xref: /qemu/hw/ppc/ppc.c (revision 5e6f3db2)
1 /*
2  * QEMU generic PowerPC hardware System Emulator
3  *
4  * Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/irq.h"
27 #include "hw/ppc/ppc.h"
28 #include "hw/ppc/ppc_e500.h"
29 #include "qemu/timer.h"
30 #include "sysemu/cpus.h"
31 #include "qemu/log.h"
32 #include "qemu/main-loop.h"
33 #include "qemu/error-report.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/replay.h"
36 #include "sysemu/runstate.h"
37 #include "kvm_ppc.h"
38 #include "migration/vmstate.h"
39 #include "trace.h"
40 
41 static void cpu_ppc_tb_stop (CPUPPCState *env);
42 static void cpu_ppc_tb_start (CPUPPCState *env);
43 
44 void ppc_set_irq(PowerPCCPU *cpu, int irq, int level)
45 {
46     CPUPPCState *env = &cpu->env;
47     unsigned int old_pending;
48 
49     /* We may already have the BQL if coming from the reset path */
50     QEMU_IOTHREAD_LOCK_GUARD();
51 
52     old_pending = env->pending_interrupts;
53 
54     if (level) {
55         env->pending_interrupts |= irq;
56     } else {
57         env->pending_interrupts &= ~irq;
58     }
59 
60     if (old_pending != env->pending_interrupts) {
61         ppc_maybe_interrupt(env);
62         if (kvm_enabled()) {
63             kvmppc_set_interrupt(cpu, irq, level);
64         }
65     }
66 
67     trace_ppc_irq_set_exit(env, irq, level, env->pending_interrupts,
68                            CPU(cpu)->interrupt_request);
69 }
70 
71 /* PowerPC 6xx / 7xx internal IRQ controller */
72 static void ppc6xx_set_irq(void *opaque, int pin, int level)
73 {
74     PowerPCCPU *cpu = opaque;
75     CPUPPCState *env = &cpu->env;
76     int cur_level;
77 
78     trace_ppc_irq_set(env, pin, level);
79 
80     cur_level = (env->irq_input_state >> pin) & 1;
81     /* Don't generate spurious events */
82     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
83         CPUState *cs = CPU(cpu);
84 
85         switch (pin) {
86         case PPC6xx_INPUT_TBEN:
87             /* Level sensitive - active high */
88             trace_ppc_irq_set_state("time base", level);
89             if (level) {
90                 cpu_ppc_tb_start(env);
91             } else {
92                 cpu_ppc_tb_stop(env);
93             }
94             break;
95         case PPC6xx_INPUT_INT:
96             /* Level sensitive - active high */
97             trace_ppc_irq_set_state("external IRQ", level);
98             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
99             break;
100         case PPC6xx_INPUT_SMI:
101             /* Level sensitive - active high */
102             trace_ppc_irq_set_state("SMI IRQ", level);
103             ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
104             break;
105         case PPC6xx_INPUT_MCP:
106             /* Negative edge sensitive */
107             /* XXX: TODO: actual reaction may depends on HID0 status
108              *            603/604/740/750: check HID0[EMCP]
109              */
110             if (cur_level == 1 && level == 0) {
111                 trace_ppc_irq_set_state("machine check", 1);
112                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
113             }
114             break;
115         case PPC6xx_INPUT_CKSTP_IN:
116             /* Level sensitive - active low */
117             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
118             /* XXX: Note that the only way to restart the CPU is to reset it */
119             if (level) {
120                 trace_ppc_irq_cpu("stop");
121                 cs->halted = 1;
122             }
123             break;
124         case PPC6xx_INPUT_HRESET:
125             /* Level sensitive - active low */
126             if (level) {
127                 trace_ppc_irq_reset("CPU");
128                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
129             }
130             break;
131         case PPC6xx_INPUT_SRESET:
132             trace_ppc_irq_set_state("RESET IRQ", level);
133             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
134             break;
135         default:
136             g_assert_not_reached();
137         }
138         if (level)
139             env->irq_input_state |= 1 << pin;
140         else
141             env->irq_input_state &= ~(1 << pin);
142     }
143 }
144 
145 void ppc6xx_irq_init(PowerPCCPU *cpu)
146 {
147     qdev_init_gpio_in(DEVICE(cpu), ppc6xx_set_irq, PPC6xx_INPUT_NB);
148 }
149 
150 #if defined(TARGET_PPC64)
151 /* PowerPC 970 internal IRQ controller */
152 static void ppc970_set_irq(void *opaque, int pin, int level)
153 {
154     PowerPCCPU *cpu = opaque;
155     CPUPPCState *env = &cpu->env;
156     int cur_level;
157 
158     trace_ppc_irq_set(env, pin, level);
159 
160     cur_level = (env->irq_input_state >> pin) & 1;
161     /* Don't generate spurious events */
162     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
163         CPUState *cs = CPU(cpu);
164 
165         switch (pin) {
166         case PPC970_INPUT_INT:
167             /* Level sensitive - active high */
168             trace_ppc_irq_set_state("external IRQ", level);
169             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
170             break;
171         case PPC970_INPUT_THINT:
172             /* Level sensitive - active high */
173             trace_ppc_irq_set_state("SMI IRQ", level);
174             ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
175             break;
176         case PPC970_INPUT_MCP:
177             /* Negative edge sensitive */
178             /* XXX: TODO: actual reaction may depends on HID0 status
179              *            603/604/740/750: check HID0[EMCP]
180              */
181             if (cur_level == 1 && level == 0) {
182                 trace_ppc_irq_set_state("machine check", 1);
183                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
184             }
185             break;
186         case PPC970_INPUT_CKSTP:
187             /* Level sensitive - active low */
188             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
189             if (level) {
190                 trace_ppc_irq_cpu("stop");
191                 cs->halted = 1;
192             } else {
193                 trace_ppc_irq_cpu("restart");
194                 cs->halted = 0;
195                 qemu_cpu_kick(cs);
196             }
197             break;
198         case PPC970_INPUT_HRESET:
199             /* Level sensitive - active low */
200             if (level) {
201                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
202             }
203             break;
204         case PPC970_INPUT_SRESET:
