xref: /qemu/hw/ppc/pnv.c (revision 727385c4)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/datadir.h"
23 #include "qemu/units.h"
24 #include "qemu/cutils.h"
25 #include "qapi/error.h"
26 #include "sysemu/qtest.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/numa.h"
29 #include "sysemu/reset.h"
30 #include "sysemu/runstate.h"
31 #include "sysemu/cpus.h"
32 #include "sysemu/device_tree.h"
33 #include "sysemu/hw_accel.h"
34 #include "target/ppc/cpu.h"
35 #include "hw/ppc/fdt.h"
36 #include "hw/ppc/ppc.h"
37 #include "hw/ppc/pnv.h"
38 #include "hw/ppc/pnv_core.h"
39 #include "hw/loader.h"
40 #include "hw/nmi.h"
41 #include "qapi/visitor.h"
42 #include "monitor/monitor.h"
43 #include "hw/intc/intc.h"
44 #include "hw/ipmi/ipmi.h"
45 #include "target/ppc/mmu-hash64.h"
46 #include "hw/pci/msi.h"
47 
48 #include "hw/ppc/xics.h"
49 #include "hw/qdev-properties.h"
50 #include "hw/ppc/pnv_xscom.h"
51 #include "hw/ppc/pnv_pnor.h"
52 
53 #include "hw/isa/isa.h"
54 #include "hw/char/serial.h"
55 #include "hw/rtc/mc146818rtc.h"
56 
57 #include <libfdt.h>
58 
59 #define FDT_MAX_SIZE            (1 * MiB)
60 
61 #define FW_FILE_NAME            "skiboot.lid"
62 #define FW_LOAD_ADDR            0x0
63 #define FW_MAX_SIZE             (16 * MiB)
64 
65 #define KERNEL_LOAD_ADDR        0x20000000
66 #define KERNEL_MAX_SIZE         (128 * MiB)
67 #define INITRD_LOAD_ADDR        0x28000000
68 #define INITRD_MAX_SIZE         (128 * MiB)
69 
70 static const char *pnv_chip_core_typename(const PnvChip *o)
71 {
72     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
73     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
74     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
75     const char *core_type = object_class_get_name(object_class_by_name(s));
76     g_free(s);
77     return core_type;
78 }
79 
80 /*
81  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
82  *     4 * 4 sockets * 12 cores * 8 threads = 1536
83  * Let's make it 2^11
84  */
85 #define MAX_CPUS                2048
86 
87 /*
88  * Memory nodes are created by hostboot, one for each range of memory
89  * that has a different "affinity". In practice, it means one range
90  * per chip.
91  */
92 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
93 {
94     char *mem_name;
95     uint64_t mem_reg_property[2];
96     int off;
97 
98     mem_reg_property[0] = cpu_to_be64(start);
99     mem_reg_property[1] = cpu_to_be64(size);
100 
101     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
102     off = fdt_add_subnode(fdt, 0, mem_name);
103     g_free(mem_name);
104 
105     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
106     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
107                        sizeof(mem_reg_property))));
108     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
109 }
110 
111 static int get_cpus_node(void *fdt)
112 {
113     int cpus_offset = fdt_path_offset(fdt, "/cpus");
114 
115     if (cpus_offset < 0) {
116         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
117         if (cpus_offset) {
118             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
119             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
120         }
121     }
122     _FDT(cpus_offset);
123     return cpus_offset;
124 }
125 
126 /*
127  * The PowerNV cores (and threads) need to use real HW ids and not an
128  * incremental index like it has been done on other platforms. This HW
129  * id is stored in the CPU PIR, it is used to create cpu nodes in the
130  * device tree, used in XSCOM to address cores and in interrupt
131  * servers.
132  */
133 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
134 {
135     PowerPCCPU *cpu = pc->threads[0];
136     CPUState *cs = CPU(cpu);
137     DeviceClass *dc = DEVICE_GET_CLASS(cs);
138     int smt_threads = CPU_CORE(pc)->nr_threads;
139     CPUPPCState *env = &cpu->env;
140     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
141     uint32_t servers_prop[smt_threads];
142     int i;
143     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
144                        0xffffffff, 0xffffffff};
145     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
146     uint32_t cpufreq = 1000000000;
147     uint32_t page_sizes_prop[64];
148     size_t page_sizes_prop_size;
149     const uint8_t pa_features[] = { 24, 0,
150                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
151                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
152                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
153                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
154     int offset;
155     char *nodename;
156     int cpus_offset = get_cpus_node(fdt);
157 
158     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
159     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
160     _FDT(offset);
161     g_free(nodename);
162 
163     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
164 
165     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
166     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
167     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
168 
169     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
170     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
171                             env->dcache_line_size)));
172     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
173                             env->dcache_line_size)));
174     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
175                             env->icache_line_size)));
176     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
177                             env->icache_line_size)));
178 
179     if (pcc->l1_dcache_size) {
180         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
181                                pcc->l1_dcache_size)));
182     } else {
183         warn_report("Unknown L1 dcache size for cpu");
184     }
185     if (pcc->l1_icache_size) {
186         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
187                                pcc->l1_icache_size)));
188     } else {
189         warn_report("Unknown L1 icache size for cpu");
190     }
191 
192     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
193     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
194     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
195                            cpu->hash64_opts->slb_size)));
196     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
197     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
198 
199     if (ppc_has_spr(cpu, SPR_PURR)) {
200         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
201     }
202 
203     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
204         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
205                            segs, sizeof(segs))));
206     }
207 
208     /*
209      * Advertise VMX/VSX (vector extensions) if available
210      *   0 / no property == no vector extensions
211      *   1               == VMX / Altivec available
212      *   2               == VSX available
213      */
214     if (env->insns_flags & PPC_ALTIVEC) {
215         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
216 
217         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
218     }
219 
220     /*
221      * Advertise DFP (Decimal Floating Point) if available
222      *   0 / no property == no DFP
223      *   1               == DFP available
224      */
225     if (env->insns_flags2 & PPC2_DFP) {
226         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
227     }
228 
229     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
230                                                       sizeof(page_sizes_prop));
231     if (page_sizes_prop_size) {
232         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
233                            page_sizes_prop, page_sizes_prop_size)));
234     }
235 
236     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
237                        pa_features, sizeof(pa_features))));
238 
239     /* Build interrupt servers properties */
240     for (i = 0; i < smt_threads; i++) {
241         servers_prop[i] = cpu_to_be32(pc->pir + i);
242     }
243     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
244                        servers_prop, sizeof(servers_prop))));
245 }
246 
247 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
248                        uint32_t nr_threads)
249 {
250     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
251     char *name;
252     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
253     uint32_t irange[2], i, rsize;
254     uint64_t *reg;
255     int offset;
256 
257     irange[0] = cpu_to_be32(pir);
258     irange[1] = cpu_to_be32(nr_threads);
259 
260     rsize = sizeof(uint64_t) * 2 * nr_threads;
261     reg = g_malloc(rsize);
262     for (i = 0; i < nr_threads; i++) {
263         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
264         reg[i * 2 + 1] = cpu_to_be64(0x1000);
265     }
266 
267     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
268     offset = fdt_add_subnode(fdt, 0, name);
269     _FDT(offset);
270     g_free(name);
271 
272     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
273     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
274     _FDT((fdt_setprop_string(fdt, offset, "device_type",
275                               "PowerPC-External-Interrupt-Presentation")));
276     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
277     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
278                        irange, sizeof(irange))));
279     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
280     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
