xref: /qemu/hw/ppc/pnv.c (revision bcfec376)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/datadir.h"
23 #include "qemu/units.h"
24 #include "qemu/cutils.h"
25 #include "qapi/error.h"
26 #include "sysemu/qtest.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/numa.h"
29 #include "sysemu/reset.h"
30 #include "sysemu/runstate.h"
31 #include "sysemu/cpus.h"
32 #include "sysemu/device_tree.h"
33 #include "sysemu/hw_accel.h"
34 #include "target/ppc/cpu.h"
35 #include "hw/ppc/fdt.h"
36 #include "hw/ppc/ppc.h"
37 #include "hw/ppc/pnv.h"
38 #include "hw/ppc/pnv_core.h"
39 #include "hw/loader.h"
40 #include "hw/nmi.h"
41 #include "qapi/visitor.h"
42 #include "monitor/monitor.h"
43 #include "hw/intc/intc.h"
44 #include "hw/ipmi/ipmi.h"
45 #include "target/ppc/mmu-hash64.h"
46 #include "hw/pci/msi.h"
47 
48 #include "hw/ppc/xics.h"
49 #include "hw/qdev-properties.h"
50 #include "hw/ppc/pnv_xscom.h"
51 #include "hw/ppc/pnv_pnor.h"
52 
53 #include "hw/isa/isa.h"
54 #include "hw/char/serial.h"
55 #include "hw/rtc/mc146818rtc.h"
56 
57 #include <libfdt.h>
58 
59 #define FDT_MAX_SIZE            (1 * MiB)
60 
61 #define FW_FILE_NAME            "skiboot.lid"
62 #define FW_LOAD_ADDR            0x0
63 #define FW_MAX_SIZE             (16 * MiB)
64 
65 #define KERNEL_LOAD_ADDR        0x20000000
66 #define KERNEL_MAX_SIZE         (128 * MiB)
67 #define INITRD_LOAD_ADDR        0x28000000
68 #define INITRD_MAX_SIZE         (128 * MiB)
69 
70 static const char *pnv_chip_core_typename(const PnvChip *o)
71 {
72     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
73     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
74     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
75     const char *core_type = object_class_get_name(object_class_by_name(s));
76     g_free(s);
77     return core_type;
78 }
79 
80 /*
81  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
82  *     4 * 4 sockets * 12 cores * 8 threads = 1536
83  * Let's make it 2^11
84  */
85 #define MAX_CPUS                2048
86 
87 /*
88  * Memory nodes are created by hostboot, one for each range of memory
89  * that has a different "affinity". In practice, it means one range
90  * per chip.
91  */
92 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
93 {
94     char *mem_name;
95     uint64_t mem_reg_property[2];
96     int off;
97 
98     mem_reg_property[0] = cpu_to_be64(start);
99     mem_reg_property[1] = cpu_to_be64(size);
100 
101     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
102     off = fdt_add_subnode(fdt, 0, mem_name);
103     g_free(mem_name);
104 
105     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
106     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
107                        sizeof(mem_reg_property))));
108     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
109 }
110 
111 static int get_cpus_node(void *fdt)
112 {
113     int cpus_offset = fdt_path_offset(fdt, "/cpus");
114 
115     if (cpus_offset < 0) {
116         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
117         if (cpus_offset) {
118             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
119             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
120         }
121     }
122     _FDT(cpus_offset);
123     return cpus_offset;
124 }
125 
126 /*
127  * The PowerNV cores (and threads) need to use real HW ids and not an
128  * incremental index like it has been done on other platforms. This HW
129  * id is stored in the CPU PIR, it is used to create cpu nodes in the
130  * device tree, used in XSCOM to address cores and in interrupt
131  * servers.
132  */
133 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
134 {
135     PowerPCCPU *cpu = pc->threads[0];
136     CPUState *cs = CPU(cpu);
137     DeviceClass *dc = DEVICE_GET_CLASS(cs);
138     int smt_threads = CPU_CORE(pc)->nr_threads;
139     CPUPPCState *env = &cpu->env;
140     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
141     uint32_t servers_prop[smt_threads];
142     int i;
143     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
144                        0xffffffff, 0xffffffff};
145     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
146     uint32_t cpufreq = 1000000000;
147     uint32_t page_sizes_prop[64];
148     size_t page_sizes_prop_size;
149     const uint8_t pa_features[] = { 24, 0,
150                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
151                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
152                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
153                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
154     int offset;
155     char *nodename;
156     int cpus_offset = get_cpus_node(fdt);
157 
158     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
159     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
160     _FDT(offset);
161     g_free(nodename);
162 
163     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
164 
165     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
166     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
167     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
168 
169     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
170     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
171                             env->dcache_line_size)));
172     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
173                             env->dcache_line_size)));
174     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
175                             env->icache_line_size)));
176     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
177                             env->icache_line_size)));
178 
179     if (pcc->l1_dcache_size) {
180         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
181                                pcc->l1_dcache_size)));
182     } else {
183         warn_report("Unknown L1 dcache size for cpu");
184     }
185     if (pcc->l1_icache_size) {
186         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
187                                pcc->l1_icache_size)));
188     } else {
189         warn_report("Unknown L1 icache size for cpu");
190     }
191 
192     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
193     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
194     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
195                            cpu->hash64_opts->slb_size)));
196     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
197     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
198 
199     if (env->spr_cb[SPR_PURR].oea_read) {
200         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
201     }
202 
203     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
204         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
205                            segs, sizeof(segs))));
206     }
207 
208     /*
209      * Advertise VMX/VSX (vector extensions) if available
210      *   0 / no property == no vector extensions
211      *   1               == VMX / Altivec available
212      *   2               == VSX available
213      */
214     if (env->insns_flags & PPC_ALTIVEC) {
215         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
216 
217         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
218     }
219 
220     /*
221      * Advertise DFP (Decimal Floating Point) if available
222      *   0 / no property == no DFP
223      *   1               == DFP available
224      */
225     if (env->insns_flags2 & PPC2_DFP) {
226         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
227     }
228 
229     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
230                                                       sizeof(page_sizes_prop));
231     if (page_sizes_prop_size) {
232         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
233                            page_sizes_prop, page_sizes_prop_size)));
234     }
235 
236     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
237                        pa_features, sizeof(pa_features))));
238 
239     /* Build interrupt servers properties */
240     for (i = 0; i < smt_threads; i++) {
241         servers_prop[i] = cpu_to_be32(pc->pir + i);
242     }
243     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
244                        servers_prop, sizeof(servers_prop))));
245 }
246 
247 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
248                        uint32_t nr_threads)
249 {
250     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
251     char *name;
252     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
253     uint32_t irange[2], i, rsize;
254     uint64_t *reg;
255     int offset;
256 
257     irange[0] = cpu_to_be32(pir);
258     irange[1] = cpu_to_be32(nr_threads);
259 
260     rsize = sizeof(uint64_t) * 2 * nr_threads;
261     reg = g_malloc(rsize);
262     for (i = 0; i < nr_threads; i++) {
263         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
264         reg[i * 2 + 1] = cpu_to_be64(0x1000);
265     }
266 
267     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
268     offset = fdt_add_subnode(fdt, 0, name);
269     _FDT(offset);
270     g_free(name);
271 
272     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
273     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
274     _FDT((fdt_setprop_string(fdt, offset, "device_type",
275                               "PowerPC-External-Interrupt-Presentation")));
276     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
277     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
278                        irange, sizeof(irange))));
279     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
280     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
