xref: /qemu/hw/ppc/pnv.c (revision c5955f4f)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/cutils.h"
24 #include "qapi/error.h"
25 #include "sysemu/qtest.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/reset.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/cpus.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/hw_accel.h"
33 #include "target/ppc/cpu.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "qapi/visitor.h"
41 #include "monitor/monitor.h"
42 #include "hw/intc/intc.h"
43 #include "hw/ipmi/ipmi.h"
44 #include "target/ppc/mmu-hash64.h"
45 #include "hw/pci/msi.h"
46 
47 #include "hw/ppc/xics.h"
48 #include "hw/qdev-properties.h"
49 #include "hw/ppc/pnv_xscom.h"
50 #include "hw/ppc/pnv_pnor.h"
51 
52 #include "hw/isa/isa.h"
53 #include "hw/char/serial.h"
54 #include "hw/rtc/mc146818rtc.h"
55 
56 #include <libfdt.h>
57 
58 #define FDT_MAX_SIZE            (1 * MiB)
59 
60 #define FW_FILE_NAME            "skiboot.lid"
61 #define FW_LOAD_ADDR            0x0
62 #define FW_MAX_SIZE             (16 * MiB)
63 
64 #define KERNEL_LOAD_ADDR        0x20000000
65 #define KERNEL_MAX_SIZE         (128 * MiB)
66 #define INITRD_LOAD_ADDR        0x28000000
67 #define INITRD_MAX_SIZE         (128 * MiB)
68 
69 static const char *pnv_chip_core_typename(const PnvChip *o)
70 {
71     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
72     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
73     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
74     const char *core_type = object_class_get_name(object_class_by_name(s));
75     g_free(s);
76     return core_type;
77 }
78 
79 /*
80  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
81  *     4 * 4 sockets * 12 cores * 8 threads = 1536
82  * Let's make it 2^11
83  */
84 #define MAX_CPUS                2048
85 
86 /*
87  * Memory nodes are created by hostboot, one for each range of memory
88  * that has a different "affinity". In practice, it means one range
89  * per chip.
90  */
91 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
92 {
93     char *mem_name;
94     uint64_t mem_reg_property[2];
95     int off;
96 
97     mem_reg_property[0] = cpu_to_be64(start);
98     mem_reg_property[1] = cpu_to_be64(size);
99 
100     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
101     off = fdt_add_subnode(fdt, 0, mem_name);
102     g_free(mem_name);
103 
104     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
105     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
106                        sizeof(mem_reg_property))));
107     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
108 }
109 
110 static int get_cpus_node(void *fdt)
111 {
112     int cpus_offset = fdt_path_offset(fdt, "/cpus");
113 
114     if (cpus_offset < 0) {
115         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
116         if (cpus_offset) {
117             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
118             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
119         }
120     }
121     _FDT(cpus_offset);
122     return cpus_offset;
123 }
124 
125 /*
126  * The PowerNV cores (and threads) need to use real HW ids and not an
127  * incremental index like it has been done on other platforms. This HW
128  * id is stored in the CPU PIR, it is used to create cpu nodes in the
129  * device tree, used in XSCOM to address cores and in interrupt
130  * servers.
131  */
132 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
133 {
134     PowerPCCPU *cpu = pc->threads[0];
135     CPUState *cs = CPU(cpu);
136     DeviceClass *dc = DEVICE_GET_CLASS(cs);
137     int smt_threads = CPU_CORE(pc)->nr_threads;
138     CPUPPCState *env = &cpu->env;
139     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
140     uint32_t servers_prop[smt_threads];
141     int i;
142     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
143                        0xffffffff, 0xffffffff};
144     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
145     uint32_t cpufreq = 1000000000;
146     uint32_t page_sizes_prop[64];
147     size_t page_sizes_prop_size;
148     const uint8_t pa_features[] = { 24, 0,
149                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
150                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
151                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
152                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
153     int offset;
154     char *nodename;
155     int cpus_offset = get_cpus_node(fdt);
156 
157     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
158     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
159     _FDT(offset);
160     g_free(nodename);
161 
162     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
163 
164     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
165     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
166     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
167 
168     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
169     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
170                             env->dcache_line_size)));
171     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
172                             env->dcache_line_size)));
173     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
174                             env->icache_line_size)));
175     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
176                             env->icache_line_size)));
177 
178     if (pcc->l1_dcache_size) {
179         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
180                                pcc->l1_dcache_size)));
181     } else {
182         warn_report("Unknown L1 dcache size for cpu");
183     }
184     if (pcc->l1_icache_size) {
185         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
186                                pcc->l1_icache_size)));
187     } else {
188         warn_report("Unknown L1 icache size for cpu");
189     }
190 
191     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
192     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
193     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
194                            cpu->hash64_opts->slb_size)));
195     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
196     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
197 
198     if (ppc_has_spr(cpu, SPR_PURR)) {
199         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
200     }
201 
202     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
203         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
204                            segs, sizeof(segs))));
205     }
206 
207     /*
208      * Advertise VMX/VSX (vector extensions) if available
209      *   0 / no property == no vector extensions
210      *   1               == VMX / Altivec available
211      *   2               == VSX available
212      */
213     if (env->insns_flags & PPC_ALTIVEC) {
214         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
215 
216         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
217     }
218 
219     /*
220      * Advertise DFP (Decimal Floating Point) if available
221      *   0 / no property == no DFP
222      *   1               == DFP available
223      */
224     if (env->insns_flags2 & PPC2_DFP) {
225         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
226     }
227 
228     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
229                                                       sizeof(page_sizes_prop));
230     if (page_sizes_prop_size) {
231         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
232                            page_sizes_prop, page_sizes_prop_size)));
233     }
234 
235     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
236                        pa_features, sizeof(pa_features))));
237 
238     /* Build interrupt servers properties */
239     for (i = 0; i < smt_threads; i++) {
240         servers_prop[i] = cpu_to_be32(pc->pir + i);
241     }
242     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
243                        servers_prop, sizeof(servers_prop))));
244 }
245 
246 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
247                        uint32_t nr_threads)
248 {
249     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
250     char *name;
251     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
252     uint32_t irange[2], i, rsize;
253     uint64_t *reg;
254     int offset;
255 
256     irange[0] = cpu_to_be32(pir);
257     irange[1] = cpu_to_be32(nr_threads);
258 
259     rsize = sizeof(uint64_t) * 2 * nr_threads;
260     reg = g_malloc(rsize);
261     for (i = 0; i < nr_threads; i++) {
262         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
263         reg[i * 2 + 1] = cpu_to_be64(0x1000);
264     }
265 
266     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
267     offset = fdt_add_subnode(fdt, 0, name);
268     _FDT(offset);
269     g_free(name);
270 
271     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
272     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
273     _FDT((fdt_setprop_string(fdt, offset, "device_type",
274                               "PowerPC-External-Interrupt-Presentation")));
275     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
276     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
277                        irange, sizeof(irange))));
278     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
279     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
280     g_free(reg);
281 }
282 
283 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
284 {
285     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
286     int i;
287 
