xref: /qemu/hw/ppc/pnv.c (revision b88651cb)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/cutils.h"
24 #include "qapi/error.h"
25 #include "sysemu/qtest.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/reset.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/cpus.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/hw_accel.h"
33 #include "target/ppc/cpu.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "qapi/visitor.h"
41 #include "monitor/monitor.h"
42 #include "hw/intc/intc.h"
43 #include "hw/ipmi/ipmi.h"
44 #include "target/ppc/mmu-hash64.h"
45 #include "hw/pci/msi.h"
46 
47 #include "hw/ppc/xics.h"
48 #include "hw/qdev-properties.h"
49 #include "hw/ppc/pnv_xscom.h"
50 #include "hw/ppc/pnv_pnor.h"
51 
52 #include "hw/isa/isa.h"
53 #include "hw/char/serial.h"
54 #include "hw/rtc/mc146818rtc.h"
55 
56 #include <libfdt.h>
57 
58 #define FDT_MAX_SIZE            (1 * MiB)
59 
60 #define FW_FILE_NAME            "skiboot.lid"
61 #define FW_LOAD_ADDR            0x0
62 #define FW_MAX_SIZE             (16 * MiB)
63 
64 #define KERNEL_LOAD_ADDR        0x20000000
65 #define KERNEL_MAX_SIZE         (128 * MiB)
66 #define INITRD_LOAD_ADDR        0x28000000
67 #define INITRD_MAX_SIZE         (128 * MiB)
68 
69 static const char *pnv_chip_core_typename(const PnvChip *o)
70 {
71     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
72     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
73     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
74     const char *core_type = object_class_get_name(object_class_by_name(s));
75     g_free(s);
76     return core_type;
77 }
78 
79 /*
80  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
81  *     4 * 4 sockets * 12 cores * 8 threads = 1536
82  * Let's make it 2^11
83  */
84 #define MAX_CPUS                2048
85 
86 /*
87  * Memory nodes are created by hostboot, one for each range of memory
88  * that has a different "affinity". In practice, it means one range
89  * per chip.
90  */
91 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
92 {
93     char *mem_name;
94     uint64_t mem_reg_property[2];
95     int off;
96 
97     mem_reg_property[0] = cpu_to_be64(start);
98     mem_reg_property[1] = cpu_to_be64(size);
99 
100     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
101     off = fdt_add_subnode(fdt, 0, mem_name);
102     g_free(mem_name);
103 
104     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
105     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
106                        sizeof(mem_reg_property))));
107     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
108 }
109 
110 static int get_cpus_node(void *fdt)
111 {
112     int cpus_offset = fdt_path_offset(fdt, "/cpus");
113 
114     if (cpus_offset < 0) {
115         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
116         if (cpus_offset) {
117             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
118             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
119         }
120     }
121     _FDT(cpus_offset);
122     return cpus_offset;
123 }
124 
125 /*
126  * The PowerNV cores (and threads) need to use real HW ids and not an
127  * incremental index like it has been done on other platforms. This HW
128  * id is stored in the CPU PIR, it is used to create cpu nodes in the
129  * device tree, used in XSCOM to address cores and in interrupt
130  * servers.
131  */
132 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
133 {
134     PowerPCCPU *cpu = pc->threads[0];
135     CPUState *cs = CPU(cpu);
136     DeviceClass *dc = DEVICE_GET_CLASS(cs);
137     int smt_threads = CPU_CORE(pc)->nr_threads;
138     CPUPPCState *env = &cpu->env;
139     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
140     uint32_t servers_prop[smt_threads];
141     int i;
142     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
143                        0xffffffff, 0xffffffff};
144     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
145     uint32_t cpufreq = 1000000000;
146     uint32_t page_sizes_prop[64];
147     size_t page_sizes_prop_size;
148     const uint8_t pa_features[] = { 24, 0,
149                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
150                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
151                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
152                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
153     int offset;
154     char *nodename;
155     int cpus_offset = get_cpus_node(fdt);
156 
157     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
158     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
159     _FDT(offset);
160     g_free(nodename);
161 
162     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
163 
164     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
165     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
166     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
167 
168     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
169     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
170                             env->dcache_line_size)));
171     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
172                             env->dcache_line_size)));
173     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
174                             env->icache_line_size)));
175     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
176                             env->icache_line_size)));
177 
178     if (pcc->l1_dcache_size) {
179         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
180                                pcc->l1_dcache_size)));
181     } else {
182         warn_report("Unknown L1 dcache size for cpu");
183     }
184     if (pcc->l1_icache_size) {
185         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
186                                pcc->l1_icache_size)));
187     } else {
188         warn_report("Unknown L1 icache size for cpu");
189     }
190 
191     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
192     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
193     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
194                            cpu->hash64_opts->slb_size)));
195     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
196     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
197 
198     if (ppc_has_spr(cpu, SPR_PURR)) {
199         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
200     }
201 
202     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
203         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
204                            segs, sizeof(segs))));
205     }
206 
207     /*
208      * Advertise VMX/VSX (vector extensions) if available
209      *   0 / no property == no vector extensions
210      *   1               == VMX / Altivec available
211      *   2               == VSX available
212      */
213     if (env->insns_flags & PPC_ALTIVEC) {
214         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
215 
216         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
217     }
218 
219     /*
220      * Advertise DFP (Decimal Floating Point) if available
221      *   0 / no property == no DFP
222      *   1               == DFP available
223      */
224     if (env->insns_flags2 & PPC2_DFP) {
225         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
226     }
227 
228     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
229                                                       sizeof(page_sizes_prop));
230     if (page_sizes_prop_size) {
231         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
232                            page_sizes_prop, page_sizes_prop_size)));
233     }
234 
235     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
236                        pa_features, sizeof(pa_features))));
237 
238     /* Build interrupt servers properties */
239     for (i = 0; i < smt_threads; i++) {
240         servers_prop[i] = cpu_to_be32(pc->pir + i);
241     }
242     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
243                        servers_prop, sizeof(servers_prop))));
244 }
245 
246 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
247                        uint32_t nr_threads)
248 {
249     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
250     char *name;
251     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
252     uint32_t irange[2], i, rsize;
253     uint64_t *reg;
254     int offset;
255 
256     irange[0] = cpu_to_be32(pir);
257     irange[1] = cpu_to_be32(nr_threads);
258 
259     rsize = sizeof(uint64_t) * 2 * nr_threads;
260     reg = g_malloc(rsize);
261     for (i = 0; i < nr_threads; i++) {
262         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
263         reg[i * 2 + 1] = cpu_to_be64(0x1000);
264     }
265 
266     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
267     offset = fdt_add_subnode(fdt, 0, name);
268     _FDT(offset);
269     g_free(name);
270 
271     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
272     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
273     _FDT((fdt_setprop_string(fdt, offset, "device_type",
274                               "PowerPC-External-Interrupt-Presentation")));
275     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
276     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
277                        irange, sizeof(irange))));
278     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
279     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
280     g_free(reg);
281 }
282 
283 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
284 {
285     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
286     int i;
287 
