xref: /qemu/hw/ppc/pnv.c (revision cdb1fba0)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/datadir.h"
23 #include "qemu/units.h"
24 #include "qemu/cutils.h"
25 #include "qapi/error.h"
26 #include "sysemu/qtest.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/numa.h"
29 #include "sysemu/reset.h"
30 #include "sysemu/runstate.h"
31 #include "sysemu/cpus.h"
32 #include "sysemu/device_tree.h"
33 #include "sysemu/hw_accel.h"
34 #include "target/ppc/cpu.h"
35 #include "hw/ppc/fdt.h"
36 #include "hw/ppc/ppc.h"
37 #include "hw/ppc/pnv.h"
38 #include "hw/ppc/pnv_core.h"
39 #include "hw/loader.h"
40 #include "hw/nmi.h"
41 #include "qapi/visitor.h"
42 #include "monitor/monitor.h"
43 #include "hw/intc/intc.h"
44 #include "hw/ipmi/ipmi.h"
45 #include "target/ppc/mmu-hash64.h"
46 #include "hw/pci/msi.h"
47 
48 #include "hw/ppc/xics.h"
49 #include "hw/qdev-properties.h"
50 #include "hw/ppc/pnv_xscom.h"
51 #include "hw/ppc/pnv_pnor.h"
52 
53 #include "hw/isa/isa.h"
54 #include "hw/char/serial.h"
55 #include "hw/rtc/mc146818rtc.h"
56 
57 #include <libfdt.h>
58 
59 #define FDT_MAX_SIZE            (1 * MiB)
60 
61 #define FW_FILE_NAME            "skiboot.lid"
62 #define FW_LOAD_ADDR            0x0
63 #define FW_MAX_SIZE             (16 * MiB)
64 
65 #define KERNEL_LOAD_ADDR        0x20000000
66 #define KERNEL_MAX_SIZE         (128 * MiB)
67 #define INITRD_LOAD_ADDR        0x28000000
68 #define INITRD_MAX_SIZE         (128 * MiB)
69 
70 static const char *pnv_chip_core_typename(const PnvChip *o)
71 {
72     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
73     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
74     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
75     const char *core_type = object_class_get_name(object_class_by_name(s));
76     g_free(s);
77     return core_type;
78 }
79 
80 /*
81  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
82  *     4 * 4 sockets * 12 cores * 8 threads = 1536
83  * Let's make it 2^11
84  */
85 #define MAX_CPUS                2048
86 
87 /*
88  * Memory nodes are created by hostboot, one for each range of memory
89  * that has a different "affinity". In practice, it means one range
90  * per chip.
91  */
92 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
93 {
94     char *mem_name;
95     uint64_t mem_reg_property[2];
96     int off;
97 
98     mem_reg_property[0] = cpu_to_be64(start);
99     mem_reg_property[1] = cpu_to_be64(size);
100 
101     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
102     off = fdt_add_subnode(fdt, 0, mem_name);
103     g_free(mem_name);
104 
105     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
106     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
107                        sizeof(mem_reg_property))));
108     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
109 }
110 
111 static int get_cpus_node(void *fdt)
112 {
113     int cpus_offset = fdt_path_offset(fdt, "/cpus");
114 
115     if (cpus_offset < 0) {
116         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
117         if (cpus_offset) {
118             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
119             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
120         }
121     }
122     _FDT(cpus_offset);
123     return cpus_offset;
124 }
125 
126 /*
127  * The PowerNV cores (and threads) need to use real HW ids and not an
128  * incremental index like it has been done on other platforms. This HW
129  * id is stored in the CPU PIR, it is used to create cpu nodes in the
130  * device tree, used in XSCOM to address cores and in interrupt
131  * servers.
132  */
133 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
134 {
135     PowerPCCPU *cpu = pc->threads[0];
136     CPUState *cs = CPU(cpu);
137     DeviceClass *dc = DEVICE_GET_CLASS(cs);
138     int smt_threads = CPU_CORE(pc)->nr_threads;
139     CPUPPCState *env = &cpu->env;
140     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
141     uint32_t servers_prop[smt_threads];
142     int i;
143     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
144                        0xffffffff, 0xffffffff};
145     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
146     uint32_t cpufreq = 1000000000;
147     uint32_t page_sizes_prop[64];
148     size_t page_sizes_prop_size;
149     const uint8_t pa_features[] = { 24, 0,
150                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
151                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
152                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
153                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
154     int offset;
155     char *nodename;
156     int cpus_offset = get_cpus_node(fdt);
157 
158     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
159     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
160     _FDT(offset);
161     g_free(nodename);
162 
163     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
164 
165     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
166     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
167     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
168 
169     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
170     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
171                             env->dcache_line_size)));
172     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
173                             env->dcache_line_size)));
174     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
175                             env->icache_line_size)));
176     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
177                             env->icache_line_size)));
178 
179     if (pcc->l1_dcache_size) {
180         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
181                                pcc->l1_dcache_size)));
182     } else {
183         warn_report("Unknown L1 dcache size for cpu");
184     }
185     if (pcc->l1_icache_size) {
186         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
187                                pcc->l1_icache_size)));
188     } else {
189         warn_report("Unknown L1 icache size for cpu");
190     }
191 
192     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
193     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
194     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
195                            cpu->hash64_opts->slb_size)));
196     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
197     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
198 
199     if (ppc_has_spr(cpu, SPR_PURR)) {
200         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
201     }
202 
203     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
204         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
205                            segs, sizeof(segs))));
206     }
207 
208     /*
209      * Advertise VMX/VSX (vector extensions) if available
210      *   0 / no property == no vector extensions
211      *   1               == VMX / Altivec available
212      *   2               == VSX available
213      */
214     if (env->insns_flags & PPC_ALTIVEC) {
215         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
216 
217         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
218     }
219 
220     /*
221      * Advertise DFP (Decimal Floating Point) if available
222      *   0 / no property == no DFP
223      *   1               == DFP available
224      */
225     if (env->insns_flags2 & PPC2_DFP) {
226         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
227     }
228 
229     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
230                                                       sizeof(page_sizes_prop));
231     if (page_sizes_prop_size) {
232         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
233                            page_sizes_prop, page_sizes_prop_size)));
234     }
235 
236     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
237                        pa_features, sizeof(pa_features))));
238 
239     /* Build interrupt servers properties */
240     for (i = 0; i < smt_threads; i++) {
241         servers_prop[i] = cpu_to_be32(pc->pir + i);
242     }
243     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
244                        servers_prop, sizeof(servers_prop))));
245 }
246 
247 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
248                        uint32_t nr_threads)
249 {
250     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
251     char *name;
252     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
253     uint32_t irange[2], i, rsize;
254     uint64_t *reg;
255     int offset;
256 
257     irange[0] = cpu_to_be32(pir);
258     irange[1] = cpu_to_be32(nr_threads);
259 
260     rsize = sizeof(uint64_t) * 2 * nr_threads;
261     reg = g_malloc(rsize);
262     for (i = 0; i < nr_threads; i++) {
263         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
264         reg[i * 2 + 1] = cpu_to_be64(0x1000);
265     }
266 
267     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
268     offset = fdt_add_subnode(fdt, 0, name);
269     _FDT(offset);
270     g_free(name);
271 
272     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
273     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
274     _FDT((fdt_setprop_string(fdt, offset, "device_type",
275                               "PowerPC-External-Interrupt-Presentation")));
276     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
277     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
278                        irange, sizeof(irange))));
279     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
280     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
