xref: /qemu/hw/ppc/pnv.c (revision 76eb88b1)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/cutils.h"
24 #include "qapi/error.h"
25 #include "sysemu/qtest.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/reset.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/cpus.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/hw_accel.h"
33 #include "target/ppc/cpu.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "qapi/visitor.h"
41 #include "monitor/monitor.h"
42 #include "hw/intc/intc.h"
43 #include "hw/ipmi/ipmi.h"
44 #include "target/ppc/mmu-hash64.h"
45 #include "hw/pci/msi.h"
46 #include "hw/pci-host/pnv_phb.h"
47 
48 #include "hw/ppc/xics.h"
49 #include "hw/qdev-properties.h"
50 #include "hw/ppc/pnv_xscom.h"
51 #include "hw/ppc/pnv_pnor.h"
52 
53 #include "hw/isa/isa.h"
54 #include "hw/char/serial.h"
55 #include "hw/rtc/mc146818rtc.h"
56 
57 #include <libfdt.h>
58 
59 #define FDT_MAX_SIZE            (1 * MiB)
60 
61 #define FW_FILE_NAME            "skiboot.lid"
62 #define FW_LOAD_ADDR            0x0
63 #define FW_MAX_SIZE             (16 * MiB)
64 
65 #define KERNEL_LOAD_ADDR        0x20000000
66 #define KERNEL_MAX_SIZE         (128 * MiB)
67 #define INITRD_LOAD_ADDR        0x28000000
68 #define INITRD_MAX_SIZE         (128 * MiB)
69 
70 static const char *pnv_chip_core_typename(const PnvChip *o)
71 {
72     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
73     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
74     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
75     const char *core_type = object_class_get_name(object_class_by_name(s));
76     g_free(s);
77     return core_type;
78 }
79 
80 /*
81  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
82  *     4 * 4 sockets * 12 cores * 8 threads = 1536
83  * Let's make it 2^11
84  */
85 #define MAX_CPUS                2048
86 
87 /*
88  * Memory nodes are created by hostboot, one for each range of memory
89  * that has a different "affinity". In practice, it means one range
90  * per chip.
91  */
92 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
93 {
94     char *mem_name;
95     uint64_t mem_reg_property[2];
96     int off;
97 
98     mem_reg_property[0] = cpu_to_be64(start);
99     mem_reg_property[1] = cpu_to_be64(size);
100 
101     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
102     off = fdt_add_subnode(fdt, 0, mem_name);
103     g_free(mem_name);
104 
105     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
106     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
107                        sizeof(mem_reg_property))));
108     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
109 }
110 
111 static int get_cpus_node(void *fdt)
112 {
113     int cpus_offset = fdt_path_offset(fdt, "/cpus");
114 
115     if (cpus_offset < 0) {
116         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
117         if (cpus_offset) {
118             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
119             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
120         }
121     }
122     _FDT(cpus_offset);
123     return cpus_offset;
124 }
125 
126 /*
127  * The PowerNV cores (and threads) need to use real HW ids and not an
128  * incremental index like it has been done on other platforms. This HW
129  * id is stored in the CPU PIR, it is used to create cpu nodes in the
130  * device tree, used in XSCOM to address cores and in interrupt
131  * servers.
132  */
133 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
134 {
135     PowerPCCPU *cpu = pc->threads[0];
136     CPUState *cs = CPU(cpu);
137     DeviceClass *dc = DEVICE_GET_CLASS(cs);
138     int smt_threads = CPU_CORE(pc)->nr_threads;
139     CPUPPCState *env = &cpu->env;
140     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
141     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
142     int i;
143     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
144                        0xffffffff, 0xffffffff};
145     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
146     uint32_t cpufreq = 1000000000;
147     uint32_t page_sizes_prop[64];
148     size_t page_sizes_prop_size;
149     const uint8_t pa_features[] = { 24, 0,
150                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
151                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
152                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
153                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
154     int offset;
155     char *nodename;
156     int cpus_offset = get_cpus_node(fdt);
157 
158     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
159     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
160     _FDT(offset);
161     g_free(nodename);
162 
163     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
164 
165     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
166     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
167     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
168 
169     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
170     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
171                             env->dcache_line_size)));
172     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
173                             env->dcache_line_size)));
174     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
175                             env->icache_line_size)));
176     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
177                             env->icache_line_size)));
178 
179     if (pcc->l1_dcache_size) {
180         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
181                                pcc->l1_dcache_size)));
182     } else {
183         warn_report("Unknown L1 dcache size for cpu");
184     }
185     if (pcc->l1_icache_size) {
186         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
187                                pcc->l1_icache_size)));
188     } else {
189         warn_report("Unknown L1 icache size for cpu");
190     }
191 
192     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
193     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
194     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
195                            cpu->hash64_opts->slb_size)));
196     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
197     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
198 
199     if (ppc_has_spr(cpu, SPR_PURR)) {
200         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
201     }
202 
203     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
204         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
205                            segs, sizeof(segs))));
206     }
207 
208     /*
209      * Advertise VMX/VSX (vector extensions) if available
210      *   0 / no property == no vector extensions
211      *   1               == VMX / Altivec available
212      *   2               == VSX available
213      */
214     if (env->insns_flags & PPC_ALTIVEC) {
215         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
216 
217         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
218     }
219 
220     /*
221      * Advertise DFP (Decimal Floating Point) if available
222      *   0 / no property == no DFP
223      *   1               == DFP available
224      */
225     if (env->insns_flags2 & PPC2_DFP) {
226         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
227     }
228 
229     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
230                                                       sizeof(page_sizes_prop));
231     if (page_sizes_prop_size) {
232         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
233                            page_sizes_prop, page_sizes_prop_size)));
234     }
235 
236     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
237                        pa_features, sizeof(pa_features))));
238 
239     /* Build interrupt servers properties */
240     for (i = 0; i < smt_threads; i++) {
241         servers_prop[i] = cpu_to_be32(pc->pir + i);
242     }
243     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
244                        servers_prop, sizeof(*servers_prop) * smt_threads)));
245 }
246 
247 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
248                        uint32_t nr_threads)
249 {
250     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
251     char *name;
252     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
253     uint32_t irange[2], i, rsize;
254     uint64_t *reg;
255     int offset;
256 
257     irange[0] = cpu_to_be32(pir);
258     irange[1] = cpu_to_be32(nr_threads);
259 
260     rsize = sizeof(uint64_t) * 2 * nr_threads;
261     reg = g_malloc(rsize);
262     for (i = 0; i < nr_threads; i++) {
263         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
264         reg[i * 2 + 1] = cpu_to_be64(0x1000);
265     }
266 
267     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
268     offset = fdt_add_subnode(fdt, 0, name);
269     _FDT(offset);
270     g_free(name);
271 
272     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
273     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
274     _FDT((fdt_setprop_string(fdt, offset, "device_type",
275                               "PowerPC-External-Interrupt-Presentation")));
276     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
277     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
278                        irange, sizeof(irange))));
279     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
280     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
281     g_free(reg);
282 }
283 
284 static PnvPhb4PecState *pnv_phb4_get_pec(PnvChip *chip, PnvPHB4 *phb,
285                                          Error **errp)
286 {
287     PnvPHB *phb_base = phb->phb_base;
288     PnvPhb4PecState *pecs = NULL;
289     int chip_id = phb->chip_id;
290     int index = phb->phb_id;
291     int i, j;
292 
293     if (phb_base->version == 4) {
294         Pnv9Chip *chip9 = PNV9_CHIP(chip);
295 
296         pecs = chip9->pecs;
297     } else if (phb_base->version == 5) {
298         Pnv10Chip *chip10 = PNV10_CHIP(chip);
299 
300         pecs = chip10->pecs;
301     } else {
302         g_assert_not_reached();
303     }
304 
305     for (i = 0; i < chip->num_pecs; i++) {
306         /*
307          * For each PEC, check the amount of phbs it supports
308          * and see if the given phb4 index matches an index.
