xref: /qemu/hw/ppc/pnv_lpc.c (revision a976a99a)
1 /*
2  * QEMU PowerPC PowerNV LPC controller
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "target/ppc/cpu.h"
22 #include "qapi/error.h"
23 #include "qemu/log.h"
24 #include "qemu/module.h"
25 #include "hw/irq.h"
26 #include "hw/isa/isa.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/ppc/pnv.h"
29 #include "hw/ppc/pnv_lpc.h"
30 #include "hw/ppc/pnv_xscom.h"
31 #include "hw/ppc/fdt.h"
32 
33 #include <libfdt.h>
34 
35 enum {
36     ECCB_CTL    = 0,
37     ECCB_RESET  = 1,
38     ECCB_STAT   = 2,
39     ECCB_DATA   = 3,
40 };
41 
42 /* OPB Master LS registers */
43 #define OPB_MASTER_LS_ROUTE0    0x8
44 #define OPB_MASTER_LS_ROUTE1    0xC
45 #define OPB_MASTER_LS_IRQ_STAT  0x50
46 #define   OPB_MASTER_IRQ_LPC            0x00000800
47 #define OPB_MASTER_LS_IRQ_MASK  0x54
48 #define OPB_MASTER_LS_IRQ_POL   0x58
49 #define OPB_MASTER_LS_IRQ_INPUT 0x5c
50 
51 /* LPC HC registers */
52 #define LPC_HC_FW_SEG_IDSEL     0x24
53 #define LPC_HC_FW_RD_ACC_SIZE   0x28
54 #define   LPC_HC_FW_RD_1B               0x00000000
55 #define   LPC_HC_FW_RD_2B               0x01000000
56 #define   LPC_HC_FW_RD_4B               0x02000000
57 #define   LPC_HC_FW_RD_16B              0x04000000
58 #define   LPC_HC_FW_RD_128B             0x07000000
59 #define LPC_HC_IRQSER_CTRL      0x30
60 #define   LPC_HC_IRQSER_EN              0x80000000
61 #define   LPC_HC_IRQSER_QMODE           0x40000000
62 #define   LPC_HC_IRQSER_START_MASK      0x03000000
63 #define   LPC_HC_IRQSER_START_4CLK      0x00000000
64 #define   LPC_HC_IRQSER_START_6CLK      0x01000000
65 #define   LPC_HC_IRQSER_START_8CLK      0x02000000
66 #define LPC_HC_IRQMASK          0x34    /* same bit defs as LPC_HC_IRQSTAT */
67 #define LPC_HC_IRQSTAT          0x38
68 #define   LPC_HC_IRQ_SERIRQ0            0x80000000 /* all bits down to ... */
69 #define   LPC_HC_IRQ_SERIRQ16           0x00008000 /* IRQ16=IOCHK#, IRQ2=SMI# */
70 #define   LPC_HC_IRQ_SERIRQ_ALL         0xffff8000
71 #define   LPC_HC_IRQ_LRESET             0x00000400
72 #define   LPC_HC_IRQ_SYNC_ABNORM_ERR    0x00000080
73 #define   LPC_HC_IRQ_SYNC_NORESP_ERR    0x00000040
74 #define   LPC_HC_IRQ_SYNC_NORM_ERR      0x00000020
75 #define   LPC_HC_IRQ_SYNC_TIMEOUT_ERR   0x00000010
76 #define   LPC_HC_IRQ_SYNC_TARG_TAR_ERR  0x00000008
77 #define   LPC_HC_IRQ_SYNC_BM_TAR_ERR    0x00000004
78 #define   LPC_HC_IRQ_SYNC_BM0_REQ       0x00000002
79 #define   LPC_HC_IRQ_SYNC_BM1_REQ       0x00000001
80 #define LPC_HC_ERROR_ADDRESS    0x40
81 
82 #define LPC_OPB_SIZE            0x100000000ull
83 
84 #define ISA_IO_SIZE             0x00010000
85 #define ISA_MEM_SIZE            0x10000000
86 #define ISA_FW_SIZE             0x10000000
87 #define LPC_IO_OPB_ADDR         0xd0010000
88 #define LPC_IO_OPB_SIZE         0x00010000
89 #define LPC_MEM_OPB_ADDR        0xe0000000
90 #define LPC_MEM_OPB_SIZE        0x10000000
91 #define LPC_FW_OPB_ADDR         0xf0000000
92 #define LPC_FW_OPB_SIZE         0x10000000
93 
94 #define LPC_OPB_REGS_OPB_ADDR   0xc0010000
95 #define LPC_OPB_REGS_OPB_SIZE   0x00000060
96 #define LPC_OPB_REGS_OPBA_ADDR  0xc0011000
97 #define LPC_OPB_REGS_OPBA_SIZE  0x00000008
98 #define LPC_HC_REGS_OPB_ADDR    0xc0012000
99 #define LPC_HC_REGS_OPB_SIZE    0x00000100
100 
101 static int pnv_lpc_dt_xscom(PnvXScomInterface *dev, void *fdt, int xscom_offset)
102 {
103     const char compat[] = "ibm,power8-lpc\0ibm,lpc";
104     char *name;
105     int offset;
106     uint32_t lpc_pcba = PNV_XSCOM_LPC_BASE;
107     uint32_t reg[] = {
108         cpu_to_be32(lpc_pcba),
109         cpu_to_be32(PNV_XSCOM_LPC_SIZE)
110     };
111 
112     name = g_strdup_printf("isa@%x", lpc_pcba);