281     g_free(reg);
282 }
283 
284 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
285 {
286     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
287     int i;
288 
289     pnv_dt_xscom(chip, fdt, 0,
290                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
291                  cpu_to_be64(PNV_XSCOM_SIZE),
292                  compat, sizeof(compat));
293 
294     for (i = 0; i < chip->nr_cores; i++) {
295         PnvCore *pnv_core = chip->cores[i];
296 
297         pnv_dt_core(chip, pnv_core, fdt);
298 
299         /* Interrupt Control Presenters (ICP). One per core. */
300         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
301     }
302 
303     if (chip->ram_size) {
304         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
305     }
306 }
307 
308 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
309 {
310     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
311     int i;
312 
313     pnv_dt_xscom(chip, fdt, 0,
314                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
315                  cpu_to_be64(PNV9_XSCOM_SIZE),
316                  compat, sizeof(compat));
317 
318     for (i = 0; i < chip->nr_cores; i++) {
319         PnvCore *pnv_core = chip->cores[i];
320 
321         pnv_dt_core(chip, pnv_core, fdt);
322     }
323 
324     if (chip->ram_size) {
325         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
326     }
327 
328     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
329 }
330 
331 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
332 {
333     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
334     int i;
335 
336     pnv_dt_xscom(chip, fdt, 0,
337                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
338                  cpu_to_be64(PNV10_XSCOM_SIZE),
339                  compat, sizeof(compat));
340 
341     for (i = 0; i < chip->nr_cores; i++) {
342         PnvCore *pnv_core = chip->cores[i];
343 
344         pnv_dt_core(chip, pnv_core, fdt);
345     }
346 
347     if (chip->ram_size) {
348         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
349     }
350 
351     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
352 }
353 
354 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
355 {
356     uint32_t io_base = d->ioport_id;
357     uint32_t io_regs[] = {
358         cpu_to_be32(1),
359         cpu_to_be32(io_base),
360         cpu_to_be32(2)
361     };
362     char *name;
363     int node;
364 
365     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
366     node = fdt_add_subnode(fdt, lpc_off, name);
367     _FDT(node);
368     g_free(name);
369 
370     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
371     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
372 }
373 
374 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
375 {
376     const char compatible[] = "ns16550\0pnpPNP,501";
377     uint32_t io_base = d->ioport_id;
378     uint32_t io_regs[] = {
379         cpu_to_be32(1),
380         cpu_to_be32(io_base),
381         cpu_to_be32(8)
382     };
383     char *name;
384     int node;
385 
386     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
387     node = fdt_add_subnode(fdt, lpc_off, name);
388     _FDT(node);
389     g_free(name);
390 
391     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
392     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
393                       sizeof(compatible))));
394 
395     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
396     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
397     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
398     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
399                            fdt_get_phandle(fdt, lpc_off))));
400 
401     /* This is needed by Linux */
402     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
403 }
404 
405 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
406 {
407     const char compatible[] = "bt\0ipmi-bt";
408     uint32_t io_base;
409     uint32_t io_regs[] = {
410         cpu_to_be32(1),
411         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
412         cpu_to_be32(3)
413     };
414     uint32_t irq;
415     char *name;
416     int node;
417 
418     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
419     io_regs[1] = cpu_to_be32(io_base);
420 
421     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
422 
423     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
424     node = fdt_add_subnode(fdt, lpc_off, name);
425     _FDT(node);
426     g_free(name);
427 
428     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
429     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
430                       sizeof(compatible))));
431 
432     /* Mark it as reserved to avoid Linux trying to claim it */
433     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
434     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
435     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
436                            fdt_get_phandle(fdt, lpc_off))));
437 }
438 
439 typedef struct ForeachPopulateArgs {
440     void *fdt;
441     int offset;
442 } ForeachPopulateArgs;
443 
444 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
445 {
446     ForeachPopulateArgs *args = opaque;
447     ISADevice *d = ISA_DEVICE(dev);
448 
449     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
450         pnv_dt_rtc(d, args->fdt, args->offset);
451     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
452         pnv_dt_serial(d, args->fdt, args->offset);
453     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
454         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
455     } else {
456         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
457                      d->ioport_id);
458     }
459 
460     return 0;
461 }
462 
463 /*
464  * The default LPC bus of a multichip system is on chip 0. It's
465  * recognized by the firmware (skiboot) using a "primary" property.
466  */
467 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
468 {
469     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
470     ForeachPopulateArgs args = {
471         .fdt = fdt,
472         .offset = isa_offset,
473     };
474     uint32_t phandle;
475 
476     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
477 
478     phandle = qemu_fdt_alloc_phandle(fdt);
479     assert(phandle > 0);
480     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
481 
482     /*
483      * ISA devices are not necessarily parented to the ISA bus so we
484      * can not use object_child_foreach()
485      */
486     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
487                        &args);
488 }
489 
490 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
491 {
492     int off;
493 
494     off = fdt_add_subnode(fdt, 0, "ibm,opal");
495     off = fdt_add_subnode(fdt, off, "power-mgt");
496 
497     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
498 }
499 
500 static void *pnv_dt_create(MachineState *machine)
501 {
502     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
503     PnvMachineState *pnv = PNV_MACHINE(machine);
504     void *fdt;
505     char *buf;
506     int off;
507     int i;
508 
509     fdt = g_malloc0(FDT_MAX_SIZE);
510     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
511 
512     /* /qemu node */
513     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
514 
515     /* Root node */
516     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
517     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
518     _FDT((fdt_setprop_string(fdt, 0, "model",
519                              "IBM PowerNV (emulated by qemu)")));
520     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
521 
522     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
523     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
524     if (qemu_uuid_set) {
525         _FDT((fdt_property_string(fdt, "system-id", buf)));
526     }
527     g_free(buf);
528 
529     off = fdt_add_subnode(fdt, 0, "chosen");
530     if (machine->kernel_cmdline) {
531         _FDT((fdt_setprop_string(fdt, off, "bootargs",
532                                  machine->kernel_cmdline)));
533     }
534 
535     if (pnv->initrd_size) {
536         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
537         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
538 
539         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
540                                &start_prop, sizeof(start_prop))));
541         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
542                                &end_prop, sizeof(end_prop))));
543     }
544 
545     /* Populate device tree for each chip */
546     for (i = 0; i < pnv->num_chips; i++) {
547         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
548     }
549 
550     /* Populate ISA devices on chip 0 */
551     pnv_dt_isa(pnv, fdt);
552 
553     if (pnv->bmc) {
554         pnv_dt_bmc_sensors(pnv->bmc, fdt);
555     }
556 
557     /* Create an extra node for power management on machines that support it */
558     if (pmc->dt_power_mgt) {
559         pmc->dt_power_mgt(pnv, fdt);
560     }
561 
562     return fdt;
563 }
564 
565 static void pnv_powerdown_notify(Notifier *n, void *opaque)
566 {
567     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
568 
569     if (pnv->bmc) {
570         pnv_bmc_powerdown(pnv->bmc);
571     }
572 }
573 
574 static void pnv_reset(MachineState *machine)
575 {
576     PnvMachineState *pnv = PNV_MACHINE(machine);
577     IPMIBmc *bmc;
578     void *fdt;
579 
580     qemu_devices_reset();
581 
582     /*
583      * The machine should provide by default an internal BMC simulator.
