xref: /qemu/hw/nvram/fw_cfg.c (revision c5955f4f)
1 /*
2  * QEMU Firmware configuration device emulation
3  *
4  * Copyright (c) 2008 Gleb Natapov
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/datadir.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/dma.h"
29 #include "sysemu/reset.h"
30 #include "hw/boards.h"
31 #include "hw/nvram/fw_cfg.h"
32 #include "hw/qdev-properties.h"
33 #include "hw/sysbus.h"
34 #include "migration/qemu-file-types.h"
35 #include "migration/vmstate.h"
36 #include "trace.h"
37 #include "qemu/error-report.h"
38 #include "qemu/option.h"
39 #include "qemu/config-file.h"
40 #include "qemu/cutils.h"
41 #include "qapi/error.h"
42 #include "hw/acpi/aml-build.h"
43 #include "hw/pci/pci_bus.h"
44 
45 #define FW_CFG_FILE_SLOTS_DFLT 0x20
46 
47 /* FW_CFG_VERSION bits */
48 #define FW_CFG_VERSION      0x01
49 #define FW_CFG_VERSION_DMA  0x02
50 
51 /* FW_CFG_DMA_CONTROL bits */
52 #define FW_CFG_DMA_CTL_ERROR   0x01
53 #define FW_CFG_DMA_CTL_READ    0x02
54 #define FW_CFG_DMA_CTL_SKIP    0x04
55 #define FW_CFG_DMA_CTL_SELECT  0x08
56 #define FW_CFG_DMA_CTL_WRITE   0x10
57 
58 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
59 
60 struct FWCfgEntry {
61     uint32_t len;
62     bool allow_write;
63     uint8_t *data;
64     void *callback_opaque;
65     FWCfgCallback select_cb;
66     FWCfgWriteCallback write_cb;
67 };
68 
69 /**
70  * key_name:
71  *
72  * @key: The uint16 selector key.
73  *
74  * Returns: The stringified name if the selector refers to a well-known
75  *          numerically defined item, or NULL on key lookup failure.
76  */
77 static const char *key_name(uint16_t key)
78 {
79     static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = {
80         [FW_CFG_SIGNATURE] = "signature",
81         [FW_CFG_ID] = "id",
82         [FW_CFG_UUID] = "uuid",
83         [FW_CFG_RAM_SIZE] = "ram_size",
84         [FW_CFG_NOGRAPHIC] = "nographic",
85         [FW_CFG_NB_CPUS] = "nb_cpus",
86         [FW_CFG_MACHINE_ID] = "machine_id",
87         [FW_CFG_KERNEL_ADDR] = "kernel_addr",
88         [FW_CFG_KERNEL_SIZE] = "kernel_size",
89         [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline",
90         [FW_CFG_INITRD_ADDR] = "initrd_addr",
91         [FW_CFG_INITRD_SIZE] = "initdr_size",
92         [FW_CFG_BOOT_DEVICE] = "boot_device",
93         [FW_CFG_NUMA] = "numa",
94         [FW_CFG_BOOT_MENU] = "boot_menu",
95         [FW_CFG_MAX_CPUS] = "max_cpus",
96         [FW_CFG_KERNEL_ENTRY] = "kernel_entry",
97         [FW_CFG_KERNEL_DATA] = "kernel_data",
98         [FW_CFG_INITRD_DATA] = "initrd_data",
99         [FW_CFG_CMDLINE_ADDR] = "cmdline_addr",
100         [FW_CFG_CMDLINE_SIZE] = "cmdline_size",
101         [FW_CFG_CMDLINE_DATA] = "cmdline_data",
102         [FW_CFG_SETUP_ADDR] = "setup_addr",
103         [FW_CFG_SETUP_SIZE] = "setup_size",
104         [FW_CFG_SETUP_DATA] = "setup_data",
105         [FW_CFG_FILE_DIR] = "file_dir",
106     };
107 
108     if (key & FW_CFG_ARCH_LOCAL) {
109         return fw_cfg_arch_key_name(key);
110     }
111     if (key < FW_CFG_FILE_FIRST) {
112         return fw_cfg_wellknown_keys[key];
113     }
114 
115     return NULL;
116 }
117 
118 static inline const char *trace_key_name(uint16_t key)
119 {
120     const char *name = key_name(key);
121 
122     return name ? name : "unknown";
123 }
124 
125 #define JPG_FILE 0
126 #define BMP_FILE 1
127 
128 static char *read_splashfile(char *filename, gsize *file_sizep,
129                              int *file_typep)
130 {
131     GError *err = NULL;
132     gchar *content;
133     int file_type;
134     unsigned int filehead;
135     int bmp_bpp;
136 
137     if (!g_file_get_contents(filename, &content, file_sizep, &err)) {
138         error_report("failed to read splash file '%s': %s",
139                      filename, err->message);
140         g_error_free(err);
141         return NULL;
142     }
143 
144     /* check file size */
145     if (*file_sizep < 30) {
146         goto error;
147     }
148 
149     /* check magic ID */
150     filehead = lduw_le_p(content);
151     if (filehead == 0xd8ff) {
152         file_type = JPG_FILE;
153     } else if (filehead == 0x4d42) {
154         file_type = BMP_FILE;
155     } else {
156         goto error;
157     }
158 
159     /* check BMP bpp */
160     if (file_type == BMP_FILE) {
161         bmp_bpp = lduw_le_p(&content[28]);
162         if (bmp_bpp != 24) {
163             goto error;
164         }
165     }
166 
167     /* return values */
168     *file_typep = file_type;
169 
170     return content;
171 
172 error:
173     error_report("splash file '%s' format not recognized; must be JPEG "
174                  "or 24 bit BMP", filename);
175     g_free(content);
176     return NULL;
177 }
178 
179 static void fw_cfg_bootsplash(FWCfgState *s)
180 {
181     const char *boot_splash_filename = NULL;
182     const char *boot_splash_time = NULL;
183     char *filename, *file_data;
184     gsize file_size;
185     int file_type;
186 
187     /* get user configuration */
188     QemuOptsList *plist = qemu_find_opts("boot-opts");
