xref: /qemu/hw/ppc/spapr.c (revision 0b0bb124)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "cpu-models.h"
47 #include "qom/cpu.h"
48 
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
52 
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/pci/msi.h"
58 
59 #include "hw/pci/pci.h"
60 #include "hw/scsi/scsi.h"
61 #include "hw/virtio/virtio-scsi.h"
62 #include "hw/virtio/vhost-scsi-common.h"
63 
64 #include "exec/address-spaces.h"
65 #include "exec/ram_addr.h"
66 #include "hw/usb.h"
67 #include "qemu/config-file.h"
68 #include "qemu/error-report.h"
69 #include "trace.h"
70 #include "hw/nmi.h"
71 #include "hw/intc/intc.h"
72 
73 #include "hw/compat.h"
74 #include "qemu/cutils.h"
75 #include "hw/ppc/spapr_cpu_core.h"
76 #include "hw/mem/memory-device.h"
77 
78 #include <libfdt.h>
79 
80 /* SLOF memory layout:
81  *
82  * SLOF raw image loaded at 0, copies its romfs right below the flat
83  * device-tree, then position SLOF itself 31M below that
84  *
85  * So we set FW_OVERHEAD to 40MB which should account for all of that
86  * and more
87  *
88  * We load our kernel at 4M, leaving space for SLOF initial image
89  */
90 #define FDT_MAX_SIZE            0x100000
91 #define RTAS_MAX_SIZE           0x10000
92 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE             0x400000
94 #define FW_FILE_NAME            "slof.bin"
95 #define FW_OVERHEAD             0x2800000
96 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
97 
98 #define MIN_RMA_SLOF            128UL
99 
100 #define PHANDLE_XICP            0x00001111
101 
102 /* These two functions implement the VCPU id numbering: one to compute them
103  * all and one to identify thread 0 of a VCORE. Any change to the first one
104  * is likely to have an impact on the second one, so let's keep them close.
105  */
106 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
107 {
108     assert(spapr->vsmt);
109     return
110         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
111 }
112 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
113                                       PowerPCCPU *cpu)
114 {
115     assert(spapr->vsmt);
116     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
117 }
118 
119 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
120 {
121     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
122      * and newer QEMUs don't even have them. In both cases, we don't want
123      * to send anything on the wire.
124      */
125     return false;
126 }
127 
128 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
129     .name = "icp/server",
130     .version_id = 1,
131     .minimum_version_id = 1,
132     .needed = pre_2_10_vmstate_dummy_icp_needed,
133     .fields = (VMStateField[]) {
134         VMSTATE_UNUSED(4), /* uint32_t xirr */
135         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
136         VMSTATE_UNUSED(1), /* uint8_t mfrr */
137         VMSTATE_END_OF_LIST()
138     },
139 };
140 
141 static void pre_2_10_vmstate_register_dummy_icp(int i)
142 {
143     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
144                      (void *)(uintptr_t) i);
145 }
146 
147 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
148 {
149     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
150                        (void *)(uintptr_t) i);
151 }
152 
153 static int xics_max_server_number(sPAPRMachineState *spapr)
154 {
155     assert(spapr->vsmt);
156     return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
157 }
158 
159 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
160                                   int smt_threads)
161 {
162     int i, ret = 0;
163     uint32_t servers_prop[smt_threads];
164     uint32_t gservers_prop[smt_threads * 2];
165     int index = spapr_get_vcpu_id(cpu);
166 
167     if (cpu->compat_pvr) {
168         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
169         if (ret < 0) {
170             return ret;
171         }
172     }
173 
174     /* Build interrupt servers and gservers properties */
175     for (i = 0; i < smt_threads; i++) {
176         servers_prop[i] = cpu_to_be32(index + i);
177         /* Hack, direct the group queues back to cpu 0 */
178         gservers_prop[i*2] = cpu_to_be32(index + i);
179         gservers_prop[i*2 + 1] = 0;
180     }
181     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
182                       servers_prop, sizeof(servers_prop));
183     if (ret < 0) {
184         return ret;
185     }
186     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
187                       gservers_prop, sizeof(gservers_prop));
188 
189     return ret;
190 }
191 
192 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
193 {
194     int index = spapr_get_vcpu_id(cpu);
195     uint32_t associativity[] = {cpu_to_be32(0x5),
196                                 cpu_to_be32(0x0),
197                                 cpu_to_be32(0x0),
198                                 cpu_to_be32(0x0),
199                                 cpu_to_be32(cpu->node_id),
200                                 cpu_to_be32(index)};
201 
202     /* Advertise NUMA via ibm,associativity */
203     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
204                           sizeof(associativity));
205 }
206 
207 /* Populate the "ibm,pa-features" property */
208 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
209                                        PowerPCCPU *cpu,
210                                        void *fdt, int offset,
211                                        bool legacy_guest)
212 {
213     uint8_t pa_features_206[] = { 6, 0,
214         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
215     uint8_t pa_features_207[] = { 24, 0,
216         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
217         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
218         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
219         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
220     uint8_t pa_features_300[] = { 66, 0,
221         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
222         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
223         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
224         /* 6: DS207 */
225         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
226         /* 16: Vector */
227         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
228         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
229         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
230         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
231         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
232         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
233         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
234         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
235         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
236         /* 42: PM, 44: PC RA, 46: SC vec'd */
237         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
238         /* 48: SIMD, 50: QP BFP, 52: String */
239         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
240         /* 54: DecFP, 56: DecI, 58: SHA */
241         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
242         /* 60: NM atomic, 62: RNG */
243         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
244     };
245     uint8_t *pa_features = NULL;
246     size_t pa_size;
247 
248     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
249         pa_features = pa_features_206;
250         pa_size = sizeof(pa_features_206);
251     }
252     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
253         pa_features = pa_features_207;
254         pa_size = sizeof(pa_features_207);
255     }
256     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
257         pa_features = pa_features_300;
258         pa_size = sizeof(pa_features_300);
259     }
260     if (!pa_features) {
261         return;
262     }
263 
264     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
265         /*
266          * Note: we keep CI large pages off by default because a 64K capable
267          * guest provisioned with large pages might otherwise try to map a qemu
268          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
269          * even if that qemu runs on a 4k host.
270          * We dd this bit back here if we are confident this is not an issue
271          */
272         pa_features[3] |= 0x20;
273     }
274     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
275         pa_features[24] |= 0x80;    /* Transactional memory support */
276     }
277     if (legacy_guest && pa_size > 40) {
278         /* Workaround for broken kernels that attempt (guest) radix
279          * mode when they can't handle it, if they see the radix bit set
280          * in pa-features. So hide it from them. */
281         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
282     }
283 
284     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
285 }
286 
287 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
288 {
289     int ret = 0, offset, cpus_offset;
290     CPUState *cs;
291     char cpu_model[32];
292     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
293 
294     CPU_FOREACH(cs) {
295         PowerPCCPU *cpu = POWERPC_CPU(cs);
296         DeviceClass *dc = DEVICE_GET_CLASS(cs);
297         int index = spapr_get_vcpu_id(cpu);
298         int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
299 
300         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
301             continue;
302         }
303 
304         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
305 
306         cpus_offset = fdt_path_offset(fdt, "/cpus");
307         if (cpus_offset < 0) {
308             cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
309             if (cpus_offset < 0) {
310                 return cpus_offset;
311             }
312         }
313         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
314         if (offset < 0) {
315             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
316             if (offset < 0) {
317                 return offset;
318             }
319         }
320 
321         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
322                           pft_size_prop, sizeof(pft_size_prop));
323         if (ret < 0) {
324             return ret;
325         }
326 
327         if (nb_numa_nodes > 1) {
328             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
329             if (ret < 0) {
330                 return ret;
331             }
332         }
333 
334         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
335         if (ret < 0) {
336             return ret;
337         }
338 
339         spapr_populate_pa_features(spapr, cpu, fdt, offset,
340                                    spapr->cas_legacy_guest_workaround);
341     }
342     return ret;
343 }
344 
345 static hwaddr spapr_node0_size(MachineState *machine)
346 {
347     if (nb_numa_nodes) {
348         int i;
349         for (i = 0; i < nb_numa_nodes; ++i) {
350             if (numa_info[i].node_mem) {
351                 return MIN(pow2floor(numa_info[i].node_mem),
352                            machine->ram_size);
353             }
354         }
355     }
356     return machine->ram_size;
357 }
358 
359 static void add_str(GString *s, const gchar *s1)
360 {
361     g_string_append_len(s, s1, strlen(s1) + 1);
362 }
363 
364 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
365                                        hwaddr size)
366 {
367     uint32_t associativity[] = {
368         cpu_to_be32(0x4), /* length */
369         cpu_to_be32(0x0), cpu_to_be32(0x0),
370         cpu_to_be32(0x0), cpu_to_be32(nodeid)
371     };
372     char mem_name[32];
373     uint64_t mem_reg_property[2];
374     int off;
375 
376     mem_reg_property[0] = cpu_to_be64(start);
377     mem_reg_property[1] = cpu_to_be64(size);
378 
379     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
380     off = fdt_add_subnode(fdt, 0, mem_name);
381     _FDT(off);
382     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
383     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
384                       sizeof(mem_reg_property))));
385     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
386                       sizeof(associativity))));
387     return off;
388 }
389 
390 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
391 {
392     MachineState *machine = MACHINE(spapr);
393     hwaddr mem_start, node_size;
394     int i, nb_nodes = nb_numa_nodes;
395     NodeInfo *nodes = numa_info;
396     NodeInfo ramnode;
397 
398     /* No NUMA nodes, assume there is just one node with whole RAM */
399     if (!nb_numa_nodes) {
400         nb_nodes = 1;
401         ramnode.node_mem = machine->ram_size;
402         nodes = &ramnode;
403     }
404 
405     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
406         if (!nodes[i].node_mem) {
407             continue;
408         }
409         if (mem_start >= machine->ram_size) {
410             node_size = 0;
411         } else {
412             node_size = nodes[i].node_mem;
413             if (node_size > machine->ram_size - mem_start) {
414                 node_size = machine->ram_size - mem_start;
415             }
416         }
417         if (!mem_start) {
418             /* spapr_machine_init() checks for rma_size <= node0_size
419              * already */
420             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
421             mem_start += spapr->rma_size;
422             node_size -= spapr->rma_size;
423         }
424         for ( ; node_size; ) {
425             hwaddr sizetmp = pow2floor(node_size);
426 
427             /* mem_start != 0 here */
428             if (ctzl(mem_start) < ctzl(sizetmp)) {
429                 sizetmp = 1ULL << ctzl(mem_start);
430             }
431 
432             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
433             node_size -= sizetmp;
434             mem_start += sizetmp;
435         }
436     }
437 
438     return 0;
439 }
440 
441 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
442                                   sPAPRMachineState *spapr)
443 {
444     PowerPCCPU *cpu = POWERPC_CPU(cs);
445     CPUPPCState *env = &cpu->env;
446     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
447     int index = spapr_get_vcpu_id(cpu);
448     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
449                        0xffffffff, 0xffffffff};
450     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
451         : SPAPR_TIMEBASE_FREQ;
452     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
453     uint32_t page_sizes_prop[64];
454     size_t page_sizes_prop_size;
455     uint32_t vcpus_per_socket = smp_threads * smp_cores;
456     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
457     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
458     sPAPRDRConnector *drc;
459     int drc_index;
460     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
461     int i;
462 
463     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
464     if (drc) {
465         drc_index = spapr_drc_index(drc);
466         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
467     }
468 
469     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
470     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
471 
472     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
473     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
474                            env->dcache_line_size)));
475     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
476                            env->dcache_line_size)));
477     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
478                            env->icache_line_size)));
479     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
480                            env->icache_line_size)));
481 
482     if (pcc->l1_dcache_size) {
483         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
484                                pcc->l1_dcache_size)));
485     } else {
486         warn_report("Unknown L1 dcache size for cpu");
487     }
488     if (pcc->l1_icache_size) {
489         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
490                                pcc->l1_icache_size)));
491     } else {
492         warn_report("Unknown L1 icache size for cpu");
493     }
494 
495     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
496     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
497     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
498     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
499     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
500     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
501 
502     if (env->spr_cb[SPR_PURR].oea_read) {
503         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
504     }
505 
506     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
507         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
508                           segs, sizeof(segs))));
509     }
510 
511     /* Advertise VSX (vector extensions) if available
512      *   1               == VMX / Altivec available
513      *   2               == VSX available
514      *
515      * Only CPUs for which we create core types in spapr_cpu_core.c
516      * are possible, and all of those have VMX */
517     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
518         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
519     } else {
520         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
521     }
522 
523     /* Advertise DFP (Decimal Floating Point) if available
524      *   0 / no property == no DFP
525      *   1               == DFP available */
526     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
527         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
528     }
529 
530     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
531                                                       sizeof(page_sizes_prop));
532     if (page_sizes_prop_size) {
533         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
534                           page_sizes_prop, page_sizes_prop_size)));
535     }
536 
537     spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
538 
539     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
540                            cs->cpu_index / vcpus_per_socket)));
541 
542     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
543                       pft_size_prop, sizeof(pft_size_prop))));
544 
545     if (nb_numa_nodes > 1) {
546         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
547     }
548 
549     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
550 
551     if (pcc->radix_page_info) {
552         for (i = 0; i < pcc->radix_page_info->count; i++) {
553             radix_AP_encodings[i] =
554                 cpu_to_be32(pcc->radix_page_info->entries[i]);
555         }
556         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
557                           radix_AP_encodings,
558                           pcc->radix_page_info->count *
559                           sizeof(radix_AP_encodings[0]))));
560     }
561 }
562 
563 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
564 {
565     CPUState **rev;
566     CPUState *cs;
567     int n_cpus;
568     int cpus_offset;
569     char *nodename;
570     int i;
571 
572     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
573     _FDT(cpus_offset);
574     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
575     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
576 
577     /*
578      * We walk the CPUs in reverse order to ensure that CPU DT nodes
579      * created by fdt_add_subnode() end up in the right order in FDT
580      * for the guest kernel the enumerate the CPUs correctly.
581      *
582      * The CPU list cannot be traversed in reverse order, so we need
583      * to do extra work.