113     offset = fdt_add_subnode(fdt, xscom_offset, name);
114     _FDT(offset);
115     g_free(name);
116 
117     _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
118     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2)));
119     _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1)));
120     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
121     return 0;
122 }
123 
124 /* POWER9 only */
125 int pnv_dt_lpc(PnvChip *chip, void *fdt, int root_offset, uint64_t lpcm_addr,
126                uint64_t lpcm_size)
127 {
128     const char compat[] = "ibm,power9-lpcm-opb\0simple-bus";
129     const char lpc_compat[] = "ibm,power9-lpc\0ibm,lpc";
130     char *name;
131     int offset, lpcm_offset;
132     uint32_t opb_ranges[8] = { 0,
133                                cpu_to_be32(lpcm_addr >> 32),
134                                cpu_to_be32((uint32_t)lpcm_addr),
135                                cpu_to_be32(lpcm_size / 2),
136                                cpu_to_be32(lpcm_size / 2),
137                                cpu_to_be32(lpcm_addr >> 32),
138                                cpu_to_be32(lpcm_size / 2),
139                                cpu_to_be32(lpcm_size / 2),
140     };
141     uint32_t opb_reg[4] = { cpu_to_be32(lpcm_addr >> 32),
142                             cpu_to_be32((uint32_t)lpcm_addr),
143                             cpu_to_be32(lpcm_size >> 32),
144                             cpu_to_be32((uint32_t)lpcm_size),
145     };
146     uint32_t lpc_ranges[12] = { 0, 0,
147                                 cpu_to_be32(LPC_MEM_OPB_ADDR),
148                                 cpu_to_be32(LPC_MEM_OPB_SIZE),
149                                 cpu_to_be32(1), 0,
150                                 cpu_to_be32(LPC_IO_OPB_ADDR),
151                                 cpu_to_be32(LPC_IO_OPB_SIZE),
152                                 cpu_to_be32(3), 0,
153                                 cpu_to_be32(LPC_FW_OPB_ADDR),
154                                 cpu_to_be32(LPC_FW_OPB_SIZE),
155     };
156     uint32_t reg[2];
157 
158     /*
159      * OPB bus
160      */
161     name = g_strdup_printf("lpcm-opb@%"PRIx64, lpcm_addr);
162     lpcm_offset = fdt_add_subnode(fdt, root_offset, name);
163     _FDT(lpcm_offset);
164     g_free(name);
165 
166     _FDT((fdt_setprop(fdt, lpcm_offset, "reg", opb_reg, sizeof(opb_reg))));
167     _FDT((fdt_setprop_cell(fdt, lpcm_offset, "#address-cells", 1)));
168     _FDT((fdt_setprop_cell(fdt, lpcm_offset, "#size-cells", 1)));
169     _FDT((fdt_setprop(fdt, lpcm_offset, "compatible", compat, sizeof(compat))));
170     _FDT((fdt_setprop_cell(fdt, lpcm_offset, "ibm,chip-id", chip->chip_id)));
171     _FDT((fdt_setprop(fdt, lpcm_offset, "ranges", opb_ranges,
172                       sizeof(opb_ranges))));
173 
174     /*
175      * OPB Master registers
176      */
177     name = g_strdup_printf("opb-master@%x", LPC_OPB_REGS_OPB_ADDR);
178     offset = fdt_add_subnode(fdt, lpcm_offset, name);
179     _FDT(offset);
180     g_free(name);
181 
182     reg[0] = cpu_to_be32(LPC_OPB_REGS_OPB_ADDR);
183     reg[1] = cpu_to_be32(LPC_OPB_REGS_OPB_SIZE);
184     _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
185     _FDT((fdt_setprop_string(fdt, offset, "compatible",
186                              "ibm,power9-lpcm-opb-master")));
187 
188     /*
189      * OPB arbitrer registers
190      */
191     name = g_strdup_printf("opb-arbitrer@%x", LPC_OPB_REGS_OPBA_ADDR);
192     offset = fdt_add_subnode(fdt, lpcm_offset, name);
193     _FDT(offset);
194     g_free(name);
195 
196     reg[0] = cpu_to_be32(LPC_OPB_REGS_OPBA_ADDR);
197     reg[1] = cpu_to_be32(LPC_OPB_REGS_OPBA_SIZE);