281     g_free(reg);
282 }
283 
284 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
285 {
286     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
287     int i;
288 
289     pnv_dt_xscom(chip, fdt, 0,
290                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
291                  cpu_to_be64(PNV_XSCOM_SIZE),
292                  compat, sizeof(compat));
293 
294     for (i = 0; i < chip->nr_cores; i++) {
295         PnvCore *pnv_core = chip->cores[i];
296 
297         pnv_dt_core(chip, pnv_core, fdt);
298 
299         /* Interrupt Control Presenters (ICP). One per core. */
300         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
301     }
302 
303     if (chip->ram_size) {
304         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
305     }
306 }
307 
308 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
309 {
310     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
311     int i;
312 
313     pnv_dt_xscom(chip, fdt, 0,
314                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
315                  cpu_to_be64(PNV9_XSCOM_SIZE),
316                  compat, sizeof(compat));
317 
318     for (i = 0; i < chip->nr_cores; i++) {
319         PnvCore *pnv_core = chip->cores[i];
320 
321         pnv_dt_core(chip, pnv_core, fdt);
322     }
323 
324     if (chip->ram_size) {
325         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
326     }
327 
328     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
329 }
330 
331 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
332 {
333     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
334     int i;
335 
336     pnv_dt_xscom(chip, fdt, 0,
337                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
338                  cpu_to_be64(PNV10_XSCOM_SIZE),
339                  compat, sizeof(compat));
340 
341     for (i = 0; i < chip->nr_cores; i++) {
342         PnvCore *pnv_core = chip->cores[i];
343 
344         pnv_dt_core(chip, pnv_core, fdt);
345     }
346 
347     if (chip->ram_size) {
348         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
349     }
350 
351     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
352 }
353 
354 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
355 {
356     uint32_t io_base = d->ioport_id;
357     uint32_t io_regs[] = {
358         cpu_to_be32(1),
359         cpu_to_be32(io_base),
360         cpu_to_be32(2)
361     };
362     char *name;
363     int node;
364 
365     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
366     node = fdt_add_subnode(fdt, lpc_off, name);
367     _FDT(node);
368     g_free(name);
369 
370     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
371     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
372 }
373 
374 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
375 {
376     const char compatible[] = "ns16550\0pnpPNP,501";
377     uint32_t io_base = d->ioport_id;
378     uint32_t io_regs[] = {
379         cpu_to_be32(1),
380         cpu_to_be32(io_base),
381         cpu_to_be32(8)
382     };
383     char *name;
384     int node;
385 
386     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
387     node = fdt_add_subnode(fdt, lpc_off, name);
388     _FDT(node);
389     g_free(name);
390 
391     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
392     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
393                       sizeof(compatible))));
394 
395     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
396     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
397     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
398     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
399                            fdt_get_phandle(fdt, lpc_off))));
400 
401     /* This is needed by Linux */
402     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
403 }
404 
405 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
406 {
407     const char compatible[] = "bt\0ipmi-bt";
408     uint32_t io_base;
409     uint32_t io_regs[] = {
410         cpu_to_be32(1),
411         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
412         cpu_to_be32(3)
413     };
414     uint32_t irq;
415     char *name;
416     int node;
417 
418     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
419     io_regs[1] = cpu_to_be32(io_base);
420 
421     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
422 
423     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
424     node = fdt_add_subnode(fdt, lpc_off, name);
425     _FDT(node);
426     g_free(name);
427 
428     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
429     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
430                       sizeof(compatible))));
431 
432     /* Mark it as reserved to avoid Linux trying to claim it */
433     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
434     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
435     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
436                            fdt_get_phandle(fdt, lpc_off))));
437 }
438 
439 typedef struct ForeachPopulateArgs {
440     void *fdt;
441     int offset;
442 } ForeachPopulateArgs;
443 
444 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
445 {
446     ForeachPopulateArgs *args = opaque;
447     ISADevice *d = ISA_DEVICE(dev);
448 
449     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
450         pnv_dt_rtc(d, args->fdt, args->offset);
451     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
452         pnv_dt_serial(d, args->fdt, args->offset);
453     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
454         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
455     } else {
456         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
457                      d->ioport_id);
458     }
459 
460     return 0;
461 }
462 
463 /*
464  * The default LPC bus of a multichip system is on chip 0. It's
465  * recognized by the firmware (skiboot) using a "primary" property.
466  */
467 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
468 {
469     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
470     ForeachPopulateArgs args = {
471         .fdt = fdt,
472         .offset = isa_offset,
473     };
474     uint32_t phandle;
475 
476     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
477 
478     phandle = qemu_fdt_alloc_phandle(fdt);
479     assert(phandle > 0);
480     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
481 
482     /*
483      * ISA devices are not necessarily parented to the ISA bus so we
484      * can not use object_child_foreach()
485      */
486     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
487                        &args);
488 }
489 
490 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
491 {
492     int off;
493 
494     off = fdt_add_subnode(fdt, 0, "ibm,opal");
495     off = fdt_add_subnode(fdt, off, "power-mgt");
496 
497     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
498 }
499 
500 static void *pnv_dt_create(MachineState *machine)
501 {
502     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
503     PnvMachineState *pnv = PNV_MACHINE(machine);
504     void *fdt;
505     char *buf;
506     int off;
507     int i;
508 
509     fdt = g_malloc0(FDT_MAX_SIZE);
510     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
511 
512     /* /qemu node */
513     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
514 
515     /* Root node */
516     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
517     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
518     _FDT((fdt_setprop_string(fdt, 0, "model",
519                              "IBM PowerNV (emulated by qemu)")));
520     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
521 
522     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
523     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
524     if (qemu_uuid_set) {
525         _FDT((fdt_property_string(fdt, "system-id", buf)));
526     }
527     g_free(buf);
528 
529     off = fdt_add_subnode(fdt, 0, "chosen");
530     if (machine->kernel_cmdline) {
531         _FDT((fdt_setprop_string(fdt, off, "bootargs",
532                                  machine->kernel_cmdline)));
533     }
534 
535     if (pnv->initrd_size) {
536         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
537         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
538 
539         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
540                                &start_prop, sizeof(start_prop))));
541         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
542                                &end_prop, sizeof(end_prop))));
543     }
544 
545     /* Populate device tree for each chip */
546     for (i = 0; i < pnv->num_chips; i++) {
547         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
548     }
549 
550     /* Populate ISA devices on chip 0 */
551     pnv_dt_isa(pnv, fdt);
552 
553     if (pnv->bmc) {
554         pnv_dt_bmc_sensors(pnv->bmc, fdt);
555     }
556 
557     /* Create an extra node for power management on machines that support it */
558     if (pmc->dt_power_mgt) {
559         pmc->dt_power_mgt(pnv, fdt);
560     }
561 
562     return fdt;
563 }
564 
565 static void pnv_powerdown_notify(Notifier *n, void *opaque)
566 {
567     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
568 
569     if (pnv->bmc) {
570         pnv_bmc_powerdown(pnv->bmc);
571     }
572 }
573 
574 static void pnv_reset(MachineState *machine)
575 {
576     PnvMachineState *pnv = PNV_MACHINE(machine);
577     IPMIBmc *bmc;
578     void *fdt;
579 
580     qemu_devices_reset();
581 
582     /*
583      * The machine should provide by default an internal BMC simulator.