309          */
310         PnvPhb4PecState *pec = &pecs[i];
311 
312         for (j = 0; j < pec->num_phbs; j++) {
313             if (index == pnv_phb4_pec_get_phb_id(pec, j)) {
314                 return pec;
315             }
316         }
317     }
318     error_setg(errp,
319                "pnv-phb4 chip-id %d index %d didn't match any existing PEC",
320                chip_id, index);
321 
322     return NULL;
323 }
324 
325 /*
326  * Adds a PnvPHB to the chip. Returns the parent obj of the
327  * PHB which varies with each version (phb version 3 is parented
328  * by the chip, version 4 and 5 are parented by the PEC
329  * device).
330  *
331  * TODO: for version 3 we're still parenting the PHB with the
332  * chip. We should parent with a (so far not implemented)
333  * PHB3 PEC device.
334  */
335 Object *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb, Error **errp)
336 {
337     if (phb->version == 3) {
338         Pnv8Chip *chip8 = PNV8_CHIP(chip);
339 
340         phb->chip = chip;
341 
342         chip8->phbs[chip8->num_phbs] = phb;
343         chip8->num_phbs++;
344 
345         return OBJECT(chip);
346     }
347 
348     phb->pec = pnv_phb4_get_pec(chip, PNV_PHB4(phb->backend), errp);
349 
350     return OBJECT(phb->pec);
351 }
352 
353 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
354 {
355     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
356     int i;
357 
358     pnv_dt_xscom(chip, fdt, 0,
359                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
360                  cpu_to_be64(PNV_XSCOM_SIZE),
361                  compat, sizeof(compat));
362 
363     for (i = 0; i < chip->nr_cores; i++) {
364         PnvCore *pnv_core = chip->cores[i];
365 
366         pnv_dt_core(chip, pnv_core, fdt);
367 
368         /* Interrupt Control Presenters (ICP). One per core. */
369         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
370     }
371 
372     if (chip->ram_size) {
373         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
374     }
375 }
376 
377 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
378 {
379     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
380     int i;
381 
382     pnv_dt_xscom(chip, fdt, 0,
383                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
384                  cpu_to_be64(PNV9_XSCOM_SIZE),
385                  compat, sizeof(compat));
386 
387     for (i = 0; i < chip->nr_cores; i++) {
388         PnvCore *pnv_core = chip->cores[i];
389 
390         pnv_dt_core(chip, pnv_core, fdt);
391     }
392 
393     if (chip->ram_size) {
394         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
395     }
396 
397     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
398 }
399 
400 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
401 {
402     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
403     int i;
404 
405     pnv_dt_xscom(chip, fdt, 0,
406                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
407                  cpu_to_be64(PNV10_XSCOM_SIZE),
408                  compat, sizeof(compat));
409 
410     for (i = 0; i < chip->nr_cores; i++) {
411         PnvCore *pnv_core = chip->cores[i];
412 
413         pnv_dt_core(chip, pnv_core, fdt);
414     }
415 
416     if (chip->ram_size) {
417         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
418     }
419 
420     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
421 }
422 
423 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
424 {
425     uint32_t io_base = d->ioport_id;
426     uint32_t io_regs[] = {
427         cpu_to_be32(1),
428         cpu_to_be32(io_base),
429         cpu_to_be32(2)
430     };
431     char *name;
432     int node;
433 
434     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
435     node = fdt_add_subnode(fdt, lpc_off, name);
436     _FDT(node);
437     g_free(name);
438 
439     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
440     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
441 }
442 
443 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
444 {
445     const char compatible[] = "ns16550\0pnpPNP,501";
446     uint32_t io_base = d->ioport_id;
447     uint32_t io_regs[] = {
448         cpu_to_be32(1),
449         cpu_to_be32(io_base),
450         cpu_to_be32(8)
451     };
452     uint32_t irq;
453     char *name;
454     int node;
455 
456     irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
457 
458     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
459     node = fdt_add_subnode(fdt, lpc_off, name);
460     _FDT(node);
461     g_free(name);
462 
463     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
464     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
465                       sizeof(compatible))));
466 
467     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
468     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
469     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
470     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
471                            fdt_get_phandle(fdt, lpc_off))));
472 
473     /* This is needed by Linux */
474     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
475 }
476 
477 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
478 {
479     const char compatible[] = "bt\0ipmi-bt";
480     uint32_t io_base;
481     uint32_t io_regs[] = {
482         cpu_to_be32(1),
483         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
484         cpu_to_be32(3)
485     };
486     uint32_t irq;
487     char *name;
488     int node;
489 
490     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
491     io_regs[1] = cpu_to_be32(io_base);
492 
493     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
494 
495     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
496     node = fdt_add_subnode(fdt, lpc_off, name);
497     _FDT(node);
498     g_free(name);
499 
500     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
501     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
502                       sizeof(compatible))));
503 
504     /* Mark it as reserved to avoid Linux trying to claim it */
505     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
506     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
507     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
508                            fdt_get_phandle(fdt, lpc_off))));
509 }
510 
511 typedef struct ForeachPopulateArgs {
512     void *fdt;
513     int offset;
514 } ForeachPopulateArgs;
515 
516 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
517 {
518     ForeachPopulateArgs *args = opaque;
519     ISADevice *d = ISA_DEVICE(dev);
520 
521     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
522         pnv_dt_rtc(d, args->fdt, args->offset);
523     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
524         pnv_dt_serial(d, args->fdt, args->offset);
525     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
526         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
527     } else {
528         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
529                      d->ioport_id);
530     }
531 
532     return 0;
533 }
534 
535 /*
536  * The default LPC bus of a multichip system is on chip 0. It's
537  * recognized by the firmware (skiboot) using a "primary" property.
538  */
539 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
540 {
541     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
542     ForeachPopulateArgs args = {
543         .fdt = fdt,
544         .offset = isa_offset,
545     };
546     uint32_t phandle;
547 
548     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
549 
550     phandle = qemu_fdt_alloc_phandle(fdt);
551     assert(phandle > 0);
552     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
553 
554     /*
555      * ISA devices are not necessarily parented to the ISA bus so we
556      * can not use object_child_foreach()
557      */
558     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
559                        &args);
560 }
561 
562 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
563 {
564     int off;
565 
566     off = fdt_add_subnode(fdt, 0, "ibm,opal");
567     off = fdt_add_subnode(fdt, off, "power-mgt");
568 
569     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
570 }
571 
572 static void *pnv_dt_create(MachineState *machine)
573 {
574     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
575     PnvMachineState *pnv = PNV_MACHINE(machine);
576     void *fdt;
577     char *buf;
578     int off;
579     int i;
580 
581     fdt = g_malloc0(FDT_MAX_SIZE);
582     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
583 
584     /* /qemu node */
585     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
586 
587     /* Root node */
588     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
589     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
590     _FDT((fdt_setprop_string(fdt, 0, "model",
591                              "IBM PowerNV (emulated by qemu)")));
592     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
593 
594     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
595     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
596     if (qemu_uuid_set) {
597         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
598     }
599     g_free(buf);
600 
601     off = fdt_add_subnode(fdt, 0, "chosen");
602     if (machine->kernel_cmdline) {
603         _FDT((fdt_setprop_string(fdt, off, "bootargs",
604                                  machine->kernel_cmdline)));
605     }
606 
607     if (pnv->initrd_size) {
608         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
609         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
610 
611         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
612                                &start_prop, sizeof(start_prop))));
613         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
614                                &end_prop, sizeof(end_prop))));
615     }
616 
617     /* Populate device tree for each chip */
618     for (i = 0; i < pnv->num_chips; i++) {
619         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
620     }
621 
622     /* Populate ISA devices on chip 0 */
623     pnv_dt_isa(pnv, fdt);
624 
625     if (pnv->bmc) {
626         pnv_dt_bmc_sensors(pnv->bmc, fdt);
627     }
628 
629     /* Create an extra node for power management on machines that support it */
630     if (pmc->dt_power_mgt) {
631         pmc->dt_power_mgt(pnv, fdt);
632     }
633 
634     return fdt;
635 }
636 
637 static void pnv_powerdown_notify(Notifier *n, void *opaque)
638 {
639     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
640 
641     if (pnv->bmc) {
642         pnv_bmc_powerdown(pnv->bmc);
643     }
644 }
645 
646 static void pnv_reset(MachineState *machine)
647 {
648     PnvMachineState *pnv = PNV_MACHINE(machine);
649     IPMIBmc *bmc;
650     void *fdt;
651 
652     qemu_devices_reset();
653 
654     /*
655      * The machine should provide by default an internal BMC simulator.
