xref: /qemu/hw/ppc/pnv.c (revision 5325cc34)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/qtest.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/numa.h"
27 #include "sysemu/reset.h"
28 #include "sysemu/runstate.h"
29 #include "sysemu/cpus.h"
30 #include "sysemu/device_tree.h"
31 #include "sysemu/hw_accel.h"
32 #include "target/ppc/cpu.h"
33 #include "qemu/log.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "exec/address-spaces.h"
41 #include "qapi/visitor.h"
42 #include "monitor/monitor.h"
43 #include "hw/intc/intc.h"
44 #include "hw/ipmi/ipmi.h"
45 #include "target/ppc/mmu-hash64.h"
46 #include "hw/pci/msi.h"
47 
48 #include "hw/ppc/xics.h"
49 #include "hw/qdev-properties.h"
50 #include "hw/ppc/pnv_xscom.h"
51 #include "hw/ppc/pnv_pnor.h"
52 
53 #include "hw/isa/isa.h"
54 #include "hw/boards.h"
55 #include "hw/char/serial.h"
56 #include "hw/rtc/mc146818rtc.h"
57 
58 #include <libfdt.h>
59 
60 #define FDT_MAX_SIZE            (1 * MiB)
61 
62 #define FW_FILE_NAME            "skiboot.lid"
63 #define FW_LOAD_ADDR            0x0
64 #define FW_MAX_SIZE             (4 * MiB)
65 
66 #define KERNEL_LOAD_ADDR        0x20000000
67 #define KERNEL_MAX_SIZE         (256 * MiB)
68 #define INITRD_LOAD_ADDR        0x60000000
69 #define INITRD_MAX_SIZE         (256 * MiB)
70 
71 static const char *pnv_chip_core_typename(const PnvChip *o)
72 {
73     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
74     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
75     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
76     const char *core_type = object_class_get_name(object_class_by_name(s));
77     g_free(s);
78     return core_type;
79 }
80 
81 /*
82  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
83  *     4 * 4 sockets * 12 cores * 8 threads = 1536
84  * Let's make it 2^11
85  */
86 #define MAX_CPUS                2048
87 
88 /*
89  * Memory nodes are created by hostboot, one for each range of memory
90  * that has a different "affinity". In practice, it means one range
91  * per chip.
92  */
93 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
94 {
95     char *mem_name;
96     uint64_t mem_reg_property[2];
97     int off;
98 
99     mem_reg_property[0] = cpu_to_be64(start);
100     mem_reg_property[1] = cpu_to_be64(size);
101 
102     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
103     off = fdt_add_subnode(fdt, 0, mem_name);
104     g_free(mem_name);
105 
106     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
107     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
108                        sizeof(mem_reg_property))));
109     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
110 }
111 
112 static int get_cpus_node(void *fdt)
113 {
114     int cpus_offset = fdt_path_offset(fdt, "/cpus");
115 
116     if (cpus_offset < 0) {
117         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
118         if (cpus_offset) {
119             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
120             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
121         }
122     }
123     _FDT(cpus_offset);
124     return cpus_offset;
125 }
126 
127 /*
128  * The PowerNV cores (and threads) need to use real HW ids and not an
129  * incremental index like it has been done on other platforms. This HW
130  * id is stored in the CPU PIR, it is used to create cpu nodes in the
131  * device tree, used in XSCOM to address cores and in interrupt
132  * servers.
133  */
134 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
135 {
136     PowerPCCPU *cpu = pc->threads[0];
137     CPUState *cs = CPU(cpu);
138     DeviceClass *dc = DEVICE_GET_CLASS(cs);
139     int smt_threads = CPU_CORE(pc)->nr_threads;
140     CPUPPCState *env = &cpu->env;
141     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
142     uint32_t servers_prop[smt_threads];
143     int i;
144     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
145                        0xffffffff, 0xffffffff};
146     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
147     uint32_t cpufreq = 1000000000;
148     uint32_t page_sizes_prop[64];
149     size_t page_sizes_prop_size;
150     const uint8_t pa_features[] = { 24, 0,
151                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
152                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
153                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
154                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
155     int offset;
156     char *nodename;
157     int cpus_offset = get_cpus_node(fdt);
158 
159     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
160     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
161     _FDT(offset);
162     g_free(nodename);
163 
164     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
165 
166     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
167     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
168     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
169 
170     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
171     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
172                             env->dcache_line_size)));
173     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
174                             env->dcache_line_size)));
175     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
176                             env->icache_line_size)));
177     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
178                             env->icache_line_size)));
179 
180     if (pcc->l1_dcache_size) {
181         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
182                                pcc->l1_dcache_size)));
183     } else {
184         warn_report("Unknown L1 dcache size for cpu");
185     }
186     if (pcc->l1_icache_size) {
187         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
188                                pcc->l1_icache_size)));
189     } else {
190         warn_report("Unknown L1 icache size for cpu");
191     }
192 
193     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
194     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
195     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
196                            cpu->hash64_opts->slb_size)));
197     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
198     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
199 
200     if (env->spr_cb[SPR_PURR].oea_read) {
201         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
202     }
203 
204     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
205         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
206                            segs, sizeof(segs))));
207     }
208 
209     /*
210      * Advertise VMX/VSX (vector extensions) if available
211      *   0 / no property == no vector extensions
212      *   1               == VMX / Altivec available
213      *   2               == VSX available
214      */
215     if (env->insns_flags & PPC_ALTIVEC) {
216         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
217 
218         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
219     }
220 
221     /*
222      * Advertise DFP (Decimal Floating Point) if available
223      *   0 / no property == no DFP
224      *   1               == DFP available
225      */
226     if (env->insns_flags2 & PPC2_DFP) {
227         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
228     }
229 
230     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
231                                                       sizeof(page_sizes_prop));
232     if (page_sizes_prop_size) {
233         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
234                            page_sizes_prop, page_sizes_prop_size)));
235     }
236 
237     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
238                        pa_features, sizeof(pa_features))));
239 
240     /* Build interrupt servers properties */
241     for (i = 0; i < smt_threads; i++) {
242         servers_prop[i] = cpu_to_be32(pc->pir + i);
243     }
244     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
245                        servers_prop, sizeof(servers_prop))));
246 }
247 
248 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
249                        uint32_t nr_threads)
250 {
251     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
252     char *name;
253     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
254     uint32_t irange[2], i, rsize;
255     uint64_t *reg;
256     int offset;
257 
258     irange[0] = cpu_to_be32(pir);
259     irange[1] = cpu_to_be32(nr_threads);
260 
261     rsize = sizeof(uint64_t) * 2 * nr_threads;
262     reg = g_malloc(rsize);
263     for (i = 0; i < nr_threads; i++) {
264         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
265         reg[i * 2 + 1] = cpu_to_be64(0x1000);
266     }
267 
268     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
269     offset = fdt_add_subnode(fdt, 0, name);
270     _FDT(offset);
271     g_free(name);
272 
273     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
274     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
275     _FDT((fdt_setprop_string(fdt, offset, "device_type",
276                               "PowerPC-External-Interrupt-Presentation")));
277     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
278     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
279                        irange, sizeof(irange))));
280     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
281     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
282     g_free(reg);
283 }
284 
285 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
286 {