584      * If not, try to use the BMC device that was provided on the command
585      * line.
586      */
587     bmc = pnv_bmc_find(&error_fatal);
588     if (!pnv->bmc) {
589         if (!bmc) {
590             if (!qtest_enabled()) {
591                 warn_report("machine has no BMC device. Use '-device "
592                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
593                             "to define one");
594             }
595         } else {
596             pnv_bmc_set_pnor(bmc, pnv->pnor);
597             pnv->bmc = bmc;
598         }
599     }
600 
601     fdt = pnv_dt_create(machine);
602 
603     /* Pack resulting tree */
604     _FDT((fdt_pack(fdt)));
605 
606     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
607     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
608 
609     g_free(fdt);
610 }
611 
612 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
613 {
614     Pnv8Chip *chip8 = PNV8_CHIP(chip);
615     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
616 }
617 
618 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
619 {
620     Pnv8Chip *chip8 = PNV8_CHIP(chip);
621     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
622 }
623 
624 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
625 {
626     Pnv9Chip *chip9 = PNV9_CHIP(chip);
627     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
628 }
629 
630 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
631 {
632     Pnv10Chip *chip10 = PNV10_CHIP(chip);
633     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
634 }
635 
636 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
637 {
638     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
639 }
640 
641 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
642 {
643     Pnv8Chip *chip8 = PNV8_CHIP(chip);
644     int i;
645 
646     ics_pic_print_info(&chip8->psi.ics, mon);
647     for (i = 0; i < chip->num_phbs; i++) {
648         pnv_phb3_msi_pic_print_info(&chip8->phbs[i].msis, mon);
649         ics_pic_print_info(&chip8->phbs[i].lsis, mon);
650     }
651 }
652 
653 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
654 {
655     Pnv9Chip *chip9 = PNV9_CHIP(chip);
656     int i, j;
657 
658     pnv_xive_pic_print_info(&chip9->xive, mon);
659     pnv_psi_pic_print_info(&chip9->psi, mon);
660 
661     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
662         PnvPhb4PecState *pec = &chip9->pecs[i];
663         for (j = 0; j < pec->num_stacks; j++) {
664             pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon);
665         }
666     }
667 }
668 
669 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
670                                                 uint32_t core_id)
671 {
672     return PNV_XSCOM_EX_BASE(core_id);
673 }
674 
675 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
676                                                 uint32_t core_id)
677 {
678     return PNV9_XSCOM_EC_BASE(core_id);
679 }
680 
681 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
682                                                  uint32_t core_id)
683 {
684     return PNV10_XSCOM_EC_BASE(core_id);
685 }
686 
687 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
688 {
689     PowerPCCPUClass *ppc_default =
690         POWERPC_CPU_CLASS(object_class_by_name(default_type));
691     PowerPCCPUClass *ppc =
692         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
693 
694     return ppc_default->pvr_match(ppc_default, ppc->pvr);
695 }
696 
697 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
698 {
699     ISADevice *dev = isa_new("isa-ipmi-bt");
700 
701     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
702     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
703     isa_realize_and_unref(dev, bus, &error_fatal);
704 }
705 
706 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
707 {
708     Pnv10Chip *chip10 = PNV10_CHIP(chip);
709 
710     pnv_psi_pic_print_info(&chip10->psi, mon);
711 }
712 
713 /* Always give the first 1GB to chip 0 else we won't boot */
714 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
715 {
716     MachineState *machine = MACHINE(pnv);
717     uint64_t ram_per_chip;
718 
719     assert(machine->ram_size >= 1 * GiB);
720 
721     ram_per_chip = machine->ram_size / pnv->num_chips;
722     if (ram_per_chip >= 1 * GiB) {
723         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
724     }
725 
726     assert(pnv->num_chips > 1);
727 
728     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
729     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
730 }
731 
732 static void pnv_init(MachineState *machine)
733 {
734     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
735     PnvMachineState *pnv = PNV_MACHINE(machine);
736     MachineClass *mc = MACHINE_GET_CLASS(machine);
737     char *fw_filename;
738     long fw_size;
739     uint64_t chip_ram_start = 0;
740     int i;
741     char *chip_typename;
742     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
743     DeviceState *dev;
744 
745     /* allocate RAM */
746     if (machine->ram_size < mc->default_ram_size) {
747         char *sz = size_to_str(mc->default_ram_size);
748         error_report("Invalid RAM size, should be bigger than %s", sz);
749         g_free(sz);
750         exit(EXIT_FAILURE);
751     }
752     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
753 
754     /*
755      * Create our simple PNOR device
756      */
757     dev = qdev_new(TYPE_PNV_PNOR);
758     if (pnor) {
759         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
760     }
761     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
762     pnv->pnor = PNV_PNOR(dev);
763 
764     /* load skiboot firmware  */
765     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
766     if (!fw_filename) {
767         error_report("Could not find OPAL firmware '%s'", bios_name);
768         exit(1);
769     }
770 
771     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
772     if (fw_size < 0) {
773         error_report("Could not load OPAL firmware '%s'", fw_filename);
774         exit(1);
775     }
776     g_free(fw_filename);
777 
778     /* load kernel */
779     if (machine->kernel_filename) {
780         long kernel_size;
781 
782         kernel_size = load_image_targphys(machine->kernel_filename,
783                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
784         if (kernel_size < 0) {
785             error_report("Could not load kernel '%s'",
786                          machine->kernel_filename);
787             exit(1);
788         }
789     }
790 
791     /* load initrd */
792     if (machine->initrd_filename) {
793         pnv->initrd_base = INITRD_LOAD_ADDR;
794         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
795                                   pnv->initrd_base, INITRD_MAX_SIZE);
796         if (pnv->initrd_size < 0) {
797             error_report("Could not load initial ram disk '%s'",
798                          machine->initrd_filename);
799             exit(1);
800         }
801     }
802 
803     /* MSIs are supported on this platform */
804     msi_nonbroken = true;
805 
806     /*
807      * Check compatibility of the specified CPU with the machine
808      * default.
809      */
810     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
811         error_report("invalid CPU model '%s' for %s machine",
812                      machine->cpu_type, mc->name);
813         exit(1);
814     }
815 
816     /* Create the processor chips */
817     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
818     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
819                                     i, machine->cpu_type);
820     if (!object_class_by_name(chip_typename)) {
821         error_report("invalid chip model '%.*s' for %s machine",
822                      i, machine->cpu_type, mc->name);
823         exit(1);
824     }
825 
826     pnv->num_chips =
827         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
828     /*
829      * TODO: should we decide on how many chips we can create based
830      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
831      */
832     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
833         error_report("invalid number of chips: '%d'", pnv->num_chips);
834         error_printf(
835             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
836         exit(1);
837     }
838 
839     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
840     for (i = 0; i < pnv->num_chips; i++) {
841         char chip_name[32];
842         Object *chip = OBJECT(qdev_new(chip_typename));
843         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
844 
845         pnv->chips[i] = PNV_CHIP(chip);
846 
847         /* Distribute RAM among the chips  */
848         object_property_set_int(chip, "ram-start", chip_ram_start,
849                                 &error_fatal);
850         object_property_set_int(chip, "ram-size", chip_ram_size,
851                                 &error_fatal);
852         chip_ram_start += chip_ram_size;
853 
854         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
855         object_property_add_child(OBJECT(pnv), chip_name, chip);
856         object_property_set_int(chip, "chip-id", i, &error_fatal);
857         object_property_set_int(chip, "nr-cores", machine->smp.cores,
858                                 &error_fatal);
859         object_property_set_int(chip, "nr-threads", machine->smp.threads,
860                                 &error_fatal);
861         /*
862          * The POWER8 machine use the XICS interrupt interface.