288     pnv_dt_xscom(chip, fdt, 0,
289                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
290                  cpu_to_be64(PNV_XSCOM_SIZE),
291                  compat, sizeof(compat));
292 
293     for (i = 0; i < chip->nr_cores; i++) {
294         PnvCore *pnv_core = chip->cores[i];
295 
296         pnv_dt_core(chip, pnv_core, fdt);
297 
298         /* Interrupt Control Presenters (ICP). One per core. */
299         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
300     }
301 
302     if (chip->ram_size) {
303         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
304     }
305 }
306 
307 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
308 {
309     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
310     int i;
311 
312     pnv_dt_xscom(chip, fdt, 0,
313                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
314                  cpu_to_be64(PNV9_XSCOM_SIZE),
315                  compat, sizeof(compat));
316 
317     for (i = 0; i < chip->nr_cores; i++) {
318         PnvCore *pnv_core = chip->cores[i];
319 
320         pnv_dt_core(chip, pnv_core, fdt);
321     }
322 
323     if (chip->ram_size) {
324         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
325     }
326 
327     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
328 }
329 
330 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
331 {
332     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
333     int i;
334 
335     pnv_dt_xscom(chip, fdt, 0,
336                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
337                  cpu_to_be64(PNV10_XSCOM_SIZE),
338                  compat, sizeof(compat));
339 
340     for (i = 0; i < chip->nr_cores; i++) {
341         PnvCore *pnv_core = chip->cores[i];
342 
343         pnv_dt_core(chip, pnv_core, fdt);
344     }
345 
346     if (chip->ram_size) {
347         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
348     }
349 
350     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
351 }
352 
353 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
354 {
355     uint32_t io_base = d->ioport_id;
356     uint32_t io_regs[] = {
357         cpu_to_be32(1),
358         cpu_to_be32(io_base),
359         cpu_to_be32(2)
360     };
361     char *name;
362     int node;
363 
364     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
365     node = fdt_add_subnode(fdt, lpc_off, name);
366     _FDT(node);
367     g_free(name);
368 
369     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
370     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
371 }
372 
373 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
374 {
375     const char compatible[] = "ns16550\0pnpPNP,501";
376     uint32_t io_base = d->ioport_id;
377     uint32_t io_regs[] = {
378         cpu_to_be32(1),
379         cpu_to_be32(io_base),
380         cpu_to_be32(8)
381     };
382     uint32_t irq;
383     char *name;
384     int node;
385 
386     irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
387 
388     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
389     node = fdt_add_subnode(fdt, lpc_off, name);
390     _FDT(node);
391     g_free(name);
392 
393     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
394     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
395                       sizeof(compatible))));
396 
397     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
398     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
399     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
400     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
401                            fdt_get_phandle(fdt, lpc_off))));
402 
403     /* This is needed by Linux */
404     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
405 }
406 
407 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
408 {
409     const char compatible[] = "bt\0ipmi-bt";
410     uint32_t io_base;
411     uint32_t io_regs[] = {
412         cpu_to_be32(1),
413         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
414         cpu_to_be32(3)
415     };
416     uint32_t irq;
417     char *name;
418     int node;
419 
420     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
421     io_regs[1] = cpu_to_be32(io_base);
422 
423     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
424 
425     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
426     node = fdt_add_subnode(fdt, lpc_off, name);
427     _FDT(node);
428     g_free(name);
429 
430     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
431     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
432                       sizeof(compatible))));
433 
434     /* Mark it as reserved to avoid Linux trying to claim it */
435     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
436     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
437     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
438                            fdt_get_phandle(fdt, lpc_off))));
439 }
440 
441 typedef struct ForeachPopulateArgs {
442     void *fdt;
443     int offset;
444 } ForeachPopulateArgs;
445 
446 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
447 {
448     ForeachPopulateArgs *args = opaque;
449     ISADevice *d = ISA_DEVICE(dev);
450 
451     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
452         pnv_dt_rtc(d, args->fdt, args->offset);
453     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
454         pnv_dt_serial(d, args->fdt, args->offset);
455     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
456         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
457     } else {
458         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
459                      d->ioport_id);
460     }
461 
462     return 0;
463 }
464 
465 /*
466  * The default LPC bus of a multichip system is on chip 0. It's
467  * recognized by the firmware (skiboot) using a "primary" property.
468  */
469 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
470 {
471     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
472     ForeachPopulateArgs args = {
473         .fdt = fdt,
474         .offset = isa_offset,
475     };
476     uint32_t phandle;
477 
478     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
479 
480     phandle = qemu_fdt_alloc_phandle(fdt);
481     assert(phandle > 0);
482     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
483 
484     /*
485      * ISA devices are not necessarily parented to the ISA bus so we
486      * can not use object_child_foreach()
487      */
488     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
489                        &args);
490 }
491 
492 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
493 {
494     int off;
495 
496     off = fdt_add_subnode(fdt, 0, "ibm,opal");
497     off = fdt_add_subnode(fdt, off, "power-mgt");
498 
499     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
500 }
501 
502 static void *pnv_dt_create(MachineState *machine)
503 {
504     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
505     PnvMachineState *pnv = PNV_MACHINE(machine);
506     void *fdt;
507     char *buf;
508     int off;
509     int i;
510 
511     fdt = g_malloc0(FDT_MAX_SIZE);
512     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
513 
514     /* /qemu node */
515     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
516 
517     /* Root node */
518     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
519     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
520     _FDT((fdt_setprop_string(fdt, 0, "model",
521                              "IBM PowerNV (emulated by qemu)")));
522     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
523 
524     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
525     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
526     if (qemu_uuid_set) {
527         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
528     }
529     g_free(buf);
530 
531     off = fdt_add_subnode(fdt, 0, "chosen");
532     if (machine->kernel_cmdline) {
533         _FDT((fdt_setprop_string(fdt, off, "bootargs",
534                                  machine->kernel_cmdline)));
535     }
536 
537     if (pnv->initrd_size) {
538         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
539         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
540 
541         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
542                                &start_prop, sizeof(start_prop))));
543         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
544                                &end_prop, sizeof(end_prop))));
545     }
546 
547     /* Populate device tree for each chip */
548     for (i = 0; i < pnv->num_chips; i++) {
549         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
550     }
551 
552     /* Populate ISA devices on chip 0 */
553     pnv_dt_isa(pnv, fdt);
554 
555     if (pnv->bmc) {
556         pnv_dt_bmc_sensors(pnv->bmc, fdt);
557     }
558 
559     /* Create an extra node for power management on machines that support it */
560     if (pmc->dt_power_mgt) {
561         pmc->dt_power_mgt(pnv, fdt);
562     }
563 
564     return fdt;
565 }
566 
567 static void pnv_powerdown_notify(Notifier *n, void *opaque)
568 {
569     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
570 
571     if (pnv->bmc) {
572         pnv_bmc_powerdown(pnv->bmc);
573     }
574 }
575 
576 static void pnv_reset(MachineState *machine)
577 {
578     PnvMachineState *pnv = PNV_MACHINE(machine);
579     IPMIBmc *bmc;
580     void *fdt;
581 
582     qemu_devices_reset();
583 
584     /*
585      * The machine should provide by default an internal BMC simulator.
586      * If not, try to use the BMC device that was provided on the command
587      * line.