198     _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
199     _FDT((fdt_setprop_string(fdt, offset, "compatible",
200                              "ibm,power9-lpcm-opb-arbiter")));
201 
202     /*
203      * LPC Host Controller registers
204      */
205     name = g_strdup_printf("lpc-controller@%x", LPC_HC_REGS_OPB_ADDR);
206     offset = fdt_add_subnode(fdt, lpcm_offset, name);
207     _FDT(offset);
208     g_free(name);
209 
210     reg[0] = cpu_to_be32(LPC_HC_REGS_OPB_ADDR);
211     reg[1] = cpu_to_be32(LPC_HC_REGS_OPB_SIZE);
212     _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
213     _FDT((fdt_setprop_string(fdt, offset, "compatible",
214                              "ibm,power9-lpc-controller")));
215 
216     name = g_strdup_printf("lpc@0");
217     offset = fdt_add_subnode(fdt, lpcm_offset, name);
218     _FDT(offset);
219     g_free(name);
220     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2)));
221     _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1)));
222     _FDT((fdt_setprop(fdt, offset, "compatible", lpc_compat,
223                       sizeof(lpc_compat))));
224     _FDT((fdt_setprop(fdt, offset, "ranges", lpc_ranges,
225                       sizeof(lpc_ranges))));
226 
227     return 0;
228 }
229 
230 /*
231  * These read/write handlers of the OPB address space should be common
232  * with the P9 LPC Controller which uses direct MMIOs.
233  *
234  * TODO: rework to use address_space_stq() and address_space_ldq()
235  * instead.
236  */
237 static bool opb_read(PnvLpcController *lpc, uint32_t addr, uint8_t *data,
238                      int sz)
239 {
240     /* XXX Handle access size limits and FW read caching here */
241     return !address_space_read(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED,
242                                data, sz);
243 }
244 
245 static bool opb_write(PnvLpcController *lpc, uint32_t addr, uint8_t *data,
246                       int sz)
247 {
248     /* XXX Handle access size limits here */
249     return !address_space_write(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED,
250                                 data, sz);
251 }
252 
253 #define ECCB_CTL_READ           PPC_BIT(15)
254 #define ECCB_CTL_SZ_LSH         (63 - 7)
255 #define ECCB_CTL_SZ_MASK        PPC_BITMASK(4, 7)
256 #define ECCB_CTL_ADDR_MASK      PPC_BITMASK(32, 63)
257 
258 #define ECCB_STAT_OP_DONE       PPC_BIT(52)
259 #define ECCB_STAT_OP_ERR        PPC_BIT(52)
260 #define ECCB_STAT_RD_DATA_LSH   (63 - 37)
261 #define ECCB_STAT_RD_DATA_MASK  (0xffffffff << ECCB_STAT_RD_DATA_LSH)
262 
263 static void pnv_lpc_do_eccb(PnvLpcController *lpc, uint64_t cmd)
264 {
265     /* XXX Check for magic bits at the top, addr size etc... */
266     unsigned int sz = (cmd & ECCB_CTL_SZ_MASK) >> ECCB_CTL_SZ_LSH;
267     uint32_t opb_addr = cmd & ECCB_CTL_ADDR_MASK;
268     uint8_t data[8];
269     bool success;
270 
271     if (sz > sizeof(data)) {
272         qemu_log_mask(LOG_GUEST_ERROR,
273             "ECCB: invalid operation at @0x%08x size %d\n", opb_addr, sz);
274         return;
275     }
276 
277     if (cmd & ECCB_CTL_READ) {
278         success = opb_read(lpc, opb_addr, data, sz);
279         if (success) {
280             lpc->eccb_stat_reg = ECCB_STAT_OP_DONE |
281                     (((uint64_t)data[0]) << 24 |
282                      ((uint64_t)data[1]) << 16 |
283                      ((uint64_t)data[2]) <<  8 |
284                      ((uint64_t)data[3])) << ECCB_STAT_RD_DATA_LSH;
285         } else {
286             lpc->eccb_stat_reg = ECCB_STAT_OP_DONE |
287                     (0xffffffffull << ECCB_STAT_RD_DATA_LSH);
288         }
289     } else {