863          * Propagate the XICS fabric to the chip and its controllers.
864          */
865         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
866             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
867         }
868         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
869             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
870                                      &error_abort);
871         }
872         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
873     }
874     g_free(chip_typename);
875 
876     /* Instantiate ISA bus on chip 0 */
877     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
878 
879     /* Create serial port */
880     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
881 
882     /* Create an RTC ISA device too */
883     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
884 
885     /*
886      * Create the machine BMC simulator and the IPMI BT device for
887      * communication with the BMC
888      */
889     if (defaults_enabled()) {
890         pnv->bmc = pnv_bmc_create(pnv->pnor);
891         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
892     }
893 
894     /*
895      * The PNOR is mapped on the LPC FW address space by the BMC.
896      * Since we can not reach the remote BMC machine with LPC memops,
897      * map it always for now.
898      */
899     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
900                                 &pnv->pnor->mmio);
901 
902     /*
903      * OpenPOWER systems use a IPMI SEL Event message to notify the
904      * host to powerdown
905      */
906     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
907     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
908 }
909 
910 /*
911  *    0:21  Reserved - Read as zeros
912  *   22:24  Chip ID
913  *   25:28  Core number
914  *   29:31  Thread ID
915  */
916 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
917 {
918     return (chip->chip_id << 7) | (core_id << 3);
919 }
920 
921 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
922                                         Error **errp)
923 {
924     Pnv8Chip *chip8 = PNV8_CHIP(chip);
925     Error *local_err = NULL;
926     Object *obj;
927     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
928 
929     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
930     if (local_err) {
931         error_propagate(errp, local_err);
932         return;
933     }
934 
935     pnv_cpu->intc = obj;
936 }
937 
938 
939 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
940 {
941     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
942 
943     icp_reset(ICP(pnv_cpu->intc));
944 }
945 
946 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
947 {
948     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
949 
950     icp_destroy(ICP(pnv_cpu->intc));
951     pnv_cpu->intc = NULL;
952 }
953 
954 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
955                                             Monitor *mon)
956 {
957     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
958 }
959 
960 /*
961  *    0:48  Reserved - Read as zeroes
962  *   49:52  Node ID
963  *   53:55  Chip ID
964  *   56     Reserved - Read as zero
965  *   57:61  Core number
966  *   62:63  Thread ID
967  *
968  * We only care about the lower bits. uint32_t is fine for the moment.
969  */
970 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
971 {
972     return (chip->chip_id << 8) | (core_id << 2);
973 }
974 
975 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
976 {
977     return (chip->chip_id << 8) | (core_id << 2);
978 }
979 
980 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
981                                         Error **errp)
982 {
983     Pnv9Chip *chip9 = PNV9_CHIP(chip);
984     Error *local_err = NULL;
985     Object *obj;
986     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
987 
988     /*
989      * The core creates its interrupt presenter but the XIVE interrupt
990      * controller object is initialized afterwards. Hopefully, it's
991      * only used at runtime.
992      */
993     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
994                            &local_err);
995     if (local_err) {
996         error_propagate(errp, local_err);
997         return;
998     }
999 
1000     pnv_cpu->intc = obj;
1001 }
1002 
1003 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1004 {
1005     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1006 
1007     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1008 }
1009 
1010 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1011 {
1012     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1013 
1014     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1015     pnv_cpu->intc = NULL;
1016 }
1017 
1018 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1019                                             Monitor *mon)
1020 {
1021     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1022 }
1023 
1024 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1025                                         Error **errp)
1026 {
1027     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1028 
1029     /* Will be defined when the interrupt controller is */
1030     pnv_cpu->intc = NULL;
1031 }
1032 
1033 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1034 {
1035     ;
1036 }
1037 
1038 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1039 {
1040     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1041 
1042     pnv_cpu->intc = NULL;
1043 }
1044 
1045 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1046                                              Monitor *mon)
1047 {
1048 }
1049 
1050 /*
1051  * Allowed core identifiers on a POWER8 Processor Chip :
1052  *
1053  * <EX0 reserved>
1054  *  EX1  - Venice only
1055  *  EX2  - Venice only
1056  *  EX3  - Venice only
1057  *  EX4
1058  *  EX5
1059  *  EX6
1060  * <EX7,8 reserved> <reserved>
1061  *  EX9  - Venice only
1062  *  EX10 - Venice only
1063  *  EX11 - Venice only
1064  *  EX12
1065  *  EX13
1066  *  EX14
1067  * <EX15 reserved>
1068  */
1069 #define POWER8E_CORE_MASK  (0x7070ull)
1070 #define POWER8_CORE_MASK   (0x7e7eull)
1071 
1072 /*
1073  * POWER9 has 24 cores, ids starting at 0x0
1074  */
1075 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1076 
1077 
1078 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1079 
1080 static void pnv_chip_power8_instance_init(Object *obj)
1081 {
1082     PnvChip *chip = PNV_CHIP(obj);
1083     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1084     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1085     int i;
1086 
1087     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1088                              (Object **)&chip8->xics,
1089                              object_property_allow_set_link,
1090                              OBJ_PROP_LINK_STRONG);
1091 
1092     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1093 
1094     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1095 
1096     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1097 
1098     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1099 
1100     for (i = 0; i < pcc->num_phbs; i++) {
1101         object_initialize_child(obj, "phb[*]", &chip8->phbs[i], TYPE_PNV_PHB3);
1102     }
1103 
1104     /*
1105      * Number of PHBs is the chip default
1106      */
1107     chip->num_phbs = pcc->num_phbs;
1108 }
1109 
1110 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1111  {
1112     PnvChip *chip = PNV_CHIP(chip8);
1113     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1114     int i, j;
1115     char *name;
1116 
1117     name = g_strdup_printf("icp-%x", chip->chip_id);
1118     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1119     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1120     g_free(name);
1121 
1122     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1123 
1124     /* Map the ICP registers for each thread */
1125     for (i = 0; i < chip->nr_cores; i++) {
1126         PnvCore *pnv_core = chip->cores[i];
1127         int core_hwid = CPU_CORE(pnv_core)->core_id;
1128 
1129         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1130             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1131             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1132 
1133             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1134                                         &icp->mmio);
1135         }
1136     }
1137 }
1138 
1139 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1140 {
1141     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1142     PnvChip *chip = PNV_CHIP(dev);
1143     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1144     Pnv8Psi *psi8 = &chip8->psi;
1145     Error *local_err = NULL;
1146     int i;
1147 
1148     assert(chip8->xics);
1149 
1150     /* XSCOM bridge is first */
1151     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1152     if (local_err) {
1153         error_propagate(errp, local_err);
1154         return;
1155     }
1156     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1157 
1158     pcc->parent_realize(dev, &local_err);
1159     if (local_err) {
1160         error_propagate(errp, local_err);
1161         return;
1162     }
1163 
1164     /* Processor Service Interface (PSI) Host Bridge */
1165     object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip),
1166                             &error_fatal);
1167     object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS,
1168                              OBJECT(chip8->xics), &error_abort);
1169     if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) {
1170         return;
1171     }
1172     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1173                             &PNV_PSI(psi8)->xscom_regs);
1174 
1175     /* Create LPC controller */
1176     object_property_set_link(OBJECT(&chip8->lpc), "psi", OBJECT(&chip8->psi),
1177                              &error_abort);
