xref: /qemu/hw/ppc/ppc.c (revision ec150c7e)
1 /*
2  * QEMU generic PowerPC hardware System Emulator
3  *
4  * Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "cpu.h"
26 #include "hw/hw.h"
27 #include "hw/ppc/ppc.h"
28 #include "hw/ppc/ppc_e500.h"
29 #include "qemu/timer.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/cpus.h"
32 #include "qemu/log.h"
33 #include "qemu/error-report.h"
34 #include "sysemu/kvm.h"
35 #include "kvm_ppc.h"
36 #include "trace.h"
37 
38 //#define PPC_DEBUG_IRQ
39 //#define PPC_DEBUG_TB
40 
41 #ifdef PPC_DEBUG_IRQ
42 #  define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
43 #else
44 #  define LOG_IRQ(...) do { } while (0)
45 #endif
46 
47 
48 #ifdef PPC_DEBUG_TB
49 #  define LOG_TB(...) qemu_log(__VA_ARGS__)
50 #else
51 #  define LOG_TB(...) do { } while (0)
52 #endif
53 
54 static void cpu_ppc_tb_stop (CPUPPCState *env);
55 static void cpu_ppc_tb_start (CPUPPCState *env);
56 
57 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
58 {
59     CPUState *cs = CPU(cpu);
60     CPUPPCState *env = &cpu->env;
61     unsigned int old_pending;
62     bool locked = false;
63 
64     /* We may already have the BQL if coming from the reset path */
65     if (!qemu_mutex_iothread_locked()) {
66         locked = true;
67         qemu_mutex_lock_iothread();
68     }
69 
70     old_pending = env->pending_interrupts;
71 
72     if (level) {
73         env->pending_interrupts |= 1 << n_IRQ;
74         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
75     } else {
76         env->pending_interrupts &= ~(1 << n_IRQ);
77         if (env->pending_interrupts == 0) {
78             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
79         }
80     }
81 
82     if (old_pending != env->pending_interrupts) {
83         kvmppc_set_interrupt(cpu, n_IRQ, level);
84     }
85 
86 
87     LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
88                 "req %08x\n", __func__, env, n_IRQ, level,
89                 env->pending_interrupts, CPU(cpu)->interrupt_request);
90 
91     if (locked) {
92         qemu_mutex_unlock_iothread();
93     }
94 }
95 
96 /* PowerPC 6xx / 7xx internal IRQ controller */
97 static void ppc6xx_set_irq(void *opaque, int pin, int level)
98 {
99     PowerPCCPU *cpu = opaque;
100     CPUPPCState *env = &cpu->env;
101     int cur_level;
102 
103     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
104                 env, pin, level);
105     cur_level = (env->irq_input_state >> pin) & 1;
106     /* Don't generate spurious events */
107     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
108         CPUState *cs = CPU(cpu);
109 
110         switch (pin) {
111         case PPC6xx_INPUT_TBEN:
112             /* Level sensitive - active high */
113             LOG_IRQ("%s: %s the time base\n",
114                         __func__, level ? "start" : "stop");
115             if (level) {
116                 cpu_ppc_tb_start(env);
117             } else {
118                 cpu_ppc_tb_stop(env);
119             }
120         case PPC6xx_INPUT_INT:
121             /* Level sensitive - active high */
122             LOG_IRQ("%s: set the external IRQ state to %d\n",
123                         __func__, level);
124             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
125             break;
126         case PPC6xx_INPUT_SMI:
127             /* Level sensitive - active high */
128             LOG_IRQ("%s: set the SMI IRQ state to %d\n",
129                         __func__, level);
130             ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
131             break;
132         case PPC6xx_INPUT_MCP:
133             /* Negative edge sensitive */
134             /* XXX: TODO: actual reaction may depends on HID0 status
135              *            603/604/740/750: check HID0[EMCP]
136              */
137             if (cur_level == 1 && level == 0) {
138                 LOG_IRQ("%s: raise machine check state\n",
139                             __func__);
140                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
141             }
142             break;
143         case PPC6xx_INPUT_CKSTP_IN:
144             /* Level sensitive - active low */
145             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
146             /* XXX: Note that the only way to restart the CPU is to reset it */
147             if (level) {
148                 LOG_IRQ("%s: stop the CPU\n", __func__);
149                 cs->halted = 1;
150             }
151             break;
152         case PPC6xx_INPUT_HRESET:
153             /* Level sensitive - active low */
154             if (level) {
155                 LOG_IRQ("%s: reset the CPU\n", __func__);
156                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
157             }
158             break;
159         case PPC6xx_INPUT_SRESET:
160             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
161                         __func__, level);
162             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
163             break;
164         default:
165             /* Unknown pin - do nothing */
166             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
167             return;
168         }
169         if (level)
170             env->irq_input_state |= 1 << pin;
171         else
172             env->irq_input_state &= ~(1 << pin);
173     }
174 }
175 
176 void ppc6xx_irq_init(PowerPCCPU *cpu)
177 {
178     CPUPPCState *env = &cpu->env;
179 
180     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
181                                                   PPC6xx_INPUT_NB);
182 }
183 
184 #if defined(TARGET_PPC64)
185 /* PowerPC 970 internal IRQ controller */
186 static void ppc970_set_irq(void *opaque, int pin, int level)
187 {
188     PowerPCCPU *cpu = opaque;
189     CPUPPCState *env = &cpu->env;
190     int cur_level;
191 
192     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
193                 env, pin, level);
194     cur_level = (env->irq_input_state >> pin) & 1;
195     /* Don't generate spurious events */
196     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
197         CPUState *cs = CPU(cpu);
198 
199         switch (pin) {
200         case PPC970_INPUT_INT:
201             /* Level sensitive - active high */
202             LOG_IRQ("%s: set the external IRQ state to %d\n",
203                         __func__, level);
204             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
205             break;