281     g_free(reg);
282 }
283 
284 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
285 {
286     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
287     int i;
288 
289     pnv_dt_xscom(chip, fdt, 0,
290                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
291                  cpu_to_be64(PNV_XSCOM_SIZE),
292                  compat, sizeof(compat));
293 
294     for (i = 0; i < chip->nr_cores; i++) {
295         PnvCore *pnv_core = chip->cores[i];
296 
297         pnv_dt_core(chip, pnv_core, fdt);
298 
299         /* Interrupt Control Presenters (ICP). One per core. */
300         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
301     }
302 
303     if (chip->ram_size) {
304         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
305     }
306 }
307 
308 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
309 {
310     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
311     int i;
312 
313     pnv_dt_xscom(chip, fdt, 0,
314                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
315                  cpu_to_be64(PNV9_XSCOM_SIZE),
316                  compat, sizeof(compat));
317 
318     for (i = 0; i < chip->nr_cores; i++) {
319         PnvCore *pnv_core = chip->cores[i];
320 
321         pnv_dt_core(chip, pnv_core, fdt);
322     }
323 
324     if (chip->ram_size) {
325         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
326     }
327 
328     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
329 }
330 
331 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
332 {
333     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
334     int i;
335 
336     pnv_dt_xscom(chip, fdt, 0,
337                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
338                  cpu_to_be64(PNV10_XSCOM_SIZE),
339                  compat, sizeof(compat));
340 
341     for (i = 0; i < chip->nr_cores; i++) {
342         PnvCore *pnv_core = chip->cores[i];
343 
344         pnv_dt_core(chip, pnv_core, fdt);
345     }
346 
347     if (chip->ram_size) {
348         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
349     }
350 
351     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
352 }
353 
354 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
355 {
356     uint32_t io_base = d->ioport_id;
357     uint32_t io_regs[] = {
358         cpu_to_be32(1),
359         cpu_to_be32(io_base),
360         cpu_to_be32(2)
361     };
362     char *name;
363     int node;
364 
365     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
366     node = fdt_add_subnode(fdt, lpc_off, name);
367     _FDT(node);
368     g_free(name);
369 
370     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
371     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
372 }
373 
374 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
375 {
376     const char compatible[] = "ns16550\0pnpPNP,501";
377     uint32_t io_base = d->ioport_id;
378     uint32_t io_regs[] = {
379         cpu_to_be32(1),
380         cpu_to_be32(io_base),
381         cpu_to_be32(8)
382     };
383     char *name;
384     int node;
385 
386     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
387     node = fdt_add_subnode(fdt, lpc_off, name);
388     _FDT(node);
389     g_free(name);
390 
391     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
392     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
393                       sizeof(compatible))));
394 
395     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
396     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
397     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
398     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
399                            fdt_get_phandle(fdt, lpc_off))));
400 
401     /* This is needed by Linux */
402     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
403 }
404 
405 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
406 {
407     const char compatible[] = "bt\0ipmi-bt";
408     uint32_t io_base;
409     uint32_t io_regs[] = {
410         cpu_to_be32(1),
411         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
412         cpu_to_be32(3)
413     };
414     uint32_t irq;
415     char *name;
416     int node;
417 
418     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
419     io_regs[1] = cpu_to_be32(io_base);
420 
421     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
422 
423     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
424     node = fdt_add_subnode(fdt, lpc_off, name);
425     _FDT(node);
426     g_free(name);
427 
428     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
429     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
430                       sizeof(compatible))));
431 
432     /* Mark it as reserved to avoid Linux trying to claim it */
433     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
434     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
435     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
436                            fdt_get_phandle(fdt, lpc_off))));
437 }
438 
439 typedef struct ForeachPopulateArgs {
440     void *fdt;
441     int offset;
442 } ForeachPopulateArgs;
443 
444 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
445 {
446     ForeachPopulateArgs *args = opaque;
447     ISADevice *d = ISA_DEVICE(dev);
448 
449     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
450         pnv_dt_rtc(d, args->fdt, args->offset);
451     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
452         pnv_dt_serial(d, args->fdt, args->offset);
453     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
454         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
455     } else {
456         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
457                      d->ioport_id);
458     }
459 
460     return 0;
461 }
462 
463 /*
464  * The default LPC bus of a multichip system is on chip 0. It's
465  * recognized by the firmware (skiboot) using a "primary" property.
466  */
467 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
468 {
469     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
470     ForeachPopulateArgs args = {
471         .fdt = fdt,
472         .offset = isa_offset,
473     };
474     uint32_t phandle;
475 
476     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
477 
478     phandle = qemu_fdt_alloc_phandle(fdt);
479     assert(phandle > 0);
480     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
481 
482     /*
483      * ISA devices are not necessarily parented to the ISA bus so we
484      * can not use object_child_foreach()
485      */
486     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
487                        &args);
488 }
489 
490 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
491 {
492     int off;
493 
494     off = fdt_add_subnode(fdt, 0, "ibm,opal");
495     off = fdt_add_subnode(fdt, off, "power-mgt");
496 
497     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
498 }
499 
500 static void *pnv_dt_create(MachineState *machine)
501 {
502     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
503     PnvMachineState *pnv = PNV_MACHINE(machine);
504     void *fdt;
505     char *buf;
506     int off;
507     int i;
508 
509     fdt = g_malloc0(FDT_MAX_SIZE);
510     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
511 
512     /* /qemu node */
513     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
514 
515     /* Root node */
516     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
517     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
518     _FDT((fdt_setprop_string(fdt, 0, "model",
519                              "IBM PowerNV (emulated by qemu)")));
520     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
521 
522     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
523     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
524     if (qemu_uuid_set) {
525         _FDT((fdt_property_string(fdt, "system-id", buf)));
526     }
527     g_free(buf);
528 
529     off = fdt_add_subnode(fdt, 0, "chosen");
530     if (machine->kernel_cmdline) {
531         _FDT((fdt_setprop_string(fdt, off, "bootargs",
532                                  machine->kernel_cmdline)));
533     }
534 
535     if (pnv->initrd_size) {
536         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
537         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
538 
539         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
540                                &start_prop, sizeof(start_prop))));
541         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
542                                &end_prop, sizeof(end_prop))));
543     }
544 
545     /* Populate device tree for each chip */
546     for (i = 0; i < pnv->num_chips; i++) {
547         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
548     }
549 
550     /* Populate ISA devices on chip 0 */
551     pnv_dt_isa(pnv, fdt);
552 
553     if (pnv->bmc) {
554         pnv_dt_bmc_sensors(pnv->bmc, fdt);
555     }
556 
557     /* Create an extra node for power management on machines that support it */
558     if (pmc->dt_power_mgt) {
559         pmc->dt_power_mgt(pnv, fdt);
560     }
561 
562     return fdt;
563 }
564 
565 static void pnv_powerdown_notify(Notifier *n, void *opaque)
566 {
567     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
568 
569     if (pnv->bmc) {
570         pnv_bmc_powerdown(pnv->bmc);
571     }
572 }
573 
574 static void pnv_reset(MachineState *machine)
575 {
576     PnvMachineState *pnv = PNV_MACHINE(machine);
577     IPMIBmc *bmc;
578     void *fdt;
579 
580     qemu_devices_reset();
581 
582     /*
583      * The machine should provide by default an internal BMC simulator.