584      * If not, try to use the BMC device that was provided on the command
585      * line.
586      */
587     bmc = pnv_bmc_find(&error_fatal);
588     if (!pnv->bmc) {
589         if (!bmc) {
590             if (!qtest_enabled()) {
591                 warn_report("machine has no BMC device. Use '-device "
592                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
593                             "to define one");
594             }
595         } else {
596             pnv_bmc_set_pnor(bmc, pnv->pnor);
597             pnv->bmc = bmc;
598         }
599     }
600 
601     fdt = pnv_dt_create(machine);
602 
603     /* Pack resulting tree */
604     _FDT((fdt_pack(fdt)));
605 
606     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
607     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
608 
609     g_free(fdt);
610 }
611 
612 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
613 {
614     Pnv8Chip *chip8 = PNV8_CHIP(chip);
615     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
616 }
617 
618 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
619 {
620     Pnv8Chip *chip8 = PNV8_CHIP(chip);
621     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
622 }
623 
624 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
625 {
626     Pnv9Chip *chip9 = PNV9_CHIP(chip);
627     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
628 }
629 
630 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
631 {
632     Pnv10Chip *chip10 = PNV10_CHIP(chip);
633     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
634 }
635 
636 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
637 {
638     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
639 }
640 
641 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
642 {
643     Pnv8Chip *chip8 = PNV8_CHIP(chip);
644     int i;
645 
646     ics_pic_print_info(&chip8->psi.ics, mon);
647     for (i = 0; i < chip->num_phbs; i++) {
648         pnv_phb3_msi_pic_print_info(&chip8->phbs[i].msis, mon);
649         ics_pic_print_info(&chip8->phbs[i].lsis, mon);
650     }
651 }
652 
653 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
654 {
655     Pnv9Chip *chip9 = PNV9_CHIP(chip);
656     int i, j;
657 
658     pnv_xive_pic_print_info(&chip9->xive, mon);
659     pnv_psi_pic_print_info(&chip9->psi, mon);
660 
661     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
662         PnvPhb4PecState *pec = &chip9->pecs[i];
663         for (j = 0; j < pec->num_stacks; j++) {
664             pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon);
665         }
666     }
667 }
668 
669 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
670                                                 uint32_t core_id)
671 {
672     return PNV_XSCOM_EX_BASE(core_id);
673 }
674 
675 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
676                                                 uint32_t core_id)
677 {
678     return PNV9_XSCOM_EC_BASE(core_id);
679 }
680 
681 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
682                                                  uint32_t core_id)
683 {
684     return PNV10_XSCOM_EC_BASE(core_id);
685 }
686 
687 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
688 {
689     PowerPCCPUClass *ppc_default =
690         POWERPC_CPU_CLASS(object_class_by_name(default_type));
691     PowerPCCPUClass *ppc =
692         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
693 
694     return ppc_default->pvr_match(ppc_default, ppc->pvr);
695 }
696 
697 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
698 {
699     ISADevice *dev = isa_new("isa-ipmi-bt");
700 
701     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
702     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
703     isa_realize_and_unref(dev, bus, &error_fatal);
704 }
705 
706 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
707 {
708     Pnv10Chip *chip10 = PNV10_CHIP(chip);
709 
710     pnv_psi_pic_print_info(&chip10->psi, mon);
711 }
712 
713 /* Always give the first 1GB to chip 0 else we won't boot */
714 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
715 {
716     MachineState *machine = MACHINE(pnv);
717     uint64_t ram_per_chip;
718 
719     assert(machine->ram_size >= 1 * GiB);
720 
721     ram_per_chip = machine->ram_size / pnv->num_chips;
722     if (ram_per_chip >= 1 * GiB) {
723         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
724     }
725 
726     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
727     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
728 }
729 
730 static void pnv_init(MachineState *machine)
731 {
732     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
733     PnvMachineState *pnv = PNV_MACHINE(machine);
734     MachineClass *mc = MACHINE_GET_CLASS(machine);
735     char *fw_filename;
736     long fw_size;
737     uint64_t chip_ram_start = 0;
738     int i;
739     char *chip_typename;
740     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
741     DeviceState *dev;
742 
743     /* allocate RAM */
744     if (machine->ram_size < mc->default_ram_size) {
745         char *sz = size_to_str(mc->default_ram_size);
746         error_report("Invalid RAM size, should be bigger than %s", sz);
747         g_free(sz);
748         exit(EXIT_FAILURE);
749     }
750     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
751 
752     /*
753      * Create our simple PNOR device
754      */
755     dev = qdev_new(TYPE_PNV_PNOR);
756     if (pnor) {
757         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
758     }
759     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
760     pnv->pnor = PNV_PNOR(dev);
761 
762     /* load skiboot firmware  */
763     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
764     if (!fw_filename) {
765         error_report("Could not find OPAL firmware '%s'", bios_name);
766         exit(1);
767     }
768 
769     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
770     if (fw_size < 0) {
771         error_report("Could not load OPAL firmware '%s'", fw_filename);
772         exit(1);
773     }
774     g_free(fw_filename);
775 
776     /* load kernel */
777     if (machine->kernel_filename) {
778         long kernel_size;
779 
780         kernel_size = load_image_targphys(machine->kernel_filename,
781                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
782         if (kernel_size < 0) {
783             error_report("Could not load kernel '%s'",
784                          machine->kernel_filename);
785             exit(1);
786         }
787     }
788 
789     /* load initrd */
790     if (machine->initrd_filename) {
791         pnv->initrd_base = INITRD_LOAD_ADDR;
792         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
793                                   pnv->initrd_base, INITRD_MAX_SIZE);
794         if (pnv->initrd_size < 0) {
795             error_report("Could not load initial ram disk '%s'",
796                          machine->initrd_filename);
797             exit(1);
798         }
799     }
800 
801     /* MSIs are supported on this platform */
802     msi_nonbroken = true;
803 
804     /*
805      * Check compatibility of the specified CPU with the machine
806      * default.
807      */
808     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
809         error_report("invalid CPU model '%s' for %s machine",
810                      machine->cpu_type, mc->name);
811         exit(1);
812     }
813 
814     /* Create the processor chips */
815     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
816     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
817                                     i, machine->cpu_type);
818     if (!object_class_by_name(chip_typename)) {
819         error_report("invalid chip model '%.*s' for %s machine",
820                      i, machine->cpu_type, mc->name);
821         exit(1);
822     }
823 
824     pnv->num_chips =
825         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
826     /*
827      * TODO: should we decide on how many chips we can create based
828      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
829      */
830     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
831         error_report("invalid number of chips: '%d'", pnv->num_chips);
832         error_printf(
833             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
834         exit(1);
835     }
836 
837     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
838     for (i = 0; i < pnv->num_chips; i++) {
839         char chip_name[32];
840         Object *chip = OBJECT(qdev_new(chip_typename));
841         int chip_id = i;
842         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, chip_id);
843 
844         pnv->chips[i] = PNV_CHIP(chip);
845 
846         /* Distribute RAM among the chips  */
847         object_property_set_int(chip, "ram-start", chip_ram_start,
848                                 &error_fatal);
849         object_property_set_int(chip, "ram-size", chip_ram_size,
850                                 &error_fatal);
851         chip_ram_start += chip_ram_size;
852 
853         snprintf(chip_name, sizeof(chip_name), "chip[%d]", chip_id);
854         object_property_add_child(OBJECT(pnv), chip_name, chip);
855         object_property_set_int(chip, "chip-id", chip_id, &error_fatal);
856         object_property_set_int(chip, "nr-cores", machine->smp.cores,
857                                 &error_fatal);
858         object_property_set_int(chip, "nr-threads", machine->smp.threads,
859                                 &error_fatal);
860         /*
861          * The POWER8 machine use the XICS interrupt interface.