656      * If not, try to use the BMC device that was provided on the command
657      * line.
658      */
659     bmc = pnv_bmc_find(&error_fatal);
660     if (!pnv->bmc) {
661         if (!bmc) {
662             if (!qtest_enabled()) {
663                 warn_report("machine has no BMC device. Use '-device "
664                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
665                             "to define one");
666             }
667         } else {
668             pnv_bmc_set_pnor(bmc, pnv->pnor);
669             pnv->bmc = bmc;
670         }
671     }
672 
673     fdt = pnv_dt_create(machine);
674 
675     /* Pack resulting tree */
676     _FDT((fdt_pack(fdt)));
677 
678     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
679     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
680 
681     g_free(fdt);
682 }
683 
684 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
685 {
686     Pnv8Chip *chip8 = PNV8_CHIP(chip);
687     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
688 
689     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
690     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
691 }
692 
693 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
694 {
695     Pnv8Chip *chip8 = PNV8_CHIP(chip);
696     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
697 
698     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
699     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
700 }
701 
702 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
703 {
704     Pnv9Chip *chip9 = PNV9_CHIP(chip);
705     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
706 
707     qdev_connect_gpio_out(DEVICE(&chip9->lpc), 0, irq);
708     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
709 }
710 
711 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
712 {
713     Pnv10Chip *chip10 = PNV10_CHIP(chip);
714     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
715 
716     qdev_connect_gpio_out(DEVICE(&chip10->lpc), 0, irq);
717     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
718 }
719 
720 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
721 {
722     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
723 }
724 
725 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
726 {
727     Pnv8Chip *chip8 = PNV8_CHIP(chip);
728     int i;
729 
730     ics_pic_print_info(&chip8->psi.ics, mon);
731 
732     for (i = 0; i < chip8->num_phbs; i++) {
733         PnvPHB *phb = chip8->phbs[i];
734         PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
735 
736         pnv_phb3_msi_pic_print_info(&phb3->msis, mon);
737         ics_pic_print_info(&phb3->lsis, mon);
738     }
739 }
740 
741 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
742 {
743     Monitor *mon = opaque;
744     PnvPHB *phb =  (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
745 
746     if (!phb) {
747         return 0;
748     }
749 
750     pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), mon);
751 
752     return 0;
753 }
754 
755 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
756 {
757     Pnv9Chip *chip9 = PNV9_CHIP(chip);
758 
759     pnv_xive_pic_print_info(&chip9->xive, mon);
760     pnv_psi_pic_print_info(&chip9->psi, mon);
761 
762     object_child_foreach_recursive(OBJECT(chip),
763                          pnv_chip_power9_pic_print_info_child, mon);
764 }
765 
766 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
767                                                 uint32_t core_id)
768 {
769     return PNV_XSCOM_EX_BASE(core_id);
770 }
771 
772 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
773                                                 uint32_t core_id)
774 {
775     return PNV9_XSCOM_EC_BASE(core_id);
776 }
777 
778 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
779                                                  uint32_t core_id)
780 {
781     return PNV10_XSCOM_EC_BASE(core_id);
782 }
783 
784 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
785 {
786     PowerPCCPUClass *ppc_default =
787         POWERPC_CPU_CLASS(object_class_by_name(default_type));
788     PowerPCCPUClass *ppc =
789         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
790 
791     return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
792 }
793 
794 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
795 {
796     ISADevice *dev = isa_new("isa-ipmi-bt");
797 
798     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
799     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
800     isa_realize_and_unref(dev, bus, &error_fatal);
801 }
802 
803 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
804 {
805     Pnv10Chip *chip10 = PNV10_CHIP(chip);
806 
807     pnv_xive2_pic_print_info(&chip10->xive, mon);
808     pnv_psi_pic_print_info(&chip10->psi, mon);
809 
810     object_child_foreach_recursive(OBJECT(chip),
811                          pnv_chip_power9_pic_print_info_child, mon);
812 }
813 
814 /* Always give the first 1GB to chip 0 else we won't boot */
815 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
816 {
817     MachineState *machine = MACHINE(pnv);
818     uint64_t ram_per_chip;
819 
820     assert(machine->ram_size >= 1 * GiB);
821 
822     ram_per_chip = machine->ram_size / pnv->num_chips;
823     if (ram_per_chip >= 1 * GiB) {
824         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
825     }
826 
827     assert(pnv->num_chips > 1);
828 
829     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
830     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
831 }
832 
833 static void pnv_init(MachineState *machine)
834 {
835     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
836     PnvMachineState *pnv = PNV_MACHINE(machine);
837     MachineClass *mc = MACHINE_GET_CLASS(machine);
838     char *fw_filename;
839     long fw_size;
840     uint64_t chip_ram_start = 0;
841     int i;
842     char *chip_typename;
843     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
844     DeviceState *dev;
845 
846     if (kvm_enabled()) {
847         error_report("The powernv machine does not work with KVM acceleration");
848         exit(EXIT_FAILURE);
849     }
850 
851     /* allocate RAM */
852     if (machine->ram_size < mc->default_ram_size) {
853         char *sz = size_to_str(mc->default_ram_size);
854         error_report("Invalid RAM size, should be bigger than %s", sz);
855         g_free(sz);
856         exit(EXIT_FAILURE);
857     }
858     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
859 
860     /*
861      * Create our simple PNOR device
862      */
863     dev = qdev_new(TYPE_PNV_PNOR);
864     if (pnor) {
865         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
866     }
867     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
868     pnv->pnor = PNV_PNOR(dev);
869 
870     /* load skiboot firmware  */
871     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
872     if (!fw_filename) {
873         error_report("Could not find OPAL firmware '%s'", bios_name);
874         exit(1);
875     }
876 
877     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
878     if (fw_size < 0) {
879         error_report("Could not load OPAL firmware '%s'", fw_filename);
880         exit(1);
881     }
882     g_free(fw_filename);
883 
884     /* load kernel */
885     if (machine->kernel_filename) {
886         long kernel_size;
887 
888         kernel_size = load_image_targphys(machine->kernel_filename,
889                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
890         if (kernel_size < 0) {
891             error_report("Could not load kernel '%s'",
892                          machine->kernel_filename);
893             exit(1);
894         }
895     }
896 
897     /* load initrd */
898     if (machine->initrd_filename) {
899         pnv->initrd_base = INITRD_LOAD_ADDR;
900         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
901                                   pnv->initrd_base, INITRD_MAX_SIZE);
902         if (pnv->initrd_size < 0) {
903             error_report("Could not load initial ram disk '%s'",
904                          machine->initrd_filename);
905             exit(1);
906         }
907     }
908 
909     /* MSIs are supported on this platform */
910     msi_nonbroken = true;
911 
912     /*
913      * Check compatibility of the specified CPU with the machine
914      * default.
915      */
916     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
917         error_report("invalid CPU model '%s' for %s machine",
918                      machine->cpu_type, mc->name);
919         exit(1);
920     }
921 
922     /* Create the processor chips */
923     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
924     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
925                                     i, machine->cpu_type);
926     if (!object_class_by_name(chip_typename)) {
927         error_report("invalid chip model '%.*s' for %s machine",
928                      i, machine->cpu_type, mc->name);
929         exit(1);
930     }
931 
932     pnv->num_chips =
933         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
934     /*
935      * TODO: should we decide on how many chips we can create based
936      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
937      */
938     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
939         error_report("invalid number of chips: '%d'", pnv->num_chips);
940         error_printf(
941             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
942         exit(1);
943     }
944 
945     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
946     for (i = 0; i < pnv->num_chips; i++) {
947         char chip_name[32];
948         Object *chip = OBJECT(qdev_new(chip_typename));
949         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
950 
951         pnv->chips[i] = PNV_CHIP(chip);
952 
953         /* Distribute RAM among the chips  */
954         object_property_set_int(chip, "ram-start", chip_ram_start,
955                                 &error_fatal);
956         object_property_set_int(chip, "ram-size", chip_ram_size,
957                                 &error_fatal);
958         chip_ram_start += chip_ram_size;
959 
960         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
961         object_property_add_child(OBJECT(pnv), chip_name, chip);
962         object_property_set_int(chip, "chip-id", i, &error_fatal);
963         object_property_set_int(chip, "nr-cores", machine->smp.cores,
964                                 &error_fatal);
965         object_property_set_int(chip, "nr-threads", machine->smp.threads,
966                                 &error_fatal);
967         /*
968          * The POWER8 machine use the XICS interrupt interface.
