xref: /qemu/hw/ppc/ppc.c (revision f8ed3648)
1 /*
2  * QEMU generic PowerPC hardware System Emulator
3  *
4  * Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/irq.h"
27 #include "hw/ppc/ppc.h"
28 #include "hw/ppc/ppc_e500.h"
29 #include "qemu/timer.h"
30 #include "sysemu/cpus.h"
31 #include "qemu/log.h"
32 #include "qemu/main-loop.h"
33 #include "qemu/error-report.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/runstate.h"
36 #include "kvm_ppc.h"
37 #include "migration/vmstate.h"
38 #include "trace.h"
39 
40 static void cpu_ppc_tb_stop (CPUPPCState *env);
41 static void cpu_ppc_tb_start (CPUPPCState *env);
42 
43 void ppc_set_irq(PowerPCCPU *cpu, int irq, int level)
44 {
45     CPUPPCState *env = &cpu->env;
46     unsigned int old_pending;
47 
48     /* We may already have the BQL if coming from the reset path */
49     QEMU_IOTHREAD_LOCK_GUARD();
50 
51     old_pending = env->pending_interrupts;
52 
53     if (level) {
54         env->pending_interrupts |= irq;
55     } else {
56         env->pending_interrupts &= ~irq;
57     }
58 
59     if (old_pending != env->pending_interrupts) {
60         ppc_maybe_interrupt(env);
61         kvmppc_set_interrupt(cpu, irq, level);
62     }
63 
64     trace_ppc_irq_set_exit(env, irq, level, env->pending_interrupts,
65                            CPU(cpu)->interrupt_request);
66 }
67 
68 /* PowerPC 6xx / 7xx internal IRQ controller */
69 static void ppc6xx_set_irq(void *opaque, int pin, int level)
70 {
71     PowerPCCPU *cpu = opaque;
72     CPUPPCState *env = &cpu->env;
73     int cur_level;
74 
75     trace_ppc_irq_set(env, pin, level);
76 
77     cur_level = (env->irq_input_state >> pin) & 1;
78     /* Don't generate spurious events */
79     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
80         CPUState *cs = CPU(cpu);
81 
82         switch (pin) {
83         case PPC6xx_INPUT_TBEN:
84             /* Level sensitive - active high */
85             trace_ppc_irq_set_state("time base", level);
86             if (level) {
87                 cpu_ppc_tb_start(env);
88             } else {
89                 cpu_ppc_tb_stop(env);
90             }
91             break;
92         case PPC6xx_INPUT_INT:
93             /* Level sensitive - active high */
94             trace_ppc_irq_set_state("external IRQ", level);
95             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
96             break;
97         case PPC6xx_INPUT_SMI:
98             /* Level sensitive - active high */
99             trace_ppc_irq_set_state("SMI IRQ", level);
100             ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
101             break;
102         case PPC6xx_INPUT_MCP:
103             /* Negative edge sensitive */
104             /* XXX: TODO: actual reaction may depends on HID0 status
105              *            603/604/740/750: check HID0[EMCP]
106              */
107             if (cur_level == 1 && level == 0) {
108                 trace_ppc_irq_set_state("machine check", 1);
109                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
110             }
111             break;
112         case PPC6xx_INPUT_CKSTP_IN:
113             /* Level sensitive - active low */
114             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
115             /* XXX: Note that the only way to restart the CPU is to reset it */
116             if (level) {
117                 trace_ppc_irq_cpu("stop");
118                 cs->halted = 1;
119             }
120             break;
121         case PPC6xx_INPUT_HRESET:
122             /* Level sensitive - active low */
123             if (level) {
124                 trace_ppc_irq_reset("CPU");
125                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
126             }
127             break;
128         case PPC6xx_INPUT_SRESET:
129             trace_ppc_irq_set_state("RESET IRQ", level);
130             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
131             break;
132         default:
133             g_assert_not_reached();
134         }
135         if (level)
136             env->irq_input_state |= 1 << pin;
137         else
138             env->irq_input_state &= ~(1 << pin);
139     }
140 }
141 
142 void ppc6xx_irq_init(PowerPCCPU *cpu)
143 {
144     qdev_init_gpio_in(DEVICE(cpu), ppc6xx_set_irq, PPC6xx_INPUT_NB);
145 }
146 
147 #if defined(TARGET_PPC64)
148 /* PowerPC 970 internal IRQ controller */
149 static void ppc970_set_irq(void *opaque, int pin, int level)
150 {
151     PowerPCCPU *cpu = opaque;
152     CPUPPCState *env = &cpu->env;
153     int cur_level;
154 
155     trace_ppc_irq_set(env, pin, level);
156 
157     cur_level = (env->irq_input_state >> pin) & 1;
158     /* Don't generate spurious events */
159     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
160         CPUState *cs = CPU(cpu);
161 
162         switch (pin) {
163         case PPC970_INPUT_INT:
164             /* Level sensitive - active high */
165             trace_ppc_irq_set_state("external IRQ", level);
166             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
167             break;
168         case PPC970_INPUT_THINT:
169             /* Level sensitive - active high */
170             trace_ppc_irq_set_state("SMI IRQ", level);
171             ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
172             break;
173         case PPC970_INPUT_MCP:
174             /* Negative edge sensitive */
175             /* XXX: TODO: actual reaction may depends on HID0 status
176              *            603/604/740/750: check HID0[EMCP]
177              */
178             if (cur_level == 1 && level == 0) {
179                 trace_ppc_irq_set_state("machine check", 1);
180                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
181             }
182             break;
183         case PPC970_INPUT_CKSTP:
184             /* Level sensitive - active low */
185             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
186             if (level) {
187                 trace_ppc_irq_cpu("stop");
188                 cs->halted = 1;
189             } else {
190                 trace_ppc_irq_cpu("restart");
191                 cs->halted = 0;