584      * If not, try to use the BMC device that was provided on the command
585      * line.
586      */
587     bmc = pnv_bmc_find(&error_fatal);
588     if (!pnv->bmc) {
589         if (!bmc) {
590             if (!qtest_enabled()) {
591                 warn_report("machine has no BMC device. Use '-device "
592                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
593                             "to define one");
594             }
595         } else {
596             pnv_bmc_set_pnor(bmc, pnv->pnor);
597             pnv->bmc = bmc;
598         }
599     }
600 
601     fdt = pnv_dt_create(machine);
602 
603     /* Pack resulting tree */
604     _FDT((fdt_pack(fdt)));
605 
606     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
607     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
608 
609     g_free(fdt);
610 }
611 
612 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
613 {
614     Pnv8Chip *chip8 = PNV8_CHIP(chip);
615     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
616 }
617 
618 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
619 {
620     Pnv8Chip *chip8 = PNV8_CHIP(chip);
621     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
622 }
623 
624 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
625 {
626     Pnv9Chip *chip9 = PNV9_CHIP(chip);
627     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
628 }
629 
630 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
631 {
632     Pnv10Chip *chip10 = PNV10_CHIP(chip);
633     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
634 }
635 
636 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
637 {
638     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
639 }
640 
641 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
642 {
643     Pnv8Chip *chip8 = PNV8_CHIP(chip);
644     int i;
645 
646     ics_pic_print_info(&chip8->psi.ics, mon);
647     for (i = 0; i < chip->num_phbs; i++) {
648         pnv_phb3_msi_pic_print_info(&chip8->phbs[i].msis, mon);
649         ics_pic_print_info(&chip8->phbs[i].lsis, mon);
650     }
651 }
652 
653 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
654 {
655     Pnv9Chip *chip9 = PNV9_CHIP(chip);
656     int i, j;
657 
658     pnv_xive_pic_print_info(&chip9->xive, mon);
659     pnv_psi_pic_print_info(&chip9->psi, mon);
660 
661     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
662         PnvPhb4PecState *pec = &chip9->pecs[i];
663         for (j = 0; j < pec->num_stacks; j++) {
664             pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon);
665         }
666     }
667 }
668 
669 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
670                                                 uint32_t core_id)
671 {
672     return PNV_XSCOM_EX_BASE(core_id);
673 }
674 
675 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
676                                                 uint32_t core_id)
677 {
678     return PNV9_XSCOM_EC_BASE(core_id);
679 }
680 
681 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
682                                                  uint32_t core_id)
683 {
684     return PNV10_XSCOM_EC_BASE(core_id);
685 }
686 
687 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
688 {
689     PowerPCCPUClass *ppc_default =
690         POWERPC_CPU_CLASS(object_class_by_name(default_type));
691     PowerPCCPUClass *ppc =
692         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
693 
694     return ppc_default->pvr_match(ppc_default, ppc->pvr);
695 }
696 
697 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
698 {
699     ISADevice *dev = isa_new("isa-ipmi-bt");
700 
701     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
702     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
703     isa_realize_and_unref(dev, bus, &error_fatal);
704 }
705 
706 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
707 {
708     Pnv10Chip *chip10 = PNV10_CHIP(chip);
709 
710     pnv_psi_pic_print_info(&chip10->psi, mon);
711 }
712 
713 static void pnv_init(MachineState *machine)
714 {
715     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
716     PnvMachineState *pnv = PNV_MACHINE(machine);
717     MachineClass *mc = MACHINE_GET_CLASS(machine);
718     char *fw_filename;
719     long fw_size;
720     int i;
721     char *chip_typename;
722     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
723     DeviceState *dev;
724 
725     /* allocate RAM */
726     if (machine->ram_size < mc->default_ram_size) {
727         char *sz = size_to_str(mc->default_ram_size);
728         error_report("Invalid RAM size, should be bigger than %s", sz);
729         g_free(sz);
730         exit(EXIT_FAILURE);
731     }
732     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
733 
734     /*
735      * Create our simple PNOR device
736      */
737     dev = qdev_new(TYPE_PNV_PNOR);
738     if (pnor) {
739         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
740     }
741     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
742     pnv->pnor = PNV_PNOR(dev);
743 
744     /* load skiboot firmware  */
745     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
746     if (!fw_filename) {
747         error_report("Could not find OPAL firmware '%s'", bios_name);
748         exit(1);
749     }
750 
751     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
752     if (fw_size < 0) {
753         error_report("Could not load OPAL firmware '%s'", fw_filename);
754         exit(1);
755     }
756     g_free(fw_filename);
757 
758     /* load kernel */
759     if (machine->kernel_filename) {
760         long kernel_size;
761 
762         kernel_size = load_image_targphys(machine->kernel_filename,
763                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
764         if (kernel_size < 0) {
765             error_report("Could not load kernel '%s'",
766                          machine->kernel_filename);
767             exit(1);
768         }
769     }
770 
771     /* load initrd */
772     if (machine->initrd_filename) {
773         pnv->initrd_base = INITRD_LOAD_ADDR;
774         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
775                                   pnv->initrd_base, INITRD_MAX_SIZE);
776         if (pnv->initrd_size < 0) {
777             error_report("Could not load initial ram disk '%s'",
778                          machine->initrd_filename);
779             exit(1);
780         }
781     }
782 
783     /* MSIs are supported on this platform */
784     msi_nonbroken = true;
785 
786     /*
787      * Check compatibility of the specified CPU with the machine
788      * default.
789      */
790     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
791         error_report("invalid CPU model '%s' for %s machine",
792                      machine->cpu_type, mc->name);
793         exit(1);
794     }
795 
796     /* Create the processor chips */
797     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
798     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
799                                     i, machine->cpu_type);
800     if (!object_class_by_name(chip_typename)) {
801         error_report("invalid chip model '%.*s' for %s machine",
802                      i, machine->cpu_type, mc->name);
803         exit(1);
804     }
805 
806     pnv->num_chips =
807         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
808     /*
809      * TODO: should we decide on how many chips we can create based
810      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
811      */
812     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 4) {
813         error_report("invalid number of chips: '%d'", pnv->num_chips);
814         error_printf("Try '-smp sockets=N'. Valid values are : 1, 2 or 4.\n");
815         exit(1);
816     }
817 
818     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
819     for (i = 0; i < pnv->num_chips; i++) {
820         char chip_name[32];
821         Object *chip = OBJECT(qdev_new(chip_typename));
822 
823         pnv->chips[i] = PNV_CHIP(chip);
824 
825         /*
826          * TODO: put all the memory in one node on chip 0 until we find a
827          * way to specify different ranges for each chip
828          */
829         if (i == 0) {
830             object_property_set_int(chip, "ram-size", machine->ram_size,
831                                     &error_fatal);
832         }
833 
834         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
835         object_property_add_child(OBJECT(pnv), chip_name, chip);
836         object_property_set_int(chip, "chip-id", PNV_CHIP_HWID(i),
837                                 &error_fatal);
838         object_property_set_int(chip, "nr-cores", machine->smp.cores,
839                                 &error_fatal);
840         object_property_set_int(chip, "nr-threads", machine->smp.threads,
841                                 &error_fatal);
842         /*
843          * The POWER8 machine use the XICS interrupt interface.