1178     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1179     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1180 
1181     chip->fw_mr = &chip8->lpc.isa_fw;
1182     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1183                                             (uint64_t) PNV_XSCOM_BASE(chip),
1184                                             PNV_XSCOM_LPC_BASE);
1185 
1186     /*
1187      * Interrupt Management Area. This is the memory region holding
1188      * all the Interrupt Control Presenter (ICP) registers
1189      */
1190     pnv_chip_icp_realize(chip8, &local_err);
1191     if (local_err) {
1192         error_propagate(errp, local_err);
1193         return;
1194     }
1195 
1196     /* Create the simplified OCC model */
1197     object_property_set_link(OBJECT(&chip8->occ), "psi", OBJECT(&chip8->psi),
1198                              &error_abort);
1199     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1200         return;
1201     }
1202     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1203 
1204     /* OCC SRAM model */
1205     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1206                                 &chip8->occ.sram_regs);
1207 
1208     /* HOMER */
1209     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1210                              &error_abort);
1211     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1212         return;
1213     }
1214     /* Homer Xscom region */
1215     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1216 
1217     /* Homer mmio region */
1218     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1219                                 &chip8->homer.regs);
1220 
1221     /* PHB3 controllers */
1222     for (i = 0; i < chip->num_phbs; i++) {
1223         PnvPHB3 *phb = &chip8->phbs[i];
1224         PnvPBCQState *pbcq = &phb->pbcq;
1225 
1226         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1227         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1228                                 &error_fatal);
1229         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1230             return;
1231         }
1232 
1233         /* Populate the XSCOM address space. */
1234         pnv_xscom_add_subregion(chip,
1235                                 PNV_XSCOM_PBCQ_NEST_BASE + 0x400 * phb->phb_id,
1236                                 &pbcq->xscom_nest_regs);
1237         pnv_xscom_add_subregion(chip,
1238                                 PNV_XSCOM_PBCQ_PCI_BASE + 0x400 * phb->phb_id,
1239                                 &pbcq->xscom_pci_regs);
1240         pnv_xscom_add_subregion(chip,
1241                                 PNV_XSCOM_PBCQ_SPCI_BASE + 0x040 * phb->phb_id,
1242                                 &pbcq->xscom_spci_regs);
1243     }
1244 }
1245 
1246 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1247 {
1248     addr &= (PNV_XSCOM_SIZE - 1);
1249     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1250 }
1251 
1252 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1253 {
1254     DeviceClass *dc = DEVICE_CLASS(klass);
1255     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1256 
1257     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1258     k->cores_mask = POWER8E_CORE_MASK;
1259     k->num_phbs = 3;
1260     k->core_pir = pnv_chip_core_pir_p8;
1261     k->intc_create = pnv_chip_power8_intc_create;
1262     k->intc_reset = pnv_chip_power8_intc_reset;
1263     k->intc_destroy = pnv_chip_power8_intc_destroy;
1264     k->intc_print_info = pnv_chip_power8_intc_print_info;
1265     k->isa_create = pnv_chip_power8_isa_create;
1266     k->dt_populate = pnv_chip_power8_dt_populate;
1267     k->pic_print_info = pnv_chip_power8_pic_print_info;
1268     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1269     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1270     dc->desc = "PowerNV Chip POWER8E";
1271 
1272     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1273                                     &k->parent_realize);
1274 }
1275 
1276 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1277 {
1278     DeviceClass *dc = DEVICE_CLASS(klass);
1279     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1280 
1281     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1282     k->cores_mask = POWER8_CORE_MASK;
1283     k->num_phbs = 3;
1284     k->core_pir = pnv_chip_core_pir_p8;
1285     k->intc_create = pnv_chip_power8_intc_create;
1286     k->intc_reset = pnv_chip_power8_intc_reset;
1287     k->intc_destroy = pnv_chip_power8_intc_destroy;
1288     k->intc_print_info = pnv_chip_power8_intc_print_info;
1289     k->isa_create = pnv_chip_power8_isa_create;
1290     k->dt_populate = pnv_chip_power8_dt_populate;
1291     k->pic_print_info = pnv_chip_power8_pic_print_info;
1292     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1293     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1294     dc->desc = "PowerNV Chip POWER8";
1295 
1296     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1297                                     &k->parent_realize);
1298 }
1299 
1300 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1301 {
1302     DeviceClass *dc = DEVICE_CLASS(klass);
1303     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1304 
1305     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1306     k->cores_mask = POWER8_CORE_MASK;
1307     k->num_phbs = 3;
1308     k->core_pir = pnv_chip_core_pir_p8;
1309     k->intc_create = pnv_chip_power8_intc_create;
1310     k->intc_reset = pnv_chip_power8_intc_reset;
1311     k->intc_destroy = pnv_chip_power8_intc_destroy;
1312     k->intc_print_info = pnv_chip_power8_intc_print_info;
1313     k->isa_create = pnv_chip_power8nvl_isa_create;
1314     k->dt_populate = pnv_chip_power8_dt_populate;
1315     k->pic_print_info = pnv_chip_power8_pic_print_info;
1316     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1317     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1318     dc->desc = "PowerNV Chip POWER8NVL";
1319 
1320     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1321                                     &k->parent_realize);
1322 }
1323 
1324 static void pnv_chip_power9_instance_init(Object *obj)
1325 {
1326     PnvChip *chip = PNV_CHIP(obj);
1327     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1328     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1329     int i;
1330 
1331     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1332     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1333                               "xive-fabric");
1334 
1335     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1336 
1337     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1338 
1339     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1340 
1341     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1342 
1343     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1344         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1345                                 TYPE_PNV_PHB4_PEC);
1346     }
1347 
1348     /*
1349      * Number of PHBs is the chip default
1350      */
1351     chip->num_phbs = pcc->num_phbs;
1352 }
1353 
1354 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1355 {
1356     PnvChip *chip = PNV_CHIP(chip9);
1357     int i;
1358 
1359     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1360     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1361 
1362     for (i = 0; i < chip9->nr_quads; i++) {
1363         char eq_name[32];
1364         PnvQuad *eq = &chip9->quads[i];
1365         PnvCore *pnv_core = chip->cores[i * 4];
1366         int core_id = CPU_CORE(pnv_core)->core_id;
1367 
1368         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1369         object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1370                                            sizeof(*eq), TYPE_PNV_QUAD,
1371                                            &error_fatal, NULL);
1372 
1373         object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1374         qdev_realize(DEVICE(eq), NULL, &error_fatal);
1375 
1376         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1377                                 &eq->xscom_regs);
1378     }
1379 }
1380 
1381 static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp)
1382 {
1383     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1384     int i, j;
1385     int phb_id = 0;
1386 
1387     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1388         PnvPhb4PecState *pec = &chip9->pecs[i];
1389         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1390         uint32_t pec_nest_base;
1391         uint32_t pec_pci_base;
1392 
1393         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1394         /*
1395          * PEC0 -> 1 stack
1396          * PEC1 -> 2 stacks
1397          * PEC2 -> 3 stacks
1398          */
1399         object_property_set_int(OBJECT(pec), "num-stacks", i + 1,
1400                                 &error_fatal);
1401         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1402                                 &error_fatal);
1403         object_property_set_link(OBJECT(pec), "system-memory",
1404                                  OBJECT(get_system_memory()), &error_abort);
1405         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1406             return;
1407         }
1408 
1409         pec_nest_base = pecc->xscom_nest_base(pec);
1410         pec_pci_base = pecc->xscom_pci_base(pec);
1411 
1412         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1413         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1414 
1415         for (j = 0; j < pec->num_stacks && phb_id < chip->num_phbs;
1416              j++, phb_id++) {
1417             PnvPhb4PecStack *stack = &pec->stacks[j];
1418             Object *obj = OBJECT(&stack->phb);
1419 
1420             object_property_set_int(obj, "index", phb_id, &error_fatal);
1421             object_property_set_int(obj, "chip-id", chip->chip_id,
1422                                     &error_fatal);
1423             object_property_set_int(obj, "version", PNV_PHB4_VERSION,
1424                                     &error_fatal);