206         case PPC970_INPUT_THINT:
207             /* Level sensitive - active high */
208             LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
209                         level);
210             ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
211             break;
212         case PPC970_INPUT_MCP:
213             /* Negative edge sensitive */
214             /* XXX: TODO: actual reaction may depends on HID0 status
215              *            603/604/740/750: check HID0[EMCP]
216              */
217             if (cur_level == 1 && level == 0) {
218                 LOG_IRQ("%s: raise machine check state\n",
219                             __func__);
220                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
221             }
222             break;
223         case PPC970_INPUT_CKSTP:
224             /* Level sensitive - active low */
225             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
226             if (level) {
227                 LOG_IRQ("%s: stop the CPU\n", __func__);
228                 cs->halted = 1;
229             } else {
230                 LOG_IRQ("%s: restart the CPU\n", __func__);
231                 cs->halted = 0;
232                 qemu_cpu_kick(cs);
233             }
234             break;
235         case PPC970_INPUT_HRESET:
236             /* Level sensitive - active low */
237             if (level) {
238                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
239             }
240             break;
241         case PPC970_INPUT_SRESET:
242             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
243                         __func__, level);
244             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
245             break;
246         case PPC970_INPUT_TBEN:
247             LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
248                         level);
249             /* XXX: TODO */
250             break;
251         default:
252             /* Unknown pin - do nothing */
253             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
254             return;
255         }
256         if (level)
257             env->irq_input_state |= 1 << pin;
258         else
259             env->irq_input_state &= ~(1 << pin);
260     }
261 }
262 
263 void ppc970_irq_init(PowerPCCPU *cpu)
264 {
265     CPUPPCState *env = &cpu->env;
266 
267     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
268                                                   PPC970_INPUT_NB);
269 }
270 
271 /* POWER7 internal IRQ controller */
272 static void power7_set_irq(void *opaque, int pin, int level)
273 {
274     PowerPCCPU *cpu = opaque;
275     CPUPPCState *env = &cpu->env;
276 
277     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
278                 env, pin, level);
279 
280     switch (pin) {
281     case POWER7_INPUT_INT:
282         /* Level sensitive - active high */
283         LOG_IRQ("%s: set the external IRQ state to %d\n",
284                 __func__, level);
285         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
286         break;
287     default:
288         /* Unknown pin - do nothing */
289         LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
290         return;
291     }
292     if (level) {
293         env->irq_input_state |= 1 << pin;
294     } else {
295         env->irq_input_state &= ~(1 << pin);
296     }
297 }
298 
299 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
300 {
301     CPUPPCState *env = &cpu->env;
302 
303     env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
304                                                   POWER7_INPUT_NB);
305 }
306 
307 /* POWER9 internal IRQ controller */
308 static void power9_set_irq(void *opaque, int pin, int level)
309 {
310     PowerPCCPU *cpu = opaque;
311     CPUPPCState *env = &cpu->env;
312 
313     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
314                 env, pin, level);
315 
316     switch (pin) {
317     case POWER9_INPUT_INT:
318         /* Level sensitive - active high */
319         LOG_IRQ("%s: set the external IRQ state to %d\n",
320                 __func__, level);
321         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
322         break;
323     case POWER9_INPUT_HINT:
324         /* Level sensitive - active high */
325         LOG_IRQ("%s: set the external IRQ state to %d\n",
326                 __func__, level);
327         ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
328         break;
329     default:
330         /* Unknown pin - do nothing */
331         LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
332         return;
333     }
334     if (level) {
335         env->irq_input_state |= 1 << pin;
336     } else {
337         env->irq_input_state &= ~(1 << pin);
338     }
339 }
340 
341 void ppcPOWER9_irq_init(PowerPCCPU *cpu)
342 {
343     CPUPPCState *env = &cpu->env;
344 
345     env->irq_inputs = (void **)qemu_allocate_irqs(&power9_set_irq, cpu,
346                                                   POWER9_INPUT_NB);
347 }
348 #endif /* defined(TARGET_PPC64) */
349 
350 void ppc40x_core_reset(PowerPCCPU *cpu)
351 {
352     CPUPPCState *env = &cpu->env;
353     target_ulong dbsr;
354 
355     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
356     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
357     dbsr = env->spr[SPR_40x_DBSR];
358     dbsr &= ~0x00000300;
359     dbsr |= 0x00000100;
360     env->spr[SPR_40x_DBSR] = dbsr;
361 }
362 
363 void ppc40x_chip_reset(PowerPCCPU *cpu)
364 {
365     CPUPPCState *env = &cpu->env;
366     target_ulong dbsr;
367 
368     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
369     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
370     /* XXX: TODO reset all internal peripherals */
371     dbsr = env->spr[SPR_40x_DBSR];
372     dbsr &= ~0x00000300;
373     dbsr |= 0x00000200;
374     env->spr[SPR_40x_DBSR] = dbsr;
375 }
376 
377 void ppc40x_system_reset(PowerPCCPU *cpu)
378 {
379     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
380     qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
381 }
382 
383 void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
384 {
385     PowerPCCPU *cpu = env_archcpu(env);
386 
387     switch ((val >> 28) & 0x3) {
388     case 0x0:
389         /* No action */
390         break;
391     case 0x1:
392         /* Core reset */
393         ppc40x_core_reset(cpu);
394         break;
395     case 0x2:
396         /* Chip reset */
397         ppc40x_chip_reset(cpu);