844          * Propagate the XICS fabric to the chip and its controllers.
845          */
846         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
847             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
848         }
849         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
850             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
851                                      &error_abort);
852         }
853         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
854     }
855     g_free(chip_typename);
856 
857     /* Instantiate ISA bus on chip 0 */
858     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
859 
860     /* Create serial port */
861     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
862 
863     /* Create an RTC ISA device too */
864     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
865 
866     /*
867      * Create the machine BMC simulator and the IPMI BT device for
868      * communication with the BMC
869      */
870     if (defaults_enabled()) {
871         pnv->bmc = pnv_bmc_create(pnv->pnor);
872         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
873     }
874 
875     /*
876      * The PNOR is mapped on the LPC FW address space by the BMC.
877      * Since we can not reach the remote BMC machine with LPC memops,
878      * map it always for now.
879      */
880     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
881                                 &pnv->pnor->mmio);
882 
883     /*
884      * OpenPOWER systems use a IPMI SEL Event message to notify the
885      * host to powerdown
886      */
887     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
888     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
889 }
890 
891 /*
892  *    0:21  Reserved - Read as zeros
893  *   22:24  Chip ID
894  *   25:28  Core number
895  *   29:31  Thread ID
896  */
897 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
898 {
899     return (chip->chip_id << 7) | (core_id << 3);
900 }
901 
902 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
903                                         Error **errp)
904 {
905     Pnv8Chip *chip8 = PNV8_CHIP(chip);
906     Error *local_err = NULL;
907     Object *obj;
908     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
909 
910     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
911     if (local_err) {
912         error_propagate(errp, local_err);
913         return;
914     }
915 
916     pnv_cpu->intc = obj;
917 }
918 
919 
920 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
921 {
922     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
923 
924     icp_reset(ICP(pnv_cpu->intc));
925 }
926 
927 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
928 {
929     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
930 
931     icp_destroy(ICP(pnv_cpu->intc));
932     pnv_cpu->intc = NULL;
933 }
934 
935 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
936                                             Monitor *mon)
937 {
938     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
939 }
940 
941 /*
942  *    0:48  Reserved - Read as zeroes
943  *   49:52  Node ID
944  *   53:55  Chip ID
945  *   56     Reserved - Read as zero
946  *   57:61  Core number
947  *   62:63  Thread ID
948  *
949  * We only care about the lower bits. uint32_t is fine for the moment.
950  */
951 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
952 {
953     return (chip->chip_id << 8) | (core_id << 2);
954 }
955 
956 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
957 {
958     return (chip->chip_id << 8) | (core_id << 2);
959 }
960 
961 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
962                                         Error **errp)
963 {
964     Pnv9Chip *chip9 = PNV9_CHIP(chip);
965     Error *local_err = NULL;
966     Object *obj;
967     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
968 
969     /*
970      * The core creates its interrupt presenter but the XIVE interrupt
971      * controller object is initialized afterwards. Hopefully, it's
972      * only used at runtime.
973      */
974     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
975                            &local_err);
976     if (local_err) {
977         error_propagate(errp, local_err);
978         return;
979     }
980 
981     pnv_cpu->intc = obj;
982 }
983 
984 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
985 {
986     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
987 
988     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
989 }
990 
991 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
992 {
993     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
994 
995     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
996     pnv_cpu->intc = NULL;
997 }
998 
999 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1000                                             Monitor *mon)
1001 {
1002     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1003 }
1004 
1005 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1006                                         Error **errp)
1007 {
1008     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1009 
1010     /* Will be defined when the interrupt controller is */
1011     pnv_cpu->intc = NULL;
1012 }
1013 
1014 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1015 {
1016     ;
1017 }
1018 
1019 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1020 {
1021     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1022 
1023     pnv_cpu->intc = NULL;
1024 }
1025 
1026 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1027                                              Monitor *mon)
1028 {
1029 }
1030 
1031 /*
1032  * Allowed core identifiers on a POWER8 Processor Chip :
1033  *
1034  * <EX0 reserved>
1035  *  EX1  - Venice only
1036  *  EX2  - Venice only
1037  *  EX3  - Venice only
1038  *  EX4
1039  *  EX5
1040  *  EX6
1041  * <EX7,8 reserved> <reserved>
1042  *  EX9  - Venice only
1043  *  EX10 - Venice only
1044  *  EX11 - Venice only
1045  *  EX12
1046  *  EX13
1047  *  EX14
1048  * <EX15 reserved>
1049  */
1050 #define POWER8E_CORE_MASK  (0x7070ull)
1051 #define POWER8_CORE_MASK   (0x7e7eull)
1052 
1053 /*
1054  * POWER9 has 24 cores, ids starting at 0x0
1055  */
1056 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1057 
1058 
1059 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1060 
1061 static void pnv_chip_power8_instance_init(Object *obj)
1062 {
1063     PnvChip *chip = PNV_CHIP(obj);
1064     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1065     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1066     int i;
1067 
1068     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1069                              (Object **)&chip8->xics,
1070                              object_property_allow_set_link,
1071                              OBJ_PROP_LINK_STRONG);
1072 
1073     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1074 
1075     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1076 
1077     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1078 
1079     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1080 
1081     for (i = 0; i < pcc->num_phbs; i++) {
1082         object_initialize_child(obj, "phb[*]", &chip8->phbs[i], TYPE_PNV_PHB3);
1083     }
1084 
1085     /*
1086      * Number of PHBs is the chip default
1087      */
1088     chip->num_phbs = pcc->num_phbs;
1089 }
1090 
1091 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1092  {
1093     PnvChip *chip = PNV_CHIP(chip8);
1094     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1095     int i, j;
1096     char *name;
1097 
1098     name = g_strdup_printf("icp-%x", chip->chip_id);
1099     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1100     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1101     g_free(name);
1102 
1103     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1104 
1105     /* Map the ICP registers for each thread */
1106     for (i = 0; i < chip->nr_cores; i++) {
1107         PnvCore *pnv_core = chip->cores[i];
1108         int core_hwid = CPU_CORE(pnv_core)->core_id;
1109 
1110         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1111             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1112             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1113 
1114             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1115                                         &icp->mmio);
1116         }
1117     }
1118 }
1119 
1120 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1121 {
1122     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1123     PnvChip *chip = PNV_CHIP(dev);
1124     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1125     Pnv8Psi *psi8 = &chip8->psi;
1126     Error *local_err = NULL;
1127     int i;
1128 
1129     assert(chip8->xics);
1130 
1131     /* XSCOM bridge is first */
1132     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1133     if (local_err) {
1134         error_propagate(errp, local_err);
1135         return;
1136     }
1137     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1138 
1139     pcc->parent_realize(dev, &local_err);
1140     if (local_err) {
1141         error_propagate(errp, local_err);
1142         return;
1143     }
1144 
1145     /* Processor Service Interface (PSI) Host Bridge */
1146     object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip),
1147                             &error_fatal);
1148     object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS,
1149                              OBJECT(chip8->xics), &error_abort);
1150     if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) {
1151         return;
1152     }
1153     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1154                             &PNV_PSI(psi8)->xscom_regs);
1155 
1156     /* Create LPC controller */
1157     object_property_set_link(OBJECT(&chip8->lpc), "psi", OBJECT(&chip8->psi),
1158                              &error_abort);
1159     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1160     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1161 