588      */
589     bmc = pnv_bmc_find(&error_fatal);
590     if (!pnv->bmc) {
591         if (!bmc) {
592             if (!qtest_enabled()) {
593                 warn_report("machine has no BMC device. Use '-device "
594                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
595                             "to define one");
596             }
597         } else {
598             pnv_bmc_set_pnor(bmc, pnv->pnor);
599             pnv->bmc = bmc;
600         }
601     }
602 
603     fdt = pnv_dt_create(machine);
604 
605     /* Pack resulting tree */
606     _FDT((fdt_pack(fdt)));
607 
608     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
609     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
610 
611     g_free(fdt);
612 }
613 
614 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
615 {
616     Pnv8Chip *chip8 = PNV8_CHIP(chip);
617     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
618 
619     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
620     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
621 }
622 
623 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
624 {
625     Pnv8Chip *chip8 = PNV8_CHIP(chip);
626     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
627 
628     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
629     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
630 }
631 
632 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
633 {
634     Pnv9Chip *chip9 = PNV9_CHIP(chip);
635     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
636 
637     qdev_connect_gpio_out(DEVICE(&chip9->lpc), 0, irq);
638     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
639 }
640 
641 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
642 {
643     Pnv10Chip *chip10 = PNV10_CHIP(chip);
644     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
645 
646     qdev_connect_gpio_out(DEVICE(&chip10->lpc), 0, irq);
647     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
648 }
649 
650 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
651 {
652     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
653 }
654 
655 static int pnv_chip_power8_pic_print_info_child(Object *child, void *opaque)
656 {
657     Monitor *mon = opaque;
658     PnvPHB3 *phb3 = (PnvPHB3 *) object_dynamic_cast(child, TYPE_PNV_PHB3);
659 
660     if (phb3) {
661         pnv_phb3_msi_pic_print_info(&phb3->msis, mon);
662         ics_pic_print_info(&phb3->lsis, mon);
663     }
664     return 0;
665 }
666 
667 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
668 {
669     Pnv8Chip *chip8 = PNV8_CHIP(chip);
670 
671     ics_pic_print_info(&chip8->psi.ics, mon);
672     object_child_foreach(OBJECT(chip),
673                          pnv_chip_power8_pic_print_info_child, mon);
674 }
675 
676 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
677 {
678     Monitor *mon = opaque;
679     PnvPHB4 *phb4 = (PnvPHB4 *) object_dynamic_cast(child, TYPE_PNV_PHB4);
680 
681     if (phb4) {
682         pnv_phb4_pic_print_info(phb4, mon);
683     }
684     return 0;
685 }
686 
687 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
688 {
689     Pnv9Chip *chip9 = PNV9_CHIP(chip);
690 
691     pnv_xive_pic_print_info(&chip9->xive, mon);
692     pnv_psi_pic_print_info(&chip9->psi, mon);
693 
694     object_child_foreach_recursive(OBJECT(chip),
695                          pnv_chip_power9_pic_print_info_child, mon);
696 }
697 
698 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
699                                                 uint32_t core_id)
700 {
701     return PNV_XSCOM_EX_BASE(core_id);
702 }
703 
704 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
705                                                 uint32_t core_id)
706 {
707     return PNV9_XSCOM_EC_BASE(core_id);
708 }
709 
710 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
711                                                  uint32_t core_id)
712 {
713     return PNV10_XSCOM_EC_BASE(core_id);
714 }
715 
716 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
717 {
718     PowerPCCPUClass *ppc_default =
719         POWERPC_CPU_CLASS(object_class_by_name(default_type));
720     PowerPCCPUClass *ppc =
721         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
722 
723     return ppc_default->pvr_match(ppc_default, ppc->pvr);
724 }
725 
726 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
727 {
728     ISADevice *dev = isa_new("isa-ipmi-bt");
729 
730     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
731     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
732     isa_realize_and_unref(dev, bus, &error_fatal);
733 }
734 
735 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
736 {
737     Pnv10Chip *chip10 = PNV10_CHIP(chip);
738 
739     pnv_xive2_pic_print_info(&chip10->xive, mon);
740     pnv_psi_pic_print_info(&chip10->psi, mon);
741 
742     object_child_foreach_recursive(OBJECT(chip),
743                          pnv_chip_power9_pic_print_info_child, mon);
744 }
745 
746 /* Always give the first 1GB to chip 0 else we won't boot */
747 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
748 {
749     MachineState *machine = MACHINE(pnv);
750     uint64_t ram_per_chip;
751 
752     assert(machine->ram_size >= 1 * GiB);
753 
754     ram_per_chip = machine->ram_size / pnv->num_chips;
755     if (ram_per_chip >= 1 * GiB) {
756         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
757     }
758 
759     assert(pnv->num_chips > 1);
760 
761     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
762     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
763 }
764 
765 static void pnv_init(MachineState *machine)
766 {
767     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
768     PnvMachineState *pnv = PNV_MACHINE(machine);
769     MachineClass *mc = MACHINE_GET_CLASS(machine);
770     char *fw_filename;
771     long fw_size;
772     uint64_t chip_ram_start = 0;
773     int i;
774     char *chip_typename;
775     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
776     DeviceState *dev;
777 
778     if (kvm_enabled()) {
779         error_report("The powernv machine does not work with KVM acceleration");
780         exit(EXIT_FAILURE);
781     }
782 
783     /* allocate RAM */
784     if (machine->ram_size < mc->default_ram_size) {
785         char *sz = size_to_str(mc->default_ram_size);
786         error_report("Invalid RAM size, should be bigger than %s", sz);
787         g_free(sz);
788         exit(EXIT_FAILURE);
789     }
790     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
791 
792     /*
793      * Create our simple PNOR device
794      */
795     dev = qdev_new(TYPE_PNV_PNOR);
796     if (pnor) {
797         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
798     }
799     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
800     pnv->pnor = PNV_PNOR(dev);
801 
802     /* load skiboot firmware  */
803     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
804     if (!fw_filename) {
805         error_report("Could not find OPAL firmware '%s'", bios_name);
806         exit(1);
807     }
808 
809     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
810     if (fw_size < 0) {
811         error_report("Could not load OPAL firmware '%s'", fw_filename);
812         exit(1);
813     }
814     g_free(fw_filename);
815 
816     /* load kernel */
817     if (machine->kernel_filename) {
818         long kernel_size;
819 
820         kernel_size = load_image_targphys(machine->kernel_filename,
821                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
822         if (kernel_size < 0) {
823             error_report("Could not load kernel '%s'",
824                          machine->kernel_filename);
825             exit(1);
826         }
827     }
828 
829     /* load initrd */
830     if (machine->initrd_filename) {
831         pnv->initrd_base = INITRD_LOAD_ADDR;
832         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
833                                   pnv->initrd_base, INITRD_MAX_SIZE);
834         if (pnv->initrd_size < 0) {
835             error_report("Could not load initial ram disk '%s'",
836                          machine->initrd_filename);
837             exit(1);
838         }
839     }
840 
841     /* MSIs are supported on this platform */
842     msi_nonbroken = true;
843 
844     /*
845      * Check compatibility of the specified CPU with the machine
846      * default.
847      */
848     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
849         error_report("invalid CPU model '%s' for %s machine",
850                      machine->cpu_type, mc->name);
851         exit(1);
852     }
853 
854     /* Create the processor chips */
855     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
856     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
857                                     i, machine->cpu_type);
858     if (!object_class_by_name(chip_typename)) {
859         error_report("invalid chip model '%.*s' for %s machine",
860                      i, machine->cpu_type, mc->name);
861         exit(1);
862     }
863 
864     pnv->num_chips =
865         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
866     /*
867      * TODO: should we decide on how many chips we can create based
868      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
869      */
870     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
871         error_report("invalid number of chips: '%d'", pnv->num_chips);
872         error_printf(
873             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
874         exit(1);
875     }
876 
877     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
878     for (i = 0; i < pnv->num_chips; i++) {
879         char chip_name[32];
880         Object *chip = OBJECT(qdev_new(chip_typename));
881         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
882 
883         pnv->chips[i] = PNV_CHIP(chip);
884 
885         /* Distribute RAM among the chips  */
886         object_property_set_int(chip, "ram-start", chip_ram_start,
887                                 &error_fatal);
888         object_property_set_int(chip, "ram-size", chip_ram_size,
889                                 &error_fatal);
890         chip_ram_start += chip_ram_size;
891 
892         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
893         object_property_add_child(OBJECT(pnv), chip_name, chip);
894         object_property_set_int(chip, "chip-id", i, &error_fatal);
895         object_property_set_int(chip, "nr-cores", machine->smp.cores,
896                                 &error_fatal);
897         object_property_set_int(chip, "nr-threads", machine->smp.threads,
898                                 &error_fatal);
899         /*
900          * The POWER8 machine use the XICS interrupt interface.
901          * Propagate the XICS fabric to the chip and its controllers.
902          */
903         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
904             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
905         }
906         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
907             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
908                                      &error_abort);
909         }
910         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
911     }
912     g_free(chip_typename);
913 
914     /* Instantiate ISA bus on chip 0 */
915     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
916 
917     /* Create serial port */
918     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
919 
920     /* Create an RTC ISA device too */
921     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
922 
923     /*
924      * Create the machine BMC simulator and the IPMI BT device for
925      * communication with the BMC
926      */
927     if (defaults_enabled()) {
928         pnv->bmc = pnv_bmc_create(pnv->pnor);
929         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
930     }
931 
932     /*
933      * The PNOR is mapped on the LPC FW address space by the BMC.