398         break;
399     case 0x3:
400         /* System reset */
401         ppc40x_system_reset(cpu);
402         break;
403     }
404 }
405 
406 /* PowerPC 40x internal IRQ controller */
407 static void ppc40x_set_irq(void *opaque, int pin, int level)
408 {
409     PowerPCCPU *cpu = opaque;
410     CPUPPCState *env = &cpu->env;
411     int cur_level;
412 
413     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
414                 env, pin, level);
415     cur_level = (env->irq_input_state >> pin) & 1;
416     /* Don't generate spurious events */
417     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
418         CPUState *cs = CPU(cpu);
419 
420         switch (pin) {
421         case PPC40x_INPUT_RESET_SYS:
422             if (level) {
423                 LOG_IRQ("%s: reset the PowerPC system\n",
424                             __func__);
425                 ppc40x_system_reset(cpu);
426             }
427             break;
428         case PPC40x_INPUT_RESET_CHIP:
429             if (level) {
430                 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
431                 ppc40x_chip_reset(cpu);
432             }
433             break;
434         case PPC40x_INPUT_RESET_CORE:
435             /* XXX: TODO: update DBSR[MRR] */
436             if (level) {
437                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
438                 ppc40x_core_reset(cpu);
439             }
440             break;
441         case PPC40x_INPUT_CINT:
442             /* Level sensitive - active high */
443             LOG_IRQ("%s: set the critical IRQ state to %d\n",
444                         __func__, level);
445             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
446             break;
447         case PPC40x_INPUT_INT:
448             /* Level sensitive - active high */
449             LOG_IRQ("%s: set the external IRQ state to %d\n",
450                         __func__, level);
451             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
452             break;
453         case PPC40x_INPUT_HALT:
454             /* Level sensitive - active low */
455             if (level) {
456                 LOG_IRQ("%s: stop the CPU\n", __func__);
457                 cs->halted = 1;
458             } else {
459                 LOG_IRQ("%s: restart the CPU\n", __func__);
460                 cs->halted = 0;
461                 qemu_cpu_kick(cs);
462             }
463             break;
464         case PPC40x_INPUT_DEBUG:
465             /* Level sensitive - active high */
466             LOG_IRQ("%s: set the debug pin state to %d\n",
467                         __func__, level);
468             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
469             break;
470         default:
471             /* Unknown pin - do nothing */
472             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
473             return;
474         }
475         if (level)
476             env->irq_input_state |= 1 << pin;
477         else
478             env->irq_input_state &= ~(1 << pin);
479     }
480 }
481 
482 void ppc40x_irq_init(PowerPCCPU *cpu)
483 {
484     CPUPPCState *env = &cpu->env;
485 
486     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
487                                                   cpu, PPC40x_INPUT_NB);
488 }
489 
490 /* PowerPC E500 internal IRQ controller */
491 static void ppce500_set_irq(void *opaque, int pin, int level)
492 {
493     PowerPCCPU *cpu = opaque;
494     CPUPPCState *env = &cpu->env;
495     int cur_level;
496 
497     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
498                 env, pin, level);
499     cur_level = (env->irq_input_state >> pin) & 1;
500     /* Don't generate spurious events */
501     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
502         switch (pin) {
503         case PPCE500_INPUT_MCK:
504             if (level) {
505                 LOG_IRQ("%s: reset the PowerPC system\n",
506                             __func__);
507                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
508             }
509             break;
510         case PPCE500_INPUT_RESET_CORE:
511             if (level) {
512                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
513                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
514             }
515             break;
516         case PPCE500_INPUT_CINT:
517             /* Level sensitive - active high */
518             LOG_IRQ("%s: set the critical IRQ state to %d\n",
519                         __func__, level);
520             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
521             break;
522         case PPCE500_INPUT_INT:
523             /* Level sensitive - active high */
524             LOG_IRQ("%s: set the core IRQ state to %d\n",
525                         __func__, level);
526             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
527             break;
528         case PPCE500_INPUT_DEBUG:
529             /* Level sensitive - active high */
530             LOG_IRQ("%s: set the debug pin state to %d\n",
531                         __func__, level);
532             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
533             break;
534         default:
535             /* Unknown pin - do nothing */
536             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
537             return;
538         }
539         if (level)
540             env->irq_input_state |= 1 << pin;
541         else
542             env->irq_input_state &= ~(1 << pin);
543     }
544 }
545 
546 void ppce500_irq_init(PowerPCCPU *cpu)
547 {
548     CPUPPCState *env = &cpu->env;
549 
550     env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
551                                                   cpu, PPCE500_INPUT_NB);
552 }
553 
554 /* Enable or Disable the E500 EPR capability */
555 void ppce500_set_mpic_proxy(bool enabled)
556 {
557     CPUState *cs;
558 
559     CPU_FOREACH(cs) {
560         PowerPCCPU *cpu = POWERPC_CPU(cs);
561 
562         cpu->env.mpic_proxy = enabled;
563         if (kvm_enabled()) {
564             kvmppc_set_mpic_proxy(cpu, enabled);
565         }
566     }
567 }
568 
569 /*****************************************************************************/
570 /* PowerPC time base and decrementer emulation */
571 
572 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
573 {
574     /* TB time in tb periods */
575     return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