584      */
585     n_cpus = 0;
586     rev = NULL;
587     CPU_FOREACH(cs) {
588         rev = g_renew(CPUState *, rev, n_cpus + 1);
589         rev[n_cpus++] = cs;
590     }
591 
592     for (i = n_cpus - 1; i >= 0; i--) {
593         CPUState *cs = rev[i];
594         PowerPCCPU *cpu = POWERPC_CPU(cs);
595         int index = spapr_get_vcpu_id(cpu);
596         DeviceClass *dc = DEVICE_GET_CLASS(cs);
597         int offset;
598 
599         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
600             continue;
601         }
602 
603         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
604         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
605         g_free(nodename);
606         _FDT(offset);
607         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
608     }
609 
610     g_free(rev);
611 }
612 
613 static int spapr_rng_populate_dt(void *fdt)
614 {
615     int node;
616     int ret;
617 
618     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
619     if (node <= 0) {
620         return -1;
621     }
622     ret = fdt_setprop_string(fdt, node, "device_type",
623                              "ibm,platform-facilities");
624     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
625     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
626 
627     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
628     if (node <= 0) {
629         return -1;
630     }
631     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
632 
633     return ret ? -1 : 0;
634 }
635 
636 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
637 {
638     MemoryDeviceInfoList *info;
639 
640     for (info = list; info; info = info->next) {
641         MemoryDeviceInfo *value = info->value;
642 
643         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
644             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
645 
646             if (addr >= pcdimm_info->addr &&
647                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
648                 return pcdimm_info->node;
649             }
650         }
651     }
652 
653     return -1;
654 }
655 
656 struct sPAPRDrconfCellV2 {
657      uint32_t seq_lmbs;
658      uint64_t base_addr;
659      uint32_t drc_index;
660      uint32_t aa_index;
661      uint32_t flags;
662 } QEMU_PACKED;
663 
664 typedef struct DrconfCellQueue {
665     struct sPAPRDrconfCellV2 cell;
666     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
667 } DrconfCellQueue;
668 
669 static DrconfCellQueue *
670 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
671                       uint32_t drc_index, uint32_t aa_index,
672                       uint32_t flags)
673 {
674     DrconfCellQueue *elem;
675 
676     elem = g_malloc0(sizeof(*elem));
677     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
678     elem->cell.base_addr = cpu_to_be64(base_addr);
679     elem->cell.drc_index = cpu_to_be32(drc_index);
680     elem->cell.aa_index = cpu_to_be32(aa_index);
681     elem->cell.flags = cpu_to_be32(flags);
682 
683     return elem;
684 }
685 
686 /* ibm,dynamic-memory-v2 */
687 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt,
688                                    int offset, MemoryDeviceInfoList *dimms)
689 {
690     MachineState *machine = MACHINE(spapr);
691     uint8_t *int_buf, *cur_index, buf_len;
692     int ret;
693     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
694     uint64_t addr, cur_addr, size;
695     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
696     uint64_t mem_end = machine->device_memory->base +
697                        memory_region_size(&machine->device_memory->mr);
698     uint32_t node, nr_entries = 0;
699     sPAPRDRConnector *drc;
700     DrconfCellQueue *elem, *next;
701     MemoryDeviceInfoList *info;
702     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
703         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
704 
705     /* Entry to cover RAM and the gap area */
706     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
707                                  SPAPR_LMB_FLAGS_RESERVED |
708                                  SPAPR_LMB_FLAGS_DRC_INVALID);
709     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
710     nr_entries++;
711 
712     cur_addr = machine->device_memory->base;
713     for (info = dimms; info; info = info->next) {
714         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
715 
716         addr = di->addr;
717         size = di->size;
718         node = di->node;
719 
720         /* Entry for hot-pluggable area */
721         if (cur_addr < addr) {
722             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
723             g_assert(drc);
724             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
725                                          cur_addr, spapr_drc_index(drc), -1, 0);
726             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
727             nr_entries++;
728         }
729 
730         /* Entry for DIMM */
731         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
732         g_assert(drc);
733         elem = spapr_get_drconf_cell(size / lmb_size, addr,
734                                      spapr_drc_index(drc), node,
735                                      SPAPR_LMB_FLAGS_ASSIGNED);
736         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
737         nr_entries++;
738         cur_addr = addr + size;
739     }
740 
741     /* Entry for remaining hotpluggable area */
742     if (cur_addr < mem_end) {
743         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
744         g_assert(drc);
745         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
746                                      cur_addr, spapr_drc_index(drc), -1, 0);
747         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
748         nr_entries++;
749     }
750 
751     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
752     int_buf = cur_index = g_malloc0(buf_len);
753     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
754     cur_index += sizeof(nr_entries);
755 
756     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
757         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
758         cur_index += sizeof(elem->cell);
759         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
760         g_free(elem);
761     }
762 
763     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
764     g_free(int_buf);
765     if (ret < 0) {
766         return -1;
767     }
768     return 0;
769 }
770 
771 /* ibm,dynamic-memory */
772 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt,
773                                    int offset, MemoryDeviceInfoList *dimms)
774 {
775     MachineState *machine = MACHINE(spapr);
776     int i, ret;
777     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
778     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
779     uint32_t nr_lmbs = (machine->device_memory->base +
780                        memory_region_size(&machine->device_memory->mr)) /
781                        lmb_size;
782     uint32_t *int_buf, *cur_index, buf_len;
783 
784     /*
785      * Allocate enough buffer size to fit in ibm,dynamic-memory
786      */
787     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
788     cur_index = int_buf = g_malloc0(buf_len);
789     int_buf[0] = cpu_to_be32(nr_lmbs);
790     cur_index++;
791     for (i = 0; i < nr_lmbs; i++) {
792         uint64_t addr = i * lmb_size;
793         uint32_t *dynamic_memory = cur_index;
794 
795         if (i >= device_lmb_start) {
796             sPAPRDRConnector *drc;
797 
798             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
799             g_assert(drc);
800 
801             dynamic_memory[0] = cpu_to_be32(addr >> 32);
802             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
803             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
804             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
805             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
806             if (memory_region_present(get_system_memory(), addr)) {
807                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
808             } else {
809                 dynamic_memory[5] = cpu_to_be32(0);
810             }
811         } else {
812             /*
813              * LMB information for RMA, boot time RAM and gap b/n RAM and
814              * device memory region -- all these are marked as reserved
815              * and as having no valid DRC.
816              */
817             dynamic_memory[0] = cpu_to_be32(addr >> 32);
818             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
819             dynamic_memory[2] = cpu_to_be32(0);
820             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
821             dynamic_memory[4] = cpu_to_be32(-1);
822             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
823                                             SPAPR_LMB_FLAGS_DRC_INVALID);
824         }
825 
826         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
827     }
828     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
829     g_free(int_buf);
830     if (ret < 0) {
831         return -1;
832     }
833     return 0;
834 }
835 
836 /*
837  * Adds ibm,dynamic-reconfiguration-memory node.
838  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
839  * of this device tree node.
840  */
841 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
842 {
843     MachineState *machine = MACHINE(spapr);
844     int ret, i, offset;
845     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
846     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
847     uint32_t *int_buf, *cur_index, buf_len;
848     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
849     MemoryDeviceInfoList *dimms = NULL;
850 
851     /*
852      * Don't create the node if there is no device memory
853      */
854     if (machine->ram_size == machine->maxram_size) {
855         return 0;
856     }
857 
858     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
859 
860     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
861                     sizeof(prop_lmb_size));
862     if (ret < 0) {
863         return ret;
864     }
865 
866     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
867     if (ret < 0) {
868         return ret;
869     }
870 
871     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
872     if (ret < 0) {
873         return ret;
874     }
875 
876     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
877     dimms = qmp_memory_device_list();
878     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
879         ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
880     } else {
881         ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
882     }
883     qapi_free_MemoryDeviceInfoList(dimms);
884 
885     if (ret < 0) {
886         return ret;
887     }
888 
889     /* ibm,associativity-lookup-arrays */
890     buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
891     cur_index = int_buf = g_malloc0(buf_len);
892 
893     cur_index = int_buf;
894     int_buf[0] = cpu_to_be32(nr_nodes);
895     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
896     cur_index += 2;
897     for (i = 0; i < nr_nodes; i++) {
898         uint32_t associativity[] = {
899             cpu_to_be32(0x0),
900             cpu_to_be32(0x0),
901             cpu_to_be32(0x0),
902             cpu_to_be32(i)
903         };
904         memcpy(cur_index, associativity, sizeof(associativity));
905         cur_index += 4;
906     }
907     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
908             (cur_index - int_buf) * sizeof(uint32_t));
909     g_free(int_buf);
910 
911     return ret;
912 }
913 
914 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
915                                 sPAPROptionVector *ov5_updates)
916 {
917     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
918     int ret = 0, offset;
919 
920     /* Generate ibm,dynamic-reconfiguration-memory node if required */
921     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
922         g_assert(smc->dr_lmb_enabled);
923         ret = spapr_populate_drconf_memory(spapr, fdt);
924         if (ret) {
925             goto out;
926         }
927     }
928 
929     offset = fdt_path_offset(fdt, "/chosen");
930     if (offset < 0) {
931         offset = fdt_add_subnode(fdt, 0, "chosen");
932         if (offset < 0) {
933             return offset;
934         }
935     }
936     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
937                                  "ibm,architecture-vec-5");
938 
939 out:
940     return ret;
941 }
942 
943 static bool spapr_hotplugged_dev_before_cas(void)
944 {
945     Object *drc_container, *obj;
946     ObjectProperty *prop;
947     ObjectPropertyIterator iter;
948 
949     drc_container = container_get(object_get_root(), "/dr-connector");
950     object_property_iter_init(&iter, drc_container);
951     while ((prop = object_property_iter_next(&iter))) {
952         if (!strstart(prop->type, "link<", NULL)) {
953             continue;
954         }
955         obj = object_property_get_link(drc_container, prop->name, NULL);
956         if (spapr_drc_needed(obj)) {
957             return true;
958         }
959     }
960     return false;
961 }
962 
963 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
964                                  target_ulong addr, target_ulong size,
965                                  sPAPROptionVector *ov5_updates)
966 {
967     void *fdt, *fdt_skel;
968     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
969 
970     if (spapr_hotplugged_dev_before_cas()) {
971         return 1;
972     }
973 
974     if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
975         error_report("SLOF provided an unexpected CAS buffer size "
976                      TARGET_FMT_lu " (min: %zu, max: %u)",
977                      size, sizeof(hdr), FW_MAX_SIZE);
978         exit(EXIT_FAILURE);
979     }
980 
981     size -= sizeof(hdr);
982 
983     /* Create skeleton */
984     fdt_skel = g_malloc0(size);
985     _FDT((fdt_create(fdt_skel, size)));
986     _FDT((fdt_finish_reservemap(fdt_skel)));
987     _FDT((fdt_begin_node(fdt_skel, "")));
988     _FDT((fdt_end_node(fdt_skel)));
989     _FDT((fdt_finish(fdt_skel)));
990     fdt = g_malloc0(size);
991     _FDT((fdt_open_into(fdt_skel, fdt, size)));
992     g_free(fdt_skel);
993 
994     /* Fixup cpu nodes */
995     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
996 
997     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
998         return -1;
999     }
1000 
1001     /* Pack resulting tree */
1002     _FDT((fdt_pack(fdt)));
1003 
1004     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1005         trace_spapr_cas_failed(size);
1006         return -1;
1007     }
1008 
1009     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1010     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1011     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1012     g_free(fdt);
1013 
1014     return 0;
1015 }
1016 
1017 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
1018 {
1019     int rtas;
1020     GString *hypertas = g_string_sized_new(256);
1021     GString *qemu_hypertas = g_string_sized_new(256);
1022     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1023     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1024         memory_region_size(&MACHINE(spapr)->device_memory->mr);
1025     uint32_t lrdr_capacity[] = {
1026         cpu_to_be32(max_device_addr >> 32),
1027         cpu_to_be32(max_device_addr & 0xffffffff),
1028         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1029         cpu_to_be32(max_cpus / smp_threads),
1030     };
1031     uint32_t maxdomains[] = {
1032         cpu_to_be32(4),
1033         cpu_to_be32(0),
1034         cpu_to_be32(0),
1035         cpu_to_be32(0),
1036         cpu_to_be32(nb_numa_nodes ? nb_numa_nodes - 1 : 0),
1037     };
1038 
1039     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1040 
1041     /* hypertas */
1042     add_str(hypertas, "hcall-pft");
1043     add_str(hypertas, "hcall-term");
1044     add_str(hypertas, "hcall-dabr");
1045     add_str(hypertas, "hcall-interrupt");
1046     add_str(hypertas, "hcall-tce");
1047     add_str(hypertas, "hcall-vio");
1048     add_str(hypertas, "hcall-splpar");
1049     add_str(hypertas, "hcall-bulk");
1050     add_str(hypertas, "hcall-set-mode");
1051     add_str(hypertas, "hcall-sprg0");
1052     add_str(hypertas, "hcall-copy");
1053     add_str(hypertas, "hcall-debug");
1054     add_str(qemu_hypertas, "hcall-memop1");
1055 
1056     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1057         add_str(hypertas, "hcall-multi-tce");
1058     }
1059 
1060     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1061         add_str(hypertas, "hcall-hpt-resize");
1062     }
1063 
1064     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1065                      hypertas->str, hypertas->len));
1066     g_string_free(hypertas, TRUE);
1067     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1068                      qemu_hypertas->str, qemu_hypertas->len));
1069     g_string_free(qemu_hypertas, TRUE);
1070 
1071     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1072                      refpoints, sizeof(refpoints)));
1073 
1074     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1075                      maxdomains, sizeof(maxdomains)));
1076 
1077     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1078                           RTAS_ERROR_LOG_MAX));
1079     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1080                           RTAS_EVENT_SCAN_RATE));
1081 
1082     g_assert(msi_nonbroken);
1083     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1084 
1085     /*
1086      * According to PAPR, rtas ibm,os-term does not guarantee a return
1087      * back to the guest cpu.
1088      *
1089      * While an additional ibm,extended-os-term property indicates
1090      * that rtas call return will always occur. Set this property.
