;
133     if (filehead == 0xd8ff) {
134         file_type = JPG_FILE;
135     } else if (filehead == 0x4d42) {
136         file_type = BMP_FILE;
137     } else {
138         goto error;
139     }
140 
141     /* check BMP bpp */
142     if (file_type == BMP_FILE) {
143         bmp_bpp = (content[28] + (content[29] << 8)) & 0xffff;
144         if (bmp_bpp != 24) {
145             goto error;
146         }
147     }
148 
149     /* return values */
150     *file_typep = file_type;
151 
152     return content;
153 
154 error:
155     error_report("splash file '%s' format not recognized; must be JPEG "
156                  "or 24 bit BMP", filename);
157     g_free(content);
158     return NULL;
159 }
160 
161 static void fw_cfg_bootsplash(FWCfgState *s)
162 {
163     int boot_splash_time = -1;
164     const char *boot_splash_filename = NULL;
165     char *p;
166     char *filename, *file_data;
167     gsize file_size;
168     int file_type;
169     const char *temp;
170 
171     /* get user configuration */
172     QemuOptsList *plist = qemu_find_opts("boot-opts");
173     QemuOpts *opts = QTAILQ_FIRST(&plist->head);
174     if (opts != NULL) {
175         temp = qemu_opt_get(opts, "splash");
176         if (temp != NULL) {
177             boot_splash_filename = temp;
178         }
179         temp = qemu_opt_get(opts, "splash-time");
180         if (temp != NULL) {
181             p = (char *)temp;
182             boot_splash_time = strtol(p, &p, 10);
183         }
184     }
185 
186     /* insert splash time if user configurated */
187     if (boot_splash_time >= 0) {
188         /* validate the input */
189         if (boot_splash_time > 0xffff) {
190             error_report("splash time is big than 65535, force it to 65535.");
191             boot_splash_time = 0xffff;
192         }
193         /* use little endian format */
194         qemu_extra_params_fw[0] = (uint8_t)(boot_splash_time & 0xff);
195         qemu_extra_params_fw[1] = (uint8_t)((boot_splash_time >> 8) & 0xff);
196         fw_cfg_add_file(s, "etc/boot-menu-wait", qemu_extra_params_fw, 2);
197     }
198 
199     /* insert splash file if user configurated */
200     if (boot_splash_filename != NULL) {
201         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
202         if (filename == NULL) {
203             error_report("failed to find file '%s'.", boot_splash_filename);
204             return;
205         }
206 
207         /* loading file data */
208         file_data = read_splashfile(filename, &file_size, &file_type);
209         if (file_data == NULL) {
210             g_free(filename);
211             return;
212         }
213         g_free(boot_splash_filedata);
214         boot_splash_filedata = (uint8_t *)file_data;
215         boot_splash_filedata_size = file_size;
216 
217         /* insert data */
218         if (file_type == JPG_FILE) {
219             fw_cfg_add_file(s, "bootsplash.jpg",
220                     boot_splash_filedata, boot_splash_filedata_size);
221         } else {
222             fw_cfg_add_file(s, "bootsplash.bmp",
223                     boot_splash_filedata, boot_splash_filedata_size);
224         }
225         g_free(filename);
226     }
227 }
228 
229 static void fw_cfg_reboot(FWCfgState *s)
230 {
231     int reboot_timeout = -1;
232     char *p;
233     const char *temp;
234 
235     /* get user configuration */
236     QemuOptsList *plist = qemu_find_opts("boot-opts");
237     QemuOpts *opts = QTAILQ_FIRST(&plist->head);
238     if (opts != NULL) {
239         temp = qemu_opt_get(opts, "reboot-timeout");
240         if (temp != NULL) {
241             p = (char *)temp;
242             reboot_timeout = strtol(p, &p, 10);
243         }
244     }
245     /* validate the input */
246     if (reboot_timeout > 0xffff) {
247         error_report("reboot timeout is larger than 65535, force it to 65535.");
248         reboot_timeout = 0xffff;
249     }
250     fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&reboot_timeout, 4), 4);
251 }
252 
253 static void fw_cfg_write(FWCfgState *s, uint8_t value)
254 {
255     /* nothing, write support removed in QEMU v2.4+ */
256 }
257 
258 static int fw_cfg_select(FWCfgState *s, uint16_t key)
259 {
260     int arch, ret;
261     FWCfgEntry *e;
262 
263     s->cur_offset = 0;