934      * Since we can not reach the remote BMC machine with LPC memops,
935      * map it always for now.
936      */
937     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
938                                 &pnv->pnor->mmio);
939 
940     /*
941      * OpenPOWER systems use a IPMI SEL Event message to notify the
942      * host to powerdown
943      */
944     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
945     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
946 }
947 
948 /*
949  *    0:21  Reserved - Read as zeros
950  *   22:24  Chip ID
951  *   25:28  Core number
952  *   29:31  Thread ID
953  */
954 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
955 {
956     return (chip->chip_id << 7) | (core_id << 3);
957 }
958 
959 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
960                                         Error **errp)
961 {
962     Pnv8Chip *chip8 = PNV8_CHIP(chip);
963     Error *local_err = NULL;
964     Object *obj;
965     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
966 
967     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
968     if (local_err) {
969         error_propagate(errp, local_err);
970         return;
971     }
972 
973     pnv_cpu->intc = obj;
974 }
975 
976 
977 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
978 {
979     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
980 
981     icp_reset(ICP(pnv_cpu->intc));
982 }
983 
984 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
985 {
986     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
987 
988     icp_destroy(ICP(pnv_cpu->intc));
989     pnv_cpu->intc = NULL;
990 }
991 
992 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
993                                             Monitor *mon)
994 {
995     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
996 }
997 
998 /*
999  *    0:48  Reserved - Read as zeroes
1000  *   49:52  Node ID
1001  *   53:55  Chip ID
1002  *   56     Reserved - Read as zero
1003  *   57:61  Core number
1004  *   62:63  Thread ID
1005  *
1006  * We only care about the lower bits. uint32_t is fine for the moment.
1007  */
1008 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
1009 {
1010     return (chip->chip_id << 8) | (core_id << 2);
1011 }
1012 
1013 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
1014 {
1015     return (chip->chip_id << 8) | (core_id << 2);
1016 }
1017 
1018 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1019                                         Error **errp)
1020 {
1021     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1022     Error *local_err = NULL;
1023     Object *obj;
1024     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1025 
1026     /*
1027      * The core creates its interrupt presenter but the XIVE interrupt
1028      * controller object is initialized afterwards. Hopefully, it's
1029      * only used at runtime.
1030      */
1031     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1032                            &local_err);
1033     if (local_err) {
1034         error_propagate(errp, local_err);
1035         return;
1036     }
1037 
1038     pnv_cpu->intc = obj;
1039 }
1040 
1041 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1042 {
1043     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1044 
1045     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1046 }
1047 
1048 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1049 {
1050     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1051 
1052     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1053     pnv_cpu->intc = NULL;
1054 }
1055 
1056 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1057                                             Monitor *mon)
1058 {
1059     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1060 }
1061 
1062 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1063                                         Error **errp)
1064 {
1065     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1066     Error *local_err = NULL;
1067     Object *obj;
1068     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1069 
1070     /*
1071      * The core creates its interrupt presenter but the XIVE2 interrupt
1072      * controller object is initialized afterwards. Hopefully, it's
1073      * only used at runtime.
1074      */
1075     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1076                            &local_err);
1077     if (local_err) {
1078         error_propagate(errp, local_err);
1079         return;
1080     }
1081 
1082     pnv_cpu->intc = obj;
1083 }
1084 
1085 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1086 {
1087     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1088 
1089     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1090 }
1091 
1092 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1093 {
1094     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1095 
1096     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1097     pnv_cpu->intc = NULL;
1098 }
1099 
1100 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1101                                              Monitor *mon)
1102 {
1103     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1104 }
1105 
1106 /*
1107  * Allowed core identifiers on a POWER8 Processor Chip :
1108  *
1109  * <EX0 reserved>
1110  *  EX1  - Venice only
1111  *  EX2  - Venice only
1112  *  EX3  - Venice only
1113  *  EX4
1114  *  EX5
1115  *  EX6
1116  * <EX7,8 reserved> <reserved>
1117  *  EX9  - Venice only
1118  *  EX10 - Venice only
1119  *  EX11 - Venice only
1120  *  EX12
1121  *  EX13
1122  *  EX14
1123  * <EX15 reserved>
1124  */
1125 #define POWER8E_CORE_MASK  (0x7070ull)
1126 #define POWER8_CORE_MASK   (0x7e7eull)
1127 
1128 /*
1129  * POWER9 has 24 cores, ids starting at 0x0
1130  */
1131 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1132 
1133 
1134 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1135 
1136 static void pnv_chip_power8_instance_init(Object *obj)
1137 {
1138     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1139     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1140     int i;
1141 
1142     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1143                              (Object **)&chip8->xics,
1144                              object_property_allow_set_link,
1145                              OBJ_PROP_LINK_STRONG);
1146 
1147     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1148 
1149     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1150 
1151     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1152 
1153     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1154 
1155     chip8->num_phbs = pcc->num_phbs;
1156 
1157     for (i = 0; i < chip8->num_phbs; i++) {
1158         object_initialize_child(obj, "phb[*]", &chip8->phbs[i], TYPE_PNV_PHB3);
1159     }
1160 
1161 }
1162 
1163 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1164  {
1165     PnvChip *chip = PNV_CHIP(chip8);
1166     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1167     int i, j;
1168     char *name;
1169 
1170     name = g_strdup_printf("icp-%x", chip->chip_id);
1171     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1172     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1173     g_free(name);
1174 
1175     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1176 
1177     /* Map the ICP registers for each thread */
1178     for (i = 0; i < chip->nr_cores; i++) {
1179         PnvCore *pnv_core = chip->cores[i];
1180         int core_hwid = CPU_CORE(pnv_core)->core_id;
1181 
1182         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1183             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1184             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1185 
1186             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1187                                         &icp->mmio);
1188         }
1189     }
1190 }
1191 
1192 /* Attach a root port device */
1193 void pnv_phb_attach_root_port(PCIHostState *pci, const char *name)
1194 {
1195     PCIDevice *root = pci_new(PCI_DEVFN(0, 0), name);
1196 
1197     pci_realize_and_unref(root, pci->bus, &error_fatal);
1198 }
1199 
1200 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1201 {
1202     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1203     PnvChip *chip = PNV_CHIP(dev);
1204     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1205     Pnv8Psi *psi8 = &chip8->psi;
1206     Error *local_err = NULL;
1207     int i;
1208 
1209     assert(chip8->xics);
1210 
1211     /* XSCOM bridge is first */
1212     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1213     if (local_err) {
1214         error_propagate(errp, local_err);
1215         return;
1216     }
1217     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1218 
1219     pcc->parent_realize(dev, &local_err);
1220     if (local_err) {
1221         error_propagate(errp, local_err);
1222         return;
1223     }
1224 
1225     /* Processor Service Interface (PSI) Host Bridge */
1226     object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip),
1227                             &error_fatal);
1228     object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS,
1229                              OBJECT(chip8->xics), &error_abort);
1230     if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) {
1231         return;
1232     }
1233     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1234                             &PNV_PSI(psi8)->xscom_regs);
1235 
1236     /* Create LPC controller */
1237     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1238     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1239 
1240     chip->fw_mr = &chip8->lpc.isa_fw;
1241     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1242                                             (uint64_t) PNV_XSCOM_BASE(chip),
1243                                             PNV_XSCOM_LPC_BASE);
1244 
1245     /*
1246      * Interrupt Management Area. This is the memory region holding
1247      * all the Interrupt Control Presenter (ICP) registers
1248      */
1249     pnv_chip_icp_realize(chip8, &local_err);
1250     if (local_err) {
1251         error_propagate(errp, local_err);
1252         return;
1253     }
1254 
1255     /* Create the simplified OCC model */
1256     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1257         return;
1258     }
1259     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1260     qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1261                           qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_OCC));
1262 
1263     /* OCC SRAM model */
1264     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1265                                 &chip8->occ.sram_regs);
1266 
1267     /* HOMER */
1268     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1269                              &error_abort);
1270     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1271         return;
1272     }
1273     /* Homer Xscom region */
1274     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1275 
1276     /* Homer mmio region */
1277     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1278                                 &chip8->homer.regs);