290         data[0] = lpc->eccb_data_reg >> 24;
291         data[1] = lpc->eccb_data_reg >> 16;
292         data[2] = lpc->eccb_data_reg >>  8;
293         data[3] = lpc->eccb_data_reg;
294 
295         success = opb_write(lpc, opb_addr, data, sz);
296         lpc->eccb_stat_reg = ECCB_STAT_OP_DONE;
297     }
298     /* XXX Which error bit (if any) to signal OPB error ? */
299 }
300 
301 static uint64_t pnv_lpc_xscom_read(void *opaque, hwaddr addr, unsigned size)
302 {
303     PnvLpcController *lpc = PNV_LPC(opaque);
304     uint32_t offset = addr >> 3;
305     uint64_t val = 0;
306 
307     switch (offset & 3) {
308     case ECCB_CTL:
309     case ECCB_RESET:
310         val = 0;
311         break;
312     case ECCB_STAT:
313         val = lpc->eccb_stat_reg;
314         lpc->eccb_stat_reg = 0;
315         break;
316     case ECCB_DATA:
317         val = ((uint64_t)lpc->eccb_data_reg) << 32;
318         break;
319     }
320     return val;
321 }
322 
323 static void pnv_lpc_xscom_write(void *opaque, hwaddr addr,
324                                 uint64_t val, unsigned size)
325 {
326     PnvLpcController *lpc = PNV_LPC(opaque);
327     uint32_t offset = addr >> 3;
328 
329     switch (offset & 3) {
330     case ECCB_CTL:
331         pnv_lpc_do_eccb(lpc, val);
332         break;
333     case ECCB_RESET:
334         /*  XXXX  */
335         break;
336     case ECCB_STAT:
337         break;
338     case ECCB_DATA:
339         lpc->eccb_data_reg = val >> 32;
340         break;
341     }
342 }
343 
344 static const MemoryRegionOps pnv_lpc_xscom_ops = {
345     .read = pnv_lpc_xscom_read,
346     .write = pnv_lpc_xscom_write,
347     .valid.min_access_size = 8,
348     .valid.max_access_size = 8,
349     .impl.min_access_size = 8,
350     .impl.max_access_size = 8,
351     .endianness = DEVICE_BIG_ENDIAN,
352 };
353 
354 static uint64_t pnv_lpc_mmio_read(void *opaque, hwaddr addr, unsigned size)
355 {
356     PnvLpcController *lpc = PNV_LPC(opaque);
357     uint64_t val = 0;
358     uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK;
359     MemTxResult result;
360 
361     switch (size) {
362     case 4:
363         val = address_space_ldl(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED,
364                                 &result);
365         break;
366     case 1:
367         val = address_space_ldub(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED,
368                                  &result);
369         break;
370     default:
371         qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%"
372                       HWADDR_PRIx " invalid size %d\n", addr, size);
373         return 0;
374     }
375 
376     if (result != MEMTX_OK) {
377         qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%"
378                       HWADDR_PRIx "\n", addr);
379     }
380 
381     return val;
382 }
383 
384 static void pnv_lpc_mmio_write(void *opaque, hwaddr addr,
385                                 uint64_t val, unsigned size)
386 {
387     PnvLpcController *lpc = PNV_LPC(opaque);
388     uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK;
389     MemTxResult result;
390 
391     switch (size) {
392     case 4:
393         address_space_stl(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED,
394                           &result);
395          break;
396     case 1:
397         address_space_stb(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED,
398                           &result);
399         break;
400     default:
401         qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%"
402                       HWADDR_PRIx " invalid size %d\n", addr, size);
403         return;
404     }
405 