1425             object_property_set_int(obj, "device-id", PNV_PHB4_DEVICE_ID,
1426                                     &error_fatal);
1427             object_property_set_link(obj, "stack", OBJECT(stack),
1428                                      &error_abort);
1429             if (!sysbus_realize(SYS_BUS_DEVICE(obj), errp)) {
1430                 return;
1431             }
1432 
1433             /* Populate the XSCOM address space. */
1434             pnv_xscom_add_subregion(chip,
1435                                    pec_nest_base + 0x40 * (stack->stack_no + 1),
1436                                    &stack->nest_regs_mr);
1437             pnv_xscom_add_subregion(chip,
1438                                     pec_pci_base + 0x40 * (stack->stack_no + 1),
1439                                     &stack->pci_regs_mr);
1440             pnv_xscom_add_subregion(chip,
1441                                     pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1442                                     0x40 * stack->stack_no,
1443                                     &stack->phb_regs_mr);
1444         }
1445     }
1446 }
1447 
1448 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1449 {
1450     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1451     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1452     PnvChip *chip = PNV_CHIP(dev);
1453     Pnv9Psi *psi9 = &chip9->psi;
1454     Error *local_err = NULL;
1455 
1456     /* XSCOM bridge is first */
1457     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1458     if (local_err) {
1459         error_propagate(errp, local_err);
1460         return;
1461     }
1462     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1463 
1464     pcc->parent_realize(dev, &local_err);
1465     if (local_err) {
1466         error_propagate(errp, local_err);
1467         return;
1468     }
1469 
1470     pnv_chip_quad_realize(chip9, &local_err);
1471     if (local_err) {
1472         error_propagate(errp, local_err);
1473         return;
1474     }
1475 
1476     /* XIVE interrupt controller (POWER9) */
1477     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1478                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1479     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1480                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1481     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1482                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1483     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1484                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1485     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1486                              &error_abort);
1487     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1488         return;
1489     }
1490     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1491                             &chip9->xive.xscom_regs);
1492 
1493     /* Processor Service Interface (PSI) Host Bridge */
1494     object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip),
1495                             &error_fatal);
1496     if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) {
1497         return;
1498     }
1499     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1500                             &PNV_PSI(psi9)->xscom_regs);
1501 
1502     /* LPC */
1503     object_property_set_link(OBJECT(&chip9->lpc), "psi", OBJECT(&chip9->psi),
1504                              &error_abort);
1505     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1506         return;
1507     }
1508     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1509                                 &chip9->lpc.xscom_regs);
1510 
1511     chip->fw_mr = &chip9->lpc.isa_fw;
1512     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1513                                             (uint64_t) PNV9_LPCM_BASE(chip));
1514 
1515     /* Create the simplified OCC model */
1516     object_property_set_link(OBJECT(&chip9->occ), "psi", OBJECT(&chip9->psi),
1517                              &error_abort);
1518     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1519         return;
1520     }
1521     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1522 
1523     /* OCC SRAM model */
1524     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1525                                 &chip9->occ.sram_regs);
1526 
1527     /* HOMER */
1528     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1529                              &error_abort);
1530     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1531         return;
1532     }
1533     /* Homer Xscom region */
1534     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1535 
1536     /* Homer mmio region */
1537     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1538                                 &chip9->homer.regs);
1539 
1540     /* PHBs */
1541     pnv_chip_power9_phb_realize(chip, &local_err);
1542     if (local_err) {
1543         error_propagate(errp, local_err);
1544         return;
1545     }
1546 }
1547 
1548 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1549 {
1550     addr &= (PNV9_XSCOM_SIZE - 1);
1551     return addr >> 3;
1552 }
1553 
1554 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1555 {
1556     DeviceClass *dc = DEVICE_CLASS(klass);
1557     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1558 
1559     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1560     k->cores_mask = POWER9_CORE_MASK;
1561     k->core_pir = pnv_chip_core_pir_p9;
1562     k->intc_create = pnv_chip_power9_intc_create;
1563     k->intc_reset = pnv_chip_power9_intc_reset;
1564     k->intc_destroy = pnv_chip_power9_intc_destroy;
1565     k->intc_print_info = pnv_chip_power9_intc_print_info;
1566     k->isa_create = pnv_chip_power9_isa_create;
1567     k->dt_populate = pnv_chip_power9_dt_populate;
1568     k->pic_print_info = pnv_chip_power9_pic_print_info;
1569     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1570     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1571     dc->desc = "PowerNV Chip POWER9";
1572     k->num_phbs = 6;
1573 
1574     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1575                                     &k->parent_realize);
1576 }
1577 
1578 static void pnv_chip_power10_instance_init(Object *obj)
1579 {
1580     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1581 
1582     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1583     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1584 }
1585 
1586 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1587 {
1588     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1589     PnvChip *chip = PNV_CHIP(dev);
1590     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1591     Error *local_err = NULL;
1592 
1593     /* XSCOM bridge is first */
1594     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1595     if (local_err) {
1596         error_propagate(errp, local_err);
1597         return;
1598     }
1599     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1600 
1601     pcc->parent_realize(dev, &local_err);
1602     if (local_err) {
1603         error_propagate(errp, local_err);
1604         return;
1605     }
1606 
1607     /* Processor Service Interface (PSI) Host Bridge */
1608     object_property_set_int(OBJECT(&chip10->psi), "bar",
1609                             PNV10_PSIHB_BASE(chip), &error_fatal);
1610     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1611         return;
1612     }
1613     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1614                             &PNV_PSI(&chip10->psi)->xscom_regs);
1615 
1616     /* LPC */
1617     object_property_set_link(OBJECT(&chip10->lpc), "psi",
1618                              OBJECT(&chip10->psi), &error_abort);
1619     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1620         return;
1621     }
1622     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1623                                 &chip10->lpc.xscom_regs);
1624 
1625     chip->fw_mr = &chip10->lpc.isa_fw;
1626     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1627                                             (uint64_t) PNV10_LPCM_BASE(chip));
1628 }
1629 
1630 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1631 {
1632     addr &= (PNV10_XSCOM_SIZE - 1);
1633     return addr >> 3;
1634 }
1635 
1636 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1637 {
1638     DeviceClass *dc = DEVICE_CLASS(klass);
1639     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1640 
1641     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1642     k->cores_mask = POWER10_CORE_MASK;
1643     k->core_pir = pnv_chip_core_pir_p10;
1644     k->intc_create = pnv_chip_power10_intc_create;
1645     k->intc_reset = pnv_chip_power10_intc_reset;
1646     k->intc_destroy = pnv_chip_power10_intc_destroy;
1647     k->intc_print_info = pnv_chip_power10_intc_print_info;
1648     k->isa_create = pnv_chip_power10_isa_create;
1649     k->dt_populate = pnv_chip_power10_dt_populate;
1650     k->pic_print_info = pnv_chip_power10_pic_print_info;
1651     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1652     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1653     dc->desc = "PowerNV Chip POWER10";
1654 
1655     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1656                                     &k->parent_realize);
1657 }
1658 
1659 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1660 {
1661     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1662     int cores_max;
1663 
1664     /*
1665      * No custom mask for this chip, let's use the default one from *
1666      * the chip class
1667      */
1668     if (!chip->cores_mask) {
1669         chip->cores_mask = pcc->cores_mask;
1670     }
1671 
1672     /* filter alien core ids ! some are reserved */
1673     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1674         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1675                    chip->cores_mask);
1676         return;
1677     }
