xref: /qemu/hw/ppc/pnv.c (revision 336d354b)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/datadir.h"
23 #include "qemu/units.h"
24 #include "qemu/cutils.h"
25 #include "qapi/error.h"
26 #include "sysemu/qtest.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/numa.h"
29 #include "sysemu/reset.h"
30 #include "sysemu/runstate.h"
31 #include "sysemu/cpus.h"
32 #include "sysemu/device_tree.h"
33 #include "sysemu/hw_accel.h"
34 #include "target/ppc/cpu.h"
35 #include "hw/ppc/fdt.h"
36 #include "hw/ppc/ppc.h"
37 #include "hw/ppc/pnv.h"
38 #include "hw/ppc/pnv_core.h"
39 #include "hw/loader.h"
40 #include "hw/nmi.h"
41 #include "qapi/visitor.h"
42 #include "monitor/monitor.h"
43 #include "hw/intc/intc.h"
44 #include "hw/ipmi/ipmi.h"
45 #include "target/ppc/mmu-hash64.h"
46 #include "hw/pci/msi.h"
47 
48 #include "hw/ppc/xics.h"
49 #include "hw/qdev-properties.h"
50 #include "hw/ppc/pnv_xscom.h"
51 #include "hw/ppc/pnv_pnor.h"
52 
53 #include "hw/isa/isa.h"
54 #include "hw/char/serial.h"
55 #include "hw/rtc/mc146818rtc.h"
56 
57 #include <libfdt.h>
58 
59 #define FDT_MAX_SIZE            (1 * MiB)
60 
61 #define FW_FILE_NAME            "skiboot.lid"
62 #define FW_LOAD_ADDR            0x0
63 #define FW_MAX_SIZE             (16 * MiB)
64 
65 #define KERNEL_LOAD_ADDR        0x20000000
66 #define KERNEL_MAX_SIZE         (128 * MiB)
67 #define INITRD_LOAD_ADDR        0x28000000
68 #define INITRD_MAX_SIZE         (128 * MiB)
69 
70 static const char *pnv_chip_core_typename(const PnvChip *o)
71 {
72     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
73     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
74     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
75     const char *core_type = object_class_get_name(object_class_by_name(s));
76     g_free(s);
77     return core_type;
78 }
79 
80 /*
81  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
82  *     4 * 4 sockets * 12 cores * 8 threads = 1536
83  * Let's make it 2^11
84  */
85 #define MAX_CPUS                2048
86 
87 /*
88  * Memory nodes are created by hostboot, one for each range of memory
89  * that has a different "affinity". In practice, it means one range
90  * per chip.
91  */
92 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
93 {
94     char *mem_name;
95     uint64_t mem_reg_property[2];
96     int off;
97 
98     mem_reg_property[0] = cpu_to_be64(start);
99     mem_reg_property[1] = cpu_to_be64(size);
100 
101     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
102     off = fdt_add_subnode(fdt, 0, mem_name);
103     g_free(mem_name);
104 
105     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
106     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
107                        sizeof(mem_reg_property))));
108     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
109 }
110 
111 static int get_cpus_node(void *fdt)
112 {
113     int cpus_offset = fdt_path_offset(fdt, "/cpus");
114 
115     if (cpus_offset < 0) {
116         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
117         if (cpus_offset) {
118             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
119             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
120         }
121     }
122     _FDT(cpus_offset);
123     return cpus_offset;
124 }
125 
126 /*
127  * The PowerNV cores (and threads) need to use real HW ids and not an
128  * incremental index like it has been done on other platforms. This HW
129  * id is stored in the CPU PIR, it is used to create cpu nodes in the
130  * device tree, used in XSCOM to address cores and in interrupt
131  * servers.
132  */
133 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
134 {
135     PowerPCCPU *cpu = pc->threads[0];
136     CPUState *cs = CPU(cpu);
137     DeviceClass *dc = DEVICE_GET_CLASS(cs);
138     int smt_threads = CPU_CORE(pc)->nr_threads;
139     CPUPPCState *env = &cpu->env;
140     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
141     uint32_t servers_prop[smt_threads];
142     int i;
143     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
144                        0xffffffff, 0xffffffff};
145     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
146     uint32_t cpufreq = 1000000000;
147     uint32_t page_sizes_prop[64];
148     size_t page_sizes_prop_size;
149     const uint8_t pa_features[] = { 24, 0,
150                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
151                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
152                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
153                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
154     int offset;
155     char *nodename;
156     int cpus_offset = get_cpus_node(fdt);
157 
158     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
159     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
160     _FDT(offset);
161     g_free(nodename);
162 
163     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
164 
165     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
166     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
167     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
168 
169     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
170     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
171                             env->dcache_line_size)));
172     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
173                             env->dcache_line_size)));
174     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
175                             env->icache_line_size)));
176     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
177                             env->icache_line_size)));
178 
179     if (pcc->l1_dcache_size) {
180         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
181                                pcc->l1_dcache_size)));
182     } else {
183         warn_report("Unknown L1 dcache size for cpu");
184     }
185     if (pcc->l1_icache_size) {
186         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
187                                pcc->l1_icache_size)));
188     } else {
189         warn_report("Unknown L1 icache size for cpu");
190     }
191 
192     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
193     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
194     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
195                            cpu->hash64_opts->slb_size)));
196     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
197     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
198 
199     if (ppc_has_spr(cpu, SPR_PURR)) {
200         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
201     }
202 
203     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
204         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
205                            segs, sizeof(segs))));
206     }
207 
208     /*
209      * Advertise VMX/VSX (vector extensions) if available
210      *   0 / no property == no vector extensions
211      *   1               == VMX / Altivec available
212      *   2               == VSX available
213      */
214     if (env->insns_flags & PPC_ALTIVEC) {
215         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
216 
217         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
218     }
219 
220     /*
221      * Advertise DFP (Decimal Floating Point) if available
222      *   0 / no property == no DFP
223      *   1               == DFP available
224      */
225     if (env->insns_flags2 & PPC2_DFP) {
226         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
227     }
228 
229     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
230                                                       sizeof(page_sizes_prop));
231     if (page_sizes_prop_size) {
232         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
233                            page_sizes_prop, page_sizes_prop_size)));
234     }
235 
236     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
237                        pa_features, sizeof(pa_features))));
238 
239     /* Build interrupt servers properties */
240     for (i = 0; i < smt_threads; i++) {
241         servers_prop[i] = cpu_to_be32(pc->pir + i);
242     }
243     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
244                        servers_prop, sizeof(servers_prop))));
245 }
246 
247 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
248                        uint32_t nr_threads)
249 {
250     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
251     char *name;
252     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
253     uint32_t irange[2], i, rsize;
254     uint64_t *reg;
255     int offset;
256 
257     irange[0] = cpu_to_be32(pir);
258     irange[1] = cpu_to_be32(nr_threads);
259 
260     rsize = sizeof(uint64_t) * 2 * nr_threads;
261     reg = g_malloc(rsize);
262     for (i = 0; i < nr_threads; i++) {
263         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
264         reg[i * 2 + 1] = cpu_to_be64(0x1000);
265     }
266 
267     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
268     offset = fdt_add_subnode(fdt, 0, name);
269     _FDT(offset);
270     g_free(name);
271 
272     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
273     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
274     _FDT((fdt_setprop_string(fdt, offset, "device_type",
275                               "PowerPC-External-Interrupt-Presentation")));
276     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
277     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
278                        irange, sizeof(irange))));
279     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
280     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
281     g_free(reg);
282 }
283 
284 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