862          * Propagate the XICS fabric to the chip and its controllers.
863          */
864         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
865             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
866         }
867         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
868             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
869                                      &error_abort);
870         }
871         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
872     }
873     g_free(chip_typename);
874 
875     /* Instantiate ISA bus on chip 0 */
876     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
877 
878     /* Create serial port */
879     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
880 
881     /* Create an RTC ISA device too */
882     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
883 
884     /*
885      * Create the machine BMC simulator and the IPMI BT device for
886      * communication with the BMC
887      */
888     if (defaults_enabled()) {
889         pnv->bmc = pnv_bmc_create(pnv->pnor);
890         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
891     }
892 
893     /*
894      * The PNOR is mapped on the LPC FW address space by the BMC.
895      * Since we can not reach the remote BMC machine with LPC memops,
896      * map it always for now.
897      */
898     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
899                                 &pnv->pnor->mmio);
900 
901     /*
902      * OpenPOWER systems use a IPMI SEL Event message to notify the
903      * host to powerdown
904      */
905     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
906     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
907 }
908 
909 /*
910  *    0:21  Reserved - Read as zeros
911  *   22:24  Chip ID
912  *   25:28  Core number
913  *   29:31  Thread ID
914  */
915 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
916 {
917     return (chip->chip_id << 7) | (core_id << 3);
918 }
919 
920 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
921                                         Error **errp)
922 {
923     Pnv8Chip *chip8 = PNV8_CHIP(chip);
924     Error *local_err = NULL;
925     Object *obj;
926     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
927 
928     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
929     if (local_err) {
930         error_propagate(errp, local_err);
931         return;
932     }
933 
934     pnv_cpu->intc = obj;
935 }
936 
937 
938 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
939 {
940     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
941 
942     icp_reset(ICP(pnv_cpu->intc));
943 }
944 
945 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
946 {
947     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
948 
949     icp_destroy(ICP(pnv_cpu->intc));
950     pnv_cpu->intc = NULL;
951 }
952 
953 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
954                                             Monitor *mon)
955 {
956     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
957 }
958 
959 /*
960  *    0:48  Reserved - Read as zeroes
961  *   49:52  Node ID
962  *   53:55  Chip ID
963  *   56     Reserved - Read as zero
964  *   57:61  Core number
965  *   62:63  Thread ID
966  *
967  * We only care about the lower bits. uint32_t is fine for the moment.
968  */
969 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
970 {
971     return (chip->chip_id << 8) | (core_id << 2);
972 }
973 
974 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
975 {
976     return (chip->chip_id << 8) | (core_id << 2);
977 }
978 
979 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
980                                         Error **errp)
981 {
982     Pnv9Chip *chip9 = PNV9_CHIP(chip);
983     Error *local_err = NULL;
984     Object *obj;
985     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
986 
987     /*
988      * The core creates its interrupt presenter but the XIVE interrupt
989      * controller object is initialized afterwards. Hopefully, it's
990      * only used at runtime.
991      */
992     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
993                            &local_err);
994     if (local_err) {
995         error_propagate(errp, local_err);
996         return;
997     }
998 
999     pnv_cpu->intc = obj;
1000 }
1001 
1002 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1003 {
1004     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1005 
1006     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1007 }
1008 
1009 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1010 {
1011     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1012 
1013     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1014     pnv_cpu->intc = NULL;
1015 }
1016 
1017 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1018                                             Monitor *mon)
1019 {
1020     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1021 }
1022 
1023 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1024                                         Error **errp)
1025 {
1026     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1027 
1028     /* Will be defined when the interrupt controller is */
1029     pnv_cpu->intc = NULL;
1030 }
1031 
1032 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1033 {
1034     ;
1035 }
1036 
1037 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1038 {
1039     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1040 
1041     pnv_cpu->intc = NULL;
1042 }
1043 
1044 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1045                                              Monitor *mon)
1046 {
1047 }
1048 
1049 /*
1050  * Allowed core identifiers on a POWER8 Processor Chip :
1051  *
1052  * <EX0 reserved>
1053  *  EX1  - Venice only
1054  *  EX2  - Venice only
1055  *  EX3  - Venice only
1056  *  EX4
1057  *  EX5
1058  *  EX6
1059  * <EX7,8 reserved> <reserved>
1060  *  EX9  - Venice only
1061  *  EX10 - Venice only
1062  *  EX11 - Venice only
1063  *  EX12
1064  *  EX13
1065  *  EX14
1066  * <EX15 reserved>
1067  */
1068 #define POWER8E_CORE_MASK  (0x7070ull)
1069 #define POWER8_CORE_MASK   (0x7e7eull)
1070 
1071 /*
1072  * POWER9 has 24 cores, ids starting at 0x0
1073  */
1074 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1075 
1076 
1077 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1078 
1079 static void pnv_chip_power8_instance_init(Object *obj)
1080 {
1081     PnvChip *chip = PNV_CHIP(obj);
1082     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1083     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1084     int i;
1085 
1086     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1087                              (Object **)&chip8->xics,
1088                              object_property_allow_set_link,
1089                              OBJ_PROP_LINK_STRONG);
1090 
1091     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1092 
1093     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1094 
1095     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1096 
1097     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1098 
1099     for (i = 0; i < pcc->num_phbs; i++) {
1100         object_initialize_child(obj, "phb[*]", &chip8->phbs[i], TYPE_PNV_PHB3);
1101     }
1102 
1103     /*
1104      * Number of PHBs is the chip default
1105      */
1106     chip->num_phbs = pcc->num_phbs;
1107 }
1108 
1109 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1110  {
1111     PnvChip *chip = PNV_CHIP(chip8);
1112     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1113     int i, j;
1114     char *name;
1115 
1116     name = g_strdup_printf("icp-%x", chip->chip_id);
1117     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1118     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1119     g_free(name);
1120 
1121     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1122 
1123     /* Map the ICP registers for each thread */
1124     for (i = 0; i < chip->nr_cores; i++) {
1125         PnvCore *pnv_core = chip->cores[i];
1126         int core_hwid = CPU_CORE(pnv_core)->core_id;
1127 
1128         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1129             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1130             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1131 
1132             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1133                                         &icp->mmio);
1134         }
1135     }
1136 }
1137 
1138 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1139 {
1140     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1141     PnvChip *chip = PNV_CHIP(dev);
1142     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1143     Pnv8Psi *psi8 = &chip8->psi;
1144     Error *local_err = NULL;
1145     int i;
1146 
1147     assert(chip8->xics);
1148 
1149     /* XSCOM bridge is first */
1150     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1151     if (local_err) {
1152         error_propagate(errp, local_err);
1153         return;
1154     }
1155     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1156 
1157     pcc->parent_realize(dev, &local_err);
1158     if (local_err) {
1159         error_propagate(errp, local_err);
1160         return;
1161     }
1162 
1163     /* Processor Service Interface (PSI) Host Bridge */
1164     object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip),
1165                             &error_fatal);
1166     object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS,
1167                              OBJECT(chip8->xics), &error_abort);
1168     if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) {
1169         return;
1170     }
1171     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1172                             &PNV_PSI(psi8)->xscom_regs);
1173 
1174     /* Create LPC controller */
1175     object_property_set_link(OBJECT(&chip8->lpc), "psi", OBJECT(&chip8->psi),
1176                              &error_abort);
1177     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1178     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1179 