576 }
577 
578 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
579 {
580     ppc_tb_t *tb_env = env->tb_env;
581     uint64_t tb;
582 
583     if (kvm_enabled()) {
584         return env->spr[SPR_TBL];
585     }
586 
587     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
588     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
589 
590     return tb;
591 }
592 
593 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
594 {
595     ppc_tb_t *tb_env = env->tb_env;
596     uint64_t tb;
597 
598     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
599     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
600 
601     return tb >> 32;
602 }
603 
604 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
605 {
606     if (kvm_enabled()) {
607         return env->spr[SPR_TBU];
608     }
609 
610     return _cpu_ppc_load_tbu(env);
611 }
612 
613 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
614                                     int64_t *tb_offsetp, uint64_t value)
615 {
616     *tb_offsetp = value -
617         muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
618 
619     LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
620                 __func__, value, *tb_offsetp);
621 }
622 
623 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
624 {
625     ppc_tb_t *tb_env = env->tb_env;
626     uint64_t tb;
627 
628     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
629     tb &= 0xFFFFFFFF00000000ULL;
630     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
631                      &tb_env->tb_offset, tb | (uint64_t)value);
632 }
633 
634 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
635 {
636     ppc_tb_t *tb_env = env->tb_env;
637     uint64_t tb;
638 
639     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
640     tb &= 0x00000000FFFFFFFFULL;
641     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
642                      &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
643 }
644 
645 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
646 {
647     _cpu_ppc_store_tbu(env, value);
648 }
649 
650 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
651 {
652     ppc_tb_t *tb_env = env->tb_env;
653     uint64_t tb;
654 
655     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
656     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
657 
658     return tb;
659 }
660 
661 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
662 {
663     ppc_tb_t *tb_env = env->tb_env;
664     uint64_t tb;
665 
666     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
667     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
668 
669     return tb >> 32;
670 }
671 
672 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
673 {
674     ppc_tb_t *tb_env = env->tb_env;
675     uint64_t tb;
676 
677     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
678     tb &= 0xFFFFFFFF00000000ULL;
679     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
680                      &tb_env->atb_offset, tb | (uint64_t)value);
681 }
682 
683 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
684 {
685     ppc_tb_t *tb_env = env->tb_env;
686     uint64_t tb;
687 
688     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
689     tb &= 0x00000000FFFFFFFFULL;
690     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
691                      &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
692 }
693 
694 static void cpu_ppc_tb_stop (CPUPPCState *env)
695 {
696     ppc_tb_t *tb_env = env->tb_env;
697     uint64_t tb, atb, vmclk;
698 
699     /* If the time base is already frozen, do nothing */
700     if (tb_env->tb_freq != 0) {
701         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
702         /* Get the time base */
703         tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
704         /* Get the alternate time base */
705         atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
706         /* Store the time base value (ie compute the current offset) */
707         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
708         /* Store the alternate time base value (compute the current offset) */
709         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
710         /* Set the time base frequency to zero */
711         tb_env->tb_freq = 0;
712         /* Now, the time bases are frozen to tb_offset / atb_offset value */
713     }
714 }
715 
716 static void cpu_ppc_tb_start (CPUPPCState *env)
717 {
718     ppc_tb_t *tb_env = env->tb_env;
719     uint64_t tb, atb, vmclk;
720 
721     /* If the time base is not frozen, do nothing */
722     if (tb_env->tb_freq == 0) {
723         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
724         /* Get the time base from tb_offset */
725         tb = tb_env->tb_offset;
726         /* Get the alternate time base from atb_offset */
727         atb = tb_env->atb_offset;
728         /* Restore the tb frequency from the decrementer frequency */
729         tb_env->tb_freq = tb_env->decr_freq;
730         /* Store the time base value */
731         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
732         /* Store the alternate time base value */
733         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
734     }
735 }
736 
737 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
738 {
739     ppc_tb_t *tb_env = env->tb_env;
740     int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
741     return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
742 }
743 
744 static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
745 {
746     ppc_tb_t *tb_env = env->tb_env;
747     int64_t decr, diff;
748 
749     diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
750     if (diff >= 0) {
751         decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
752     } else if (tb_env->flags & PPC_TIMER_BOOKE) {
753         decr = 0;
754     }  else {
755         decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
756     }
757     LOG_TB("%s: %016" PRIx64 "\n", __func__, decr);
758 
759     return decr;
760 }
761 
762 target_ulong cpu_ppc_load_decr(CPUPPCState *env)
763 {
764     ppc_tb_t *tb_env = env->tb_env;
765     uint64_t decr;
766 
767     if (kvm_enabled()) {
768         return env->spr[SPR_DECR];
769     }
770 
771     decr = _cpu_ppc_load_decr(env, tb_env->decr_next);
772 
773     /*
774      * If large decrementer is enabled then the decrementer is signed extened
775      * to 64 bits, otherwise it is a 32 bit value.