205             trace_ppc_irq_set_state("RESET IRQ", level);
206             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
207             break;
208         case PPC970_INPUT_TBEN:
209             trace_ppc_irq_set_state("TBEN IRQ", level);
210             /* XXX: TODO */
211             break;
212         default:
213             g_assert_not_reached();
214         }
215         if (level)
216             env->irq_input_state |= 1 << pin;
217         else
218             env->irq_input_state &= ~(1 << pin);
219     }
220 }
221 
222 void ppc970_irq_init(PowerPCCPU *cpu)
223 {
224     qdev_init_gpio_in(DEVICE(cpu), ppc970_set_irq, PPC970_INPUT_NB);
225 }
226 
227 /* POWER7 internal IRQ controller */
228 static void power7_set_irq(void *opaque, int pin, int level)
229 {
230     PowerPCCPU *cpu = opaque;
231 
232     trace_ppc_irq_set(&cpu->env, pin, level);
233 
234     switch (pin) {
235     case POWER7_INPUT_INT:
236         /* Level sensitive - active high */
237         trace_ppc_irq_set_state("external IRQ", level);
238         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
239         break;
240     default:
241         g_assert_not_reached();
242     }
243 }
244 
245 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
246 {
247     qdev_init_gpio_in(DEVICE(cpu), power7_set_irq, POWER7_INPUT_NB);
248 }
249 
250 /* POWER9 internal IRQ controller */
251 static void power9_set_irq(void *opaque, int pin, int level)
252 {
253     PowerPCCPU *cpu = opaque;
254 
255     trace_ppc_irq_set(&cpu->env, pin, level);
256 
257     switch (pin) {
258     case POWER9_INPUT_INT:
259         /* Level sensitive - active high */
260         trace_ppc_irq_set_state("external IRQ", level);
261         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
262         break;
263     case POWER9_INPUT_HINT:
264         /* Level sensitive - active high */
265         trace_ppc_irq_set_state("HV external IRQ", level);
266         ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
267         break;
268     default:
269         g_assert_not_reached();
270         return;
271     }
272 }
273 
274 void ppcPOWER9_irq_init(PowerPCCPU *cpu)
275 {
276     qdev_init_gpio_in(DEVICE(cpu), power9_set_irq, POWER9_INPUT_NB);
277 }
278 #endif /* defined(TARGET_PPC64) */
279 
280 void ppc40x_core_reset(PowerPCCPU *cpu)
281 {
282     CPUPPCState *env = &cpu->env;
283     target_ulong dbsr;
284 
285     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
286     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
287     dbsr = env->spr[SPR_40x_DBSR];
288     dbsr &= ~0x00000300;
289     dbsr |= 0x00000100;
290     env->spr[SPR_40x_DBSR] = dbsr;
291 }
292 
293 void ppc40x_chip_reset(PowerPCCPU *cpu)
294 {
295     CPUPPCState *env = &cpu->env;
296     target_ulong dbsr;
297 
298     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
299     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
300     /* XXX: TODO reset all internal peripherals */
301     dbsr = env->spr[SPR_40x_DBSR];
302     dbsr &= ~0x00000300;
303     dbsr |= 0x00000200;
304     env->spr[SPR_40x_DBSR] = dbsr;
305 }
306 
307 void ppc40x_system_reset(PowerPCCPU *cpu)
308 {
309     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
310     qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
311 }
312 
313 void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
314 {
315     PowerPCCPU *cpu = env_archcpu(env);
316 
317     qemu_mutex_lock_iothread();
318 
319     switch ((val >> 28) & 0x3) {
320     case 0x0:
321         /* No action */
322         break;
323     case 0x1:
324         /* Core reset */
325         ppc40x_core_reset(cpu);
326         break;
327     case 0x2:
328         /* Chip reset */
329         ppc40x_chip_reset(cpu);
330         break;
331     case 0x3:
332         /* System reset */
333         ppc40x_system_reset(cpu);
334         break;
335     }
336 
337     qemu_mutex_unlock_iothread();
338 }
339 
340 /* PowerPC 40x internal IRQ controller */
341 static void ppc40x_set_irq(void *opaque, int pin, int level)
342 {
343     PowerPCCPU *cpu = opaque;
344     CPUPPCState *env = &cpu->env;
345     int cur_level;
346 
347     trace_ppc_irq_set(env, pin, level);
348 
349     cur_level = (env->irq_input_state >> pin) & 1;
350     /* Don't generate spurious events */
351     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
352         CPUState *cs = CPU(cpu);
353 
354         switch (pin) {
355         case PPC40x_INPUT_RESET_SYS:
356             if (level) {
357                 trace_ppc_irq_reset("system");
358                 ppc40x_system_reset(cpu);
359             }
360             break;
361         case PPC40x_INPUT_RESET_CHIP:
362             if (level) {
363                 trace_ppc_irq_reset("chip");
364                 ppc40x_chip_reset(cpu);
365             }
366             break;
367         case PPC40x_INPUT_RESET_CORE:
368             /* XXX: TODO: update DBSR[MRR] */
369             if (level) {
370                 trace_ppc_irq_reset("core");
371                 ppc40x_core_reset(cpu);
372             }
373             break;
374         case PPC40x_INPUT_CINT:
375             /* Level sensitive - active high */
376             trace_ppc_irq_set_state("critical IRQ", level);
377             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
378             break;
379         case PPC40x_INPUT_INT:
380             /* Level sensitive - active high */
381             trace_ppc_irq_set_state("external IRQ", level);
382             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
383             break;
384         case PPC40x_INPUT_HALT:
385             /* Level sensitive - active low */
386             if (level) {
387                 trace_ppc_irq_cpu("stop");
388                 cs->halted = 1;
389             } else {
390                 trace_ppc_irq_cpu("restart");
391                 cs->halted = 0;
392                 qemu_cpu_kick(cs);
393             }
394             break;
395         case PPC40x_INPUT_DEBUG:
396             /* Level sensitive - active high */
397             trace_ppc_irq_set_state("debug pin", level);
398             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
399             break;
400         default:
401             g_assert_not_reached();
402         }
403         if (level)
404             env->irq_input_state |= 1 << pin;
405         else
406             env->irq_input_state &= ~(1 << pin);
407     }
408 }
409 
410 void ppc40x_irq_init(PowerPCCPU *cpu)
411 {
412     qdev_init_gpio_in(DEVICE(cpu), ppc40x_set_irq, PPC40x_INPUT_NB);
413 }
414 
415 /* PowerPC E500 internal IRQ controller */