288     pnv_dt_xscom(chip, fdt, 0,
289                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
290                  cpu_to_be64(PNV_XSCOM_SIZE),
291                  compat, sizeof(compat));
292 
293     for (i = 0; i < chip->nr_cores; i++) {
294         PnvCore *pnv_core = chip->cores[i];
295 
296         pnv_dt_core(chip, pnv_core, fdt);
297 
298         /* Interrupt Control Presenters (ICP). One per core. */
299         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
300     }
301 
302     if (chip->ram_size) {
303         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
304     }
305 }
306 
307 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
308 {
309     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
310     int i;
311 
312     pnv_dt_xscom(chip, fdt, 0,
313                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
314                  cpu_to_be64(PNV9_XSCOM_SIZE),
315                  compat, sizeof(compat));
316 
317     for (i = 0; i < chip->nr_cores; i++) {
318         PnvCore *pnv_core = chip->cores[i];
319 
320         pnv_dt_core(chip, pnv_core, fdt);
321     }
322 
323     if (chip->ram_size) {
324         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
325     }
326 
327     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
328 }
329 
330 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
331 {
332     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
333     int i;
334 
335     pnv_dt_xscom(chip, fdt, 0,
336                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
337                  cpu_to_be64(PNV10_XSCOM_SIZE),
338                  compat, sizeof(compat));
339 
340     for (i = 0; i < chip->nr_cores; i++) {
341         PnvCore *pnv_core = chip->cores[i];
342 
343         pnv_dt_core(chip, pnv_core, fdt);
344     }
345 
346     if (chip->ram_size) {
347         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
348     }
349 
350     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
351 }
352 
353 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
354 {
355     uint32_t io_base = d->ioport_id;
356     uint32_t io_regs[] = {
357         cpu_to_be32(1),
358         cpu_to_be32(io_base),
359         cpu_to_be32(2)
360     };
361     char *name;
362     int node;
363 
364     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
365     node = fdt_add_subnode(fdt, lpc_off, name);
366     _FDT(node);
367     g_free(name);
368 
369     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
370     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
371 }
372 
373 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
374 {
375     const char compatible[] = "ns16550\0pnpPNP,501";
376     uint32_t io_base = d->ioport_id;
377     uint32_t io_regs[] = {
378         cpu_to_be32(1),
379         cpu_to_be32(io_base),
380         cpu_to_be32(8)
381     };
382     uint32_t irq;
383     char *name;
384     int node;
385 
386     irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
387 
388     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
389     node = fdt_add_subnode(fdt, lpc_off, name);
390     _FDT(node);
391     g_free(name);
392 
393     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
394     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
395                       sizeof(compatible))));
396 
397     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
398     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
399     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
400     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
401                            fdt_get_phandle(fdt, lpc_off))));
402 
403     /* This is needed by Linux */
404     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
405 }
406 
407 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
408 {
409     const char compatible[] = "bt\0ipmi-bt";
410     uint32_t io_base;
411     uint32_t io_regs[] = {
412         cpu_to_be32(1),
413         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
414         cpu_to_be32(3)
415     };
416     uint32_t irq;
417     char *name;
418     int node;
419 
420     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
421     io_regs[1] = cpu_to_be32(io_base);
422 
423     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
424 
425     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
426     node = fdt_add_subnode(fdt, lpc_off, name);
427     _FDT(node);
428     g_free(name);
429 
430     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
431     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
432                       sizeof(compatible))));
433 
434     /* Mark it as reserved to avoid Linux trying to claim it */
435     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
436     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
437     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
438                            fdt_get_phandle(fdt, lpc_off))));
439 }
440 
441 typedef struct ForeachPopulateArgs {
442     void *fdt;
443     int offset;
444 } ForeachPopulateArgs;
445 
446 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
447 {
448     ForeachPopulateArgs *args = opaque;
449     ISADevice *d = ISA_DEVICE(dev);
450 
451     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
452         pnv_dt_rtc(d, args->fdt, args->offset);
453     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
454         pnv_dt_serial(d, args->fdt, args->offset);
455     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
456         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
457     } else {
458         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
459                      d->ioport_id);
460     }
461 
462     return 0;
463 }
464 
465 /*
466  * The default LPC bus of a multichip system is on chip 0. It's
467  * recognized by the firmware (skiboot) using a "primary" property.
468  */
469 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
470 {
471     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
472     ForeachPopulateArgs args = {
473         .fdt = fdt,
474         .offset = isa_offset,
475     };
476     uint32_t phandle;
477 
478     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
479 
480     phandle = qemu_fdt_alloc_phandle(fdt);
481     assert(phandle > 0);
482     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
483 
484     /*
485      * ISA devices are not necessarily parented to the ISA bus so we
486      * can not use object_child_foreach()
487      */
488     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
489                        &args);
490 }
491 
492 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
493 {
494     int off;
495 
496     off = fdt_add_subnode(fdt, 0, "ibm,opal");
497     off = fdt_add_subnode(fdt, off, "power-mgt");
498 
499     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
500 }
501 
502 static void *pnv_dt_create(MachineState *machine)
503 {
504     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
505     PnvMachineState *pnv = PNV_MACHINE(machine);
506     void *fdt;
507     char *buf;
508     int off;
509     int i;
510 
511     fdt = g_malloc0(FDT_MAX_SIZE);
512     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
513 
514     /* /qemu node */
515     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
516 
517     /* Root node */
518     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
519     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
520     _FDT((fdt_setprop_string(fdt, 0, "model",
521                              "IBM PowerNV (emulated by qemu)")));
522     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
523 
524     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
525     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
526     if (qemu_uuid_set) {
527         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
528     }
529     g_free(buf);
530 
531     off = fdt_add_subnode(fdt, 0, "chosen");
532     if (machine->kernel_cmdline) {
533         _FDT((fdt_setprop_string(fdt, off, "bootargs",
534                                  machine->kernel_cmdline)));
535     }
536 
537     if (pnv->initrd_size) {
538         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
539         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
540 
541         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
542                                &start_prop, sizeof(start_prop))));
543         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
544                                &end_prop, sizeof(end_prop))));
545     }
546 
547     /* Populate device tree for each chip */
548     for (i = 0; i < pnv->num_chips; i++) {
549         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
550     }
551 
552     /* Populate ISA devices on chip 0 */
553     pnv_dt_isa(pnv, fdt);
554 
555     if (pnv->bmc) {
556         pnv_dt_bmc_sensors(pnv->bmc, fdt);
557     }
558 
559     /* Create an extra node for power management on machines that support it */
560     if (pmc->dt_power_mgt) {
561         pmc->dt_power_mgt(pnv, fdt);
562     }
563 
564     return fdt;
565 }
566 
567 static void pnv_powerdown_notify(Notifier *n, void *opaque)
568 {
569     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
570 
571     if (pnv->bmc) {
572         pnv_bmc_powerdown(pnv->bmc);
573     }
574 }
575 
576 static void pnv_reset(MachineState *machine)
577 {
578     PnvMachineState *pnv = PNV_MACHINE(machine);
579     IPMIBmc *bmc;
580     void *fdt;
581 
582     qemu_devices_reset();
583 
584     /*
585      * The machine should provide by default an internal BMC simulator.
586      * If not, try to use the BMC device that was provided on the command
587      * line.