287     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
288     int i;
289 
290     pnv_dt_xscom(chip, fdt, 0,
291                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
292                  cpu_to_be64(PNV_XSCOM_SIZE),
293                  compat, sizeof(compat));
294 
295     for (i = 0; i < chip->nr_cores; i++) {
296         PnvCore *pnv_core = chip->cores[i];
297 
298         pnv_dt_core(chip, pnv_core, fdt);
299 
300         /* Interrupt Control Presenters (ICP). One per core. */
301         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
302     }
303 
304     if (chip->ram_size) {
305         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
306     }
307 }
308 
309 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
310 {
311     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
312     int i;
313 
314     pnv_dt_xscom(chip, fdt, 0,
315                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
316                  cpu_to_be64(PNV9_XSCOM_SIZE),
317                  compat, sizeof(compat));
318 
319     for (i = 0; i < chip->nr_cores; i++) {
320         PnvCore *pnv_core = chip->cores[i];
321 
322         pnv_dt_core(chip, pnv_core, fdt);
323     }
324 
325     if (chip->ram_size) {
326         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
327     }
328 
329     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
330 }
331 
332 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
333 {
334     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
335     int i;
336 
337     pnv_dt_xscom(chip, fdt, 0,
338                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
339                  cpu_to_be64(PNV10_XSCOM_SIZE),
340                  compat, sizeof(compat));
341 
342     for (i = 0; i < chip->nr_cores; i++) {
343         PnvCore *pnv_core = chip->cores[i];
344 
345         pnv_dt_core(chip, pnv_core, fdt);
346     }
347 
348     if (chip->ram_size) {
349         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
350     }
351 
352     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
353 }
354 
355 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
356 {
357     uint32_t io_base = d->ioport_id;
358     uint32_t io_regs[] = {
359         cpu_to_be32(1),
360         cpu_to_be32(io_base),
361         cpu_to_be32(2)
362     };
363     char *name;
364     int node;
365 
366     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
367     node = fdt_add_subnode(fdt, lpc_off, name);
368     _FDT(node);
369     g_free(name);
370 
371     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
372     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
373 }
374 
375 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
376 {
377     const char compatible[] = "ns16550\0pnpPNP,501";
378     uint32_t io_base = d->ioport_id;
379     uint32_t io_regs[] = {
380         cpu_to_be32(1),
381         cpu_to_be32(io_base),
382         cpu_to_be32(8)
383     };
384     char *name;
385     int node;
386 
387     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
388     node = fdt_add_subnode(fdt, lpc_off, name);
389     _FDT(node);
390     g_free(name);
391 
392     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
393     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
394                       sizeof(compatible))));
395 
396     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
397     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
398     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
399     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
400                            fdt_get_phandle(fdt, lpc_off))));
401 
402     /* This is needed by Linux */
403     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
404 }
405 
406 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
407 {
408     const char compatible[] = "bt\0ipmi-bt";
409     uint32_t io_base;
410     uint32_t io_regs[] = {
411         cpu_to_be32(1),
412         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
413         cpu_to_be32(3)
414     };
415     uint32_t irq;
416     char *name;
417     int node;
418 
419     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
420     io_regs[1] = cpu_to_be32(io_base);
421 
422     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
423 
424     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
425     node = fdt_add_subnode(fdt, lpc_off, name);
426     _FDT(node);
427     g_free(name);
428 
429     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
430     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
431                       sizeof(compatible))));
432 
433     /* Mark it as reserved to avoid Linux trying to claim it */
434     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
435     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
436     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
437                            fdt_get_phandle(fdt, lpc_off))));
438 }
439 
440 typedef struct ForeachPopulateArgs {
441     void *fdt;
442     int offset;
443 } ForeachPopulateArgs;
444 
445 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
446 {
447     ForeachPopulateArgs *args = opaque;
448     ISADevice *d = ISA_DEVICE(dev);
449 
450     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
451         pnv_dt_rtc(d, args->fdt, args->offset);
452     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
453         pnv_dt_serial(d, args->fdt, args->offset);
454     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
455         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
456     } else {
457         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
458                      d->ioport_id);
459     }
460 
461     return 0;
462 }
463 
464 /*
465  * The default LPC bus of a multichip system is on chip 0. It's
466  * recognized by the firmware (skiboot) using a "primary" property.
467  */
468 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
469 {
470     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
471     ForeachPopulateArgs args = {
472         .fdt = fdt,
473         .offset = isa_offset,
474     };
475     uint32_t phandle;
476 
477     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
478 
479     phandle = qemu_fdt_alloc_phandle(fdt);
480     assert(phandle > 0);
481     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
482 
483     /*
484      * ISA devices are not necessarily parented to the ISA bus so we
485      * can not use object_child_foreach()
486      */
487     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
488                        &args);
489 }
490 
491 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
492 {
493     int off;
494 
495     off = fdt_add_subnode(fdt, 0, "ibm,opal");
496     off = fdt_add_subnode(fdt, off, "power-mgt");
497 
498     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
499 }
500 
501 static void *pnv_dt_create(MachineState *machine)
502 {
503     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
504     PnvMachineState *pnv = PNV_MACHINE(machine);
505     void *fdt;
506     char *buf;
507     int off;
508     int i;
509 
510     fdt = g_malloc0(FDT_MAX_SIZE);
511     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
512 
513     /* /qemu node */
514     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
515 
516     /* Root node */
517     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
518     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
519     _FDT((fdt_setprop_string(fdt, 0, "model",
520                              "IBM PowerNV (emulated by qemu)")));
521     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
522 
523     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
524     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
525     if (qemu_uuid_set) {
526         _FDT((fdt_property_string(fdt, "system-id", buf)));
527     }
528     g_free(buf);
529 
530     off = fdt_add_subnode(fdt, 0, "chosen");
531     if (machine->kernel_cmdline) {
532         _FDT((fdt_setprop_string(fdt, off, "bootargs",
533                                  machine->kernel_cmdline)));
534     }
535 
536     if (pnv->initrd_size) {
537         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
538         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
539 
540         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
541                                &start_prop, sizeof(start_prop))));
542         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
543                                &end_prop, sizeof(end_prop))));
544     }
545 
546     /* Populate device tree for each chip */
547     for (i = 0; i < pnv->num_chips; i++) {
548         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
549     }
550 
551     /* Populate ISA devices on chip 0 */
552     pnv_dt_isa(pnv, fdt);
553 
554     if (pnv->bmc) {
555         pnv_dt_bmc_sensors(pnv->bmc, fdt);
556     }
557 
558     /* Create an extra node for power management on machines that support it */
559     if (pmc->dt_power_mgt) {
560         pmc->dt_power_mgt(pnv, fdt);
561     }
562 
563     return fdt;
564 }
565 
566 static void pnv_powerdown_notify(Notifier *n, void *opaque)
567 {
568     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
569 
570     if (pnv->bmc) {
571         pnv_bmc_powerdown(pnv->bmc);
572     }
573 }
574 
575 static void pnv_reset(MachineState *machine)
576 {
577     PnvMachineState *pnv = PNV_MACHINE(machine);
578     IPMIBmc *bmc;
579     void *fdt;
580 
581     qemu_devices_reset();
582 
583     /*
584      * The machine should provide by default an internal BMC simulator.
585      * If not, try to use the BMC device that was provided on the command
586      * line.