406     if (result != MEMTX_OK) {
407         qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%"
408                       HWADDR_PRIx "\n", addr);
409     }
410 }
411 
412 static const MemoryRegionOps pnv_lpc_mmio_ops = {
413     .read = pnv_lpc_mmio_read,
414     .write = pnv_lpc_mmio_write,
415     .impl = {
416         .min_access_size = 1,
417         .max_access_size = 4,
418     },
419     .endianness = DEVICE_BIG_ENDIAN,
420 };
421 
422 static void pnv_lpc_eval_irqs(PnvLpcController *lpc)
423 {
424     bool lpc_to_opb_irq = false;
425 
426     /* Update LPC controller to OPB line */
427     if (lpc->lpc_hc_irqser_ctrl & LPC_HC_IRQSER_EN) {
428         uint32_t irqs;
429 
430         irqs = lpc->lpc_hc_irqstat & lpc->lpc_hc_irqmask;
431         lpc_to_opb_irq = (irqs != 0);
432     }
433 
434     /* We don't honor the polarity register, it's pointless and unused
435      * anyway
436      */
437     if (lpc_to_opb_irq) {
438         lpc->opb_irq_input |= OPB_MASTER_IRQ_LPC;
439     } else {
440         lpc->opb_irq_input &= ~OPB_MASTER_IRQ_LPC;
441     }
442 
443     /* Update OPB internal latch */
444     lpc->opb_irq_stat |= lpc->opb_irq_input & lpc->opb_irq_mask;
445 
446     /* Reflect the interrupt */
447     qemu_set_irq(lpc->psi_irq, lpc->opb_irq_stat != 0);
448 }
449 
450 static uint64_t lpc_hc_read(void *opaque, hwaddr addr, unsigned size)
451 {
452     PnvLpcController *lpc = opaque;
453     uint64_t val = 0xfffffffffffffffful;
454 
455     switch (addr) {
456     case LPC_HC_FW_SEG_IDSEL:
457         val =  lpc->lpc_hc_fw_seg_idsel;
458         break;
459     case LPC_HC_FW_RD_ACC_SIZE:
460         val =  lpc->lpc_hc_fw_rd_acc_size;
461         break;
462     case LPC_HC_IRQSER_CTRL:
463         val =  lpc->lpc_hc_irqser_ctrl;
464         break;
465     case LPC_HC_IRQMASK:
466         val =  lpc->lpc_hc_irqmask;
467         break;
468     case LPC_HC_IRQSTAT:
469         val =  lpc->lpc_hc_irqstat;
470         break;
471     case LPC_HC_ERROR_ADDRESS:
472         val =  lpc->lpc_hc_error_addr;
473         break;
474     default:
475         qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%"
476                       HWADDR_PRIx "\n", addr);
477     }
478     return val;
479 }
480 
481 static void lpc_hc_write(void *opaque, hwaddr addr, uint64_t val,
482                          unsigned size)
483 {
484     PnvLpcController *lpc = opaque;
485 
486     /* XXX Filter out reserved bits */
487 
488     switch (addr) {
489     case LPC_HC_FW_SEG_IDSEL:
490         /* XXX Actually figure out how that works as this impact
491          * memory regions/aliases
492          */
493         lpc->lpc_hc_fw_seg_idsel = val;
494         break;
495     case LPC_HC_FW_RD_ACC_SIZE:
496         lpc->lpc_hc_fw_rd_acc_size = val;
497         break;
498     case LPC_HC_IRQSER_CTRL:
499         lpc->lpc_hc_irqser_ctrl = val;
500         pnv_lpc_eval_irqs(lpc);
501         break;
502     case LPC_HC_IRQMASK:
503         lpc->lpc_hc_irqmask = val;
504         pnv_lpc_eval_irqs(lpc);
505         break;
506     case LPC_HC_IRQSTAT:
507         lpc->lpc_hc_irqstat &= ~val;
508         pnv_lpc_eval_irqs(lpc);
509         break;
510     case LPC_HC_ERROR_ADDRESS:
511         break;
512     default:
513         qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%"
514                       HWADDR_PRIx "\n", addr);
515     }
516 }
517 
518 static const MemoryRegionOps lpc_hc_ops = {
519     .read = lpc_hc_read,
520     .write = lpc_hc_write,
521     .endianness = DEVICE_BIG_ENDIAN,
522     .valid = {
523         .min_access_size = 4,
524         .max_access_size = 4,
525     },
526     .impl = {
527         .min_access_size = 4,