588      */
589     bmc = pnv_bmc_find(&error_fatal);
590     if (!pnv->bmc) {
591         if (!bmc) {
592             if (!qtest_enabled()) {
593                 warn_report("machine has no BMC device. Use '-device "
594                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
595                             "to define one");
596             }
597         } else {
598             pnv_bmc_set_pnor(bmc, pnv->pnor);
599             pnv->bmc = bmc;
600         }
601     }
602 
603     fdt = pnv_dt_create(machine);
604 
605     /* Pack resulting tree */
606     _FDT((fdt_pack(fdt)));
607 
608     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
609     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
610 
611     g_free(fdt);
612 }
613 
614 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
615 {
616     Pnv8Chip *chip8 = PNV8_CHIP(chip);
617     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
618 }
619 
620 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
621 {
622     Pnv8Chip *chip8 = PNV8_CHIP(chip);
623     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
624 }
625 
626 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
627 {
628     Pnv9Chip *chip9 = PNV9_CHIP(chip);
629     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
630 }
631 
632 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
633 {
634     Pnv10Chip *chip10 = PNV10_CHIP(chip);
635     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
636 }
637 
638 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
639 {
640     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
641 }
642 
643 static int pnv_chip_power8_pic_print_info_child(Object *child, void *opaque)
644 {
645     Monitor *mon = opaque;
646     PnvPHB3 *phb3 = (PnvPHB3 *) object_dynamic_cast(child, TYPE_PNV_PHB3);
647 
648     if (phb3) {
649         pnv_phb3_msi_pic_print_info(&phb3->msis, mon);
650         ics_pic_print_info(&phb3->lsis, mon);
651     }
652     return 0;
653 }
654 
655 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
656 {
657     Pnv8Chip *chip8 = PNV8_CHIP(chip);
658 
659     ics_pic_print_info(&chip8->psi.ics, mon);
660     object_child_foreach(OBJECT(chip),
661                          pnv_chip_power8_pic_print_info_child, mon);
662 }
663 
664 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
665 {
666     Monitor *mon = opaque;
667     PnvPHB4 *phb4 = (PnvPHB4 *) object_dynamic_cast(child, TYPE_PNV_PHB4);
668 
669     if (phb4) {
670         pnv_phb4_pic_print_info(phb4, mon);
671     }
672     return 0;
673 }
674 
675 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
676 {
677     Pnv9Chip *chip9 = PNV9_CHIP(chip);
678 
679     pnv_xive_pic_print_info(&chip9->xive, mon);
680     pnv_psi_pic_print_info(&chip9->psi, mon);
681 
682     object_child_foreach_recursive(OBJECT(chip),
683                          pnv_chip_power9_pic_print_info_child, mon);
684 }
685 
686 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
687                                                 uint32_t core_id)
688 {
689     return PNV_XSCOM_EX_BASE(core_id);
690 }
691 
692 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
693                                                 uint32_t core_id)
694 {
695     return PNV9_XSCOM_EC_BASE(core_id);
696 }
697 
698 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
699                                                  uint32_t core_id)
700 {
701     return PNV10_XSCOM_EC_BASE(core_id);
702 }
703 
704 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
705 {
706     PowerPCCPUClass *ppc_default =
707         POWERPC_CPU_CLASS(object_class_by_name(default_type));
708     PowerPCCPUClass *ppc =
709         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
710 
711     return ppc_default->pvr_match(ppc_default, ppc->pvr);
712 }
713 
714 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
715 {
716     ISADevice *dev = isa_new("isa-ipmi-bt");
717 
718     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
719     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
720     isa_realize_and_unref(dev, bus, &error_fatal);
721 }
722 
723 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
724 {
725     Pnv10Chip *chip10 = PNV10_CHIP(chip);
726 
727     pnv_xive2_pic_print_info(&chip10->xive, mon);
728     pnv_psi_pic_print_info(&chip10->psi, mon);
729 
730     object_child_foreach_recursive(OBJECT(chip),
731                          pnv_chip_power9_pic_print_info_child, mon);
732 }
733 
734 /* Always give the first 1GB to chip 0 else we won't boot */
735 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
736 {
737     MachineState *machine = MACHINE(pnv);
738     uint64_t ram_per_chip;
739 
740     assert(machine->ram_size >= 1 * GiB);
741 
742     ram_per_chip = machine->ram_size / pnv->num_chips;
743     if (ram_per_chip >= 1 * GiB) {
744         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
745     }
746 
747     assert(pnv->num_chips > 1);
748 
749     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
750     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
751 }
752 
753 static void pnv_init(MachineState *machine)
754 {
755     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
756     PnvMachineState *pnv = PNV_MACHINE(machine);
757     MachineClass *mc = MACHINE_GET_CLASS(machine);
758     char *fw_filename;
759     long fw_size;
760     uint64_t chip_ram_start = 0;
761     int i;
762     char *chip_typename;
763     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
764     DeviceState *dev;
765 
766     if (kvm_enabled()) {
767         error_report("The powernv machine does not work with KVM acceleration");
768         exit(EXIT_FAILURE);
769     }
770 
771     /* allocate RAM */
772     if (machine->ram_size < mc->default_ram_size) {
773         char *sz = size_to_str(mc->default_ram_size);
774         error_report("Invalid RAM size, should be bigger than %s", sz);
775         g_free(sz);
776         exit(EXIT_FAILURE);
777     }
778     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
779 
780     /*
781      * Create our simple PNOR device
782      */
783     dev = qdev_new(TYPE_PNV_PNOR);
784     if (pnor) {
785         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
786     }
787     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
788     pnv->pnor = PNV_PNOR(dev);
789 
790     /* load skiboot firmware  */
791     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
792     if (!fw_filename) {
793         error_report("Could not find OPAL firmware '%s'", bios_name);
794         exit(1);
795     }
796 
797     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
798     if (fw_size < 0) {
799         error_report("Could not load OPAL firmware '%s'", fw_filename);
800         exit(1);
801     }
802     g_free(fw_filename);
803 
804     /* load kernel */
805     if (machine->kernel_filename) {
806         long kernel_size;
807 
808         kernel_size = load_image_targphys(machine->kernel_filename,
809                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
810         if (kernel_size < 0) {
811             error_report("Could not load kernel '%s'",
812                          machine->kernel_filename);
813             exit(1);
814         }
815     }
816 
817     /* load initrd */
818     if (machine->initrd_filename) {
819         pnv->initrd_base = INITRD_LOAD_ADDR;
820         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
821                                   pnv->initrd_base, INITRD_MAX_SIZE);
822         if (pnv->initrd_size < 0) {
823             error_report("Could not load initial ram disk '%s'",
824                          machine->initrd_filename);
825             exit(1);
826         }
827     }
828 
829     /* MSIs are supported on this platform */
830     msi_nonbroken = true;
831 
832     /*
833      * Check compatibility of the specified CPU with the machine
834      * default.
835      */
836     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
837         error_report("invalid CPU model '%s' for %s machine",
838                      machine->cpu_type, mc->name);
839         exit(1);
840     }
841 
842     /* Create the processor chips */
843     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
844     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
845                                     i, machine->cpu_type);
846     if (!object_class_by_name(chip_typename)) {
847         error_report("invalid chip model '%.*s' for %s machine",
848                      i, machine->cpu_type, mc->name);
849         exit(1);
850     }
851 
852     pnv->num_chips =
853         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
854     /*
855      * TODO: should we decide on how many chips we can create based
856      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
857      */
858     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
859         error_report("invalid number of chips: '%d'", pnv->num_chips);
860         error_printf(
861             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
862         exit(1);
863     }
864 
865     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
866     for (i = 0; i < pnv->num_chips; i++) {
867         char chip_name[32];
868         Object *chip = OBJECT(qdev_new(chip_typename));
869         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
870 
871         pnv->chips[i] = PNV_CHIP(chip);
872 
873         /* Distribute RAM among the chips  */
874         object_property_set_int(chip, "ram-start", chip_ram_start,
875                                 &error_fatal);
876         object_property_set_int(chip, "ram-size", chip_ram_size,
877                                 &error_fatal);
878         chip_ram_start += chip_ram_size;
879 
880         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
881         object_property_add_child(OBJECT(pnv), chip_name, chip);
882         object_property_set_int(chip, "chip-id", i, &error_fatal);
883         object_property_set_int(chip, "nr-cores", machine->smp.cores,
884                                 &error_fatal);
885         object_property_set_int(chip, "nr-threads", machine->smp.threads,
886                                 &error_fatal);
887         /*
888          * The POWER8 machine use the XICS interrupt interface.
889          * Propagate the XICS fabric to the chip and its controllers.
890          */
891         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
892             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
893         }
894         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
895             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
896                                      &error_abort);
897         }
898         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
899     }
900     g_free(chip_typename);
901 
902     /* Instantiate ISA bus on chip 0 */
903     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
904 
905     /* Create serial port */
906     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
907 
908     /* Create an RTC ISA device too */
909     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
910 
911     /*
912      * Create the machine BMC simulator and the IPMI BT device for
913      * communication with the BMC
914      */
915     if (defaults_enabled()) {
916         pnv->bmc = pnv_bmc_create(pnv->pnor);
917         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
918     }
919 
920     /*
921      * The PNOR is mapped on the LPC FW address space by the BMC.
922      * Since we can not reach the remote BMC machine with LPC memops,
923      * map it always for now.