264     if ((key & FW_CFG_ENTRY_MASK) >= FW_CFG_MAX_ENTRY) {
265         s->cur_entry = FW_CFG_INVALID;
266         ret = 0;
267     } else {
268         s->cur_entry = key;
269         ret = 1;
270         /* entry successfully selected, now run callback if present */
271         arch = !!(key & FW_CFG_ARCH_LOCAL);
272         e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
273         if (e->read_callback) {
274             e->read_callback(e->callback_opaque);
275         }
276     }
277 
278     trace_fw_cfg_select(s, key, ret);
279     return ret;
280 }
281 
282 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
283 {
284     FWCfgState *s = opaque;
285     int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
286     FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
287                     &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
288     uint64_t value = 0;
289 
290     assert(size > 0 && size <= sizeof(value));
291     if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
292         /* The least significant 'size' bytes of the return value are
293          * expected to contain a string preserving portion of the item
294          * data, padded with zeros on the right in case we run out early.
295          * In technical terms, we're composing the host-endian representation
296          * of the big endian interpretation of the fw_cfg string.
297          */
298         do {
299             value = (value << 8) | e->data[s->cur_offset++];
300         } while (--size && s->cur_offset < e->len);
301         /* If size is still not zero, we *did* run out early, so continue
302          * left-shifting, to add the appropriate number of padding zeros
303          * on the right.
304          */
305         value <<= 8 * size;
306     }
307 
308     trace_fw_cfg_read(s, value);
309     return value;
310 }
311 
312 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
313                                   uint64_t value, unsigned size)
314 {
315     FWCfgState *s = opaque;
316     unsigned i = size;
317 
318     do {
319         fw_cfg_write(s, value >> (8 * --i));
320     } while (i);
321 }
322 
323 static void fw_cfg_dma_transfer(FWCfgState *s)
324 {
325     dma_addr_t len;
326     FWCfgDmaAccess dma;
327     int arch;
328     FWCfgEntry *e;
329     int read;
330     dma_addr_t dma_addr;
331 
332     /* Reset the address before the next access */
333     dma_addr = s->dma_addr;
334     s->dma_addr = 0;
335 
336     if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) {
337         stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
338                    FW_CFG_DMA_CTL_ERROR);
339         return;
340     }
341 
342     dma.address = be64_to_cpu(dma.address);
343     dma.length = be32_to_cpu(dma.length);
344     dma.control = be32_to_cpu(dma.control);
345 
346     if (dma.control & FW_CFG_DMA_CTL_SELECT) {
347         fw_cfg_select(s, dma.control >> 16);
348     }
349 
350     arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
351     e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
352         &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
353 
354     if (dma.control & FW_CFG_DMA_CTL_READ) {
355         read = 1;
356     } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
357         read = 0;
358     } else {
359         dma.length = 0;
360     }
361 
362     dma.control = 0;
363 
364     while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
365         if (s->cur_entry == FW_CFG_INVALID || !e->data ||
366                                 s->cur_offset >= e->len) {
367             len = dma.length;
368 
369             /* If the access is not a read access, it will be a skip access,
370              * tested before.
371              */
372             if (read) {
373                 if (dma_memory_set(s->dma_as, dma.address, 0, len)) {
374                     dma.control |= FW_CFG_DMA_CTL_ERROR;
375                 }
376             }
377 
378         } else {
379             if (dma.length <= (e->len - s->cur_offset)) {
380                 len = dma.length;
381             } else {
382                 len = (e->len - s->cur_offset);
383             }
384 
385             /* If the access is not a read access, it will be a skip access,
386              * tested before.