189     QemuOpts *opts = QTAILQ_FIRST(&plist->head);
190     boot_splash_filename = qemu_opt_get(opts, "splash");
191     boot_splash_time = qemu_opt_get(opts, "splash-time");
192 
193     /* insert splash time if user configurated */
194     if (boot_splash_time) {
195         int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1);
196         uint16_t bst_le16;
197 
198         /* validate the input */
199         if (bst_val < 0 || bst_val > 0xffff) {
200             error_report("splash-time is invalid,"
201                          "it should be a value between 0 and 65535");
202             exit(1);
203         }
204         /* use little endian format */
205         bst_le16 = cpu_to_le16(bst_val);
206         fw_cfg_add_file(s, "etc/boot-menu-wait",
207                         g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16);
208     }
209 
210     /* insert splash file if user configurated */
211     if (boot_splash_filename) {
212         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
213         if (filename == NULL) {
214             error_report("failed to find file '%s'", boot_splash_filename);
215             return;
216         }
217 
218         /* loading file data */
219         file_data = read_splashfile(filename, &file_size, &file_type);
220         if (file_data == NULL) {
221             g_free(filename);
222             return;
223         }
224         g_free(boot_splash_filedata);
225         boot_splash_filedata = (uint8_t *)file_data;
226 
227         /* insert data */
228         if (file_type == JPG_FILE) {
229             fw_cfg_add_file(s, "bootsplash.jpg",
230                             boot_splash_filedata, file_size);
231         } else {
232             fw_cfg_add_file(s, "bootsplash.bmp",
233                             boot_splash_filedata, file_size);
234         }
235         g_free(filename);
236     }
237 }
238 
239 static void fw_cfg_reboot(FWCfgState *s)
240 {
241     const char *reboot_timeout = NULL;
242     uint64_t rt_val = -1;
243     uint32_t rt_le32;
244 
245     /* get user configuration */
246     QemuOptsList *plist = qemu_find_opts("boot-opts");
247     QemuOpts *opts = QTAILQ_FIRST(&plist->head);
248     reboot_timeout = qemu_opt_get(opts, "reboot-timeout");
249 
250     if (reboot_timeout) {
251         rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1);
252 
253         /* validate the input */
254         if (rt_val > 0xffff && rt_val != (uint64_t)-1) {
255             error_report("reboot timeout is invalid,"
256                          "it should be a value between -1 and 65535");
257             exit(1);
258         }
259     }
260 
261     rt_le32 = cpu_to_le32(rt_val);
262     fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4);
263 }
264 
265 static void fw_cfg_write(FWCfgState *s, uint8_t value)
266 {
267     /* nothing, write support removed in QEMU v2.4+ */
268 }
269 
270 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
271 {
272     return s->file_slots;
273 }
274 
275 /* Note: this function returns an exclusive limit. */
276 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
277 {
278     return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
279 }
280 
281 static int fw_cfg_select(FWCfgState *s, uint16_t key)
282 {
283     int arch, ret;
284     FWCfgEntry *e;
285 
286     s->cur_offset = 0;
287     if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
288         s->cur_entry = FW_CFG_INVALID;
289         ret = 0;
290     } else {
291         s->cur_entry = key;
292         ret = 1;
293         /* entry successfully selected, now run callback if present */
294         arch = !!(key & FW_CFG_ARCH_LOCAL);
295         e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
296         if (e->select_cb) {
297             e->select_cb(e->callback_opaque);
298         }
299     }
300 
301     trace_fw_cfg_select(s, key, trace_key_name(key), ret);
302     return ret;
303 }
304 
305 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
306 {
307     FWCfgState *s = opaque;
308     int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
309     FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
310                     &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
311     uint64_t value = 0;
312 
313     assert(size > 0 && size <= sizeof(value));
314     if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
315         /* The least significant 'size' bytes of the return value are
316          * expected to contain a string preserving portion of the item
317          * data, padded with zeros on the right in case we run out early.
318          * In technical terms, we're composing the host-endian representation
319          * of the big endian interpretation of the fw_cfg string.
320          */
321         do {
322             value = (value << 8) | e->data[s->cur_offset++];
323         } while (--size && s->cur_offset < e->len);
324         /* If size is still not zero, we *did* run out early, so continue
325          * left-shifting, to add the appropriate number of padding zeros
326          * on the right.