924      */
925     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
926                                 &pnv->pnor->mmio);
927 
928     /*
929      * OpenPOWER systems use a IPMI SEL Event message to notify the
930      * host to powerdown
931      */
932     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
933     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
934 }
935 
936 /*
937  *    0:21  Reserved - Read as zeros
938  *   22:24  Chip ID
939  *   25:28  Core number
940  *   29:31  Thread ID
941  */
942 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
943 {
944     return (chip->chip_id << 7) | (core_id << 3);
945 }
946 
947 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
948                                         Error **errp)
949 {
950     Pnv8Chip *chip8 = PNV8_CHIP(chip);
951     Error *local_err = NULL;
952     Object *obj;
953     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
954 
955     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
956     if (local_err) {
957         error_propagate(errp, local_err);
958         return;
959     }
960 
961     pnv_cpu->intc = obj;
962 }
963 
964 
965 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
966 {
967     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
968 
969     icp_reset(ICP(pnv_cpu->intc));
970 }
971 
972 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
973 {
974     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
975 
976     icp_destroy(ICP(pnv_cpu->intc));
977     pnv_cpu->intc = NULL;
978 }
979 
980 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
981                                             Monitor *mon)
982 {
983     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
984 }
985 
986 /*
987  *    0:48  Reserved - Read as zeroes
988  *   49:52  Node ID
989  *   53:55  Chip ID
990  *   56     Reserved - Read as zero
991  *   57:61  Core number
992  *   62:63  Thread ID
993  *
994  * We only care about the lower bits. uint32_t is fine for the moment.
995  */
996 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
997 {
998     return (chip->chip_id << 8) | (core_id << 2);
999 }
1000 
1001 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
1002 {
1003     return (chip->chip_id << 8) | (core_id << 2);
1004 }
1005 
1006 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1007                                         Error **errp)
1008 {
1009     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1010     Error *local_err = NULL;
1011     Object *obj;
1012     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1013 
1014     /*
1015      * The core creates its interrupt presenter but the XIVE interrupt
1016      * controller object is initialized afterwards. Hopefully, it's
1017      * only used at runtime.
1018      */
1019     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1020                            &local_err);
1021     if (local_err) {
1022         error_propagate(errp, local_err);
1023         return;
1024     }
1025 
1026     pnv_cpu->intc = obj;
1027 }
1028 
1029 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1030 {
1031     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1032 
1033     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1034 }
1035 
1036 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1037 {
1038     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1039 
1040     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1041     pnv_cpu->intc = NULL;
1042 }
1043 
1044 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1045                                             Monitor *mon)
1046 {
1047     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1048 }
1049 
1050 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1051                                         Error **errp)
1052 {
1053     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1054     Error *local_err = NULL;
1055     Object *obj;
1056     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1057 
1058     /*
1059      * The core creates its interrupt presenter but the XIVE2 interrupt
1060      * controller object is initialized afterwards. Hopefully, it's
1061      * only used at runtime.
1062      */
1063     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1064                            &local_err);
1065     if (local_err) {
1066         error_propagate(errp, local_err);
1067         return;
1068     }
1069 
1070     pnv_cpu->intc = obj;
1071 }
1072 
1073 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1074 {
1075     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1076 
1077     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1078 }
1079 
1080 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1081 {
1082     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1083 
1084     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1085     pnv_cpu->intc = NULL;
1086 }
1087 
1088 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1089                                              Monitor *mon)
1090 {
1091     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1092 }
1093 
1094 /*
1095  * Allowed core identifiers on a POWER8 Processor Chip :
1096  *
1097  * <EX0 reserved>
1098  *  EX1  - Venice only
1099  *  EX2  - Venice only
1100  *  EX3  - Venice only
1101  *  EX4
1102  *  EX5
1103  *  EX6
1104  * <EX7,8 reserved> <reserved>
1105  *  EX9  - Venice only
1106  *  EX10 - Venice only
1107  *  EX11 - Venice only
1108  *  EX12
1109  *  EX13
1110  *  EX14
1111  * <EX15 reserved>
1112  */
1113 #define POWER8E_CORE_MASK  (0x7070ull)
1114 #define POWER8_CORE_MASK   (0x7e7eull)
1115 
1116 /*
1117  * POWER9 has 24 cores, ids starting at 0x0
1118  */
1119 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1120 
1121 
1122 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1123 
1124 static void pnv_chip_power8_instance_init(Object *obj)
1125 {
1126     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1127     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1128     int i;
1129 
1130     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1131                              (Object **)&chip8->xics,
1132                              object_property_allow_set_link,
1133                              OBJ_PROP_LINK_STRONG);
1134 
1135     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1136 
1137     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1138 
1139     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1140 
1141     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1142 
1143     chip8->num_phbs = pcc->num_phbs;
1144 
1145     for (i = 0; i < chip8->num_phbs; i++) {
1146         object_initialize_child(obj, "phb[*]", &chip8->phbs[i], TYPE_PNV_PHB3);
1147     }
1148 
1149 }
1150 
1151 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1152  {
1153     PnvChip *chip = PNV_CHIP(chip8);
1154     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1155     int i, j;
1156     char *name;
1157 
1158     name = g_strdup_printf("icp-%x", chip->chip_id);
1159     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1160     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1161     g_free(name);
1162 
1163     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1164 
1165     /* Map the ICP registers for each thread */
1166     for (i = 0; i < chip->nr_cores; i++) {
1167         PnvCore *pnv_core = chip->cores[i];
1168         int core_hwid = CPU_CORE(pnv_core)->core_id;
1169 
1170         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1171             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1172             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1173 
1174             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1175                                         &icp->mmio);
1176         }
1177     }
1178 }
1179 
1180 /* Attach a root port device */
1181 void pnv_phb_attach_root_port(PCIHostState *pci, const char *name)
1182 {
1183     PCIDevice *root = pci_new(PCI_DEVFN(0, 0), name);
1184 
1185     pci_realize_and_unref(root, pci->bus, &error_fatal);
1186 }
1187 
1188 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1189 {
1190     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1191     PnvChip *chip = PNV_CHIP(dev);
1192     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1193     Pnv8Psi *psi8 = &chip8->psi;
1194     Error *local_err = NULL;
1195     int i;
1196 
1197     assert(chip8->xics);
1198 
1199     /* XSCOM bridge is first */
1200     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1201     if (local_err) {
1202         error_propagate(errp, local_err);
1203         return;
1204     }
1205     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1206 
1207     pcc->parent_realize(dev, &local_err);
1208     if (local_err) {
1209         error_propagate(errp, local_err);
1210         return;
1211     }
1212 
1213     /* Processor Service Interface (PSI) Host Bridge */
1214     object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip),
1215                             &error_fatal);
1216     object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS,
1217                              OBJECT(chip8->xics), &error_abort);
1218     if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) {
1219         return;
1220     }
1221     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1222                             &PNV_PSI(psi8)->xscom_regs);
1223 
1224     /* Create LPC controller */
1225     object_property_set_link(OBJECT(&chip8->lpc), "psi", OBJECT(&chip8->psi),
1226                              &error_abort);
1227     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1228     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1229 
1230     chip->fw_mr = &chip8->lpc.isa_fw;
1231     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1232                                             (uint64_t) PNV_XSCOM_BASE(chip),
1233                                             PNV_XSCOM_LPC_BASE);
1234 
1235     /*
1236      * Interrupt Management Area. This is the memory region holding
1237      * all the Interrupt Control Presenter (ICP) registers
1238      */
1239     pnv_chip_icp_realize(chip8, &local_err);
1240     if (local_err) {
1241         error_propagate(errp, local_err);
1242         return;
1243     }
1244 
1245     /* Create the simplified OCC model */
1246     object_property_set_link(OBJECT(&chip8->occ), "psi", OBJECT(&chip8->psi),
1247                              &error_abort);
1248     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1249         return;
1250     }
1251     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1252 
1253     /* OCC SRAM model */
1254     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1255                                 &chip8->occ.sram_regs);
1256 
1257     /* HOMER */
1258     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1259                              &error_abort);
1260     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1261         return;
1262     }
1263     /* Homer Xscom region */
1264     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1265 
1266     /* Homer mmio region */
1267     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1268                                 &chip8->homer.regs);
1269 