192                 qemu_cpu_kick(cs);
193             }
194             break;
195         case PPC970_INPUT_HRESET:
196             /* Level sensitive - active low */
197             if (level) {
198                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
199             }
200             break;
201         case PPC970_INPUT_SRESET:
202             trace_ppc_irq_set_state("RESET IRQ", level);
203             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
204             break;
205         case PPC970_INPUT_TBEN:
206             trace_ppc_irq_set_state("TBEN IRQ", level);
207             /* XXX: TODO */
208             break;
209         default:
210             g_assert_not_reached();
211         }
212         if (level)
213             env->irq_input_state |= 1 << pin;
214         else
215             env->irq_input_state &= ~(1 << pin);
216     }
217 }
218 
219 void ppc970_irq_init(PowerPCCPU *cpu)
220 {
221     qdev_init_gpio_in(DEVICE(cpu), ppc970_set_irq, PPC970_INPUT_NB);
222 }
223 
224 /* POWER7 internal IRQ controller */
225 static void power7_set_irq(void *opaque, int pin, int level)
226 {
227     PowerPCCPU *cpu = opaque;
228 
229     trace_ppc_irq_set(&cpu->env, pin, level);
230 
231     switch (pin) {
232     case POWER7_INPUT_INT:
233         /* Level sensitive - active high */
234         trace_ppc_irq_set_state("external IRQ", level);
235         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
236         break;
237     default:
238         g_assert_not_reached();
239     }
240 }
241 
242 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
243 {
244     qdev_init_gpio_in(DEVICE(cpu), power7_set_irq, POWER7_INPUT_NB);
245 }
246 
247 /* POWER9 internal IRQ controller */
248 static void power9_set_irq(void *opaque, int pin, int level)
249 {
250     PowerPCCPU *cpu = opaque;
251 
252     trace_ppc_irq_set(&cpu->env, pin, level);
253 
254     switch (pin) {
255     case POWER9_INPUT_INT:
256         /* Level sensitive - active high */
257         trace_ppc_irq_set_state("external IRQ", level);
258         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
259         break;
260     case POWER9_INPUT_HINT:
261         /* Level sensitive - active high */
262         trace_ppc_irq_set_state("HV external IRQ", level);
263         ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
264         break;
265     default:
266         g_assert_not_reached();
267         return;
268     }
269 }
270 
271 void ppcPOWER9_irq_init(PowerPCCPU *cpu)
272 {
273     qdev_init_gpio_in(DEVICE(cpu), power9_set_irq, POWER9_INPUT_NB);
274 }
275 #endif /* defined(TARGET_PPC64) */
276 
277 void ppc40x_core_reset(PowerPCCPU *cpu)
278 {
279     CPUPPCState *env = &cpu->env;
280     target_ulong dbsr;
281 
282     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
283     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
284     dbsr = env->spr[SPR_40x_DBSR];
285     dbsr &= ~0x00000300;
286     dbsr |= 0x00000100;
287     env->spr[SPR_40x_DBSR] = dbsr;
288 }
289 
290 void ppc40x_chip_reset(PowerPCCPU *cpu)
291 {
292     CPUPPCState *env = &cpu->env;
293     target_ulong dbsr;
294 
295     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
296     cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
297     /* XXX: TODO reset all internal peripherals */
298     dbsr = env->spr[SPR_40x_DBSR];
299     dbsr &= ~0x00000300;
300     dbsr |= 0x00000200;
301     env->spr[SPR_40x_DBSR] = dbsr;
302 }
303 
304 void ppc40x_system_reset(PowerPCCPU *cpu)
305 {
306     qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
307     qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
308 }
309 
310 void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
311 {
312     PowerPCCPU *cpu = env_archcpu(env);
313 
314     qemu_mutex_lock_iothread();
315 
316     switch ((val >> 28) & 0x3) {
317     case 0x0:
318         /* No action */
319         break;
320     case 0x1:
321         /* Core reset */
322         ppc40x_core_reset(cpu);
323         break;
324     case 0x2:
325         /* Chip reset */
326         ppc40x_chip_reset(cpu);
327         break;
328     case 0x3:
329         /* System reset */
330         ppc40x_system_reset(cpu);
331         break;
332     }
333 
334     qemu_mutex_unlock_iothread();
335 }
336 
337 /* PowerPC 40x internal IRQ controller */
338 static void ppc40x_set_irq(void *opaque, int pin, int level)
339 {
340     PowerPCCPU *cpu = opaque;
341     CPUPPCState *env = &cpu->env;
342     int cur_level;
343 
344     trace_ppc_irq_set(env, pin, level);
345 
346     cur_level = (env->irq_input_state >> pin) & 1;
347     /* Don't generate spurious events */
348     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
349         CPUState *cs = CPU(cpu);
350 
351         switch (pin) {
352         case PPC40x_INPUT_RESET_SYS:
353             if (level) {
354                 trace_ppc_irq_reset("system");
355                 ppc40x_system_reset(cpu);
356             }
357             break;
358         case PPC40x_INPUT_RESET_CHIP:
359             if (level) {
360                 trace_ppc_irq_reset("chip");
361                 ppc40x_chip_reset(cpu);
362             }
363             break;
364         case PPC40x_INPUT_RESET_CORE:
365             /* XXX: TODO: update DBSR[MRR] */
366             if (level) {
367                 trace_ppc_irq_reset("core");
368                 ppc40x_core_reset(cpu);
369             }
370             break;
371         case PPC40x_INPUT_CINT:
372             /* Level sensitive - active high */
373             trace_ppc_irq_set_state("critical IRQ", level);
374             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
375             break;
376         case PPC40x_INPUT_INT:
377             /* Level sensitive - active high */
378             trace_ppc_irq_set_state("external IRQ", level);
379             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
380             break;
381         case PPC40x_INPUT_HALT:
382             /* Level sensitive - active low */
383             if (level) {
384                 trace_ppc_irq_cpu("stop");
385                 cs->halted = 1;
386             } else {
387                 trace_ppc_irq_cpu("restart");