387              */
388             if (read) {
389                 if (dma_memory_write(s->dma_as, dma.address,
390                                     &e->data[s->cur_offset], len)) {
391                     dma.control |= FW_CFG_DMA_CTL_ERROR;
392                 }
393             }
394 
395             s->cur_offset += len;
396         }
397 
398         dma.address += len;
399         dma.length  -= len;
400 
401     }
402 
403     stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
404                 dma.control);
405 
406     trace_fw_cfg_read(s, 0);
407 }
408 
409 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
410                                     unsigned size)
411 {
412     /* Return a signature value (and handle various read sizes) */
413     return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
414 }
415 
416 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
417                                  uint64_t value, unsigned size)
418 {
419     FWCfgState *s = opaque;
420 
421     if (size == 4) {
422         if (addr == 0) {
423             /* FWCfgDmaAccess high address */
424             s->dma_addr = value << 32;
425         } else if (addr == 4) {
426             /* FWCfgDmaAccess low address */
427             s->dma_addr |= value;
428             fw_cfg_dma_transfer(s);
429         }
430     } else if (size == 8 && addr == 0) {
431         s->dma_addr = value;
432         fw_cfg_dma_transfer(s);
433     }
434 }
435 
436 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
437                                   unsigned size, bool is_write)
438 {
439     return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
440                          (size == 8 && addr == 0));
441 }
442 
443 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
444                                   unsigned size, bool is_write)
445 {
446     return addr == 0;
447 }
448 
449 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
450                                  uint64_t value, unsigned size)
451 {
452     fw_cfg_select(opaque, (uint16_t)value);
453 }
454 
455 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
456                                  unsigned size, bool is_write)
457 {
458     return is_write && size == 2;
459 }
460 
461 static void fw_cfg_comb_write(void *opaque, hwaddr addr,
462                               uint64_t value, unsigned size)
463 {
464     switch (size) {
465     case 1:
466         fw_cfg_write(opaque, (uint8_t)value);
467         break;
468     case 2:
469         fw_cfg_select(opaque, (uint16_t)value);
470         break;
471     }
472 }
473 
474 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
475                                   unsigned size, bool is_write)
476 {
477     return (size == 1) || (is_write && size == 2);
478 }
479 
480 static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
481     .write = fw_cfg_ctl_mem_write,
482     .endianness = DEVICE_BIG_ENDIAN,
483     .valid.accepts = fw_cfg_ctl_mem_valid,
484 };
485 
486 static const MemoryRegionOps fw_cfg_data_mem_ops = {
487     .read = fw_cfg_data_read,
488     .write = fw_cfg_data_mem_write,
489     .endianness = DEVICE_BIG_ENDIAN,
490     .valid = {
491         .min_access_size = 1,
492         .max_access_size = 1,
493         .accepts = fw_cfg_data_mem_valid,
494     },
495 };
496 
497 static const MemoryRegionOps fw_cfg_comb_mem_ops = {
498     .read = fw_cfg_data_read,
499     .write = fw_cfg_comb_write,
500     .endianness = DEVICE_LITTLE_ENDIAN,
501     .valid.accepts = fw_cfg_comb_valid,
502 };
503 
504 static const MemoryRegionOps fw_cfg_dma_mem_ops = {
505     .read = fw_cfg_dma_mem_read,
506     .write = fw_cfg_dma_mem_write,
507     .endianness = DEVICE_BIG_ENDIAN,
508     .valid.accepts = fw_cfg_dma_mem_valid,
509     .valid.max_access_size = 8,
510     .impl.max_access_size = 8,
511 };
512 
513 static void fw_cfg_reset(DeviceState *d)
514 {
515     FWCfgState *s = FW_CFG(d);
516 
517     /* we never register a read callback for FW_CFG_SIGNATURE */
518     fw_cfg_select(s, FW_CFG_SIGNATURE);