587      */
588     bmc = pnv_bmc_find(&error_fatal);
589     if (!pnv->bmc) {
590         if (!bmc) {
591             if (!qtest_enabled()) {
592                 warn_report("machine has no BMC device. Use '-device "
593                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
594                             "to define one");
595             }
596         } else {
597             pnv_bmc_set_pnor(bmc, pnv->pnor);
598             pnv->bmc = bmc;
599         }
600     }
601 
602     fdt = pnv_dt_create(machine);
603 
604     /* Pack resulting tree */
605     _FDT((fdt_pack(fdt)));
606 
607     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
608     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
609 
610     g_free(fdt);
611 }
612 
613 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
614 {
615     Pnv8Chip *chip8 = PNV8_CHIP(chip);
616     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
617 }
618 
619 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
620 {
621     Pnv8Chip *chip8 = PNV8_CHIP(chip);
622     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
623 }
624 
625 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
626 {
627     Pnv9Chip *chip9 = PNV9_CHIP(chip);
628     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
629 }
630 
631 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
632 {
633     Pnv10Chip *chip10 = PNV10_CHIP(chip);
634     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
635 }
636 
637 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
638 {
639     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
640 }
641 
642 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
643 {
644     Pnv8Chip *chip8 = PNV8_CHIP(chip);
645     int i;
646 
647     ics_pic_print_info(&chip8->psi.ics, mon);
648     for (i = 0; i < chip->num_phbs; i++) {
649         pnv_phb3_msi_pic_print_info(&chip8->phbs[i].msis, mon);
650         ics_pic_print_info(&chip8->phbs[i].lsis, mon);
651     }
652 }
653 
654 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
655 {
656     Pnv9Chip *chip9 = PNV9_CHIP(chip);
657     int i, j;
658 
659     pnv_xive_pic_print_info(&chip9->xive, mon);
660     pnv_psi_pic_print_info(&chip9->psi, mon);
661 
662     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
663         PnvPhb4PecState *pec = &chip9->pecs[i];
664         for (j = 0; j < pec->num_stacks; j++) {
665             pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon);
666         }
667     }
668 }
669 
670 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
671                                                 uint32_t core_id)
672 {
673     return PNV_XSCOM_EX_BASE(core_id);
674 }
675 
676 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
677                                                 uint32_t core_id)
678 {
679     return PNV9_XSCOM_EC_BASE(core_id);
680 }
681 
682 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
683                                                  uint32_t core_id)
684 {
685     return PNV10_XSCOM_EC_BASE(core_id);
686 }
687 
688 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
689 {
690     PowerPCCPUClass *ppc_default =
691         POWERPC_CPU_CLASS(object_class_by_name(default_type));
692     PowerPCCPUClass *ppc =
693         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
694 
695     return ppc_default->pvr_match(ppc_default, ppc->pvr);
696 }
697 
698 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
699 {
700     ISADevice *dev = isa_new("isa-ipmi-bt");
701 
702     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
703     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
704     isa_realize_and_unref(dev, bus, &error_fatal);
705 }
706 
707 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
708 {
709     Pnv10Chip *chip10 = PNV10_CHIP(chip);
710 
711     pnv_psi_pic_print_info(&chip10->psi, mon);
712 }
713 
714 static void pnv_init(MachineState *machine)
715 {
716     PnvMachineState *pnv = PNV_MACHINE(machine);
717     MachineClass *mc = MACHINE_GET_CLASS(machine);
718     char *fw_filename;
719     long fw_size;
720     int i;
721     char *chip_typename;
722     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
723     DeviceState *dev;
724 
725     /* allocate RAM */
726     if (machine->ram_size < (1 * GiB)) {
727         warn_report("skiboot may not work with < 1GB of RAM");
728     }
729     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
730 
731     /*
732      * Create our simple PNOR device
733      */
734     dev = qdev_new(TYPE_PNV_PNOR);
735     if (pnor) {
736         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
737     }
738     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
739     pnv->pnor = PNV_PNOR(dev);
740 
741     /* load skiboot firmware  */
742     if (bios_name == NULL) {
743         bios_name = FW_FILE_NAME;
744     }
745 
746     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
747     if (!fw_filename) {
748         error_report("Could not find OPAL firmware '%s'", bios_name);
749         exit(1);
750     }
751 
752     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
753     if (fw_size < 0) {
754         error_report("Could not load OPAL firmware '%s'", fw_filename);
755         exit(1);
756     }
757     g_free(fw_filename);
758 
759     /* load kernel */
760     if (machine->kernel_filename) {
761         long kernel_size;
762 
763         kernel_size = load_image_targphys(machine->kernel_filename,
764                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
765         if (kernel_size < 0) {
766             error_report("Could not load kernel '%s'",
767                          machine->kernel_filename);
768             exit(1);
769         }
770     }
771 
772     /* load initrd */
773     if (machine->initrd_filename) {
774         pnv->initrd_base = INITRD_LOAD_ADDR;
775         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
776                                   pnv->initrd_base, INITRD_MAX_SIZE);
777         if (pnv->initrd_size < 0) {
778             error_report("Could not load initial ram disk '%s'",
779                          machine->initrd_filename);
780             exit(1);
781         }
782     }
783 
784     /* MSIs are supported on this platform */
785     msi_nonbroken = true;
786 
787     /*
788      * Check compatibility of the specified CPU with the machine
789      * default.
790      */
791     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
792         error_report("invalid CPU model '%s' for %s machine",
793                      machine->cpu_type, mc->name);
794         exit(1);
795     }
796 
797     /* Create the processor chips */
798     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
799     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
800                                     i, machine->cpu_type);
801     if (!object_class_by_name(chip_typename)) {
802         error_report("invalid chip model '%.*s' for %s machine",
803                      i, machine->cpu_type, mc->name);
804         exit(1);
805     }
806 
807     pnv->num_chips =
808         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
809     /*
810      * TODO: should we decide on how many chips we can create based
811      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
812      */
813     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 4) {
814         error_report("invalid number of chips: '%d'", pnv->num_chips);
815         error_printf("Try '-smp sockets=N'. Valid values are : 1, 2 or 4.\n");
816         exit(1);
817     }
818 
819     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
820     for (i = 0; i < pnv->num_chips; i++) {
821         char chip_name[32];
822         Object *chip = OBJECT(qdev_new(chip_typename));
823 
824         pnv->chips[i] = PNV_CHIP(chip);
825 
826         /*
827          * TODO: put all the memory in one node on chip 0 until we find a
828          * way to specify different ranges for each chip
829          */
830         if (i == 0) {
831             object_property_set_int(chip, "ram-size", machine->ram_size,
832                                     &error_fatal);
833         }
834 
835         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
836         object_property_add_child(OBJECT(pnv), chip_name, chip);
837         object_property_set_int(chip, "chip-id", PNV_CHIP_HWID(i),
838                                 &error_fatal);
839         object_property_set_int(chip, "nr-cores", machine->smp.cores,
840                                 &error_fatal);
841         object_property_set_int(chip, "nr-threads", machine->smp.threads,
842                                 &error_fatal);
843         /*
844          * The POWER8 machine use the XICS interrupt interface.
845          * Propagate the XICS fabric to the chip and its controllers.