1180     chip->fw_mr = &chip8->lpc.isa_fw;
1181     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1182                                             (uint64_t) PNV_XSCOM_BASE(chip),
1183                                             PNV_XSCOM_LPC_BASE);
1184 
1185     /*
1186      * Interrupt Management Area. This is the memory region holding
1187      * all the Interrupt Control Presenter (ICP) registers
1188      */
1189     pnv_chip_icp_realize(chip8, &local_err);
1190     if (local_err) {
1191         error_propagate(errp, local_err);
1192         return;
1193     }
1194 
1195     /* Create the simplified OCC model */
1196     object_property_set_link(OBJECT(&chip8->occ), "psi", OBJECT(&chip8->psi),
1197                              &error_abort);
1198     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1199         return;
1200     }
1201     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1202 
1203     /* OCC SRAM model */
1204     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1205                                 &chip8->occ.sram_regs);
1206 
1207     /* HOMER */
1208     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1209                              &error_abort);
1210     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1211         return;
1212     }
1213     /* Homer Xscom region */
1214     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1215 
1216     /* Homer mmio region */
1217     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1218                                 &chip8->homer.regs);
1219 
1220     /* PHB3 controllers */
1221     for (i = 0; i < chip->num_phbs; i++) {
1222         PnvPHB3 *phb = &chip8->phbs[i];
1223         PnvPBCQState *pbcq = &phb->pbcq;
1224 
1225         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1226         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1227                                 &error_fatal);
1228         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1229             return;
1230         }
1231 
1232         /* Populate the XSCOM address space. */
1233         pnv_xscom_add_subregion(chip,
1234                                 PNV_XSCOM_PBCQ_NEST_BASE + 0x400 * phb->phb_id,
1235                                 &pbcq->xscom_nest_regs);
1236         pnv_xscom_add_subregion(chip,
1237                                 PNV_XSCOM_PBCQ_PCI_BASE + 0x400 * phb->phb_id,
1238                                 &pbcq->xscom_pci_regs);
1239         pnv_xscom_add_subregion(chip,
1240                                 PNV_XSCOM_PBCQ_SPCI_BASE + 0x040 * phb->phb_id,
1241                                 &pbcq->xscom_spci_regs);
1242     }
1243 }
1244 
1245 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1246 {
1247     addr &= (PNV_XSCOM_SIZE - 1);
1248     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1249 }
1250 
1251 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1252 {
1253     DeviceClass *dc = DEVICE_CLASS(klass);
1254     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1255 
1256     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1257     k->cores_mask = POWER8E_CORE_MASK;
1258     k->num_phbs = 3;
1259     k->core_pir = pnv_chip_core_pir_p8;
1260     k->intc_create = pnv_chip_power8_intc_create;
1261     k->intc_reset = pnv_chip_power8_intc_reset;
1262     k->intc_destroy = pnv_chip_power8_intc_destroy;
1263     k->intc_print_info = pnv_chip_power8_intc_print_info;
1264     k->isa_create = pnv_chip_power8_isa_create;
1265     k->dt_populate = pnv_chip_power8_dt_populate;
1266     k->pic_print_info = pnv_chip_power8_pic_print_info;
1267     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1268     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1269     dc->desc = "PowerNV Chip POWER8E";
1270 
1271     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1272                                     &k->parent_realize);
1273 }
1274 
1275 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1276 {
1277     DeviceClass *dc = DEVICE_CLASS(klass);
1278     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1279 
1280     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1281     k->cores_mask = POWER8_CORE_MASK;
1282     k->num_phbs = 3;
1283     k->core_pir = pnv_chip_core_pir_p8;
1284     k->intc_create = pnv_chip_power8_intc_create;
1285     k->intc_reset = pnv_chip_power8_intc_reset;
1286     k->intc_destroy = pnv_chip_power8_intc_destroy;
1287     k->intc_print_info = pnv_chip_power8_intc_print_info;
1288     k->isa_create = pnv_chip_power8_isa_create;
1289     k->dt_populate = pnv_chip_power8_dt_populate;
1290     k->pic_print_info = pnv_chip_power8_pic_print_info;
1291     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1292     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1293     dc->desc = "PowerNV Chip POWER8";
1294 
1295     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1296                                     &k->parent_realize);
1297 }
1298 
1299 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1300 {
1301     DeviceClass *dc = DEVICE_CLASS(klass);
1302     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1303 
1304     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1305     k->cores_mask = POWER8_CORE_MASK;
1306     k->num_phbs = 3;
1307     k->core_pir = pnv_chip_core_pir_p8;
1308     k->intc_create = pnv_chip_power8_intc_create;
1309     k->intc_reset = pnv_chip_power8_intc_reset;
1310     k->intc_destroy = pnv_chip_power8_intc_destroy;
1311     k->intc_print_info = pnv_chip_power8_intc_print_info;
1312     k->isa_create = pnv_chip_power8nvl_isa_create;
1313     k->dt_populate = pnv_chip_power8_dt_populate;
1314     k->pic_print_info = pnv_chip_power8_pic_print_info;
1315     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1316     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1317     dc->desc = "PowerNV Chip POWER8NVL";
1318 
1319     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1320                                     &k->parent_realize);
1321 }
1322 
1323 static void pnv_chip_power9_instance_init(Object *obj)
1324 {
1325     PnvChip *chip = PNV_CHIP(obj);
1326     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1327     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1328     int i;
1329 
1330     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1331     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1332                               "xive-fabric");
1333 
1334     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1335 
1336     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1337 
1338     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1339 
1340     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1341 
1342     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1343         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1344                                 TYPE_PNV_PHB4_PEC);
1345     }
1346 
1347     /*
1348      * Number of PHBs is the chip default
1349      */
1350     chip->num_phbs = pcc->num_phbs;
1351 }
1352 
1353 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1354 {
1355     PnvChip *chip = PNV_CHIP(chip9);
1356     int i;
1357 
1358     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1359     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1360 
1361     for (i = 0; i < chip9->nr_quads; i++) {
1362         char eq_name[32];
1363         PnvQuad *eq = &chip9->quads[i];
1364         PnvCore *pnv_core = chip->cores[i * 4];
1365         int core_id = CPU_CORE(pnv_core)->core_id;
1366 
1367         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1368         object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1369                                            sizeof(*eq), TYPE_PNV_QUAD,
1370                                            &error_fatal, NULL);
1371 
1372         object_property_set_int(OBJECT(eq), "id", core_id, &error_fatal);
1373         qdev_realize(DEVICE(eq), NULL, &error_fatal);
1374 
1375         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1376                                 &eq->xscom_regs);
1377     }
1378 }
1379 
1380 static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp)
1381 {
1382     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1383     int i, j;
1384     int phb_id = 0;
1385 
1386     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1387         PnvPhb4PecState *pec = &chip9->pecs[i];
1388         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1389         uint32_t pec_nest_base;
1390         uint32_t pec_pci_base;
1391 
1392         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1393         /*
1394          * PEC0 -> 1 stack
1395          * PEC1 -> 2 stacks
1396          * PEC2 -> 3 stacks
1397          */
1398         object_property_set_int(OBJECT(pec), "num-stacks", i + 1,
1399                                 &error_fatal);
1400         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1401                                 &error_fatal);
1402         object_property_set_link(OBJECT(pec), "system-memory",
1403                                  OBJECT(get_system_memory()), &error_abort);
1404         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1405             return;
1406         }
1407 
1408         pec_nest_base = pecc->xscom_nest_base(pec);
1409         pec_pci_base = pecc->xscom_pci_base(pec);
1410 
1411         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1412         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1413 
1414         for (j = 0; j < pec->num_stacks && phb_id < chip->num_phbs;
1415              j++, phb_id++) {
1416             PnvPhb4PecStack *stack = &pec->stacks[j];
1417             Object *obj = OBJECT(&stack->phb);
1418 
1419             object_property_set_int(obj, "index", phb_id, &error_fatal);
1420             object_property_set_int(obj, "chip-id", chip->chip_id,
1421                                     &error_fatal);
1422             object_property_set_int(obj, "version", PNV_PHB4_VERSION,
1423                                     &error_fatal);