1678     chip->cores_mask &= pcc->cores_mask;
1679 
1680     /* now that we have a sane layout, let check the number of cores */
1681     cores_max = ctpop64(chip->cores_mask);
1682     if (chip->nr_cores > cores_max) {
1683         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1684                    cores_max);
1685         return;
1686     }
1687 }
1688 
1689 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1690 {
1691     Error *error = NULL;
1692     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1693     const char *typename = pnv_chip_core_typename(chip);
1694     int i, core_hwid;
1695     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1696 
1697     if (!object_class_by_name(typename)) {
1698         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1699         return;
1700     }
1701 
1702     /* Cores */
1703     pnv_chip_core_sanitize(chip, &error);
1704     if (error) {
1705         error_propagate(errp, error);
1706         return;
1707     }
1708 
1709     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1710 
1711     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1712              && (i < chip->nr_cores); core_hwid++) {
1713         char core_name[32];
1714         PnvCore *pnv_core;
1715         uint64_t xscom_core_base;
1716 
1717         if (!(chip->cores_mask & (1ull << core_hwid))) {
1718             continue;
1719         }
1720 
1721         pnv_core = PNV_CORE(object_new(typename));
1722 
1723         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1724         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1725         chip->cores[i] = pnv_core;
1726         object_property_set_int(OBJECT(pnv_core), "nr-threads",
1727                                 chip->nr_threads, &error_fatal);
1728         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
1729                                 core_hwid, &error_fatal);
1730         object_property_set_int(OBJECT(pnv_core), "pir",
1731                                 pcc->core_pir(chip, core_hwid), &error_fatal);
1732         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
1733                                 &error_fatal);
1734         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
1735                                  &error_abort);
1736         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
1737 
1738         /* Each core has an XSCOM MMIO region */
1739         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1740 
1741         pnv_xscom_add_subregion(chip, xscom_core_base,
1742                                 &pnv_core->xscom_regs);
1743         i++;
1744     }
1745 }
1746 
1747 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1748 {
1749     PnvChip *chip = PNV_CHIP(dev);
1750     Error *error = NULL;
1751 
1752     /* Cores */
1753     pnv_chip_core_realize(chip, &error);
1754     if (error) {
1755         error_propagate(errp, error);
1756         return;
1757     }
1758 }
1759 
1760 static Property pnv_chip_properties[] = {
1761     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1762     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1763     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1764     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1765     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1766     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1767     DEFINE_PROP_UINT32("num-phbs", PnvChip, num_phbs, 0),
1768     DEFINE_PROP_END_OF_LIST(),
1769 };
1770 
1771 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1772 {
1773     DeviceClass *dc = DEVICE_CLASS(klass);
1774 
1775     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1776     dc->realize = pnv_chip_realize;
1777     device_class_set_props(dc, pnv_chip_properties);
1778     dc->desc = "PowerNV Chip";
1779 }
1780 
1781 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1782 {
1783     int i, j;
1784 
1785     for (i = 0; i < chip->nr_cores; i++) {
1786         PnvCore *pc = chip->cores[i];
1787         CPUCore *cc = CPU_CORE(pc);
1788 
1789         for (j = 0; j < cc->nr_threads; j++) {
1790             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1791                 return pc->threads[j];
1792             }
1793         }
1794     }
1795     return NULL;
1796 }
1797 
1798 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1799 {
1800     PnvMachineState *pnv = PNV_MACHINE(xi);
1801     int i, j;
1802 
1803     for (i = 0; i < pnv->num_chips; i++) {
1804         PnvChip *chip = pnv->chips[i];
1805         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1806 
1807         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1808             return &chip8->psi.ics;
1809         }
1810         for (j = 0; j < chip->num_phbs; j++) {
1811             if (ics_valid_irq(&chip8->phbs[j].lsis, irq)) {
1812                 return &chip8->phbs[j].lsis;
1813             }
1814             if (ics_valid_irq(ICS(&chip8->phbs[j].msis), irq)) {
1815                 return ICS(&chip8->phbs[j].msis);
1816             }
1817         }
1818     }
1819     return NULL;
1820 }
1821 
1822 static void pnv_ics_resend(XICSFabric *xi)
1823 {
1824     PnvMachineState *pnv = PNV_MACHINE(xi);
1825     int i, j;
1826 
1827     for (i = 0; i < pnv->num_chips; i++) {
1828         PnvChip *chip = pnv->chips[i];
1829         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1830 
1831         ics_resend(&chip8->psi.ics);
1832         for (j = 0; j < chip->num_phbs; j++) {
1833             ics_resend(&chip8->phbs[j].lsis);
1834             ics_resend(ICS(&chip8->phbs[j].msis));
1835         }
1836     }
1837 }
1838 
1839 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1840 {
1841     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1842 
1843     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1844 }
1845 
1846 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1847                                Monitor *mon)
1848 {
1849     PnvMachineState *pnv = PNV_MACHINE(obj);
1850     int i;
1851     CPUState *cs;
1852 
1853     CPU_FOREACH(cs) {
1854         PowerPCCPU *cpu = POWERPC_CPU(cs);
1855 
1856         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1857         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1858                                                            mon);
1859     }
1860 
1861     for (i = 0; i < pnv->num_chips; i++) {
1862         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1863     }
1864 }
1865 
1866 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1867                          uint8_t nvt_blk, uint32_t nvt_idx,
1868                          bool cam_ignore, uint8_t priority,
1869                          uint32_t logic_serv,
1870                          XiveTCTXMatch *match)
1871 {
1872     PnvMachineState *pnv = PNV_MACHINE(xfb);
1873     int total_count = 0;
1874     int i;
1875 
1876     for (i = 0; i < pnv->num_chips; i++) {
1877         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1878         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1879         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1880         int count;
1881 
1882         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1883                                priority, logic_serv, match);
1884 
1885         if (count < 0) {
1886             return count;
1887         }
1888 
1889         total_count += count;
1890     }
1891 
1892     return total_count;
1893 }
1894 
1895 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1896 {
1897     MachineClass *mc = MACHINE_CLASS(oc);
1898     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1899     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1900     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1901 
1902     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1903     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1904 
1905     xic->icp_get = pnv_icp_get;
1906     xic->ics_get = pnv_ics_get;
1907     xic->ics_resend = pnv_ics_resend;
1908 
1909     pmc->compat = compat;
1910     pmc->compat_size = sizeof(compat);
1911 }
1912 
1913 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1914 {
1915     MachineClass *mc = MACHINE_CLASS(oc);
1916     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1917     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1918     static const char compat[] = "qemu,powernv9\0ibm,powernv";
1919 
1920     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1921     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1922     xfc->match_nvt = pnv_match_nvt;
1923 
1924     mc->alias = "powernv";
1925 
1926     pmc->compat = compat;
1927     pmc->compat_size = sizeof(compat);
1928     pmc->dt_power_mgt = pnv_dt_power_mgt;
1929 }
1930 
1931 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1932 {
1933     MachineClass *mc = MACHINE_CLASS(oc);
1934     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1935     static const char compat[] = "qemu,powernv10\0ibm,powernv";
1936 
1937     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1938     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
1939 
1940     pmc->compat = compat;
1941     pmc->compat_size = sizeof(compat);
1942     pmc->dt_power_mgt = pnv_dt_power_mgt;
1943 }
1944 
1945 static bool pnv_machine_get_hb(Object *obj, Error **errp)
1946 {
1947     PnvMachineState *pnv = PNV_MACHINE(obj);
1948 
1949     return !!pnv->fw_load_addr;
1950 }
1951 
1952 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1953 {
1954     PnvMachineState *pnv = PNV_MACHINE(obj);
1955 
1956     if (value) {
1957         pnv->fw_load_addr = 0x8000000;
1958     }
1959 }
1960 
1961 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
1962 {
1963     PowerPCCPU *cpu = POWERPC_CPU(cs);
1964     CPUPPCState *env = &cpu->env;
1965 
1966     cpu_synchronize_state(cs);
1967     ppc_cpu_do_system_reset(cs);
1968     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
1969         /*
1970          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
1971          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
1972          * (PPC_BIT(43)).