1279 
1280     /* PHB3 controllers */
1281     for (i = 0; i < chip8->num_phbs; i++) {
1282         PnvPHB3 *phb = &chip8->phbs[i];
1283 
1284         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1285         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1286                                 &error_fatal);
1287         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1288                                  &error_fatal);
1289         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1290             return;
1291         }
1292     }
1293 }
1294 
1295 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1296 {
1297     addr &= (PNV_XSCOM_SIZE - 1);
1298     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1299 }
1300 
1301 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1302 {
1303     DeviceClass *dc = DEVICE_CLASS(klass);
1304     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1305 
1306     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1307     k->cores_mask = POWER8E_CORE_MASK;
1308     k->num_phbs = 3;
1309     k->core_pir = pnv_chip_core_pir_p8;
1310     k->intc_create = pnv_chip_power8_intc_create;
1311     k->intc_reset = pnv_chip_power8_intc_reset;
1312     k->intc_destroy = pnv_chip_power8_intc_destroy;
1313     k->intc_print_info = pnv_chip_power8_intc_print_info;
1314     k->isa_create = pnv_chip_power8_isa_create;
1315     k->dt_populate = pnv_chip_power8_dt_populate;
1316     k->pic_print_info = pnv_chip_power8_pic_print_info;
1317     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1318     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1319     dc->desc = "PowerNV Chip POWER8E";
1320 
1321     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1322                                     &k->parent_realize);
1323 }
1324 
1325 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1326 {
1327     DeviceClass *dc = DEVICE_CLASS(klass);
1328     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1329 
1330     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1331     k->cores_mask = POWER8_CORE_MASK;
1332     k->num_phbs = 3;
1333     k->core_pir = pnv_chip_core_pir_p8;
1334     k->intc_create = pnv_chip_power8_intc_create;
1335     k->intc_reset = pnv_chip_power8_intc_reset;
1336     k->intc_destroy = pnv_chip_power8_intc_destroy;
1337     k->intc_print_info = pnv_chip_power8_intc_print_info;
1338     k->isa_create = pnv_chip_power8_isa_create;
1339     k->dt_populate = pnv_chip_power8_dt_populate;
1340     k->pic_print_info = pnv_chip_power8_pic_print_info;
1341     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1342     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1343     dc->desc = "PowerNV Chip POWER8";
1344 
1345     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1346                                     &k->parent_realize);
1347 }
1348 
1349 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1350 {
1351     DeviceClass *dc = DEVICE_CLASS(klass);
1352     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1353 
1354     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1355     k->cores_mask = POWER8_CORE_MASK;
1356     k->num_phbs = 4;
1357     k->core_pir = pnv_chip_core_pir_p8;
1358     k->intc_create = pnv_chip_power8_intc_create;
1359     k->intc_reset = pnv_chip_power8_intc_reset;
1360     k->intc_destroy = pnv_chip_power8_intc_destroy;
1361     k->intc_print_info = pnv_chip_power8_intc_print_info;
1362     k->isa_create = pnv_chip_power8nvl_isa_create;
1363     k->dt_populate = pnv_chip_power8_dt_populate;
1364     k->pic_print_info = pnv_chip_power8_pic_print_info;
1365     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1366     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1367     dc->desc = "PowerNV Chip POWER8NVL";
1368 
1369     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1370                                     &k->parent_realize);
1371 }
1372 
1373 static void pnv_chip_power9_instance_init(Object *obj)
1374 {
1375     PnvChip *chip = PNV_CHIP(obj);
1376     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1377     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1378     int i;
1379 
1380     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1381     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1382                               "xive-fabric");
1383 
1384     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1385 
1386     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1387 
1388     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1389 
1390     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1391 
1392     /* Number of PECs is the chip default */
1393     chip->num_pecs = pcc->num_pecs;
1394 
1395     for (i = 0; i < chip->num_pecs; i++) {
1396         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1397                                 TYPE_PNV_PHB4_PEC);
1398     }
1399 }
1400 
1401 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1402                                       PnvCore *pnv_core)
1403 {
1404     char eq_name[32];
1405     int core_id = CPU_CORE(pnv_core)->core_id;
1406 
1407     snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1408     object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1409                                        sizeof(*eq), TYPE_PNV_QUAD,
1410                                        &error_fatal, NULL);
1411 
1412     object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1413     qdev_realize(DEVICE(eq), NULL, &error_fatal);
1414 }
1415 
1416 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1417 {
1418     PnvChip *chip = PNV_CHIP(chip9);
1419     int i;
1420 
1421     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1422     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1423 
1424     for (i = 0; i < chip9->nr_quads; i++) {
1425         PnvQuad *eq = &chip9->quads[i];
1426 
1427         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4]);
1428 
1429         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1430                                 &eq->xscom_regs);
1431     }
1432 }
1433 
1434 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1435 {
1436     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1437     int i;
1438 
1439     for (i = 0; i < chip->num_pecs; i++) {
1440         PnvPhb4PecState *pec = &chip9->pecs[i];
1441         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1442         uint32_t pec_nest_base;
1443         uint32_t pec_pci_base;
1444 
1445         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1446         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1447                                 &error_fatal);
1448         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1449                                  &error_fatal);
1450         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1451             return;
1452         }
1453 
1454         pec_nest_base = pecc->xscom_nest_base(pec);
1455         pec_pci_base = pecc->xscom_pci_base(pec);
1456 
1457         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1458         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1459     }
1460 }
1461 
1462 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1463 {
1464     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1465     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1466     PnvChip *chip = PNV_CHIP(dev);
1467     Pnv9Psi *psi9 = &chip9->psi;
1468     Error *local_err = NULL;
1469 
1470     /* XSCOM bridge is first */
1471     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1472     if (local_err) {
1473         error_propagate(errp, local_err);
1474         return;
1475     }
1476     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1477 
1478     pcc->parent_realize(dev, &local_err);
1479     if (local_err) {
1480         error_propagate(errp, local_err);
1481         return;
1482     }
1483 
1484     pnv_chip_quad_realize(chip9, &local_err);
1485     if (local_err) {
1486         error_propagate(errp, local_err);
1487         return;
1488     }
1489 
1490     /* XIVE interrupt controller (POWER9) */
1491     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1492                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1493     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1494                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1495     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1496                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1497     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1498                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1499     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1500                              &error_abort);
1501     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1502         return;
1503     }
1504     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1505                             &chip9->xive.xscom_regs);
1506 
1507     /* Processor Service Interface (PSI) Host Bridge */
1508     object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip),
1509                             &error_fatal);
1510     /* This is the only device with 4k ESB pages */
1511     object_property_set_int(OBJECT(&chip9->psi), "shift", XIVE_ESB_4K,
1512                             &error_fatal);
1513     if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) {
1514         return;
1515     }
1516     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1517                             &PNV_PSI(psi9)->xscom_regs);
1518 
1519     /* LPC */
1520     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1521         return;
1522     }
1523     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1524                                 &chip9->lpc.xscom_regs);
1525 
1526     chip->fw_mr = &chip9->lpc.isa_fw;
1527     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1528                                             (uint64_t) PNV9_LPCM_BASE(chip));
1529 
1530     /* Create the simplified OCC model */
1531     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1532         return;
1533     }
1534     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1535     qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1536                               DEVICE(&chip9->psi), PSIHB9_IRQ_OCC));
1537 
1538     /* OCC SRAM model */
1539     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1540                                 &chip9->occ.sram_regs);
1541 
1542     /* HOMER */
1543     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1544                              &error_abort);
1545     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1546         return;
1547     }
1548     /* Homer Xscom region */
1549     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1550 
1551     /* Homer mmio region */
1552     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1553                                 &chip9->homer.regs);
1554 
1555     /* PEC PHBs */
1556     pnv_chip_power9_pec_realize(chip, &local_err);
1557     if (local_err) {
1558         error_propagate(errp, local_err);
1559         return;
1560     }