327          */
328         value <<= 8 * size;
329     }
330 
331     trace_fw_cfg_read(s, value);
332     return value;
333 }
334 
335 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
336                                   uint64_t value, unsigned size)
337 {
338     FWCfgState *s = opaque;
339     unsigned i = size;
340 
341     do {
342         fw_cfg_write(s, value >> (8 * --i));
343     } while (i);
344 }
345 
346 static void fw_cfg_dma_transfer(FWCfgState *s)
347 {
348     dma_addr_t len;
349     FWCfgDmaAccess dma;
350     int arch;
351     FWCfgEntry *e;
352     int read = 0, write = 0;
353     dma_addr_t dma_addr;
354 
355     /* Reset the address before the next access */
356     dma_addr = s->dma_addr;
357     s->dma_addr = 0;
358 
359     if (dma_memory_read(s->dma_as, dma_addr,
360                         &dma, sizeof(dma), MEMTXATTRS_UNSPECIFIED)) {
361         stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
362                    FW_CFG_DMA_CTL_ERROR, MEMTXATTRS_UNSPECIFIED);
363         return;
364     }
365 
366     dma.address = be64_to_cpu(dma.address);
367     dma.length = be32_to_cpu(dma.length);
368     dma.control = be32_to_cpu(dma.control);
369 
370     if (dma.control & FW_CFG_DMA_CTL_SELECT) {
371         fw_cfg_select(s, dma.control >> 16);
372     }
373 
374     arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
375     e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
376         &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
377 
378     if (dma.control & FW_CFG_DMA_CTL_READ) {
379         read = 1;
380         write = 0;
381     } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
382         read = 0;
383         write = 1;
384     } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
385         read = 0;
386         write = 0;
387     } else {
388         dma.length = 0;
389     }
390 
391     dma.control = 0;
392 
393     while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
394         if (s->cur_entry == FW_CFG_INVALID || !e->data ||
395                                 s->cur_offset >= e->len) {
396             len = dma.length;
397 
398             /* If the access is not a read access, it will be a skip access,
399              * tested before.
400              */
401             if (read) {
402                 if (dma_memory_set(s->dma_as, dma.address, 0, len,
403                                    MEMTXATTRS_UNSPECIFIED)) {
404                     dma.control |= FW_CFG_DMA_CTL_ERROR;
405                 }
406             }
407             if (write) {
408                 dma.control |= FW_CFG_DMA_CTL_ERROR;
409             }
410         } else {
411             if (dma.length <= (e->len - s->cur_offset)) {
412                 len = dma.length;
413             } else {
414                 len = (e->len - s->cur_offset);
415             }
416 
417             /* If the access is not a read access, it will be a skip access,
418              * tested before.
419              */
420             if (read) {
421                 if (dma_memory_write(s->dma_as, dma.address,
422                                      &e->data[s->cur_offset], len,
423                                      MEMTXATTRS_UNSPECIFIED)) {
424                     dma.control |= FW_CFG_DMA_CTL_ERROR;
425                 }
426             }
427             if (write) {
428                 if (!e->allow_write ||
429                     len != dma.length ||
430                     dma_memory_read(s->dma_as, dma.address,
431                                     &e->data[s->cur_offset], len,
432                                     MEMTXATTRS_UNSPECIFIED)) {
433                     dma.control |= FW_CFG_DMA_CTL_ERROR;
434                 } else if (e->write_cb) {
435                     e->write_cb(e->callback_opaque, s->cur_offset, len);
436                 }
437             }
438 
439             s->cur_offset += len;
440         }
441 
442         dma.address += len;
443         dma.length  -= len;
444 
445     }
446 
447     stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
448                 dma.control, MEMTXATTRS_UNSPECIFIED);
449 
450     trace_fw_cfg_read(s, 0);
451 }
452 
453 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
454                                     unsigned size)
455 {
456     /* Return a signature value (and handle various read sizes) */
457     return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
458 }
459 
460 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
461                                  uint64_t value, unsigned size)
462 {
463     FWCfgState *s = opaque;
464 
465     if (size == 4) {
466         if (addr == 0) {
467             /* FWCfgDmaAccess high address */
468             s->dma_addr = value << 32;
469         } else if (addr == 4) {
470             /* FWCfgDmaAccess low address */
471             s->dma_addr |= value;
472             fw_cfg_dma_transfer(s);
473         }
474     } else if (size == 8 && addr == 0) {
475         s->dma_addr = value;
476         fw_cfg_dma_transfer(s);
477     }
478 }
479 
480 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
481                                  unsigned size, bool is_write,
482                                  MemTxAttrs attrs)
483 {
484     return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
485                          (size == 8 && addr == 0));
486 }
487 
488 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
489                                   unsigned size, bool is_write,
490                                   MemTxAttrs attrs)
491 {
492     return addr == 0;
493 }
494 
495 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
496 {
497     return 0;
498 }
499 
500 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
501                                  uint64_t value, unsigned size)
502 {
503     fw_cfg_select(opaque, (uint16_t)value);
504 }
505 
506 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
507                                  unsigned size, bool is_write,
508                                  MemTxAttrs attrs)
509 {
510     return is_write && size == 2;
511 }
512 
513 static void fw_cfg_comb_write(void *opaque, hwaddr addr,
514                               uint64_t value, unsigned size)
515 {
516     switch (size) {
517     case 1:
518         fw_cfg_write(opaque, (uint8_t)value);
519         break;
520     case 2:
521         fw_cfg_select(opaque, (uint16_t)value);
522         break;
523     }
524 }
525 
526 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
527                               unsigned size, bool is_write,
528                               MemTxAttrs attrs)
529 {
530     return (size == 1) || (is_write && size == 2);
531 }
532 
533 static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
534     .read = fw_cfg_ctl_mem_read,
535     .write = fw_cfg_ctl_mem_write,
536     .endianness = DEVICE_BIG_ENDIAN,
537     .valid.accepts = fw_cfg_ctl_mem_valid,
538 };
539 
540 static const MemoryRegionOps fw_cfg_data_mem_ops = {
541     .read = fw_cfg_data_read,
542     .write = fw_cfg_data_mem_write,
543     .endianness = DEVICE_BIG_ENDIAN,
544     .valid = {
545         .min_access_size = 1,
546         .max_access_size = 1,
547         .accepts = fw_cfg_data_mem_valid,
548     },
549 };
550 
551 static const MemoryRegionOps fw_cfg_comb_mem_ops = {
552     .read = fw_cfg_data_read,
553     .write = fw_cfg_comb_write,
554     .endianness = DEVICE_LITTLE_ENDIAN,
555     .valid.accepts = fw_cfg_comb_valid,
556 };
557 
558 static const MemoryRegionOps fw_cfg_dma_mem_ops = {
559     .read = fw_cfg_dma_mem_read,
560     .write = fw_cfg_dma_mem_write,
561     .endianness = DEVICE_BIG_ENDIAN,
562     .valid.accepts = fw_cfg_dma_mem_valid,
563     .valid.max_access_size = 8,
564     .impl.max_access_size = 8,
565 };
566 
567 static void fw_cfg_reset(DeviceState *d)
568 {
569     FWCfgState *s = FW_CFG(d);
570 
571     /* we never register a read callback for FW_CFG_SIGNATURE */
572     fw_cfg_select(s, FW_CFG_SIGNATURE);