416 static void ppce500_set_irq(void *opaque, int pin, int level)
417 {
418     PowerPCCPU *cpu = opaque;
419     CPUPPCState *env = &cpu->env;
420     int cur_level;
421 
422     trace_ppc_irq_set(env, pin, level);
423 
424     cur_level = (env->irq_input_state >> pin) & 1;
425     /* Don't generate spurious events */
426     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
427         switch (pin) {
428         case PPCE500_INPUT_MCK:
429             if (level) {
430                 trace_ppc_irq_reset("system");
431                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
432             }
433             break;
434         case PPCE500_INPUT_RESET_CORE:
435             if (level) {
436                 trace_ppc_irq_reset("core");
437                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
438             }
439             break;
440         case PPCE500_INPUT_CINT:
441             /* Level sensitive - active high */
442             trace_ppc_irq_set_state("critical IRQ", level);
443             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
444             break;
445         case PPCE500_INPUT_INT:
446             /* Level sensitive - active high */
447             trace_ppc_irq_set_state("core IRQ", level);
448             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
449             break;
450         case PPCE500_INPUT_DEBUG:
451             /* Level sensitive - active high */
452             trace_ppc_irq_set_state("debug pin", level);
453             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
454             break;
455         default:
456             g_assert_not_reached();
457         }
458         if (level)
459             env->irq_input_state |= 1 << pin;
460         else
461             env->irq_input_state &= ~(1 << pin);
462     }
463 }
464 
465 void ppce500_irq_init(PowerPCCPU *cpu)
466 {
467     qdev_init_gpio_in(DEVICE(cpu), ppce500_set_irq, PPCE500_INPUT_NB);
468 }
469 
470 /* Enable or Disable the E500 EPR capability */
471 void ppce500_set_mpic_proxy(bool enabled)
472 {
473     CPUState *cs;
474 
475     CPU_FOREACH(cs) {
476         PowerPCCPU *cpu = POWERPC_CPU(cs);
477 
478         cpu->env.mpic_proxy = enabled;
479         if (kvm_enabled()) {
480             kvmppc_set_mpic_proxy(cpu, enabled);
481         }
482     }
483 }
484 
485 /*****************************************************************************/
486 /* PowerPC time base and decrementer emulation */
487 
488 /*
489  * Conversion between QEMU_CLOCK_VIRTUAL ns and timebase (TB) ticks:
490  * TB ticks are arrived at by multiplying tb_freq then dividing by
491  * ns per second, and rounding down. TB ticks drive all clocks and
492  * timers in the target machine.
493  *
494  * Converting TB intervals to ns for the purpose of setting a
495  * QEMU_CLOCK_VIRTUAL timer should go the other way, but rounding
496  * up. Rounding down could cause the timer to fire before the TB
497  * value has been reached.
498  */
499 static uint64_t ns_to_tb(uint32_t freq, int64_t clock)
500 {
501     return muldiv64(clock, freq, NANOSECONDS_PER_SECOND);
502 }
503 
504 /* virtual clock in TB ticks, not adjusted by TB offset */
505 static int64_t tb_to_ns_round_up(uint32_t freq, uint64_t tb)
506 {
507     return muldiv64_round_up(tb, NANOSECONDS_PER_SECOND, freq);
508 }
509 
510 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
511 {
512     /* TB time in tb periods */
513     return ns_to_tb(tb_env->tb_freq, vmclk) + tb_offset;
514 }
515 
516 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
517 {
518     ppc_tb_t *tb_env = env->tb_env;
519     uint64_t tb;
520 
521     if (kvm_enabled()) {
522         return env->spr[SPR_TBL];
523     }
524 
525     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
526                         tb_env->tb_offset);
527     trace_ppc_tb_load(tb);
528 
529     return tb;
530 }
531 
532 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
533 {
534     ppc_tb_t *tb_env = env->tb_env;
535     uint64_t tb;
536 
537     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
538                         tb_env->tb_offset);
539     trace_ppc_tb_load(tb);
540 
541     return tb >> 32;
542 }
543 
544 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
545 {
546     if (kvm_enabled()) {
547         return env->spr[SPR_TBU];
548     }
549 
550     return _cpu_ppc_load_tbu(env);
551 }
552 
553 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
554                                     int64_t *tb_offsetp, uint64_t value)
555 {
556     *tb_offsetp = value - ns_to_tb(tb_env->tb_freq, vmclk);
557 
558     trace_ppc_tb_store(value, *tb_offsetp);
559 }
560 
561 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
562 {
563     ppc_tb_t *tb_env = env->tb_env;
564     int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
565     uint64_t tb;
566 
567     tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset);
568     tb &= 0xFFFFFFFF00000000ULL;
569     cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset, tb | (uint64_t)value);
570 }
571 
572 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
573 {
574     ppc_tb_t *tb_env = env->tb_env;
575     int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
576     uint64_t tb;
577 
578     tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset);
579     tb &= 0x00000000FFFFFFFFULL;
580     cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset,
581                      ((uint64_t)value << 32) | tb);
582 }
583 
584 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
585 {
586     _cpu_ppc_store_tbu(env, value);
587 }
588 
589 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
590 {
591     ppc_tb_t *tb_env = env->tb_env;
592     uint64_t tb;
593 
594     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
595                         tb_env->atb_offset);
596     trace_ppc_tb_load(tb);
597 
598     return tb;
599 }
600 
601 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
602 {
603     ppc_tb_t *tb_env = env->tb_env;
604     uint64_t tb;
605 
606     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
607                         tb_env->atb_offset);
608     trace_ppc_tb_load(tb);
609 
610     return tb >> 32;
611 }
612 
613 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
614 {
615     ppc_tb_t *tb_env = env->tb_env;
616     int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
617     uint64_t tb;
618 
619     tb = cpu_ppc_get_tb(tb_env, clock, tb_env->atb_offset);
620     tb &= 0xFFFFFFFF00000000ULL;
621     cpu_ppc_store_tb(tb_env, clock, &tb_env->atb_offset, tb | (uint64_t)value);
622 }
623 