1561 }
1562 
1563 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1564 {
1565     addr &= (PNV9_XSCOM_SIZE - 1);
1566     return addr >> 3;
1567 }
1568 
1569 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1570 {
1571     DeviceClass *dc = DEVICE_CLASS(klass);
1572     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1573 
1574     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1575     k->cores_mask = POWER9_CORE_MASK;
1576     k->core_pir = pnv_chip_core_pir_p9;
1577     k->intc_create = pnv_chip_power9_intc_create;
1578     k->intc_reset = pnv_chip_power9_intc_reset;
1579     k->intc_destroy = pnv_chip_power9_intc_destroy;
1580     k->intc_print_info = pnv_chip_power9_intc_print_info;
1581     k->isa_create = pnv_chip_power9_isa_create;
1582     k->dt_populate = pnv_chip_power9_dt_populate;
1583     k->pic_print_info = pnv_chip_power9_pic_print_info;
1584     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1585     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1586     dc->desc = "PowerNV Chip POWER9";
1587     k->num_pecs = PNV9_CHIP_MAX_PEC;
1588 
1589     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1590                                     &k->parent_realize);
1591 }
1592 
1593 static void pnv_chip_power10_instance_init(Object *obj)
1594 {
1595     PnvChip *chip = PNV_CHIP(obj);
1596     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1597     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1598     int i;
1599 
1600     object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1601     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1602                               "xive-fabric");
1603     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1604     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1605     object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
1606     object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1607 
1608     chip->num_pecs = pcc->num_pecs;
1609 
1610     for (i = 0; i < chip->num_pecs; i++) {
1611         object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1612                                 TYPE_PNV_PHB5_PEC);
1613     }
1614 }
1615 
1616 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
1617 {
1618     PnvChip *chip = PNV_CHIP(chip10);
1619     int i;
1620 
1621     chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1622     chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
1623 
1624     for (i = 0; i < chip10->nr_quads; i++) {
1625         PnvQuad *eq = &chip10->quads[i];
1626 
1627         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4]);
1628 
1629         pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
1630                                 &eq->xscom_regs);
1631     }
1632 }
1633 
1634 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
1635 {
1636     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1637     int i;
1638 
1639     for (i = 0; i < chip->num_pecs; i++) {
1640         PnvPhb4PecState *pec = &chip10->pecs[i];
1641         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1642         uint32_t pec_nest_base;
1643         uint32_t pec_pci_base;
1644 
1645         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1646         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1647                                 &error_fatal);
1648         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1649                                  &error_fatal);
1650         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1651             return;
1652         }
1653 
1654         pec_nest_base = pecc->xscom_nest_base(pec);
1655         pec_pci_base = pecc->xscom_pci_base(pec);
1656 
1657         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1658         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1659     }
1660 }
1661 
1662 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1663 {
1664     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1665     PnvChip *chip = PNV_CHIP(dev);
1666     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1667     Error *local_err = NULL;
1668 
1669     /* XSCOM bridge is first */
1670     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1671     if (local_err) {
1672         error_propagate(errp, local_err);
1673         return;
1674     }
1675     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1676 
1677     pcc->parent_realize(dev, &local_err);
1678     if (local_err) {
1679         error_propagate(errp, local_err);
1680         return;
1681     }
1682 
1683     pnv_chip_power10_quad_realize(chip10, &local_err);
1684     if (local_err) {
1685         error_propagate(errp, local_err);
1686         return;
1687     }
1688 
1689     /* XIVE2 interrupt controller (POWER10) */
1690     object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
1691                             PNV10_XIVE2_IC_BASE(chip), &error_fatal);
1692     object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
1693                             PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
1694     object_property_set_int(OBJECT(&chip10->xive), "end-bar",
1695                             PNV10_XIVE2_END_BASE(chip), &error_fatal);
1696     object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
1697                             PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
1698     object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
1699                             PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
1700     object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
1701                             PNV10_XIVE2_TM_BASE(chip), &error_fatal);
1702     object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
1703                              &error_abort);
1704     if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
1705         return;
1706     }
1707     pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
1708                             &chip10->xive.xscom_regs);
1709 
1710     /* Processor Service Interface (PSI) Host Bridge */
1711     object_property_set_int(OBJECT(&chip10->psi), "bar",
1712                             PNV10_PSIHB_BASE(chip), &error_fatal);
1713     /* PSI can now be configured to use 64k ESB pages on POWER10 */
1714     object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
1715                             &error_fatal);
1716     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1717         return;
1718     }
1719     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1720                             &PNV_PSI(&chip10->psi)->xscom_regs);
1721 
1722     /* LPC */
1723     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1724         return;
1725     }
1726     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1727                                 &chip10->lpc.xscom_regs);
1728 
1729     chip->fw_mr = &chip10->lpc.isa_fw;
1730     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1731                                             (uint64_t) PNV10_LPCM_BASE(chip));
1732 
1733     /* Create the simplified OCC model */
1734     if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
1735         return;
1736     }
1737     pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
1738                             &chip10->occ.xscom_regs);
1739     qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
1740                               DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
1741 
1742     /* OCC SRAM model */
1743     memory_region_add_subregion(get_system_memory(),
1744                                 PNV10_OCC_SENSOR_BASE(chip),
1745                                 &chip10->occ.sram_regs);
1746 
1747     /* HOMER */
1748     object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
1749                              &error_abort);
1750     if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
1751         return;
1752     }
1753     /* Homer Xscom region */
1754     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
1755                             &chip10->homer.pba_regs);
1756 
1757     /* Homer mmio region */
1758     memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
1759                                 &chip10->homer.regs);
1760 
1761     /* PHBs */
1762     pnv_chip_power10_phb_realize(chip, &local_err);
1763     if (local_err) {
1764         error_propagate(errp, local_err);
1765         return;
1766     }
1767 }
1768 
1769 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1770 {
1771     addr &= (PNV10_XSCOM_SIZE - 1);
1772     return addr >> 3;
1773 }
1774 
1775 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1776 {
1777     DeviceClass *dc = DEVICE_CLASS(klass);
1778     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1779 
1780     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1781     k->cores_mask = POWER10_CORE_MASK;
1782     k->core_pir = pnv_chip_core_pir_p10;
1783     k->intc_create = pnv_chip_power10_intc_create;
1784     k->intc_reset = pnv_chip_power10_intc_reset;
1785     k->intc_destroy = pnv_chip_power10_intc_destroy;
1786     k->intc_print_info = pnv_chip_power10_intc_print_info;
1787     k->isa_create = pnv_chip_power10_isa_create;
1788     k->dt_populate = pnv_chip_power10_dt_populate;
1789     k->pic_print_info = pnv_chip_power10_pic_print_info;
1790     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1791     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1792     dc->desc = "PowerNV Chip POWER10";
1793     k->num_pecs = PNV10_CHIP_MAX_PEC;
1794 
1795     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1796                                     &k->parent_realize);
1797 }
1798 
1799 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1800 {
1801     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1802     int cores_max;
1803 
1804     /*
1805      * No custom mask for this chip, let's use the default one from *
1806      * the chip class
1807      */
1808     if (!chip->cores_mask) {
1809         chip->cores_mask = pcc->cores_mask;
1810     }
1811 
1812     /* filter alien core ids ! some are reserved */
1813     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1814         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1815                    chip->cores_mask);
1816         return;
1817     }
1818     chip->cores_mask &= pcc->cores_mask;
1819 
1820     /* now that we have a sane layout, let check the number of cores */
1821     cores_max = ctpop64(chip->cores_mask);
1822     if (chip->nr_cores > cores_max) {
1823         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1824                    cores_max);
1825         return;
1826     }
1827 }
1828 
1829 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1830 {
1831     Error *error = NULL;
1832     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1833     const char *typename = pnv_chip_core_typename(chip);
1834     int i, core_hwid;
1835     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1836 
1837     if (!object_class_by_name(typename)) {
1838         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1839         return;
1840     }
1841 
1842     /* Cores */
1843     pnv_chip_core_sanitize(chip, &error);
1844     if (error) {