285 {
286     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
287     int i;
288 
289     pnv_dt_xscom(chip, fdt, 0,
290                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
291                  cpu_to_be64(PNV_XSCOM_SIZE),
292                  compat, sizeof(compat));
293 
294     for (i = 0; i < chip->nr_cores; i++) {
295         PnvCore *pnv_core = chip->cores[i];
296 
297         pnv_dt_core(chip, pnv_core, fdt);
298 
299         /* Interrupt Control Presenters (ICP). One per core. */
300         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
301     }
302 
303     if (chip->ram_size) {
304         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
305     }
306 }
307 
308 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
309 {
310     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
311     int i;
312 
313     pnv_dt_xscom(chip, fdt, 0,
314                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
315                  cpu_to_be64(PNV9_XSCOM_SIZE),
316                  compat, sizeof(compat));
317 
318     for (i = 0; i < chip->nr_cores; i++) {
319         PnvCore *pnv_core = chip->cores[i];
320 
321         pnv_dt_core(chip, pnv_core, fdt);
322     }
323 
324     if (chip->ram_size) {
325         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
326     }
327 
328     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
329 }
330 
331 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
332 {
333     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
334     int i;
335 
336     pnv_dt_xscom(chip, fdt, 0,
337                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
338                  cpu_to_be64(PNV10_XSCOM_SIZE),
339                  compat, sizeof(compat));
340 
341     for (i = 0; i < chip->nr_cores; i++) {
342         PnvCore *pnv_core = chip->cores[i];
343 
344         pnv_dt_core(chip, pnv_core, fdt);
345     }
346 
347     if (chip->ram_size) {
348         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
349     }
350 
351     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
352 }
353 
354 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
355 {
356     uint32_t io_base = d->ioport_id;
357     uint32_t io_regs[] = {
358         cpu_to_be32(1),
359         cpu_to_be32(io_base),
360         cpu_to_be32(2)
361     };
362     char *name;
363     int node;
364 
365     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
366     node = fdt_add_subnode(fdt, lpc_off, name);
367     _FDT(node);
368     g_free(name);
369 
370     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
371     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
372 }
373 
374 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
375 {
376     const char compatible[] = "ns16550\0pnpPNP,501";
377     uint32_t io_base = d->ioport_id;
378     uint32_t io_regs[] = {
379         cpu_to_be32(1),
380         cpu_to_be32(io_base),
381         cpu_to_be32(8)
382     };
383     uint32_t irq;
384     char *name;
385     int node;
386 
387     irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
388 
389     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
390     node = fdt_add_subnode(fdt, lpc_off, name);
391     _FDT(node);
392     g_free(name);
393 
394     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
395     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
396                       sizeof(compatible))));
397 
398     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
399     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
400     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
401     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
402                            fdt_get_phandle(fdt, lpc_off))));
403 
404     /* This is needed by Linux */
405     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
406 }
407 
408 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
409 {
410     const char compatible[] = "bt\0ipmi-bt";
411     uint32_t io_base;
412     uint32_t io_regs[] = {
413         cpu_to_be32(1),
414         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
415         cpu_to_be32(3)
416     };
417     uint32_t irq;
418     char *name;
419     int node;
420 
421     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
422     io_regs[1] = cpu_to_be32(io_base);
423 
424     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
425 
426     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
427     node = fdt_add_subnode(fdt, lpc_off, name);
428     _FDT(node);
429     g_free(name);
430 
431     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
432     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
433                       sizeof(compatible))));
434 
435     /* Mark it as reserved to avoid Linux trying to claim it */
436     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
437     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
438     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
439                            fdt_get_phandle(fdt, lpc_off))));
440 }
441 
442 typedef struct ForeachPopulateArgs {
443     void *fdt;
444     int offset;
445 } ForeachPopulateArgs;
446 
447 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
448 {
449     ForeachPopulateArgs *args = opaque;
450     ISADevice *d = ISA_DEVICE(dev);
451 
452     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
453         pnv_dt_rtc(d, args->fdt, args->offset);
454     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
455         pnv_dt_serial(d, args->fdt, args->offset);
456     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
457         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
458     } else {
459         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
460                      d->ioport_id);
461     }
462 
463     return 0;
464 }
465 
466 /*
467  * The default LPC bus of a multichip system is on chip 0. It's
468  * recognized by the firmware (skiboot) using a "primary" property.
469  */
470 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
471 {
472     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
473     ForeachPopulateArgs args = {
474         .fdt = fdt,
475         .offset = isa_offset,
476     };
477     uint32_t phandle;
478 
479     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
480 
481     phandle = qemu_fdt_alloc_phandle(fdt);
482     assert(phandle > 0);
483     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
484 
485     /*
486      * ISA devices are not necessarily parented to the ISA bus so we
487      * can not use object_child_foreach()
488      */
489     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
490                        &args);
491 }
492 
493 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
494 {
495     int off;
496 
497     off = fdt_add_subnode(fdt, 0, "ibm,opal");
498     off = fdt_add_subnode(fdt, off, "power-mgt");
499 
500     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
501 }
502 
503 static void *pnv_dt_create(MachineState *machine)
504 {
505     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
506     PnvMachineState *pnv = PNV_MACHINE(machine);
507     void *fdt;
508     char *buf;
509     int off;
510     int i;
511 
512     fdt = g_malloc0(FDT_MAX_SIZE);
513     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
514 
515     /* /qemu node */
516     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
517 
518     /* Root node */
519     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
520     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
521     _FDT((fdt_setprop_string(fdt, 0, "model",
522                              "IBM PowerNV (emulated by qemu)")));
523     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
524 
525     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
526     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
527     if (qemu_uuid_set) {
528         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
529     }
530     g_free(buf);
531 
532     off = fdt_add_subnode(fdt, 0, "chosen");
533     if (machine->kernel_cmdline) {
534         _FDT((fdt_setprop_string(fdt, off, "bootargs",
535                                  machine->kernel_cmdline)));
536     }
537 
538     if (pnv->initrd_size) {
539         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
540         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
541 
542         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
543                                &start_prop, sizeof(start_prop))));
544         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
545                                &end_prop, sizeof(end_prop))));
546     }
547 
548     /* Populate device tree for each chip */
549     for (i = 0; i < pnv->num_chips; i++) {
550         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
551     }
552 
553     /* Populate ISA devices on chip 0 */
554     pnv_dt_isa(pnv, fdt);
555 
556     if (pnv->bmc) {
557         pnv_dt_bmc_sensors(pnv->bmc, fdt);
558     }
559 
560     /* Create an extra node for power management on machines that support it */
561     if (pmc->dt_power_mgt) {
562         pmc->dt_power_mgt(pnv, fdt);
563     }
564 
565     return fdt;
566 }
567 
568 static void pnv_powerdown_notify(Notifier *n, void *opaque)
569 {
570     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
571 
572     if (pnv->bmc) {
573         pnv_bmc_powerdown(pnv->bmc);
574     }
575 }
576 
577 static void pnv_reset(MachineState *machine)
578 {
579     PnvMachineState *pnv = PNV_MACHINE(machine);
580     IPMIBmc *bmc;
581     void *fdt;
582 
583     qemu_devices_reset();
584 
585     /*
586      * The machine should provide by default an internal BMC simulator.
587      * If not, try to use the BMC device that was provided on the command
588      * line.