1091      */
1092     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1093 
1094     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1095                      lrdr_capacity, sizeof(lrdr_capacity)));
1096 
1097     spapr_dt_rtas_tokens(fdt, rtas);
1098 }
1099 
1100 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
1101  * that the guest may request and thus the valid values for bytes 24..26 of
1102  * option vector 5: */
1103 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
1104 {
1105     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1106 
1107     char val[2 * 4] = {
1108         23, 0x00, /* Xive mode, filled in below. */
1109         24, 0x00, /* Hash/Radix, filled in below. */
1110         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1111         26, 0x40, /* Radix options: GTSE == yes. */
1112     };
1113 
1114     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1115                           first_ppc_cpu->compat_pvr)) {
1116         /* If we're in a pre POWER9 compat mode then the guest should do hash */
1117         val[3] = 0x00; /* Hash */
1118     } else if (kvm_enabled()) {
1119         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1120             val[3] = 0x80; /* OV5_MMU_BOTH */
1121         } else if (kvmppc_has_cap_mmu_radix()) {
1122             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1123         } else {
1124             val[3] = 0x00; /* Hash */
1125         }
1126     } else {
1127         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1128         val[3] = 0xC0;
1129     }
1130     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1131                      val, sizeof(val)));
1132 }
1133 
1134 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1135 {
1136     MachineState *machine = MACHINE(spapr);
1137     int chosen;
1138     const char *boot_device = machine->boot_order;
1139     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1140     size_t cb = 0;
1141     char *bootlist = get_boot_devices_list(&cb);
1142 
1143     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1144 
1145     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1146     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1147                           spapr->initrd_base));
1148     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1149                           spapr->initrd_base + spapr->initrd_size));
1150 
1151     if (spapr->kernel_size) {
1152         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1153                               cpu_to_be64(spapr->kernel_size) };
1154 
1155         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1156                          &kprop, sizeof(kprop)));
1157         if (spapr->kernel_le) {
1158             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1159         }
1160     }
1161     if (boot_menu) {
1162         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1163     }
1164     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1165     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1166     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1167 
1168     if (cb && bootlist) {
1169         int i;
1170 
1171         for (i = 0; i < cb; i++) {
1172             if (bootlist[i] == '\n') {
1173                 bootlist[i] = ' ';
1174             }
1175         }
1176         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1177     }
1178 
1179     if (boot_device && strlen(boot_device)) {
1180         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1181     }
1182 
1183     if (!spapr->has_graphics && stdout_path) {
1184         /*
1185          * "linux,stdout-path" and "stdout" properties are deprecated by linux
1186          * kernel. New platforms should only use the "stdout-path" property. Set
1187          * the new property and continue using older property to remain
1188          * compatible with the existing firmware.
1189          */
1190         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1191         _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1192     }
1193 
1194     spapr_dt_ov5_platform_support(fdt, chosen);
1195 
1196     g_free(stdout_path);
1197     g_free(bootlist);
1198 }
1199 
1200 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1201 {
1202     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1203      * KVM to work under pHyp with some guest co-operation */
1204     int hypervisor;
1205     uint8_t hypercall[16];
1206 
1207     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1208     /* indicate KVM hypercall interface */
1209     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1210     if (kvmppc_has_cap_fixup_hcalls()) {
1211         /*
1212          * Older KVM versions with older guest kernels were broken
1213          * with the magic page, don't allow the guest to map it.
1214          */
1215         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1216                                   sizeof(hypercall))) {
1217             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1218                              hypercall, sizeof(hypercall)));
1219         }
1220     }
1221 }
1222 
1223 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1224                              hwaddr rtas_addr,
1225                              hwaddr rtas_size)
1226 {
1227     MachineState *machine = MACHINE(spapr);
1228     MachineClass *mc = MACHINE_GET_CLASS(machine);
1229     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1230     int ret;
1231     void *fdt;
1232     sPAPRPHBState *phb;
1233     char *buf;
1234 
1235     fdt = g_malloc0(FDT_MAX_SIZE);
1236     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1237 
1238     /* Root node */
1239     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1240     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1241     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1242 
1243     /*
1244      * Add info to guest to indentify which host is it being run on
1245      * and what is the uuid of the guest
1246      */
1247     if (kvmppc_get_host_model(&buf)) {
1248         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1249         g_free(buf);
1250     }
1251     if (kvmppc_get_host_serial(&buf)) {
1252         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1253         g_free(buf);
1254     }
1255 
1256     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1257 
1258     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1259     if (qemu_uuid_set) {
1260         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1261     }
1262     g_free(buf);
1263 
1264     if (qemu_get_vm_name()) {
1265         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1266                                 qemu_get_vm_name()));
1267     }
1268 
1269     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1270     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1271 
1272     /* /interrupt controller */
1273     spapr_dt_xics(xics_max_server_number(spapr), fdt, PHANDLE_XICP);
1274 
1275     ret = spapr_populate_memory(spapr, fdt);
1276     if (ret < 0) {
1277         error_report("couldn't setup memory nodes in fdt");
1278         exit(1);
1279     }
1280 
1281     /* /vdevice */
1282     spapr_dt_vdevice(spapr->vio_bus, fdt);
1283 
1284     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1285         ret = spapr_rng_populate_dt(fdt);
1286         if (ret < 0) {
1287             error_report("could not set up rng device in the fdt");
1288             exit(1);
1289         }
1290     }
1291 
1292     QLIST_FOREACH(phb, &spapr->phbs, list) {
1293         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt, smc->irq->nr_msis);
1294         if (ret < 0) {
1295             error_report("couldn't setup PCI devices in fdt");
1296             exit(1);
1297         }
1298     }
1299 
1300     /* cpus */
1301     spapr_populate_cpus_dt_node(fdt, spapr);
1302 
1303     if (smc->dr_lmb_enabled) {
1304         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1305     }
1306 
1307     if (mc->has_hotpluggable_cpus) {
1308         int offset = fdt_path_offset(fdt, "/cpus");
1309         ret = spapr_drc_populate_dt(fdt, offset, NULL,
1310                                     SPAPR_DR_CONNECTOR_TYPE_CPU);
1311         if (ret < 0) {
1312             error_report("Couldn't set up CPU DR device tree properties");
1313             exit(1);
1314         }
1315     }
1316 
1317     /* /event-sources */
1318     spapr_dt_events(spapr, fdt);
1319 
1320     /* /rtas */
1321     spapr_dt_rtas(spapr, fdt);
1322 
1323     /* /chosen */
1324     spapr_dt_chosen(spapr, fdt);
1325 
1326     /* /hypervisor */
1327     if (kvm_enabled()) {
1328         spapr_dt_hypervisor(spapr, fdt);
1329     }
1330 
1331     /* Build memory reserve map */
1332     if (spapr->kernel_size) {
1333         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1334     }
1335     if (spapr->initrd_size) {
1336         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1337     }
1338 
1339     /* ibm,client-architecture-support updates */
1340     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1341     if (ret < 0) {
1342         error_report("couldn't setup CAS properties fdt");
1343         exit(1);
1344     }
1345 
1346     return fdt;
1347 }
1348 
1349 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1350 {
1351     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1352 }
1353 
1354 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1355                                     PowerPCCPU *cpu)
1356 {
1357     CPUPPCState *env = &cpu->env;
1358 
1359     /* The TCG path should also be holding the BQL at this point */
1360     g_assert(qemu_mutex_iothread_locked());
1361 
1362     if (msr_pr) {
1363         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1364         env->gpr[3] = H_PRIVILEGE;
1365     } else {
1366         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1367     }
1368 }
1369 
1370 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1371 {
1372     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1373 
1374     return spapr->patb_entry;
1375 }
1376 
1377 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1378 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1379 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1380 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1381 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1382 
1383 /*
1384  * Get the fd to access the kernel htab, re-opening it if necessary
1385  */
1386 static int get_htab_fd(sPAPRMachineState *spapr)
1387 {
1388     Error *local_err = NULL;
1389 
1390     if (spapr->htab_fd >= 0) {
1391         return spapr->htab_fd;
1392     }
1393 
1394     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1395     if (spapr->htab_fd < 0) {
1396         error_report_err(local_err);
1397     }
1398 
1399     return spapr->htab_fd;
1400 }
1401 
1402 void close_htab_fd(sPAPRMachineState *spapr)
1403 {
1404     if (spapr->htab_fd >= 0) {
1405         close(spapr->htab_fd);
1406     }
1407     spapr->htab_fd = -1;
1408 }
1409 
1410 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1411 {
1412     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1413 
1414     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1415 }
1416 
1417 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1418 {
1419     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1420 
1421     assert(kvm_enabled());
1422 
1423     if (!spapr->htab) {
1424         return 0;
1425     }
1426 
1427     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1428 }
1429 
1430 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1431                                                 hwaddr ptex, int n)
1432 {
1433     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1434     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1435 
1436     if (!spapr->htab) {
1437         /*
1438          * HTAB is controlled by KVM. Fetch into temporary buffer
1439          */
1440         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1441         kvmppc_read_hptes(hptes, ptex, n);
1442         return hptes;
1443     }
1444 
1445     /*
1446      * HTAB is controlled by QEMU. Just point to the internally
1447      * accessible PTEG.
1448      */
1449     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1450 }
1451 
1452 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1453                               const ppc_hash_pte64_t *hptes,
1454                               hwaddr ptex, int n)
1455 {
1456     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1457 
1458     if (!spapr->htab) {
1459         g_free((void *)hptes);
1460     }
1461 
1462     /* Nothing to do for qemu managed HPT */
1463 }
1464 
1465 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1466                              uint64_t pte0, uint64_t pte1)
1467 {
1468     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1469     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1470 
1471     if (!spapr->htab) {
1472         kvmppc_write_hpte(ptex, pte0, pte1);
1473     } else {
1474         stq_p(spapr->htab + offset, pte0);
1475         stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1476     }
1477 }
1478 
1479 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1480 {
1481     int shift;
1482 
1483     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1484      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1485      * that's much more than is needed for Linux guests */
1486     shift = ctz64(pow2ceil(ramsize)) - 7;
1487     shift = MAX(shift, 18); /* Minimum architected size */
1488     shift = MIN(shift, 46); /* Maximum architected size */
1489     return shift;
1490 }
1491 
1492 void spapr_free_hpt(sPAPRMachineState *spapr)
1493 {
1494     g_free(spapr->htab);
1495     spapr->htab = NULL;
1496     spapr->htab_shift = 0;
1497     close_htab_fd(spapr);
1498 }
1499 
1500 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1501                           Error **errp)
1502 {
1503     long rc;
1504 
1505     /* Clean up any HPT info from a previous boot */
1506     spapr_free_hpt(spapr);
1507 
1508     rc = kvmppc_reset_htab(shift);
1509     if (rc < 0) {
1510         /* kernel-side HPT needed, but couldn't allocate one */
1511         error_setg_errno(errp, errno,
1512                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1513                          shift);
1514         /* This is almost certainly fatal, but if the caller really
1515          * wants to carry on with shift == 0, it's welcome to try */
1516     } else if (rc > 0) {
1517         /* kernel-side HPT allocated */
1518         if (rc != shift) {
1519             error_setg(errp,
1520                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1521                        shift, rc);
1522         }
1523 
1524         spapr->htab_shift = shift;
1525         spapr->htab = NULL;
1526     } else {
1527         /* kernel-side HPT not needed, allocate in userspace instead */
1528         size_t size = 1ULL << shift;
1529         int i;
1530 
1531         spapr->htab = qemu_memalign(size, size);
1532         if (!spapr->htab) {
1533             error_setg_errno(errp, errno,
1534                              "Could not allocate HPT of order %d", shift);
1535             return;
1536         }
1537 
1538         memset(spapr->htab, 0, size);
1539         spapr->htab_shift = shift;
1540 
1541         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1542             DIRTY_HPTE(HPTE(spapr->htab, i));
1543         }
1544     }
1545     /* We're setting up a hash table, so that means we're not radix */
1546     spapr->patb_entry = 0;
1547 }
1548 
1549 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1550 {
1551     int hpt_shift;
1552 
1553     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1554         || (spapr->cas_reboot
1555             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1556         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1557     } else {
1558         uint64_t current_ram_size;
1559 
1560         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1561         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1562     }
1563     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1564 
1565     if (spapr->vrma_adjust) {
1566         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1567                                           spapr->htab_shift);
1568     }
1569 }
1570 
1571 static int spapr_reset_drcs(Object *child, void *opaque)
1572 {
1573     sPAPRDRConnector *drc =
1574         (sPAPRDRConnector *) object_dynamic_cast(child,
1575                                                  TYPE_SPAPR_DR_CONNECTOR);
1576 
1577     if (drc) {
1578         spapr_drc_reset(drc);
1579     }
1580 
1581     return 0;
1582 }
1583 
1584 static void spapr_machine_reset(void)
1585 {
1586     MachineState *machine = MACHINE(qdev_get_machine());
1587     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1588     PowerPCCPU *first_ppc_cpu;
1589     uint32_t rtas_limit;
1590     hwaddr rtas_addr, fdt_addr;
1591     void *fdt;
1592     int rc;
1593 
1594     spapr_caps_apply(spapr);
1595 
1596     first_ppc_cpu = POWERPC_CPU(first_cpu);
1597     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1598         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1599                               spapr->max_compat_pvr)) {
1600         /* If using KVM with radix mode available, VCPUs can be started
1601          * without a HPT because KVM will start them in radix mode.
1602          * Set the GR bit in PATB so that we know there is no HPT. */
1603         spapr->patb_entry = PATBE1_GR;
1604     } else {
1605         spapr_setup_hpt_and_vrma(spapr);
1606     }
1607 
1608     /* if this reset wasn't generated by CAS, we should reset our
1609      * negotiated options and start from scratch */
1610     if (!spapr->cas_reboot) {
1611         spapr_ovec_cleanup(spapr->ov5_cas);
1612         spapr->ov5_cas = spapr_ovec_new();
1613 
1614         ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1615     }
1616 
1617     if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1618         spapr_irq_msi_reset(spapr);
1619     }
1620 
1621     qemu_devices_reset();
1622 
1623     /* DRC reset may cause a device to be unplugged. This will cause troubles
1624      * if this device is used by another device (eg, a running vhost backend
1625      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1626      * situations, we reset DRCs after all devices have been reset.