1162     chip->fw_mr = &chip8->lpc.isa_fw;
1163     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1164                                             (uint64_t) PNV_XSCOM_BASE(chip),
1165                                             PNV_XSCOM_LPC_BASE);
1166 
1167     /*
1168      * Interrupt Management Area. This is the memory region holding
1169      * all the Interrupt Control Presenter (ICP) registers
1170      */
1171     pnv_chip_icp_realize(chip8, &local_err);
1172     if (local_err) {
1173         error_propagate(errp, local_err);
1174         return;
1175     }
1176 
1177     /* Create the simplified OCC model */
1178     object_property_set_link(OBJECT(&chip8->occ), "psi", OBJECT(&chip8->psi),
1179                              &error_abort);
1180     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1181         return;
1182     }
1183     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1184 
1185     /* OCC SRAM model */
1186     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1187                                 &chip8->occ.sram_regs);
1188 
1189     /* HOMER */
1190     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1191                              &error_abort);
1192     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1193         return;
1194     }
1195     /* Homer Xscom region */
1196     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1197 
1198     /* Homer mmio region */
1199     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1200                                 &chip8->homer.regs);
1201 
1202     /* PHB3 controllers */
1203     for (i = 0; i < chip->num_phbs; i++) {
1204         PnvPHB3 *phb = &chip8->phbs[i];
1205         PnvPBCQState *pbcq = &phb->pbcq;
1206 
1207         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1208         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1209                                 &error_fatal);
1210         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1211             return;
1212         }
1213 
1214         /* Populate the XSCOM address space. */
1215         pnv_xscom_add_subregion(chip,
1216                                 PNV_XSCOM_PBCQ_NEST_BASE + 0x400 * phb->phb_id,
1217                                 &pbcq->xscom_nest_regs);
1218         pnv_xscom_add_subregion(chip,
1219                                 PNV_XSCOM_PBCQ_PCI_BASE + 0x400 * phb->phb_id,
1220                                 &pbcq->xscom_pci_regs);
1221         pnv_xscom_add_subregion(chip,
1222                                 PNV_XSCOM_PBCQ_SPCI_BASE + 0x040 * phb->phb_id,
1223                                 &pbcq->xscom_spci_regs);
1224     }
1225 }
1226 
1227 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1228 {
1229     addr &= (PNV_XSCOM_SIZE - 1);
1230     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1231 }
1232 
1233 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1234 {
1235     DeviceClass *dc = DEVICE_CLASS(klass);
1236     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1237 
1238     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1239     k->cores_mask = POWER8E_CORE_MASK;
1240     k->num_phbs = 3;
1241     k->core_pir = pnv_chip_core_pir_p8;
1242     k->intc_create = pnv_chip_power8_intc_create;
1243     k->intc_reset = pnv_chip_power8_intc_reset;
1244     k->intc_destroy = pnv_chip_power8_intc_destroy;
1245     k->intc_print_info = pnv_chip_power8_intc_print_info;
1246     k->isa_create = pnv_chip_power8_isa_create;
1247     k->dt_populate = pnv_chip_power8_dt_populate;
1248     k->pic_print_info = pnv_chip_power8_pic_print_info;
1249     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1250     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1251     dc->desc = "PowerNV Chip POWER8E";
1252 
1253     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1254                                     &k->parent_realize);
1255 }
1256 
1257 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1258 {
1259     DeviceClass *dc = DEVICE_CLASS(klass);
1260     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1261 
1262     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1263     k->cores_mask = POWER8_CORE_MASK;
1264     k->num_phbs = 3;
1265     k->core_pir = pnv_chip_core_pir_p8;
1266     k->intc_create = pnv_chip_power8_intc_create;
1267     k->intc_reset = pnv_chip_power8_intc_reset;
1268     k->intc_destroy = pnv_chip_power8_intc_destroy;
1269     k->intc_print_info = pnv_chip_power8_intc_print_info;
1270     k->isa_create = pnv_chip_power8_isa_create;
1271     k->dt_populate = pnv_chip_power8_dt_populate;
1272     k->pic_print_info = pnv_chip_power8_pic_print_info;
1273     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1274     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1275     dc->desc = "PowerNV Chip POWER8";
1276 
1277     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1278                                     &k->parent_realize);
1279 }
1280 
1281 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1282 {
1283     DeviceClass *dc = DEVICE_CLASS(klass);
1284     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1285 
1286     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1287     k->cores_mask = POWER8_CORE_MASK;
1288     k->num_phbs = 3;
1289     k->core_pir = pnv_chip_core_pir_p8;
1290     k->intc_create = pnv_chip_power8_intc_create;
1291     k->intc_reset = pnv_chip_power8_intc_reset;
1292     k->intc_destroy = pnv_chip_power8_intc_destroy;
1293     k->intc_print_info = pnv_chip_power8_intc_print_info;
1294     k->isa_create = pnv_chip_power8nvl_isa_create;
1295     k->dt_populate = pnv_chip_power8_dt_populate;
1296     k->pic_print_info = pnv_chip_power8_pic_print_info;
1297     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1298     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1299     dc->desc = "PowerNV Chip POWER8NVL";
1300 
1301     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1302                                     &k->parent_realize);
1303 }
1304 
1305 static void pnv_chip_power9_instance_init(Object *obj)
1306 {
1307     PnvChip *chip = PNV_CHIP(obj);
1308     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1309     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1310     int i;
1311 
1312     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1313     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1314                               "xive-fabric");
1315 
1316     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1317 
1318     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1319 
1320     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1321 
1322     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1323 
1324     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1325         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1326                                 TYPE_PNV_PHB4_PEC);
1327     }
1328 
1329     /*
1330      * Number of PHBs is the chip default
1331      */
1332     chip->num_phbs = pcc->num_phbs;
1333 }
1334 
1335 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1336 {
1337     PnvChip *chip = PNV_CHIP(chip9);
1338     int i;
1339 
1340     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1341     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1342 
1343     for (i = 0; i < chip9->nr_quads; i++) {
1344         char eq_name[32];
1345         PnvQuad *eq = &chip9->quads[i];
1346         PnvCore *pnv_core = chip->cores[i * 4];
1347         int core_id = CPU_CORE(pnv_core)->core_id;
1348 
1349         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1350         object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1351                                            sizeof(*eq), TYPE_PNV_QUAD,
1352                                            &error_fatal, NULL);
1353 
1354         object_property_set_int(OBJECT(eq), "id", core_id, &error_fatal);
1355         qdev_realize(DEVICE(eq), NULL, &error_fatal);
1356 
1357         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1358                                 &eq->xscom_regs);
1359     }
1360 }
1361 
1362 static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp)
1363 {
1364     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1365     int i, j;
1366     int phb_id = 0;
1367 
1368     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1369         PnvPhb4PecState *pec = &chip9->pecs[i];
1370         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1371         uint32_t pec_nest_base;
1372         uint32_t pec_pci_base;
1373 
1374         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1375         /*
1376          * PEC0 -> 1 stack
1377          * PEC1 -> 2 stacks
1378          * PEC2 -> 3 stacks
1379          */
1380         object_property_set_int(OBJECT(pec), "num-stacks", i + 1,
1381                                 &error_fatal);
1382         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1383                                 &error_fatal);
1384         object_property_set_link(OBJECT(pec), "system-memory",
1385                                  OBJECT(get_system_memory()), &error_abort);
1386         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1387             return;
1388         }
1389 
1390         pec_nest_base = pecc->xscom_nest_base(pec);
1391         pec_pci_base = pecc->xscom_pci_base(pec);
1392 
1393         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1394         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1395 
1396         for (j = 0; j < pec->num_stacks && phb_id < chip->num_phbs;
1397              j++, phb_id++) {
1398             PnvPhb4PecStack *stack = &pec->stacks[j];
1399             Object *obj = OBJECT(&stack->phb);
1400 
1401             object_property_set_int(obj, "index", phb_id, &error_fatal);
1402             object_property_set_int(obj, "chip-id", chip->chip_id,
1403                                     &error_fatal);
1404             object_property_set_int(obj, "version", PNV_PHB4_VERSION,
1405                                     &error_fatal);