519 }
520 
521 /* Save restore 32 bit int as uint16_t
522    This is a Big hack, but it is how the old state did it.
523    Or we broke compatibility in the state, or we can't use struct tm
524  */
525 
526 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size)
527 {
528     uint32_t *v = pv;
529     *v = qemu_get_be16(f);
530     return 0;
531 }
532 
533 static void put_unused(QEMUFile *f, void *pv, size_t size)
534 {
535     fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
536     fprintf(stderr, "This functions shouldn't be called.\n");
537 }
538 
539 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
540     .name = "int32_as_uint16",
541     .get  = get_uint32_as_uint16,
542     .put  = put_unused,
543 };
544 
545 #define VMSTATE_UINT16_HACK(_f, _s, _t)                                    \
546     VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
547 
548 
549 static bool is_version_1(void *opaque, int version_id)
550 {
551     return version_id == 1;
552 }
553 
554 bool fw_cfg_dma_enabled(void *opaque)
555 {
556     FWCfgState *s = opaque;
557 
558     return s->dma_enabled;
559 }
560 
561 static const VMStateDescription vmstate_fw_cfg_dma = {
562     .name = "fw_cfg/dma",
563     .needed = fw_cfg_dma_enabled,
564     .fields = (VMStateField[]) {
565         VMSTATE_UINT64(dma_addr, FWCfgState),
566         VMSTATE_END_OF_LIST()
567     },
568 };
569 
570 static const VMStateDescription vmstate_fw_cfg = {
571     .name = "fw_cfg",
572     .version_id = 2,
573     .minimum_version_id = 1,
574     .fields = (VMStateField[]) {
575         VMSTATE_UINT16(cur_entry, FWCfgState),
576         VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
577         VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
578         VMSTATE_END_OF_LIST()
579     },
580     .subsections = (const VMStateDescription*[]) {
581         &vmstate_fw_cfg_dma,
582         NULL,
583     }
584 };
585 
586 static void fw_cfg_add_bytes_read_callback(FWCfgState *s, uint16_t key,
587                                            FWCfgReadCallback callback,
588                                            void *callback_opaque,
589                                            void *data, size_t len)
590 {
591     int arch = !!(key & FW_CFG_ARCH_LOCAL);
592 
593     key &= FW_CFG_ENTRY_MASK;
594 
595     assert(key < FW_CFG_MAX_ENTRY && len < UINT32_MAX);
596     assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
597 
598     s->entries[arch][key].data = data;
599     s->entries[arch][key].len = (uint32_t)len;
600     s->entries[arch][key].read_callback = callback;
601     s->entries[arch][key].callback_opaque = callback_opaque;
602 }
603 
604 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
605                                               void *data, size_t len)
606 {
607     void *ptr;
608     int arch = !!(key & FW_CFG_ARCH_LOCAL);
609 
610     key &= FW_CFG_ENTRY_MASK;
611 
612     assert(key < FW_CFG_MAX_ENTRY && len < UINT32_MAX);
613 
614     /* return the old data to the function caller, avoid memory leak */
615     ptr = s->entries[arch][key].data;
616     s->entries[arch][key].data = data;
617     s->entries[arch][key].len = len;
618     s->entries[arch][key].callback_opaque = NULL;
619 
620     return ptr;
621 }
622 
623 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
624 {
625     fw_cfg_add_bytes_read_callback(s, key, NULL, NULL, data, len);
626 }
627 
628 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
629 {
630     size_t sz = strlen(value) + 1;
631 
632     fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
633 }
634 
635 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
636 {
637     uint16_t *copy;
638 
639     copy = g_malloc(sizeof(value));
640     *copy = cpu_to_le16(value);
641     fw_cfg_add_bytes(s, key, copy, sizeof(value));
642 }
643 
644 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
645 {
646     uint16_t *copy, *old;
647 
648     copy = g_malloc(sizeof(value));
649     *copy = cpu_to_le16(value);
650     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