388                 cs->halted = 0;
389                 qemu_cpu_kick(cs);
390             }
391             break;
392         case PPC40x_INPUT_DEBUG:
393             /* Level sensitive - active high */
394             trace_ppc_irq_set_state("debug pin", level);
395             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
396             break;
397         default:
398             g_assert_not_reached();
399         }
400         if (level)
401             env->irq_input_state |= 1 << pin;
402         else
403             env->irq_input_state &= ~(1 << pin);
404     }
405 }
406 
407 void ppc40x_irq_init(PowerPCCPU *cpu)
408 {
409     qdev_init_gpio_in(DEVICE(cpu), ppc40x_set_irq, PPC40x_INPUT_NB);
410 }
411 
412 /* PowerPC E500 internal IRQ controller */
413 static void ppce500_set_irq(void *opaque, int pin, int level)
414 {
415     PowerPCCPU *cpu = opaque;
416     CPUPPCState *env = &cpu->env;
417     int cur_level;
418 
419     trace_ppc_irq_set(env, pin, level);
420 
421     cur_level = (env->irq_input_state >> pin) & 1;
422     /* Don't generate spurious events */
423     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
424         switch (pin) {
425         case PPCE500_INPUT_MCK:
426             if (level) {
427                 trace_ppc_irq_reset("system");
428                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
429             }
430             break;
431         case PPCE500_INPUT_RESET_CORE:
432             if (level) {
433                 trace_ppc_irq_reset("core");
434                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
435             }
436             break;
437         case PPCE500_INPUT_CINT:
438             /* Level sensitive - active high */
439             trace_ppc_irq_set_state("critical IRQ", level);
440             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
441             break;
442         case PPCE500_INPUT_INT:
443             /* Level sensitive - active high */
444             trace_ppc_irq_set_state("core IRQ", level);
445             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
446             break;
447         case PPCE500_INPUT_DEBUG:
448             /* Level sensitive - active high */
449             trace_ppc_irq_set_state("debug pin", level);
450             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
451             break;
452         default:
453             g_assert_not_reached();
454         }
455         if (level)
456             env->irq_input_state |= 1 << pin;
457         else
458             env->irq_input_state &= ~(1 << pin);
459     }
460 }
461 
462 void ppce500_irq_init(PowerPCCPU *cpu)
463 {
464     qdev_init_gpio_in(DEVICE(cpu), ppce500_set_irq, PPCE500_INPUT_NB);
465 }
466 
467 /* Enable or Disable the E500 EPR capability */
468 void ppce500_set_mpic_proxy(bool enabled)
469 {
470     CPUState *cs;
471 
472     CPU_FOREACH(cs) {
473         PowerPCCPU *cpu = POWERPC_CPU(cs);
474 
475         cpu->env.mpic_proxy = enabled;
476         if (kvm_enabled()) {
477             kvmppc_set_mpic_proxy(cpu, enabled);
478         }
479     }
480 }
481 
482 /*****************************************************************************/
483 /* PowerPC time base and decrementer emulation */
484 
485 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
486 {
487     /* TB time in tb periods */
488     return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
489 }
490 
491 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
492 {
493     ppc_tb_t *tb_env = env->tb_env;
494     uint64_t tb;
495 
496     if (kvm_enabled()) {
497         return env->spr[SPR_TBL];
498     }
499 
500     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
501     trace_ppc_tb_load(tb);
502 
503     return tb;
504 }
505 
506 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
507 {
508     ppc_tb_t *tb_env = env->tb_env;
509     uint64_t tb;
510 
511     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
512     trace_ppc_tb_load(tb);
513 
514     return tb >> 32;
515 }
516 
517 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
518 {
519     if (kvm_enabled()) {
520         return env->spr[SPR_TBU];
521     }
522 
523     return _cpu_ppc_load_tbu(env);
524 }
525 
526 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
527                                     int64_t *tb_offsetp, uint64_t value)
528 {
529     *tb_offsetp = value -
530         muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
531 
532     trace_ppc_tb_store(value, *tb_offsetp);
533 }
534 
535 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
536 {
537     ppc_tb_t *tb_env = env->tb_env;
538     uint64_t tb;
539 
540     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
541     tb &= 0xFFFFFFFF00000000ULL;
542     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
543                      &tb_env->tb_offset, tb | (uint64_t)value);
544 }
545 
546 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
547 {
548     ppc_tb_t *tb_env = env->tb_env;
549     uint64_t tb;
550 
551     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
552     tb &= 0x00000000FFFFFFFFULL;
553     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
554                      &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
555 }
556 
557 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
558 {
559     _cpu_ppc_store_tbu(env, value);
560 }
561 
562 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
563 {
564     ppc_tb_t *tb_env = env->tb_env;
565     uint64_t tb;
566 
567     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
568     trace_ppc_tb_load(tb);
569 
570     return tb;
571 }
572 
573 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
574 {
575     ppc_tb_t *tb_env = env->tb_env;
576     uint64_t tb;
577 
578     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
579     trace_ppc_tb_load(tb);
580 
581     return tb >> 32;
582 }
583 
584 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
585 {
586     ppc_tb_t *tb_env = env->tb_env;
587     uint64_t tb;
588 
589     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
590     tb &= 0xFFFFFFFF00000000ULL;
591     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