589      */
590     bmc = pnv_bmc_find(&error_fatal);
591     if (!pnv->bmc) {
592         if (!bmc) {
593             if (!qtest_enabled()) {
594                 warn_report("machine has no BMC device. Use '-device "
595                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
596                             "to define one");
597             }
598         } else {
599             pnv_bmc_set_pnor(bmc, pnv->pnor);
600             pnv->bmc = bmc;
601         }
602     }
603 
604     fdt = pnv_dt_create(machine);
605 
606     /* Pack resulting tree */
607     _FDT((fdt_pack(fdt)));
608 
609     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
610     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
611 
612     g_free(fdt);
613 }
614 
615 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
616 {
617     Pnv8Chip *chip8 = PNV8_CHIP(chip);
618     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
619 }
620 
621 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
622 {
623     Pnv8Chip *chip8 = PNV8_CHIP(chip);
624     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
625 }
626 
627 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
628 {
629     Pnv9Chip *chip9 = PNV9_CHIP(chip);
630     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
631 }
632 
633 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
634 {
635     Pnv10Chip *chip10 = PNV10_CHIP(chip);
636     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
637 }
638 
639 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
640 {
641     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
642 }
643 
644 static int pnv_chip_power8_pic_print_info_child(Object *child, void *opaque)
645 {
646     Monitor *mon = opaque;
647     PnvPHB3 *phb3 = (PnvPHB3 *) object_dynamic_cast(child, TYPE_PNV_PHB3);
648 
649     if (phb3) {
650         pnv_phb3_msi_pic_print_info(&phb3->msis, mon);
651         ics_pic_print_info(&phb3->lsis, mon);
652     }
653     return 0;
654 }
655 
656 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
657 {
658     Pnv8Chip *chip8 = PNV8_CHIP(chip);
659 
660     ics_pic_print_info(&chip8->psi.ics, mon);
661     object_child_foreach(OBJECT(chip),
662                          pnv_chip_power8_pic_print_info_child, mon);
663 }
664 
665 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
666 {
667     Monitor *mon = opaque;
668     PnvPHB4 *phb4 = (PnvPHB4 *) object_dynamic_cast(child, TYPE_PNV_PHB4);
669 
670     if (phb4) {
671         pnv_phb4_pic_print_info(phb4, mon);
672     }
673     return 0;
674 }
675 
676 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
677 {
678     Pnv9Chip *chip9 = PNV9_CHIP(chip);
679 
680     pnv_xive_pic_print_info(&chip9->xive, mon);
681     pnv_psi_pic_print_info(&chip9->psi, mon);
682 
683     object_child_foreach_recursive(OBJECT(chip),
684                          pnv_chip_power9_pic_print_info_child, mon);
685 }
686 
687 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
688                                                 uint32_t core_id)
689 {
690     return PNV_XSCOM_EX_BASE(core_id);
691 }
692 
693 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
694                                                 uint32_t core_id)
695 {
696     return PNV9_XSCOM_EC_BASE(core_id);
697 }
698 
699 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
700                                                  uint32_t core_id)
701 {
702     return PNV10_XSCOM_EC_BASE(core_id);
703 }
704 
705 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
706 {
707     PowerPCCPUClass *ppc_default =
708         POWERPC_CPU_CLASS(object_class_by_name(default_type));
709     PowerPCCPUClass *ppc =
710         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
711 
712     return ppc_default->pvr_match(ppc_default, ppc->pvr);
713 }
714 
715 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
716 {
717     ISADevice *dev = isa_new("isa-ipmi-bt");
718 
719     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
720     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
721     isa_realize_and_unref(dev, bus, &error_fatal);
722 }
723 
724 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
725 {
726     Pnv10Chip *chip10 = PNV10_CHIP(chip);
727 
728     pnv_xive2_pic_print_info(&chip10->xive, mon);
729     pnv_psi_pic_print_info(&chip10->psi, mon);
730 
731     object_child_foreach_recursive(OBJECT(chip),
732                          pnv_chip_power9_pic_print_info_child, mon);
733 }
734 
735 /* Always give the first 1GB to chip 0 else we won't boot */
736 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
737 {
738     MachineState *machine = MACHINE(pnv);
739     uint64_t ram_per_chip;
740 
741     assert(machine->ram_size >= 1 * GiB);
742 
743     ram_per_chip = machine->ram_size / pnv->num_chips;
744     if (ram_per_chip >= 1 * GiB) {
745         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
746     }
747 
748     assert(pnv->num_chips > 1);
749 
750     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
751     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
752 }
753 
754 static void pnv_init(MachineState *machine)
755 {
756     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
757     PnvMachineState *pnv = PNV_MACHINE(machine);
758     MachineClass *mc = MACHINE_GET_CLASS(machine);
759     char *fw_filename;
760     long fw_size;
761     uint64_t chip_ram_start = 0;
762     int i;
763     char *chip_typename;
764     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
765     DeviceState *dev;
766 
767     if (kvm_enabled()) {
768         error_report("The powernv machine does not work with KVM acceleration");
769         exit(EXIT_FAILURE);
770     }
771 
772     /* allocate RAM */
773     if (machine->ram_size < mc->default_ram_size) {
774         char *sz = size_to_str(mc->default_ram_size);
775         error_report("Invalid RAM size, should be bigger than %s", sz);
776         g_free(sz);
777         exit(EXIT_FAILURE);
778     }
779     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
780 
781     /*
782      * Create our simple PNOR device
783      */
784     dev = qdev_new(TYPE_PNV_PNOR);
785     if (pnor) {
786         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
787     }
788     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
789     pnv->pnor = PNV_PNOR(dev);
790 
791     /* load skiboot firmware  */
792     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
793     if (!fw_filename) {
794         error_report("Could not find OPAL firmware '%s'", bios_name);
795         exit(1);
796     }
797 
798     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
799     if (fw_size < 0) {
800         error_report("Could not load OPAL firmware '%s'", fw_filename);
801         exit(1);
802     }
803     g_free(fw_filename);
804 
805     /* load kernel */
806     if (machine->kernel_filename) {
807         long kernel_size;
808 
809         kernel_size = load_image_targphys(machine->kernel_filename,
810                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
811         if (kernel_size < 0) {
812             error_report("Could not load kernel '%s'",
813                          machine->kernel_filename);
814             exit(1);
815         }
816     }
817 
818     /* load initrd */
819     if (machine->initrd_filename) {
820         pnv->initrd_base = INITRD_LOAD_ADDR;
821         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
822                                   pnv->initrd_base, INITRD_MAX_SIZE);
823         if (pnv->initrd_size < 0) {
824             error_report("Could not load initial ram disk '%s'",
825                          machine->initrd_filename);
826             exit(1);
827         }
828     }
829 
830     /* MSIs are supported on this platform */
831     msi_nonbroken = true;
832 
833     /*
834      * Check compatibility of the specified CPU with the machine
835      * default.
836      */
837     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
838         error_report("invalid CPU model '%s' for %s machine",
839                      machine->cpu_type, mc->name);
840         exit(1);
841     }
842 
843     /* Create the processor chips */
844     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
845     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
846                                     i, machine->cpu_type);
847     if (!object_class_by_name(chip_typename)) {
848         error_report("invalid chip model '%.*s' for %s machine",
849                      i, machine->cpu_type, mc->name);
850         exit(1);
851     }
852 
853     pnv->num_chips =
854         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
855     /*
856      * TODO: should we decide on how many chips we can create based
857      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
858      */
859     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
860         error_report("invalid number of chips: '%d'", pnv->num_chips);
861         error_printf(
862             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
863         exit(1);
864     }
865 
866     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
867     for (i = 0; i < pnv->num_chips; i++) {
868         char chip_name[32];
869         Object *chip = OBJECT(qdev_new(chip_typename));
870         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
871 
872         pnv->chips[i] = PNV_CHIP(chip);
873 
874         /* Distribute RAM among the chips  */
875         object_property_set_int(chip, "ram-start", chip_ram_start,
876                                 &error_fatal);
877         object_property_set_int(chip, "ram-size", chip_ram_size,
878                                 &error_fatal);
879         chip_ram_start += chip_ram_size;
880 
881         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
882         object_property_add_child(OBJECT(pnv), chip_name, chip);
883         object_property_set_int(chip, "chip-id", i, &error_fatal);
884         object_property_set_int(chip, "nr-cores", machine->smp.cores,
885                                 &error_fatal);
886         object_property_set_int(chip, "nr-threads", machine->smp.threads,
887                                 &error_fatal);
888         /*
889          * The POWER8 machine use the XICS interrupt interface.
890          * Propagate the XICS fabric to the chip and its controllers.
891          */
892         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
893             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
894         }
895         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
896             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
897                                      &error_abort);
898         }
899         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
900     }
901     g_free(chip_typename);
902 
903     /* Instantiate ISA bus on chip 0 */
904     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
905 
906     /* Create serial port */
907     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
908 
909     /* Create an RTC ISA device too */
910     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
911 
912     /*
913      * Create the machine BMC simulator and the IPMI BT device for
914      * communication with the BMC
915      */
916     if (defaults_enabled()) {
917         pnv->bmc = pnv_bmc_create(pnv->pnor);
918         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
919     }
920 
921     /*
922      * The PNOR is mapped on the LPC FW address space by the BMC.