624 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
625 {
626     ppc_tb_t *tb_env = env->tb_env;
627     int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
628     uint64_t tb;
629 
630     tb = cpu_ppc_get_tb(tb_env, clock, tb_env->atb_offset);
631     tb &= 0x00000000FFFFFFFFULL;
632     cpu_ppc_store_tb(tb_env, clock, &tb_env->atb_offset,
633                      ((uint64_t)value << 32) | tb);
634 }
635 
636 uint64_t cpu_ppc_load_vtb(CPUPPCState *env)
637 {
638     ppc_tb_t *tb_env = env->tb_env;
639 
640     return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
641                           tb_env->vtb_offset);
642 }
643 
644 void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value)
645 {
646     ppc_tb_t *tb_env = env->tb_env;
647 
648     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
649                      &tb_env->vtb_offset, value);
650 }
651 
652 void cpu_ppc_store_tbu40(CPUPPCState *env, uint64_t value)
653 {
654     ppc_tb_t *tb_env = env->tb_env;
655     int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
656     uint64_t tb;
657 
658     tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset);
659     tb &= 0xFFFFFFUL;
660     tb |= (value & ~0xFFFFFFUL);
661     cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset, tb);
662 }
663 
664 static void cpu_ppc_tb_stop (CPUPPCState *env)
665 {
666     ppc_tb_t *tb_env = env->tb_env;
667     uint64_t tb, atb, vmclk;
668 
669     /* If the time base is already frozen, do nothing */
670     if (tb_env->tb_freq != 0) {
671         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
672         /* Get the time base */
673         tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
674         /* Get the alternate time base */
675         atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
676         /* Store the time base value (ie compute the current offset) */
677         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
678         /* Store the alternate time base value (compute the current offset) */
679         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
680         /* Set the time base frequency to zero */
681         tb_env->tb_freq = 0;
682         /* Now, the time bases are frozen to tb_offset / atb_offset value */
683     }
684 }
685 
686 static void cpu_ppc_tb_start (CPUPPCState *env)
687 {
688     ppc_tb_t *tb_env = env->tb_env;
689     uint64_t tb, atb, vmclk;
690 
691     /* If the time base is not frozen, do nothing */
692     if (tb_env->tb_freq == 0) {
693         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
694         /* Get the time base from tb_offset */
695         tb = tb_env->tb_offset;
696         /* Get the alternate time base from atb_offset */
697         atb = tb_env->atb_offset;
698         /* Restore the tb frequency from the decrementer frequency */
699         tb_env->tb_freq = tb_env->decr_freq;
700         /* Store the time base value */
701         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
702         /* Store the alternate time base value */
703         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
704     }
705 }
706 
707 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
708 {
709     ppc_tb_t *tb_env = env->tb_env;
710     int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
711     return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
712 }
713 
714 static inline int64_t __cpu_ppc_load_decr(CPUPPCState *env, int64_t now,
715                                           uint64_t next)
716 {
717     ppc_tb_t *tb_env = env->tb_env;
718     uint64_t n;
719     int64_t decr;
720 
721     n = ns_to_tb(tb_env->decr_freq, now);
722     if (next > n && tb_env->flags & PPC_TIMER_BOOKE) {
723         decr = 0;
724     } else {
725         decr = next - n;
726     }
727 
728     trace_ppc_decr_load(decr);
729 
730     return decr;
731 }
732 
733 static target_ulong _cpu_ppc_load_decr(CPUPPCState *env, int64_t now)
734 {
735     ppc_tb_t *tb_env = env->tb_env;
736     uint64_t decr;
737 
738     decr = __cpu_ppc_load_decr(env, now, tb_env->decr_next);
739 
740     /*
741      * If large decrementer is enabled then the decrementer is signed extened
742      * to 64 bits, otherwise it is a 32 bit value.
743      */
744     if (env->spr[SPR_LPCR] & LPCR_LD) {
745         PowerPCCPU *cpu = env_archcpu(env);
746         PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
747         return sextract64(decr, 0, pcc->lrg_decr_bits);
748     }
749     return (uint32_t) decr;
750 }
751 
752 target_ulong cpu_ppc_load_decr(CPUPPCState *env)
753 {
754     if (kvm_enabled()) {
755         return env->spr[SPR_DECR];
756     } else {
757         return _cpu_ppc_load_decr(env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
758     }
759 }
760 
761 static target_ulong _cpu_ppc_load_hdecr(CPUPPCState *env, int64_t now)
762 {
763     PowerPCCPU *cpu = env_archcpu(env);
764     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
765     ppc_tb_t *tb_env = env->tb_env;
766     uint64_t hdecr;
767 
768     hdecr =  __cpu_ppc_load_decr(env, now, tb_env->hdecr_next);
769 
770     /*
771      * If we have a large decrementer (POWER9 or later) then hdecr is sign
772      * extended to 64 bits, otherwise it is 32 bits.
773      */
774     if (pcc->lrg_decr_bits > 32) {
775         return sextract64(hdecr, 0, pcc->lrg_decr_bits);
776     }
777     return (uint32_t) hdecr;
778 }
779 
780 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
781 {
782     return _cpu_ppc_load_hdecr(env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
783 }
784 
785 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
786 {
787     ppc_tb_t *tb_env = env->tb_env;
788 
789     return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
790                           tb_env->purr_offset);
791 }
792 
793 /* When decrementer expires,
794  * all we need to do is generate or queue a CPU exception
795  */
796 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
797 {
798     /* Raise it */
799     trace_ppc_decr_excp("raise");
800     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
801 }
802 
803 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
804 {
805     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
806 }
807 
808 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
809 {
810     CPUPPCState *env = &cpu->env;
811 
812     /* Raise it */
813     trace_ppc_decr_excp("raise HV");
814 
815     /* The architecture specifies that we don't deliver HDEC
816      * interrupts in a PM state. Not only they don't cause a
817      * wakeup but they also get effectively discarded.