1270     /* PHB3 controllers */
1271     for (i = 0; i < chip8->num_phbs; i++) {
1272         PnvPHB3 *phb = &chip8->phbs[i];
1273 
1274         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1275         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1276                                 &error_fatal);
1277         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1278                                  &error_fatal);
1279         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1280             return;
1281         }
1282     }
1283 }
1284 
1285 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1286 {
1287     addr &= (PNV_XSCOM_SIZE - 1);
1288     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1289 }
1290 
1291 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1292 {
1293     DeviceClass *dc = DEVICE_CLASS(klass);
1294     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1295 
1296     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1297     k->cores_mask = POWER8E_CORE_MASK;
1298     k->num_phbs = 3;
1299     k->core_pir = pnv_chip_core_pir_p8;
1300     k->intc_create = pnv_chip_power8_intc_create;
1301     k->intc_reset = pnv_chip_power8_intc_reset;
1302     k->intc_destroy = pnv_chip_power8_intc_destroy;
1303     k->intc_print_info = pnv_chip_power8_intc_print_info;
1304     k->isa_create = pnv_chip_power8_isa_create;
1305     k->dt_populate = pnv_chip_power8_dt_populate;
1306     k->pic_print_info = pnv_chip_power8_pic_print_info;
1307     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1308     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1309     dc->desc = "PowerNV Chip POWER8E";
1310 
1311     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1312                                     &k->parent_realize);
1313 }
1314 
1315 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1316 {
1317     DeviceClass *dc = DEVICE_CLASS(klass);
1318     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1319 
1320     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1321     k->cores_mask = POWER8_CORE_MASK;
1322     k->num_phbs = 3;
1323     k->core_pir = pnv_chip_core_pir_p8;
1324     k->intc_create = pnv_chip_power8_intc_create;
1325     k->intc_reset = pnv_chip_power8_intc_reset;
1326     k->intc_destroy = pnv_chip_power8_intc_destroy;
1327     k->intc_print_info = pnv_chip_power8_intc_print_info;
1328     k->isa_create = pnv_chip_power8_isa_create;
1329     k->dt_populate = pnv_chip_power8_dt_populate;
1330     k->pic_print_info = pnv_chip_power8_pic_print_info;
1331     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1332     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1333     dc->desc = "PowerNV Chip POWER8";
1334 
1335     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1336                                     &k->parent_realize);
1337 }
1338 
1339 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1340 {
1341     DeviceClass *dc = DEVICE_CLASS(klass);
1342     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1343 
1344     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1345     k->cores_mask = POWER8_CORE_MASK;
1346     k->num_phbs = 4;
1347     k->core_pir = pnv_chip_core_pir_p8;
1348     k->intc_create = pnv_chip_power8_intc_create;
1349     k->intc_reset = pnv_chip_power8_intc_reset;
1350     k->intc_destroy = pnv_chip_power8_intc_destroy;
1351     k->intc_print_info = pnv_chip_power8_intc_print_info;
1352     k->isa_create = pnv_chip_power8nvl_isa_create;
1353     k->dt_populate = pnv_chip_power8_dt_populate;
1354     k->pic_print_info = pnv_chip_power8_pic_print_info;
1355     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1356     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1357     dc->desc = "PowerNV Chip POWER8NVL";
1358 
1359     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1360                                     &k->parent_realize);
1361 }
1362 
1363 static void pnv_chip_power9_instance_init(Object *obj)
1364 {
1365     PnvChip *chip = PNV_CHIP(obj);
1366     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1367     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1368     int i;
1369 
1370     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1371     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1372                               "xive-fabric");
1373 
1374     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1375 
1376     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1377 
1378     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1379 
1380     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1381 
1382     /* Number of PECs is the chip default */
1383     chip->num_pecs = pcc->num_pecs;
1384 
1385     for (i = 0; i < chip->num_pecs; i++) {
1386         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1387                                 TYPE_PNV_PHB4_PEC);
1388     }
1389 }
1390 
1391 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1392                                       PnvCore *pnv_core)
1393 {
1394     char eq_name[32];
1395     int core_id = CPU_CORE(pnv_core)->core_id;
1396 
1397     snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1398     object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1399                                        sizeof(*eq), TYPE_PNV_QUAD,
1400                                        &error_fatal, NULL);
1401 
1402     object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1403     qdev_realize(DEVICE(eq), NULL, &error_fatal);
1404 }
1405 
1406 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1407 {
1408     PnvChip *chip = PNV_CHIP(chip9);
1409     int i;
1410 
1411     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1412     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1413 
1414     for (i = 0; i < chip9->nr_quads; i++) {
1415         PnvQuad *eq = &chip9->quads[i];
1416 
1417         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4]);
1418 
1419         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1420                                 &eq->xscom_regs);
1421     }
1422 }
1423 
1424 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1425 {
1426     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1427     int i;
1428 
1429     for (i = 0; i < chip->num_pecs; i++) {
1430         PnvPhb4PecState *pec = &chip9->pecs[i];
1431         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1432         uint32_t pec_nest_base;
1433         uint32_t pec_pci_base;
1434 
1435         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1436         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1437                                 &error_fatal);
1438         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1439                                  &error_fatal);
1440         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1441             return;
1442         }
1443 
1444         pec_nest_base = pecc->xscom_nest_base(pec);
1445         pec_pci_base = pecc->xscom_pci_base(pec);
1446 
1447         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1448         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1449     }
1450 }
1451 
1452 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1453 {
1454     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1455     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1456     PnvChip *chip = PNV_CHIP(dev);
1457     Pnv9Psi *psi9 = &chip9->psi;
1458     Error *local_err = NULL;
1459 
1460     /* XSCOM bridge is first */
1461     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1462     if (local_err) {
1463         error_propagate(errp, local_err);
1464         return;
1465     }
1466     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1467 
1468     pcc->parent_realize(dev, &local_err);
1469     if (local_err) {
1470         error_propagate(errp, local_err);
1471         return;
1472     }
1473 
1474     pnv_chip_quad_realize(chip9, &local_err);
1475     if (local_err) {
1476         error_propagate(errp, local_err);
1477         return;
1478     }
1479 
1480     /* XIVE interrupt controller (POWER9) */
1481     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1482                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1483     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1484                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1485     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1486                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1487     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1488                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1489     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1490                              &error_abort);
1491     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1492         return;
1493     }
1494     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1495                             &chip9->xive.xscom_regs);
1496 
1497     /* Processor Service Interface (PSI) Host Bridge */
1498     object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip),
1499                             &error_fatal);
1500     /* This is the only device with 4k ESB pages */
1501     object_property_set_int(OBJECT(&chip9->psi), "shift", XIVE_ESB_4K,
1502                             &error_fatal);
1503     if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) {
1504         return;
1505     }
1506     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1507                             &PNV_PSI(psi9)->xscom_regs);
1508 
1509     /* LPC */
1510     object_property_set_link(OBJECT(&chip9->lpc), "psi", OBJECT(&chip9->psi),
1511                              &error_abort);
1512     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1513         return;
1514     }
1515     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1516                                 &chip9->lpc.xscom_regs);
1517 
1518     chip->fw_mr = &chip9->lpc.isa_fw;
1519     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1520                                             (uint64_t) PNV9_LPCM_BASE(chip));
1521 
1522     /* Create the simplified OCC model */
1523     object_property_set_link(OBJECT(&chip9->occ), "psi", OBJECT(&chip9->psi),
1524                              &error_abort);
1525     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1526         return;
1527     }
1528     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1529 
1530     /* OCC SRAM model */
1531     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1532                                 &chip9->occ.sram_regs);
1533 
1534     /* HOMER */
1535     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1536                              &error_abort);
1537     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1538         return;
1539     }
1540     /* Homer Xscom region */
1541     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1542 
1543     /* Homer mmio region */
1544     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1545                                 &chip9->homer.regs);
1546 
1547     /* PEC PHBs */
1548     pnv_chip_power9_pec_realize(chip, &local_err);
1549     if (local_err) {
1550         error_propagate(errp, local_err);
1551         return;
1552     }