1424             object_property_set_int(obj, "device-id", PNV_PHB4_DEVICE_ID,
1425                                     &error_fatal);
1426             object_property_set_link(obj, "stack", OBJECT(stack),
1427                                      &error_abort);
1428             if (!sysbus_realize(SYS_BUS_DEVICE(obj), errp)) {
1429                 return;
1430             }
1431 
1432             /* Populate the XSCOM address space. */
1433             pnv_xscom_add_subregion(chip,
1434                                    pec_nest_base + 0x40 * (stack->stack_no + 1),
1435                                    &stack->nest_regs_mr);
1436             pnv_xscom_add_subregion(chip,
1437                                     pec_pci_base + 0x40 * (stack->stack_no + 1),
1438                                     &stack->pci_regs_mr);
1439             pnv_xscom_add_subregion(chip,
1440                                     pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1441                                     0x40 * stack->stack_no,
1442                                     &stack->phb_regs_mr);
1443         }
1444     }
1445 }
1446 
1447 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1448 {
1449     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1450     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1451     PnvChip *chip = PNV_CHIP(dev);
1452     Pnv9Psi *psi9 = &chip9->psi;
1453     Error *local_err = NULL;
1454 
1455     /* XSCOM bridge is first */
1456     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1457     if (local_err) {
1458         error_propagate(errp, local_err);
1459         return;
1460     }
1461     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1462 
1463     pcc->parent_realize(dev, &local_err);
1464     if (local_err) {
1465         error_propagate(errp, local_err);
1466         return;
1467     }
1468 
1469     pnv_chip_quad_realize(chip9, &local_err);
1470     if (local_err) {
1471         error_propagate(errp, local_err);
1472         return;
1473     }
1474 
1475     /* XIVE interrupt controller (POWER9) */
1476     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1477                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1478     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1479                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1480     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1481                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1482     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1483                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1484     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1485                              &error_abort);
1486     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1487         return;
1488     }
1489     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1490                             &chip9->xive.xscom_regs);
1491 
1492     /* Processor Service Interface (PSI) Host Bridge */
1493     object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip),
1494                             &error_fatal);
1495     if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) {
1496         return;
1497     }
1498     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1499                             &PNV_PSI(psi9)->xscom_regs);
1500 
1501     /* LPC */
1502     object_property_set_link(OBJECT(&chip9->lpc), "psi", OBJECT(&chip9->psi),
1503                              &error_abort);
1504     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1505         return;
1506     }
1507     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1508                                 &chip9->lpc.xscom_regs);
1509 
1510     chip->fw_mr = &chip9->lpc.isa_fw;
1511     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1512                                             (uint64_t) PNV9_LPCM_BASE(chip));
1513 
1514     /* Create the simplified OCC model */
1515     object_property_set_link(OBJECT(&chip9->occ), "psi", OBJECT(&chip9->psi),
1516                              &error_abort);
1517     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1518         return;
1519     }
1520     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1521 
1522     /* OCC SRAM model */
1523     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1524                                 &chip9->occ.sram_regs);
1525 
1526     /* HOMER */
1527     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1528                              &error_abort);
1529     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1530         return;
1531     }
1532     /* Homer Xscom region */
1533     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1534 
1535     /* Homer mmio region */
1536     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1537                                 &chip9->homer.regs);
1538 
1539     /* PHBs */
1540     pnv_chip_power9_phb_realize(chip, &local_err);
1541     if (local_err) {
1542         error_propagate(errp, local_err);
1543         return;
1544     }
1545 }
1546 
1547 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1548 {
1549     addr &= (PNV9_XSCOM_SIZE - 1);
1550     return addr >> 3;
1551 }
1552 
1553 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1554 {
1555     DeviceClass *dc = DEVICE_CLASS(klass);
1556     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1557 
1558     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1559     k->cores_mask = POWER9_CORE_MASK;
1560     k->core_pir = pnv_chip_core_pir_p9;
1561     k->intc_create = pnv_chip_power9_intc_create;
1562     k->intc_reset = pnv_chip_power9_intc_reset;
1563     k->intc_destroy = pnv_chip_power9_intc_destroy;
1564     k->intc_print_info = pnv_chip_power9_intc_print_info;
1565     k->isa_create = pnv_chip_power9_isa_create;
1566     k->dt_populate = pnv_chip_power9_dt_populate;
1567     k->pic_print_info = pnv_chip_power9_pic_print_info;
1568     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1569     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1570     dc->desc = "PowerNV Chip POWER9";
1571     k->num_phbs = 6;
1572 
1573     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1574                                     &k->parent_realize);
1575 }
1576 
1577 static void pnv_chip_power10_instance_init(Object *obj)
1578 {
1579     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1580 
1581     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1582     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1583 }
1584 
1585 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1586 {
1587     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1588     PnvChip *chip = PNV_CHIP(dev);
1589     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1590     Error *local_err = NULL;
1591 
1592     /* XSCOM bridge is first */
1593     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1594     if (local_err) {
1595         error_propagate(errp, local_err);
1596         return;
1597     }
1598     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1599 
1600     pcc->parent_realize(dev, &local_err);
1601     if (local_err) {
1602         error_propagate(errp, local_err);
1603         return;
1604     }
1605 
1606     /* Processor Service Interface (PSI) Host Bridge */
1607     object_property_set_int(OBJECT(&chip10->psi), "bar",
1608                             PNV10_PSIHB_BASE(chip), &error_fatal);
1609     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1610         return;
1611     }
1612     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1613                             &PNV_PSI(&chip10->psi)->xscom_regs);
1614 
1615     /* LPC */
1616     object_property_set_link(OBJECT(&chip10->lpc), "psi",
1617                              OBJECT(&chip10->psi), &error_abort);
1618     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1619         return;
1620     }
1621     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1622                                 &chip10->lpc.xscom_regs);
1623 
1624     chip->fw_mr = &chip10->lpc.isa_fw;
1625     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1626                                             (uint64_t) PNV10_LPCM_BASE(chip));
1627 }
1628 
1629 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1630 {
1631     addr &= (PNV10_XSCOM_SIZE - 1);
1632     return addr >> 3;
1633 }
1634 
1635 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1636 {
1637     DeviceClass *dc = DEVICE_CLASS(klass);
1638     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1639 
1640     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1641     k->cores_mask = POWER10_CORE_MASK;
1642     k->core_pir = pnv_chip_core_pir_p10;
1643     k->intc_create = pnv_chip_power10_intc_create;
1644     k->intc_reset = pnv_chip_power10_intc_reset;
1645     k->intc_destroy = pnv_chip_power10_intc_destroy;
1646     k->intc_print_info = pnv_chip_power10_intc_print_info;
1647     k->isa_create = pnv_chip_power10_isa_create;
1648     k->dt_populate = pnv_chip_power10_dt_populate;
1649     k->pic_print_info = pnv_chip_power10_pic_print_info;
1650     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1651     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1652     dc->desc = "PowerNV Chip POWER10";
1653 
1654     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1655                                     &k->parent_realize);
1656 }
1657 
1658 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1659 {
1660     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1661     int cores_max;
1662 
1663     /*
1664      * No custom mask for this chip, let's use the default one from *
1665      * the chip class
1666      */
1667     if (!chip->cores_mask) {
1668         chip->cores_mask = pcc->cores_mask;
1669     }
1670 
1671     /* filter alien core ids ! some are reserved */
1672     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1673         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1674                    chip->cores_mask);
1675         return;
1676     }