651     g_free(old);
652 }
653 
654 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
655 {
656     uint32_t *copy;
657 
658     copy = g_malloc(sizeof(value));
659     *copy = cpu_to_le32(value);
660     fw_cfg_add_bytes(s, key, copy, sizeof(value));
661 }
662 
663 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
664 {
665     uint64_t *copy;
666 
667     copy = g_malloc(sizeof(value));
668     *copy = cpu_to_le64(value);
669     fw_cfg_add_bytes(s, key, copy, sizeof(value));
670 }
671 
672 void fw_cfg_set_order_override(FWCfgState *s, int order)
673 {
674     assert(s->fw_cfg_order_override == 0);
675     s->fw_cfg_order_override = order;
676 }
677 
678 void fw_cfg_reset_order_override(FWCfgState *s)
679 {
680     assert(s->fw_cfg_order_override != 0);
681     s->fw_cfg_order_override = 0;
682 }
683 
684 /*
685  * This is the legacy order list.  For legacy systems, files are in
686  * the fw_cfg in the order defined below, by the "order" value.  Note
687  * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
688  * specific area, but there may be more than one and they occur in the
689  * order that the user specifies them on the command line.  Those are
690  * handled in a special manner, using the order override above.
691  *
692  * For non-legacy, the files are sorted by filename to avoid this kind
693  * of complexity in the future.
694  *
695  * This is only for x86, other arches don't implement versioning so
696  * they won't set legacy mode.
697  */
698 static struct {
699     const char *name;
700     int order;
701 } fw_cfg_order[] = {
702     { "etc/boot-menu-wait", 10 },
703     { "bootsplash.jpg", 11 },
704     { "bootsplash.bmp", 12 },
705     { "etc/boot-fail-wait", 15 },
706     { "etc/smbios/smbios-tables", 20 },
707     { "etc/smbios/smbios-anchor", 30 },
708     { "etc/e820", 40 },
709     { "etc/reserved-memory-end", 50 },
710     { "genroms/kvmvapic.bin", 55 },
711     { "genroms/linuxboot.bin", 60 },
712     { }, /* VGA ROMs from pc_vga_init come here, 70. */
713     { }, /* NIC option ROMs from pc_nic_init come here, 80. */
714     { "etc/system-states", 90 },
715     { }, /* User ROMs come here, 100. */
716     { }, /* Device FW comes here, 110. */
717     { "etc/extra-pci-roots", 120 },
718     { "etc/acpi/tables", 130 },
719     { "etc/table-loader", 140 },
720     { "etc/tpm/log", 150 },
721     { "etc/acpi/rsdp", 160 },
722     { "bootorder", 170 },
723 
724 #define FW_CFG_ORDER_OVERRIDE_LAST 200
725 };
726 
727 static int get_fw_cfg_order(FWCfgState *s, const char *name)
728 {
729     int i;
730 
731     if (s->fw_cfg_order_override > 0) {
732         return s->fw_cfg_order_override;
733     }
734 
735     for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
736         if (fw_cfg_order[i].name == NULL) {
737             continue;
738         }
739 
740         if (strcmp(name, fw_cfg_order[i].name) == 0) {
741             return fw_cfg_order[i].order;
742         }
743     }
744 
745     /* Stick unknown stuff at the end. */
746     error_report("warning: Unknown firmware file in legacy mode: %s", name);
747     return FW_CFG_ORDER_OVERRIDE_LAST;
748 }
749 
750 void fw_cfg_add_file_callback(FWCfgState *s,  const char *filename,
751                               FWCfgReadCallback callback, void *callback_opaque,
752                               void *data, size_t len)
753 {
754     int i, index, count;
755     size_t dsize;
756     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
757     int order = 0;
758 
759     if (!s->files) {
760         dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * FW_CFG_FILE_SLOTS;
761         s->files = g_malloc0(dsize);
762         fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
763     }
764 
765     count = be32_to_cpu(s->files->count);
766     assert(count < FW_CFG_FILE_SLOTS);
767 
768     /* Find the insertion point. */
769     if (mc->legacy_fw_cfg_order) {
770         /*
771          * Sort by order. For files with the same order, we keep them
772          * in the sequence in which they were added.