969          * Propagate the XICS fabric to the chip and its controllers.
970          */
971         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
972             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
973         }
974         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
975             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
976                                      &error_abort);
977         }
978         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
979     }
980     g_free(chip_typename);
981 
982     /* Instantiate ISA bus on chip 0 */
983     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
984 
985     /* Create serial port */
986     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
987 
988     /* Create an RTC ISA device too */
989     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
990 
991     /*
992      * Create the machine BMC simulator and the IPMI BT device for
993      * communication with the BMC
994      */
995     if (defaults_enabled()) {
996         pnv->bmc = pnv_bmc_create(pnv->pnor);
997         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
998     }
999 
1000     /*
1001      * The PNOR is mapped on the LPC FW address space by the BMC.
1002      * Since we can not reach the remote BMC machine with LPC memops,
1003      * map it always for now.
1004      */
1005     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
1006                                 &pnv->pnor->mmio);
1007 
1008     /*
1009      * OpenPOWER systems use a IPMI SEL Event message to notify the
1010      * host to powerdown
1011      */
1012     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
1013     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
1014 }
1015 
1016 /*
1017  *    0:21  Reserved - Read as zeros
1018  *   22:24  Chip ID
1019  *   25:28  Core number
1020  *   29:31  Thread ID
1021  */
1022 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
1023 {
1024     return (chip->chip_id << 7) | (core_id << 3);
1025 }
1026 
1027 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1028                                         Error **errp)
1029 {
1030     Pnv8Chip *chip8 = PNV8_CHIP(chip);
1031     Error *local_err = NULL;
1032     Object *obj;
1033     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1034 
1035     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
1036     if (local_err) {
1037         error_propagate(errp, local_err);
1038         return;
1039     }
1040 
1041     pnv_cpu->intc = obj;
1042 }
1043 
1044 
1045 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1046 {
1047     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1048 
1049     icp_reset(ICP(pnv_cpu->intc));
1050 }
1051 
1052 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1053 {
1054     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1055 
1056     icp_destroy(ICP(pnv_cpu->intc));
1057     pnv_cpu->intc = NULL;
1058 }
1059 
1060 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1061                                             Monitor *mon)
1062 {
1063     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
1064 }
1065 
1066 /*
1067  *    0:48  Reserved - Read as zeroes
1068  *   49:52  Node ID
1069  *   53:55  Chip ID
1070  *   56     Reserved - Read as zero
1071  *   57:61  Core number
1072  *   62:63  Thread ID
1073  *
1074  * We only care about the lower bits. uint32_t is fine for the moment.
1075  */
1076 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
1077 {
1078     return (chip->chip_id << 8) | (core_id << 2);
1079 }
1080 
1081 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
1082 {
1083     return (chip->chip_id << 8) | (core_id << 2);
1084 }
1085 
1086 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1087                                         Error **errp)
1088 {
1089     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1090     Error *local_err = NULL;
1091     Object *obj;
1092     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1093 
1094     /*
1095      * The core creates its interrupt presenter but the XIVE interrupt
1096      * controller object is initialized afterwards. Hopefully, it's
1097      * only used at runtime.
1098      */
1099     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1100                            &local_err);
1101     if (local_err) {
1102         error_propagate(errp, local_err);
1103         return;
1104     }
1105 
1106     pnv_cpu->intc = obj;
1107 }
1108 
1109 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1110 {
1111     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1112 
1113     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1114 }
1115 
1116 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1117 {
1118     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1119 
1120     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1121     pnv_cpu->intc = NULL;
1122 }
1123 
1124 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1125                                             Monitor *mon)
1126 {
1127     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1128 }
1129 
1130 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1131                                         Error **errp)
1132 {
1133     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1134     Error *local_err = NULL;
1135     Object *obj;
1136     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1137 
1138     /*
1139      * The core creates its interrupt presenter but the XIVE2 interrupt
1140      * controller object is initialized afterwards. Hopefully, it's
1141      * only used at runtime.
1142      */
1143     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1144                            &local_err);
1145     if (local_err) {
1146         error_propagate(errp, local_err);
1147         return;
1148     }
1149 
1150     pnv_cpu->intc = obj;
1151 }
1152 
1153 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1154 {
1155     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1156 
1157     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1158 }
1159 
1160 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1161 {
1162     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1163 
1164     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1165     pnv_cpu->intc = NULL;
1166 }
1167 
1168 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1169                                              Monitor *mon)
1170 {
1171     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1172 }
1173 
1174 /*
1175  * Allowed core identifiers on a POWER8 Processor Chip :
1176  *
1177  * <EX0 reserved>
1178  *  EX1  - Venice only
1179  *  EX2  - Venice only
1180  *  EX3  - Venice only
1181  *  EX4
1182  *  EX5
1183  *  EX6
1184  * <EX7,8 reserved> <reserved>
1185  *  EX9  - Venice only
1186  *  EX10 - Venice only
1187  *  EX11 - Venice only
1188  *  EX12
1189  *  EX13
1190  *  EX14
1191  * <EX15 reserved>
1192  */
1193 #define POWER8E_CORE_MASK  (0x7070ull)
1194 #define POWER8_CORE_MASK   (0x7e7eull)
1195 
1196 /*
1197  * POWER9 has 24 cores, ids starting at 0x0
1198  */
1199 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1200 
1201 
1202 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1203 
1204 static void pnv_chip_power8_instance_init(Object *obj)
1205 {
1206     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1207     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1208     int i;
1209 
1210     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1211                              (Object **)&chip8->xics,
1212                              object_property_allow_set_link,
1213                              OBJ_PROP_LINK_STRONG);
1214 
1215     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1216 
1217     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1218 
1219     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1220 
1221     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1222 
1223     if (defaults_enabled()) {
1224         chip8->num_phbs = pcc->num_phbs;
1225 
1226         for (i = 0; i < chip8->num_phbs; i++) {
1227             Object *phb = object_new(TYPE_PNV_PHB);
1228 
1229             /*
1230              * We need the chip to parent the PHB to allow the DT
1231              * to build correctly (via pnv_xscom_dt()).
1232              *
1233              * TODO: the PHB should be parented by a PEC device that, at
1234              * this moment, is not modelled powernv8/phb3.