573 }
574 
575 /* Save restore 32 bit int as uint16_t
576    This is a Big hack, but it is how the old state did it.
577    Or we broke compatibility in the state, or we can't use struct tm
578  */
579 
580 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
581                                 const VMStateField *field)
582 {
583     uint32_t *v = pv;
584     *v = qemu_get_be16(f);
585     return 0;
586 }
587 
588 static int put_unused(QEMUFile *f, void *pv, size_t size,
589                       const VMStateField *field, JSONWriter *vmdesc)
590 {
591     fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
592     fprintf(stderr, "This functions shouldn't be called.\n");
593 
594     return 0;
595 }
596 
597 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
598     .name = "int32_as_uint16",
599     .get  = get_uint32_as_uint16,
600     .put  = put_unused,
601 };
602 
603 #define VMSTATE_UINT16_HACK(_f, _s, _t)                                    \
604     VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
605 
606 
607 static bool is_version_1(void *opaque, int version_id)
608 {
609     return version_id == 1;
610 }
611 
612 bool fw_cfg_dma_enabled(void *opaque)
613 {
614     FWCfgState *s = opaque;
615 
616     return s->dma_enabled;
617 }
618 
619 static bool fw_cfg_acpi_mr_restore(void *opaque)
620 {
621     FWCfgState *s = opaque;
622     bool mr_aligned;
623 
624     mr_aligned = QEMU_IS_ALIGNED(s->table_mr_size, qemu_real_host_page_size()) &&
625                  QEMU_IS_ALIGNED(s->linker_mr_size, qemu_real_host_page_size()) &&
626                  QEMU_IS_ALIGNED(s->rsdp_mr_size, qemu_real_host_page_size());
627     return s->acpi_mr_restore && !mr_aligned;
628 }
629 
630 static void fw_cfg_update_mr(FWCfgState *s, uint16_t key, size_t size)
631 {
632     MemoryRegion *mr;
633     ram_addr_t offset;
634     int arch = !!(key & FW_CFG_ARCH_LOCAL);
635     void *ptr;
636 
637     key &= FW_CFG_ENTRY_MASK;
638     assert(key < fw_cfg_max_entry(s));
639 
640     ptr = s->entries[arch][key].data;
641     mr = memory_region_from_host(ptr, &offset);
642 
643     memory_region_ram_resize(mr, size, &error_abort);
644 }
645 
646 static int fw_cfg_acpi_mr_restore_post_load(void *opaque, int version_id)
647 {
648     FWCfgState *s = opaque;
649     int i, index;
650 
651     assert(s->files);
652 
653     index = be32_to_cpu(s->files->count);
654 
655     for (i = 0; i < index; i++) {
656         if (!strcmp(s->files->f[i].name, ACPI_BUILD_TABLE_FILE)) {
657             fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->table_mr_size);
658         } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_LOADER_FILE)) {
659             fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->linker_mr_size);
660         } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_RSDP_FILE)) {
661             fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->rsdp_mr_size);
662         }
663     }
664 
665     return 0;
666 }
667 
668 static const VMStateDescription vmstate_fw_cfg_dma = {
669     .name = "fw_cfg/dma",
670     .needed = fw_cfg_dma_enabled,
671     .fields = (VMStateField[]) {
672         VMSTATE_UINT64(dma_addr, FWCfgState),
673         VMSTATE_END_OF_LIST()
674     },
675 };
676 
677 static const VMStateDescription vmstate_fw_cfg_acpi_mr = {
678     .name = "fw_cfg/acpi_mr",
679     .version_id = 1,
680     .minimum_version_id = 1,
681     .needed = fw_cfg_acpi_mr_restore,
682     .post_load = fw_cfg_acpi_mr_restore_post_load,
683     .fields = (VMStateField[]) {
684         VMSTATE_UINT64(table_mr_size, FWCfgState),
685         VMSTATE_UINT64(linker_mr_size, FWCfgState),
686         VMSTATE_UINT64(rsdp_mr_size, FWCfgState),
687         VMSTATE_END_OF_LIST()
688     },
689 };
690 
691 static const VMStateDescription vmstate_fw_cfg = {
692     .name = "fw_cfg",
693     .version_id = 2,
694     .minimum_version_id = 1,
695     .fields = (VMStateField[]) {
696         VMSTATE_UINT16(cur_entry, FWCfgState),
697         VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
698         VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
699         VMSTATE_END_OF_LIST()
700     },
701     .subsections = (const VMStateDescription*[]) {
702         &vmstate_fw_cfg_dma,
703         &vmstate_fw_cfg_acpi_mr,
704         NULL,
705     }
706 };
707 
708 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
709                                       FWCfgCallback select_cb,
710                                       FWCfgWriteCallback write_cb,
711                                       void *callback_opaque,
712                                       void *data, size_t len,
713                                       bool read_only)
714 {
715     int arch = !!(key & FW_CFG_ARCH_LOCAL);
716 
717     key &= FW_CFG_ENTRY_MASK;
718 
719     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
720     assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
721 
722     s->entries[arch][key].data = data;
723     s->entries[arch][key].len = (uint32_t)len;
724     s->entries[arch][key].select_cb = select_cb;
725     s->entries[arch][key].write_cb = write_cb;
726     s->entries[arch][key].callback_opaque = callback_opaque;
727     s->entries[arch][key].allow_write = !read_only;