846          */
847         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
848             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
849         }
850         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
851             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
852                                      &error_abort);
853         }
854         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
855     }
856     g_free(chip_typename);
857 
858     /* Instantiate ISA bus on chip 0 */
859     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
860 
861     /* Create serial port */
862     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
863 
864     /* Create an RTC ISA device too */
865     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
866 
867     /*
868      * Create the machine BMC simulator and the IPMI BT device for
869      * communication with the BMC
870      */
871     if (defaults_enabled()) {
872         pnv->bmc = pnv_bmc_create(pnv->pnor);
873         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
874     }
875 
876     /*
877      * OpenPOWER systems use a IPMI SEL Event message to notify the
878      * host to powerdown
879      */
880     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
881     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
882 }
883 
884 /*
885  *    0:21  Reserved - Read as zeros
886  *   22:24  Chip ID
887  *   25:28  Core number
888  *   29:31  Thread ID
889  */
890 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
891 {
892     return (chip->chip_id << 7) | (core_id << 3);
893 }
894 
895 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
896                                         Error **errp)
897 {
898     Pnv8Chip *chip8 = PNV8_CHIP(chip);
899     Error *local_err = NULL;
900     Object *obj;
901     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
902 
903     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
904     if (local_err) {
905         error_propagate(errp, local_err);
906         return;
907     }
908 
909     pnv_cpu->intc = obj;
910 }
911 
912 
913 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
914 {
915     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
916 
917     icp_reset(ICP(pnv_cpu->intc));
918 }
919 
920 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
921 {
922     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
923 
924     icp_destroy(ICP(pnv_cpu->intc));
925     pnv_cpu->intc = NULL;
926 }
927 
928 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
929                                             Monitor *mon)
930 {
931     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
932 }
933 
934 /*
935  *    0:48  Reserved - Read as zeroes
936  *   49:52  Node ID
937  *   53:55  Chip ID
938  *   56     Reserved - Read as zero
939  *   57:61  Core number
940  *   62:63  Thread ID
941  *
942  * We only care about the lower bits. uint32_t is fine for the moment.
943  */
944 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
945 {
946     return (chip->chip_id << 8) | (core_id << 2);
947 }
948 
949 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
950 {
951     return (chip->chip_id << 8) | (core_id << 2);
952 }
953 
954 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
955                                         Error **errp)
956 {
957     Pnv9Chip *chip9 = PNV9_CHIP(chip);
958     Error *local_err = NULL;
959     Object *obj;
960     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
961 
962     /*
963      * The core creates its interrupt presenter but the XIVE interrupt
964      * controller object is initialized afterwards. Hopefully, it's
965      * only used at runtime.
966      */
967     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
968                            &local_err);
969     if (local_err) {
970         error_propagate(errp, local_err);
971         return;
972     }
973 
974     pnv_cpu->intc = obj;
975 }
976 
977 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
978 {
979     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
980 
981     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
982 }
983 
984 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
985 {
986     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
987 
988     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
989     pnv_cpu->intc = NULL;
990 }
991 
992 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
993                                             Monitor *mon)
994 {
995     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
996 }
997 
998 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
999                                         Error **errp)
1000 {
1001     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1002 
1003     /* Will be defined when the interrupt controller is */
1004     pnv_cpu->intc = NULL;
1005 }
1006 
1007 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1008 {
1009     ;
1010 }
1011 
1012 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1013 {
1014     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1015 
1016     pnv_cpu->intc = NULL;
1017 }
1018 
1019 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1020                                              Monitor *mon)
1021 {
1022 }
1023 
1024 /*
1025  * Allowed core identifiers on a POWER8 Processor Chip :
1026  *
1027  * <EX0 reserved>
1028  *  EX1  - Venice only
1029  *  EX2  - Venice only
1030  *  EX3  - Venice only
1031  *  EX4
1032  *  EX5
1033  *  EX6
1034  * <EX7,8 reserved> <reserved>
1035  *  EX9  - Venice only
1036  *  EX10 - Venice only
1037  *  EX11 - Venice only
1038  *  EX12
1039  *  EX13
1040  *  EX14
1041  * <EX15 reserved>
1042  */
1043 #define POWER8E_CORE_MASK  (0x7070ull)
1044 #define POWER8_CORE_MASK   (0x7e7eull)
1045 
1046 /*
1047  * POWER9 has 24 cores, ids starting at 0x0
1048  */
1049 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1050 
1051 
1052 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1053 
1054 static void pnv_chip_power8_instance_init(Object *obj)
1055 {
1056     PnvChip *chip = PNV_CHIP(obj);
1057     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1058     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1059     int i;
1060 
1061     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1062                              (Object **)&chip8->xics,
1063                              object_property_allow_set_link,
1064                              OBJ_PROP_LINK_STRONG);
1065 
1066     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1067 
1068     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1069 
1070     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1071 
1072     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1073 
1074     for (i = 0; i < pcc->num_phbs; i++) {
1075         object_initialize_child(obj, "phb[*]", &chip8->phbs[i], TYPE_PNV_PHB3);
1076     }
1077 
1078     /*
1079      * Number of PHBs is the chip default
1080      */
1081     chip->num_phbs = pcc->num_phbs;
1082 }
1083 
1084 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1085  {
1086     PnvChip *chip = PNV_CHIP(chip8);
1087     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1088     int i, j;
1089     char *name;
1090 
1091     name = g_strdup_printf("icp-%x", chip->chip_id);
1092     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1093     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1094     g_free(name);
1095 
1096     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1097 
1098     /* Map the ICP registers for each thread */
1099     for (i = 0; i < chip->nr_cores; i++) {
1100         PnvCore *pnv_core = chip->cores[i];
1101         int core_hwid = CPU_CORE(pnv_core)->core_id;
1102 
1103         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1104             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1105             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1106 
1107             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1108                                         &icp->mmio);
1109         }
1110     }
1111 }
1112 
1113 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1114 {
1115     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1116     PnvChip *chip = PNV_CHIP(dev);
1117     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1118     Pnv8Psi *psi8 = &chip8->psi;
1119     Error *local_err = NULL;
1120     int i;
1121 
1122     assert(chip8->xics);
1123 
1124     /* XSCOM bridge is first */
1125     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1126     if (local_err) {
1127         error_propagate(errp, local_err);
1128         return;
1129     }
1130     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1131 
1132     pcc->parent_realize(dev, &local_err);
1133     if (local_err) {
1134         error_propagate(errp, local_err);
1135         return;
1136     }
1137 
1138     /* Processor Service Interface (PSI) Host Bridge */
1139     object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip),
1140                             &error_fatal);
1141     object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS,
1142                              OBJECT(chip8->xics), &error_abort);
1143     if (!qdev_realize(DEVICE(&chip8->psi), NULL, &local_err)) {
1144         error_propagate(errp, local_err);
1145         return;
1146     }
1147     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1148                             &PNV_PSI(psi8)->xscom_regs);
1149 
1150     /* Create LPC controller */
1151     object_property_set_link(OBJECT(&chip8->lpc), "psi", OBJECT(&chip8->psi),
1152                              &error_abort);
1153     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1154     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1155 
1156     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1157                                             (uint64_t) PNV_XSCOM_BASE(chip),
1158                                             PNV_XSCOM_LPC_BASE);
1159 
1160     /*
1161      * Interrupt Management Area. This is the memory region holding
1162      * all the Interrupt Control Presenter (ICP) registers