1235              */
1236             object_property_add_child(obj, "phb[*]", phb);
1237             chip8->phbs[i] = PNV_PHB(phb);
1238         }
1239     }
1240 
1241 }
1242 
1243 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1244  {
1245     PnvChip *chip = PNV_CHIP(chip8);
1246     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1247     int i, j;
1248     char *name;
1249 
1250     name = g_strdup_printf("icp-%x", chip->chip_id);
1251     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1252     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1253     g_free(name);
1254 
1255     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1256 
1257     /* Map the ICP registers for each thread */
1258     for (i = 0; i < chip->nr_cores; i++) {
1259         PnvCore *pnv_core = chip->cores[i];
1260         int core_hwid = CPU_CORE(pnv_core)->core_id;
1261 
1262         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1263             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1264             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1265 
1266             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1267                                         &icp->mmio);
1268         }
1269     }
1270 }
1271 
1272 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1273 {
1274     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1275     PnvChip *chip = PNV_CHIP(dev);
1276     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1277     Pnv8Psi *psi8 = &chip8->psi;
1278     Error *local_err = NULL;
1279     int i;
1280 
1281     assert(chip8->xics);
1282 
1283     /* XSCOM bridge is first */
1284     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1285     if (local_err) {
1286         error_propagate(errp, local_err);
1287         return;
1288     }
1289     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1290 
1291     pcc->parent_realize(dev, &local_err);
1292     if (local_err) {
1293         error_propagate(errp, local_err);
1294         return;
1295     }
1296 
1297     /* Processor Service Interface (PSI) Host Bridge */
1298     object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip),
1299                             &error_fatal);
1300     object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS,
1301                              OBJECT(chip8->xics), &error_abort);
1302     if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) {
1303         return;
1304     }
1305     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1306                             &PNV_PSI(psi8)->xscom_regs);
1307 
1308     /* Create LPC controller */
1309     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1310     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1311 
1312     chip->fw_mr = &chip8->lpc.isa_fw;
1313     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1314                                             (uint64_t) PNV_XSCOM_BASE(chip),
1315                                             PNV_XSCOM_LPC_BASE);
1316 
1317     /*
1318      * Interrupt Management Area. This is the memory region holding
1319      * all the Interrupt Control Presenter (ICP) registers
1320      */
1321     pnv_chip_icp_realize(chip8, &local_err);
1322     if (local_err) {
1323         error_propagate(errp, local_err);
1324         return;
1325     }
1326 
1327     /* Create the simplified OCC model */
1328     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1329         return;
1330     }
1331     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1332     qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1333                           qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_OCC));
1334 
1335     /* OCC SRAM model */
1336     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1337                                 &chip8->occ.sram_regs);
1338 
1339     /* HOMER */
1340     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1341                              &error_abort);
1342     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1343         return;
1344     }
1345     /* Homer Xscom region */
1346     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1347 
1348     /* Homer mmio region */
1349     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1350                                 &chip8->homer.regs);
1351 
1352     /* PHB controllers */
1353     for (i = 0; i < chip8->num_phbs; i++) {
1354         PnvPHB *phb = chip8->phbs[i];
1355 
1356         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1357         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1358                                 &error_fatal);
1359         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1360                                  &error_fatal);
1361         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1362             return;
1363         }
1364     }
1365 }
1366 
1367 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1368 {
1369     addr &= (PNV_XSCOM_SIZE - 1);
1370     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1371 }
1372 
1373 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1374 {
1375     DeviceClass *dc = DEVICE_CLASS(klass);
1376     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1377 
1378     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1379     k->cores_mask = POWER8E_CORE_MASK;
1380     k->num_phbs = 3;
1381     k->core_pir = pnv_chip_core_pir_p8;
1382     k->intc_create = pnv_chip_power8_intc_create;
1383     k->intc_reset = pnv_chip_power8_intc_reset;
1384     k->intc_destroy = pnv_chip_power8_intc_destroy;
1385     k->intc_print_info = pnv_chip_power8_intc_print_info;
1386     k->isa_create = pnv_chip_power8_isa_create;
1387     k->dt_populate = pnv_chip_power8_dt_populate;
1388     k->pic_print_info = pnv_chip_power8_pic_print_info;
1389     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1390     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1391     dc->desc = "PowerNV Chip POWER8E";
1392 
1393     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1394                                     &k->parent_realize);
1395 }
1396 
1397 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1398 {
1399     DeviceClass *dc = DEVICE_CLASS(klass);
1400     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1401 
1402     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1403     k->cores_mask = POWER8_CORE_MASK;
1404     k->num_phbs = 3;
1405     k->core_pir = pnv_chip_core_pir_p8;
1406     k->intc_create = pnv_chip_power8_intc_create;
1407     k->intc_reset = pnv_chip_power8_intc_reset;
1408     k->intc_destroy = pnv_chip_power8_intc_destroy;
1409     k->intc_print_info = pnv_chip_power8_intc_print_info;
1410     k->isa_create = pnv_chip_power8_isa_create;
1411     k->dt_populate = pnv_chip_power8_dt_populate;
1412     k->pic_print_info = pnv_chip_power8_pic_print_info;
1413     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1414     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1415     dc->desc = "PowerNV Chip POWER8";
1416 
1417     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1418                                     &k->parent_realize);
1419 }
1420 
1421 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1422 {
1423     DeviceClass *dc = DEVICE_CLASS(klass);
1424     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1425 
1426     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1427     k->cores_mask = POWER8_CORE_MASK;
1428     k->num_phbs = 4;
1429     k->core_pir = pnv_chip_core_pir_p8;
1430     k->intc_create = pnv_chip_power8_intc_create;
1431     k->intc_reset = pnv_chip_power8_intc_reset;
1432     k->intc_destroy = pnv_chip_power8_intc_destroy;
1433     k->intc_print_info = pnv_chip_power8_intc_print_info;
1434     k->isa_create = pnv_chip_power8nvl_isa_create;
1435     k->dt_populate = pnv_chip_power8_dt_populate;
1436     k->pic_print_info = pnv_chip_power8_pic_print_info;
1437     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1438     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1439     dc->desc = "PowerNV Chip POWER8NVL";
1440 
1441     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1442                                     &k->parent_realize);
1443 }
1444 
1445 static void pnv_chip_power9_instance_init(Object *obj)
1446 {
1447     PnvChip *chip = PNV_CHIP(obj);
1448     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1449     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1450     int i;
1451 
1452     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1453     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1454                               "xive-fabric");
1455 
1456     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1457 
1458     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1459 
1460     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1461 
1462     object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
1463 
1464     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1465 
1466     /* Number of PECs is the chip default */
1467     chip->num_pecs = pcc->num_pecs;
1468 
1469     for (i = 0; i < chip->num_pecs; i++) {
1470         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1471                                 TYPE_PNV_PHB4_PEC);
1472     }
1473 }
1474 
1475 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1476                                       PnvCore *pnv_core)
1477 {
1478     char eq_name[32];
1479     int core_id = CPU_CORE(pnv_core)->core_id;
1480 
1481     snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1482     object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1483                                        sizeof(*eq), TYPE_PNV_QUAD,
1484                                        &error_fatal, NULL);
1485 
1486     object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1487     qdev_realize(DEVICE(eq), NULL, &error_fatal);
1488 }
1489 
1490 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1491 {
1492     PnvChip *chip = PNV_CHIP(chip9);
1493     int i;
1494 
1495     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1496     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1497 
1498     for (i = 0; i < chip9->nr_quads; i++) {
1499         PnvQuad *eq = &chip9->quads[i];
1500 
1501         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4]);
1502 
1503         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1504                                 &eq->xscom_regs);
1505     }
1506 }
1507 
1508 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1509 {
1510     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1511     int i;
1512 
1513     for (i = 0; i < chip->num_pecs; i++) {
1514         PnvPhb4PecState *pec = &chip9->pecs[i];
1515         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1516         uint32_t pec_nest_base;
1517         uint32_t pec_pci_base;
1518 
1519         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1520         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1521                                 &error_fatal);
1522         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1523                                  &error_fatal);
1524         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1525             return;
1526         }
1527 
1528         pec_nest_base = pecc->xscom_nest_base(pec);