1627      */
1628     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1629 
1630     spapr_clear_pending_events(spapr);
1631 
1632     /*
1633      * We place the device tree and RTAS just below either the top of the RMA,
1634      * or just below 2GB, whichever is lowere, so that it can be
1635      * processed with 32-bit real mode code if necessary
1636      */
1637     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1638     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1639     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1640 
1641     fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1642 
1643     spapr_load_rtas(spapr, fdt, rtas_addr);
1644 
1645     rc = fdt_pack(fdt);
1646 
1647     /* Should only fail if we've built a corrupted tree */
1648     assert(rc == 0);
1649 
1650     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1651         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1652                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1653         exit(1);
1654     }
1655 
1656     /* Load the fdt */
1657     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1658     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1659     g_free(fdt);
1660 
1661     /* Set up the entry state */
1662     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1663     first_ppc_cpu->env.gpr[5] = 0;
1664 
1665     spapr->cas_reboot = false;
1666 }
1667 
1668 static void spapr_create_nvram(sPAPRMachineState *spapr)
1669 {
1670     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1671     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1672 
1673     if (dinfo) {
1674         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1675                             &error_fatal);
1676     }
1677 
1678     qdev_init_nofail(dev);
1679 
1680     spapr->nvram = (struct sPAPRNVRAM *)dev;
1681 }
1682 
1683 static void spapr_rtc_create(sPAPRMachineState *spapr)
1684 {
1685     object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1686     object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1687                               &error_fatal);
1688     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1689                               &error_fatal);
1690     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1691                               "date", &error_fatal);
1692 }
1693 
1694 /* Returns whether we want to use VGA or not */
1695 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1696 {
1697     switch (vga_interface_type) {
1698     case VGA_NONE:
1699         return false;
1700     case VGA_DEVICE:
1701         return true;
1702     case VGA_STD:
1703     case VGA_VIRTIO:
1704         return pci_vga_init(pci_bus) != NULL;
1705     default:
1706         error_setg(errp,
1707                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1708         return false;
1709     }
1710 }
1711 
1712 static int spapr_pre_load(void *opaque)
1713 {
1714     int rc;
1715 
1716     rc = spapr_caps_pre_load(opaque);
1717     if (rc) {
1718         return rc;
1719     }
1720 
1721     return 0;
1722 }
1723 
1724 static int spapr_post_load(void *opaque, int version_id)
1725 {
1726     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1727     int err = 0;
1728 
1729     err = spapr_caps_post_migration(spapr);
1730     if (err) {
1731         return err;
1732     }
1733 
1734     if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1735         CPUState *cs;
1736         CPU_FOREACH(cs) {
1737             PowerPCCPU *cpu = POWERPC_CPU(cs);
1738             icp_resend(ICP(cpu->intc));
1739         }
1740     }
1741 
1742     /* In earlier versions, there was no separate qdev for the PAPR
1743      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1744      * So when migrating from those versions, poke the incoming offset
1745      * value into the RTC device */
1746     if (version_id < 3) {
1747         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1748     }
1749 
1750     if (kvm_enabled() && spapr->patb_entry) {
1751         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1752         bool radix = !!(spapr->patb_entry & PATBE1_GR);
1753         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1754 
1755         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1756         if (err) {
1757             error_report("Process table config unsupported by the host");
1758             return -EINVAL;
1759         }
1760     }
1761 
1762     return err;
1763 }
1764 
1765 static int spapr_pre_save(void *opaque)
1766 {
1767     int rc;
1768 
1769     rc = spapr_caps_pre_save(opaque);
1770     if (rc) {
1771         return rc;
1772     }
1773 
1774     return 0;
1775 }
1776 
1777 static bool version_before_3(void *opaque, int version_id)
1778 {
1779     return version_id < 3;
1780 }
1781 
1782 static bool spapr_pending_events_needed(void *opaque)
1783 {
1784     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1785     return !QTAILQ_EMPTY(&spapr->pending_events);
1786 }
1787 
1788 static const VMStateDescription vmstate_spapr_event_entry = {
1789     .name = "spapr_event_log_entry",
1790     .version_id = 1,
1791     .minimum_version_id = 1,
1792     .fields = (VMStateField[]) {
1793         VMSTATE_UINT32(summary, sPAPREventLogEntry),
1794         VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1795         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1796                                      NULL, extended_length),
1797         VMSTATE_END_OF_LIST()
1798     },
1799 };
1800 
1801 static const VMStateDescription vmstate_spapr_pending_events = {
1802     .name = "spapr_pending_events",
1803     .version_id = 1,
1804     .minimum_version_id = 1,
1805     .needed = spapr_pending_events_needed,
1806     .fields = (VMStateField[]) {
1807         VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1808                          vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1809         VMSTATE_END_OF_LIST()
1810     },
1811 };
1812 
1813 static bool spapr_ov5_cas_needed(void *opaque)
1814 {
1815     sPAPRMachineState *spapr = opaque;
1816     sPAPROptionVector *ov5_mask = spapr_ovec_new();
1817     sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1818     sPAPROptionVector *ov5_removed = spapr_ovec_new();
1819     bool cas_needed;
1820 
1821     /* Prior to the introduction of sPAPROptionVector, we had two option
1822      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1823      * Both of these options encode machine topology into the device-tree
1824      * in such a way that the now-booted OS should still be able to interact
1825      * appropriately with QEMU regardless of what options were actually
1826      * negotiatied on the source side.
1827      *
1828      * As such, we can avoid migrating the CAS-negotiated options if these
1829      * are the only options available on the current machine/platform.
1830      * Since these are the only options available for pseries-2.7 and
1831      * earlier, this allows us to maintain old->new/new->old migration
1832      * compatibility.
1833      *
1834      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1835      * via default pseries-2.8 machines and explicit command-line parameters.
1836      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1837      * of the actual CAS-negotiated values to continue working properly. For
1838      * example, availability of memory unplug depends on knowing whether
1839      * OV5_HP_EVT was negotiated via CAS.
1840      *
1841      * Thus, for any cases where the set of available CAS-negotiatable
1842      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1843      * include the CAS-negotiated options in the migration stream, unless
1844      * if they affect boot time behaviour only.
1845      */
1846     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1847     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1848     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1849 
1850     /* spapr_ovec_diff returns true if bits were removed. we avoid using
1851      * the mask itself since in the future it's possible "legacy" bits may be
1852      * removed via machine options, which could generate a false positive
1853      * that breaks migration.
1854      */
1855     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1856     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1857 
1858     spapr_ovec_cleanup(ov5_mask);
1859     spapr_ovec_cleanup(ov5_legacy);
1860     spapr_ovec_cleanup(ov5_removed);
1861 
1862     return cas_needed;
1863 }
1864 
1865 static const VMStateDescription vmstate_spapr_ov5_cas = {
1866     .name = "spapr_option_vector_ov5_cas",
1867     .version_id = 1,
1868     .minimum_version_id = 1,
1869     .needed = spapr_ov5_cas_needed,
1870     .fields = (VMStateField[]) {
1871         VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1872                                  vmstate_spapr_ovec, sPAPROptionVector),
1873         VMSTATE_END_OF_LIST()
1874     },
1875 };
1876 
1877 static bool spapr_patb_entry_needed(void *opaque)
1878 {
1879     sPAPRMachineState *spapr = opaque;
1880 
1881     return !!spapr->patb_entry;
1882 }
1883 
1884 static const VMStateDescription vmstate_spapr_patb_entry = {
1885     .name = "spapr_patb_entry",
1886     .version_id = 1,
1887     .minimum_version_id = 1,
1888     .needed = spapr_patb_entry_needed,
1889     .fields = (VMStateField[]) {
1890         VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1891         VMSTATE_END_OF_LIST()
1892     },
1893 };
1894 
1895 static bool spapr_irq_map_needed(void *opaque)
1896 {
1897     sPAPRMachineState *spapr = opaque;
1898 
1899     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1900 }
1901 
1902 static const VMStateDescription vmstate_spapr_irq_map = {
1903     .name = "spapr_irq_map",
1904     .version_id = 1,
1905     .minimum_version_id = 1,
1906     .needed = spapr_irq_map_needed,
1907     .fields = (VMStateField[]) {
1908         VMSTATE_BITMAP(irq_map, sPAPRMachineState, 0, irq_map_nr),
1909         VMSTATE_END_OF_LIST()
1910     },
1911 };
1912 
1913 static const VMStateDescription vmstate_spapr = {
1914     .name = "spapr",
1915     .version_id = 3,
1916     .minimum_version_id = 1,
1917     .pre_load = spapr_pre_load,
1918     .post_load = spapr_post_load,
1919     .pre_save = spapr_pre_save,
1920     .fields = (VMStateField[]) {
1921         /* used to be @next_irq */
1922         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1923 
1924         /* RTC offset */
1925         VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1926 
1927         VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1928         VMSTATE_END_OF_LIST()
1929     },
1930     .subsections = (const VMStateDescription*[]) {
1931         &vmstate_spapr_ov5_cas,
1932         &vmstate_spapr_patb_entry,
1933         &vmstate_spapr_pending_events,
1934         &vmstate_spapr_cap_htm,
1935         &vmstate_spapr_cap_vsx,
1936         &vmstate_spapr_cap_dfp,
1937         &vmstate_spapr_cap_cfpc,
1938         &vmstate_spapr_cap_sbbc,
1939         &vmstate_spapr_cap_ibs,
1940         &vmstate_spapr_irq_map,
1941         &vmstate_spapr_cap_nested_kvm_hv,
1942         NULL
1943     }
1944 };
1945 
1946 static int htab_save_setup(QEMUFile *f, void *opaque)
1947 {
1948     sPAPRMachineState *spapr = opaque;
1949 
1950     /* "Iteration" header */
1951     if (!spapr->htab_shift) {
1952         qemu_put_be32(f, -1);
1953     } else {
1954         qemu_put_be32(f, spapr->htab_shift);
1955     }
1956 
1957     if (spapr->htab) {
1958         spapr->htab_save_index = 0;
1959         spapr->htab_first_pass = true;
1960     } else {
1961         if (spapr->htab_shift) {
1962             assert(kvm_enabled());
1963         }
1964     }
1965 
1966 
1967     return 0;
1968 }
1969 
1970 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1971                             int chunkstart, int n_valid, int n_invalid)
1972 {
1973     qemu_put_be32(f, chunkstart);
1974     qemu_put_be16(f, n_valid);
1975     qemu_put_be16(f, n_invalid);
1976     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1977                     HASH_PTE_SIZE_64 * n_valid);
1978 }
1979 
1980 static void htab_save_end_marker(QEMUFile *f)
1981 {
1982     qemu_put_be32(f, 0);
1983     qemu_put_be16(f, 0);
1984     qemu_put_be16(f, 0);
1985 }
1986 
1987 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1988                                  int64_t max_ns)
1989 {
1990     bool has_timeout = max_ns != -1;
1991     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1992     int index = spapr->htab_save_index;
1993     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1994 
1995     assert(spapr->htab_first_pass);
1996 
1997     do {
1998         int chunkstart;
1999 
2000         /* Consume invalid HPTEs */
2001         while ((index < htabslots)
2002                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2003             CLEAN_HPTE(HPTE(spapr->htab, index));
2004             index++;
2005         }
2006 
2007         /* Consume valid HPTEs */
2008         chunkstart = index;
2009         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2010                && HPTE_VALID(HPTE(spapr->htab, index))) {
2011             CLEAN_HPTE(HPTE(spapr->htab, index));
2012             index++;
2013         }
2014 
2015         if (index > chunkstart) {
2016             int n_valid = index - chunkstart;
2017 
2018             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2019 
2020             if (has_timeout &&
2021                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2022                 break;
2023             }
2024         }
2025     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2026 
2027     if (index >= htabslots) {
2028         assert(index == htabslots);
2029         index = 0;
2030         spapr->htab_first_pass = false;
2031     }
2032     spapr->htab_save_index = index;
2033 }
2034 
2035 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
2036                                 int64_t max_ns)
2037 {
2038     bool final = max_ns < 0;
2039     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2040     int examined = 0, sent = 0;
2041     int index = spapr->htab_save_index;
2042     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2043 
2044     assert(!spapr->htab_first_pass);
2045 
2046     do {
2047         int chunkstart, invalidstart;
2048 
2049         /* Consume non-dirty HPTEs */
2050         while ((index < htabslots)
2051                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2052             index++;
2053             examined++;
2054         }
2055 
2056         chunkstart = index;
2057         /* Consume valid dirty HPTEs */
2058         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2059                && HPTE_DIRTY(HPTE(spapr->htab, index))
2060                && HPTE_VALID(HPTE(spapr->htab, index))) {
2061             CLEAN_HPTE(HPTE(spapr->htab, index));
2062             index++;
2063             examined++;
2064         }
2065 
2066         invalidstart = index;
2067         /* Consume invalid dirty HPTEs */
2068         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2069                && HPTE_DIRTY(HPTE(spapr->htab, index))
2070                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2071             CLEAN_HPTE(HPTE(spapr->htab, index));
2072             index++;
2073             examined++;
2074         }
2075 
2076         if (index > chunkstart) {
2077             int n_valid = invalidstart - chunkstart;
2078             int n_invalid = index - invalidstart;
2079 
2080             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2081             sent += index - chunkstart;
2082 
2083             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2084                 break;
2085             }
2086         }
2087 
2088         if (examined >= htabslots) {
2089             break;
2090         }
2091 
2092         if (index >= htabslots) {
2093             assert(index == htabslots);
2094             index = 0;
2095         }
2096     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2097 
2098     if (index >= htabslots) {
2099         assert(index == htabslots);
2100         index = 0;
2101     }
2102 
2103     spapr->htab_save_index = index;
2104 
2105     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2106 }
2107 
2108 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2109 #define MAX_KVM_BUF_SIZE    2048
2110 
2111 static int htab_save_iterate(QEMUFile *f, void *opaque)
2112 {
2113     sPAPRMachineState *spapr = opaque;
2114     int fd;
2115     int rc = 0;
2116 
2117     /* Iteration header */
2118     if (!spapr->htab_shift) {
2119         qemu_put_be32(f, -1);
2120         return 1;
2121     } else {
2122         qemu_put_be32(f, 0);
2123     }
2124 
2125     if (!spapr->htab) {
2126         assert(kvm_enabled());
2127 
2128         fd = get_htab_fd(spapr);
2129         if (fd < 0) {
2130             return fd;
2131         }
2132 
2133         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2134         if (rc < 0) {
2135             return rc;
2136         }
2137     } else  if (spapr->htab_first_pass) {
2138         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2139     } else {
2140         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2141     }
2142 
2143     htab_save_end_marker(f);
2144 
2145     return rc;
2146 }
2147 
2148 static int htab_save_complete(QEMUFile *f, void *opaque)
2149 {
2150     sPAPRMachineState *spapr = opaque;
2151     int fd;
2152 
2153     /* Iteration header */
2154     if (!spapr->htab_shift) {
2155         qemu_put_be32(f, -1);
2156         return 0;
2157     } else {
2158         qemu_put_be32(f, 0);
2159     }
2160 
2161     if (!spapr->htab) {
2162         int rc;
2163 
2164         assert(kvm_enabled());
2165 
2166         fd = get_htab_fd(spapr);
2167         if (fd < 0) {
2168             return fd;
2169         }
2170 