773          */
774         order = get_fw_cfg_order(s, filename);
775         for (index = count;
776              index > 0 && order < s->entry_order[index - 1];
777              index--);
778     } else {
779         /* Sort by file name. */
780         for (index = count;
781              index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
782              index--);
783     }
784 
785     /*
786      * Move all the entries from the index point and after down one
787      * to create a slot for the new entry.  Because calculations are
788      * being done with the index, make it so that "i" is the current
789      * index and "i - 1" is the one being copied from, thus the
790      * unusual start and end in the for statement.
791      */
792     for (i = count + 1; i > index; i--) {
793         s->files->f[i] = s->files->f[i - 1];
794         s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
795         s->entries[0][FW_CFG_FILE_FIRST + i] =
796             s->entries[0][FW_CFG_FILE_FIRST + i - 1];
797         s->entry_order[i] = s->entry_order[i - 1];
798     }
799 
800     memset(&s->files->f[index], 0, sizeof(FWCfgFile));
801     memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
802 
803     pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
804     for (i = 0; i <= count; i++) {
805         if (i != index &&
806             strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
807             error_report("duplicate fw_cfg file name: %s",
808                          s->files->f[index].name);
809             exit(1);
810         }
811     }
812 
813     fw_cfg_add_bytes_read_callback(s, FW_CFG_FILE_FIRST + index,
814                                    callback, callback_opaque, data, len);
815 
816     s->files->f[index].size   = cpu_to_be32(len);
817     s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
818     s->entry_order[index] = order;
819     trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
820 
821     s->files->count = cpu_to_be32(count+1);
822 }
823 
824 void fw_cfg_add_file(FWCfgState *s,  const char *filename,
825                      void *data, size_t len)
826 {
827     fw_cfg_add_file_callback(s, filename, NULL, NULL, data, len);
828 }
829 
830 void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
831                         void *data, size_t len)
832 {
833     int i, index;
834     void *ptr = NULL;
835 
836     assert(s->files);
837 
838     index = be32_to_cpu(s->files->count);
839     assert(index < FW_CFG_FILE_SLOTS);
840 
841     for (i = 0; i < index; i++) {
842         if (strcmp(filename, s->files->f[i].name) == 0) {
843             ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
844                                            data, len);
845             s->files->f[i].size   = cpu_to_be32(len);
846             return ptr;
847         }
848     }
849     /* add new one */
850     fw_cfg_add_file_callback(s, filename, NULL, NULL, data, len);
851     return NULL;
852 }
853 
854 static void fw_cfg_machine_reset(void *opaque)
855 {
856     void *ptr;
857     size_t len;
858     FWCfgState *s = opaque;
859     char *bootindex = get_boot_devices_list(&len, false);
860 
861     ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len);
862     g_free(ptr);
863 }
864 
865 static void fw_cfg_machine_ready(struct Notifier *n, void *data)
866 {
867     FWCfgState *s = container_of(n, FWCfgState, machine_ready);
868     qemu_register_reset(fw_cfg_machine_reset, s);
869 }
870 
871 
872 
873 static void fw_cfg_init1(DeviceState *dev)
874 {
875     FWCfgState *s = FW_CFG(dev);
876     MachineState *machine = MACHINE(qdev_get_machine());
877 
878     assert(!object_resolve_path(FW_CFG_PATH, NULL));
879 
880     object_property_add_child(OBJECT(machine), FW_CFG_NAME, OBJECT(s), NULL);
881 
882     qdev_init_nofail(dev);
883 