528         .max_access_size = 4,
529     },
530 };
531 
532 static uint64_t opb_master_read(void *opaque, hwaddr addr, unsigned size)
533 {
534     PnvLpcController *lpc = opaque;
535     uint64_t val = 0xfffffffffffffffful;
536 
537     switch (addr) {
538     case OPB_MASTER_LS_ROUTE0: /* TODO */
539         val = lpc->opb_irq_route0;
540         break;
541     case OPB_MASTER_LS_ROUTE1: /* TODO */
542         val = lpc->opb_irq_route1;
543         break;
544     case OPB_MASTER_LS_IRQ_STAT:
545         val = lpc->opb_irq_stat;
546         break;
547     case OPB_MASTER_LS_IRQ_MASK:
548         val = lpc->opb_irq_mask;
549         break;
550     case OPB_MASTER_LS_IRQ_POL:
551         val = lpc->opb_irq_pol;
552         break;
553     case OPB_MASTER_LS_IRQ_INPUT:
554         val = lpc->opb_irq_input;
555         break;
556     default:
557         qemu_log_mask(LOG_UNIMP, "OPBM: read on unimplemented register: 0x%"
558                       HWADDR_PRIx "\n", addr);
559     }
560 
561     return val;
562 }
563 
564 static void opb_master_write(void *opaque, hwaddr addr,
565                              uint64_t val, unsigned size)
566 {
567     PnvLpcController *lpc = opaque;
568 
569     switch (addr) {
570     case OPB_MASTER_LS_ROUTE0: /* TODO */
571         lpc->opb_irq_route0 = val;
572         break;
573     case OPB_MASTER_LS_ROUTE1: /* TODO */
574         lpc->opb_irq_route1 = val;
575         break;
576     case OPB_MASTER_LS_IRQ_STAT:
577         lpc->opb_irq_stat &= ~val;
578         pnv_lpc_eval_irqs(lpc);
579         break;
580     case OPB_MASTER_LS_IRQ_MASK:
581         lpc->opb_irq_mask = val;
582         pnv_lpc_eval_irqs(lpc);
583         break;
584     case OPB_MASTER_LS_IRQ_POL:
585         lpc->opb_irq_pol = val;
586         pnv_lpc_eval_irqs(lpc);
587         break;
588     case OPB_MASTER_LS_IRQ_INPUT:
589         /* Read only */
590         break;
591     default:
592         qemu_log_mask(LOG_UNIMP, "OPBM: write on unimplemented register: 0x%"
593                       HWADDR_PRIx " val=0x%08"PRIx64"\n", addr, val);
594     }
595 }
596 
597 static const MemoryRegionOps opb_master_ops = {
598     .read = opb_master_read,
599     .write = opb_master_write,
600     .endianness = DEVICE_BIG_ENDIAN,
601     .valid = {
602         .min_access_size = 4,
603         .max_access_size = 4,
604     },
605     .impl = {
606         .min_access_size = 4,
607         .max_access_size = 4,
608     },
609 };
610 
611 static void pnv_lpc_power8_realize(DeviceState *dev, Error **errp)
612 {
613     PnvLpcController *lpc = PNV_LPC(dev);
614     PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev);
615     Error *local_err = NULL;
616 
617     plc->parent_realize(dev, &local_err);
618     if (local_err) {
619         error_propagate(errp, local_err);
620         return;
621     }
622 
623     /* P8 uses a XSCOM region for LPC registers */
624     pnv_xscom_region_init(&lpc->xscom_regs, OBJECT(lpc),
625                           &pnv_lpc_xscom_ops, lpc, "xscom-lpc",
626                           PNV_XSCOM_LPC_SIZE);
627 }
628 
629 static void pnv_lpc_power8_class_init(ObjectClass *klass, void *data)
630 {
631     DeviceClass *dc = DEVICE_CLASS(klass);
632     PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
633     PnvLpcClass *plc = PNV_LPC_CLASS(klass);
634 
635     dc->desc = "PowerNV LPC Controller POWER8";
636 
637     xdc->dt_xscom = pnv_lpc_dt_xscom;
638 
639     device_class_set_parent_realize(dc, pnv_lpc_power8_realize,
640                                     &plc->parent_realize);
641 }
642 
643 static const TypeInfo pnv_lpc_power8_info = {
644     .name          = TYPE_PNV8_LPC,