1163      */
1164     pnv_chip_icp_realize(chip8, &local_err);
1165     if (local_err) {
1166         error_propagate(errp, local_err);
1167         return;
1168     }
1169 
1170     /* Create the simplified OCC model */
1171     object_property_set_link(OBJECT(&chip8->occ), "psi", OBJECT(&chip8->psi),
1172                              &error_abort);
1173     if (!qdev_realize(DEVICE(&chip8->occ), NULL, &local_err)) {
1174         error_propagate(errp, local_err);
1175         return;
1176     }
1177     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1178 
1179     /* OCC SRAM model */
1180     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1181                                 &chip8->occ.sram_regs);
1182 
1183     /* HOMER */
1184     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1185                              &error_abort);
1186     if (!qdev_realize(DEVICE(&chip8->homer), NULL, &local_err)) {
1187         error_propagate(errp, local_err);
1188         return;
1189     }
1190     /* Homer Xscom region */
1191     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1192 
1193     /* Homer mmio region */
1194     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1195                                 &chip8->homer.regs);
1196 
1197     /* PHB3 controllers */
1198     for (i = 0; i < chip->num_phbs; i++) {
1199         PnvPHB3 *phb = &chip8->phbs[i];
1200         PnvPBCQState *pbcq = &phb->pbcq;
1201 
1202         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1203         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1204                                 &error_fatal);
1205         if (!sysbus_realize(SYS_BUS_DEVICE(phb), &local_err)) {
1206             error_propagate(errp, local_err);
1207             return;
1208         }
1209 
1210         /* Populate the XSCOM address space. */
1211         pnv_xscom_add_subregion(chip,
1212                                 PNV_XSCOM_PBCQ_NEST_BASE + 0x400 * phb->phb_id,
1213                                 &pbcq->xscom_nest_regs);
1214         pnv_xscom_add_subregion(chip,
1215                                 PNV_XSCOM_PBCQ_PCI_BASE + 0x400 * phb->phb_id,
1216                                 &pbcq->xscom_pci_regs);
1217         pnv_xscom_add_subregion(chip,
1218                                 PNV_XSCOM_PBCQ_SPCI_BASE + 0x040 * phb->phb_id,
1219                                 &pbcq->xscom_spci_regs);
1220     }
1221 }
1222 
1223 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1224 {
1225     addr &= (PNV_XSCOM_SIZE - 1);
1226     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1227 }
1228 
1229 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1230 {
1231     DeviceClass *dc = DEVICE_CLASS(klass);
1232     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1233 
1234     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1235     k->cores_mask = POWER8E_CORE_MASK;
1236     k->num_phbs = 3;
1237     k->core_pir = pnv_chip_core_pir_p8;
1238     k->intc_create = pnv_chip_power8_intc_create;
1239     k->intc_reset = pnv_chip_power8_intc_reset;
1240     k->intc_destroy = pnv_chip_power8_intc_destroy;
1241     k->intc_print_info = pnv_chip_power8_intc_print_info;
1242     k->isa_create = pnv_chip_power8_isa_create;
1243     k->dt_populate = pnv_chip_power8_dt_populate;
1244     k->pic_print_info = pnv_chip_power8_pic_print_info;
1245     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1246     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1247     dc->desc = "PowerNV Chip POWER8E";
1248 
1249     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1250                                     &k->parent_realize);
1251 }
1252 
1253 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1254 {
1255     DeviceClass *dc = DEVICE_CLASS(klass);
1256     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1257 
1258     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1259     k->cores_mask = POWER8_CORE_MASK;
1260     k->num_phbs = 3;
1261     k->core_pir = pnv_chip_core_pir_p8;
1262     k->intc_create = pnv_chip_power8_intc_create;
1263     k->intc_reset = pnv_chip_power8_intc_reset;
1264     k->intc_destroy = pnv_chip_power8_intc_destroy;
1265     k->intc_print_info = pnv_chip_power8_intc_print_info;
1266     k->isa_create = pnv_chip_power8_isa_create;
1267     k->dt_populate = pnv_chip_power8_dt_populate;
1268     k->pic_print_info = pnv_chip_power8_pic_print_info;
1269     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1270     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1271     dc->desc = "PowerNV Chip POWER8";
1272 
1273     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1274                                     &k->parent_realize);
1275 }
1276 
1277 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1278 {
1279     DeviceClass *dc = DEVICE_CLASS(klass);
1280     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1281 
1282     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1283     k->cores_mask = POWER8_CORE_MASK;
1284     k->num_phbs = 3;
1285     k->core_pir = pnv_chip_core_pir_p8;
1286     k->intc_create = pnv_chip_power8_intc_create;
1287     k->intc_reset = pnv_chip_power8_intc_reset;
1288     k->intc_destroy = pnv_chip_power8_intc_destroy;
1289     k->intc_print_info = pnv_chip_power8_intc_print_info;
1290     k->isa_create = pnv_chip_power8nvl_isa_create;
1291     k->dt_populate = pnv_chip_power8_dt_populate;
1292     k->pic_print_info = pnv_chip_power8_pic_print_info;
1293     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1294     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1295     dc->desc = "PowerNV Chip POWER8NVL";
1296 
1297     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1298                                     &k->parent_realize);
1299 }
1300 
1301 static void pnv_chip_power9_instance_init(Object *obj)
1302 {
1303     PnvChip *chip = PNV_CHIP(obj);
1304     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1305     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1306     int i;
1307 
1308     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1309     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1310                               "xive-fabric");
1311 
1312     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1313 
1314     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1315 
1316     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1317 
1318     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1319 
1320     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1321         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1322                                 TYPE_PNV_PHB4_PEC);
1323     }
1324 
1325     /*
1326      * Number of PHBs is the chip default
1327      */
1328     chip->num_phbs = pcc->num_phbs;
1329 }
1330 
1331 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1332 {
1333     PnvChip *chip = PNV_CHIP(chip9);
1334     int i;
1335 
1336     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1337     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1338 
1339     for (i = 0; i < chip9->nr_quads; i++) {
1340         char eq_name[32];
1341         PnvQuad *eq = &chip9->quads[i];
1342         PnvCore *pnv_core = chip->cores[i * 4];
1343         int core_id = CPU_CORE(pnv_core)->core_id;
1344 
1345         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1346         object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1347                                            sizeof(*eq), TYPE_PNV_QUAD,
1348                                            &error_fatal, NULL);
1349 
1350         object_property_set_int(OBJECT(eq), "id", core_id, &error_fatal);
1351         qdev_realize(DEVICE(eq), NULL, &error_fatal);
1352 
1353         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1354                                 &eq->xscom_regs);
1355     }
1356 }
1357 
1358 static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp)
1359 {
1360     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1361     Error *local_err = NULL;
1362     int i, j;
1363     int phb_id = 0;
1364 
1365     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1366         PnvPhb4PecState *pec = &chip9->pecs[i];
1367         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1368         uint32_t pec_nest_base;
1369         uint32_t pec_pci_base;
1370 
1371         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1372         /*
1373          * PEC0 -> 1 stack
1374          * PEC1 -> 2 stacks
1375          * PEC2 -> 3 stacks
1376          */
1377         object_property_set_int(OBJECT(pec), "num-stacks", i + 1,
1378                                 &error_fatal);
1379         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1380                                 &error_fatal);
1381         object_property_set_link(OBJECT(pec), "system-memory",
1382                                  OBJECT(get_system_memory()), &error_abort);
1383         if (!qdev_realize(DEVICE(pec), NULL, &local_err)) {
1384             error_propagate(errp, local_err);
1385             return;
1386         }
1387 
1388         pec_nest_base = pecc->xscom_nest_base(pec);
1389         pec_pci_base = pecc->xscom_pci_base(pec);
1390 
1391         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1392         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1393 
1394         for (j = 0; j < pec->num_stacks && phb_id < chip->num_phbs;
1395              j++, phb_id++) {
1396             PnvPhb4PecStack *stack = &pec->stacks[j];
1397             Object *obj = OBJECT(&stack->phb);
1398 
1399             object_property_set_int(obj, "index", phb_id, &error_fatal);
1400             object_property_set_int(obj, "chip-id", chip->chip_id,
1401                                     &error_fatal);
1402             object_property_set_int(obj, "version", PNV_PHB4_VERSION,
1403                                     &error_fatal);
1404             object_property_set_int(obj, "device-id", PNV_PHB4_DEVICE_ID,
1405                                     &error_fatal);
1406             object_property_set_link(obj, "stack", OBJECT(stack),
1407                                      &error_abort);