592                      &tb_env->atb_offset, tb | (uint64_t)value);
593 }
594 
595 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
596 {
597     ppc_tb_t *tb_env = env->tb_env;
598     uint64_t tb;
599 
600     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
601     tb &= 0x00000000FFFFFFFFULL;
602     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
603                      &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
604 }
605 
606 uint64_t cpu_ppc_load_vtb(CPUPPCState *env)
607 {
608     ppc_tb_t *tb_env = env->tb_env;
609 
610     return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
611                           tb_env->vtb_offset);
612 }
613 
614 void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value)
615 {
616     ppc_tb_t *tb_env = env->tb_env;
617 
618     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
619                      &tb_env->vtb_offset, value);
620 }
621 
622 void cpu_ppc_store_tbu40(CPUPPCState *env, uint64_t value)
623 {
624     ppc_tb_t *tb_env = env->tb_env;
625     uint64_t tb;
626 
627     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
628                         tb_env->tb_offset);
629     tb &= 0xFFFFFFUL;
630     tb |= (value & ~0xFFFFFFUL);
631     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
632                      &tb_env->tb_offset, tb);
633 }
634 
635 static void cpu_ppc_tb_stop (CPUPPCState *env)
636 {
637     ppc_tb_t *tb_env = env->tb_env;
638     uint64_t tb, atb, vmclk;
639 
640     /* If the time base is already frozen, do nothing */
641     if (tb_env->tb_freq != 0) {
642         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
643         /* Get the time base */
644         tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
645         /* Get the alternate time base */
646         atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
647         /* Store the time base value (ie compute the current offset) */
648         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
649         /* Store the alternate time base value (compute the current offset) */
650         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
651         /* Set the time base frequency to zero */
652         tb_env->tb_freq = 0;
653         /* Now, the time bases are frozen to tb_offset / atb_offset value */
654     }
655 }
656 
657 static void cpu_ppc_tb_start (CPUPPCState *env)
658 {
659     ppc_tb_t *tb_env = env->tb_env;
660     uint64_t tb, atb, vmclk;
661 
662     /* If the time base is not frozen, do nothing */
663     if (tb_env->tb_freq == 0) {
664         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
665         /* Get the time base from tb_offset */
666         tb = tb_env->tb_offset;
667         /* Get the alternate time base from atb_offset */
668         atb = tb_env->atb_offset;
669         /* Restore the tb frequency from the decrementer frequency */
670         tb_env->tb_freq = tb_env->decr_freq;
671         /* Store the time base value */
672         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
673         /* Store the alternate time base value */
674         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
675     }
676 }
677 
678 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
679 {
680     ppc_tb_t *tb_env = env->tb_env;
681     int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
682     return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
683 }
684 
685 static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
686 {
687     ppc_tb_t *tb_env = env->tb_env;
688     int64_t decr, diff;
689 
690     diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
691     if (diff >= 0) {
692         decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
693     } else if (tb_env->flags & PPC_TIMER_BOOKE) {
694         decr = 0;
695     }  else {
696         decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
697     }
698     trace_ppc_decr_load(decr);
699 
700     return decr;
701 }
702 
703 target_ulong cpu_ppc_load_decr(CPUPPCState *env)
704 {
705     ppc_tb_t *tb_env = env->tb_env;
706     uint64_t decr;
707 
708     if (kvm_enabled()) {
709         return env->spr[SPR_DECR];
710     }
711 
712     decr = _cpu_ppc_load_decr(env, tb_env->decr_next);
713 
714     /*
715      * If large decrementer is enabled then the decrementer is signed extened
716      * to 64 bits, otherwise it is a 32 bit value.
717      */
718     if (env->spr[SPR_LPCR] & LPCR_LD) {
719         return decr;
720     }
721     return (uint32_t) decr;
722 }
723 
724 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
725 {
726     PowerPCCPU *cpu = env_archcpu(env);
727     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
728     ppc_tb_t *tb_env = env->tb_env;
729     uint64_t hdecr;
730 
731     hdecr =  _cpu_ppc_load_decr(env, tb_env->hdecr_next);
732 
733     /*
734      * If we have a large decrementer (POWER9 or later) then hdecr is sign
735      * extended to 64 bits, otherwise it is 32 bits.
736      */
737     if (pcc->lrg_decr_bits > 32) {
738         return hdecr;
739     }
740     return (uint32_t) hdecr;
741 }
742 
743 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
744 {
745     ppc_tb_t *tb_env = env->tb_env;
746 
747     return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
748                           tb_env->purr_offset);
749 }
750 
751 /* When decrementer expires,
752  * all we need to do is generate or queue a CPU exception
753  */
754 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
755 {
756     /* Raise it */
757     trace_ppc_decr_excp("raise");
758     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
759 }
760 
761 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
762 {
763     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
764 }
765 
766 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
767 {
768     CPUPPCState *env = &cpu->env;
769 
770     /* Raise it */
771     trace_ppc_decr_excp("raise HV");
772 
773     /* The architecture specifies that we don't deliver HDEC
774      * interrupts in a PM state. Not only they don't cause a
775      * wakeup but they also get effectively discarded.