818      */
819     if (!env->resume_as_sreset) {
820         ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
821     }
822 }
823 
824 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
825 {
826     ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
827 }
828 
829 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, int64_t now, uint64_t *nextp,
830                                  QEMUTimer *timer,
831                                  void (*raise_excp)(void *),
832                                  void (*lower_excp)(PowerPCCPU *),
833                                  uint32_t flags, target_ulong decr,
834                                  target_ulong value, int nr_bits)
835 {
836     CPUPPCState *env = &cpu->env;
837     ppc_tb_t *tb_env = env->tb_env;
838     uint64_t next;
839     int64_t signed_value;
840     int64_t signed_decr;
841 
842     /* Truncate value to decr_width and sign extend for simplicity */
843     value = extract64(value, 0, nr_bits);
844     decr = extract64(decr, 0, nr_bits);
845     signed_value = sextract64(value, 0, nr_bits);
846     signed_decr = sextract64(decr, 0, nr_bits);
847 
848     trace_ppc_decr_store(nr_bits, decr, value);
849 
850     /*
851      * Calculate the next decrementer event and set a timer.
852      * decr_next is in timebase units to keep rounding simple. Note it is
853      * not adjusted by tb_offset because if TB changes via tb_offset changing,
854      * decrementer does not change, so not directly comparable with TB.
855      */
856     next = ns_to_tb(tb_env->decr_freq, now) + value;
857     *nextp = next; /* nextp is in timebase units */
858 
859     /*
860      * Going from 1 -> 0 or 0 -> -1 is the event to generate a DEC interrupt.
861      *
862      * On MSB level based DEC implementations the MSB always means the interrupt
863      * is pending, so raise it on those.
864      *
865      * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
866      * an edge interrupt, so raise it here too.
867      */
868     if (((flags & PPC_DECR_UNDERFLOW_LEVEL) && signed_value < 0) ||
869         ((flags & PPC_DECR_UNDERFLOW_TRIGGERED) && signed_value < 0
870           && signed_decr >= 0)) {
871         (*raise_excp)(cpu);
872         return;
873     }
874 
875     /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
876     if (signed_value >= 0 && (flags & PPC_DECR_UNDERFLOW_LEVEL)) {
877         (*lower_excp)(cpu);
878     }
879 
880     /* Adjust timer */
881     timer_mod(timer, tb_to_ns_round_up(tb_env->decr_freq, next));
882 }
883 
884 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, int64_t now,
885                                        target_ulong decr, target_ulong value,
886                                        int nr_bits)
887 {
888     ppc_tb_t *tb_env = cpu->env.tb_env;
889 
890     __cpu_ppc_store_decr(cpu, now, &tb_env->decr_next, tb_env->decr_timer,
891                          tb_env->decr_timer->cb, &cpu_ppc_decr_lower,
892                          tb_env->flags, decr, value, nr_bits);
893 }
894 
895 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
896 {
897     PowerPCCPU *cpu = env_archcpu(env);
898     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
899     int64_t now;
900     target_ulong decr;
901     int nr_bits = 32;
902 
903     if (kvm_enabled()) {
904         /* KVM handles decrementer exceptions, we don't need our own timer */
905         return;
906     }
907 
908     if (env->spr[SPR_LPCR] & LPCR_LD) {
909         nr_bits = pcc->lrg_decr_bits;
910     }
911 
912     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
913     decr = _cpu_ppc_load_decr(env, now);
914     _cpu_ppc_store_decr(cpu, now, decr, value, nr_bits);
915 }
916 
917 static void cpu_ppc_decr_cb(void *opaque)
918 {
919     PowerPCCPU *cpu = opaque;
920 
921     cpu_ppc_decr_excp(cpu);
922 }
923 
924 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, int64_t now,
925                                         target_ulong hdecr, target_ulong value,
926                                         int nr_bits)
927 {
928     ppc_tb_t *tb_env = cpu->env.tb_env;
929 
930     if (tb_env->hdecr_timer != NULL) {
931         /* HDECR (Book3S 64bit) is edge-based, not level like DECR */
932         __cpu_ppc_store_decr(cpu, now, &tb_env->hdecr_next, tb_env->hdecr_timer,
933                              tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
934                              PPC_DECR_UNDERFLOW_TRIGGERED,
935                              hdecr, value, nr_bits);
936     }
937 }
938 
939 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
940 {
941     PowerPCCPU *cpu = env_archcpu(env);
942     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
943     int64_t now;
944     target_ulong hdecr;
945 
946     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
947     hdecr = _cpu_ppc_load_hdecr(env, now);
948     _cpu_ppc_store_hdecr(cpu, now, hdecr, value, pcc->lrg_decr_bits);
949 }
950 
951 static void cpu_ppc_hdecr_cb(void *opaque)
952 {
953     PowerPCCPU *cpu = opaque;
954 
955     cpu_ppc_hdecr_excp(cpu);
956 }
957 
958 static void _cpu_ppc_store_purr(CPUPPCState *env, int64_t now, uint64_t value)
959 {
960     ppc_tb_t *tb_env = env->tb_env;
961 
962     cpu_ppc_store_tb(tb_env, now, &tb_env->purr_offset, value);
963 }
964 
965 void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value)
966 {
967     _cpu_ppc_store_purr(env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), value);
968 }
969 
970 static void timebase_save(PPCTimebase *tb)
971 {
972     uint64_t ticks = cpu_get_host_ticks();
973     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
974 
975     if (!first_ppc_cpu->env.tb_env) {
976         error_report("No timebase object");
977         return;
978     }
979 
980     if (replay_mode == REPLAY_MODE_NONE) {
981         /* not used anymore, we keep it for compatibility */
982         tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
983     } else {
984         /* simpler for record-replay to avoid this event, compat not needed */
985         tb->time_of_the_day_ns = 0;
986     }
987 
988     /*
989      * tb_offset is only expected to be changed by QEMU so
990      * there is no need to update it from KVM here
991      */
992     tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
993 
994     tb->runstate_paused =
995         runstate_check(RUN_STATE_PAUSED) || runstate_check(RUN_STATE_SAVE_VM);
996 }
997 
998 static void timebase_load(PPCTimebase *tb)
999 {
1000     CPUState *cpu;
1001     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1002     int64_t tb_off_adj, tb_off;
1003     unsigned long freq;
1004 
1005     if (!first_ppc_cpu->env.tb_env) {
1006         error_report("No timebase object");
1007         return;
1008     }
1009 
1010     freq = first_ppc_cpu->env.tb_env->tb_freq;
1011 
1012     tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
1013 
1014     tb_off = first_ppc_cpu->env.tb_env->tb_offset;
1015     trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
1016                         (tb_off_adj - tb_off) / freq);
1017 
1018     /* Set new offset to all CPUs */
1019     CPU_FOREACH(cpu) {
1020         PowerPCCPU *pcpu = POWERPC_CPU(cpu);
1021         pcpu->env.tb_env->tb_offset = tb_off_adj;
1022         kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset);
1023     }
1024 }
1025 
1026 void cpu_ppc_clock_vm_state_change(void *opaque, bool running,
1027                                    RunState state)
1028 {
1029     PPCTimebase *tb = opaque;
1030 
1031     if (running) {
1032         timebase_load(tb);
1033     } else {
1034         timebase_save(tb);
1035     }
1036 }
1037 
1038 /*
1039  * When migrating a running guest, read the clock just
1040  * before migration, so that the guest clock counts
1041  * during the events between:
1042  *
1043  *  * vm_stop()
1044  *  *
1045  *  * pre_save()
1046  *
1047  *  This reduces clock difference on migration from 5s
1048  *  to 0.1s (when max_downtime == 5s), because sending the
1049  *  final pages of memory (which happens between vm_stop()
1050  *  and pre_save()) takes max_downtime.