645     .parent        = TYPE_PNV_LPC,
646     .class_init    = pnv_lpc_power8_class_init,
647     .interfaces = (InterfaceInfo[]) {
648         { TYPE_PNV_XSCOM_INTERFACE },
649         { }
650     }
651 };
652 
653 static void pnv_lpc_power9_realize(DeviceState *dev, Error **errp)
654 {
655     PnvLpcController *lpc = PNV_LPC(dev);
656     PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev);
657     Error *local_err = NULL;
658 
659     plc->parent_realize(dev, &local_err);
660     if (local_err) {
661         error_propagate(errp, local_err);
662         return;
663     }
664 
665     /* P9 uses a MMIO region */
666     memory_region_init_io(&lpc->xscom_regs, OBJECT(lpc), &pnv_lpc_mmio_ops,
667                           lpc, "lpcm", PNV9_LPCM_SIZE);
668 }
669 
670 static void pnv_lpc_power9_class_init(ObjectClass *klass, void *data)
671 {
672     DeviceClass *dc = DEVICE_CLASS(klass);
673     PnvLpcClass *plc = PNV_LPC_CLASS(klass);
674 
675     dc->desc = "PowerNV LPC Controller POWER9";
676 
677     device_class_set_parent_realize(dc, pnv_lpc_power9_realize,
678                                     &plc->parent_realize);
679 }
680 
681 static const TypeInfo pnv_lpc_power9_info = {
682     .name          = TYPE_PNV9_LPC,
683     .parent        = TYPE_PNV_LPC,
684     .class_init    = pnv_lpc_power9_class_init,
685 };
686 
687 static void pnv_lpc_power10_class_init(ObjectClass *klass, void *data)
688 {
689     DeviceClass *dc = DEVICE_CLASS(klass);
690 
691     dc->desc = "PowerNV LPC Controller POWER10";
692 }
693 
694 static const TypeInfo pnv_lpc_power10_info = {
695     .name          = TYPE_PNV10_LPC,
696     .parent        = TYPE_PNV9_LPC,
697     .class_init    = pnv_lpc_power10_class_init,
698 };
699 
700 static void pnv_lpc_realize(DeviceState *dev, Error **errp)
701 {
702     PnvLpcController *lpc = PNV_LPC(dev);
703 
704     /* Reg inits */
705     lpc->lpc_hc_fw_rd_acc_size = LPC_HC_FW_RD_4B;
706 
707     /* Create address space and backing MR for the OPB bus */
708     memory_region_init(&lpc->opb_mr, OBJECT(dev), "lpc-opb", 0x100000000ull);
709     address_space_init(&lpc->opb_as, &lpc->opb_mr, "lpc-opb");
710 
711     /* Create ISA IO and Mem space regions which are the root of
712      * the ISA bus (ie, ISA address spaces). We don't create a
713      * separate one for FW which we alias to memory.
714      */
715     memory_region_init(&lpc->isa_io, OBJECT(dev), "isa-io", ISA_IO_SIZE);
716     memory_region_init(&lpc->isa_mem, OBJECT(dev), "isa-mem", ISA_MEM_SIZE);
717     memory_region_init(&lpc->isa_fw, OBJECT(dev),  "isa-fw", ISA_FW_SIZE);
718 
719     /* Create windows from the OPB space to the ISA space */
720     memory_region_init_alias(&lpc->opb_isa_io, OBJECT(dev), "lpc-isa-io",
721                              &lpc->isa_io, 0, LPC_IO_OPB_SIZE);
722     memory_region_add_subregion(&lpc->opb_mr, LPC_IO_OPB_ADDR,
723                                 &lpc->opb_isa_io);
724     memory_region_init_alias(&lpc->opb_isa_mem, OBJECT(dev), "lpc-isa-mem",
725                              &lpc->isa_mem, 0, LPC_MEM_OPB_SIZE);
726     memory_region_add_subregion(&lpc->opb_mr, LPC_MEM_OPB_ADDR,
727                                 &lpc->opb_isa_mem);
728     memory_region_init_alias(&lpc->opb_isa_fw, OBJECT(dev), "lpc-isa-fw",
729                              &lpc->isa_fw, 0, LPC_FW_OPB_SIZE);
730     memory_region_add_subregion(&lpc->opb_mr, LPC_FW_OPB_ADDR,
731                                 &lpc->opb_isa_fw);
732 
733     /* Create MMIO regions for LPC HC and OPB registers */
734     memory_region_init_io(&lpc->opb_master_regs, OBJECT(dev), &opb_master_ops,
735                           lpc, "lpc-opb-master", LPC_OPB_REGS_OPB_SIZE);