776      */
777     if (!env->resume_as_sreset) {
778         ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
779     }
780 }
781 
782 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
783 {
784     ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
785 }
786 
787 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
788                                  QEMUTimer *timer,
789                                  void (*raise_excp)(void *),
790                                  void (*lower_excp)(PowerPCCPU *),
791                                  target_ulong decr, target_ulong value,
792                                  int nr_bits)
793 {
794     CPUPPCState *env = &cpu->env;
795     ppc_tb_t *tb_env = env->tb_env;
796     uint64_t now, next;
797     int64_t signed_value;
798     int64_t signed_decr;
799 
800     /* Truncate value to decr_width and sign extend for simplicity */
801     value = extract64(value, 0, nr_bits);
802     decr = extract64(decr, 0, nr_bits);
803     signed_value = sextract64(value, 0, nr_bits);
804     signed_decr = sextract64(decr, 0, nr_bits);
805 
806     trace_ppc_decr_store(nr_bits, decr, value);
807 
808     if (kvm_enabled()) {
809         /* KVM handles decrementer exceptions, we don't need our own timer */
810         return;
811     }
812 
813     /*
814      * Going from 1 -> 0 or 0 -> -1 is the event to generate a DEC interrupt.
815      *
816      * On MSB level based DEC implementations the MSB always means the interrupt
817      * is pending, so raise it on those.
818      *
819      * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
820      * an edge interrupt, so raise it here too.
821      */
822     if (((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && signed_value < 0) ||
823         ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && signed_value < 0
824           && signed_decr >= 0)) {
825         (*raise_excp)(cpu);
826         return;
827     }
828 
829     /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
830     if (signed_value >= 0 && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
831         (*lower_excp)(cpu);
832     }
833 
834     /* Calculate the next timer event */
835     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
836     next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
837     *nextp = next;
838 
839     /* Adjust timer */
840     timer_mod(timer, next);
841 }
842 
843 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr,
844                                        target_ulong value, int nr_bits)
845 {
846     ppc_tb_t *tb_env = cpu->env.tb_env;
847 
848     __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
849                          tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
850                          value, nr_bits);
851 }
852 
853 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
854 {
855     PowerPCCPU *cpu = env_archcpu(env);
856     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
857     int nr_bits = 32;
858 
859     if (env->spr[SPR_LPCR] & LPCR_LD) {
860         nr_bits = pcc->lrg_decr_bits;
861     }
862 
863     _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits);
864 }
865 
866 static void cpu_ppc_decr_cb(void *opaque)
867 {
868     PowerPCCPU *cpu = opaque;
869 
870     cpu_ppc_decr_excp(cpu);
871 }
872 
873 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr,
874                                         target_ulong value, int nr_bits)
875 {
876     ppc_tb_t *tb_env = cpu->env.tb_env;
877 
878     if (tb_env->hdecr_timer != NULL) {
879         __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
880                              tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
881                              hdecr, value, nr_bits);
882     }
883 }
884 
885 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
886 {
887     PowerPCCPU *cpu = env_archcpu(env);
888     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
889 
890     _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value,
891                          pcc->lrg_decr_bits);
892 }
893 
894 static void cpu_ppc_hdecr_cb(void *opaque)
895 {
896     PowerPCCPU *cpu = opaque;
897 
898     cpu_ppc_hdecr_excp(cpu);
899 }
900 
901 void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value)
902 {
903     ppc_tb_t *tb_env = env->tb_env;
904 
905     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
906                      &tb_env->purr_offset, value);
907 }
908 
909 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
910 {
911     CPUPPCState *env = opaque;
912     PowerPCCPU *cpu = env_archcpu(env);
913     ppc_tb_t *tb_env = env->tb_env;
914 
915     tb_env->tb_freq = freq;
916     tb_env->decr_freq = freq;
917     /* There is a bug in Linux 2.4 kernels:
918      * if a decrementer exception is pending when it enables msr_ee at startup,
919      * it's not ready to handle it...