1677     chip->cores_mask &= pcc->cores_mask;
1678 
1679     /* now that we have a sane layout, let check the number of cores */
1680     cores_max = ctpop64(chip->cores_mask);
1681     if (chip->nr_cores > cores_max) {
1682         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1683                    cores_max);
1684         return;
1685     }
1686 }
1687 
1688 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1689 {
1690     Error *error = NULL;
1691     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1692     const char *typename = pnv_chip_core_typename(chip);
1693     int i, core_hwid;
1694     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1695 
1696     if (!object_class_by_name(typename)) {
1697         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1698         return;
1699     }
1700 
1701     /* Cores */
1702     pnv_chip_core_sanitize(chip, &error);
1703     if (error) {
1704         error_propagate(errp, error);
1705         return;
1706     }
1707 
1708     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1709 
1710     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1711              && (i < chip->nr_cores); core_hwid++) {
1712         char core_name[32];
1713         PnvCore *pnv_core;
1714         uint64_t xscom_core_base;
1715 
1716         if (!(chip->cores_mask & (1ull << core_hwid))) {
1717             continue;
1718         }
1719 
1720         pnv_core = PNV_CORE(object_new(typename));
1721 
1722         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1723         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1724         chip->cores[i] = pnv_core;
1725         object_property_set_int(OBJECT(pnv_core), "nr-threads",
1726                                 chip->nr_threads, &error_fatal);
1727         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
1728                                 core_hwid, &error_fatal);
1729         object_property_set_int(OBJECT(pnv_core), "pir",
1730                                 pcc->core_pir(chip, core_hwid), &error_fatal);
1731         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
1732                                 &error_fatal);
1733         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
1734                                  &error_abort);
1735         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
1736 
1737         /* Each core has an XSCOM MMIO region */
1738         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1739 
1740         pnv_xscom_add_subregion(chip, xscom_core_base,
1741                                 &pnv_core->xscom_regs);
1742         i++;
1743     }
1744 }
1745 
1746 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1747 {
1748     PnvChip *chip = PNV_CHIP(dev);
1749     Error *error = NULL;
1750 
1751     /* Cores */
1752     pnv_chip_core_realize(chip, &error);
1753     if (error) {
1754         error_propagate(errp, error);
1755         return;
1756     }
1757 }
1758 
1759 static Property pnv_chip_properties[] = {
1760     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1761     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1762     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1763     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1764     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1765     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1766     DEFINE_PROP_UINT32("num-phbs", PnvChip, num_phbs, 0),
1767     DEFINE_PROP_END_OF_LIST(),
1768 };
1769 
1770 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1771 {
1772     DeviceClass *dc = DEVICE_CLASS(klass);
1773 
1774     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1775     dc->realize = pnv_chip_realize;
1776     device_class_set_props(dc, pnv_chip_properties);
1777     dc->desc = "PowerNV Chip";
1778 }
1779 
1780 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1781 {
1782     int i, j;
1783 
1784     for (i = 0; i < chip->nr_cores; i++) {
1785         PnvCore *pc = chip->cores[i];
1786         CPUCore *cc = CPU_CORE(pc);
1787 
1788         for (j = 0; j < cc->nr_threads; j++) {
1789             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1790                 return pc->threads[j];
1791             }
1792         }
1793     }
1794     return NULL;
1795 }
1796 
1797 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1798 {
1799     PnvMachineState *pnv = PNV_MACHINE(xi);
1800     int i, j;
1801 
1802     for (i = 0; i < pnv->num_chips; i++) {
1803         PnvChip *chip = pnv->chips[i];
1804         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1805 
1806         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1807             return &chip8->psi.ics;
1808         }
1809         for (j = 0; j < chip->num_phbs; j++) {
1810             if (ics_valid_irq(&chip8->phbs[j].lsis, irq)) {
1811                 return &chip8->phbs[j].lsis;
1812             }
1813             if (ics_valid_irq(ICS(&chip8->phbs[j].msis), irq)) {
1814                 return ICS(&chip8->phbs[j].msis);
1815             }
1816         }
1817     }
1818     return NULL;
1819 }
1820 
1821 static void pnv_ics_resend(XICSFabric *xi)
1822 {
1823     PnvMachineState *pnv = PNV_MACHINE(xi);
1824     int i, j;
1825 
1826     for (i = 0; i < pnv->num_chips; i++) {
1827         PnvChip *chip = pnv->chips[i];
1828         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1829 
1830         ics_resend(&chip8->psi.ics);
1831         for (j = 0; j < chip->num_phbs; j++) {
1832             ics_resend(&chip8->phbs[j].lsis);
1833             ics_resend(ICS(&chip8->phbs[j].msis));
1834         }
1835     }
1836 }
1837 
1838 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1839 {
1840     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1841 
1842     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1843 }
1844 
1845 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1846                                Monitor *mon)
1847 {
1848     PnvMachineState *pnv = PNV_MACHINE(obj);
1849     int i;
1850     CPUState *cs;
1851 
1852     CPU_FOREACH(cs) {
1853         PowerPCCPU *cpu = POWERPC_CPU(cs);
1854 
1855         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1856         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1857                                                            mon);
1858     }
1859 
1860     for (i = 0; i < pnv->num_chips; i++) {
1861         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1862     }
1863 }
1864 
1865 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1866                          uint8_t nvt_blk, uint32_t nvt_idx,
1867                          bool cam_ignore, uint8_t priority,
1868                          uint32_t logic_serv,
1869                          XiveTCTXMatch *match)
1870 {
1871     PnvMachineState *pnv = PNV_MACHINE(xfb);
1872     int total_count = 0;
1873     int i;
1874 
1875     for (i = 0; i < pnv->num_chips; i++) {
1876         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1877         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1878         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1879         int count;
1880 
1881         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1882                                priority, logic_serv, match);
1883 
1884         if (count < 0) {
1885             return count;
1886         }
1887 
1888         total_count += count;
1889     }
1890 
1891     return total_count;
1892 }
1893 
1894 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1895 {
1896     MachineClass *mc = MACHINE_CLASS(oc);
1897     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1898     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1899     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1900 
1901     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1902     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1903 
1904     xic->icp_get = pnv_icp_get;
1905     xic->ics_get = pnv_ics_get;
1906     xic->ics_resend = pnv_ics_resend;
1907 
1908     pmc->compat = compat;
1909     pmc->compat_size = sizeof(compat);
1910 }
1911 
1912 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1913 {
1914     MachineClass *mc = MACHINE_CLASS(oc);
1915     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1916     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1917     static const char compat[] = "qemu,powernv9\0ibm,powernv";
1918 
1919     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1920     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1921     xfc->match_nvt = pnv_match_nvt;
1922 
1923     mc->alias = "powernv";
1924 
1925     pmc->compat = compat;
1926     pmc->compat_size = sizeof(compat);
1927     pmc->dt_power_mgt = pnv_dt_power_mgt;
1928 }
1929 
1930 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1931 {
1932     MachineClass *mc = MACHINE_CLASS(oc);
1933     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1934     static const char compat[] = "qemu,powernv10\0ibm,powernv";
1935 
1936     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1937     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
1938 
1939     pmc->compat = compat;
1940     pmc->compat_size = sizeof(compat);
1941     pmc->dt_power_mgt = pnv_dt_power_mgt;
1942 }
1943 
1944 static bool pnv_machine_get_hb(Object *obj, Error **errp)
1945 {
1946     PnvMachineState *pnv = PNV_MACHINE(obj);
1947 
1948     return !!pnv->fw_load_addr;
1949 }
1950 
1951 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1952 {
1953     PnvMachineState *pnv = PNV_MACHINE(obj);
1954 
1955     if (value) {
1956         pnv->fw_load_addr = 0x8000000;
1957     }
1958 }
1959 
1960 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
1961 {
1962     PowerPCCPU *cpu = POWERPC_CPU(cs);
1963     CPUPPCState *env = &cpu->env;
1964 
1965     cpu_synchronize_state(cs);
1966     ppc_cpu_do_system_reset(cs);
1967     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
1968         /*
1969          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
1970          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
1971          * (PPC_BIT(43)).