736     memory_region_add_subregion(&lpc->opb_mr, LPC_OPB_REGS_OPB_ADDR,
737                                 &lpc->opb_master_regs);
738     memory_region_init_io(&lpc->lpc_hc_regs, OBJECT(dev), &lpc_hc_ops, lpc,
739                           "lpc-hc", LPC_HC_REGS_OPB_SIZE);
740     memory_region_add_subregion(&lpc->opb_mr, LPC_HC_REGS_OPB_ADDR,
741                                 &lpc->lpc_hc_regs);
742 
743     qdev_init_gpio_out(DEVICE(dev), &lpc->psi_irq, 1);
744 }
745 
746 static void pnv_lpc_class_init(ObjectClass *klass, void *data)
747 {
748     DeviceClass *dc = DEVICE_CLASS(klass);
749 
750     dc->realize = pnv_lpc_realize;
751     dc->desc = "PowerNV LPC Controller";
752     dc->user_creatable = false;
753 }
754 
755 static const TypeInfo pnv_lpc_info = {
756     .name          = TYPE_PNV_LPC,
757     .parent        = TYPE_DEVICE,
758     .instance_size = sizeof(PnvLpcController),
759     .class_init    = pnv_lpc_class_init,
760     .class_size    = sizeof(PnvLpcClass),
761     .abstract      = true,
762 };
763 
764 static void pnv_lpc_register_types(void)
765 {
766     type_register_static(&pnv_lpc_info);
767     type_register_static(&pnv_lpc_power8_info);
768     type_register_static(&pnv_lpc_power9_info);
769     type_register_static(&pnv_lpc_power10_info);
770 }
771 
772 type_init(pnv_lpc_register_types)
773 
774 /* If we don't use the built-in LPC interrupt deserializer, we need
775  * to provide a set of qirqs for the ISA bus or things will go bad.
776  *
777  * Most machines using pre-Naples chips (without said deserializer)
778  * have a CPLD that will collect the SerIRQ and shoot them as a
779  * single level interrupt to the P8 chip. So let's setup a hook
780  * for doing just that.
781  */
782 static void pnv_lpc_isa_irq_handler_cpld(void *opaque, int n, int level)
783 {
784     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
785     uint32_t old_state = pnv->cpld_irqstate;
786     PnvLpcController *lpc = PNV_LPC(opaque);
787 
788     if (level) {
789         pnv->cpld_irqstate |= 1u << n;
790     } else {
791         pnv->cpld_irqstate &= ~(1u << n);
792     }
793 
794     if (pnv->cpld_irqstate != old_state) {
795         qemu_set_irq(lpc->psi_irq, pnv->cpld_irqstate != 0);
796     }
797 }
798 
799 static void pnv_lpc_isa_irq_handler(void *opaque, int n, int level)
800 {
801     PnvLpcController *lpc = PNV_LPC(opaque);
802 
803     /* The Naples HW latches the 1 levels, clearing is done by SW */
804     if (level) {
805         lpc->lpc_hc_irqstat |= LPC_HC_IRQ_SERIRQ0 >> n;
806         pnv_lpc_eval_irqs(lpc);
807     }
808 }
809 
810 ISABus *pnv_lpc_isa_create(PnvLpcController *lpc, bool use_cpld, Error **errp)
811 {
812     Error *local_err = NULL;
813     ISABus *isa_bus;
814     qemu_irq *irqs;
815     qemu_irq_handler handler;
816 
817     /* let isa_bus_new() create its own bridge on SysBus otherwise
818      * devices specified on the command line won't find the bus and
819      * will fail to create.
820      */
821     isa_bus = isa_bus_new(NULL, &lpc->isa_mem, &lpc->isa_io, &local_err);
822     if (local_err) {
823         error_propagate(errp, local_err);
824         return NULL;
825     }
826 
827     /* Not all variants have a working serial irq decoder. If not,
828      * handling of LPC interrupts becomes a platform issue (some
829      * platforms have a CPLD to do it).
830      */
831     if (use_cpld) {
832         handler = pnv_lpc_isa_irq_handler_cpld;
833     } else {
834         handler = pnv_lpc_isa_irq_handler;
835     }
836 
837     irqs = qemu_allocate_irqs(handler, lpc, ISA_NUM_IRQS);
838 
839     isa_bus_irqs(isa_bus, irqs);
840 
841     return isa_bus;
842 }
843