920      */
921     _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
922     _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
923     cpu_ppc_store_purr(env, 0x0000000000000000ULL);
924 }
925 
926 static void timebase_save(PPCTimebase *tb)
927 {
928     uint64_t ticks = cpu_get_host_ticks();
929     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
930 
931     if (!first_ppc_cpu->env.tb_env) {
932         error_report("No timebase object");
933         return;
934     }
935 
936     /* not used anymore, we keep it for compatibility */
937     tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
938     /*
939      * tb_offset is only expected to be changed by QEMU so
940      * there is no need to update it from KVM here
941      */
942     tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
943 
944     tb->runstate_paused =
945         runstate_check(RUN_STATE_PAUSED) || runstate_check(RUN_STATE_SAVE_VM);
946 }
947 
948 static void timebase_load(PPCTimebase *tb)
949 {
950     CPUState *cpu;
951     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
952     int64_t tb_off_adj, tb_off;
953     unsigned long freq;
954 
955     if (!first_ppc_cpu->env.tb_env) {
956         error_report("No timebase object");
957         return;
958     }
959 
960     freq = first_ppc_cpu->env.tb_env->tb_freq;
961 
962     tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
963 
964     tb_off = first_ppc_cpu->env.tb_env->tb_offset;
965     trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
966                         (tb_off_adj - tb_off) / freq);
967 
968     /* Set new offset to all CPUs */
969     CPU_FOREACH(cpu) {
970         PowerPCCPU *pcpu = POWERPC_CPU(cpu);
971         pcpu->env.tb_env->tb_offset = tb_off_adj;
972         kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset);
973     }
974 }
975 
976 void cpu_ppc_clock_vm_state_change(void *opaque, bool running,
977                                    RunState state)
978 {
979     PPCTimebase *tb = opaque;
980 
981     if (running) {
982         timebase_load(tb);
983     } else {
984         timebase_save(tb);
985     }
986 }
987 
988 /*
989  * When migrating a running guest, read the clock just
990  * before migration, so that the guest clock counts
991  * during the events between:
992  *
993  *  * vm_stop()
994  *  *
995  *  * pre_save()
996  *
997  *  This reduces clock difference on migration from 5s
998  *  to 0.1s (when max_downtime == 5s), because sending the
999  *  final pages of memory (which happens between vm_stop()
1000  *  and pre_save()) takes max_downtime.
1001  */
1002 static int timebase_pre_save(void *opaque)
1003 {
1004     PPCTimebase *tb = opaque;
1005 
1006     /* guest_timebase won't be overridden in case of paused guest or savevm */
1007     if (!tb->runstate_paused) {
1008         timebase_save(tb);
1009     }
1010 
1011     return 0;
1012 }
1013 
1014 const VMStateDescription vmstate_ppc_timebase = {
1015     .name = "timebase",
1016     .version_id = 1,
1017     .minimum_version_id = 1,
1018     .pre_save = timebase_pre_save,
1019     .fields      = (VMStateField []) {
1020         VMSTATE_UINT64(guest_timebase, PPCTimebase),
1021         VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1022         VMSTATE_END_OF_LIST()
1023     },
1024 };
1025 
1026 /* Set up (once) timebase frequency (in Hz) */
1027 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
1028 {
1029     PowerPCCPU *cpu = env_archcpu(env);
1030     ppc_tb_t *tb_env;
1031 
1032     tb_env = g_new0(ppc_tb_t, 1);
1033     env->tb_env = tb_env;
1034     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1035     if (is_book3s_arch2x(env)) {
1036         /* All Book3S 64bit CPUs implement level based DEC logic */
1037         tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1038     }
1039     /* Create new timer */
1040     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
1041     if (env->has_hv_mode && !cpu->vhyp) {
1042         tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
1043                                                 cpu);
1044     } else {
1045         tb_env->hdecr_timer = NULL;
1046     }
1047     cpu_ppc_set_tb_clk(env, freq);
1048 
1049     return &cpu_ppc_set_tb_clk;
1050 }
1051 
1052 void cpu_ppc_tb_free(CPUPPCState *env)
1053 {
1054     timer_free(env->tb_env->decr_timer);
1055     timer_free(env->tb_env->hdecr_timer);
1056     g_free(env->tb_env);
1057 }
1058 
1059 /* cpu_ppc_hdecr_init may be used if the timer is not used by HDEC emulation */
1060 void cpu_ppc_hdecr_init(CPUPPCState *env)
1061 {
1062     PowerPCCPU *cpu = env_archcpu(env);
1063 
1064     assert(env->tb_env->hdecr_timer == NULL);
1065 
1066     env->tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
1067                                             &cpu_ppc_hdecr_cb, cpu);
1068 }
1069 
1070 void cpu_ppc_hdecr_exit(CPUPPCState *env)
1071 {
1072     PowerPCCPU *cpu = env_archcpu(env);
1073 
1074     timer_free(env->tb_env->hdecr_timer);
1075     env->tb_env->hdecr_timer = NULL;
1076 
1077     cpu_ppc_hdecr_lower(cpu);
1078 }
1079 
1080 /*****************************************************************************/
1081 /* PowerPC 40x timers */
1082 
1083 /* PIT, FIT & WDT */
1084 typedef struct ppc40x_timer_t ppc40x_timer_t;
1085 struct ppc40x_timer_t {
1086     uint64_t pit_reload;  /* PIT auto-reload value        */
1087     uint64_t fit_next;    /* Tick for next FIT interrupt  */
1088     QEMUTimer *fit_timer;
1089     uint64_t wdt_next;    /* Tick for next WDT interrupt  */
1090     QEMUTimer *wdt_timer;
1091 
1092     /* 405 have the PIT, 440 have a DECR.  */
1093     unsigned int decr_excp;
1094 };
1095 