2171         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2172         if (rc < 0) {
2173             return rc;
2174         }
2175     } else {
2176         if (spapr->htab_first_pass) {
2177             htab_save_first_pass(f, spapr, -1);
2178         }
2179         htab_save_later_pass(f, spapr, -1);
2180     }
2181 
2182     /* End marker */
2183     htab_save_end_marker(f);
2184 
2185     return 0;
2186 }
2187 
2188 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2189 {
2190     sPAPRMachineState *spapr = opaque;
2191     uint32_t section_hdr;
2192     int fd = -1;
2193     Error *local_err = NULL;
2194 
2195     if (version_id < 1 || version_id > 1) {
2196         error_report("htab_load() bad version");
2197         return -EINVAL;
2198     }
2199 
2200     section_hdr = qemu_get_be32(f);
2201 
2202     if (section_hdr == -1) {
2203         spapr_free_hpt(spapr);
2204         return 0;
2205     }
2206 
2207     if (section_hdr) {
2208         /* First section gives the htab size */
2209         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2210         if (local_err) {
2211             error_report_err(local_err);
2212             return -EINVAL;
2213         }
2214         return 0;
2215     }
2216 
2217     if (!spapr->htab) {
2218         assert(kvm_enabled());
2219 
2220         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2221         if (fd < 0) {
2222             error_report_err(local_err);
2223             return fd;
2224         }
2225     }
2226 
2227     while (true) {
2228         uint32_t index;
2229         uint16_t n_valid, n_invalid;
2230 
2231         index = qemu_get_be32(f);
2232         n_valid = qemu_get_be16(f);
2233         n_invalid = qemu_get_be16(f);
2234 
2235         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2236             /* End of Stream */
2237             break;
2238         }
2239 
2240         if ((index + n_valid + n_invalid) >
2241             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2242             /* Bad index in stream */
2243             error_report(
2244                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2245                 index, n_valid, n_invalid, spapr->htab_shift);
2246             return -EINVAL;
2247         }
2248 
2249         if (spapr->htab) {
2250             if (n_valid) {
2251                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2252                                 HASH_PTE_SIZE_64 * n_valid);
2253             }
2254             if (n_invalid) {
2255                 memset(HPTE(spapr->htab, index + n_valid), 0,
2256                        HASH_PTE_SIZE_64 * n_invalid);
2257             }
2258         } else {
2259             int rc;
2260 
2261             assert(fd >= 0);
2262 
2263             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2264             if (rc < 0) {
2265                 return rc;
2266             }
2267         }
2268     }
2269 
2270     if (!spapr->htab) {
2271         assert(fd >= 0);
2272         close(fd);
2273     }
2274 
2275     return 0;
2276 }
2277 
2278 static void htab_save_cleanup(void *opaque)
2279 {
2280     sPAPRMachineState *spapr = opaque;
2281 
2282     close_htab_fd(spapr);
2283 }
2284 
2285 static SaveVMHandlers savevm_htab_handlers = {
2286     .save_setup = htab_save_setup,
2287     .save_live_iterate = htab_save_iterate,
2288     .save_live_complete_precopy = htab_save_complete,
2289     .save_cleanup = htab_save_cleanup,
2290     .load_state = htab_load,
2291 };
2292 
2293 static void spapr_boot_set(void *opaque, const char *boot_device,
2294                            Error **errp)
2295 {
2296     MachineState *machine = MACHINE(opaque);
2297     machine->boot_order = g_strdup(boot_device);
2298 }
2299 
2300 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2301 {
2302     MachineState *machine = MACHINE(spapr);
2303     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2304     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2305     int i;
2306 
2307     for (i = 0; i < nr_lmbs; i++) {
2308         uint64_t addr;
2309 
2310         addr = i * lmb_size + machine->device_memory->base;
2311         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2312                                addr / lmb_size);
2313     }
2314 }
2315 
2316 /*
2317  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2318  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2319  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2320  */
2321 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2322 {
2323     int i;
2324 
2325     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2326         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2327                    " is not aligned to %" PRIu64 " MiB",
2328                    machine->ram_size,
2329                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2330         return;
2331     }
2332 
2333     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2334         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2335                    " is not aligned to %" PRIu64 " MiB",
2336                    machine->ram_size,
2337                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2338         return;
2339     }
2340 
2341     for (i = 0; i < nb_numa_nodes; i++) {
2342         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2343             error_setg(errp,
2344                        "Node %d memory size 0x%" PRIx64
2345                        " is not aligned to %" PRIu64 " MiB",
2346                        i, numa_info[i].node_mem,
2347                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2348             return;
2349         }
2350     }
2351 }
2352 
2353 /* find cpu slot in machine->possible_cpus by core_id */
2354 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2355 {
2356     int index = id / smp_threads;
2357 
2358     if (index >= ms->possible_cpus->len) {
2359         return NULL;
2360     }
2361     if (idx) {
2362         *idx = index;
2363     }
2364     return &ms->possible_cpus->cpus[index];
2365 }
2366 
2367 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2368 {
2369     Error *local_err = NULL;
2370     bool vsmt_user = !!spapr->vsmt;
2371     int kvm_smt = kvmppc_smt_threads();
2372     int ret;
2373 
2374     if (!kvm_enabled() && (smp_threads > 1)) {
2375         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2376                      "on a pseries machine");
2377         goto out;
2378     }
2379     if (!is_power_of_2(smp_threads)) {
2380         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2381                      "machine because it must be a power of 2", smp_threads);
2382         goto out;
2383     }
2384 
2385     /* Detemine the VSMT mode to use: */
2386     if (vsmt_user) {
2387         if (spapr->vsmt < smp_threads) {
2388             error_setg(&local_err, "Cannot support VSMT mode %d"
2389                          " because it must be >= threads/core (%d)",
2390                          spapr->vsmt, smp_threads);
2391             goto out;
2392         }
2393         /* In this case, spapr->vsmt has been set by the command line */
2394     } else {
2395         /*
2396          * Default VSMT value is tricky, because we need it to be as
2397          * consistent as possible (for migration), but this requires
2398          * changing it for at least some existing cases.  We pick 8 as
2399          * the value that we'd get with KVM on POWER8, the
2400          * overwhelmingly common case in production systems.
2401          */
2402         spapr->vsmt = MAX(8, smp_threads);
2403     }
2404 
2405     /* KVM: If necessary, set the SMT mode: */
2406     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2407         ret = kvmppc_set_smt_threads(spapr->vsmt);
2408         if (ret) {
2409             /* Looks like KVM isn't able to change VSMT mode */
2410             error_setg(&local_err,
2411                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2412                        spapr->vsmt, ret);
2413             /* We can live with that if the default one is big enough
2414              * for the number of threads, and a submultiple of the one
2415              * we want.  In this case we'll waste some vcpu ids, but
2416              * behaviour will be correct */
2417             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2418                 warn_report_err(local_err);
2419                 local_err = NULL;
2420                 goto out;
2421             } else {
2422                 if (!vsmt_user) {
2423                     error_append_hint(&local_err,
2424                                       "On PPC, a VM with %d threads/core"
2425                                       " on a host with %d threads/core"
2426                                       " requires the use of VSMT mode %d.\n",
2427                                       smp_threads, kvm_smt, spapr->vsmt);
2428                 }
2429                 kvmppc_hint_smt_possible(&local_err);
2430                 goto out;
2431             }
2432         }
2433     }
2434     /* else TCG: nothing to do currently */
2435 out:
2436     error_propagate(errp, local_err);
2437 }
2438 
2439 static void spapr_init_cpus(sPAPRMachineState *spapr)
2440 {
2441     MachineState *machine = MACHINE(spapr);
2442     MachineClass *mc = MACHINE_GET_CLASS(machine);
2443     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2444     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2445     const CPUArchIdList *possible_cpus;
2446     int boot_cores_nr = smp_cpus / smp_threads;
2447     int i;
2448 
2449     possible_cpus = mc->possible_cpu_arch_ids(machine);
2450     if (mc->has_hotpluggable_cpus) {
2451         if (smp_cpus % smp_threads) {
2452             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2453                          smp_cpus, smp_threads);
2454             exit(1);
2455         }
2456         if (max_cpus % smp_threads) {
2457             error_report("max_cpus (%u) must be multiple of threads (%u)",
2458                          max_cpus, smp_threads);
2459             exit(1);
2460         }
2461     } else {
2462         if (max_cpus != smp_cpus) {
2463             error_report("This machine version does not support CPU hotplug");
2464             exit(1);
2465         }
2466         boot_cores_nr = possible_cpus->len;
2467     }
2468 
2469     /* VSMT must be set in order to be able to compute VCPU ids, ie to
2470      * call xics_max_server_number() or spapr_vcpu_id().
2471      */
2472     spapr_set_vsmt_mode(spapr, &error_fatal);
2473 
2474     if (smc->pre_2_10_has_unused_icps) {
2475         int i;
2476 
2477         for (i = 0; i < xics_max_server_number(spapr); i++) {
2478             /* Dummy entries get deregistered when real ICPState objects
2479              * are registered during CPU core hotplug.
2480              */
2481             pre_2_10_vmstate_register_dummy_icp(i);
2482         }
2483     }
2484 
2485     for (i = 0; i < possible_cpus->len; i++) {
2486         int core_id = i * smp_threads;
2487 
2488         if (mc->has_hotpluggable_cpus) {
2489             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2490                                    spapr_vcpu_id(spapr, core_id));
2491         }
2492 
2493         if (i < boot_cores_nr) {
2494             Object *core  = object_new(type);
2495             int nr_threads = smp_threads;
2496 
2497             /* Handle the partially filled core for older machine types */
2498             if ((i + 1) * smp_threads >= smp_cpus) {
2499                 nr_threads = smp_cpus - i * smp_threads;
2500             }
2501 
2502             object_property_set_int(core, nr_threads, "nr-threads",
2503                                     &error_fatal);
2504             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2505                                     &error_fatal);
2506             object_property_set_bool(core, true, "realized", &error_fatal);
2507 
2508             object_unref(core);
2509         }
2510     }
2511 }
2512 
2513 /* pSeries LPAR / sPAPR hardware init */
2514 static void spapr_machine_init(MachineState *machine)
2515 {
2516     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2517     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2518     const char *kernel_filename = machine->kernel_filename;
2519     const char *initrd_filename = machine->initrd_filename;
2520     PCIHostState *phb;
2521     int i;
2522     MemoryRegion *sysmem = get_system_memory();
2523     MemoryRegion *ram = g_new(MemoryRegion, 1);
2524     hwaddr node0_size = spapr_node0_size(machine);
2525     long load_limit, fw_size;
2526     char *filename;
2527     Error *resize_hpt_err = NULL;
2528 
2529     msi_nonbroken = true;
2530 
2531     QLIST_INIT(&spapr->phbs);
2532     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2533 
2534     /* Determine capabilities to run with */
2535     spapr_caps_init(spapr);
2536 
2537     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2538     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2539         /*
2540          * If the user explicitly requested a mode we should either
2541          * supply it, or fail completely (which we do below).  But if
2542          * it's not set explicitly, we reset our mode to something
2543          * that works
2544          */
2545         if (resize_hpt_err) {
2546             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2547             error_free(resize_hpt_err);
2548             resize_hpt_err = NULL;
2549         } else {
2550             spapr->resize_hpt = smc->resize_hpt_default;
2551         }
2552     }
2553 
2554     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2555 
2556     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2557         /*
2558          * User requested HPT resize, but this host can't supply it.  Bail out
2559          */
2560         error_report_err(resize_hpt_err);
2561         exit(1);
2562     }
2563 
2564     spapr->rma_size = node0_size;
2565 
2566     /* With KVM, we don't actually know whether KVM supports an
2567      * unbounded RMA (PR KVM) or is limited by the hash table size
2568      * (HV KVM using VRMA), so we always assume the latter
2569      *
2570      * In that case, we also limit the initial allocations for RTAS
2571      * etc... to 256M since we have no way to know what the VRMA size
2572      * is going to be as it depends on the size of the hash table
2573      * which isn't determined yet.
2574      */
2575     if (kvm_enabled()) {
2576         spapr->vrma_adjust = 1;
2577         spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2578     }
2579 
2580     /* Actually we don't support unbounded RMA anymore since we added
2581      * proper emulation of HV mode. The max we can get is 16G which
2582      * also happens to be what we configure for PAPR mode so make sure
2583      * we don't do anything bigger than that
2584      */
2585     spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2586 
2587     if (spapr->rma_size > node0_size) {
2588         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2589                      spapr->rma_size);
2590         exit(1);
2591     }
2592 
2593     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2594     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2595 
2596     /* Set up Interrupt Controller before we create the VCPUs */
2597     smc->irq->init(spapr, &error_fatal);
2598 
2599     /* Set up containers for ibm,client-architecture-support negotiated options
2600      */
2601     spapr->ov5 = spapr_ovec_new();
2602     spapr->ov5_cas = spapr_ovec_new();
2603 
2604     if (smc->dr_lmb_enabled) {
2605         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2606         spapr_validate_node_memory(machine, &error_fatal);
2607     }
2608 
2609     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2610 
2611     /* advertise support for dedicated HP event source to guests */
2612     if (spapr->use_hotplug_event_source) {
2613         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2614     }
2615 
2616     /* advertise support for HPT resizing */
2617     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2618         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2619     }
2620 
2621     /* advertise support for ibm,dyamic-memory-v2 */
2622     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2623 
2624     /* init CPUs */
2625     spapr_init_cpus(spapr);
2626 
2627     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2628         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2629                               spapr->max_compat_pvr)) {
2630         /* KVM and TCG always allow GTSE with radix... */
2631         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2632     }
2633     /* ... but not with hash (currently). */
2634 
2635     if (kvm_enabled()) {
2636         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2637         kvmppc_enable_logical_ci_hcalls();
2638         kvmppc_enable_set_mode_hcall();
2639 
2640         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2641         kvmppc_enable_clear_ref_mod_hcalls();
2642     }
2643 
2644     /* allocate RAM */
2645     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2646                                          machine->ram_size);
2647     memory_region_add_subregion(sysmem, 0, ram);
2648 
2649     /* always allocate the device memory information */
2650     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2651 
2652     /* initialize hotplug memory address space */
2653     if (machine->ram_size < machine->maxram_size) {
2654         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2655         /*
2656          * Limit the number of hotpluggable memory slots to half the number
2657          * slots that KVM supports, leaving the other half for PCI and other
2658          * devices. However ensure that number of slots doesn't drop below 32.