1051  */
1052 static int timebase_pre_save(void *opaque)
1053 {
1054     PPCTimebase *tb = opaque;
1055 
1056     /* guest_timebase won't be overridden in case of paused guest or savevm */
1057     if (!tb->runstate_paused) {
1058         timebase_save(tb);
1059     }
1060 
1061     return 0;
1062 }
1063 
1064 const VMStateDescription vmstate_ppc_timebase = {
1065     .name = "timebase",
1066     .version_id = 1,
1067     .minimum_version_id = 1,
1068     .pre_save = timebase_pre_save,
1069     .fields      = (VMStateField []) {
1070         VMSTATE_UINT64(guest_timebase, PPCTimebase),
1071         VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1072         VMSTATE_END_OF_LIST()
1073     },
1074 };
1075 
1076 /* Set up (once) timebase frequency (in Hz) */
1077 void cpu_ppc_tb_init(CPUPPCState *env, uint32_t freq)
1078 {
1079     PowerPCCPU *cpu = env_archcpu(env);
1080     ppc_tb_t *tb_env;
1081 
1082     tb_env = g_new0(ppc_tb_t, 1);
1083     env->tb_env = tb_env;
1084     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1085     if (is_book3s_arch2x(env)) {
1086         /* All Book3S 64bit CPUs implement level based DEC logic */
1087         tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1088     }
1089     /* Create new timer */
1090     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
1091                                       &cpu_ppc_decr_cb, cpu);
1092     if (env->has_hv_mode && !cpu->vhyp) {
1093         tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
1094                                            &cpu_ppc_hdecr_cb, cpu);
1095     } else {
1096         tb_env->hdecr_timer = NULL;
1097     }
1098 
1099     tb_env->tb_freq = freq;
1100     tb_env->decr_freq = freq;
1101 }
1102 
1103 void cpu_ppc_tb_reset(CPUPPCState *env)
1104 {
1105     PowerPCCPU *cpu = env_archcpu(env);
1106     ppc_tb_t *tb_env = env->tb_env;
1107 
1108     timer_del(tb_env->decr_timer);
1109     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
1110     tb_env->decr_next = 0;
1111     if (tb_env->hdecr_timer != NULL) {
1112         timer_del(tb_env->hdecr_timer);
1113         ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
1114         tb_env->hdecr_next = 0;
1115     }
1116 
1117     /*
1118      * There is a bug in Linux 2.4 kernels:
1119      * if a decrementer exception is pending when it enables msr_ee at startup,
1120      * it's not ready to handle it...
1121      */
1122     cpu_ppc_store_decr(env, -1);
1123     cpu_ppc_store_hdecr(env, -1);
1124     cpu_ppc_store_purr(env, 0x0000000000000000ULL);
1125 }
1126 
1127 void cpu_ppc_tb_free(CPUPPCState *env)
1128 {
1129     timer_free(env->tb_env->decr_timer);
1130     timer_free(env->tb_env->hdecr_timer);
1131     g_free(env->tb_env);
1132 }
1133 
1134 /* cpu_ppc_hdecr_init may be used if the timer is not used by HDEC emulation */
1135 void cpu_ppc_hdecr_init(CPUPPCState *env)
1136 {
1137     PowerPCCPU *cpu = env_archcpu(env);
1138 
1139     assert(env->tb_env->hdecr_timer == NULL);
1140 
1141     env->tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
1142                                             &cpu_ppc_hdecr_cb, cpu);
1143 }
1144 
1145 void cpu_ppc_hdecr_exit(CPUPPCState *env)
1146 {
1147     PowerPCCPU *cpu = env_archcpu(env);
1148 
1149     timer_free(env->tb_env->hdecr_timer);
1150     env->tb_env->hdecr_timer = NULL;
1151 
1152     cpu_ppc_hdecr_lower(cpu);
1153 }
1154 
1155 /*****************************************************************************/
1156 /* PowerPC 40x timers */
1157 
1158 /* PIT, FIT & WDT */
1159 typedef struct ppc40x_timer_t ppc40x_timer_t;
1160 struct ppc40x_timer_t {
1161     uint64_t pit_reload;  /* PIT auto-reload value        */
1162     uint64_t fit_next;    /* Tick for next FIT interrupt  */
1163     QEMUTimer *fit_timer;
1164     uint64_t wdt_next;    /* Tick for next WDT interrupt  */
1165     QEMUTimer *wdt_timer;
1166 
1167     /* 405 have the PIT, 440 have a DECR.  */
1168     unsigned int decr_excp;
1169 };
1170 
1171 /* Fixed interval timer */
1172 static void cpu_4xx_fit_cb (void *opaque)
1173 {
1174     PowerPCCPU *cpu = opaque;
1175     CPUPPCState *env = &cpu->env;
1176     ppc_tb_t *tb_env;
1177     ppc40x_timer_t *ppc40x_timer;
1178     uint64_t now, next;
1179 
1180     tb_env = env->tb_env;
1181     ppc40x_timer = tb_env->opaque;
1182     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1183     switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1184     case 0:
1185         next = 1 << 9;
1186         break;
1187     case 1:
1188         next = 1 << 13;
1189         break;
1190     case 2:
1191         next = 1 << 17;
1192         break;
1193     case 3:
1194         next = 1 << 21;
1195         break;
1196     default:
1197         /* Cannot occur, but makes gcc happy */
1198         return;
1199     }
1200     next = now + tb_to_ns_round_up(tb_env->tb_freq, next);
1201     timer_mod(ppc40x_timer->fit_timer, next);
1202     env->spr[SPR_40x_TSR] |= 1 << 26;
1203     if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1204         ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1205     }