776      */
777     if (env->spr[SPR_LPCR] & LPCR_LD) {
778         return decr;
779     }
780     return (uint32_t) decr;
781 }
782 
783 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
784 {
785     PowerPCCPU *cpu = env_archcpu(env);
786     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
787     ppc_tb_t *tb_env = env->tb_env;
788     uint64_t hdecr;
789 
790     hdecr =  _cpu_ppc_load_decr(env, tb_env->hdecr_next);
791 
792     /*
793      * If we have a large decrementer (POWER9 or later) then hdecr is sign
794      * extended to 64 bits, otherwise it is 32 bits.
795      */
796     if (pcc->lrg_decr_bits > 32) {
797         return hdecr;
798     }
799     return (uint32_t) hdecr;
800 }
801 
802 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
803 {
804     ppc_tb_t *tb_env = env->tb_env;
805     uint64_t diff;
806 
807     diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
808 
809     return tb_env->purr_load +
810         muldiv64(diff, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
811 }
812 
813 /* When decrementer expires,
814  * all we need to do is generate or queue a CPU exception
815  */
816 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
817 {
818     /* Raise it */
819     LOG_TB("raise decrementer exception\n");
820     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
821 }
822 
823 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
824 {
825     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
826 }
827 
828 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
829 {
830     CPUPPCState *env = &cpu->env;
831 
832     /* Raise it */
833     LOG_TB("raise hv decrementer exception\n");
834 
835     /* The architecture specifies that we don't deliver HDEC
836      * interrupts in a PM state. Not only they don't cause a
837      * wakeup but they also get effectively discarded.
838      */
839     if (!env->resume_as_sreset) {
840         ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
841     }
842 }
843 
844 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
845 {
846     ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
847 }
848 
849 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
850                                  QEMUTimer *timer,
851                                  void (*raise_excp)(void *),
852                                  void (*lower_excp)(PowerPCCPU *),
853                                  target_ulong decr, target_ulong value,
854                                  int nr_bits)
855 {
856     CPUPPCState *env = &cpu->env;
857     ppc_tb_t *tb_env = env->tb_env;
858     uint64_t now, next;
859     bool negative;
860 
861     /* Truncate value to decr_width and sign extend for simplicity */
862     value &= ((1ULL << nr_bits) - 1);
863     negative = !!(value & (1ULL << (nr_bits - 1)));
864     if (negative) {
865         value |= (0xFFFFFFFFULL << nr_bits);
866     }
867 
868     LOG_TB("%s: " TARGET_FMT_lx " => " TARGET_FMT_lx "\n", __func__,
869                 decr, value);
870 
871     if (kvm_enabled()) {
872         /* KVM handles decrementer exceptions, we don't need our own timer */
873         return;
874     }
875 
876     /*
877      * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
878      * interrupt.
879      *
880      * If we get a really small DEC value, we can assume that by the time we
881      * handled it we should inject an interrupt already.
882      *
883      * On MSB level based DEC implementations the MSB always means the interrupt
884      * is pending, so raise it on those.
885      *
886      * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
887      * an edge interrupt, so raise it here too.
888      */
889     if ((value < 3) ||
890         ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && negative) ||
891         ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && negative
892           && !(decr & (1ULL << (nr_bits - 1))))) {
893         (*raise_excp)(cpu);
894         return;
895     }
896 
897     /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
898     if (!negative && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
899         (*lower_excp)(cpu);
900     }
901 
902     /* Calculate the next timer event */
903     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
904     next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
905     *nextp = next;
906 
907     /* Adjust timer */
908     timer_mod(timer, next);
909 }
910 
911 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr,
912                                        target_ulong value, int nr_bits)
913 {
914     ppc_tb_t *tb_env = cpu->env.tb_env;
915 
916     __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
917                          tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
918                          value, nr_bits);
919 }
920 
921 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
922 {
923     PowerPCCPU *cpu = env_archcpu(env);
924     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
925     int nr_bits = 32;
926 
927     if (env->spr[SPR_LPCR] & LPCR_LD) {
928         nr_bits = pcc->lrg_decr_bits;
929     }
930 
931     _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits);
932 }
933 
934 static void cpu_ppc_decr_cb(void *opaque)
935 {
936     PowerPCCPU *cpu = opaque;
937 
938     cpu_ppc_decr_excp(cpu);
939 }
940 
941 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr,
942                                         target_ulong value, int nr_bits)
943 {
944     ppc_tb_t *tb_env = cpu->env.tb_env;
945 
946     if (tb_env->hdecr_timer != NULL) {
947         __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
948                              tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
949                              hdecr, value, nr_bits);
950     }
951 }
952 
953 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
954 {
955     PowerPCCPU *cpu = env_archcpu(env);
956     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
957 
958     _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value,
959                          pcc->lrg_decr_bits);
960 }
961 
962 static void cpu_ppc_hdecr_cb(void *opaque)
963 {
964     PowerPCCPU *cpu = opaque;
965 
966     cpu_ppc_hdecr_excp(cpu);
967 }
968 
969 static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
970 {
971     ppc_tb_t *tb_env = cpu->env.tb_env;
972 
973     tb_env->purr_load = value;
974     tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
975 }
976 
977 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
978 {
979     CPUPPCState *env = opaque;
980     PowerPCCPU *cpu = env_archcpu(env);
981     ppc_tb_t *tb_env = env->tb_env;
982 
983     tb_env->tb_freq = freq;
984     tb_env->decr_freq = freq;
985     /* There is a bug in Linux 2.4 kernels:
986      * if a decrementer exception is pending when it enables msr_ee at startup,
987      * it's not ready to handle it...