1972          */
1973         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
1974             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
1975             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
1976         }
1977     } else {
1978         /*
1979          * For non-powersave system resets, SRR1[42:45] are defined to be
1980          * implementation-dependent. The POWER9 User Manual specifies that
1981          * an external (SCOM driven, which may come from a BMC nmi command or
1982          * another CPU requesting a NMI IPI) system reset exception should be
1983          * 0b0010 (PPC_BIT(44)).
1984          */
1985         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
1986     }
1987 }
1988 
1989 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
1990 {
1991     CPUState *cs;
1992 
1993     CPU_FOREACH(cs) {
1994         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
1995     }
1996 }
1997 
1998 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1999 {
2000     MachineClass *mc = MACHINE_CLASS(oc);
2001     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2002     NMIClass *nc = NMI_CLASS(oc);
2003 
2004     mc->desc = "IBM PowerNV (Non-Virtualized)";
2005     mc->init = pnv_init;
2006     mc->reset = pnv_reset;
2007     mc->max_cpus = MAX_CPUS;
2008     /* Pnv provides a AHCI device for storage */
2009     mc->block_default_type = IF_IDE;
2010     mc->no_parallel = 1;
2011     mc->default_boot_order = NULL;
2012     /*
2013      * RAM defaults to less than 2048 for 32-bit hosts, and large
2014      * enough to fit the maximum initrd size at it's load address
2015      */
2016     mc->default_ram_size = 1 * GiB;
2017     mc->default_ram_id = "pnv.ram";
2018     ispc->print_info = pnv_pic_print_info;
2019     nc->nmi_monitor_handler = pnv_nmi;
2020 
2021     object_class_property_add_bool(oc, "hb-mode",
2022                                    pnv_machine_get_hb, pnv_machine_set_hb);
2023     object_class_property_set_description(oc, "hb-mode",
2024                               "Use a hostboot like boot loader");
2025 }
2026 
2027 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2028     {                                             \
2029         .name          = type,                    \
2030         .class_init    = class_initfn,            \
2031         .parent        = TYPE_PNV8_CHIP,          \
2032     }
2033 
2034 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2035     {                                             \
2036         .name          = type,                    \
2037         .class_init    = class_initfn,            \
2038         .parent        = TYPE_PNV9_CHIP,          \
2039     }
2040 
2041 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2042     {                                              \
2043         .name          = type,                     \
2044         .class_init    = class_initfn,             \
2045         .parent        = TYPE_PNV10_CHIP,          \
2046     }
2047 
2048 static const TypeInfo types[] = {
2049     {
2050         .name          = MACHINE_TYPE_NAME("powernv10"),
2051         .parent        = TYPE_PNV_MACHINE,
2052         .class_init    = pnv_machine_power10_class_init,
2053     },
2054     {
2055         .name          = MACHINE_TYPE_NAME("powernv9"),
2056         .parent        = TYPE_PNV_MACHINE,
2057         .class_init    = pnv_machine_power9_class_init,
2058         .interfaces = (InterfaceInfo[]) {
2059             { TYPE_XIVE_FABRIC },
2060             { },
2061         },
2062     },
2063     {
2064         .name          = MACHINE_TYPE_NAME("powernv8"),
2065         .parent        = TYPE_PNV_MACHINE,
2066         .class_init    = pnv_machine_power8_class_init,
2067         .interfaces = (InterfaceInfo[]) {
2068             { TYPE_XICS_FABRIC },
2069             { },
2070         },
2071     },
2072     {
2073         .name          = TYPE_PNV_MACHINE,
2074         .parent        = TYPE_MACHINE,
2075         .abstract       = true,
2076         .instance_size = sizeof(PnvMachineState),
2077         .class_init    = pnv_machine_class_init,
2078         .class_size    = sizeof(PnvMachineClass),
2079         .interfaces = (InterfaceInfo[]) {
2080             { TYPE_INTERRUPT_STATS_PROVIDER },
2081             { TYPE_NMI },
2082             { },
2083         },
2084     },
2085     {
2086         .name          = TYPE_PNV_CHIP,
2087         .parent        = TYPE_SYS_BUS_DEVICE,
2088         .class_init    = pnv_chip_class_init,
2089         .instance_size = sizeof(PnvChip),
2090         .class_size    = sizeof(PnvChipClass),
2091         .abstract      = true,
2092     },
2093 
2094     /*
2095      * P10 chip and variants
2096      */
2097     {
2098         .name          = TYPE_PNV10_CHIP,
2099         .parent        = TYPE_PNV_CHIP,
2100         .instance_init = pnv_chip_power10_instance_init,
2101         .instance_size = sizeof(Pnv10Chip),
2102     },
2103     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2104 
2105     /*
2106      * P9 chip and variants
2107      */
2108     {
2109         .name          = TYPE_PNV9_CHIP,
2110         .parent        = TYPE_PNV_CHIP,
2111         .instance_init = pnv_chip_power9_instance_init,
2112         .instance_size = sizeof(Pnv9Chip),
2113     },
2114     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2115 
2116     /*
2117      * P8 chip and variants
2118      */
2119     {
2120         .name          = TYPE_PNV8_CHIP,
2121         .parent        = TYPE_PNV_CHIP,
2122         .instance_init = pnv_chip_power8_instance_init,
2123         .instance_size = sizeof(Pnv8Chip),
2124     },
2125     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2126     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2127     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2128                           pnv_chip_power8nvl_class_init),
2129 };
2130 
2131 DEFINE_TYPES(types)
2132