1529         pec_pci_base = pecc->xscom_pci_base(pec);
1530 
1531         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1532         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1533     }
1534 }
1535 
1536 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1537 {
1538     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1539     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1540     PnvChip *chip = PNV_CHIP(dev);
1541     Pnv9Psi *psi9 = &chip9->psi;
1542     Error *local_err = NULL;
1543 
1544     /* XSCOM bridge is first */
1545     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1546     if (local_err) {
1547         error_propagate(errp, local_err);
1548         return;
1549     }
1550     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1551 
1552     pcc->parent_realize(dev, &local_err);
1553     if (local_err) {
1554         error_propagate(errp, local_err);
1555         return;
1556     }
1557 
1558     pnv_chip_quad_realize(chip9, &local_err);
1559     if (local_err) {
1560         error_propagate(errp, local_err);
1561         return;
1562     }
1563 
1564     /* XIVE interrupt controller (POWER9) */
1565     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1566                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1567     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1568                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1569     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1570                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1571     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1572                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1573     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1574                              &error_abort);
1575     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1576         return;
1577     }
1578     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1579                             &chip9->xive.xscom_regs);
1580 
1581     /* Processor Service Interface (PSI) Host Bridge */
1582     object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip),
1583                             &error_fatal);
1584     /* This is the only device with 4k ESB pages */
1585     object_property_set_int(OBJECT(&chip9->psi), "shift", XIVE_ESB_4K,
1586                             &error_fatal);
1587     if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) {
1588         return;
1589     }
1590     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1591                             &PNV_PSI(psi9)->xscom_regs);
1592 
1593     /* LPC */
1594     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1595         return;
1596     }
1597     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1598                                 &chip9->lpc.xscom_regs);
1599 
1600     chip->fw_mr = &chip9->lpc.isa_fw;
1601     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1602                                             (uint64_t) PNV9_LPCM_BASE(chip));
1603 
1604     /* Create the simplified OCC model */
1605     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1606         return;
1607     }
1608     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1609     qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1610                               DEVICE(&chip9->psi), PSIHB9_IRQ_OCC));
1611 
1612     /* OCC SRAM model */
1613     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1614                                 &chip9->occ.sram_regs);
1615 
1616     /* SBE */
1617     if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
1618         return;
1619     }
1620     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
1621                             &chip9->sbe.xscom_ctrl_regs);
1622     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
1623                             &chip9->sbe.xscom_mbox_regs);
1624     qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
1625                               DEVICE(&chip9->psi), PSIHB9_IRQ_PSU));
1626 
1627     /* HOMER */
1628     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1629                              &error_abort);
1630     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1631         return;
1632     }
1633     /* Homer Xscom region */
1634     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1635 
1636     /* Homer mmio region */
1637     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1638                                 &chip9->homer.regs);
1639 
1640     /* PEC PHBs */
1641     pnv_chip_power9_pec_realize(chip, &local_err);
1642     if (local_err) {
1643         error_propagate(errp, local_err);
1644         return;
1645     }
1646 }
1647 
1648 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1649 {
1650     addr &= (PNV9_XSCOM_SIZE - 1);
1651     return addr >> 3;
1652 }
1653 
1654 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1655 {
1656     DeviceClass *dc = DEVICE_CLASS(klass);
1657     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1658 
1659     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1660     k->cores_mask = POWER9_CORE_MASK;
1661     k->core_pir = pnv_chip_core_pir_p9;
1662     k->intc_create = pnv_chip_power9_intc_create;
1663     k->intc_reset = pnv_chip_power9_intc_reset;
1664     k->intc_destroy = pnv_chip_power9_intc_destroy;
1665     k->intc_print_info = pnv_chip_power9_intc_print_info;
1666     k->isa_create = pnv_chip_power9_isa_create;
1667     k->dt_populate = pnv_chip_power9_dt_populate;
1668     k->pic_print_info = pnv_chip_power9_pic_print_info;
1669     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1670     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1671     dc->desc = "PowerNV Chip POWER9";
1672     k->num_pecs = PNV9_CHIP_MAX_PEC;
1673 
1674     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1675                                     &k->parent_realize);
1676 }
1677 
1678 static void pnv_chip_power10_instance_init(Object *obj)
1679 {
1680     PnvChip *chip = PNV_CHIP(obj);
1681     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1682     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1683     int i;
1684 
1685     object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1686     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1687                               "xive-fabric");
1688     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1689     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1690     object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
1691     object_initialize_child(obj, "sbe",  &chip10->sbe, TYPE_PNV10_SBE);
1692     object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1693 
1694     chip->num_pecs = pcc->num_pecs;
1695 
1696     for (i = 0; i < chip->num_pecs; i++) {
1697         object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1698                                 TYPE_PNV_PHB5_PEC);
1699     }
1700 }
1701 
1702 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
1703 {
1704     PnvChip *chip = PNV_CHIP(chip10);
1705     int i;
1706 
1707     chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1708     chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
1709 
1710     for (i = 0; i < chip10->nr_quads; i++) {
1711         PnvQuad *eq = &chip10->quads[i];
1712 
1713         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4]);
1714 
1715         pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
1716                                 &eq->xscom_regs);
1717     }
1718 }
1719 
1720 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
1721 {
1722     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1723     int i;
1724 
1725     for (i = 0; i < chip->num_pecs; i++) {
1726         PnvPhb4PecState *pec = &chip10->pecs[i];
1727         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1728         uint32_t pec_nest_base;
1729         uint32_t pec_pci_base;
1730 
1731         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1732         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1733                                 &error_fatal);
1734         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1735                                  &error_fatal);
1736         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1737             return;
1738         }
1739 
1740         pec_nest_base = pecc->xscom_nest_base(pec);
1741         pec_pci_base = pecc->xscom_pci_base(pec);
1742 
1743         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1744         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1745     }
1746 }
1747 
1748 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1749 {
1750     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1751     PnvChip *chip = PNV_CHIP(dev);
1752     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1753     Error *local_err = NULL;
1754 
1755     /* XSCOM bridge is first */
1756     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1757     if (local_err) {
1758         error_propagate(errp, local_err);
1759         return;
1760     }
1761     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1762 
1763     pcc->parent_realize(dev, &local_err);
1764     if (local_err) {
1765         error_propagate(errp, local_err);
1766         return;
1767     }
1768 
1769     pnv_chip_power10_quad_realize(chip10, &local_err);
1770     if (local_err) {
1771         error_propagate(errp, local_err);
1772         return;
1773     }
1774 
1775     /* XIVE2 interrupt controller (POWER10) */
1776     object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
1777                             PNV10_XIVE2_IC_BASE(chip), &error_fatal);
1778     object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
1779                             PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
1780     object_property_set_int(OBJECT(&chip10->xive), "end-bar",
1781                             PNV10_XIVE2_END_BASE(chip), &error_fatal);
1782     object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
1783                             PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
1784     object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
1785                             PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
1786     object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
1787                             PNV10_XIVE2_TM_BASE(chip), &error_fatal);
1788     object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
1789                              &error_abort);
1790     if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
1791         return;
1792     }
1793     pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
1794                             &chip10->xive.xscom_regs);
1795 
1796     /* Processor Service Interface (PSI) Host Bridge */
1797     object_property_set_int(OBJECT(&chip10->psi), "bar",
1798                             PNV10_PSIHB_BASE(chip), &error_fatal);
1799     /* PSI can now be configured to use 64k ESB pages on POWER10 */
1800     object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
1801                             &error_fatal);
1802     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1803         return;
1804     }
1805     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1806                             &PNV_PSI(&chip10->psi)->xscom_regs);
1807 
1808     /* LPC */