1096 /* Fixed interval timer */
1097 static void cpu_4xx_fit_cb (void *opaque)
1098 {
1099     PowerPCCPU *cpu = opaque;
1100     CPUPPCState *env = &cpu->env;
1101     ppc_tb_t *tb_env;
1102     ppc40x_timer_t *ppc40x_timer;
1103     uint64_t now, next;
1104 
1105     tb_env = env->tb_env;
1106     ppc40x_timer = tb_env->opaque;
1107     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1108     switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1109     case 0:
1110         next = 1 << 9;
1111         break;
1112     case 1:
1113         next = 1 << 13;
1114         break;
1115     case 2:
1116         next = 1 << 17;
1117         break;
1118     case 3:
1119         next = 1 << 21;
1120         break;
1121     default:
1122         /* Cannot occur, but makes gcc happy */
1123         return;
1124     }
1125     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1126     if (next == now)
1127         next++;
1128     timer_mod(ppc40x_timer->fit_timer, next);
1129     env->spr[SPR_40x_TSR] |= 1 << 26;
1130     if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1131         ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1132     }
1133     trace_ppc4xx_fit((int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1134                          env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1135 }
1136 
1137 /* Programmable interval timer */
1138 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1139 {
1140     ppc40x_timer_t *ppc40x_timer;
1141     uint64_t now, next;
1142 
1143     ppc40x_timer = tb_env->opaque;
1144     if (ppc40x_timer->pit_reload <= 1 ||
1145         !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1146         (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1147         /* Stop PIT */
1148         trace_ppc4xx_pit_stop();
1149         timer_del(tb_env->decr_timer);
1150     } else {
1151         trace_ppc4xx_pit_start(ppc40x_timer->pit_reload);
1152         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1153         next = now + muldiv64(ppc40x_timer->pit_reload,
1154                               NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1155         if (is_excp)
1156             next += tb_env->decr_next - now;
1157         if (next == now)
1158             next++;
1159         timer_mod(tb_env->decr_timer, next);
1160         tb_env->decr_next = next;
1161     }
1162 }
1163 
1164 static void cpu_4xx_pit_cb (void *opaque)
1165 {
1166     PowerPCCPU *cpu = opaque;
1167     CPUPPCState *env = &cpu->env;
1168     ppc_tb_t *tb_env;
1169     ppc40x_timer_t *ppc40x_timer;
1170 
1171     tb_env = env->tb_env;
1172     ppc40x_timer = tb_env->opaque;
1173     env->spr[SPR_40x_TSR] |= 1 << 27;
1174     if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1175         ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1176     }
1177     start_stop_pit(env, tb_env, 1);
1178     trace_ppc4xx_pit((int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1179            (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1180            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1181            ppc40x_timer->pit_reload);
1182 }
1183 
1184 /* Watchdog timer */
1185 static void cpu_4xx_wdt_cb (void *opaque)
1186 {
1187     PowerPCCPU *cpu = opaque;
1188     CPUPPCState *env = &cpu->env;
1189     ppc_tb_t *tb_env;
1190     ppc40x_timer_t *ppc40x_timer;
1191     uint64_t now, next;
1192 
1193     tb_env = env->tb_env;
1194     ppc40x_timer = tb_env->opaque;
1195     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1196     switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1197     case 0:
1198         next = 1 << 17;
1199         break;
1200     case 1:
1201         next = 1 << 21;
1202         break;
1203     case 2:
1204         next = 1 << 25;
1205         break;
1206     case 3:
1207         next = 1 << 29;
1208         break;
1209     default:
1210         /* Cannot occur, but makes gcc happy */
1211         return;
1212     }
1213     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1214     if (next == now)
1215         next++;
1216     trace_ppc4xx_wdt(env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1217     switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1218     case 0x0:
1219     case 0x1:
1220         timer_mod(ppc40x_timer->wdt_timer, next);
1221         ppc40x_timer->wdt_next = next;
1222         env->spr[SPR_40x_TSR] |= 1U << 31;
1223         break;
1224     case 0x2:
1225         timer_mod(ppc40x_timer->wdt_timer, next);
1226         ppc40x_timer->wdt_next = next;
1227         env->spr[SPR_40x_TSR] |= 1 << 30;
1228         if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1229             ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1230         }
1231         break;
1232     case 0x3:
1233         env->spr[SPR_40x_TSR] &= ~0x30000000;
1234         env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1235         switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1236         case 0x0:
1237             /* No reset */
1238             break;
1239         case 0x1: /* Core reset */
1240             ppc40x_core_reset(cpu);
1241             break;
1242         case 0x2: /* Chip reset */
1243             ppc40x_chip_reset(cpu);
1244             break;
1245         case 0x3: /* System reset */
1246             ppc40x_system_reset(cpu);
1247             break;
1248         }
1249     }
1250 }
1251 
1252 void store_40x_pit (CPUPPCState *env, target_ulong val)
1253 {
1254     ppc_tb_t *tb_env;
1255     ppc40x_timer_t *ppc40x_timer;
1256 
1257     tb_env = env->tb_env;
1258     ppc40x_timer = tb_env->opaque;
1259     trace_ppc40x_store_pit(val);
1260     ppc40x_timer->pit_reload = val;