2659          */
2660         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2661                            SPAPR_MAX_RAM_SLOTS;
2662 
2663         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2664             max_memslots = SPAPR_MAX_RAM_SLOTS;
2665         }
2666         if (machine->ram_slots > max_memslots) {
2667             error_report("Specified number of memory slots %"
2668                          PRIu64" exceeds max supported %d",
2669                          machine->ram_slots, max_memslots);
2670             exit(1);
2671         }
2672 
2673         machine->device_memory->base = ROUND_UP(machine->ram_size,
2674                                                 SPAPR_DEVICE_MEM_ALIGN);
2675         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2676                            "device-memory", device_mem_size);
2677         memory_region_add_subregion(sysmem, machine->device_memory->base,
2678                                     &machine->device_memory->mr);
2679     }
2680 
2681     if (smc->dr_lmb_enabled) {
2682         spapr_create_lmb_dr_connectors(spapr);
2683     }
2684 
2685     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2686     if (!filename) {
2687         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2688         exit(1);
2689     }
2690     spapr->rtas_size = get_image_size(filename);
2691     if (spapr->rtas_size < 0) {
2692         error_report("Could not get size of LPAR rtas '%s'", filename);
2693         exit(1);
2694     }
2695     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2696     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2697         error_report("Could not load LPAR rtas '%s'", filename);
2698         exit(1);
2699     }
2700     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2701         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2702                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2703         exit(1);
2704     }
2705     g_free(filename);
2706 
2707     /* Set up RTAS event infrastructure */
2708     spapr_events_init(spapr);
2709 
2710     /* Set up the RTC RTAS interfaces */
2711     spapr_rtc_create(spapr);
2712 
2713     /* Set up VIO bus */
2714     spapr->vio_bus = spapr_vio_bus_init();
2715 
2716     for (i = 0; i < serial_max_hds(); i++) {
2717         if (serial_hd(i)) {
2718             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2719         }
2720     }
2721 
2722     /* We always have at least the nvram device on VIO */
2723     spapr_create_nvram(spapr);
2724 
2725     /* Set up PCI */
2726     spapr_pci_rtas_init();
2727 
2728     phb = spapr_create_phb(spapr, 0);
2729 
2730     for (i = 0; i < nb_nics; i++) {
2731         NICInfo *nd = &nd_table[i];
2732 
2733         if (!nd->model) {
2734             nd->model = g_strdup("spapr-vlan");
2735         }
2736 
2737         if (g_str_equal(nd->model, "spapr-vlan") ||
2738             g_str_equal(nd->model, "ibmveth")) {
2739             spapr_vlan_create(spapr->vio_bus, nd);
2740         } else {
2741             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2742         }
2743     }
2744 
2745     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2746         spapr_vscsi_create(spapr->vio_bus);
2747     }
2748 
2749     /* Graphics */
2750     if (spapr_vga_init(phb->bus, &error_fatal)) {
2751         spapr->has_graphics = true;
2752         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2753     }
2754 
2755     if (machine->usb) {
2756         if (smc->use_ohci_by_default) {
2757             pci_create_simple(phb->bus, -1, "pci-ohci");
2758         } else {
2759             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2760         }
2761 
2762         if (spapr->has_graphics) {
2763             USBBus *usb_bus = usb_bus_find(-1);
2764 
2765             usb_create_simple(usb_bus, "usb-kbd");
2766             usb_create_simple(usb_bus, "usb-mouse");
2767         }
2768     }
2769 
2770     if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2771         error_report(
2772             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2773             MIN_RMA_SLOF);
2774         exit(1);
2775     }
2776 
2777     if (kernel_filename) {
2778         uint64_t lowaddr = 0;
2779 
2780         spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2781                                       NULL, NULL, &lowaddr, NULL, 1,
2782                                       PPC_ELF_MACHINE, 0, 0);
2783         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2784             spapr->kernel_size = load_elf(kernel_filename,
2785                                           translate_kernel_address, NULL, NULL,
2786                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2787                                           0, 0);
2788             spapr->kernel_le = spapr->kernel_size > 0;
2789         }
2790         if (spapr->kernel_size < 0) {
2791             error_report("error loading %s: %s", kernel_filename,
2792                          load_elf_strerror(spapr->kernel_size));
2793             exit(1);
2794         }
2795 
2796         /* load initrd */
2797         if (initrd_filename) {
2798             /* Try to locate the initrd in the gap between the kernel
2799              * and the firmware. Add a bit of space just in case
2800              */
2801             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2802                                   + 0x1ffff) & ~0xffff;
2803             spapr->initrd_size = load_image_targphys(initrd_filename,
2804                                                      spapr->initrd_base,
2805                                                      load_limit
2806                                                      - spapr->initrd_base);
2807             if (spapr->initrd_size < 0) {
2808                 error_report("could not load initial ram disk '%s'",
2809                              initrd_filename);
2810                 exit(1);
2811             }
2812         }
2813     }
2814 
2815     if (bios_name == NULL) {
2816         bios_name = FW_FILE_NAME;
2817     }
2818     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2819     if (!filename) {
2820         error_report("Could not find LPAR firmware '%s'", bios_name);
2821         exit(1);
2822     }
2823     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2824     if (fw_size <= 0) {
2825         error_report("Could not load LPAR firmware '%s'", filename);
2826         exit(1);
2827     }
2828     g_free(filename);
2829 
2830     /* FIXME: Should register things through the MachineState's qdev
2831      * interface, this is a legacy from the sPAPREnvironment structure
2832      * which predated MachineState but had a similar function */
2833     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2834     register_savevm_live(NULL, "spapr/htab", -1, 1,
2835                          &savevm_htab_handlers, spapr);
2836 
2837     qemu_register_boot_set(spapr_boot_set, spapr);
2838 
2839     if (kvm_enabled()) {
2840         /* to stop and start vmclock */
2841         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2842                                          &spapr->tb);
2843 
2844         kvmppc_spapr_enable_inkernel_multitce();
2845     }
2846 }
2847 
2848 static int spapr_kvm_type(const char *vm_type)
2849 {
2850     if (!vm_type) {
2851         return 0;
2852     }
2853 
2854     if (!strcmp(vm_type, "HV")) {
2855         return 1;
2856     }
2857 
2858     if (!strcmp(vm_type, "PR")) {
2859         return 2;
2860     }
2861 
2862     error_report("Unknown kvm-type specified '%s'", vm_type);
2863     exit(1);
2864 }
2865 
2866 /*
2867  * Implementation of an interface to adjust firmware path
2868  * for the bootindex property handling.
2869  */
2870 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2871                                    DeviceState *dev)
2872 {
2873 #define CAST(type, obj, name) \
2874     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2875     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2876     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2877     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2878 
2879     if (d) {
2880         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2881         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2882         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2883 
2884         if (spapr) {
2885             /*
2886              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2887              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2888              * in the top 16 bits of the 64-bit LUN
2889              */
2890             unsigned id = 0x8000 | (d->id << 8) | d->lun;
2891             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2892                                    (uint64_t)id << 48);
2893         } else if (virtio) {
2894             /*
2895              * We use SRP luns of the form 01000000 | (target << 8) | lun
2896              * in the top 32 bits of the 64-bit LUN
2897              * Note: the quote above is from SLOF and it is wrong,
2898              * the actual binding is:
2899              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2900              */
2901             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2902             if (d->lun >= 256) {
2903                 /* Use the LUN "flat space addressing method" */
2904                 id |= 0x4000;
2905             }
2906             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2907                                    (uint64_t)id << 32);
2908         } else if (usb) {
2909             /*
2910              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2911              * in the top 32 bits of the 64-bit LUN
2912              */
2913             unsigned usb_port = atoi(usb->port->path);
2914             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2915             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2916                                    (uint64_t)id << 32);
2917         }
2918     }
2919 
2920     /*
2921      * SLOF probes the USB devices, and if it recognizes that the device is a
2922      * storage device, it changes its name to "storage" instead of "usb-host",
2923      * and additionally adds a child node for the SCSI LUN, so the correct
2924      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2925      */
2926     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2927         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2928         if (usb_host_dev_is_scsi_storage(usbdev)) {
2929             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2930         }
2931     }
2932 
2933     if (phb) {
2934         /* Replace "pci" with "pci@800000020000000" */
2935         return g_strdup_printf("pci@%"PRIX64, phb->buid);
2936     }
2937 
2938     if (vsc) {
2939         /* Same logic as virtio above */
2940         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2941         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2942     }
2943 
2944     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2945         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2946         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2947         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2948     }
2949 
2950     return NULL;
2951 }
2952 
2953 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2954 {
2955     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2956 
2957     return g_strdup(spapr->kvm_type);
2958 }
2959 
2960 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2961 {
2962     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2963 
2964     g_free(spapr->kvm_type);
2965     spapr->kvm_type = g_strdup(value);
2966 }
2967 
2968 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2969 {
2970     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2971 
2972     return spapr->use_hotplug_event_source;
2973 }
2974 
2975 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2976                                             Error **errp)
2977 {
2978     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2979 
2980     spapr->use_hotplug_event_source = value;
2981 }
2982 
2983 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
2984 {
2985     return true;
2986 }
2987 
2988 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2989 {
2990     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2991 
2992     switch (spapr->resize_hpt) {
2993     case SPAPR_RESIZE_HPT_DEFAULT:
2994         return g_strdup("default");
2995     case SPAPR_RESIZE_HPT_DISABLED:
2996         return g_strdup("disabled");
2997     case SPAPR_RESIZE_HPT_ENABLED:
2998         return g_strdup("enabled");
2999     case SPAPR_RESIZE_HPT_REQUIRED:
3000         return g_strdup("required");
3001     }
3002     g_assert_not_reached();
3003 }
3004 
3005 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3006 {
3007     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3008 
3009     if (strcmp(value, "default") == 0) {
3010         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3011     } else if (strcmp(value, "disabled") == 0) {
3012         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3013     } else if (strcmp(value, "enabled") == 0) {
3014         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3015     } else if (strcmp(value, "required") == 0) {
3016         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3017     } else {
3018         error_setg(errp, "Bad value for \"resize-hpt\" property");
3019     }
3020 }
3021 
3022 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3023                                    void *opaque, Error **errp)
3024 {
3025     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3026 }
3027 
3028 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3029                                    void *opaque, Error **errp)
3030 {
3031     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3032 }
3033 
3034 static void spapr_instance_init(Object *obj)
3035 {
3036     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3037 
3038     spapr->htab_fd = -1;
3039     spapr->use_hotplug_event_source = true;
3040     object_property_add_str(obj, "kvm-type",
3041                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3042     object_property_set_description(obj, "kvm-type",
3043                                     "Specifies the KVM virtualization mode (HV, PR)",
3044                                     NULL);
3045     object_property_add_bool(obj, "modern-hotplug-events",
3046                             spapr_get_modern_hotplug_events,
3047                             spapr_set_modern_hotplug_events,
3048                             NULL);
3049     object_property_set_description(obj, "modern-hotplug-events",
3050                                     "Use dedicated hotplug event mechanism in"
3051                                     " place of standard EPOW events when possible"
3052                                     " (required for memory hot-unplug support)",
3053                                     NULL);
3054     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3055                             "Maximum permitted CPU compatibility mode",
3056                             &error_fatal);
3057 
3058     object_property_add_str(obj, "resize-hpt",
3059                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3060     object_property_set_description(obj, "resize-hpt",
3061                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
3062                                     NULL);
3063     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3064                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3065     object_property_set_description(obj, "vsmt",
3066                                     "Virtual SMT: KVM behaves as if this were"
3067                                     " the host's SMT mode", &error_abort);
3068     object_property_add_bool(obj, "vfio-no-msix-emulation",
3069                              spapr_get_msix_emulation, NULL, NULL);
3070 }
3071 
3072 static void spapr_machine_finalizefn(Object *obj)
3073 {
3074     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3075 
3076     g_free(spapr->kvm_type);
3077 }
3078 
3079 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3080 {
3081     cpu_synchronize_state(cs);
3082     ppc_cpu_do_system_reset(cs);
3083 }
3084 
3085 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3086 {
3087     CPUState *cs;
3088 
3089     CPU_FOREACH(cs) {
3090         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3091     }
3092 }
3093 
3094 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3095                            uint32_t node, bool dedicated_hp_event_source,
3096                            Error **errp)
3097 {
3098     sPAPRDRConnector *drc;
3099     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3100     int i, fdt_offset, fdt_size;
3101     void *fdt;
3102     uint64_t addr = addr_start;
3103     bool hotplugged = spapr_drc_hotplugged(dev);
3104     Error *local_err = NULL;
3105 
3106     for (i = 0; i < nr_lmbs; i++) {
3107         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3108                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3109         g_assert(drc);
3110 
3111         fdt = create_device_tree(&fdt_size);
3112         fdt_offset = spapr_populate_memory_node(fdt, node, addr,
3113                                                 SPAPR_MEMORY_BLOCK_SIZE);
3114 
3115         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3116         if (local_err) {
3117             while (addr > addr_start) {
3118                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3119                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3120                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3121                 spapr_drc_detach(drc);
3122             }
3123             g_free(fdt);
3124             error_propagate(errp, local_err);
3125             return;
3126         }
3127         if (!hotplugged) {
3128             spapr_drc_reset(drc);
3129         }
3130         addr += SPAPR_MEMORY_BLOCK_SIZE;
3131     }
3132     /* send hotplug notification to the
3133      * guest only in case of hotplugged memory
3134      */
3135     if (hotplugged) {
3136         if (dedicated_hp_event_source) {
3137             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3138                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3139             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3140                                                    nr_lmbs,
3141                                                    spapr_drc_index(drc));
3142         } else {
3143             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3144                                            nr_lmbs);
3145         }
3146     }
3147 }
3148 
3149 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3150                               Error **errp)
3151 {
3152     Error *local_err = NULL;
3153     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3154     PCDIMMDevice *dimm = PC_DIMM(dev);
3155     uint64_t size, addr;
3156     uint32_t node;
3157 
3158     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3159 
3160     pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3161     if (local_err) {
3162         goto out;
3163     }
3164 
3165     addr = object_property_get_uint(OBJECT(dimm),
3166                                     PC_DIMM_ADDR_PROP, &local_err);
3167     if (local_err) {
3168         goto out_unplug;
3169     }
3170 
3171     node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
3172                                     &error_abort);
3173     spapr_add_lmbs(dev, addr, size, node,
3174                    spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3175                    &local_err);
3176     if (local_err) {
3177         goto out_unplug;
3178     }
3179 
3180     return;
3181 
3182 out_unplug:
3183     pc_dimm_unplug(dimm, MACHINE(ms));
3184 out:
3185     error_propagate(errp, local_err);
3186 }
3187 
3188 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3189                                   Error **errp)
3190 {
3191     const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3192     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3193     PCDIMMDevice *dimm = PC_DIMM(dev);
3194     Error *local_err = NULL;
3195     uint64_t size;
3196     Object *memdev;
3197     hwaddr pagesize;
3198 
3199     if (!smc->dr_lmb_enabled) {
3200         error_setg(errp, "Memory hotplug not supported for this machine");
3201         return;
3202     }
3203 
3204     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3205     if (local_err) {
3206         error_propagate(errp, local_err);
3207         return;
3208     }
3209 
3210     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3211         error_setg(errp, "Hotplugged memory size must be a multiple of "
3212                       "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3213         return;
3214     }
3215 
3216     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3217                                       &error_abort);
3218     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3219     spapr_check_pagesize(spapr, pagesize, &local_err);
3220     if (local_err) {
3221         error_propagate(errp, local_err);
3222         return;
3223     }
3224 
3225     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3226 }
3227 
3228 struct sPAPRDIMMState {
3229     PCDIMMDevice *dimm;
3230     uint32_t nr_lmbs;
3231     QTAILQ_ENTRY(sPAPRDIMMState) next;
3232 };
3233 
3234 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3235                                                        PCDIMMDevice *dimm)
3236 {
3237     sPAPRDIMMState *dimm_state = NULL;
3238 
3239     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3240         if (dimm_state->dimm == dimm) {
3241             break;
3242         }
3243     }
3244     return dimm_state;
3245 }
3246 
3247 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3248                                                       uint32_t nr_lmbs,
3249                                                       PCDIMMDevice *dimm)
3250 {
3251     sPAPRDIMMState *ds = NULL;
3252 
3253     /*
3254      * If this request is for a DIMM whose removal had failed earlier
3255      * (due to guest's refusal to remove the LMBs), we would have this
3256      * dimm already in the pending_dimm_unplugs list. In that
3257      * case don't add again.