1553 }
1554 
1555 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1556 {
1557     addr &= (PNV9_XSCOM_SIZE - 1);
1558     return addr >> 3;
1559 }
1560 
1561 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1562 {
1563     DeviceClass *dc = DEVICE_CLASS(klass);
1564     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1565 
1566     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1567     k->cores_mask = POWER9_CORE_MASK;
1568     k->core_pir = pnv_chip_core_pir_p9;
1569     k->intc_create = pnv_chip_power9_intc_create;
1570     k->intc_reset = pnv_chip_power9_intc_reset;
1571     k->intc_destroy = pnv_chip_power9_intc_destroy;
1572     k->intc_print_info = pnv_chip_power9_intc_print_info;
1573     k->isa_create = pnv_chip_power9_isa_create;
1574     k->dt_populate = pnv_chip_power9_dt_populate;
1575     k->pic_print_info = pnv_chip_power9_pic_print_info;
1576     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1577     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1578     dc->desc = "PowerNV Chip POWER9";
1579     k->num_pecs = PNV9_CHIP_MAX_PEC;
1580 
1581     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1582                                     &k->parent_realize);
1583 }
1584 
1585 static void pnv_chip_power10_instance_init(Object *obj)
1586 {
1587     PnvChip *chip = PNV_CHIP(obj);
1588     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1589     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1590     int i;
1591 
1592     object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1593     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1594                               "xive-fabric");
1595     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1596     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1597     object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
1598     object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1599 
1600     chip->num_pecs = pcc->num_pecs;
1601 
1602     for (i = 0; i < chip->num_pecs; i++) {
1603         object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1604                                 TYPE_PNV_PHB5_PEC);
1605     }
1606 }
1607 
1608 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
1609 {
1610     PnvChip *chip = PNV_CHIP(chip10);
1611     int i;
1612 
1613     chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1614     chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
1615 
1616     for (i = 0; i < chip10->nr_quads; i++) {
1617         PnvQuad *eq = &chip10->quads[i];
1618 
1619         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4]);
1620 
1621         pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
1622                                 &eq->xscom_regs);
1623     }
1624 }
1625 
1626 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
1627 {
1628     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1629     int i;
1630 
1631     for (i = 0; i < chip->num_pecs; i++) {
1632         PnvPhb4PecState *pec = &chip10->pecs[i];
1633         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1634         uint32_t pec_nest_base;
1635         uint32_t pec_pci_base;
1636 
1637         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1638         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1639                                 &error_fatal);
1640         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1641                                  &error_fatal);
1642         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1643             return;
1644         }
1645 
1646         pec_nest_base = pecc->xscom_nest_base(pec);
1647         pec_pci_base = pecc->xscom_pci_base(pec);
1648 
1649         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1650         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1651     }
1652 }
1653 
1654 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1655 {
1656     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1657     PnvChip *chip = PNV_CHIP(dev);
1658     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1659     Error *local_err = NULL;
1660 
1661     /* XSCOM bridge is first */
1662     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1663     if (local_err) {
1664         error_propagate(errp, local_err);
1665         return;
1666     }
1667     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1668 
1669     pcc->parent_realize(dev, &local_err);
1670     if (local_err) {
1671         error_propagate(errp, local_err);
1672         return;
1673     }
1674 
1675     pnv_chip_power10_quad_realize(chip10, &local_err);
1676     if (local_err) {
1677         error_propagate(errp, local_err);
1678         return;
1679     }
1680 
1681     /* XIVE2 interrupt controller (POWER10) */
1682     object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
1683                             PNV10_XIVE2_IC_BASE(chip), &error_fatal);
1684     object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
1685                             PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
1686     object_property_set_int(OBJECT(&chip10->xive), "end-bar",
1687                             PNV10_XIVE2_END_BASE(chip), &error_fatal);
1688     object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
1689                             PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
1690     object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
1691                             PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
1692     object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
1693                             PNV10_XIVE2_TM_BASE(chip), &error_fatal);
1694     object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
1695                              &error_abort);
1696     if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
1697         return;
1698     }
1699     pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
1700                             &chip10->xive.xscom_regs);
1701 
1702     /* Processor Service Interface (PSI) Host Bridge */
1703     object_property_set_int(OBJECT(&chip10->psi), "bar",
1704                             PNV10_PSIHB_BASE(chip), &error_fatal);
1705     /* PSI can now be configured to use 64k ESB pages on POWER10 */
1706     object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
1707                             &error_fatal);
1708     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1709         return;
1710     }
1711     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1712                             &PNV_PSI(&chip10->psi)->xscom_regs);
1713 
1714     /* LPC */
1715     object_property_set_link(OBJECT(&chip10->lpc), "psi",
1716                              OBJECT(&chip10->psi), &error_abort);
1717     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1718         return;
1719     }
1720     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1721                                 &chip10->lpc.xscom_regs);
1722 
1723     chip->fw_mr = &chip10->lpc.isa_fw;
1724     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1725                                             (uint64_t) PNV10_LPCM_BASE(chip));
1726 
1727     /* Create the simplified OCC model */
1728     object_property_set_link(OBJECT(&chip10->occ), "psi", OBJECT(&chip10->psi),
1729                              &error_abort);
1730     if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
1731         return;
1732     }
1733     pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
1734                             &chip10->occ.xscom_regs);
1735 
1736     /* OCC SRAM model */
1737     memory_region_add_subregion(get_system_memory(),
1738                                 PNV10_OCC_SENSOR_BASE(chip),
1739                                 &chip10->occ.sram_regs);
1740 
1741     /* HOMER */
1742     object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
1743                              &error_abort);
1744     if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
1745         return;
1746     }
1747     /* Homer Xscom region */
1748     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
1749                             &chip10->homer.pba_regs);
1750 
1751     /* Homer mmio region */
1752     memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
1753                                 &chip10->homer.regs);
1754 
1755     /* PHBs */
1756     pnv_chip_power10_phb_realize(chip, &local_err);
1757     if (local_err) {
1758         error_propagate(errp, local_err);
1759         return;
1760     }
1761 }
1762 
1763 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1764 {
1765     addr &= (PNV10_XSCOM_SIZE - 1);
1766     return addr >> 3;
1767 }
1768 
1769 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1770 {
1771     DeviceClass *dc = DEVICE_CLASS(klass);
1772     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1773 
1774     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1775     k->cores_mask = POWER10_CORE_MASK;
1776     k->core_pir = pnv_chip_core_pir_p10;
1777     k->intc_create = pnv_chip_power10_intc_create;
1778     k->intc_reset = pnv_chip_power10_intc_reset;
1779     k->intc_destroy = pnv_chip_power10_intc_destroy;
1780     k->intc_print_info = pnv_chip_power10_intc_print_info;
1781     k->isa_create = pnv_chip_power10_isa_create;
1782     k->dt_populate = pnv_chip_power10_dt_populate;
1783     k->pic_print_info = pnv_chip_power10_pic_print_info;
1784     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1785     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1786     dc->desc = "PowerNV Chip POWER10";
1787     k->num_pecs = PNV10_CHIP_MAX_PEC;
1788 
1789     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1790                                     &k->parent_realize);
1791 }
1792 
1793 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1794 {
1795     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1796     int cores_max;
1797 
1798     /*
1799      * No custom mask for this chip, let's use the default one from *
1800      * the chip class
1801      */
1802     if (!chip->cores_mask) {
1803         chip->cores_mask = pcc->cores_mask;
1804     }
1805 
1806     /* filter alien core ids ! some are reserved */
1807     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1808         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1809                    chip->cores_mask);
1810         return;
1811     }
1812     chip->cores_mask &= pcc->cores_mask;
1813 
1814     /* now that we have a sane layout, let check the number of cores */
1815     cores_max = ctpop64(chip->cores_mask);
1816     if (chip->nr_cores > cores_max) {
1817         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1818                    cores_max);
1819         return;
1820     }
1821 }
1822 
1823 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1824 {
1825     Error *error = NULL;
1826     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1827     const char *typename = pnv_chip_core_typename(chip);
1828     int i, core_hwid;
1829     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1830 
1831     if (!object_class_by_name(typename)) {
1832         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1833         return;
1834     }
1835 
1836     /* Cores */
1837     pnv_chip_core_sanitize(chip, &error);