728 }
729 
730 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
731                                               void *data, size_t len)
732 {
733     void *ptr;
734     int arch = !!(key & FW_CFG_ARCH_LOCAL);
735 
736     key &= FW_CFG_ENTRY_MASK;
737 
738     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
739 
740     /* return the old data to the function caller, avoid memory leak */
741     ptr = s->entries[arch][key].data;
742     s->entries[arch][key].data = data;
743     s->entries[arch][key].len = len;
744     s->entries[arch][key].callback_opaque = NULL;
745     s->entries[arch][key].allow_write = false;
746 
747     return ptr;
748 }
749 
750 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
751 {
752     trace_fw_cfg_add_bytes(key, trace_key_name(key), len);
753     fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
754 }
755 
756 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
757 {
758     size_t sz = strlen(value) + 1;
759 
760     trace_fw_cfg_add_string(key, trace_key_name(key), value);
761     fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
762 }
763 
764 void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value)
765 {
766     size_t sz = strlen(value) + 1;
767     char *old;
768 
769     old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz);
770     g_free(old);
771 }
772 
773 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
774 {
775     uint16_t *copy;
776 
777     copy = g_malloc(sizeof(value));
778     *copy = cpu_to_le16(value);
779     trace_fw_cfg_add_i16(key, trace_key_name(key), value);
780     fw_cfg_add_bytes(s, key, copy, sizeof(value));
781 }
782 
783 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
784 {
785     uint16_t *copy, *old;
786 
787     copy = g_malloc(sizeof(value));
788     *copy = cpu_to_le16(value);
789     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
790     g_free(old);
791 }
792 
793 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
794 {
795     uint32_t *copy;
796 
797     copy = g_malloc(sizeof(value));
798     *copy = cpu_to_le32(value);
799     trace_fw_cfg_add_i32(key, trace_key_name(key), value);
800     fw_cfg_add_bytes(s, key, copy, sizeof(value));
801 }
802 
803 void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value)
804 {
805     uint32_t *copy, *old;
806 
807     copy = g_malloc(sizeof(value));
808     *copy = cpu_to_le32(value);
809     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
810     g_free(old);
811 }
812 
813 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
814 {
815     uint64_t *copy;
816 
817     copy = g_malloc(sizeof(value));
818     *copy = cpu_to_le64(value);
819     trace_fw_cfg_add_i64(key, trace_key_name(key), value);
820     fw_cfg_add_bytes(s, key, copy, sizeof(value));
821 }
822 
823 void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value)
824 {
825     uint64_t *copy, *old;
826 
827     copy = g_malloc(sizeof(value));
828     *copy = cpu_to_le64(value);
829     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
830     g_free(old);
831 }
832 
833 void fw_cfg_set_order_override(FWCfgState *s, int order)
834 {
835     assert(s->fw_cfg_order_override == 0);
836     s->fw_cfg_order_override = order;
837 }
838 
839 void fw_cfg_reset_order_override(FWCfgState *s)
840 {
841     assert(s->fw_cfg_order_override != 0);
842     s->fw_cfg_order_override = 0;
843 }
844 
845 /*
846  * This is the legacy order list.  For legacy systems, files are in
847  * the fw_cfg in the order defined below, by the "order" value.  Note
848  * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
849  * specific area, but there may be more than one and they occur in the
850  * order that the user specifies them on the command line.  Those are
851  * handled in a special manner, using the order override above.
852  *
853  * For non-legacy, the files are sorted by filename to avoid this kind
854  * of complexity in the future.
855  *
856  * This is only for x86, other arches don't implement versioning so
857  * they won't set legacy mode.
858  */
859 static struct {
860     const char *name;
861     int order;
862 } fw_cfg_order[] = {
863     { "etc/boot-menu-wait", 10 },
864     { "bootsplash.jpg", 11 },
865     { "bootsplash.bmp", 12 },
866     { "etc/boot-fail-wait", 15 },
867     { "etc/smbios/smbios-tables", 20 },
868     { "etc/smbios/smbios-anchor", 30 },
869     { "etc/e820", 40 },
870     { "etc/reserved-memory-end", 50 },
871     { "genroms/kvmvapic.bin", 55 },
872     { "genroms/linuxboot.bin", 60 },
873     { }, /* VGA ROMs from pc_vga_init come here, 70. */
874     { }, /* NIC option ROMs from pc_nic_init come here, 80. */
875     { "etc/system-states", 90 },
876     { }, /* User ROMs come here, 100. */
877     { }, /* Device FW comes here, 110. */
878     { "etc/extra-pci-roots", 120 },
879     { "etc/acpi/tables", 130 },
880     { "etc/table-loader", 140 },
881     { "etc/tpm/log", 150 },
882     { "etc/acpi/rsdp", 160 },
883     { "bootorder", 170 },
884     { "etc/msr_feature_control", 180 },
885 
886 #define FW_CFG_ORDER_OVERRIDE_LAST 200
887 };
888 
889 /*
890  * Any sub-page size update to these table MRs will be lost during migration,
891  * as we use aligned size in ram_load_precopy() -> qemu_ram_resize() path.