1406             object_property_set_int(obj, "device-id", PNV_PHB4_DEVICE_ID,
1407                                     &error_fatal);
1408             object_property_set_link(obj, "stack", OBJECT(stack),
1409                                      &error_abort);
1410             if (!sysbus_realize(SYS_BUS_DEVICE(obj), errp)) {
1411                 return;
1412             }
1413 
1414             /* Populate the XSCOM address space. */
1415             pnv_xscom_add_subregion(chip,
1416                                    pec_nest_base + 0x40 * (stack->stack_no + 1),
1417                                    &stack->nest_regs_mr);
1418             pnv_xscom_add_subregion(chip,
1419                                     pec_pci_base + 0x40 * (stack->stack_no + 1),
1420                                     &stack->pci_regs_mr);
1421             pnv_xscom_add_subregion(chip,
1422                                     pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1423                                     0x40 * stack->stack_no,
1424                                     &stack->phb_regs_mr);
1425         }
1426     }
1427 }
1428 
1429 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1430 {
1431     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1432     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1433     PnvChip *chip = PNV_CHIP(dev);
1434     Pnv9Psi *psi9 = &chip9->psi;
1435     Error *local_err = NULL;
1436 
1437     /* XSCOM bridge is first */
1438     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1439     if (local_err) {
1440         error_propagate(errp, local_err);
1441         return;
1442     }
1443     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1444 
1445     pcc->parent_realize(dev, &local_err);
1446     if (local_err) {
1447         error_propagate(errp, local_err);
1448         return;
1449     }
1450 
1451     pnv_chip_quad_realize(chip9, &local_err);
1452     if (local_err) {
1453         error_propagate(errp, local_err);
1454         return;
1455     }
1456 
1457     /* XIVE interrupt controller (POWER9) */
1458     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1459                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1460     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1461                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1462     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1463                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1464     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1465                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1466     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1467                              &error_abort);
1468     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1469         return;
1470     }
1471     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1472                             &chip9->xive.xscom_regs);
1473 
1474     /* Processor Service Interface (PSI) Host Bridge */
1475     object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip),
1476                             &error_fatal);
1477     if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) {
1478         return;
1479     }
1480     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1481                             &PNV_PSI(psi9)->xscom_regs);
1482 
1483     /* LPC */
1484     object_property_set_link(OBJECT(&chip9->lpc), "psi", OBJECT(&chip9->psi),
1485                              &error_abort);
1486     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1487         return;
1488     }
1489     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1490                                 &chip9->lpc.xscom_regs);
1491 
1492     chip->fw_mr = &chip9->lpc.isa_fw;
1493     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1494                                             (uint64_t) PNV9_LPCM_BASE(chip));
1495 
1496     /* Create the simplified OCC model */
1497     object_property_set_link(OBJECT(&chip9->occ), "psi", OBJECT(&chip9->psi),
1498                              &error_abort);
1499     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1500         return;
1501     }
1502     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1503 
1504     /* OCC SRAM model */
1505     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1506                                 &chip9->occ.sram_regs);
1507 
1508     /* HOMER */
1509     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1510                              &error_abort);
1511     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1512         return;
1513     }
1514     /* Homer Xscom region */
1515     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1516 
1517     /* Homer mmio region */
1518     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1519                                 &chip9->homer.regs);
1520 
1521     /* PHBs */
1522     pnv_chip_power9_phb_realize(chip, &local_err);
1523     if (local_err) {
1524         error_propagate(errp, local_err);
1525         return;
1526     }
1527 }
1528 
1529 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1530 {
1531     addr &= (PNV9_XSCOM_SIZE - 1);
1532     return addr >> 3;
1533 }
1534 
1535 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1536 {
1537     DeviceClass *dc = DEVICE_CLASS(klass);
1538     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1539 
1540     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1541     k->cores_mask = POWER9_CORE_MASK;
1542     k->core_pir = pnv_chip_core_pir_p9;
1543     k->intc_create = pnv_chip_power9_intc_create;
1544     k->intc_reset = pnv_chip_power9_intc_reset;
1545     k->intc_destroy = pnv_chip_power9_intc_destroy;
1546     k->intc_print_info = pnv_chip_power9_intc_print_info;
1547     k->isa_create = pnv_chip_power9_isa_create;
1548     k->dt_populate = pnv_chip_power9_dt_populate;
1549     k->pic_print_info = pnv_chip_power9_pic_print_info;
1550     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1551     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1552     dc->desc = "PowerNV Chip POWER9";
1553     k->num_phbs = 6;
1554 
1555     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1556                                     &k->parent_realize);
1557 }
1558 
1559 static void pnv_chip_power10_instance_init(Object *obj)
1560 {
1561     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1562 
1563     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1564     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1565 }
1566 
1567 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1568 {
1569     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1570     PnvChip *chip = PNV_CHIP(dev);
1571     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1572     Error *local_err = NULL;
1573 
1574     /* XSCOM bridge is first */
1575     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1576     if (local_err) {
1577         error_propagate(errp, local_err);
1578         return;
1579     }
1580     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1581 
1582     pcc->parent_realize(dev, &local_err);
1583     if (local_err) {
1584         error_propagate(errp, local_err);
1585         return;
1586     }
1587 
1588     /* Processor Service Interface (PSI) Host Bridge */
1589     object_property_set_int(OBJECT(&chip10->psi), "bar",
1590                             PNV10_PSIHB_BASE(chip), &error_fatal);
1591     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1592         return;
1593     }
1594     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1595                             &PNV_PSI(&chip10->psi)->xscom_regs);
1596 
1597     /* LPC */
1598     object_property_set_link(OBJECT(&chip10->lpc), "psi",
1599                              OBJECT(&chip10->psi), &error_abort);
1600     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1601         return;
1602     }
1603     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1604                                 &chip10->lpc.xscom_regs);
1605 
1606     chip->fw_mr = &chip10->lpc.isa_fw;
1607     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1608                                             (uint64_t) PNV10_LPCM_BASE(chip));
1609 }
1610 
1611 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1612 {
1613     addr &= (PNV10_XSCOM_SIZE - 1);
1614     return addr >> 3;
1615 }
1616 
1617 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1618 {
1619     DeviceClass *dc = DEVICE_CLASS(klass);
1620     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1621 
1622     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1623     k->cores_mask = POWER10_CORE_MASK;
1624     k->core_pir = pnv_chip_core_pir_p10;
1625     k->intc_create = pnv_chip_power10_intc_create;
1626     k->intc_reset = pnv_chip_power10_intc_reset;
1627     k->intc_destroy = pnv_chip_power10_intc_destroy;
1628     k->intc_print_info = pnv_chip_power10_intc_print_info;
1629     k->isa_create = pnv_chip_power10_isa_create;
1630     k->dt_populate = pnv_chip_power10_dt_populate;
1631     k->pic_print_info = pnv_chip_power10_pic_print_info;
1632     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1633     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1634     dc->desc = "PowerNV Chip POWER10";
1635 
1636     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1637                                     &k->parent_realize);
1638 }
1639 
1640 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1641 {
1642     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1643     int cores_max;
1644 
1645     /*
1646      * No custom mask for this chip, let's use the default one from *
1647      * the chip class
1648      */
1649     if (!chip->cores_mask) {
1650         chip->cores_mask = pcc->cores_mask;
1651     }
1652 
1653     /* filter alien core ids ! some are reserved */
1654     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1655         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1656                    chip->cores_mask);
1657         return;
1658     }