1408             if (!sysbus_realize(SYS_BUS_DEVICE(obj), &local_err)) {
1409                 error_propagate(errp, local_err);
1410                 return;
1411             }
1412 
1413             /* Populate the XSCOM address space. */
1414             pnv_xscom_add_subregion(chip,
1415                                    pec_nest_base + 0x40 * (stack->stack_no + 1),
1416                                    &stack->nest_regs_mr);
1417             pnv_xscom_add_subregion(chip,
1418                                     pec_pci_base + 0x40 * (stack->stack_no + 1),
1419                                     &stack->pci_regs_mr);
1420             pnv_xscom_add_subregion(chip,
1421                                     pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1422                                     0x40 * stack->stack_no,
1423                                     &stack->phb_regs_mr);
1424         }
1425     }
1426 }
1427 
1428 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1429 {
1430     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1431     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1432     PnvChip *chip = PNV_CHIP(dev);
1433     Pnv9Psi *psi9 = &chip9->psi;
1434     Error *local_err = NULL;
1435 
1436     /* XSCOM bridge is first */
1437     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1438     if (local_err) {
1439         error_propagate(errp, local_err);
1440         return;
1441     }
1442     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1443 
1444     pcc->parent_realize(dev, &local_err);
1445     if (local_err) {
1446         error_propagate(errp, local_err);
1447         return;
1448     }
1449 
1450     pnv_chip_quad_realize(chip9, &local_err);
1451     if (local_err) {
1452         error_propagate(errp, local_err);
1453         return;
1454     }
1455 
1456     /* XIVE interrupt controller (POWER9) */
1457     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1458                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1459     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1460                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1461     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1462                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1463     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1464                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1465     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1466                              &error_abort);
1467     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), &local_err)) {
1468         error_propagate(errp, local_err);
1469         return;
1470     }
1471     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1472                             &chip9->xive.xscom_regs);
1473 
1474     /* Processor Service Interface (PSI) Host Bridge */
1475     object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip),
1476                             &error_fatal);
1477     if (!qdev_realize(DEVICE(&chip9->psi), NULL, &local_err)) {
1478         error_propagate(errp, local_err);
1479         return;
1480     }
1481     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1482                             &PNV_PSI(psi9)->xscom_regs);
1483 
1484     /* LPC */
1485     object_property_set_link(OBJECT(&chip9->lpc), "psi", OBJECT(&chip9->psi),
1486                              &error_abort);
1487     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, &local_err)) {
1488         error_propagate(errp, local_err);
1489         return;
1490     }
1491     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1492                                 &chip9->lpc.xscom_regs);
1493 
1494     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1495                                             (uint64_t) PNV9_LPCM_BASE(chip));
1496 
1497     /* Create the simplified OCC model */
1498     object_property_set_link(OBJECT(&chip9->occ), "psi", OBJECT(&chip9->psi),
1499                              &error_abort);
1500     if (!qdev_realize(DEVICE(&chip9->occ), NULL, &local_err)) {
1501         error_propagate(errp, local_err);
1502         return;
1503     }
1504     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1505 
1506     /* OCC SRAM model */
1507     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1508                                 &chip9->occ.sram_regs);
1509 
1510     /* HOMER */
1511     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1512                              &error_abort);
1513     if (!qdev_realize(DEVICE(&chip9->homer), NULL, &local_err)) {
1514         error_propagate(errp, local_err);
1515         return;
1516     }
1517     /* Homer Xscom region */
1518     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1519 
1520     /* Homer mmio region */
1521     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1522                                 &chip9->homer.regs);
1523 
1524     /* PHBs */
1525     pnv_chip_power9_phb_realize(chip, &local_err);
1526     if (local_err) {
1527         error_propagate(errp, local_err);
1528         return;
1529     }
1530 }
1531 
1532 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1533 {
1534     addr &= (PNV9_XSCOM_SIZE - 1);
1535     return addr >> 3;
1536 }
1537 
1538 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1539 {
1540     DeviceClass *dc = DEVICE_CLASS(klass);
1541     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1542 
1543     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1544     k->cores_mask = POWER9_CORE_MASK;
1545     k->core_pir = pnv_chip_core_pir_p9;
1546     k->intc_create = pnv_chip_power9_intc_create;
1547     k->intc_reset = pnv_chip_power9_intc_reset;
1548     k->intc_destroy = pnv_chip_power9_intc_destroy;
1549     k->intc_print_info = pnv_chip_power9_intc_print_info;
1550     k->isa_create = pnv_chip_power9_isa_create;
1551     k->dt_populate = pnv_chip_power9_dt_populate;
1552     k->pic_print_info = pnv_chip_power9_pic_print_info;
1553     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1554     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1555     dc->desc = "PowerNV Chip POWER9";
1556     k->num_phbs = 6;
1557 
1558     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1559                                     &k->parent_realize);
1560 }
1561 
1562 static void pnv_chip_power10_instance_init(Object *obj)
1563 {
1564     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1565 
1566     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1567     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1568 }
1569 
1570 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1571 {
1572     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1573     PnvChip *chip = PNV_CHIP(dev);
1574     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1575     Error *local_err = NULL;
1576 
1577     /* XSCOM bridge is first */
1578     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1579     if (local_err) {
1580         error_propagate(errp, local_err);
1581         return;
1582     }
1583     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1584 
1585     pcc->parent_realize(dev, &local_err);
1586     if (local_err) {
1587         error_propagate(errp, local_err);
1588         return;
1589     }
1590 
1591     /* Processor Service Interface (PSI) Host Bridge */
1592     object_property_set_int(OBJECT(&chip10->psi), "bar",
1593                             PNV10_PSIHB_BASE(chip), &error_fatal);
1594     if (!qdev_realize(DEVICE(&chip10->psi), NULL, &local_err)) {
1595         error_propagate(errp, local_err);
1596         return;
1597     }
1598     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1599                             &PNV_PSI(&chip10->psi)->xscom_regs);
1600 
1601     /* LPC */
1602     object_property_set_link(OBJECT(&chip10->lpc), "psi",
1603                              OBJECT(&chip10->psi), &error_abort);
1604     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, &local_err)) {
1605         error_propagate(errp, local_err);
1606         return;
1607     }
1608     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1609                                 &chip10->lpc.xscom_regs);
1610 
1611     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1612                                             (uint64_t) PNV10_LPCM_BASE(chip));
1613 }
1614 
1615 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1616 {
1617     addr &= (PNV10_XSCOM_SIZE - 1);
1618     return addr >> 3;
1619 }
1620 
1621 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1622 {
1623     DeviceClass *dc = DEVICE_CLASS(klass);
1624     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1625 
1626     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1627     k->cores_mask = POWER10_CORE_MASK;
1628     k->core_pir = pnv_chip_core_pir_p10;
1629     k->intc_create = pnv_chip_power10_intc_create;
1630     k->intc_reset = pnv_chip_power10_intc_reset;
1631     k->intc_destroy = pnv_chip_power10_intc_destroy;
1632     k->intc_print_info = pnv_chip_power10_intc_print_info;
1633     k->isa_create = pnv_chip_power10_isa_create;
1634     k->dt_populate = pnv_chip_power10_dt_populate;
1635     k->pic_print_info = pnv_chip_power10_pic_print_info;
1636     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1637     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1638     dc->desc = "PowerNV Chip POWER10";
1639 
1640     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1641                                     &k->parent_realize);
1642 }
1643 
1644 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1645 {
1646     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1647     int cores_max;
1648 
1649     /*
1650      * No custom mask for this chip, let's use the default one from *
1651      * the chip class
1652      */
1653     if (!chip->cores_mask) {
1654         chip->cores_mask = pcc->cores_mask;
1655     }
1656 
1657     /* filter alien core ids ! some are reserved */
1658     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1659         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1660                    chip->cores_mask);