892  * In order to avoid the inconsistency in sizes save them seperately and
893  * migrate over in vmstate post_load().
894  */
895 static void fw_cfg_acpi_mr_save(FWCfgState *s, const char *filename, size_t len)
896 {
897     if (!strcmp(filename, ACPI_BUILD_TABLE_FILE)) {
898         s->table_mr_size = len;
899     } else if (!strcmp(filename, ACPI_BUILD_LOADER_FILE)) {
900         s->linker_mr_size = len;
901     } else if (!strcmp(filename, ACPI_BUILD_RSDP_FILE)) {
902         s->rsdp_mr_size = len;
903     }
904 }
905 
906 static int get_fw_cfg_order(FWCfgState *s, const char *name)
907 {
908     int i;
909 
910     if (s->fw_cfg_order_override > 0) {
911         return s->fw_cfg_order_override;
912     }
913 
914     for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
915         if (fw_cfg_order[i].name == NULL) {
916             continue;
917         }
918 
919         if (strcmp(name, fw_cfg_order[i].name) == 0) {
920             return fw_cfg_order[i].order;
921         }
922     }
923 
924     /* Stick unknown stuff at the end. */
925     warn_report("Unknown firmware file in legacy mode: %s", name);
926     return FW_CFG_ORDER_OVERRIDE_LAST;
927 }
928 
929 void fw_cfg_add_file_callback(FWCfgState *s,  const char *filename,
930                               FWCfgCallback select_cb,
931                               FWCfgWriteCallback write_cb,
932                               void *callback_opaque,
933                               void *data, size_t len, bool read_only)
934 {
935     int i, index, count;
936     size_t dsize;
937     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
938     int order = 0;
939 
940     if (!s->files) {
941         dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
942         s->files = g_malloc0(dsize);
943         fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
944     }
945 
946     count = be32_to_cpu(s->files->count);
947     assert(count < fw_cfg_file_slots(s));
948 
949     /* Find the insertion point. */
950     if (mc->legacy_fw_cfg_order) {
951         /*
952          * Sort by order. For files with the same order, we keep them
953          * in the sequence in which they were added.
954          */
955         order = get_fw_cfg_order(s, filename);
956         for (index = count;
957              index > 0 && order < s->entry_order[index - 1];
958              index--);
959     } else {
960         /* Sort by file name. */
961         for (index = count;
962              index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
963              index--);
964     }
965 
966     /*
967      * Move all the entries from the index point and after down one
968      * to create a slot for the new entry.  Because calculations are
969      * being done with the index, make it so that "i" is the current
970      * index and "i - 1" is the one being copied from, thus the
971      * unusual start and end in the for statement.
972      */
973     for (i = count; i > index; i--) {
974         s->files->f[i] = s->files->f[i - 1];
975         s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
976         s->entries[0][FW_CFG_FILE_FIRST + i] =
977             s->entries[0][FW_CFG_FILE_FIRST + i - 1];
978         s->entry_order[i] = s->entry_order[i - 1];
979     }
980 
981     memset(&s->files->f[index], 0, sizeof(FWCfgFile));
982     memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
983 
984     pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
985     for (i = 0; i <= count; i++) {
986         if (i != index &&
987             strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
988             error_report("duplicate fw_cfg file name: %s",
989                          s->files->f[index].name);
990             exit(1);
991         }
992     }
993 
994     fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
995                               select_cb, write_cb,
996                               callback_opaque, data, len,
997                               read_only);
998 
999     s->files->f[index].size   = cpu_to_be32(len);
1000     s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
1001     s->entry_order[index] = order;
1002     trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
1003 
1004     s->files->count = cpu_to_be32(count+1);
1005     fw_cfg_acpi_mr_save(s, filename, len);
1006 }
1007 
1008 void fw_cfg_add_file(FWCfgState *s,  const char *filename,
1009                      void *data, size_t len)
1010 {
1011     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
1012 }
1013 
1014 void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
1015                         void *data, size_t len)
1016 {
1017     int i, index;
1018     void *ptr = NULL;
1019 
1020     assert(s->files);
1021 
1022     index = be32_to_cpu(s->files->count);
1023 
1024     for (i = 0; i < index; i++) {
1025         if (strcmp(filename, s->files->f[i].name) == 0) {
1026             ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
1027                                            data, len);
1028             s->files->f[i].size   = cpu_to_be32(len);
1029             fw_cfg_acpi_mr_save(s, filename, len);
1030             return ptr;
1031         }
1032     }
1033 
1034     assert(index < fw_cfg_file_slots(s));
1035 
1036     /* add new one */
1037     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
1038     return NULL;
1039 }
1040 
1041 bool fw_cfg_add_from_generator(FWCfgState *s, const char *filename,
1042                                const char *gen_id, Error **errp)
1043 {
1044     FWCfgDataGeneratorClass *klass;
1045     GByteArray *array;
1046     Object *obj;
1047     gsize size;
1048 
1049     obj = object_resolve_path_component(object_get_objects_root(), gen_id);
1050     if (!obj) {
1051         error_setg(errp, "Cannot find object ID '%s'", gen_id);