1973          */
1974         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
1975             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
1976             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
1977         }
1978     } else {
1979         /*
1980          * For non-powersave system resets, SRR1[42:45] are defined to be
1981          * implementation-dependent. The POWER9 User Manual specifies that
1982          * an external (SCOM driven, which may come from a BMC nmi command or
1983          * another CPU requesting a NMI IPI) system reset exception should be
1984          * 0b0010 (PPC_BIT(44)).
1985          */
1986         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
1987     }
1988 }
1989 
1990 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
1991 {
1992     CPUState *cs;
1993 
1994     CPU_FOREACH(cs) {
1995         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
1996     }
1997 }
1998 
1999 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2000 {
2001     MachineClass *mc = MACHINE_CLASS(oc);
2002     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2003     NMIClass *nc = NMI_CLASS(oc);
2004 
2005     mc->desc = "IBM PowerNV (Non-Virtualized)";
2006     mc->init = pnv_init;
2007     mc->reset = pnv_reset;
2008     mc->max_cpus = MAX_CPUS;
2009     /* Pnv provides a AHCI device for storage */
2010     mc->block_default_type = IF_IDE;
2011     mc->no_parallel = 1;
2012     mc->default_boot_order = NULL;
2013     /*
2014      * RAM defaults to less than 2048 for 32-bit hosts, and large
2015      * enough to fit the maximum initrd size at it's load address
2016      */
2017     mc->default_ram_size = 1 * GiB;
2018     mc->default_ram_id = "pnv.ram";
2019     ispc->print_info = pnv_pic_print_info;
2020     nc->nmi_monitor_handler = pnv_nmi;
2021 
2022     object_class_property_add_bool(oc, "hb-mode",
2023                                    pnv_machine_get_hb, pnv_machine_set_hb);
2024     object_class_property_set_description(oc, "hb-mode",
2025                               "Use a hostboot like boot loader");
2026 }
2027 
2028 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2029     {                                             \
2030         .name          = type,                    \
2031         .class_init    = class_initfn,            \
2032         .parent        = TYPE_PNV8_CHIP,          \
2033     }
2034 
2035 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2036     {                                             \
2037         .name          = type,                    \
2038         .class_init    = class_initfn,            \
2039         .parent        = TYPE_PNV9_CHIP,          \
2040     }
2041 
2042 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2043     {                                              \
2044         .name          = type,                     \
2045         .class_init    = class_initfn,             \
2046         .parent        = TYPE_PNV10_CHIP,          \
2047     }
2048 
2049 static const TypeInfo types[] = {
2050     {
2051         .name          = MACHINE_TYPE_NAME("powernv10"),
2052         .parent        = TYPE_PNV_MACHINE,
2053         .class_init    = pnv_machine_power10_class_init,
2054     },
2055     {
2056         .name          = MACHINE_TYPE_NAME("powernv9"),
2057         .parent        = TYPE_PNV_MACHINE,
2058         .class_init    = pnv_machine_power9_class_init,
2059         .interfaces = (InterfaceInfo[]) {
2060             { TYPE_XIVE_FABRIC },
2061             { },
2062         },
2063     },
2064     {
2065         .name          = MACHINE_TYPE_NAME("powernv8"),
2066         .parent        = TYPE_PNV_MACHINE,
2067         .class_init    = pnv_machine_power8_class_init,
2068         .interfaces = (InterfaceInfo[]) {
2069             { TYPE_XICS_FABRIC },
2070             { },
2071         },
2072     },
2073     {
2074         .name          = TYPE_PNV_MACHINE,
2075         .parent        = TYPE_MACHINE,
2076         .abstract       = true,
2077         .instance_size = sizeof(PnvMachineState),
2078         .class_init    = pnv_machine_class_init,
2079         .class_size    = sizeof(PnvMachineClass),
2080         .interfaces = (InterfaceInfo[]) {
2081             { TYPE_INTERRUPT_STATS_PROVIDER },
2082             { TYPE_NMI },
2083             { },
2084         },
2085     },
2086     {
2087         .name          = TYPE_PNV_CHIP,
2088         .parent        = TYPE_SYS_BUS_DEVICE,
2089         .class_init    = pnv_chip_class_init,
2090         .instance_size = sizeof(PnvChip),
2091         .class_size    = sizeof(PnvChipClass),
2092         .abstract      = true,
2093     },
2094 
2095     /*
2096      * P10 chip and variants
2097      */
2098     {
2099         .name          = TYPE_PNV10_CHIP,
2100         .parent        = TYPE_PNV_CHIP,
2101         .instance_init = pnv_chip_power10_instance_init,
2102         .instance_size = sizeof(Pnv10Chip),
2103     },
2104     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2105 
2106     /*
2107      * P9 chip and variants
2108      */
2109     {
2110         .name          = TYPE_PNV9_CHIP,
2111         .parent        = TYPE_PNV_CHIP,
2112         .instance_init = pnv_chip_power9_instance_init,
2113         .instance_size = sizeof(Pnv9Chip),
2114     },
2115     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2116 
2117     /*
2118      * P8 chip and variants
2119      */
2120     {
2121         .name          = TYPE_PNV8_CHIP,
2122         .parent        = TYPE_PNV_CHIP,
2123         .instance_init = pnv_chip_power8_instance_init,
2124         .instance_size = sizeof(Pnv8Chip),
2125     },
2126     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2127     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2128     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2129                           pnv_chip_power8nvl_class_init),
2130 };
2131 
2132 DEFINE_TYPES(types)
2133