988      */
989     _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
990     _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
991     cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
992 }
993 
994 static void timebase_save(PPCTimebase *tb)
995 {
996     uint64_t ticks = cpu_get_host_ticks();
997     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
998 
999     if (!first_ppc_cpu->env.tb_env) {
1000         error_report("No timebase object");
1001         return;
1002     }
1003 
1004     /* not used anymore, we keep it for compatibility */
1005     tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
1006     /*
1007      * tb_offset is only expected to be changed by QEMU so
1008      * there is no need to update it from KVM here
1009      */
1010     tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
1011 }
1012 
1013 static void timebase_load(PPCTimebase *tb)
1014 {
1015     CPUState *cpu;
1016     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1017     int64_t tb_off_adj, tb_off;
1018     unsigned long freq;
1019 
1020     if (!first_ppc_cpu->env.tb_env) {
1021         error_report("No timebase object");
1022         return;
1023     }
1024 
1025     freq = first_ppc_cpu->env.tb_env->tb_freq;
1026 
1027     tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
1028 
1029     tb_off = first_ppc_cpu->env.tb_env->tb_offset;
1030     trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
1031                         (tb_off_adj - tb_off) / freq);
1032 
1033     /* Set new offset to all CPUs */
1034     CPU_FOREACH(cpu) {
1035         PowerPCCPU *pcpu = POWERPC_CPU(cpu);
1036         pcpu->env.tb_env->tb_offset = tb_off_adj;
1037         kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset);
1038     }
1039 }
1040 
1041 void cpu_ppc_clock_vm_state_change(void *opaque, int running,
1042                                    RunState state)
1043 {
1044     PPCTimebase *tb = opaque;
1045 
1046     if (running) {
1047         timebase_load(tb);
1048     } else {
1049         timebase_save(tb);
1050     }
1051 }
1052 
1053 /*
1054  * When migrating, read the clock just before migration,
1055  * so that the guest clock counts during the events
1056  * between:
1057  *
1058  *  * vm_stop()
1059  *  *
1060  *  * pre_save()
1061  *
1062  *  This reduces clock difference on migration from 5s
1063  *  to 0.1s (when max_downtime == 5s), because sending the
1064  *  final pages of memory (which happens between vm_stop()
1065  *  and pre_save()) takes max_downtime.
1066  */
1067 static int timebase_pre_save(void *opaque)
1068 {
1069     PPCTimebase *tb = opaque;
1070 
1071     timebase_save(tb);
1072 
1073     return 0;
1074 }
1075 
1076 const VMStateDescription vmstate_ppc_timebase = {
1077     .name = "timebase",
1078     .version_id = 1,
1079     .minimum_version_id = 1,
1080     .minimum_version_id_old = 1,
1081     .pre_save = timebase_pre_save,
1082     .fields      = (VMStateField []) {
1083         VMSTATE_UINT64(guest_timebase, PPCTimebase),
1084         VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1085         VMSTATE_END_OF_LIST()
1086     },
1087 };
1088 
1089 /* Set up (once) timebase frequency (in Hz) */
1090 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
1091 {
1092     PowerPCCPU *cpu = env_archcpu(env);
1093     ppc_tb_t *tb_env;
1094 
1095     tb_env = g_malloc0(sizeof(ppc_tb_t));
1096     env->tb_env = tb_env;
1097     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1098     if (is_book3s_arch2x(env)) {
1099         /* All Book3S 64bit CPUs implement level based DEC logic */
1100         tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1101     }
1102     /* Create new timer */
1103     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
1104     if (env->has_hv_mode) {
1105         tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
1106                                                 cpu);
1107     } else {
1108         tb_env->hdecr_timer = NULL;
1109     }
1110     cpu_ppc_set_tb_clk(env, freq);
1111 
1112     return &cpu_ppc_set_tb_clk;
1113 }
1114 
1115 /* Specific helpers for POWER & PowerPC 601 RTC */
1116 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
1117 {
1118     _cpu_ppc_store_tbu(env, value);
1119 }
1120 
1121 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
1122 {
1123     return _cpu_ppc_load_tbu(env);
1124 }
1125 
1126 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
1127 {
1128     cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
1129 }
1130 
1131 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
1132 {
1133     return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1134 }
1135 
1136 /*****************************************************************************/
1137 /* PowerPC 40x timers */
1138 
1139 /* PIT, FIT & WDT */
1140 typedef struct ppc40x_timer_t ppc40x_timer_t;
1141 struct ppc40x_timer_t {
1142     uint64_t pit_reload;  /* PIT auto-reload value        */
1143     uint64_t fit_next;    /* Tick for next FIT interrupt  */
1144     QEMUTimer *fit_timer;
1145     uint64_t wdt_next;    /* Tick for next WDT interrupt  */
1146     QEMUTimer *wdt_timer;
1147 
1148     /* 405 have the PIT, 440 have a DECR.  */
1149     unsigned int decr_excp;
1150 };
1151 
1152 /* Fixed interval timer */
1153 static void cpu_4xx_fit_cb (void *opaque)
1154 {
1155     PowerPCCPU *cpu;
1156     CPUPPCState *env;
1157     ppc_tb_t *tb_env;
1158     ppc40x_timer_t *ppc40x_timer;
1159     uint64_t now, next;
1160 