1052         return false;
1053     }
1054     if (!object_dynamic_cast(obj, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE)) {
1055         error_setg(errp, "Object ID '%s' is not a '%s' subclass",
1056                    gen_id, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE);
1057         return false;
1058     }
1059     klass = FW_CFG_DATA_GENERATOR_GET_CLASS(obj);
1060     array = klass->get_data(obj, errp);
1061     if (!array) {
1062         return false;
1063     }
1064     size = array->len;
1065     fw_cfg_add_file(s, filename, g_byte_array_free(array, FALSE), size);
1066 
1067     return true;
1068 }
1069 
1070 void fw_cfg_add_extra_pci_roots(PCIBus *bus, FWCfgState *s)
1071 {
1072     int extra_hosts = 0;
1073 
1074     if (!bus) {
1075         return;
1076     }
1077 
1078     QLIST_FOREACH(bus, &bus->child, sibling) {
1079         /* look for expander root buses */
1080         if (pci_bus_is_root(bus)) {
1081             extra_hosts++;
1082         }
1083     }
1084 
1085     if (extra_hosts && s) {
1086         uint64_t *val = g_malloc(sizeof(*val));
1087         *val = cpu_to_le64(extra_hosts);
1088         fw_cfg_add_file(s, "etc/extra-pci-roots", val, sizeof(*val));
1089     }
1090 }
1091 
1092 static void fw_cfg_machine_reset(void *opaque)
1093 {
1094     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1095     FWCfgState *s = opaque;
1096     void *ptr;
1097     size_t len;
1098     char *buf;
1099 
1100     buf = get_boot_devices_list(&len);
1101     ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)buf, len);
1102     g_free(ptr);
1103 
1104     if (!mc->legacy_fw_cfg_order) {
1105         buf = get_boot_devices_lchs_list(&len);
1106         ptr = fw_cfg_modify_file(s, "bios-geometry", (uint8_t *)buf, len);
1107         g_free(ptr);
1108     }
1109 }
1110 
1111 static void fw_cfg_machine_ready(struct Notifier *n, void *data)
1112 {
1113     FWCfgState *s = container_of(n, FWCfgState, machine_ready);
1114     qemu_register_reset(fw_cfg_machine_reset, s);
1115 }
1116 
1117 static Property fw_cfg_properties[] = {
1118     DEFINE_PROP_BOOL("acpi-mr-restore", FWCfgState, acpi_mr_restore, true),
1119     DEFINE_PROP_END_OF_LIST(),
1120 };
1121 
1122 static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
1123 {
1124     FWCfgState *s = FW_CFG(dev);
1125     MachineState *machine = MACHINE(qdev_get_machine());
1126     uint32_t version = FW_CFG_VERSION;
1127 
1128     if (!fw_cfg_find()) {
1129         error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
1130         return;
1131     }
1132 
1133     fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
1134     fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
1135     fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
1136     fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
1137     fw_cfg_bootsplash(s);
1138     fw_cfg_reboot(s);
1139 
1140     if (s->dma_enabled) {
1141         version |= FW_CFG_VERSION_DMA;
1142     }
1143 
1144     fw_cfg_add_i32(s, FW_CFG_ID, version);
1145 
1146     s->machine_ready.notify = fw_cfg_machine_ready;
1147     qemu_add_machine_init_done_notifier(&s->machine_ready);
1148 }
1149 
1150 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
1151                                 AddressSpace *dma_as)
1152 {
1153     DeviceState *dev;
1154     SysBusDevice *sbd;
1155     FWCfgIoState *ios;
1156     FWCfgState *s;
1157     bool dma_requested = dma_iobase && dma_as;
1158 
1159     dev = qdev_new(TYPE_FW_CFG_IO);
1160     if (!dma_requested) {
1161         qdev_prop_set_bit(dev, "dma_enabled", false);
1162     }
1163 
1164     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1165                               OBJECT(dev));
1166 
1167     sbd = SYS_BUS_DEVICE(dev);
1168     sysbus_realize_and_unref(sbd, &error_fatal);
1169     ios = FW_CFG_IO(dev);
1170     sysbus_add_io(sbd, iobase, &ios->comb_iomem);
1171 
1172     s = FW_CFG(dev);
1173 
1174     if (s->dma_enabled) {
1175         /* 64 bits for the address field */
1176         s->dma_as = dma_as;
1177         s->dma_addr = 0;
1178         sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
1179     }
1180 
1181     return s;
1182 }
1183 
1184 FWCfgState *fw_cfg_init_io(uint32_t iobase)
1185 {
1186     return fw_cfg_init_io_dma(iobase, 0, NULL);
1187 }
1188 
1189 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
1190                                  hwaddr data_addr, uint32_t data_width,
1191                                  hwaddr dma_addr, AddressSpace *dma_as)
1192 {
1193     DeviceState *dev;
1194     SysBusDevice *sbd;
1195     FWCfgState *s;
1196     bool dma_requested = dma_addr && dma_as;
1197 
1198     dev = qdev_new(TYPE_FW_CFG_MEM);
1199     qdev_prop_set_uint32(dev, "data_width", data_width);
1200     if (!dma_requested) {
1201         qdev_prop_set_bit(dev, "dma_enabled", false);
1202     }
1203 
1204     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1205                               OBJECT(dev));
1206 
1207     sbd = SYS_BUS_DEVICE(dev);
1208     sysbus_realize_and_unref(sbd, &error_fatal);
1209     sysbus_mmio_map(sbd, 0, ctl_addr);
1210     sysbus_mmio_map(sbd, 1, data_addr);
1211 
1212     s = FW_CFG(dev);
1213 
1214     if (s->dma_enabled) {
1215         s->dma_as = dma_as;
1216         s->dma_addr = 0;
1217         sysbus_mmio_map(sbd, 2, dma_addr);
1218     }
1219 
1220     return s;
1221 }
1222 
1223 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
1224 {
1225     return fw_cfg_init_mem_wide(ctl_addr, data_addr,
1226                                 fw_cfg_data_mem_ops.valid.max_access_size,
1227                                 0, NULL);
1228 }
1229 
1230 
1231 FWCfgState *fw_cfg_find(void)
1232 {
1233     /* Returns NULL unless there is exactly one fw_cfg device */
1234     return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