1261     start_stop_pit(env, tb_env, 0);
1262 }
1263 
1264 target_ulong load_40x_pit (CPUPPCState *env)
1265 {
1266     return cpu_ppc_load_decr(env);
1267 }
1268 
1269 void store_40x_tsr(CPUPPCState *env, target_ulong val)
1270 {
1271     PowerPCCPU *cpu = env_archcpu(env);
1272 
1273     trace_ppc40x_store_tcr(val);
1274 
1275     env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000);
1276     if (val & 0x80000000) {
1277         ppc_set_irq(cpu, PPC_INTERRUPT_PIT, 0);
1278     }
1279 }
1280 
1281 void store_40x_tcr(CPUPPCState *env, target_ulong val)
1282 {
1283     PowerPCCPU *cpu = env_archcpu(env);
1284     ppc_tb_t *tb_env;
1285 
1286     trace_ppc40x_store_tsr(val);
1287 
1288     tb_env = env->tb_env;
1289     env->spr[SPR_40x_TCR] = val & 0xFFC00000;
1290     start_stop_pit(env, tb_env, 1);
1291     cpu_4xx_wdt_cb(cpu);
1292 }
1293 
1294 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1295 {
1296     CPUPPCState *env = opaque;
1297     ppc_tb_t *tb_env = env->tb_env;
1298 
1299     trace_ppc40x_set_tb_clk(freq);
1300     tb_env->tb_freq = freq;
1301     tb_env->decr_freq = freq;
1302     /* XXX: we should also update all timers */
1303 }
1304 
1305 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1306                                   unsigned int decr_excp)
1307 {
1308     ppc_tb_t *tb_env;
1309     ppc40x_timer_t *ppc40x_timer;
1310     PowerPCCPU *cpu = env_archcpu(env);
1311 
1312     trace_ppc40x_timers_init(freq);
1313 
1314     tb_env = g_new0(ppc_tb_t, 1);
1315     ppc40x_timer = g_new0(ppc40x_timer_t, 1);
1316 
1317     env->tb_env = tb_env;
1318     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1319     tb_env->tb_freq = freq;
1320     tb_env->decr_freq = freq;
1321     tb_env->opaque = ppc40x_timer;
1322 
1323     /* We use decr timer for PIT */
1324     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, cpu);
1325     ppc40x_timer->fit_timer =
1326         timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, cpu);
1327     ppc40x_timer->wdt_timer =
1328         timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, cpu);
1329     ppc40x_timer->decr_excp = decr_excp;
1330 
1331     return &ppc_40x_set_tb_clk;
1332 }
1333 
1334 /*****************************************************************************/
1335 /* Embedded PowerPC Device Control Registers */
1336 typedef struct ppc_dcrn_t ppc_dcrn_t;
1337 struct ppc_dcrn_t {
1338     dcr_read_cb dcr_read;
1339     dcr_write_cb dcr_write;
1340     void *opaque;
1341 };
1342 
1343 /* XXX: on 460, DCR addresses are 32 bits wide,
1344  *      using DCRIPR to get the 22 upper bits of the DCR address
1345  */
1346 #define DCRN_NB 1024
1347 struct ppc_dcr_t {
1348     ppc_dcrn_t dcrn[DCRN_NB];
1349     int (*read_error)(int dcrn);
1350     int (*write_error)(int dcrn);
1351 };
1352 
1353 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1354 {
1355     ppc_dcrn_t *dcr;
1356 
1357     if (dcrn < 0 || dcrn >= DCRN_NB)
1358         goto error;
1359     dcr = &dcr_env->dcrn[dcrn];
1360     if (dcr->dcr_read == NULL)
1361         goto error;
1362     *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1363     trace_ppc_dcr_read(dcrn, *valp);
1364 
1365     return 0;
1366 
1367  error:
1368     if (dcr_env->read_error != NULL)
1369         return (*dcr_env->read_error)(dcrn);
1370 
1371     return -1;
1372 }
1373 
1374 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1375 {
1376     ppc_dcrn_t *dcr;
1377 
1378     if (dcrn < 0 || dcrn >= DCRN_NB)
1379         goto error;
1380     dcr = &dcr_env->dcrn[dcrn];
1381     if (dcr->dcr_write == NULL)
1382         goto error;
1383     trace_ppc_dcr_write(dcrn, val);
1384     (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1385 
1386     return 0;
1387 
1388  error:
1389     if (dcr_env->write_error != NULL)
1390         return (*dcr_env->write_error)(dcrn);
1391 
1392     return -1;
1393 }
1394 
1395 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1396                       dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1397 {
1398     ppc_dcr_t *dcr_env;
1399     ppc_dcrn_t *dcr;
1400 
1401     dcr_env = env->dcr_env;
1402     if (dcr_env == NULL)
1403         return -1;
1404     if (dcrn < 0 || dcrn >= DCRN_NB)
1405         return -1;
1406     dcr = &dcr_env->dcrn[dcrn];
1407     if (dcr->opaque != NULL ||
1408         dcr->dcr_read != NULL ||
1409         dcr->dcr_write != NULL)
1410         return -1;
1411     dcr->opaque = opaque;
1412     dcr->dcr_read = dcr_read;
1413     dcr->dcr_write = dcr_write;
1414 
1415     return 0;
1416 }
1417 
1418 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1419                   int (*write_error)(int dcrn))
1420 {
1421     ppc_dcr_t *dcr_env;
1422 
1423     dcr_env = g_new0(ppc_dcr_t, 1);
1424     dcr_env->read_error = read_error;
1425     dcr_env->write_error = write_error;
1426     env->dcr_env = dcr_env;
1427 
1428     return 0;
1429 }
1430 
1431 /*****************************************************************************/
1432 
1433 int ppc_cpu_pir(PowerPCCPU *cpu)
1434 {
1435     CPUPPCState *env = &cpu->env;
1436     return env->spr_cb[SPR_PIR].default_value;
1437 }
1438 
1439 PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1440 {
1441     CPUState *cs;
1442 
1443     CPU_FOREACH(cs) {
1444         PowerPCCPU *cpu = POWERPC_CPU(cs);
1445 
1446         if (ppc_cpu_pir(cpu) == pir) {
1447             return cpu;
1448         }
1449     }
1450 
1451     return NULL;
1452 }
1453 
1454 void ppc_irq_reset(PowerPCCPU *cpu)
1455 {
1456     CPUPPCState *env = &cpu->env;
1457 
1458     env->irq_input_state = 0;
1459     kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0);
1460 }
1461