1809     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1810         return;
1811     }
1812     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1813                                 &chip10->lpc.xscom_regs);
1814 
1815     chip->fw_mr = &chip10->lpc.isa_fw;
1816     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1817                                             (uint64_t) PNV10_LPCM_BASE(chip));
1818 
1819     /* Create the simplified OCC model */
1820     if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
1821         return;
1822     }
1823     pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
1824                             &chip10->occ.xscom_regs);
1825     qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
1826                               DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
1827 
1828     /* OCC SRAM model */
1829     memory_region_add_subregion(get_system_memory(),
1830                                 PNV10_OCC_SENSOR_BASE(chip),
1831                                 &chip10->occ.sram_regs);
1832 
1833     /* SBE */
1834     if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
1835         return;
1836     }
1837     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
1838                             &chip10->sbe.xscom_ctrl_regs);
1839     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
1840                             &chip10->sbe.xscom_mbox_regs);
1841     qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
1842                               DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
1843 
1844     /* HOMER */
1845     object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
1846                              &error_abort);
1847     if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
1848         return;
1849     }
1850     /* Homer Xscom region */
1851     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
1852                             &chip10->homer.pba_regs);
1853 
1854     /* Homer mmio region */
1855     memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
1856                                 &chip10->homer.regs);
1857 
1858     /* PHBs */
1859     pnv_chip_power10_phb_realize(chip, &local_err);
1860     if (local_err) {
1861         error_propagate(errp, local_err);
1862         return;
1863     }
1864 }
1865 
1866 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1867 {
1868     addr &= (PNV10_XSCOM_SIZE - 1);
1869     return addr >> 3;
1870 }
1871 
1872 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1873 {
1874     DeviceClass *dc = DEVICE_CLASS(klass);
1875     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1876 
1877     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1878     k->cores_mask = POWER10_CORE_MASK;
1879     k->core_pir = pnv_chip_core_pir_p10;
1880     k->intc_create = pnv_chip_power10_intc_create;
1881     k->intc_reset = pnv_chip_power10_intc_reset;
1882     k->intc_destroy = pnv_chip_power10_intc_destroy;
1883     k->intc_print_info = pnv_chip_power10_intc_print_info;
1884     k->isa_create = pnv_chip_power10_isa_create;
1885     k->dt_populate = pnv_chip_power10_dt_populate;
1886     k->pic_print_info = pnv_chip_power10_pic_print_info;
1887     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1888     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1889     dc->desc = "PowerNV Chip POWER10";
1890     k->num_pecs = PNV10_CHIP_MAX_PEC;
1891 
1892     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1893                                     &k->parent_realize);
1894 }
1895 
1896 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1897 {
1898     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1899     int cores_max;
1900 
1901     /*
1902      * No custom mask for this chip, let's use the default one from *
1903      * the chip class
1904      */
1905     if (!chip->cores_mask) {
1906         chip->cores_mask = pcc->cores_mask;
1907     }
1908 
1909     /* filter alien core ids ! some are reserved */
1910     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1911         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1912                    chip->cores_mask);
1913         return;
1914     }
1915     chip->cores_mask &= pcc->cores_mask;
1916 
1917     /* now that we have a sane layout, let check the number of cores */
1918     cores_max = ctpop64(chip->cores_mask);
1919     if (chip->nr_cores > cores_max) {
1920         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1921                    cores_max);
1922         return;
1923     }
1924 }
1925 
1926 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1927 {
1928     Error *error = NULL;
1929     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1930     const char *typename = pnv_chip_core_typename(chip);
1931     int i, core_hwid;
1932     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1933 
1934     if (!object_class_by_name(typename)) {
1935         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1936         return;
1937     }
1938 
1939     /* Cores */
1940     pnv_chip_core_sanitize(chip, &error);
1941     if (error) {
1942         error_propagate(errp, error);
1943         return;
1944     }
1945 
1946     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1947 
1948     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1949              && (i < chip->nr_cores); core_hwid++) {
1950         char core_name[32];
1951         PnvCore *pnv_core;
1952         uint64_t xscom_core_base;
1953 
1954         if (!(chip->cores_mask & (1ull << core_hwid))) {
1955             continue;
1956         }
1957 
1958         pnv_core = PNV_CORE(object_new(typename));
1959 
1960         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1961         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1962         chip->cores[i] = pnv_core;
1963         object_property_set_int(OBJECT(pnv_core), "nr-threads",
1964                                 chip->nr_threads, &error_fatal);
1965         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
1966                                 core_hwid, &error_fatal);
1967         object_property_set_int(OBJECT(pnv_core), "pir",
1968                                 pcc->core_pir(chip, core_hwid), &error_fatal);
1969         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
1970                                 &error_fatal);
1971         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
1972                                  &error_abort);
1973         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
1974 
1975         /* Each core has an XSCOM MMIO region */
1976         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1977 
1978         pnv_xscom_add_subregion(chip, xscom_core_base,
1979                                 &pnv_core->xscom_regs);
1980         i++;
1981     }
1982 }
1983 
1984 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1985 {
1986     PnvChip *chip = PNV_CHIP(dev);
1987     Error *error = NULL;
1988 
1989     /* Cores */
1990     pnv_chip_core_realize(chip, &error);
1991     if (error) {
1992         error_propagate(errp, error);
1993         return;
1994     }
1995 }
1996 
1997 static Property pnv_chip_properties[] = {
1998     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1999     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
2000     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
2001     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
2002     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
2003     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
2004     DEFINE_PROP_END_OF_LIST(),
2005 };
2006 
2007 static void pnv_chip_class_init(ObjectClass *klass, void *data)
2008 {
2009     DeviceClass *dc = DEVICE_CLASS(klass);
2010 
2011     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
2012     dc->realize = pnv_chip_realize;
2013     device_class_set_props(dc, pnv_chip_properties);
2014     dc->desc = "PowerNV Chip";
2015 }
2016 
2017 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
2018 {
2019     int i, j;
2020 
2021     for (i = 0; i < chip->nr_cores; i++) {
2022         PnvCore *pc = chip->cores[i];
2023         CPUCore *cc = CPU_CORE(pc);
2024 
2025         for (j = 0; j < cc->nr_threads; j++) {
2026             if (ppc_cpu_pir(pc->threads[j]) == pir) {
2027                 return pc->threads[j];
2028             }
2029         }
2030     }
2031     return NULL;
2032 }
2033 
2034 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
2035 {
2036     PnvMachineState *pnv = PNV_MACHINE(xi);
2037     int i, j;
2038 
2039     for (i = 0; i < pnv->num_chips; i++) {
2040         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2041 
2042         if (ics_valid_irq(&chip8->psi.ics, irq)) {
2043             return &chip8->psi.ics;
2044         }
2045 
2046         for (j = 0; j < chip8->num_phbs; j++) {
2047             PnvPHB *phb = chip8->phbs[j];
2048             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2049 
2050             if (ics_valid_irq(&phb3->lsis, irq)) {
2051                 return &phb3->lsis;
2052             }
2053 
2054             if (ics_valid_irq(ICS(&phb3->msis), irq)) {
2055                 return ICS(&phb3->msis);
2056             }
2057         }
2058     }
2059     return NULL;
2060 }
2061 
2062 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
2063 {
2064     int i;
2065 
2066     for (i = 0; i < pnv->num_chips; i++) {
2067         PnvChip *chip = pnv->chips[i];
2068         if (chip->chip_id == chip_id) {
2069             return chip;
2070         }
2071     }
2072     return NULL;
2073 }
2074 
2075 static void pnv_ics_resend(XICSFabric *xi)
2076 {
2077     PnvMachineState *pnv = PNV_MACHINE(xi);
2078     int i, j;
2079 
2080     for (i = 0; i < pnv->num_chips; i++) {
2081         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2082 
2083         ics_resend(&chip8->psi.ics);
2084 
2085         for (j = 0; j < chip8->num_phbs; j++) {
2086             PnvPHB *phb = chip8->phbs[j];
2087             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2088 
2089             ics_resend(&phb3->lsis);
2090             ics_resend(ICS(&phb3->msis));
2091         }
2092     }
2093 }
2094 
2095 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2096 {
2097     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2098 
2099     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2100 }
2101 
2102 static void pnv_pic_print_info(InterruptStatsProvider *obj,
2103                                Monitor *mon)
2104 {
2105     PnvMachineState *pnv = PNV_MACHINE(obj);
2106     int i;
2107     CPUState *cs;
2108 
2109     CPU_FOREACH(cs) {
2110         PowerPCCPU *cpu = POWERPC_CPU(cs);
2111 
2112         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
2113         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
2114                                                            mon);
2115     }
2116 
2117     for (i = 0; i < pnv->num_chips; i++) {
2118         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
2119     }
2120 }
2121 
2122 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2123                          uint8_t nvt_blk, uint32_t nvt_idx,
2124                          bool cam_ignore, uint8_t priority,
2125                          uint32_t logic_serv,
2126                          XiveTCTXMatch *match)
2127 {
2128     PnvMachineState *pnv = PNV_MACHINE(xfb);