1845         error_propagate(errp, error);
1846         return;
1847     }
1848 
1849     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1850 
1851     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1852              && (i < chip->nr_cores); core_hwid++) {
1853         char core_name[32];
1854         PnvCore *pnv_core;
1855         uint64_t xscom_core_base;
1856 
1857         if (!(chip->cores_mask & (1ull << core_hwid))) {
1858             continue;
1859         }
1860 
1861         pnv_core = PNV_CORE(object_new(typename));
1862 
1863         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1864         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1865         chip->cores[i] = pnv_core;
1866         object_property_set_int(OBJECT(pnv_core), "nr-threads",
1867                                 chip->nr_threads, &error_fatal);
1868         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
1869                                 core_hwid, &error_fatal);
1870         object_property_set_int(OBJECT(pnv_core), "pir",
1871                                 pcc->core_pir(chip, core_hwid), &error_fatal);
1872         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
1873                                 &error_fatal);
1874         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
1875                                  &error_abort);
1876         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
1877 
1878         /* Each core has an XSCOM MMIO region */
1879         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1880 
1881         pnv_xscom_add_subregion(chip, xscom_core_base,
1882                                 &pnv_core->xscom_regs);
1883         i++;
1884     }
1885 }
1886 
1887 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1888 {
1889     PnvChip *chip = PNV_CHIP(dev);
1890     Error *error = NULL;
1891 
1892     /* Cores */
1893     pnv_chip_core_realize(chip, &error);
1894     if (error) {
1895         error_propagate(errp, error);
1896         return;
1897     }
1898 }
1899 
1900 static Property pnv_chip_properties[] = {
1901     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1902     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1903     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1904     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1905     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1906     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1907     DEFINE_PROP_END_OF_LIST(),
1908 };
1909 
1910 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1911 {
1912     DeviceClass *dc = DEVICE_CLASS(klass);
1913 
1914     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1915     dc->realize = pnv_chip_realize;
1916     device_class_set_props(dc, pnv_chip_properties);
1917     dc->desc = "PowerNV Chip";
1918 }
1919 
1920 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1921 {
1922     int i, j;
1923 
1924     for (i = 0; i < chip->nr_cores; i++) {
1925         PnvCore *pc = chip->cores[i];
1926         CPUCore *cc = CPU_CORE(pc);
1927 
1928         for (j = 0; j < cc->nr_threads; j++) {
1929             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1930                 return pc->threads[j];
1931             }
1932         }
1933     }
1934     return NULL;
1935 }
1936 
1937 typedef struct ForeachPhb3Args {
1938     int irq;
1939     ICSState *ics;
1940 } ForeachPhb3Args;
1941 
1942 static int pnv_ics_get_child(Object *child, void *opaque)
1943 {
1944     ForeachPhb3Args *args = opaque;
1945     PnvPHB3 *phb3 = (PnvPHB3 *) object_dynamic_cast(child, TYPE_PNV_PHB3);
1946 
1947     if (phb3) {
1948         if (ics_valid_irq(&phb3->lsis, args->irq)) {
1949             args->ics = &phb3->lsis;
1950         }
1951         if (ics_valid_irq(ICS(&phb3->msis), args->irq)) {
1952             args->ics = ICS(&phb3->msis);
1953         }
1954     }
1955     return args->ics ? 1 : 0;
1956 }
1957 
1958 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1959 {
1960     PnvMachineState *pnv = PNV_MACHINE(xi);
1961     ForeachPhb3Args args = { irq, NULL };
1962     int i;
1963 
1964     for (i = 0; i < pnv->num_chips; i++) {
1965         PnvChip *chip = pnv->chips[i];
1966         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1967 
1968         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1969             return &chip8->psi.ics;
1970         }
1971 
1972         object_child_foreach(OBJECT(chip), pnv_ics_get_child, &args);
1973         if (args.ics) {
1974             return args.ics;
1975         }
1976     }
1977     return NULL;
1978 }
1979 
1980 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
1981 {
1982     int i;
1983 
1984     for (i = 0; i < pnv->num_chips; i++) {
1985         PnvChip *chip = pnv->chips[i];
1986         if (chip->chip_id == chip_id) {
1987             return chip;
1988         }
1989     }
1990     return NULL;
1991 }
1992 
1993 static int pnv_ics_resend_child(Object *child, void *opaque)
1994 {
1995     PnvPHB3 *phb3 = (PnvPHB3 *) object_dynamic_cast(child, TYPE_PNV_PHB3);
1996 
1997     if (phb3) {
1998         ics_resend(&phb3->lsis);
1999         ics_resend(ICS(&phb3->msis));
2000     }
2001     return 0;
2002 }
2003 
2004 static void pnv_ics_resend(XICSFabric *xi)
2005 {
2006     PnvMachineState *pnv = PNV_MACHINE(xi);
2007     int i;
2008 
2009     for (i = 0; i < pnv->num_chips; i++) {
2010         PnvChip *chip = pnv->chips[i];
2011         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2012 
2013         ics_resend(&chip8->psi.ics);
2014         object_child_foreach(OBJECT(chip), pnv_ics_resend_child, NULL);
2015     }
2016 }
2017 
2018 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2019 {
2020     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2021 
2022     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2023 }
2024 
2025 static void pnv_pic_print_info(InterruptStatsProvider *obj,
2026                                Monitor *mon)
2027 {
2028     PnvMachineState *pnv = PNV_MACHINE(obj);
2029     int i;
2030     CPUState *cs;
2031 
2032     CPU_FOREACH(cs) {
2033         PowerPCCPU *cpu = POWERPC_CPU(cs);
2034 
2035         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
2036         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
2037                                                            mon);
2038     }
2039 
2040     for (i = 0; i < pnv->num_chips; i++) {
2041         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
2042     }
2043 }
2044 
2045 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2046                          uint8_t nvt_blk, uint32_t nvt_idx,
2047                          bool cam_ignore, uint8_t priority,
2048                          uint32_t logic_serv,
2049                          XiveTCTXMatch *match)
2050 {
2051     PnvMachineState *pnv = PNV_MACHINE(xfb);
2052     int total_count = 0;
2053     int i;
2054 
2055     for (i = 0; i < pnv->num_chips; i++) {
2056         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2057         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2058         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2059         int count;
2060 
2061         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2062                                priority, logic_serv, match);
2063 
2064         if (count < 0) {
2065             return count;
2066         }
2067 
2068         total_count += count;
2069     }
2070 
2071     return total_count;
2072 }
2073 
2074 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2075                                 uint8_t nvt_blk, uint32_t nvt_idx,
2076                                 bool cam_ignore, uint8_t priority,
2077                                 uint32_t logic_serv,
2078                                 XiveTCTXMatch *match)
2079 {
2080     PnvMachineState *pnv = PNV_MACHINE(xfb);
2081     int total_count = 0;
2082     int i;
2083 
2084     for (i = 0; i < pnv->num_chips; i++) {
2085         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2086         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2087         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2088         int count;
2089 
2090         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2091                                priority, logic_serv, match);
2092 
2093         if (count < 0) {
2094             return count;
2095         }
2096 
2097         total_count += count;
2098     }
2099 
2100     return total_count;
2101 }
2102 
2103 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2104 {
2105     MachineClass *mc = MACHINE_CLASS(oc);
2106     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2107     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2108     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2109 
2110     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2111     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2112 
2113     xic->icp_get = pnv_icp_get;
2114     xic->ics_get = pnv_ics_get;
2115     xic->ics_resend = pnv_ics_resend;
2116 
2117     pmc->compat = compat;
2118     pmc->compat_size = sizeof(compat);
2119 }
2120 
2121 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2122 {
2123     MachineClass *mc = MACHINE_CLASS(oc);
2124     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2125     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2126     static const char compat[] = "qemu,powernv9\0ibm,powernv";
2127 
2128     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2129     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
2130     xfc->match_nvt = pnv_match_nvt;
2131 
2132     mc->alias = "powernv";
2133 
2134     pmc->compat = compat;
2135     pmc->compat_size = sizeof(compat);
2136     pmc->dt_power_mgt = pnv_dt_power_mgt;
2137 }
2138 
2139 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2140 {
2141     MachineClass *mc = MACHINE_CLASS(oc);
2142     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2143     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2144     static const char compat[] = "qemu,powernv10\0ibm,powernv";
2145 
2146     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2147     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2148 
2149     pmc->compat = compat;
2150     pmc->compat_size = sizeof(compat);
2151     pmc->dt_power_mgt = pnv_dt_power_mgt;
2152 
2153     xfc->match_nvt = pnv10_xive_match_nvt;
2154 }
2155 
2156 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2157 {
2158     PnvMachineState *pnv = PNV_MACHINE(obj);
2159 
2160     return !!pnv->fw_load_addr;
2161 }
2162 
2163 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2164 {
2165     PnvMachineState *pnv = PNV_MACHINE(obj);
2166 
2167     if (value) {
2168         pnv->fw_load_addr = 0x8000000;
2169     }
2170 }
2171 
2172 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2173 {
2174     PowerPCCPU *cpu = POWERPC_CPU(cs);
2175     CPUPPCState *env = &cpu->env;
2176 
2177     cpu_synchronize_state(cs);
2178     ppc_cpu_do_system_reset(cs);
2179     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2180         /*
2181          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2182          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2183          * (PPC_BIT(43)).