1838     if (error) {
1839         error_propagate(errp, error);
1840         return;
1841     }
1842 
1843     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1844 
1845     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1846              && (i < chip->nr_cores); core_hwid++) {
1847         char core_name[32];
1848         PnvCore *pnv_core;
1849         uint64_t xscom_core_base;
1850 
1851         if (!(chip->cores_mask & (1ull << core_hwid))) {
1852             continue;
1853         }
1854 
1855         pnv_core = PNV_CORE(object_new(typename));
1856 
1857         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1858         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1859         chip->cores[i] = pnv_core;
1860         object_property_set_int(OBJECT(pnv_core), "nr-threads",
1861                                 chip->nr_threads, &error_fatal);
1862         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
1863                                 core_hwid, &error_fatal);
1864         object_property_set_int(OBJECT(pnv_core), "pir",
1865                                 pcc->core_pir(chip, core_hwid), &error_fatal);
1866         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
1867                                 &error_fatal);
1868         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
1869                                  &error_abort);
1870         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
1871 
1872         /* Each core has an XSCOM MMIO region */
1873         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1874 
1875         pnv_xscom_add_subregion(chip, xscom_core_base,
1876                                 &pnv_core->xscom_regs);
1877         i++;
1878     }
1879 }
1880 
1881 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1882 {
1883     PnvChip *chip = PNV_CHIP(dev);
1884     Error *error = NULL;
1885 
1886     /* Cores */
1887     pnv_chip_core_realize(chip, &error);
1888     if (error) {
1889         error_propagate(errp, error);
1890         return;
1891     }
1892 }
1893 
1894 static Property pnv_chip_properties[] = {
1895     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1896     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1897     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1898     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1899     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1900     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1901     DEFINE_PROP_END_OF_LIST(),
1902 };
1903 
1904 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1905 {
1906     DeviceClass *dc = DEVICE_CLASS(klass);
1907 
1908     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1909     dc->realize = pnv_chip_realize;
1910     device_class_set_props(dc, pnv_chip_properties);
1911     dc->desc = "PowerNV Chip";
1912 }
1913 
1914 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1915 {
1916     int i, j;
1917 
1918     for (i = 0; i < chip->nr_cores; i++) {
1919         PnvCore *pc = chip->cores[i];
1920         CPUCore *cc = CPU_CORE(pc);
1921 
1922         for (j = 0; j < cc->nr_threads; j++) {
1923             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1924                 return pc->threads[j];
1925             }
1926         }
1927     }
1928     return NULL;
1929 }
1930 
1931 typedef struct ForeachPhb3Args {
1932     int irq;
1933     ICSState *ics;
1934 } ForeachPhb3Args;
1935 
1936 static int pnv_ics_get_child(Object *child, void *opaque)
1937 {
1938     ForeachPhb3Args *args = opaque;
1939     PnvPHB3 *phb3 = (PnvPHB3 *) object_dynamic_cast(child, TYPE_PNV_PHB3);
1940 
1941     if (phb3) {
1942         if (ics_valid_irq(&phb3->lsis, args->irq)) {
1943             args->ics = &phb3->lsis;
1944         }
1945         if (ics_valid_irq(ICS(&phb3->msis), args->irq)) {
1946             args->ics = ICS(&phb3->msis);
1947         }
1948     }
1949     return args->ics ? 1 : 0;
1950 }
1951 
1952 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1953 {
1954     PnvMachineState *pnv = PNV_MACHINE(xi);
1955     ForeachPhb3Args args = { irq, NULL };
1956     int i;
1957 
1958     for (i = 0; i < pnv->num_chips; i++) {
1959         PnvChip *chip = pnv->chips[i];
1960         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1961 
1962         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1963             return &chip8->psi.ics;
1964         }
1965 
1966         object_child_foreach(OBJECT(chip), pnv_ics_get_child, &args);
1967         if (args.ics) {
1968             return args.ics;
1969         }
1970     }
1971     return NULL;
1972 }
1973 
1974 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
1975 {
1976     int i;
1977 
1978     for (i = 0; i < pnv->num_chips; i++) {
1979         PnvChip *chip = pnv->chips[i];
1980         if (chip->chip_id == chip_id) {
1981             return chip;
1982         }
1983     }
1984     return NULL;
1985 }
1986 
1987 static int pnv_ics_resend_child(Object *child, void *opaque)
1988 {
1989     PnvPHB3 *phb3 = (PnvPHB3 *) object_dynamic_cast(child, TYPE_PNV_PHB3);
1990 
1991     if (phb3) {
1992         ics_resend(&phb3->lsis);
1993         ics_resend(ICS(&phb3->msis));
1994     }
1995     return 0;
1996 }
1997 
1998 static void pnv_ics_resend(XICSFabric *xi)
1999 {
2000     PnvMachineState *pnv = PNV_MACHINE(xi);
2001     int i;
2002 
2003     for (i = 0; i < pnv->num_chips; i++) {
2004         PnvChip *chip = pnv->chips[i];
2005         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2006 
2007         ics_resend(&chip8->psi.ics);
2008         object_child_foreach(OBJECT(chip), pnv_ics_resend_child, NULL);
2009     }
2010 }
2011 
2012 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2013 {
2014     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2015 
2016     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2017 }
2018 
2019 static void pnv_pic_print_info(InterruptStatsProvider *obj,
2020                                Monitor *mon)
2021 {
2022     PnvMachineState *pnv = PNV_MACHINE(obj);
2023     int i;
2024     CPUState *cs;
2025 
2026     CPU_FOREACH(cs) {
2027         PowerPCCPU *cpu = POWERPC_CPU(cs);
2028 
2029         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
2030         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
2031                                                            mon);
2032     }
2033 
2034     for (i = 0; i < pnv->num_chips; i++) {
2035         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
2036     }
2037 }
2038 
2039 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2040                          uint8_t nvt_blk, uint32_t nvt_idx,
2041                          bool cam_ignore, uint8_t priority,
2042                          uint32_t logic_serv,
2043                          XiveTCTXMatch *match)
2044 {
2045     PnvMachineState *pnv = PNV_MACHINE(xfb);
2046     int total_count = 0;
2047     int i;
2048 
2049     for (i = 0; i < pnv->num_chips; i++) {
2050         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2051         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2052         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2053         int count;
2054 
2055         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2056                                priority, logic_serv, match);
2057 
2058         if (count < 0) {
2059             return count;
2060         }
2061 
2062         total_count += count;
2063     }
2064 
2065     return total_count;
2066 }
2067 
2068 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2069                                 uint8_t nvt_blk, uint32_t nvt_idx,
2070                                 bool cam_ignore, uint8_t priority,
2071                                 uint32_t logic_serv,
2072                                 XiveTCTXMatch *match)
2073 {
2074     PnvMachineState *pnv = PNV_MACHINE(xfb);
2075     int total_count = 0;
2076     int i;
2077 
2078     for (i = 0; i < pnv->num_chips; i++) {
2079         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2080         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2081         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2082         int count;
2083 
2084         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2085                                priority, logic_serv, match);
2086 
2087         if (count < 0) {
2088             return count;
2089         }
2090 
2091         total_count += count;
2092     }
2093 
2094     return total_count;
2095 }
2096 
2097 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2098 {
2099     MachineClass *mc = MACHINE_CLASS(oc);
2100     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2101     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2102     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2103 
2104     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2105     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2106 
2107     xic->icp_get = pnv_icp_get;
2108     xic->ics_get = pnv_ics_get;
2109     xic->ics_resend = pnv_ics_resend;
2110 
2111     pmc->compat = compat;
2112     pmc->compat_size = sizeof(compat);
2113 }
2114 
2115 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2116 {
2117     MachineClass *mc = MACHINE_CLASS(oc);
2118     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2119     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2120     static const char compat[] = "qemu,powernv9\0ibm,powernv";
2121 
2122     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2123     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
2124     xfc->match_nvt = pnv_match_nvt;
2125 
2126     mc->alias = "powernv";
2127 
2128     pmc->compat = compat;
2129     pmc->compat_size = sizeof(compat);
2130     pmc->dt_power_mgt = pnv_dt_power_mgt;
2131 }
2132 
2133 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2134 {
2135     MachineClass *mc = MACHINE_CLASS(oc);
2136     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2137     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2138     static const char compat[] = "qemu,powernv10\0ibm,powernv";
2139 
2140     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2141     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2142 
2143     pmc->compat = compat;
2144     pmc->compat_size = sizeof(compat);
2145     pmc->dt_power_mgt = pnv_dt_power_mgt;
2146 
2147     xfc->match_nvt = pnv10_xive_match_nvt;
2148 }
2149 
2150 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2151 {
2152     PnvMachineState *pnv = PNV_MACHINE(obj);
2153 
2154     return !!pnv->fw_load_addr;
2155 }
2156 
2157 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2158 {
2159     PnvMachineState *pnv = PNV_MACHINE(obj);
2160 
2161     if (value) {
2162         pnv->fw_load_addr = 0x8000000;
2163     }
2164 }
2165 
2166 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2167 {
2168     PowerPCCPU *cpu = POWERPC_CPU(cs);
2169     CPUPPCState *env = &cpu->env;
2170 
2171     cpu_synchronize_state(cs);
2172     ppc_cpu_do_system_reset(cs);
2173     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2174         /*
2175          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2176          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2177          * (PPC_BIT(43)).