884     fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
885     fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
886     fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
887     fw_cfg_add_i16(s, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
888     fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
889     fw_cfg_bootsplash(s);
890     fw_cfg_reboot(s);
891 
892     s->machine_ready.notify = fw_cfg_machine_ready;
893     qemu_add_machine_init_done_notifier(&s->machine_ready);
894 }
895 
896 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
897                                 AddressSpace *dma_as)
898 {
899     DeviceState *dev;
900     FWCfgState *s;
901     uint32_t version = FW_CFG_VERSION;
902     bool dma_requested = dma_iobase && dma_as;
903 
904     dev = qdev_create(NULL, TYPE_FW_CFG_IO);
905     qdev_prop_set_uint32(dev, "iobase", iobase);
906     qdev_prop_set_uint32(dev, "dma_iobase", dma_iobase);
907     if (!dma_requested) {
908         qdev_prop_set_bit(dev, "dma_enabled", false);
909     }
910 
911     fw_cfg_init1(dev);
912     s = FW_CFG(dev);
913 
914     if (s->dma_enabled) {
915         /* 64 bits for the address field */
916         s->dma_as = dma_as;
917         s->dma_addr = 0;
918 
919         version |= FW_CFG_VERSION_DMA;
920     }
921 
922     fw_cfg_add_i32(s, FW_CFG_ID, version);
923 
924     return s;
925 }
926 
927 FWCfgState *fw_cfg_init_io(uint32_t iobase)
928 {
929     return fw_cfg_init_io_dma(iobase, 0, NULL);
930 }
931 
932 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
933                                  hwaddr data_addr, uint32_t data_width,
934                                  hwaddr dma_addr, AddressSpace *dma_as)
935 {
936     DeviceState *dev;
937     SysBusDevice *sbd;
938     FWCfgState *s;
939     uint32_t version = FW_CFG_VERSION;
940     bool dma_requested = dma_addr && dma_as;
941 
942     dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
943     qdev_prop_set_uint32(dev, "data_width", data_width);
944     if (!dma_requested) {
945         qdev_prop_set_bit(dev, "dma_enabled", false);
946     }
947 
948     fw_cfg_init1(dev);
949 
950     sbd = SYS_BUS_DEVICE(dev);
951     sysbus_mmio_map(sbd, 0, ctl_addr);
952     sysbus_mmio_map(sbd, 1, data_addr);
953 
954     s = FW_CFG(dev);
955 
956     if (s->dma_enabled) {
957         s->dma_as = dma_as;
958         s->dma_addr = 0;
959         sysbus_mmio_map(sbd, 2, dma_addr);
960         version |= FW_CFG_VERSION_DMA;
961     }
962 
963     fw_cfg_add_i32(s, FW_CFG_ID, version);
964 
965     return s;
966 }
967 
968 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
969 {
970     return fw_cfg_init_mem_wide(ctl_addr, data_addr,
971                                 fw_cfg_data_mem_ops.valid.max_access_size,
972                                 0, NULL);
973 }
974 
975 
976 FWCfgState *fw_cfg_find(void)
977 {
978     return FW_CFG(object_resolve_path(FW_CFG_PATH, NULL));
979 }
980 
981 static void fw_cfg_class_init(ObjectClass *klass, void *data)
982 {
983     DeviceClass *dc = DEVICE_CLASS(klass);
984 
985     dc->reset = fw_cfg_reset;
986     dc->vmsd = &vmstate_fw_cfg;
987 }
988 
989 static const TypeInfo fw_cfg_info = {
990     .name          = TYPE_FW_CFG,
991     .parent        = TYPE_SYS_BUS_DEVICE,
992     .abstract      = true,
993     .instance_size = sizeof(FWCfgState),
994     .class_init    = fw_cfg_class_init,
995 };
996 
997 
998 static Property fw_cfg_io_properties[] = {
999     DEFINE_PROP_UINT32("iobase", FWCfgIoState, iobase, -1),
1000     DEFINE_PROP_UINT32("dma_iobase", FWCfgIoState, dma_iobase, -1),
1001     DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1002                      true),
1003     DEFINE_PROP_END_OF_LIST(),
1004 };
1005 
1006 static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1007 {
1008     FWCfgIoState *s = FW_CFG_IO(dev);