2129     int total_count = 0;
2130     int i;
2131 
2132     for (i = 0; i < pnv->num_chips; i++) {
2133         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2134         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2135         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2136         int count;
2137 
2138         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2139                                priority, logic_serv, match);
2140 
2141         if (count < 0) {
2142             return count;
2143         }
2144 
2145         total_count += count;
2146     }
2147 
2148     return total_count;
2149 }
2150 
2151 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2152                                 uint8_t nvt_blk, uint32_t nvt_idx,
2153                                 bool cam_ignore, uint8_t priority,
2154                                 uint32_t logic_serv,
2155                                 XiveTCTXMatch *match)
2156 {
2157     PnvMachineState *pnv = PNV_MACHINE(xfb);
2158     int total_count = 0;
2159     int i;
2160 
2161     for (i = 0; i < pnv->num_chips; i++) {
2162         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2163         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2164         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2165         int count;
2166 
2167         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2168                                priority, logic_serv, match);
2169 
2170         if (count < 0) {
2171             return count;
2172         }
2173 
2174         total_count += count;
2175     }
2176 
2177     return total_count;
2178 }
2179 
2180 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2181 {
2182     MachineClass *mc = MACHINE_CLASS(oc);
2183     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2184     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2185     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2186 
2187     static GlobalProperty phb_compat[] = {
2188         { TYPE_PNV_PHB, "version", "3" },
2189         { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
2190     };
2191 
2192     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2193     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2194     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2195 
2196     xic->icp_get = pnv_icp_get;
2197     xic->ics_get = pnv_ics_get;
2198     xic->ics_resend = pnv_ics_resend;
2199 
2200     pmc->compat = compat;
2201     pmc->compat_size = sizeof(compat);
2202 
2203     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2204 }
2205 
2206 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2207 {
2208     MachineClass *mc = MACHINE_CLASS(oc);
2209     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2210     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2211     static const char compat[] = "qemu,powernv9\0ibm,powernv";
2212 
2213     static GlobalProperty phb_compat[] = {
2214         { TYPE_PNV_PHB, "version", "4" },
2215         { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
2216     };
2217 
2218     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2219     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
2220     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2221 
2222     xfc->match_nvt = pnv_match_nvt;
2223 
2224     mc->alias = "powernv";
2225 
2226     pmc->compat = compat;
2227     pmc->compat_size = sizeof(compat);
2228     pmc->dt_power_mgt = pnv_dt_power_mgt;
2229 
2230     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2231 }
2232 
2233 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2234 {
2235     MachineClass *mc = MACHINE_CLASS(oc);
2236     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2237     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2238     static const char compat[] = "qemu,powernv10\0ibm,powernv";
2239 
2240     static GlobalProperty phb_compat[] = {
2241         { TYPE_PNV_PHB, "version", "5" },
2242         { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
2243     };
2244 
2245     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2246     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2247     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2248 
2249     pmc->compat = compat;
2250     pmc->compat_size = sizeof(compat);
2251     pmc->dt_power_mgt = pnv_dt_power_mgt;
2252 
2253     xfc->match_nvt = pnv10_xive_match_nvt;
2254 
2255     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2256 }
2257 
2258 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2259 {
2260     PnvMachineState *pnv = PNV_MACHINE(obj);
2261 
2262     return !!pnv->fw_load_addr;
2263 }
2264 
2265 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2266 {
2267     PnvMachineState *pnv = PNV_MACHINE(obj);
2268 
2269     if (value) {
2270         pnv->fw_load_addr = 0x8000000;
2271     }
2272 }
2273 
2274 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2275 {
2276     PowerPCCPU *cpu = POWERPC_CPU(cs);
2277     CPUPPCState *env = &cpu->env;
2278 
2279     cpu_synchronize_state(cs);
2280     ppc_cpu_do_system_reset(cs);
2281     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2282         /*
2283          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2284          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2285          * (PPC_BIT(43)).
2286          */
2287         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2288             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2289             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2290         }
2291     } else {
2292         /*
2293          * For non-powersave system resets, SRR1[42:45] are defined to be
2294          * implementation-dependent. The POWER9 User Manual specifies that
2295          * an external (SCOM driven, which may come from a BMC nmi command or
2296          * another CPU requesting a NMI IPI) system reset exception should be
2297          * 0b0010 (PPC_BIT(44)).
2298          */
2299         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2300     }
2301 }
2302 
2303 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2304 {
2305     CPUState *cs;
2306 
2307     CPU_FOREACH(cs) {
2308         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2309     }
2310 }
2311 
2312 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2313 {
2314     MachineClass *mc = MACHINE_CLASS(oc);
2315     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2316     NMIClass *nc = NMI_CLASS(oc);
2317 
2318     mc->desc = "IBM PowerNV (Non-Virtualized)";
2319     mc->init = pnv_init;
2320     mc->reset = pnv_reset;
2321     mc->max_cpus = MAX_CPUS;
2322     /* Pnv provides a AHCI device for storage */
2323     mc->block_default_type = IF_IDE;
2324     mc->no_parallel = 1;
2325     mc->default_boot_order = NULL;
2326     /*
2327      * RAM defaults to less than 2048 for 32-bit hosts, and large
2328      * enough to fit the maximum initrd size at it's load address
2329      */
2330     mc->default_ram_size = 1 * GiB;
2331     mc->default_ram_id = "pnv.ram";
2332     ispc->print_info = pnv_pic_print_info;
2333     nc->nmi_monitor_handler = pnv_nmi;
2334 
2335     object_class_property_add_bool(oc, "hb-mode",
2336                                    pnv_machine_get_hb, pnv_machine_set_hb);
2337     object_class_property_set_description(oc, "hb-mode",
2338                               "Use a hostboot like boot loader");
2339 }
2340 
2341 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2342     {                                             \
2343         .name          = type,                    \
2344         .class_init    = class_initfn,            \
2345         .parent        = TYPE_PNV8_CHIP,          \
2346     }
2347 
2348 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2349     {                                             \
2350         .name          = type,                    \
2351         .class_init    = class_initfn,            \
2352         .parent        = TYPE_PNV9_CHIP,          \
2353     }
2354 
2355 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2356     {                                              \
2357         .name          = type,                     \
2358         .class_init    = class_initfn,             \
2359         .parent        = TYPE_PNV10_CHIP,          \
2360     }
2361 
2362 static const TypeInfo types[] = {
2363     {
2364         .name          = MACHINE_TYPE_NAME("powernv10"),
2365         .parent        = TYPE_PNV_MACHINE,
2366         .class_init    = pnv_machine_power10_class_init,
2367         .interfaces = (InterfaceInfo[]) {
2368             { TYPE_XIVE_FABRIC },
2369             { },
2370         },
2371     },
2372     {
2373         .name          = MACHINE_TYPE_NAME("powernv9"),
2374         .parent        = TYPE_PNV_MACHINE,
2375         .class_init    = pnv_machine_power9_class_init,
2376         .interfaces = (InterfaceInfo[]) {
2377             { TYPE_XIVE_FABRIC },
2378             { },
2379         },
2380     },
2381     {
2382         .name          = MACHINE_TYPE_NAME("powernv8"),
2383         .parent        = TYPE_PNV_MACHINE,
2384         .class_init    = pnv_machine_power8_class_init,
2385         .interfaces = (InterfaceInfo[]) {
2386             { TYPE_XICS_FABRIC },
2387             { },
2388         },
2389     },
2390     {
2391         .name          = TYPE_PNV_MACHINE,
2392         .parent        = TYPE_MACHINE,
2393         .abstract       = true,
2394         .instance_size = sizeof(PnvMachineState),
2395         .class_init    = pnv_machine_class_init,
2396         .class_size    = sizeof(PnvMachineClass),
2397         .interfaces = (InterfaceInfo[]) {
2398             { TYPE_INTERRUPT_STATS_PROVIDER },
2399             { TYPE_NMI },
2400             { },
2401         },
2402     },
2403     {
2404         .name          = TYPE_PNV_CHIP,
2405         .parent        = TYPE_SYS_BUS_DEVICE,
2406         .class_init    = pnv_chip_class_init,
2407         .instance_size = sizeof(PnvChip),
2408         .class_size    = sizeof(PnvChipClass),
2409         .abstract      = true,
2410     },
2411 
2412     /*
2413      * P10 chip and variants
2414      */
2415     {
2416         .name          = TYPE_PNV10_CHIP,
2417         .parent        = TYPE_PNV_CHIP,
2418         .instance_init = pnv_chip_power10_instance_init,
2419         .instance_size = sizeof(Pnv10Chip),
2420     },
2421     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2422 
2423     /*
2424      * P9 chip and variants
2425      */
2426     {
2427         .name          = TYPE_PNV9_CHIP,
2428         .parent        = TYPE_PNV_CHIP,
2429         .instance_init = pnv_chip_power9_instance_init,
2430         .instance_size = sizeof(Pnv9Chip),
2431     },
2432     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2433 
2434     /*
2435      * P8 chip and variants
2436      */
2437     {
2438         .name          = TYPE_PNV8_CHIP,
2439         .parent        = TYPE_PNV_CHIP,
2440         .instance_init = pnv_chip_power8_instance_init,
2441         .instance_size = sizeof(Pnv8Chip),
2442     },
2443     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2444     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2445     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2446                           pnv_chip_power8nvl_class_init),
2447 };
2448 
2449 DEFINE_TYPES(types)
2450