1661         return;
1662     }
1663     chip->cores_mask &= pcc->cores_mask;
1664 
1665     /* now that we have a sane layout, let check the number of cores */
1666     cores_max = ctpop64(chip->cores_mask);
1667     if (chip->nr_cores > cores_max) {
1668         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1669                    cores_max);
1670         return;
1671     }
1672 }
1673 
1674 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1675 {
1676     Error *error = NULL;
1677     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1678     const char *typename = pnv_chip_core_typename(chip);
1679     int i, core_hwid;
1680     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1681 
1682     if (!object_class_by_name(typename)) {
1683         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1684         return;
1685     }
1686 
1687     /* Cores */
1688     pnv_chip_core_sanitize(chip, &error);
1689     if (error) {
1690         error_propagate(errp, error);
1691         return;
1692     }
1693 
1694     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1695 
1696     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1697              && (i < chip->nr_cores); core_hwid++) {
1698         char core_name[32];
1699         PnvCore *pnv_core;
1700         uint64_t xscom_core_base;
1701 
1702         if (!(chip->cores_mask & (1ull << core_hwid))) {
1703             continue;
1704         }
1705 
1706         pnv_core = PNV_CORE(object_new(typename));
1707 
1708         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1709         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1710         chip->cores[i] = pnv_core;
1711         object_property_set_int(OBJECT(pnv_core), "nr-threads",
1712                                 chip->nr_threads, &error_fatal);
1713         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
1714                                 core_hwid, &error_fatal);
1715         object_property_set_int(OBJECT(pnv_core), "pir",
1716                                 pcc->core_pir(chip, core_hwid), &error_fatal);
1717         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
1718                                 &error_fatal);
1719         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
1720                                  &error_abort);
1721         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
1722 
1723         /* Each core has an XSCOM MMIO region */
1724         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1725 
1726         pnv_xscom_add_subregion(chip, xscom_core_base,
1727                                 &pnv_core->xscom_regs);
1728         i++;
1729     }
1730 }
1731 
1732 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1733 {
1734     PnvChip *chip = PNV_CHIP(dev);
1735     Error *error = NULL;
1736 
1737     /* Cores */
1738     pnv_chip_core_realize(chip, &error);
1739     if (error) {
1740         error_propagate(errp, error);
1741         return;
1742     }
1743 }
1744 
1745 static Property pnv_chip_properties[] = {
1746     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1747     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1748     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1749     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1750     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1751     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1752     DEFINE_PROP_UINT32("num-phbs", PnvChip, num_phbs, 0),
1753     DEFINE_PROP_END_OF_LIST(),
1754 };
1755 
1756 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1757 {
1758     DeviceClass *dc = DEVICE_CLASS(klass);
1759 
1760     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1761     dc->realize = pnv_chip_realize;
1762     device_class_set_props(dc, pnv_chip_properties);
1763     dc->desc = "PowerNV Chip";
1764 }
1765 
1766 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1767 {
1768     int i, j;
1769 
1770     for (i = 0; i < chip->nr_cores; i++) {
1771         PnvCore *pc = chip->cores[i];
1772         CPUCore *cc = CPU_CORE(pc);
1773 
1774         for (j = 0; j < cc->nr_threads; j++) {
1775             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1776                 return pc->threads[j];
1777             }
1778         }
1779     }
1780     return NULL;
1781 }
1782 
1783 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1784 {
1785     PnvMachineState *pnv = PNV_MACHINE(xi);
1786     int i, j;
1787 
1788     for (i = 0; i < pnv->num_chips; i++) {
1789         PnvChip *chip = pnv->chips[i];
1790         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1791 
1792         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1793             return &chip8->psi.ics;
1794         }
1795         for (j = 0; j < chip->num_phbs; j++) {
1796             if (ics_valid_irq(&chip8->phbs[j].lsis, irq)) {
1797                 return &chip8->phbs[j].lsis;
1798             }
1799             if (ics_valid_irq(ICS(&chip8->phbs[j].msis), irq)) {
1800                 return ICS(&chip8->phbs[j].msis);
1801             }
1802         }
1803     }
1804     return NULL;
1805 }
1806 
1807 static void pnv_ics_resend(XICSFabric *xi)
1808 {
1809     PnvMachineState *pnv = PNV_MACHINE(xi);
1810     int i, j;
1811 
1812     for (i = 0; i < pnv->num_chips; i++) {
1813         PnvChip *chip = pnv->chips[i];
1814         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1815 
1816         ics_resend(&chip8->psi.ics);
1817         for (j = 0; j < chip->num_phbs; j++) {
1818             ics_resend(&chip8->phbs[j].lsis);
1819             ics_resend(ICS(&chip8->phbs[j].msis));
1820         }
1821     }
1822 }
1823 
1824 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1825 {
1826     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1827 
1828     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1829 }
1830 
1831 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1832                                Monitor *mon)
1833 {
1834     PnvMachineState *pnv = PNV_MACHINE(obj);
1835     int i;
1836     CPUState *cs;
1837 
1838     CPU_FOREACH(cs) {
1839         PowerPCCPU *cpu = POWERPC_CPU(cs);
1840 
1841         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1842         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1843                                                            mon);
1844     }
1845 
1846     for (i = 0; i < pnv->num_chips; i++) {
1847         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1848     }
1849 }
1850 
1851 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1852                          uint8_t nvt_blk, uint32_t nvt_idx,
1853                          bool cam_ignore, uint8_t priority,
1854                          uint32_t logic_serv,
1855                          XiveTCTXMatch *match)
1856 {
1857     PnvMachineState *pnv = PNV_MACHINE(xfb);
1858     int total_count = 0;
1859     int i;
1860 
1861     for (i = 0; i < pnv->num_chips; i++) {
1862         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1863         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1864         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1865         int count;
1866 
1867         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1868                                priority, logic_serv, match);
1869 
1870         if (count < 0) {
1871             return count;
1872         }
1873 
1874         total_count += count;
1875     }
1876 
1877     return total_count;
1878 }
1879 
1880 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1881 {
1882     MachineClass *mc = MACHINE_CLASS(oc);
1883     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1884     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1885     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1886 
1887     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1888     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1889 
1890     xic->icp_get = pnv_icp_get;
1891     xic->ics_get = pnv_ics_get;
1892     xic->ics_resend = pnv_ics_resend;
1893 
1894     pmc->compat = compat;
1895     pmc->compat_size = sizeof(compat);
1896 }
1897 
1898 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1899 {
1900     MachineClass *mc = MACHINE_CLASS(oc);
1901     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1902     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1903     static const char compat[] = "qemu,powernv9\0ibm,powernv";
1904 
1905     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1906     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1907     xfc->match_nvt = pnv_match_nvt;
1908 
1909     mc->alias = "powernv";
1910 
1911     pmc->compat = compat;
1912     pmc->compat_size = sizeof(compat);
1913     pmc->dt_power_mgt = pnv_dt_power_mgt;
1914 }
1915 
1916 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1917 {
1918     MachineClass *mc = MACHINE_CLASS(oc);
1919     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1920     static const char compat[] = "qemu,powernv10\0ibm,powernv";
1921 
1922     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1923     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1924 
1925     pmc->compat = compat;
1926     pmc->compat_size = sizeof(compat);
1927     pmc->dt_power_mgt = pnv_dt_power_mgt;
1928 }
1929 
1930 static bool pnv_machine_get_hb(Object *obj, Error **errp)
1931 {
1932     PnvMachineState *pnv = PNV_MACHINE(obj);
1933 
1934     return !!pnv->fw_load_addr;
1935 }
1936 
1937 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1938 {
1939     PnvMachineState *pnv = PNV_MACHINE(obj);
1940 
1941     if (value) {
1942         pnv->fw_load_addr = 0x8000000;
1943     }
1944 }
1945 
1946 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
1947 {
1948     PowerPCCPU *cpu = POWERPC_CPU(cs);
1949     CPUPPCState *env = &cpu->env;
1950 
1951     cpu_synchronize_state(cs);
1952     ppc_cpu_do_system_reset(cs);
1953     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
1954         /*
1955          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
1956          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
1957          * (PPC_BIT(43)).