923      * Since we can not reach the remote BMC machine with LPC memops,
924      * map it always for now.
925      */
926     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
927                                 &pnv->pnor->mmio);
928 
929     /*
930      * OpenPOWER systems use a IPMI SEL Event message to notify the
931      * host to powerdown
932      */
933     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
934     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
935 }
936 
937 /*
938  *    0:21  Reserved - Read as zeros
939  *   22:24  Chip ID
940  *   25:28  Core number
941  *   29:31  Thread ID
942  */
943 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
944 {
945     return (chip->chip_id << 7) | (core_id << 3);
946 }
947 
948 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
949                                         Error **errp)
950 {
951     Pnv8Chip *chip8 = PNV8_CHIP(chip);
952     Error *local_err = NULL;
953     Object *obj;
954     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
955 
956     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
957     if (local_err) {
958         error_propagate(errp, local_err);
959         return;
960     }
961 
962     pnv_cpu->intc = obj;
963 }
964 
965 
966 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
967 {
968     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
969 
970     icp_reset(ICP(pnv_cpu->intc));
971 }
972 
973 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
974 {
975     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
976 
977     icp_destroy(ICP(pnv_cpu->intc));
978     pnv_cpu->intc = NULL;
979 }
980 
981 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
982                                             Monitor *mon)
983 {
984     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
985 }
986 
987 /*
988  *    0:48  Reserved - Read as zeroes
989  *   49:52  Node ID
990  *   53:55  Chip ID
991  *   56     Reserved - Read as zero
992  *   57:61  Core number
993  *   62:63  Thread ID
994  *
995  * We only care about the lower bits. uint32_t is fine for the moment.
996  */
997 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
998 {
999     return (chip->chip_id << 8) | (core_id << 2);
1000 }
1001 
1002 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
1003 {
1004     return (chip->chip_id << 8) | (core_id << 2);
1005 }
1006 
1007 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1008                                         Error **errp)
1009 {
1010     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1011     Error *local_err = NULL;
1012     Object *obj;
1013     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1014 
1015     /*
1016      * The core creates its interrupt presenter but the XIVE interrupt
1017      * controller object is initialized afterwards. Hopefully, it's
1018      * only used at runtime.
1019      */
1020     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1021                            &local_err);
1022     if (local_err) {
1023         error_propagate(errp, local_err);
1024         return;
1025     }
1026 
1027     pnv_cpu->intc = obj;
1028 }
1029 
1030 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1031 {
1032     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1033 
1034     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1035 }
1036 
1037 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1038 {
1039     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1040 
1041     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1042     pnv_cpu->intc = NULL;
1043 }
1044 
1045 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1046                                             Monitor *mon)
1047 {
1048     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1049 }
1050 
1051 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1052                                         Error **errp)
1053 {
1054     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1055     Error *local_err = NULL;
1056     Object *obj;
1057     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1058 
1059     /*
1060      * The core creates its interrupt presenter but the XIVE2 interrupt
1061      * controller object is initialized afterwards. Hopefully, it's
1062      * only used at runtime.
1063      */
1064     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1065                            &local_err);
1066     if (local_err) {
1067         error_propagate(errp, local_err);
1068         return;
1069     }
1070 
1071     pnv_cpu->intc = obj;
1072 }
1073 
1074 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1075 {
1076     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1077 
1078     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1079 }
1080 
1081 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1082 {
1083     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1084 
1085     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1086     pnv_cpu->intc = NULL;
1087 }
1088 
1089 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1090                                              Monitor *mon)
1091 {
1092     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1093 }
1094 
1095 /*
1096  * Allowed core identifiers on a POWER8 Processor Chip :
1097  *
1098  * <EX0 reserved>
1099  *  EX1  - Venice only
1100  *  EX2  - Venice only
1101  *  EX3  - Venice only
1102  *  EX4
1103  *  EX5
1104  *  EX6
1105  * <EX7,8 reserved> <reserved>
1106  *  EX9  - Venice only
1107  *  EX10 - Venice only
1108  *  EX11 - Venice only
1109  *  EX12
1110  *  EX13
1111  *  EX14
1112  * <EX15 reserved>
1113  */
1114 #define POWER8E_CORE_MASK  (0x7070ull)
1115 #define POWER8_CORE_MASK   (0x7e7eull)
1116 
1117 /*
1118  * POWER9 has 24 cores, ids starting at 0x0
1119  */
1120 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1121 
1122 
1123 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1124 
1125 static void pnv_chip_power8_instance_init(Object *obj)
1126 {
1127     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1128     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1129     int i;
1130 
1131     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1132                              (Object **)&chip8->xics,
1133                              object_property_allow_set_link,
1134                              OBJ_PROP_LINK_STRONG);
1135 
1136     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1137 
1138     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1139 
1140     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1141 
1142     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1143 
1144     chip8->num_phbs = pcc->num_phbs;
1145 
1146     for (i = 0; i < chip8->num_phbs; i++) {
1147         object_initialize_child(obj, "phb[*]", &chip8->phbs[i], TYPE_PNV_PHB3);
1148     }
1149 
1150 }
1151 
1152 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1153  {
1154     PnvChip *chip = PNV_CHIP(chip8);
1155     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1156     int i, j;
1157     char *name;
1158 
1159     name = g_strdup_printf("icp-%x", chip->chip_id);
1160     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1161     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1162     g_free(name);
1163 
1164     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1165 
1166     /* Map the ICP registers for each thread */
1167     for (i = 0; i < chip->nr_cores; i++) {
1168         PnvCore *pnv_core = chip->cores[i];
1169         int core_hwid = CPU_CORE(pnv_core)->core_id;
1170 
1171         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1172             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1173             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1174 
1175             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1176                                         &icp->mmio);
1177         }
1178     }
1179 }
1180 
1181 /* Attach a root port device */
1182 void pnv_phb_attach_root_port(PCIHostState *pci, const char *name)
1183 {
1184     PCIDevice *root = pci_new(PCI_DEVFN(0, 0), name);
1185 
1186     pci_realize_and_unref(root, pci->bus, &error_fatal);
1187 }
1188 
1189 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1190 {
1191     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1192     PnvChip *chip = PNV_CHIP(dev);
1193     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1194     Pnv8Psi *psi8 = &chip8->psi;
1195     Error *local_err = NULL;
1196     int i;
1197 
1198     assert(chip8->xics);
1199 
1200     /* XSCOM bridge is first */
1201     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1202     if (local_err) {
1203         error_propagate(errp, local_err);
1204         return;
1205     }
1206     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1207 
1208     pcc->parent_realize(dev, &local_err);
1209     if (local_err) {
1210         error_propagate(errp, local_err);
1211         return;
1212     }
1213 
1214     /* Processor Service Interface (PSI) Host Bridge */
1215     object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip),
1216                             &error_fatal);
1217     object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS,
1218                              OBJECT(chip8->xics), &error_abort);
1219     if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) {
1220         return;
1221     }
1222     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1223                             &PNV_PSI(psi8)->xscom_regs);
1224 
1225     /* Create LPC controller */
1226     object_property_set_link(OBJECT(&chip8->lpc), "psi", OBJECT(&chip8->psi),
1227                              &error_abort);
1228     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1229     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1230 
1231     chip->fw_mr = &chip8->lpc.isa_fw;
1232     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1233                                             (uint64_t) PNV_XSCOM_BASE(chip),
1234                                             PNV_XSCOM_LPC_BASE);
1235 
1236     /*
1237      * Interrupt Management Area. This is the memory region holding
1238      * all the Interrupt Control Presenter (ICP) registers
1239      */