2178          */
2179         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2180             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2181             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2182         }
2183     } else {
2184         /*
2185          * For non-powersave system resets, SRR1[42:45] are defined to be
2186          * implementation-dependent. The POWER9 User Manual specifies that
2187          * an external (SCOM driven, which may come from a BMC nmi command or
2188          * another CPU requesting a NMI IPI) system reset exception should be
2189          * 0b0010 (PPC_BIT(44)).
2190          */
2191         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2192     }
2193 }
2194 
2195 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2196 {
2197     CPUState *cs;
2198 
2199     CPU_FOREACH(cs) {
2200         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2201     }
2202 }
2203 
2204 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2205 {
2206     MachineClass *mc = MACHINE_CLASS(oc);
2207     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2208     NMIClass *nc = NMI_CLASS(oc);
2209 
2210     mc->desc = "IBM PowerNV (Non-Virtualized)";
2211     mc->init = pnv_init;
2212     mc->reset = pnv_reset;
2213     mc->max_cpus = MAX_CPUS;
2214     /* Pnv provides a AHCI device for storage */
2215     mc->block_default_type = IF_IDE;
2216     mc->no_parallel = 1;
2217     mc->default_boot_order = NULL;
2218     /*
2219      * RAM defaults to less than 2048 for 32-bit hosts, and large
2220      * enough to fit the maximum initrd size at it's load address
2221      */
2222     mc->default_ram_size = 1 * GiB;
2223     mc->default_ram_id = "pnv.ram";
2224     ispc->print_info = pnv_pic_print_info;
2225     nc->nmi_monitor_handler = pnv_nmi;
2226 
2227     object_class_property_add_bool(oc, "hb-mode",
2228                                    pnv_machine_get_hb, pnv_machine_set_hb);
2229     object_class_property_set_description(oc, "hb-mode",
2230                               "Use a hostboot like boot loader");
2231 }
2232 
2233 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2234     {                                             \
2235         .name          = type,                    \
2236         .class_init    = class_initfn,            \
2237         .parent        = TYPE_PNV8_CHIP,          \
2238     }
2239 
2240 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2241     {                                             \
2242         .name          = type,                    \
2243         .class_init    = class_initfn,            \
2244         .parent        = TYPE_PNV9_CHIP,          \
2245     }
2246 
2247 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2248     {                                              \
2249         .name          = type,                     \
2250         .class_init    = class_initfn,             \
2251         .parent        = TYPE_PNV10_CHIP,          \
2252     }
2253 
2254 static const TypeInfo types[] = {
2255     {
2256         .name          = MACHINE_TYPE_NAME("powernv10"),
2257         .parent        = TYPE_PNV_MACHINE,
2258         .class_init    = pnv_machine_power10_class_init,
2259         .interfaces = (InterfaceInfo[]) {
2260             { TYPE_XIVE_FABRIC },
2261             { },
2262         },
2263     },
2264     {
2265         .name          = MACHINE_TYPE_NAME("powernv9"),
2266         .parent        = TYPE_PNV_MACHINE,
2267         .class_init    = pnv_machine_power9_class_init,
2268         .interfaces = (InterfaceInfo[]) {
2269             { TYPE_XIVE_FABRIC },
2270             { },
2271         },
2272     },
2273     {
2274         .name          = MACHINE_TYPE_NAME("powernv8"),
2275         .parent        = TYPE_PNV_MACHINE,
2276         .class_init    = pnv_machine_power8_class_init,
2277         .interfaces = (InterfaceInfo[]) {
2278             { TYPE_XICS_FABRIC },
2279             { },
2280         },
2281     },
2282     {
2283         .name          = TYPE_PNV_MACHINE,
2284         .parent        = TYPE_MACHINE,
2285         .abstract       = true,
2286         .instance_size = sizeof(PnvMachineState),
2287         .class_init    = pnv_machine_class_init,
2288         .class_size    = sizeof(PnvMachineClass),
2289         .interfaces = (InterfaceInfo[]) {
2290             { TYPE_INTERRUPT_STATS_PROVIDER },
2291             { TYPE_NMI },
2292             { },
2293         },
2294     },
2295     {
2296         .name          = TYPE_PNV_CHIP,
2297         .parent        = TYPE_SYS_BUS_DEVICE,
2298         .class_init    = pnv_chip_class_init,
2299         .instance_size = sizeof(PnvChip),
2300         .class_size    = sizeof(PnvChipClass),
2301         .abstract      = true,
2302     },
2303 
2304     /*
2305      * P10 chip and variants
2306      */
2307     {
2308         .name          = TYPE_PNV10_CHIP,
2309         .parent        = TYPE_PNV_CHIP,
2310         .instance_init = pnv_chip_power10_instance_init,
2311         .instance_size = sizeof(Pnv10Chip),
2312     },
2313     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2314 
2315     /*
2316      * P9 chip and variants
2317      */
2318     {
2319         .name          = TYPE_PNV9_CHIP,
2320         .parent        = TYPE_PNV_CHIP,
2321         .instance_init = pnv_chip_power9_instance_init,
2322         .instance_size = sizeof(Pnv9Chip),
2323     },
2324     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2325 
2326     /*
2327      * P8 chip and variants
2328      */
2329     {
2330         .name          = TYPE_PNV8_CHIP,
2331         .parent        = TYPE_PNV_CHIP,
2332         .instance_init = pnv_chip_power8_instance_init,
2333         .instance_size = sizeof(Pnv8Chip),
2334     },
2335     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2336     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2337     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2338                           pnv_chip_power8nvl_class_init),
2339 };
2340 
2341 DEFINE_TYPES(types)
2342