3258      */
3259     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3260     if (!ds) {
3261         ds = g_malloc0(sizeof(sPAPRDIMMState));
3262         ds->nr_lmbs = nr_lmbs;
3263         ds->dimm = dimm;
3264         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3265     }
3266     return ds;
3267 }
3268 
3269 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3270                                               sPAPRDIMMState *dimm_state)
3271 {
3272     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3273     g_free(dimm_state);
3274 }
3275 
3276 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3277                                                         PCDIMMDevice *dimm)
3278 {
3279     sPAPRDRConnector *drc;
3280     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3281                                                   &error_abort);
3282     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3283     uint32_t avail_lmbs = 0;
3284     uint64_t addr_start, addr;
3285     int i;
3286 
3287     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3288                                          &error_abort);
3289 
3290     addr = addr_start;
3291     for (i = 0; i < nr_lmbs; i++) {
3292         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3293                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3294         g_assert(drc);
3295         if (drc->dev) {
3296             avail_lmbs++;
3297         }
3298         addr += SPAPR_MEMORY_BLOCK_SIZE;
3299     }
3300 
3301     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3302 }
3303 
3304 /* Callback to be called during DRC release. */
3305 void spapr_lmb_release(DeviceState *dev)
3306 {
3307     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3308     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3309     sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3310 
3311     /* This information will get lost if a migration occurs
3312      * during the unplug process. In this case recover it. */
3313     if (ds == NULL) {
3314         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3315         g_assert(ds);
3316         /* The DRC being examined by the caller at least must be counted */
3317         g_assert(ds->nr_lmbs);
3318     }
3319 
3320     if (--ds->nr_lmbs) {
3321         return;
3322     }
3323 
3324     /*
3325      * Now that all the LMBs have been removed by the guest, call the
3326      * unplug handler chain. This can never fail.
3327      */
3328     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3329 }
3330 
3331 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3332 {
3333     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3334     sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3335 
3336     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3337     object_unparent(OBJECT(dev));
3338     spapr_pending_dimm_unplugs_remove(spapr, ds);
3339 }
3340 
3341 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3342                                         DeviceState *dev, Error **errp)
3343 {
3344     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3345     Error *local_err = NULL;
3346     PCDIMMDevice *dimm = PC_DIMM(dev);
3347     uint32_t nr_lmbs;
3348     uint64_t size, addr_start, addr;
3349     int i;
3350     sPAPRDRConnector *drc;
3351 
3352     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3353     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3354 
3355     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3356                                          &local_err);
3357     if (local_err) {
3358         goto out;
3359     }
3360 
3361     /*
3362      * An existing pending dimm state for this DIMM means that there is an
3363      * unplug operation in progress, waiting for the spapr_lmb_release
3364      * callback to complete the job (BQL can't cover that far). In this case,
3365      * bail out to avoid detaching DRCs that were already released.
3366      */
3367     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3368         error_setg(&local_err,
3369                    "Memory unplug already in progress for device %s",
3370                    dev->id);
3371         goto out;
3372     }
3373 
3374     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3375 
3376     addr = addr_start;
3377     for (i = 0; i < nr_lmbs; i++) {
3378         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3379                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3380         g_assert(drc);
3381 
3382         spapr_drc_detach(drc);
3383         addr += SPAPR_MEMORY_BLOCK_SIZE;
3384     }
3385 
3386     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3387                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3388     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3389                                               nr_lmbs, spapr_drc_index(drc));
3390 out:
3391     error_propagate(errp, local_err);
3392 }
3393 
3394 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3395                                            sPAPRMachineState *spapr)
3396 {
3397     PowerPCCPU *cpu = POWERPC_CPU(cs);
3398     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3399     int id = spapr_get_vcpu_id(cpu);
3400     void *fdt;
3401     int offset, fdt_size;
3402     char *nodename;
3403 
3404     fdt = create_device_tree(&fdt_size);
3405     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3406     offset = fdt_add_subnode(fdt, 0, nodename);
3407 
3408     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3409     g_free(nodename);
3410 
3411     *fdt_offset = offset;
3412     return fdt;
3413 }
3414 
3415 /* Callback to be called during DRC release. */
3416 void spapr_core_release(DeviceState *dev)
3417 {
3418     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3419 
3420     /* Call the unplug handler chain. This can never fail. */
3421     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3422 }
3423 
3424 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3425 {
3426     MachineState *ms = MACHINE(hotplug_dev);
3427     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3428     CPUCore *cc = CPU_CORE(dev);
3429     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3430 
3431     if (smc->pre_2_10_has_unused_icps) {
3432         sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3433         int i;
3434 
3435         for (i = 0; i < cc->nr_threads; i++) {
3436             CPUState *cs = CPU(sc->threads[i]);
3437 
3438             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3439         }
3440     }
3441 
3442     assert(core_slot);
3443     core_slot->cpu = NULL;
3444     object_unparent(OBJECT(dev));
3445 }
3446 
3447 static
3448 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3449                                Error **errp)
3450 {
3451     sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3452     int index;
3453     sPAPRDRConnector *drc;
3454     CPUCore *cc = CPU_CORE(dev);
3455 
3456     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3457         error_setg(errp, "Unable to find CPU core with core-id: %d",
3458                    cc->core_id);
3459         return;
3460     }
3461     if (index == 0) {
3462         error_setg(errp, "Boot CPU core may not be unplugged");
3463         return;
3464     }
3465 
3466     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3467                           spapr_vcpu_id(spapr, cc->core_id));
3468     g_assert(drc);
3469 
3470     spapr_drc_detach(drc);
3471 
3472     spapr_hotplug_req_remove_by_index(drc);
3473 }
3474 
3475 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3476                             Error **errp)
3477 {
3478     sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3479     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3480     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3481     sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3482     CPUCore *cc = CPU_CORE(dev);
3483     CPUState *cs = CPU(core->threads[0]);
3484     sPAPRDRConnector *drc;
3485     Error *local_err = NULL;
3486     CPUArchId *core_slot;
3487     int index;
3488     bool hotplugged = spapr_drc_hotplugged(dev);
3489 
3490     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3491     if (!core_slot) {
3492         error_setg(errp, "Unable to find CPU core with core-id: %d",
3493                    cc->core_id);
3494         return;
3495     }
3496     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3497                           spapr_vcpu_id(spapr, cc->core_id));
3498 
3499     g_assert(drc || !mc->has_hotpluggable_cpus);
3500 
3501     if (drc) {
3502         void *fdt;
3503         int fdt_offset;
3504 
3505         fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3506 
3507         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3508         if (local_err) {
3509             g_free(fdt);
3510             error_propagate(errp, local_err);
3511             return;
3512         }
3513 
3514         if (hotplugged) {
3515             /*
3516              * Send hotplug notification interrupt to the guest only
3517              * in case of hotplugged CPUs.
3518              */
3519             spapr_hotplug_req_add_by_index(drc);
3520         } else {
3521             spapr_drc_reset(drc);
3522         }
3523     }
3524 
3525     core_slot->cpu = OBJECT(dev);
3526 
3527     if (smc->pre_2_10_has_unused_icps) {
3528         int i;
3529 
3530         for (i = 0; i < cc->nr_threads; i++) {
3531             cs = CPU(core->threads[i]);
3532             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3533         }
3534     }
3535 }
3536 
3537 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3538                                 Error **errp)
3539 {
3540     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3541     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3542     Error *local_err = NULL;
3543     CPUCore *cc = CPU_CORE(dev);
3544     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3545     const char *type = object_get_typename(OBJECT(dev));
3546     CPUArchId *core_slot;
3547     int index;
3548 
3549     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3550         error_setg(&local_err, "CPU hotplug not supported for this machine");
3551         goto out;
3552     }
3553 
3554     if (strcmp(base_core_type, type)) {
3555         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3556         goto out;
3557     }
3558 
3559     if (cc->core_id % smp_threads) {
3560         error_setg(&local_err, "invalid core id %d", cc->core_id);
3561         goto out;
3562     }
3563 
3564     /*
3565      * In general we should have homogeneous threads-per-core, but old
3566      * (pre hotplug support) machine types allow the last core to have
3567      * reduced threads as a compatibility hack for when we allowed
3568      * total vcpus not a multiple of threads-per-core.
3569      */
3570     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3571         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3572                    cc->nr_threads, smp_threads);
3573         goto out;
3574     }
3575 
3576     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3577     if (!core_slot) {
3578         error_setg(&local_err, "core id %d out of range", cc->core_id);
3579         goto out;
3580     }
3581 
3582     if (core_slot->cpu) {
3583         error_setg(&local_err, "core %d already populated", cc->core_id);
3584         goto out;
3585     }
3586 
3587     numa_cpu_pre_plug(core_slot, dev, &local_err);
3588 
3589 out:
3590     error_propagate(errp, local_err);
3591 }
3592 
3593 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3594                                       DeviceState *dev, Error **errp)
3595 {
3596     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3597         spapr_memory_plug(hotplug_dev, dev, errp);
3598     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3599         spapr_core_plug(hotplug_dev, dev, errp);
3600     }
3601 }
3602 
3603 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3604                                         DeviceState *dev, Error **errp)
3605 {
3606     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3607         spapr_memory_unplug(hotplug_dev, dev);
3608     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3609         spapr_core_unplug(hotplug_dev, dev);
3610     }
3611 }
3612 
3613 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3614                                                 DeviceState *dev, Error **errp)
3615 {
3616     sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3617     MachineClass *mc = MACHINE_GET_CLASS(sms);
3618 
3619     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3620         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3621             spapr_memory_unplug_request(hotplug_dev, dev, errp);
3622         } else {
3623             /* NOTE: this means there is a window after guest reset, prior to
3624              * CAS negotiation, where unplug requests will fail due to the
3625              * capability not being detected yet. This is a bit different than
3626              * the case with PCI unplug, where the events will be queued and
3627              * eventually handled by the guest after boot
3628              */
3629             error_setg(errp, "Memory hot unplug not supported for this guest");
3630         }
3631     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3632         if (!mc->has_hotpluggable_cpus) {
3633             error_setg(errp, "CPU hot unplug not supported on this machine");
3634             return;
3635         }
3636         spapr_core_unplug_request(hotplug_dev, dev, errp);
3637     }
3638 }
3639 
3640 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3641                                           DeviceState *dev, Error **errp)
3642 {
3643     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3644         spapr_memory_pre_plug(hotplug_dev, dev, errp);
3645     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3646         spapr_core_pre_plug(hotplug_dev, dev, errp);
3647     }
3648 }
3649 
3650 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3651                                                  DeviceState *dev)
3652 {
3653     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3654         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3655         return HOTPLUG_HANDLER(machine);
3656     }
3657     return NULL;
3658 }
3659 
3660 static CpuInstanceProperties
3661 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3662 {
3663     CPUArchId *core_slot;
3664     MachineClass *mc = MACHINE_GET_CLASS(machine);
3665 
3666     /* make sure possible_cpu are intialized */
3667     mc->possible_cpu_arch_ids(machine);
3668     /* get CPU core slot containing thread that matches cpu_index */
3669     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3670     assert(core_slot);
3671     return core_slot->props;
3672 }
3673 
3674 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3675 {
3676     return idx / smp_cores % nb_numa_nodes;
3677 }
3678 
3679 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3680 {
3681     int i;
3682     const char *core_type;
3683     int spapr_max_cores = max_cpus / smp_threads;
3684     MachineClass *mc = MACHINE_GET_CLASS(machine);
3685 
3686     if (!mc->has_hotpluggable_cpus) {
3687         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3688     }
3689     if (machine->possible_cpus) {
3690         assert(machine->possible_cpus->len == spapr_max_cores);
3691         return machine->possible_cpus;
3692     }
3693 
3694     core_type = spapr_get_cpu_core_type(machine->cpu_type);
3695     if (!core_type) {
3696         error_report("Unable to find sPAPR CPU Core definition");
3697         exit(1);
3698     }
3699 
3700     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3701                              sizeof(CPUArchId) * spapr_max_cores);
3702     machine->possible_cpus->len = spapr_max_cores;
3703     for (i = 0; i < machine->possible_cpus->len; i++) {
3704         int core_id = i * smp_threads;
3705 
3706         machine->possible_cpus->cpus[i].type = core_type;
3707         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3708         machine->possible_cpus->cpus[i].arch_id = core_id;
3709         machine->possible_cpus->cpus[i].props.has_core_id = true;
3710         machine->possible_cpus->cpus[i].props.core_id = core_id;
3711     }
3712     return machine->possible_cpus;
3713 }
3714 
3715 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3716                                 uint64_t *buid, hwaddr *pio,
3717                                 hwaddr *mmio32, hwaddr *mmio64,
3718                                 unsigned n_dma, uint32_t *liobns, Error **errp)
3719 {
3720     /*
3721      * New-style PHB window placement.
3722      *
3723      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3724      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3725      * windows.
3726      *
3727      * Some guest kernels can't work with MMIO windows above 1<<46
3728      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3729      *
3730      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3731      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
3732      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
3733      * 1TiB 64-bit MMIO windows for each PHB.