1240     pnv_chip_icp_realize(chip8, &local_err);
1241     if (local_err) {
1242         error_propagate(errp, local_err);
1243         return;
1244     }
1245 
1246     /* Create the simplified OCC model */
1247     object_property_set_link(OBJECT(&chip8->occ), "psi", OBJECT(&chip8->psi),
1248                              &error_abort);
1249     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1250         return;
1251     }
1252     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1253 
1254     /* OCC SRAM model */
1255     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1256                                 &chip8->occ.sram_regs);
1257 
1258     /* HOMER */
1259     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1260                              &error_abort);
1261     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1262         return;
1263     }
1264     /* Homer Xscom region */
1265     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1266 
1267     /* Homer mmio region */
1268     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1269                                 &chip8->homer.regs);
1270 
1271     /* PHB3 controllers */
1272     for (i = 0; i < chip8->num_phbs; i++) {
1273         PnvPHB3 *phb = &chip8->phbs[i];
1274 
1275         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1276         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1277                                 &error_fatal);
1278         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1279                                  &error_fatal);
1280         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1281             return;
1282         }
1283     }
1284 }
1285 
1286 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1287 {
1288     addr &= (PNV_XSCOM_SIZE - 1);
1289     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1290 }
1291 
1292 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1293 {
1294     DeviceClass *dc = DEVICE_CLASS(klass);
1295     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1296 
1297     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1298     k->cores_mask = POWER8E_CORE_MASK;
1299     k->num_phbs = 3;
1300     k->core_pir = pnv_chip_core_pir_p8;
1301     k->intc_create = pnv_chip_power8_intc_create;
1302     k->intc_reset = pnv_chip_power8_intc_reset;
1303     k->intc_destroy = pnv_chip_power8_intc_destroy;
1304     k->intc_print_info = pnv_chip_power8_intc_print_info;
1305     k->isa_create = pnv_chip_power8_isa_create;
1306     k->dt_populate = pnv_chip_power8_dt_populate;
1307     k->pic_print_info = pnv_chip_power8_pic_print_info;
1308     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1309     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1310     dc->desc = "PowerNV Chip POWER8E";
1311 
1312     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1313                                     &k->parent_realize);
1314 }
1315 
1316 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1317 {
1318     DeviceClass *dc = DEVICE_CLASS(klass);
1319     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1320 
1321     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1322     k->cores_mask = POWER8_CORE_MASK;
1323     k->num_phbs = 3;
1324     k->core_pir = pnv_chip_core_pir_p8;
1325     k->intc_create = pnv_chip_power8_intc_create;
1326     k->intc_reset = pnv_chip_power8_intc_reset;
1327     k->intc_destroy = pnv_chip_power8_intc_destroy;
1328     k->intc_print_info = pnv_chip_power8_intc_print_info;
1329     k->isa_create = pnv_chip_power8_isa_create;
1330     k->dt_populate = pnv_chip_power8_dt_populate;
1331     k->pic_print_info = pnv_chip_power8_pic_print_info;
1332     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1333     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1334     dc->desc = "PowerNV Chip POWER8";
1335 
1336     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1337                                     &k->parent_realize);
1338 }
1339 
1340 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1341 {
1342     DeviceClass *dc = DEVICE_CLASS(klass);
1343     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1344 
1345     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1346     k->cores_mask = POWER8_CORE_MASK;
1347     k->num_phbs = 4;
1348     k->core_pir = pnv_chip_core_pir_p8;
1349     k->intc_create = pnv_chip_power8_intc_create;
1350     k->intc_reset = pnv_chip_power8_intc_reset;
1351     k->intc_destroy = pnv_chip_power8_intc_destroy;
1352     k->intc_print_info = pnv_chip_power8_intc_print_info;
1353     k->isa_create = pnv_chip_power8nvl_isa_create;
1354     k->dt_populate = pnv_chip_power8_dt_populate;
1355     k->pic_print_info = pnv_chip_power8_pic_print_info;
1356     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1357     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1358     dc->desc = "PowerNV Chip POWER8NVL";
1359 
1360     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1361                                     &k->parent_realize);
1362 }
1363 
1364 static void pnv_chip_power9_instance_init(Object *obj)
1365 {
1366     PnvChip *chip = PNV_CHIP(obj);
1367     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1368     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1369     int i;
1370 
1371     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1372     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1373                               "xive-fabric");
1374 
1375     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1376 
1377     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1378 
1379     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1380 
1381     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1382 
1383     /* Number of PECs is the chip default */
1384     chip->num_pecs = pcc->num_pecs;
1385 
1386     for (i = 0; i < chip->num_pecs; i++) {
1387         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1388                                 TYPE_PNV_PHB4_PEC);
1389     }
1390 }
1391 
1392 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1393                                       PnvCore *pnv_core)
1394 {
1395     char eq_name[32];
1396     int core_id = CPU_CORE(pnv_core)->core_id;
1397 
1398     snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1399     object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1400                                        sizeof(*eq), TYPE_PNV_QUAD,
1401                                        &error_fatal, NULL);
1402 
1403     object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1404     qdev_realize(DEVICE(eq), NULL, &error_fatal);
1405 }
1406 
1407 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1408 {
1409     PnvChip *chip = PNV_CHIP(chip9);
1410     int i;
1411 
1412     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1413     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1414 
1415     for (i = 0; i < chip9->nr_quads; i++) {
1416         PnvQuad *eq = &chip9->quads[i];
1417 
1418         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4]);
1419 
1420         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1421                                 &eq->xscom_regs);
1422     }
1423 }
1424 
1425 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1426 {
1427     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1428     int i;
1429 
1430     for (i = 0; i < chip->num_pecs; i++) {
1431         PnvPhb4PecState *pec = &chip9->pecs[i];
1432         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1433         uint32_t pec_nest_base;
1434         uint32_t pec_pci_base;
1435 
1436         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1437         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1438                                 &error_fatal);
1439         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1440                                  &error_fatal);
1441         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1442             return;
1443         }
1444 
1445         pec_nest_base = pecc->xscom_nest_base(pec);
1446         pec_pci_base = pecc->xscom_pci_base(pec);
1447 
1448         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1449         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1450     }
1451 }
1452 
1453 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1454 {
1455     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1456     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1457     PnvChip *chip = PNV_CHIP(dev);
1458     Pnv9Psi *psi9 = &chip9->psi;
1459     Error *local_err = NULL;
1460 
1461     /* XSCOM bridge is first */
1462     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1463     if (local_err) {
1464         error_propagate(errp, local_err);
1465         return;
1466     }
1467     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1468 
1469     pcc->parent_realize(dev, &local_err);
1470     if (local_err) {
1471         error_propagate(errp, local_err);
1472         return;
1473     }
1474 
1475     pnv_chip_quad_realize(chip9, &local_err);
1476     if (local_err) {
1477         error_propagate(errp, local_err);
1478         return;
1479     }
1480 
1481     /* XIVE interrupt controller (POWER9) */
1482     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1483                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1484     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1485                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1486     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1487                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1488     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1489                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1490     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1491                              &error_abort);
1492     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1493         return;
1494     }
1495     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1496                             &chip9->xive.xscom_regs);
1497 
1498     /* Processor Service Interface (PSI) Host Bridge */
1499     object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip),