1161     env = opaque;
1162     cpu = env_archcpu(env);
1163     tb_env = env->tb_env;
1164     ppc40x_timer = tb_env->opaque;
1165     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1166     switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1167     case 0:
1168         next = 1 << 9;
1169         break;
1170     case 1:
1171         next = 1 << 13;
1172         break;
1173     case 2:
1174         next = 1 << 17;
1175         break;
1176     case 3:
1177         next = 1 << 21;
1178         break;
1179     default:
1180         /* Cannot occur, but makes gcc happy */
1181         return;
1182     }
1183     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1184     if (next == now)
1185         next++;
1186     timer_mod(ppc40x_timer->fit_timer, next);
1187     env->spr[SPR_40x_TSR] |= 1 << 26;
1188     if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1189         ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1190     }
1191     LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1192            (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1193            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1194 }
1195 
1196 /* Programmable interval timer */
1197 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1198 {
1199     ppc40x_timer_t *ppc40x_timer;
1200     uint64_t now, next;
1201 
1202     ppc40x_timer = tb_env->opaque;
1203     if (ppc40x_timer->pit_reload <= 1 ||
1204         !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1205         (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1206         /* Stop PIT */
1207         LOG_TB("%s: stop PIT\n", __func__);
1208         timer_del(tb_env->decr_timer);
1209     } else {
1210         LOG_TB("%s: start PIT %016" PRIx64 "\n",
1211                     __func__, ppc40x_timer->pit_reload);
1212         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1213         next = now + muldiv64(ppc40x_timer->pit_reload,
1214                               NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1215         if (is_excp)
1216             next += tb_env->decr_next - now;
1217         if (next == now)
1218             next++;
1219         timer_mod(tb_env->decr_timer, next);
1220         tb_env->decr_next = next;
1221     }
1222 }
1223 
1224 static void cpu_4xx_pit_cb (void *opaque)
1225 {
1226     PowerPCCPU *cpu;
1227     CPUPPCState *env;
1228     ppc_tb_t *tb_env;
1229     ppc40x_timer_t *ppc40x_timer;
1230 
1231     env = opaque;
1232     cpu = env_archcpu(env);
1233     tb_env = env->tb_env;
1234     ppc40x_timer = tb_env->opaque;
1235     env->spr[SPR_40x_TSR] |= 1 << 27;
1236     if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1237         ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1238     }
1239     start_stop_pit(env, tb_env, 1);
1240     LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1241            "%016" PRIx64 "\n", __func__,
1242            (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1243            (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1244            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1245            ppc40x_timer->pit_reload);
1246 }
1247 
1248 /* Watchdog timer */
1249 static void cpu_4xx_wdt_cb (void *opaque)
1250 {
1251     PowerPCCPU *cpu;
1252     CPUPPCState *env;
1253     ppc_tb_t *tb_env;
1254     ppc40x_timer_t *ppc40x_timer;
1255     uint64_t now, next;
1256 
1257     env = opaque;
1258     cpu = env_archcpu(env);
1259     tb_env = env->tb_env;
1260     ppc40x_timer = tb_env->opaque;
1261     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1262     switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1263     case 0:
1264         next = 1 << 17;
1265         break;
1266     case 1:
1267         next = 1 << 21;
1268         break;
1269     case 2:
1270         next = 1 << 25;
1271         break;
1272     case 3:
1273         next = 1 << 29;
1274         break;
1275     default:
1276         /* Cannot occur, but makes gcc happy */
1277         return;
1278     }
1279     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1280     if (next == now)
1281         next++;
1282     LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1283            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1284     switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1285     case 0x0:
1286     case 0x1:
1287         timer_mod(ppc40x_timer->wdt_timer, next);
1288         ppc40x_timer->wdt_next = next;
1289         env->spr[SPR_40x_TSR] |= 1U << 31;
1290         break;
1291     case 0x2:
1292         timer_mod(ppc40x_timer->wdt_timer, next);
1293         ppc40x_timer->wdt_next = next;
1294         env->spr[SPR_40x_TSR] |= 1 << 30;
1295         if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1296             ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1297         }
1298         break;
1299     case 0x3:
1300         env->spr[SPR_40x_TSR] &= ~0x30000000;
1301         env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1302         switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1303         case 0x0:
1304             /* No reset */
1305             break;
1306         case 0x1: /* Core reset */
1307             ppc40x_core_reset(cpu);
1308             break;
1309         case 0x2: /* Chip reset */
1310             ppc40x_chip_reset(cpu);
1311             break;
1312         case 0x3: /* System reset */
1313             ppc40x_system_reset(cpu);
1314             break;
1315         }