1009     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1010 
1011     /* when using port i/o, the 8-bit data register ALWAYS overlaps
1012      * with half of the 16-bit control register. Hence, the total size
1013      * of the i/o region used is FW_CFG_CTL_SIZE */
1014     memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1015                           FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1016     sysbus_add_io(sbd, s->iobase, &s->comb_iomem);
1017 
1018     if (FW_CFG(s)->dma_enabled) {
1019         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1020                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1021                               sizeof(dma_addr_t));
1022         sysbus_add_io(sbd, s->dma_iobase, &FW_CFG(s)->dma_iomem);
1023     }
1024 }
1025 
1026 static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1027 {
1028     DeviceClass *dc = DEVICE_CLASS(klass);
1029 
1030     dc->realize = fw_cfg_io_realize;
1031     dc->props = fw_cfg_io_properties;
1032 }
1033 
1034 static const TypeInfo fw_cfg_io_info = {
1035     .name          = TYPE_FW_CFG_IO,
1036     .parent        = TYPE_FW_CFG,
1037     .instance_size = sizeof(FWCfgIoState),
1038     .class_init    = fw_cfg_io_class_init,
1039 };
1040 
1041 
1042 static Property fw_cfg_mem_properties[] = {
1043     DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1044     DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1045                      true),
1046     DEFINE_PROP_END_OF_LIST(),
1047 };
1048 
1049 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1050 {
1051     FWCfgMemState *s = FW_CFG_MEM(dev);
1052     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1053     const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1054 
1055     memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1056                           FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1057     sysbus_init_mmio(sbd, &s->ctl_iomem);
1058 
1059     if (s->data_width > data_ops->valid.max_access_size) {
1060         /* memberwise copy because the "old_mmio" member is const */
1061         s->wide_data_ops.read       = data_ops->read;
1062         s->wide_data_ops.write      = data_ops->write;
1063         s->wide_data_ops.endianness = data_ops->endianness;
1064         s->wide_data_ops.valid      = data_ops->valid;
1065         s->wide_data_ops.impl       = data_ops->impl;
1066 
1067         s->wide_data_ops.valid.max_access_size = s->data_width;
1068         s->wide_data_ops.impl.max_access_size  = s->data_width;
1069         data_ops = &s->wide_data_ops;
1070     }
1071     memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1072                           "fwcfg.data", data_ops->valid.max_access_size);
1073     sysbus_init_mmio(sbd, &s->data_iomem);
1074 
1075     if (FW_CFG(s)->dma_enabled) {
1076         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1077                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1078                               sizeof(dma_addr_t));
1079         sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1080     }
1081 }
1082 
1083 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1084 {
1085     DeviceClass *dc = DEVICE_CLASS(klass);
1086 
1087     dc->realize = fw_cfg_mem_realize;
1088     dc->props = fw_cfg_mem_properties;
1089 }
1090 
1091 static const TypeInfo fw_cfg_mem_info = {
1092     .name          = TYPE_FW_CFG_MEM,
1093     .parent        = TYPE_FW_CFG,
1094     .instance_size = sizeof(FWCfgMemState),
1095     .class_init    = fw_cfg_mem_class_init,
1096 };
1097 
1098 
1099 static void fw_cfg_register_types(void)
1100 {
1101     type_register_static(&fw_cfg_info);
1102     type_register_static(&fw_cfg_io_info);
1103     type_register_static(&fw_cfg_mem_info);
1104 }
1105 
1106 type_init(fw_cfg_register_types)
1107