1659     chip->cores_mask &= pcc->cores_mask;
1660 
1661     /* now that we have a sane layout, let check the number of cores */
1662     cores_max = ctpop64(chip->cores_mask);
1663     if (chip->nr_cores > cores_max) {
1664         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1665                    cores_max);
1666         return;
1667     }
1668 }
1669 
1670 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1671 {
1672     Error *error = NULL;
1673     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1674     const char *typename = pnv_chip_core_typename(chip);
1675     int i, core_hwid;
1676     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1677 
1678     if (!object_class_by_name(typename)) {
1679         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1680         return;
1681     }
1682 
1683     /* Cores */
1684     pnv_chip_core_sanitize(chip, &error);
1685     if (error) {
1686         error_propagate(errp, error);
1687         return;
1688     }
1689 
1690     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1691 
1692     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1693              && (i < chip->nr_cores); core_hwid++) {
1694         char core_name[32];
1695         PnvCore *pnv_core;
1696         uint64_t xscom_core_base;
1697 
1698         if (!(chip->cores_mask & (1ull << core_hwid))) {
1699             continue;
1700         }
1701 
1702         pnv_core = PNV_CORE(object_new(typename));
1703 
1704         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1705         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1706         chip->cores[i] = pnv_core;
1707         object_property_set_int(OBJECT(pnv_core), "nr-threads",
1708                                 chip->nr_threads, &error_fatal);
1709         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
1710                                 core_hwid, &error_fatal);
1711         object_property_set_int(OBJECT(pnv_core), "pir",
1712                                 pcc->core_pir(chip, core_hwid), &error_fatal);
1713         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
1714                                 &error_fatal);
1715         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
1716                                  &error_abort);
1717         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
1718 
1719         /* Each core has an XSCOM MMIO region */
1720         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1721 
1722         pnv_xscom_add_subregion(chip, xscom_core_base,
1723                                 &pnv_core->xscom_regs);
1724         i++;
1725     }
1726 }
1727 
1728 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1729 {
1730     PnvChip *chip = PNV_CHIP(dev);
1731     Error *error = NULL;
1732 
1733     /* Cores */
1734     pnv_chip_core_realize(chip, &error);
1735     if (error) {
1736         error_propagate(errp, error);
1737         return;
1738     }
1739 }
1740 
1741 static Property pnv_chip_properties[] = {
1742     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1743     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1744     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1745     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1746     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1747     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1748     DEFINE_PROP_UINT32("num-phbs", PnvChip, num_phbs, 0),
1749     DEFINE_PROP_END_OF_LIST(),
1750 };
1751 
1752 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1753 {
1754     DeviceClass *dc = DEVICE_CLASS(klass);
1755 
1756     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1757     dc->realize = pnv_chip_realize;
1758     device_class_set_props(dc, pnv_chip_properties);
1759     dc->desc = "PowerNV Chip";
1760 }
1761 
1762 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1763 {
1764     int i, j;
1765 
1766     for (i = 0; i < chip->nr_cores; i++) {
1767         PnvCore *pc = chip->cores[i];
1768         CPUCore *cc = CPU_CORE(pc);
1769 
1770         for (j = 0; j < cc->nr_threads; j++) {
1771             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1772                 return pc->threads[j];
1773             }
1774         }
1775     }
1776     return NULL;
1777 }
1778 
1779 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1780 {
1781     PnvMachineState *pnv = PNV_MACHINE(xi);
1782     int i, j;
1783 
1784     for (i = 0; i < pnv->num_chips; i++) {
1785         PnvChip *chip = pnv->chips[i];
1786         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1787 
1788         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1789             return &chip8->psi.ics;
1790         }
1791         for (j = 0; j < chip->num_phbs; j++) {
1792             if (ics_valid_irq(&chip8->phbs[j].lsis, irq)) {
1793                 return &chip8->phbs[j].lsis;
1794             }
1795             if (ics_valid_irq(ICS(&chip8->phbs[j].msis), irq)) {
1796                 return ICS(&chip8->phbs[j].msis);
1797             }
1798         }
1799     }
1800     return NULL;
1801 }
1802 
1803 static void pnv_ics_resend(XICSFabric *xi)
1804 {
1805     PnvMachineState *pnv = PNV_MACHINE(xi);
1806     int i, j;
1807 
1808     for (i = 0; i < pnv->num_chips; i++) {
1809         PnvChip *chip = pnv->chips[i];
1810         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1811 
1812         ics_resend(&chip8->psi.ics);
1813         for (j = 0; j < chip->num_phbs; j++) {
1814             ics_resend(&chip8->phbs[j].lsis);
1815             ics_resend(ICS(&chip8->phbs[j].msis));
1816         }
1817     }
1818 }
1819 
1820 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1821 {
1822     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1823 
1824     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1825 }
1826 
1827 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1828                                Monitor *mon)
1829 {
1830     PnvMachineState *pnv = PNV_MACHINE(obj);
1831     int i;
1832     CPUState *cs;
1833 
1834     CPU_FOREACH(cs) {
1835         PowerPCCPU *cpu = POWERPC_CPU(cs);
1836 
1837         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1838         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1839                                                            mon);
1840     }
1841 
1842     for (i = 0; i < pnv->num_chips; i++) {
1843         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1844     }
1845 }
1846 
1847 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1848                          uint8_t nvt_blk, uint32_t nvt_idx,
1849                          bool cam_ignore, uint8_t priority,
1850                          uint32_t logic_serv,
1851                          XiveTCTXMatch *match)
1852 {
1853     PnvMachineState *pnv = PNV_MACHINE(xfb);
1854     int total_count = 0;
1855     int i;
1856 
1857     for (i = 0; i < pnv->num_chips; i++) {
1858         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1859         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1860         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1861         int count;
1862 
1863         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1864                                priority, logic_serv, match);
1865 
1866         if (count < 0) {
1867             return count;
1868         }
1869 
1870         total_count += count;
1871     }
1872 
1873     return total_count;
1874 }
1875 
1876 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1877 {
1878     MachineClass *mc = MACHINE_CLASS(oc);
1879     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1880     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1881     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1882 
1883     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1884     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1885 
1886     xic->icp_get = pnv_icp_get;
1887     xic->ics_get = pnv_ics_get;
1888     xic->ics_resend = pnv_ics_resend;
1889 
1890     pmc->compat = compat;
1891     pmc->compat_size = sizeof(compat);
1892 }
1893 
1894 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1895 {
1896     MachineClass *mc = MACHINE_CLASS(oc);
1897     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1898     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1899     static const char compat[] = "qemu,powernv9\0ibm,powernv";
1900 
1901     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1902     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1903     xfc->match_nvt = pnv_match_nvt;
1904 
1905     mc->alias = "powernv";
1906 
1907     pmc->compat = compat;
1908     pmc->compat_size = sizeof(compat);
1909     pmc->dt_power_mgt = pnv_dt_power_mgt;
1910 }
1911 
1912 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1913 {
1914     MachineClass *mc = MACHINE_CLASS(oc);
1915     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1916     static const char compat[] = "qemu,powernv10\0ibm,powernv";
1917 
1918     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1919     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1920 
1921     pmc->compat = compat;
1922     pmc->compat_size = sizeof(compat);
1923     pmc->dt_power_mgt = pnv_dt_power_mgt;
1924 }
1925 
1926 static bool pnv_machine_get_hb(Object *obj, Error **errp)
1927 {
1928     PnvMachineState *pnv = PNV_MACHINE(obj);
1929 
1930     return !!pnv->fw_load_addr;
1931 }
1932 
1933 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1934 {
1935     PnvMachineState *pnv = PNV_MACHINE(obj);
1936 
1937     if (value) {
1938         pnv->fw_load_addr = 0x8000000;
1939     }
1940 }
1941 
1942 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
1943 {
1944     PowerPCCPU *cpu = POWERPC_CPU(cs);
1945     CPUPPCState *env = &cpu->env;
1946 
1947     cpu_synchronize_state(cs);
1948     ppc_cpu_do_system_reset(cs);
1949     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
1950         /*
1951          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
1952          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
1953          * (PPC_BIT(43)).