1235 }
1236 
1237 
1238 static void fw_cfg_class_init(ObjectClass *klass, void *data)
1239 {
1240     DeviceClass *dc = DEVICE_CLASS(klass);
1241 
1242     dc->reset = fw_cfg_reset;
1243     dc->vmsd = &vmstate_fw_cfg;
1244 
1245     device_class_set_props(dc, fw_cfg_properties);
1246 }
1247 
1248 static const TypeInfo fw_cfg_info = {
1249     .name          = TYPE_FW_CFG,
1250     .parent        = TYPE_SYS_BUS_DEVICE,
1251     .abstract      = true,
1252     .instance_size = sizeof(FWCfgState),
1253     .class_init    = fw_cfg_class_init,
1254 };
1255 
1256 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1257 {
1258     uint16_t file_slots_max;
1259 
1260     if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1261         error_setg(errp, "\"file_slots\" must be at least 0x%x",
1262                    FW_CFG_FILE_SLOTS_MIN);
1263         return;
1264     }
1265 
1266     /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1267      * that we permit. The actual (exclusive) value coming from the
1268      * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1269     file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1270     if (fw_cfg_file_slots(s) > file_slots_max) {
1271         error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1272                    file_slots_max);
1273         return;
1274     }
1275 
1276     s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1277     s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1278     s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1279 }
1280 
1281 static Property fw_cfg_io_properties[] = {
1282     DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1283                      true),
1284     DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1285                        FW_CFG_FILE_SLOTS_DFLT),
1286     DEFINE_PROP_END_OF_LIST(),
1287 };
1288 
1289 static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1290 {
1291     ERRP_GUARD();
1292     FWCfgIoState *s = FW_CFG_IO(dev);
1293 
1294     fw_cfg_file_slots_allocate(FW_CFG(s), errp);
1295     if (*errp) {
1296         return;
1297     }
1298 
1299     /* when using port i/o, the 8-bit data register ALWAYS overlaps
1300      * with half of the 16-bit control register. Hence, the total size
1301      * of the i/o region used is FW_CFG_CTL_SIZE */
1302     memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1303                           FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1304 
1305     if (FW_CFG(s)->dma_enabled) {
1306         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1307                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1308                               sizeof(dma_addr_t));
1309     }
1310 
1311     fw_cfg_common_realize(dev, errp);
1312 }
1313 
1314 static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1315 {
1316     DeviceClass *dc = DEVICE_CLASS(klass);
1317 
1318     dc->realize = fw_cfg_io_realize;
1319     device_class_set_props(dc, fw_cfg_io_properties);
1320 }
1321 
1322 static const TypeInfo fw_cfg_io_info = {
1323     .name          = TYPE_FW_CFG_IO,
1324     .parent        = TYPE_FW_CFG,
1325     .instance_size = sizeof(FWCfgIoState),
1326     .class_init    = fw_cfg_io_class_init,
1327 };
1328 
1329 
1330 static Property fw_cfg_mem_properties[] = {
1331     DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1332     DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1333                      true),
1334     DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1335                        FW_CFG_FILE_SLOTS_DFLT),
1336     DEFINE_PROP_END_OF_LIST(),
1337 };
1338 
1339 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1340 {
1341     ERRP_GUARD();
1342     FWCfgMemState *s = FW_CFG_MEM(dev);
1343     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1344     const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1345 
1346     fw_cfg_file_slots_allocate(FW_CFG(s), errp);
1347     if (*errp) {
1348         return;
1349     }
1350 
1351     memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1352                           FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1353     sysbus_init_mmio(sbd, &s->ctl_iomem);
1354 
1355     if (s->data_width > data_ops->valid.max_access_size) {
1356         s->wide_data_ops = *data_ops;
1357 
1358         s->wide_data_ops.valid.max_access_size = s->data_width;
1359         s->wide_data_ops.impl.max_access_size  = s->data_width;
1360         data_ops = &s->wide_data_ops;
1361     }
1362     memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1363                           "fwcfg.data", data_ops->valid.max_access_size);
1364     sysbus_init_mmio(sbd, &s->data_iomem);
1365 
1366     if (FW_CFG(s)->dma_enabled) {
1367         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1368                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1369                               sizeof(dma_addr_t));
1370         sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1371     }
1372 
1373     fw_cfg_common_realize(dev, errp);
1374 }
1375 
1376 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1377 {
1378     DeviceClass *dc = DEVICE_CLASS(klass);
1379 
1380     dc->realize = fw_cfg_mem_realize;
1381     device_class_set_props(dc, fw_cfg_mem_properties);
1382 }
1383 
1384 static const TypeInfo fw_cfg_mem_info = {
1385     .name          = TYPE_FW_CFG_MEM,
1386     .parent        = TYPE_FW_CFG,
1387     .instance_size = sizeof(FWCfgMemState),
1388     .class_init    = fw_cfg_mem_class_init,
1389 };
1390 
1391 static void fw_cfg_register_types(void)
1392 {
1393     type_register_static(&fw_cfg_info);
1394     type_register_static(&fw_cfg_io_info);
1395     type_register_static(&fw_cfg_mem_info);
1396 }
1397 
1398 type_init(fw_cfg_register_types)
1399