1500                             &error_fatal);
1501     /* This is the only device with 4k ESB pages */
1502     object_property_set_int(OBJECT(&chip9->psi), "shift", XIVE_ESB_4K,
1503                             &error_fatal);
1504     if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) {
1505         return;
1506     }
1507     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1508                             &PNV_PSI(psi9)->xscom_regs);
1509 
1510     /* LPC */
1511     object_property_set_link(OBJECT(&chip9->lpc), "psi", OBJECT(&chip9->psi),
1512                              &error_abort);
1513     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1514         return;
1515     }
1516     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1517                                 &chip9->lpc.xscom_regs);
1518 
1519     chip->fw_mr = &chip9->lpc.isa_fw;
1520     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1521                                             (uint64_t) PNV9_LPCM_BASE(chip));
1522 
1523     /* Create the simplified OCC model */
1524     object_property_set_link(OBJECT(&chip9->occ), "psi", OBJECT(&chip9->psi),
1525                              &error_abort);
1526     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1527         return;
1528     }
1529     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1530 
1531     /* OCC SRAM model */
1532     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1533                                 &chip9->occ.sram_regs);
1534 
1535     /* HOMER */
1536     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1537                              &error_abort);
1538     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1539         return;
1540     }
1541     /* Homer Xscom region */
1542     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1543 
1544     /* Homer mmio region */
1545     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1546                                 &chip9->homer.regs);
1547 
1548     /* PEC PHBs */
1549     pnv_chip_power9_pec_realize(chip, &local_err);
1550     if (local_err) {
1551         error_propagate(errp, local_err);
1552         return;
1553     }
1554 }
1555 
1556 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1557 {
1558     addr &= (PNV9_XSCOM_SIZE - 1);
1559     return addr >> 3;
1560 }
1561 
1562 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1563 {
1564     DeviceClass *dc = DEVICE_CLASS(klass);
1565     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1566 
1567     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1568     k->cores_mask = POWER9_CORE_MASK;
1569     k->core_pir = pnv_chip_core_pir_p9;
1570     k->intc_create = pnv_chip_power9_intc_create;
1571     k->intc_reset = pnv_chip_power9_intc_reset;
1572     k->intc_destroy = pnv_chip_power9_intc_destroy;
1573     k->intc_print_info = pnv_chip_power9_intc_print_info;
1574     k->isa_create = pnv_chip_power9_isa_create;
1575     k->dt_populate = pnv_chip_power9_dt_populate;
1576     k->pic_print_info = pnv_chip_power9_pic_print_info;
1577     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1578     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1579     dc->desc = "PowerNV Chip POWER9";
1580     k->num_pecs = PNV9_CHIP_MAX_PEC;
1581 
1582     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1583                                     &k->parent_realize);
1584 }
1585 
1586 static void pnv_chip_power10_instance_init(Object *obj)
1587 {
1588     PnvChip *chip = PNV_CHIP(obj);
1589     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1590     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1591     int i;
1592 
1593     object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1594     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1595                               "xive-fabric");
1596     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1597     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1598     object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
1599     object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1600 
1601     chip->num_pecs = pcc->num_pecs;
1602 
1603     for (i = 0; i < chip->num_pecs; i++) {
1604         object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1605                                 TYPE_PNV_PHB5_PEC);
1606     }
1607 }
1608 
1609 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
1610 {
1611     PnvChip *chip = PNV_CHIP(chip10);
1612     int i;
1613 
1614     chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1615     chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
1616 
1617     for (i = 0; i < chip10->nr_quads; i++) {
1618         PnvQuad *eq = &chip10->quads[i];
1619 
1620         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4]);
1621 
1622         pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
1623                                 &eq->xscom_regs);
1624     }
1625 }
1626 
1627 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
1628 {
1629     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1630     int i;
1631 
1632     for (i = 0; i < chip->num_pecs; i++) {
1633         PnvPhb4PecState *pec = &chip10->pecs[i];
1634         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1635         uint32_t pec_nest_base;
1636         uint32_t pec_pci_base;
1637 
1638         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1639         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1640                                 &error_fatal);
1641         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1642                                  &error_fatal);
1643         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1644             return;
1645         }
1646 
1647         pec_nest_base = pecc->xscom_nest_base(pec);
1648         pec_pci_base = pecc->xscom_pci_base(pec);
1649 
1650         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1651         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1652     }
1653 }
1654 
1655 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1656 {
1657     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1658     PnvChip *chip = PNV_CHIP(dev);
1659     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1660     Error *local_err = NULL;
1661 
1662     /* XSCOM bridge is first */
1663     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1664     if (local_err) {
1665         error_propagate(errp, local_err);
1666         return;
1667     }
1668     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1669 
1670     pcc->parent_realize(dev, &local_err);
1671     if (local_err) {
1672         error_propagate(errp, local_err);
1673         return;
1674     }
1675 
1676     pnv_chip_power10_quad_realize(chip10, &local_err);
1677     if (local_err) {
1678         error_propagate(errp, local_err);
1679         return;
1680     }
1681 
1682     /* XIVE2 interrupt controller (POWER10) */
1683     object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
1684                             PNV10_XIVE2_IC_BASE(chip), &error_fatal);
1685     object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
1686                             PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
1687     object_property_set_int(OBJECT(&chip10->xive), "end-bar",
1688                             PNV10_XIVE2_END_BASE(chip), &error_fatal);
1689     object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
1690                             PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
1691     object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
1692                             PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
1693     object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
1694                             PNV10_XIVE2_TM_BASE(chip), &error_fatal);
1695     object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
1696                              &error_abort);
1697     if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
1698         return;
1699     }
1700     pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
1701                             &chip10->xive.xscom_regs);
1702 
1703     /* Processor Service Interface (PSI) Host Bridge */
1704     object_property_set_int(OBJECT(&chip10->psi), "bar",
1705                             PNV10_PSIHB_BASE(chip), &error_fatal);
1706     /* PSI can now be configured to use 64k ESB pages on POWER10 */
1707     object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
1708                             &error_fatal);
1709     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1710         return;
1711     }
1712     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1713                             &PNV_PSI(&chip10->psi)->xscom_regs);
1714 
1715     /* LPC */
1716     object_property_set_link(OBJECT(&chip10->lpc), "psi",
1717                              OBJECT(&chip10->psi), &error_abort);
1718     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1719         return;
1720     }
1721     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1722                                 &chip10->lpc.xscom_regs);
1723 
1724     chip->fw_mr = &chip10->lpc.isa_fw;
1725     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1726                                             (uint64_t) PNV10_LPCM_BASE(chip));
1727 
1728     /* Create the simplified OCC model */
1729     object_property_set_link(OBJECT(&chip10->occ), "psi", OBJECT(&chip10->psi),
1730                              &error_abort);
1731     if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
1732         return;
1733     }
1734     pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
1735                             &chip10->occ.xscom_regs);
1736 
1737     /* OCC SRAM model */
1738     memory_region_add_subregion(get_system_memory(),
1739                                 PNV10_OCC_SENSOR_BASE(chip),
1740                                 &chip10->occ.sram_regs);
1741 
1742     /* HOMER */
1743     object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
1744                              &error_abort);
1745     if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
1746         return;
1747     }
1748     /* Homer Xscom region */
1749     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