1206     trace_ppc4xx_fit((int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1207                          env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1208 }
1209 
1210 /* Programmable interval timer */
1211 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1212 {
1213     ppc40x_timer_t *ppc40x_timer;
1214     uint64_t now, next;
1215 
1216     ppc40x_timer = tb_env->opaque;
1217     if (ppc40x_timer->pit_reload <= 1 ||
1218         !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1219         (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1220         /* Stop PIT */
1221         trace_ppc4xx_pit_stop();
1222         timer_del(tb_env->decr_timer);
1223     } else {
1224         trace_ppc4xx_pit_start(ppc40x_timer->pit_reload);
1225         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1226 
1227         if (is_excp) {
1228             tb_env->decr_next += ppc40x_timer->pit_reload;
1229         } else {
1230             tb_env->decr_next = ns_to_tb(tb_env->decr_freq, now)
1231                                 + ppc40x_timer->pit_reload;
1232         }
1233         next = tb_to_ns_round_up(tb_env->decr_freq, tb_env->decr_next);
1234         timer_mod(tb_env->decr_timer, next);
1235     }
1236 }
1237 
1238 static void cpu_4xx_pit_cb (void *opaque)
1239 {
1240     PowerPCCPU *cpu = opaque;
1241     CPUPPCState *env = &cpu->env;
1242     ppc_tb_t *tb_env;
1243     ppc40x_timer_t *ppc40x_timer;
1244 
1245     tb_env = env->tb_env;
1246     ppc40x_timer = tb_env->opaque;
1247     env->spr[SPR_40x_TSR] |= 1 << 27;
1248     if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1249         ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1250     }
1251     start_stop_pit(env, tb_env, 1);
1252     trace_ppc4xx_pit((int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1253            (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1254            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1255            ppc40x_timer->pit_reload);
1256 }
1257 
1258 /* Watchdog timer */
1259 static void cpu_4xx_wdt_cb (void *opaque)
1260 {
1261     PowerPCCPU *cpu = opaque;
1262     CPUPPCState *env = &cpu->env;
1263     ppc_tb_t *tb_env;
1264     ppc40x_timer_t *ppc40x_timer;
1265     uint64_t now, next;
1266 
1267     tb_env = env->tb_env;
1268     ppc40x_timer = tb_env->opaque;
1269     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1270     switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1271     case 0:
1272         next = 1 << 17;
1273         break;
1274     case 1:
1275         next = 1 << 21;
1276         break;
1277     case 2:
1278         next = 1 << 25;
1279         break;
1280     case 3:
1281         next = 1 << 29;
1282         break;
1283     default:
1284         /* Cannot occur, but makes gcc happy */
1285         return;
1286     }
1287     next = now + tb_to_ns_round_up(tb_env->decr_freq, next);
1288     trace_ppc4xx_wdt(env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1289     switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1290     case 0x0:
1291     case 0x1:
1292         timer_mod(ppc40x_timer->wdt_timer, next);
1293         ppc40x_timer->wdt_next = next;
1294         env->spr[SPR_40x_TSR] |= 1U << 31;
1295         break;
1296     case 0x2:
1297         timer_mod(ppc40x_timer->wdt_timer, next);
1298         ppc40x_timer->wdt_next = next;
1299         env->spr[SPR_40x_TSR] |= 1 << 30;
1300         if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1301             ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1302         }
1303         break;
1304     case 0x3:
1305         env->spr[SPR_40x_TSR] &= ~0x30000000;
1306         env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1307         switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1308         case 0x0:
1309             /* No reset */
1310             break;
1311         case 0x1: /* Core reset */
1312             ppc40x_core_reset(cpu);
1313             break;
1314         case 0x2: /* Chip reset */
1315             ppc40x_chip_reset(cpu);
1316             break;
1317         case 0x3: /* System reset */
1318             ppc40x_system_reset(cpu);
1319             break;
1320         }
1321     }
1322 }
1323 
1324 void store_40x_pit (CPUPPCState *env, target_ulong val)
1325 {
1326     ppc_tb_t *tb_env;
1327     ppc40x_timer_t *ppc40x_timer;
1328 
1329     tb_env = env->tb_env;
1330     ppc40x_timer = tb_env->opaque;
1331     trace_ppc40x_store_pit(val);
1332     ppc40x_timer->pit_reload = val;
1333     start_stop_pit(env, tb_env, 0);
1334 }
1335 
1336 target_ulong load_40x_pit (CPUPPCState *env)
1337 {
1338     return cpu_ppc_load_decr(env);
1339 }
1340 
1341 void store_40x_tsr(CPUPPCState *env, target_ulong val)
1342 {
1343     PowerPCCPU *cpu = env_archcpu(env);
1344 
1345     trace_ppc40x_store_tcr(val);
1346 
1347     env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000);
1348     if (val & 0x80000000) {
1349         ppc_set_irq(cpu, PPC_INTERRUPT_PIT, 0);
1350     }
1351 }
1352 
1353 void store_40x_tcr(CPUPPCState *env, target_ulong val)
1354 {
1355     PowerPCCPU *cpu = env_archcpu(env);
1356     ppc_tb_t *tb_env;
1357 
1358     trace_ppc40x_store_tsr(val);
1359 