2184          */
2185         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2186             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2187             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2188         }
2189     } else {
2190         /*
2191          * For non-powersave system resets, SRR1[42:45] are defined to be
2192          * implementation-dependent. The POWER9 User Manual specifies that
2193          * an external (SCOM driven, which may come from a BMC nmi command or
2194          * another CPU requesting a NMI IPI) system reset exception should be
2195          * 0b0010 (PPC_BIT(44)).
2196          */
2197         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2198     }
2199 }
2200 
2201 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2202 {
2203     CPUState *cs;
2204 
2205     CPU_FOREACH(cs) {
2206         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2207     }
2208 }
2209 
2210 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2211 {
2212     MachineClass *mc = MACHINE_CLASS(oc);
2213     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2214     NMIClass *nc = NMI_CLASS(oc);
2215 
2216     mc->desc = "IBM PowerNV (Non-Virtualized)";
2217     mc->init = pnv_init;
2218     mc->reset = pnv_reset;
2219     mc->max_cpus = MAX_CPUS;
2220     /* Pnv provides a AHCI device for storage */
2221     mc->block_default_type = IF_IDE;
2222     mc->no_parallel = 1;
2223     mc->default_boot_order = NULL;
2224     /*
2225      * RAM defaults to less than 2048 for 32-bit hosts, and large
2226      * enough to fit the maximum initrd size at it's load address
2227      */
2228     mc->default_ram_size = 1 * GiB;
2229     mc->default_ram_id = "pnv.ram";
2230     ispc->print_info = pnv_pic_print_info;
2231     nc->nmi_monitor_handler = pnv_nmi;
2232 
2233     object_class_property_add_bool(oc, "hb-mode",
2234                                    pnv_machine_get_hb, pnv_machine_set_hb);
2235     object_class_property_set_description(oc, "hb-mode",
2236                               "Use a hostboot like boot loader");
2237 }
2238 
2239 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2240     {                                             \
2241         .name          = type,                    \
2242         .class_init    = class_initfn,            \
2243         .parent        = TYPE_PNV8_CHIP,          \
2244     }
2245 
2246 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2247     {                                             \
2248         .name          = type,                    \
2249         .class_init    = class_initfn,            \
2250         .parent        = TYPE_PNV9_CHIP,          \
2251     }
2252 
2253 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2254     {                                              \
2255         .name          = type,                     \
2256         .class_init    = class_initfn,             \
2257         .parent        = TYPE_PNV10_CHIP,          \
2258     }
2259 
2260 static const TypeInfo types[] = {
2261     {
2262         .name          = MACHINE_TYPE_NAME("powernv10"),
2263         .parent        = TYPE_PNV_MACHINE,
2264         .class_init    = pnv_machine_power10_class_init,
2265         .interfaces = (InterfaceInfo[]) {
2266             { TYPE_XIVE_FABRIC },
2267             { },
2268         },
2269     },
2270     {
2271         .name          = MACHINE_TYPE_NAME("powernv9"),
2272         .parent        = TYPE_PNV_MACHINE,
2273         .class_init    = pnv_machine_power9_class_init,
2274         .interfaces = (InterfaceInfo[]) {
2275             { TYPE_XIVE_FABRIC },
2276             { },
2277         },
2278     },
2279     {
2280         .name          = MACHINE_TYPE_NAME("powernv8"),
2281         .parent        = TYPE_PNV_MACHINE,
2282         .class_init    = pnv_machine_power8_class_init,
2283         .interfaces = (InterfaceInfo[]) {
2284             { TYPE_XICS_FABRIC },
2285             { },
2286         },
2287     },
2288     {
2289         .name          = TYPE_PNV_MACHINE,
2290         .parent        = TYPE_MACHINE,
2291         .abstract       = true,
2292         .instance_size = sizeof(PnvMachineState),
2293         .class_init    = pnv_machine_class_init,
2294         .class_size    = sizeof(PnvMachineClass),
2295         .interfaces = (InterfaceInfo[]) {
2296             { TYPE_INTERRUPT_STATS_PROVIDER },
2297             { TYPE_NMI },
2298             { },
2299         },
2300     },
2301     {
2302         .name          = TYPE_PNV_CHIP,
2303         .parent        = TYPE_SYS_BUS_DEVICE,
2304         .class_init    = pnv_chip_class_init,
2305         .instance_size = sizeof(PnvChip),
2306         .class_size    = sizeof(PnvChipClass),
2307         .abstract      = true,
2308     },
2309 
2310     /*
2311      * P10 chip and variants
2312      */
2313     {
2314         .name          = TYPE_PNV10_CHIP,
2315         .parent        = TYPE_PNV_CHIP,
2316         .instance_init = pnv_chip_power10_instance_init,
2317         .instance_size = sizeof(Pnv10Chip),
2318     },
2319     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2320 
2321     /*
2322      * P9 chip and variants
2323      */
2324     {
2325         .name          = TYPE_PNV9_CHIP,
2326         .parent        = TYPE_PNV_CHIP,
2327         .instance_init = pnv_chip_power9_instance_init,
2328         .instance_size = sizeof(Pnv9Chip),
2329     },
2330     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2331 
2332     /*
2333      * P8 chip and variants
2334      */
2335     {
2336         .name          = TYPE_PNV8_CHIP,
2337         .parent        = TYPE_PNV_CHIP,
2338         .instance_init = pnv_chip_power8_instance_init,
2339         .instance_size = sizeof(Pnv8Chip),
2340     },
2341     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2342     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2343     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2344                           pnv_chip_power8nvl_class_init),
2345 };
2346 
2347 DEFINE_TYPES(types)
2348