1750                             &chip10->homer.pba_regs);
1751 
1752     /* Homer mmio region */
1753     memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
1754                                 &chip10->homer.regs);
1755 
1756     /* PHBs */
1757     pnv_chip_power10_phb_realize(chip, &local_err);
1758     if (local_err) {
1759         error_propagate(errp, local_err);
1760         return;
1761     }
1762 }
1763 
1764 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1765 {
1766     addr &= (PNV10_XSCOM_SIZE - 1);
1767     return addr >> 3;
1768 }
1769 
1770 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1771 {
1772     DeviceClass *dc = DEVICE_CLASS(klass);
1773     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1774 
1775     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1776     k->cores_mask = POWER10_CORE_MASK;
1777     k->core_pir = pnv_chip_core_pir_p10;
1778     k->intc_create = pnv_chip_power10_intc_create;
1779     k->intc_reset = pnv_chip_power10_intc_reset;
1780     k->intc_destroy = pnv_chip_power10_intc_destroy;
1781     k->intc_print_info = pnv_chip_power10_intc_print_info;
1782     k->isa_create = pnv_chip_power10_isa_create;
1783     k->dt_populate = pnv_chip_power10_dt_populate;
1784     k->pic_print_info = pnv_chip_power10_pic_print_info;
1785     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1786     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1787     dc->desc = "PowerNV Chip POWER10";
1788     k->num_pecs = PNV10_CHIP_MAX_PEC;
1789 
1790     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1791                                     &k->parent_realize);
1792 }
1793 
1794 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1795 {
1796     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1797     int cores_max;
1798 
1799     /*
1800      * No custom mask for this chip, let's use the default one from *
1801      * the chip class
1802      */
1803     if (!chip->cores_mask) {
1804         chip->cores_mask = pcc->cores_mask;
1805     }
1806 
1807     /* filter alien core ids ! some are reserved */
1808     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1809         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1810                    chip->cores_mask);
1811         return;
1812     }
1813     chip->cores_mask &= pcc->cores_mask;
1814 
1815     /* now that we have a sane layout, let check the number of cores */
1816     cores_max = ctpop64(chip->cores_mask);
1817     if (chip->nr_cores > cores_max) {
1818         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1819                    cores_max);
1820         return;
1821     }
1822 }
1823 
1824 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1825 {
1826     Error *error = NULL;
1827     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1828     const char *typename = pnv_chip_core_typename(chip);
1829     int i, core_hwid;
1830     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1831 
1832     if (!object_class_by_name(typename)) {
1833         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1834         return;
1835     }
1836 
1837     /* Cores */
1838     pnv_chip_core_sanitize(chip, &error);
1839     if (error) {
1840         error_propagate(errp, error);
1841         return;
1842     }
1843 
1844     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1845 
1846     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1847              && (i < chip->nr_cores); core_hwid++) {
1848         char core_name[32];
1849         PnvCore *pnv_core;
1850         uint64_t xscom_core_base;
1851 
1852         if (!(chip->cores_mask & (1ull << core_hwid))) {
1853             continue;
1854         }
1855 
1856         pnv_core = PNV_CORE(object_new(typename));
1857 
1858         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1859         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1860         chip->cores[i] = pnv_core;
1861         object_property_set_int(OBJECT(pnv_core), "nr-threads",
1862                                 chip->nr_threads, &error_fatal);
1863         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
1864                                 core_hwid, &error_fatal);
1865         object_property_set_int(OBJECT(pnv_core), "pir",
1866                                 pcc->core_pir(chip, core_hwid), &error_fatal);
1867         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
1868                                 &error_fatal);
1869         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
1870                                  &error_abort);
1871         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
1872 
1873         /* Each core has an XSCOM MMIO region */
1874         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1875 
1876         pnv_xscom_add_subregion(chip, xscom_core_base,
1877                                 &pnv_core->xscom_regs);
1878         i++;
1879     }
1880 }
1881 
1882 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1883 {
1884     PnvChip *chip = PNV_CHIP(dev);
1885     Error *error = NULL;
1886 
1887     /* Cores */
1888     pnv_chip_core_realize(chip, &error);
1889     if (error) {
1890         error_propagate(errp, error);
1891         return;
1892     }
1893 }
1894 
1895 static Property pnv_chip_properties[] = {
1896     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1897     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1898     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1899     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1900     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1901     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1902     DEFINE_PROP_END_OF_LIST(),
1903 };
1904 
1905 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1906 {
1907     DeviceClass *dc = DEVICE_CLASS(klass);
1908 
1909     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1910     dc->realize = pnv_chip_realize;
1911     device_class_set_props(dc, pnv_chip_properties);
1912     dc->desc = "PowerNV Chip";
1913 }
1914 
1915 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1916 {
1917     int i, j;
1918 
1919     for (i = 0; i < chip->nr_cores; i++) {
1920         PnvCore *pc = chip->cores[i];
1921         CPUCore *cc = CPU_CORE(pc);
1922 
1923         for (j = 0; j < cc->nr_threads; j++) {
1924             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1925                 return pc->threads[j];
1926             }
1927         }
1928     }
1929     return NULL;
1930 }
1931 
1932 typedef struct ForeachPhb3Args {
1933     int irq;
1934     ICSState *ics;
1935 } ForeachPhb3Args;
1936 
1937 static int pnv_ics_get_child(Object *child, void *opaque)
1938 {
1939     ForeachPhb3Args *args = opaque;
1940     PnvPHB3 *phb3 = (PnvPHB3 *) object_dynamic_cast(child, TYPE_PNV_PHB3);
1941 
1942     if (phb3) {
1943         if (ics_valid_irq(&phb3->lsis, args->irq)) {
1944             args->ics = &phb3->lsis;
1945         }
1946         if (ics_valid_irq(ICS(&phb3->msis), args->irq)) {
1947             args->ics = ICS(&phb3->msis);
1948         }
1949     }
1950     return args->ics ? 1 : 0;
1951 }
1952 
1953 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1954 {
1955     PnvMachineState *pnv = PNV_MACHINE(xi);
1956     ForeachPhb3Args args = { irq, NULL };
1957     int i;
1958 
1959     for (i = 0; i < pnv->num_chips; i++) {
1960         PnvChip *chip = pnv->chips[i];
1961         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1962 
1963         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1964             return &chip8->psi.ics;
1965         }
1966 
1967         object_child_foreach(OBJECT(chip), pnv_ics_get_child, &args);
1968         if (args.ics) {
1969             return args.ics;
1970         }
1971     }
1972     return NULL;
1973 }
1974 
1975 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
1976 {
1977     int i;
1978 
1979     for (i = 0; i < pnv->num_chips; i++) {
1980         PnvChip *chip = pnv->chips[i];
1981         if (chip->chip_id == chip_id) {
1982             return chip;
1983         }
1984     }
1985     return NULL;
1986 }
1987 
1988 static int pnv_ics_resend_child(Object *child, void *opaque)
1989 {
1990     PnvPHB3 *phb3 = (PnvPHB3 *) object_dynamic_cast(child, TYPE_PNV_PHB3);
1991 
1992     if (phb3) {
1993         ics_resend(&phb3->lsis);
1994         ics_resend(ICS(&phb3->msis));
1995     }
1996     return 0;
1997 }
1998 
1999 static void pnv_ics_resend(XICSFabric *xi)
2000 {
2001     PnvMachineState *pnv = PNV_MACHINE(xi);
2002     int i;
2003 
2004     for (i = 0; i < pnv->num_chips; i++) {
2005         PnvChip *chip = pnv->chips[i];
2006         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2007 
2008         ics_resend(&chip8->psi.ics);
2009         object_child_foreach(OBJECT(chip), pnv_ics_resend_child, NULL);
2010     }
2011 }
2012 
2013 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2014 {
2015     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2016 
2017     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2018 }
2019 
2020 static void pnv_pic_print_info(InterruptStatsProvider *obj,
2021                                Monitor *mon)
2022 {
2023     PnvMachineState *pnv = PNV_MACHINE(obj);
2024     int i;
2025     CPUState *cs;
2026 
2027     CPU_FOREACH(cs) {
2028         PowerPCCPU *cpu = POWERPC_CPU(cs);
2029 
2030         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
2031         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
2032                                                            mon);
2033     }
2034 
2035     for (i = 0; i < pnv->num_chips; i++) {
2036         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
2037     }
2038 }
2039 
2040 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2041                          uint8_t nvt_blk, uint32_t nvt_idx,
2042                          bool cam_ignore, uint8_t priority,
2043                          uint32_t logic_serv,
2044                          XiveTCTXMatch *match)
2045 {
2046     PnvMachineState *pnv = PNV_MACHINE(xfb);
2047     int total_count = 0;
2048     int i;
2049 
2050     for (i = 0; i < pnv->num_chips; i++) {