1360     tb_env = env->tb_env;
1361     env->spr[SPR_40x_TCR] = val & 0xFFC00000;
1362     start_stop_pit(env, tb_env, 1);
1363     cpu_4xx_wdt_cb(cpu);
1364 }
1365 
1366 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1367 {
1368     CPUPPCState *env = opaque;
1369     ppc_tb_t *tb_env = env->tb_env;
1370 
1371     trace_ppc40x_set_tb_clk(freq);
1372     tb_env->tb_freq = freq;
1373     tb_env->decr_freq = freq;
1374     /* XXX: we should also update all timers */
1375 }
1376 
1377 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1378                                   unsigned int decr_excp)
1379 {
1380     ppc_tb_t *tb_env;
1381     ppc40x_timer_t *ppc40x_timer;
1382     PowerPCCPU *cpu = env_archcpu(env);
1383 
1384     trace_ppc40x_timers_init(freq);
1385 
1386     tb_env = g_new0(ppc_tb_t, 1);
1387     ppc40x_timer = g_new0(ppc40x_timer_t, 1);
1388 
1389     env->tb_env = tb_env;
1390     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1391     tb_env->tb_freq = freq;
1392     tb_env->decr_freq = freq;
1393     tb_env->opaque = ppc40x_timer;
1394 
1395     /* We use decr timer for PIT */
1396     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, cpu);
1397     ppc40x_timer->fit_timer =
1398         timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, cpu);
1399     ppc40x_timer->wdt_timer =
1400         timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, cpu);
1401     ppc40x_timer->decr_excp = decr_excp;
1402 
1403     return &ppc_40x_set_tb_clk;
1404 }
1405 
1406 /*****************************************************************************/
1407 /* Embedded PowerPC Device Control Registers */
1408 typedef struct ppc_dcrn_t ppc_dcrn_t;
1409 struct ppc_dcrn_t {
1410     dcr_read_cb dcr_read;
1411     dcr_write_cb dcr_write;
1412     void *opaque;
1413 };
1414 
1415 /* XXX: on 460, DCR addresses are 32 bits wide,
1416  *      using DCRIPR to get the 22 upper bits of the DCR address
1417  */
1418 #define DCRN_NB 1024
1419 struct ppc_dcr_t {
1420     ppc_dcrn_t dcrn[DCRN_NB];
1421     int (*read_error)(int dcrn);
1422     int (*write_error)(int dcrn);
1423 };
1424 
1425 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1426 {
1427     ppc_dcrn_t *dcr;
1428 
1429     if (dcrn < 0 || dcrn >= DCRN_NB)
1430         goto error;
1431     dcr = &dcr_env->dcrn[dcrn];
1432     if (dcr->dcr_read == NULL)
1433         goto error;
1434     *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1435     trace_ppc_dcr_read(dcrn, *valp);
1436 
1437     return 0;
1438 
1439  error:
1440     if (dcr_env->read_error != NULL)
1441         return (*dcr_env->read_error)(dcrn);
1442 
1443     return -1;
1444 }
1445 
1446 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1447 {
1448     ppc_dcrn_t *dcr;
1449 
1450     if (dcrn < 0 || dcrn >= DCRN_NB)
1451         goto error;
1452     dcr = &dcr_env->dcrn[dcrn];
1453     if (dcr->dcr_write == NULL)
1454         goto error;
1455     trace_ppc_dcr_write(dcrn, val);
1456     (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1457 
1458     return 0;
1459 
1460  error:
1461     if (dcr_env->write_error != NULL)
1462         return (*dcr_env->write_error)(dcrn);
1463 
1464     return -1;
1465 }
1466 
1467 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1468                       dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1469 {
1470     ppc_dcr_t *dcr_env;
1471     ppc_dcrn_t *dcr;
1472 
1473     dcr_env = env->dcr_env;
1474     if (dcr_env == NULL)
1475         return -1;
1476     if (dcrn < 0 || dcrn >= DCRN_NB)
1477         return -1;
1478     dcr = &dcr_env->dcrn[dcrn];
1479     if (dcr->opaque != NULL ||
1480         dcr->dcr_read != NULL ||
1481         dcr->dcr_write != NULL)
1482         return -1;
1483     dcr->opaque = opaque;
1484     dcr->dcr_read = dcr_read;
1485     dcr->dcr_write = dcr_write;
1486 
1487     return 0;
1488 }
1489 
1490 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1491                   int (*write_error)(int dcrn))
1492 {
1493     ppc_dcr_t *dcr_env;
1494 
1495     dcr_env = g_new0(ppc_dcr_t, 1);
1496     dcr_env->read_error = read_error;
1497     dcr_env->write_error = write_error;
1498     env->dcr_env = dcr_env;
1499 
1500     return 0;
1501 }
1502 
1503 /*****************************************************************************/
1504 
1505 int ppc_cpu_pir(PowerPCCPU *cpu)
1506 {
1507     CPUPPCState *env = &cpu->env;
1508     return env->spr_cb[SPR_PIR].default_value;
1509 }
1510 
1511 int ppc_cpu_tir(PowerPCCPU *cpu)
1512 {
1513     CPUPPCState *env = &cpu->env;
1514     return env->spr_cb[SPR_TIR].default_value;
1515 }
1516 
1517 PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1518 {
1519     CPUState *cs;
1520 
1521     CPU_FOREACH(cs) {
1522         PowerPCCPU *cpu = POWERPC_CPU(cs);
1523 
1524         if (ppc_cpu_pir(cpu) == pir) {
1525             return cpu;
1526         }
1527     }
1528 
1529     return NULL;
1530 }
1531 
1532 void ppc_irq_reset(PowerPCCPU *cpu)
1533 {
1534     CPUPPCState *env = &cpu->env;
1535 
1536     env->irq_input_state = 0;
1537     if (kvm_enabled()) {
1538         kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0);
1539     }
1540 }
1541