1958          */
1959         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
1960             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
1961             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
1962         }
1963     } else {
1964         /*
1965          * For non-powersave system resets, SRR1[42:45] are defined to be
1966          * implementation-dependent. The POWER9 User Manual specifies that
1967          * an external (SCOM driven, which may come from a BMC nmi command or
1968          * another CPU requesting a NMI IPI) system reset exception should be
1969          * 0b0010 (PPC_BIT(44)).
1970          */
1971         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
1972     }
1973 }
1974 
1975 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
1976 {
1977     CPUState *cs;
1978 
1979     CPU_FOREACH(cs) {
1980         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
1981     }
1982 }
1983 
1984 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1985 {
1986     MachineClass *mc = MACHINE_CLASS(oc);
1987     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1988     NMIClass *nc = NMI_CLASS(oc);
1989 
1990     mc->desc = "IBM PowerNV (Non-Virtualized)";
1991     mc->init = pnv_init;
1992     mc->reset = pnv_reset;
1993     mc->max_cpus = MAX_CPUS;
1994     /* Pnv provides a AHCI device for storage */
1995     mc->block_default_type = IF_IDE;
1996     mc->no_parallel = 1;
1997     mc->default_boot_order = NULL;
1998     /*
1999      * RAM defaults to less than 2048 for 32-bit hosts, and large
2000      * enough to fit the maximum initrd size at it's load address
2001      */
2002     mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
2003     mc->default_ram_id = "pnv.ram";
2004     ispc->print_info = pnv_pic_print_info;
2005     nc->nmi_monitor_handler = pnv_nmi;
2006 
2007     object_class_property_add_bool(oc, "hb-mode",
2008                                    pnv_machine_get_hb, pnv_machine_set_hb);
2009     object_class_property_set_description(oc, "hb-mode",
2010                               "Use a hostboot like boot loader");
2011 }
2012 
2013 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2014     {                                             \
2015         .name          = type,                    \
2016         .class_init    = class_initfn,            \
2017         .parent        = TYPE_PNV8_CHIP,          \
2018     }
2019 
2020 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2021     {                                             \
2022         .name          = type,                    \
2023         .class_init    = class_initfn,            \
2024         .parent        = TYPE_PNV9_CHIP,          \
2025     }
2026 
2027 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2028     {                                              \
2029         .name          = type,                     \
2030         .class_init    = class_initfn,             \
2031         .parent        = TYPE_PNV10_CHIP,          \
2032     }
2033 
2034 static const TypeInfo types[] = {
2035     {
2036         .name          = MACHINE_TYPE_NAME("powernv10"),
2037         .parent        = TYPE_PNV_MACHINE,
2038         .class_init    = pnv_machine_power10_class_init,
2039     },
2040     {
2041         .name          = MACHINE_TYPE_NAME("powernv9"),
2042         .parent        = TYPE_PNV_MACHINE,
2043         .class_init    = pnv_machine_power9_class_init,
2044         .interfaces = (InterfaceInfo[]) {
2045             { TYPE_XIVE_FABRIC },
2046             { },
2047         },
2048     },
2049     {
2050         .name          = MACHINE_TYPE_NAME("powernv8"),
2051         .parent        = TYPE_PNV_MACHINE,
2052         .class_init    = pnv_machine_power8_class_init,
2053         .interfaces = (InterfaceInfo[]) {
2054             { TYPE_XICS_FABRIC },
2055             { },
2056         },
2057     },
2058     {
2059         .name          = TYPE_PNV_MACHINE,
2060         .parent        = TYPE_MACHINE,
2061         .abstract       = true,
2062         .instance_size = sizeof(PnvMachineState),
2063         .class_init    = pnv_machine_class_init,
2064         .class_size    = sizeof(PnvMachineClass),
2065         .interfaces = (InterfaceInfo[]) {
2066             { TYPE_INTERRUPT_STATS_PROVIDER },
2067             { TYPE_NMI },
2068             { },
2069         },
2070     },
2071     {
2072         .name          = TYPE_PNV_CHIP,
2073         .parent        = TYPE_SYS_BUS_DEVICE,
2074         .class_init    = pnv_chip_class_init,
2075         .instance_size = sizeof(PnvChip),
2076         .class_size    = sizeof(PnvChipClass),
2077         .abstract      = true,
2078     },
2079 
2080     /*
2081      * P10 chip and variants
2082      */
2083     {
2084         .name          = TYPE_PNV10_CHIP,
2085         .parent        = TYPE_PNV_CHIP,
2086         .instance_init = pnv_chip_power10_instance_init,
2087         .instance_size = sizeof(Pnv10Chip),
2088     },
2089     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2090 
2091     /*
2092      * P9 chip and variants
2093      */
2094     {
2095         .name          = TYPE_PNV9_CHIP,
2096         .parent        = TYPE_PNV_CHIP,
2097         .instance_init = pnv_chip_power9_instance_init,
2098         .instance_size = sizeof(Pnv9Chip),
2099     },
2100     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2101 
2102     /*
2103      * P8 chip and variants
2104      */
2105     {
2106         .name          = TYPE_PNV8_CHIP,
2107         .parent        = TYPE_PNV_CHIP,
2108         .instance_init = pnv_chip_power8_instance_init,
2109         .instance_size = sizeof(Pnv8Chip),
2110     },
2111     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2112     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2113     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2114                           pnv_chip_power8nvl_class_init),
2115 };
2116 
2117 DEFINE_TYPES(types)
2118