1954          */
1955         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
1956             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
1957             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
1958         }
1959     } else {
1960         /*
1961          * For non-powersave system resets, SRR1[42:45] are defined to be
1962          * implementation-dependent. The POWER9 User Manual specifies that
1963          * an external (SCOM driven, which may come from a BMC nmi command or
1964          * another CPU requesting a NMI IPI) system reset exception should be
1965          * 0b0010 (PPC_BIT(44)).
1966          */
1967         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
1968     }
1969 }
1970 
1971 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
1972 {
1973     CPUState *cs;
1974 
1975     CPU_FOREACH(cs) {
1976         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
1977     }
1978 }
1979 
1980 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1981 {
1982     MachineClass *mc = MACHINE_CLASS(oc);
1983     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1984     NMIClass *nc = NMI_CLASS(oc);
1985 
1986     mc->desc = "IBM PowerNV (Non-Virtualized)";
1987     mc->init = pnv_init;
1988     mc->reset = pnv_reset;
1989     mc->max_cpus = MAX_CPUS;
1990     /* Pnv provides a AHCI device for storage */
1991     mc->block_default_type = IF_IDE;
1992     mc->no_parallel = 1;
1993     mc->default_boot_order = NULL;
1994     /*
1995      * RAM defaults to less than 2048 for 32-bit hosts, and large
1996      * enough to fit the maximum initrd size at it's load address
1997      */
1998     mc->default_ram_size = 1 * GiB;
1999     mc->default_ram_id = "pnv.ram";
2000     ispc->print_info = pnv_pic_print_info;
2001     nc->nmi_monitor_handler = pnv_nmi;
2002 
2003     object_class_property_add_bool(oc, "hb-mode",
2004                                    pnv_machine_get_hb, pnv_machine_set_hb);
2005     object_class_property_set_description(oc, "hb-mode",
2006                               "Use a hostboot like boot loader");
2007 }
2008 
2009 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2010     {                                             \
2011         .name          = type,                    \
2012         .class_init    = class_initfn,            \
2013         .parent        = TYPE_PNV8_CHIP,          \
2014     }
2015 
2016 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2017     {                                             \
2018         .name          = type,                    \
2019         .class_init    = class_initfn,            \
2020         .parent        = TYPE_PNV9_CHIP,          \
2021     }
2022 
2023 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2024     {                                              \
2025         .name          = type,                     \
2026         .class_init    = class_initfn,             \
2027         .parent        = TYPE_PNV10_CHIP,          \
2028     }
2029 
2030 static const TypeInfo types[] = {
2031     {
2032         .name          = MACHINE_TYPE_NAME("powernv10"),
2033         .parent        = TYPE_PNV_MACHINE,
2034         .class_init    = pnv_machine_power10_class_init,
2035     },
2036     {
2037         .name          = MACHINE_TYPE_NAME("powernv9"),
2038         .parent        = TYPE_PNV_MACHINE,
2039         .class_init    = pnv_machine_power9_class_init,
2040         .interfaces = (InterfaceInfo[]) {
2041             { TYPE_XIVE_FABRIC },
2042             { },
2043         },
2044     },
2045     {
2046         .name          = MACHINE_TYPE_NAME("powernv8"),
2047         .parent        = TYPE_PNV_MACHINE,
2048         .class_init    = pnv_machine_power8_class_init,
2049         .interfaces = (InterfaceInfo[]) {
2050             { TYPE_XICS_FABRIC },
2051             { },
2052         },
2053     },
2054     {
2055         .name          = TYPE_PNV_MACHINE,
2056         .parent        = TYPE_MACHINE,
2057         .abstract       = true,
2058         .instance_size = sizeof(PnvMachineState),
2059         .class_init    = pnv_machine_class_init,
2060         .class_size    = sizeof(PnvMachineClass),
2061         .interfaces = (InterfaceInfo[]) {
2062             { TYPE_INTERRUPT_STATS_PROVIDER },
2063             { TYPE_NMI },
2064             { },
2065         },
2066     },
2067     {
2068         .name          = TYPE_PNV_CHIP,
2069         .parent        = TYPE_SYS_BUS_DEVICE,
2070         .class_init    = pnv_chip_class_init,
2071         .instance_size = sizeof(PnvChip),
2072         .class_size    = sizeof(PnvChipClass),
2073         .abstract      = true,
2074     },
2075 
2076     /*
2077      * P10 chip and variants
2078      */
2079     {
2080         .name          = TYPE_PNV10_CHIP,
2081         .parent        = TYPE_PNV_CHIP,
2082         .instance_init = pnv_chip_power10_instance_init,
2083         .instance_size = sizeof(Pnv10Chip),
2084     },
2085     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2086 
2087     /*
2088      * P9 chip and variants
2089      */
2090     {
2091         .name          = TYPE_PNV9_CHIP,
2092         .parent        = TYPE_PNV_CHIP,
2093         .instance_init = pnv_chip_power9_instance_init,
2094         .instance_size = sizeof(Pnv9Chip),
2095     },
2096     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2097 
2098     /*
2099      * P8 chip and variants
2100      */
2101     {
2102         .name          = TYPE_PNV8_CHIP,
2103         .parent        = TYPE_PNV_CHIP,
2104         .instance_init = pnv_chip_power8_instance_init,
2105         .instance_size = sizeof(Pnv8Chip),
2106     },
2107     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2108     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2109     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2110                           pnv_chip_power8nvl_class_init),
2111 };
2112 
2113 DEFINE_TYPES(types)
2114