1316     }
1317 }
1318 
1319 void store_40x_pit (CPUPPCState *env, target_ulong val)
1320 {
1321     ppc_tb_t *tb_env;
1322     ppc40x_timer_t *ppc40x_timer;
1323 
1324     tb_env = env->tb_env;
1325     ppc40x_timer = tb_env->opaque;
1326     LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1327     ppc40x_timer->pit_reload = val;
1328     start_stop_pit(env, tb_env, 0);
1329 }
1330 
1331 target_ulong load_40x_pit (CPUPPCState *env)
1332 {
1333     return cpu_ppc_load_decr(env);
1334 }
1335 
1336 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1337 {
1338     CPUPPCState *env = opaque;
1339     ppc_tb_t *tb_env = env->tb_env;
1340 
1341     LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1342                 freq);
1343     tb_env->tb_freq = freq;
1344     tb_env->decr_freq = freq;
1345     /* XXX: we should also update all timers */
1346 }
1347 
1348 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1349                                   unsigned int decr_excp)
1350 {
1351     ppc_tb_t *tb_env;
1352     ppc40x_timer_t *ppc40x_timer;
1353 
1354     tb_env = g_malloc0(sizeof(ppc_tb_t));
1355     env->tb_env = tb_env;
1356     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1357     ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1358     tb_env->tb_freq = freq;
1359     tb_env->decr_freq = freq;
1360     tb_env->opaque = ppc40x_timer;
1361     LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1362     if (ppc40x_timer != NULL) {
1363         /* We use decr timer for PIT */
1364         tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1365         ppc40x_timer->fit_timer =
1366             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1367         ppc40x_timer->wdt_timer =
1368             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1369         ppc40x_timer->decr_excp = decr_excp;
1370     }
1371 
1372     return &ppc_40x_set_tb_clk;
1373 }
1374 
1375 /*****************************************************************************/
1376 /* Embedded PowerPC Device Control Registers */
1377 typedef struct ppc_dcrn_t ppc_dcrn_t;
1378 struct ppc_dcrn_t {
1379     dcr_read_cb dcr_read;
1380     dcr_write_cb dcr_write;
1381     void *opaque;
1382 };
1383 
1384 /* XXX: on 460, DCR addresses are 32 bits wide,
1385  *      using DCRIPR to get the 22 upper bits of the DCR address
1386  */
1387 #define DCRN_NB 1024
1388 struct ppc_dcr_t {
1389     ppc_dcrn_t dcrn[DCRN_NB];
1390     int (*read_error)(int dcrn);
1391     int (*write_error)(int dcrn);
1392 };
1393 
1394 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1395 {
1396     ppc_dcrn_t *dcr;
1397 
1398     if (dcrn < 0 || dcrn >= DCRN_NB)
1399         goto error;
1400     dcr = &dcr_env->dcrn[dcrn];
1401     if (dcr->dcr_read == NULL)
1402         goto error;
1403     *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1404 
1405     return 0;
1406 
1407  error:
1408     if (dcr_env->read_error != NULL)
1409         return (*dcr_env->read_error)(dcrn);
1410 
1411     return -1;
1412 }
1413 
1414 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1415 {
1416     ppc_dcrn_t *dcr;
1417 
1418     if (dcrn < 0 || dcrn >= DCRN_NB)
1419         goto error;
1420     dcr = &dcr_env->dcrn[dcrn];
1421     if (dcr->dcr_write == NULL)
1422         goto error;
1423     (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1424 
1425     return 0;
1426 
1427  error:
1428     if (dcr_env->write_error != NULL)
1429         return (*dcr_env->write_error)(dcrn);
1430 
1431     return -1;
1432 }
1433 
1434 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1435                       dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1436 {
1437     ppc_dcr_t *dcr_env;
1438     ppc_dcrn_t *dcr;
1439 
1440     dcr_env = env->dcr_env;
1441     if (dcr_env == NULL)
1442         return -1;
1443     if (dcrn < 0 || dcrn >= DCRN_NB)
1444         return -1;
1445     dcr = &dcr_env->dcrn[dcrn];
1446     if (dcr->opaque != NULL ||
1447         dcr->dcr_read != NULL ||
1448         dcr->dcr_write != NULL)
1449         return -1;
1450     dcr->opaque = opaque;
1451     dcr->dcr_read = dcr_read;
1452     dcr->dcr_write = dcr_write;
1453 
1454     return 0;
1455 }
1456 
1457 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1458                   int (*write_error)(int dcrn))
1459 {
1460     ppc_dcr_t *dcr_env;
1461 
1462     dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1463     dcr_env->read_error = read_error;
1464     dcr_env->write_error = write_error;
1465     env->dcr_env = dcr_env;
1466 
1467     return 0;
1468 }
1469 
1470 /*****************************************************************************/
1471 /* Debug port */
1472 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1473 {
1474     addr &= 0xF;
1475     switch (addr) {
1476     case 0:
1477         printf("%c", val);
1478         break;
1479     case 1:
1480         printf("\n");
1481         fflush(stdout);
1482         break;
1483     case 2:
1484         printf("Set loglevel to %04" PRIx32 "\n", val);
1485         qemu_set_log(val | 0x100);
1486         break;
1487     }
1488 }
1489 
1490 PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1491 {
1492     CPUState *cs;
1493 
1494     CPU_FOREACH(cs) {
1495         PowerPCCPU *cpu = POWERPC_CPU(cs);
1496         CPUPPCState *env = &cpu->env;
1497 
1498         if (env->spr_cb[SPR_PIR].default_value == pir) {
1499             return cpu;
1500         }
1501     }
1502 
1503     return NULL;
1504 }
1505