2051         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2052         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2053         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2054         int count;
2055 
2056         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2057                                priority, logic_serv, match);
2058 
2059         if (count < 0) {
2060             return count;
2061         }
2062 
2063         total_count += count;
2064     }
2065 
2066     return total_count;
2067 }
2068 
2069 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2070                                 uint8_t nvt_blk, uint32_t nvt_idx,
2071                                 bool cam_ignore, uint8_t priority,
2072                                 uint32_t logic_serv,
2073                                 XiveTCTXMatch *match)
2074 {
2075     PnvMachineState *pnv = PNV_MACHINE(xfb);
2076     int total_count = 0;
2077     int i;
2078 
2079     for (i = 0; i < pnv->num_chips; i++) {
2080         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2081         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2082         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2083         int count;
2084 
2085         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2086                                priority, logic_serv, match);
2087 
2088         if (count < 0) {
2089             return count;
2090         }
2091 
2092         total_count += count;
2093     }
2094 
2095     return total_count;
2096 }
2097 
2098 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2099 {
2100     MachineClass *mc = MACHINE_CLASS(oc);
2101     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2102     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2103     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2104 
2105     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2106     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2107 
2108     xic->icp_get = pnv_icp_get;
2109     xic->ics_get = pnv_ics_get;
2110     xic->ics_resend = pnv_ics_resend;
2111 
2112     pmc->compat = compat;
2113     pmc->compat_size = sizeof(compat);
2114 }
2115 
2116 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2117 {
2118     MachineClass *mc = MACHINE_CLASS(oc);
2119     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2120     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2121     static const char compat[] = "qemu,powernv9\0ibm,powernv";
2122 
2123     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2124     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
2125     xfc->match_nvt = pnv_match_nvt;
2126 
2127     mc->alias = "powernv";
2128 
2129     pmc->compat = compat;
2130     pmc->compat_size = sizeof(compat);
2131     pmc->dt_power_mgt = pnv_dt_power_mgt;
2132 }
2133 
2134 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2135 {
2136     MachineClass *mc = MACHINE_CLASS(oc);
2137     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2138     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2139     static const char compat[] = "qemu,powernv10\0ibm,powernv";
2140 
2141     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2142     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2143 
2144     pmc->compat = compat;
2145     pmc->compat_size = sizeof(compat);
2146     pmc->dt_power_mgt = pnv_dt_power_mgt;
2147 
2148     xfc->match_nvt = pnv10_xive_match_nvt;
2149 }
2150 
2151 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2152 {
2153     PnvMachineState *pnv = PNV_MACHINE(obj);
2154 
2155     return !!pnv->fw_load_addr;
2156 }
2157 
2158 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2159 {
2160     PnvMachineState *pnv = PNV_MACHINE(obj);
2161 
2162     if (value) {
2163         pnv->fw_load_addr = 0x8000000;
2164     }
2165 }
2166 
2167 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2168 {
2169     PowerPCCPU *cpu = POWERPC_CPU(cs);
2170     CPUPPCState *env = &cpu->env;
2171 
2172     cpu_synchronize_state(cs);
2173     ppc_cpu_do_system_reset(cs);
2174     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2175         /*
2176          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2177          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2178          * (PPC_BIT(43)).
2179          */
2180         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2181             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2182             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2183         }
2184     } else {
2185         /*
2186          * For non-powersave system resets, SRR1[42:45] are defined to be
2187          * implementation-dependent. The POWER9 User Manual specifies that
2188          * an external (SCOM driven, which may come from a BMC nmi command or
2189          * another CPU requesting a NMI IPI) system reset exception should be
2190          * 0b0010 (PPC_BIT(44)).
2191          */
2192         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2193     }
2194 }
2195 
2196 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2197 {
2198     CPUState *cs;
2199 
2200     CPU_FOREACH(cs) {
2201         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2202     }
2203 }
2204 
2205 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2206 {
2207     MachineClass *mc = MACHINE_CLASS(oc);
2208     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2209     NMIClass *nc = NMI_CLASS(oc);
2210 
2211     mc->desc = "IBM PowerNV (Non-Virtualized)";
2212     mc->init = pnv_init;
2213     mc->reset = pnv_reset;
2214     mc->max_cpus = MAX_CPUS;
2215     /* Pnv provides a AHCI device for storage */
2216     mc->block_default_type = IF_IDE;
2217     mc->no_parallel = 1;
2218     mc->default_boot_order = NULL;
2219     /*
2220      * RAM defaults to less than 2048 for 32-bit hosts, and large
2221      * enough to fit the maximum initrd size at it's load address
2222      */
2223     mc->default_ram_size = 1 * GiB;
2224     mc->default_ram_id = "pnv.ram";
2225     ispc->print_info = pnv_pic_print_info;
2226     nc->nmi_monitor_handler = pnv_nmi;
2227 
2228     object_class_property_add_bool(oc, "hb-mode",
2229                                    pnv_machine_get_hb, pnv_machine_set_hb);
2230     object_class_property_set_description(oc, "hb-mode",
2231                               "Use a hostboot like boot loader");
2232 }
2233 
2234 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2235     {                                             \
2236         .name          = type,                    \
2237         .class_init    = class_initfn,            \
2238         .parent        = TYPE_PNV8_CHIP,          \
2239     }
2240 
2241 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2242     {                                             \
2243         .name          = type,                    \
2244         .class_init    = class_initfn,            \
2245         .parent        = TYPE_PNV9_CHIP,          \
2246     }
2247 
2248 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2249     {                                              \
2250         .name          = type,                     \
2251         .class_init    = class_initfn,             \
2252         .parent        = TYPE_PNV10_CHIP,          \
2253     }
2254 
2255 static const TypeInfo types[] = {
2256     {
2257         .name          = MACHINE_TYPE_NAME("powernv10"),
2258         .parent        = TYPE_PNV_MACHINE,
2259         .class_init    = pnv_machine_power10_class_init,
2260         .interfaces = (InterfaceInfo[]) {
2261             { TYPE_XIVE_FABRIC },
2262             { },
2263         },
2264     },
2265     {
2266         .name          = MACHINE_TYPE_NAME("powernv9"),
2267         .parent        = TYPE_PNV_MACHINE,
2268         .class_init    = pnv_machine_power9_class_init,
2269         .interfaces = (InterfaceInfo[]) {
2270             { TYPE_XIVE_FABRIC },
2271             { },
2272         },
2273     },
2274     {
2275         .name          = MACHINE_TYPE_NAME("powernv8"),
2276         .parent        = TYPE_PNV_MACHINE,
2277         .class_init    = pnv_machine_power8_class_init,
2278         .interfaces = (InterfaceInfo[]) {
2279             { TYPE_XICS_FABRIC },
2280             { },
2281         },
2282     },
2283     {
2284         .name          = TYPE_PNV_MACHINE,
2285         .parent        = TYPE_MACHINE,
2286         .abstract       = true,
2287         .instance_size = sizeof(PnvMachineState),
2288         .class_init    = pnv_machine_class_init,
2289         .class_size    = sizeof(PnvMachineClass),
2290         .interfaces = (InterfaceInfo[]) {
2291             { TYPE_INTERRUPT_STATS_PROVIDER },
2292             { TYPE_NMI },
2293             { },
2294         },
2295     },
2296     {
2297         .name          = TYPE_PNV_CHIP,
2298         .parent        = TYPE_SYS_BUS_DEVICE,
2299         .class_init    = pnv_chip_class_init,
2300         .instance_size = sizeof(PnvChip),
2301         .class_size    = sizeof(PnvChipClass),
2302         .abstract      = true,
2303     },
2304 
2305     /*
2306      * P10 chip and variants
2307      */
2308     {
2309         .name          = TYPE_PNV10_CHIP,
2310         .parent        = TYPE_PNV_CHIP,
2311         .instance_init = pnv_chip_power10_instance_init,
2312         .instance_size = sizeof(Pnv10Chip),
2313     },
2314     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2315 
2316     /*
2317      * P9 chip and variants
2318      */
2319     {
2320         .name          = TYPE_PNV9_CHIP,
2321         .parent        = TYPE_PNV_CHIP,
2322         .instance_init = pnv_chip_power9_instance_init,
2323         .instance_size = sizeof(Pnv9Chip),
2324     },
2325     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2326 
2327     /*
2328      * P8 chip and variants
2329      */
2330     {
2331         .name          = TYPE_PNV8_CHIP,
2332         .parent        = TYPE_PNV_CHIP,
2333         .instance_init = pnv_chip_power8_instance_init,
2334         .instance_size = sizeof(Pnv8Chip),
2335     },
2336     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2337     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2338     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2339                           pnv_chip_power8nvl_class_init),
2340 };
2341 
2342 DEFINE_TYPES(types)
2343