3734      */
3735     const uint64_t base_buid = 0x800000020000000ULL;
3736 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3737                         SPAPR_PCI_MEM64_WIN_SIZE - 1)
3738     int i;
3739 
3740     /* Sanity check natural alignments */
3741     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3742     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3743     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3744     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3745     /* Sanity check bounds */
3746     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3747                       SPAPR_PCI_MEM32_WIN_SIZE);
3748     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3749                       SPAPR_PCI_MEM64_WIN_SIZE);
3750 
3751     if (index >= SPAPR_MAX_PHBS) {
3752         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3753                    SPAPR_MAX_PHBS - 1);
3754         return;
3755     }
3756 
3757     *buid = base_buid + index;
3758     for (i = 0; i < n_dma; ++i) {
3759         liobns[i] = SPAPR_PCI_LIOBN(index, i);
3760     }
3761 
3762     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3763     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3764     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3765 }
3766 
3767 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3768 {
3769     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3770 
3771     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3772 }
3773 
3774 static void spapr_ics_resend(XICSFabric *dev)
3775 {
3776     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3777 
3778     ics_resend(spapr->ics);
3779 }
3780 
3781 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3782 {
3783     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3784 
3785     return cpu ? ICP(cpu->intc) : NULL;
3786 }
3787 
3788 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3789                                  Monitor *mon)
3790 {
3791     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3792     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3793 
3794     smc->irq->print_info(spapr, mon);
3795 }
3796 
3797 int spapr_get_vcpu_id(PowerPCCPU *cpu)
3798 {
3799     return cpu->vcpu_id;
3800 }
3801 
3802 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
3803 {
3804     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3805     int vcpu_id;
3806 
3807     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
3808 
3809     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
3810         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
3811         error_append_hint(errp, "Adjust the number of cpus to %d "
3812                           "or try to raise the number of threads per core\n",
3813                           vcpu_id * smp_threads / spapr->vsmt);
3814         return;
3815     }
3816 
3817     cpu->vcpu_id = vcpu_id;
3818 }
3819 
3820 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3821 {
3822     CPUState *cs;
3823 
3824     CPU_FOREACH(cs) {
3825         PowerPCCPU *cpu = POWERPC_CPU(cs);
3826 
3827         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
3828             return cpu;
3829         }
3830     }
3831 
3832     return NULL;
3833 }
3834 
3835 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3836 {
3837     MachineClass *mc = MACHINE_CLASS(oc);
3838     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3839     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3840     NMIClass *nc = NMI_CLASS(oc);
3841     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3842     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3843     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3844     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3845 
3846     mc->desc = "pSeries Logical Partition (PAPR compliant)";
3847     mc->ignore_boot_device_suffixes = true;
3848 
3849     /*
3850      * We set up the default / latest behaviour here.  The class_init
3851      * functions for the specific versioned machine types can override
3852      * these details for backwards compatibility
3853      */
3854     mc->init = spapr_machine_init;
3855     mc->reset = spapr_machine_reset;
3856     mc->block_default_type = IF_SCSI;
3857     mc->max_cpus = 1024;
3858     mc->no_parallel = 1;
3859     mc->default_boot_order = "";
3860     mc->default_ram_size = 512 * MiB;
3861     mc->default_display = "std";
3862     mc->kvm_type = spapr_kvm_type;
3863     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
3864     mc->pci_allow_0_address = true;
3865     assert(!mc->get_hotplug_handler);
3866     mc->get_hotplug_handler = spapr_get_hotplug_handler;
3867     hc->pre_plug = spapr_machine_device_pre_plug;
3868     hc->plug = spapr_machine_device_plug;
3869     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3870     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3871     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3872     hc->unplug_request = spapr_machine_device_unplug_request;
3873     hc->unplug = spapr_machine_device_unplug;
3874 
3875     smc->dr_lmb_enabled = true;
3876     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
3877     mc->has_hotpluggable_cpus = true;
3878     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3879     fwc->get_dev_path = spapr_get_fw_dev_path;
3880     nc->nmi_monitor_handler = spapr_nmi;
3881     smc->phb_placement = spapr_phb_placement;
3882     vhc->hypercall = emulate_spapr_hypercall;
3883     vhc->hpt_mask = spapr_hpt_mask;
3884     vhc->map_hptes = spapr_map_hptes;
3885     vhc->unmap_hptes = spapr_unmap_hptes;
3886     vhc->store_hpte = spapr_store_hpte;
3887     vhc->get_patbe = spapr_get_patbe;
3888     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
3889     xic->ics_get = spapr_ics_get;
3890     xic->ics_resend = spapr_ics_resend;
3891     xic->icp_get = spapr_icp_get;
3892     ispc->print_info = spapr_pic_print_info;
3893     /* Force NUMA node memory size to be a multiple of
3894      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3895      * in which LMBs are represented and hot-added
3896      */
3897     mc->numa_mem_align_shift = 28;
3898 
3899     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
3900     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
3901     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
3902     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
3903     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
3904     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
3905     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
3906     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
3907     spapr_caps_add_properties(smc, &error_abort);
3908     smc->irq = &spapr_irq_xics;
3909 }
3910 
3911 static const TypeInfo spapr_machine_info = {
3912     .name          = TYPE_SPAPR_MACHINE,
3913     .parent        = TYPE_MACHINE,
3914     .abstract      = true,
3915     .instance_size = sizeof(sPAPRMachineState),
3916     .instance_init = spapr_instance_init,
3917     .instance_finalize = spapr_machine_finalizefn,
3918     .class_size    = sizeof(sPAPRMachineClass),
3919     .class_init    = spapr_machine_class_init,
3920     .interfaces = (InterfaceInfo[]) {
3921         { TYPE_FW_PATH_PROVIDER },
3922         { TYPE_NMI },
3923         { TYPE_HOTPLUG_HANDLER },
3924         { TYPE_PPC_VIRTUAL_HYPERVISOR },
3925         { TYPE_XICS_FABRIC },
3926         { TYPE_INTERRUPT_STATS_PROVIDER },
3927         { }
3928     },
3929 };
3930 
3931 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
3932     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3933                                                     void *data)      \
3934     {                                                                \
3935         MachineClass *mc = MACHINE_CLASS(oc);                        \
3936         spapr_machine_##suffix##_class_options(mc);                  \
3937         if (latest) {                                                \
3938             mc->alias = "pseries";                                   \
3939             mc->is_default = 1;                                      \
3940         }                                                            \
3941     }                                                                \
3942     static void spapr_machine_##suffix##_instance_init(Object *obj)  \
3943     {                                                                \
3944         MachineState *machine = MACHINE(obj);                        \
3945         spapr_machine_##suffix##_instance_options(machine);          \
3946     }                                                                \
3947     static const TypeInfo spapr_machine_##suffix##_info = {          \
3948         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
3949         .parent = TYPE_SPAPR_MACHINE,                                \
3950         .class_init = spapr_machine_##suffix##_class_init,           \
3951         .instance_init = spapr_machine_##suffix##_instance_init,     \
3952     };                                                               \
3953     static void spapr_machine_register_##suffix(void)                \
3954     {                                                                \
3955         type_register(&spapr_machine_##suffix##_info);               \
3956     }                                                                \
3957     type_init(spapr_machine_register_##suffix)
3958 
3959  /*
3960  * pseries-3.1
3961  */
3962 static void spapr_machine_3_1_instance_options(MachineState *machine)
3963 {
3964 }
3965 
3966 static void spapr_machine_3_1_class_options(MachineClass *mc)
3967 {
3968     /* Defaults for the latest behaviour inherited from the base class */
3969 }
3970 
3971 DEFINE_SPAPR_MACHINE(3_1, "3.1", true);
3972 
3973 /*
3974  * pseries-3.0
3975  */
3976 #define SPAPR_COMPAT_3_0                                              \
3977     HW_COMPAT_3_0
3978 
3979 static void spapr_machine_3_0_instance_options(MachineState *machine)
3980 {
3981     spapr_machine_3_1_instance_options(machine);
3982 }
3983 
3984 static void spapr_machine_3_0_class_options(MachineClass *mc)
3985 {
3986     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3987 
3988     spapr_machine_3_1_class_options(mc);
3989     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_3_0);
3990 
3991     smc->legacy_irq_allocation = true;
3992     smc->irq = &spapr_irq_xics_legacy;
3993 }
3994 
3995 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
3996 
3997 /*
3998  * pseries-2.12
3999  */
4000 #define SPAPR_COMPAT_2_12                                              \
4001     HW_COMPAT_2_12                                                     \
4002     {                                                                  \
4003         .driver = TYPE_POWERPC_CPU,                                    \
4004         .property = "pre-3.0-migration",                               \
4005         .value    = "on",                                              \
4006     },                                                                 \
4007     {                                                                  \
4008         .driver = TYPE_SPAPR_CPU_CORE,                                 \
4009         .property = "pre-3.0-migration",                               \
4010         .value    = "on",                                              \
4011     },
4012 
4013 static void spapr_machine_2_12_instance_options(MachineState *machine)
4014 {
4015     spapr_machine_3_0_instance_options(machine);
4016 }
4017 
4018 static void spapr_machine_2_12_class_options(MachineClass *mc)
4019 {
4020     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4021 
4022     spapr_machine_3_0_class_options(mc);
4023     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_12);
4024 
4025     /* We depend on kvm_enabled() to choose a default value for the
4026      * hpt-max-page-size capability. Of course we can't do it here
4027      * because this is too early and the HW accelerator isn't initialzed
4028      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4029      */
4030     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4031 }
4032 
4033 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4034 
4035 static void spapr_machine_2_12_sxxm_instance_options(MachineState *machine)
4036 {
4037     spapr_machine_2_12_instance_options(machine);
4038 }
4039 
4040 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4041 {
4042     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4043 
4044     spapr_machine_2_12_class_options(mc);
4045     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4046     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4047     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4048 }
4049 
4050 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4051 
4052 /*
4053  * pseries-2.11
4054  */
4055 #define SPAPR_COMPAT_2_11                                              \
4056     HW_COMPAT_2_11
4057 
4058 static void spapr_machine_2_11_instance_options(MachineState *machine)
4059 {
4060     spapr_machine_2_12_instance_options(machine);
4061 }
4062 
4063 static void spapr_machine_2_11_class_options(MachineClass *mc)
4064 {
4065     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4066 
4067     spapr_machine_2_12_class_options(mc);
4068     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4069     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11);
4070 }
4071 
4072 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4073 
4074 /*
4075  * pseries-2.10
4076  */
4077 #define SPAPR_COMPAT_2_10                                              \
4078     HW_COMPAT_2_10
4079 
4080 static void spapr_machine_2_10_instance_options(MachineState *machine)
4081 {
4082     spapr_machine_2_11_instance_options(machine);
4083 }
4084 
4085 static void spapr_machine_2_10_class_options(MachineClass *mc)
4086 {
4087     spapr_machine_2_11_class_options(mc);
4088     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
4089 }
4090 
4091 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4092 
4093 /*
4094  * pseries-2.9
4095  */
4096 #define SPAPR_COMPAT_2_9                                               \
4097     HW_COMPAT_2_9                                                      \
4098     {                                                                  \
4099         .driver = TYPE_POWERPC_CPU,                                    \
4100         .property = "pre-2.10-migration",                              \
4101         .value    = "on",                                              \
4102     },                                                                 \
4103 
4104 static void spapr_machine_2_9_instance_options(MachineState *machine)
4105 {
4106     spapr_machine_2_10_instance_options(machine);
4107 }
4108 
4109 static void spapr_machine_2_9_class_options(MachineClass *mc)
4110 {
4111     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4112 
4113     spapr_machine_2_10_class_options(mc);
4114     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
4115     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4116     smc->pre_2_10_has_unused_icps = true;
4117     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4118 }
4119 
4120 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4121 
4122 /*
4123  * pseries-2.8
4124  */
4125 #define SPAPR_COMPAT_2_8                                        \
4126     HW_COMPAT_2_8                                               \
4127     {                                                           \
4128         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,                 \
4129         .property = "pcie-extended-configuration-space",        \
4130         .value    = "off",                                      \
4131     },
4132 
4133 static void spapr_machine_2_8_instance_options(MachineState *machine)
4134 {
4135     spapr_machine_2_9_instance_options(machine);
4136 }
4137 
4138 static void spapr_machine_2_8_class_options(MachineClass *mc)
4139 {
4140     spapr_machine_2_9_class_options(mc);
4141     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
4142     mc->numa_mem_align_shift = 23;
4143 }
4144 
4145 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4146 
4147 /*
4148  * pseries-2.7
4149  */
4150 #define SPAPR_COMPAT_2_7                            \
4151     HW_COMPAT_2_7                                   \
4152     {                                               \
4153         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
4154         .property = "mem_win_size",                 \
4155         .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
4156     },                                              \
4157     {                                               \
4158         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
4159         .property = "mem64_win_size",               \
4160         .value    = "0",                            \
4161     },                                              \
4162     {                                               \
4163         .driver = TYPE_POWERPC_CPU,                 \
4164         .property = "pre-2.8-migration",            \
4165         .value    = "on",                           \
4166     },                                              \
4167     {                                               \
4168         .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
4169         .property = "pre-2.8-migration",            \
4170         .value    = "on",                           \
4171     },
4172 
4173 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4174                               uint64_t *buid, hwaddr *pio,
4175                               hwaddr *mmio32, hwaddr *mmio64,
4176                               unsigned n_dma, uint32_t *liobns, Error **errp)
4177 {
4178     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4179     const uint64_t base_buid = 0x800000020000000ULL;
4180     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4181     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4182     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4183     const uint32_t max_index = 255;
4184     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4185 
4186     uint64_t ram_top = MACHINE(spapr)->ram_size;
4187     hwaddr phb0_base, phb_base;
4188     int i;
4189 
4190     /* Do we have device memory? */
4191     if (MACHINE(spapr)->maxram_size > ram_top) {
4192         /* Can't just use maxram_size, because there may be an
4193          * alignment gap between normal and device memory regions
4194          */
4195         ram_top = MACHINE(spapr)->device_memory->base +
4196             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4197     }
4198 
4199     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4200 
4201     if (index > max_index) {
4202         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4203                    max_index);
4204         return;
4205     }
4206 
4207     *buid = base_buid + index;
4208     for (i = 0; i < n_dma; ++i) {
4209         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4210     }
4211 
4212     phb_base = phb0_base + index * phb_spacing;
4213     *pio = phb_base + pio_offset;
4214     *mmio32 = phb_base + mmio_offset;
4215     /*
4216      * We don't set the 64-bit MMIO window, relying on the PHB's
4217      * fallback behaviour of automatically splitting a large "32-bit"
4218      * window into contiguous 32-bit and 64-bit windows
4219      */
4220 }
4221 
4222 static void spapr_machine_2_7_instance_options(MachineState *machine)
4223 {
4224     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
4225 
4226     spapr_machine_2_8_instance_options(machine);
4227     spapr->use_hotplug_event_source = false;
4228 }
4229 
4230 static void spapr_machine_2_7_class_options(MachineClass *mc)
4231 {
4232     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4233 
4234     spapr_machine_2_8_class_options(mc);
4235     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4236     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
4237     smc->phb_placement = phb_placement_2_7;
4238 }
4239 
4240 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4241 
4242 /*
4243  * pseries-2.6
4244  */
4245 #define SPAPR_COMPAT_2_6 \
4246     HW_COMPAT_2_6 \
4247     { \
4248         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4249         .property = "ddw",\
4250         .value    = stringify(off),\
4251     },
4252 
4253 static void spapr_machine_2_6_instance_options(MachineState *machine)
4254 {
4255     spapr_machine_2_7_instance_options(machine);
4256 }
4257 
4258 static void spapr_machine_2_6_class_options(MachineClass *mc)
4259 {
4260     spapr_machine_2_7_class_options(mc);
4261     mc->has_hotpluggable_cpus = false;
4262     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4263 }
4264 
4265 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4266 
4267 /*
4268  * pseries-2.5
4269  */
4270 #define SPAPR_COMPAT_2_5 \
4271     HW_COMPAT_2_5 \
4272     { \
4273         .driver   = "spapr-vlan", \
4274         .property = "use-rx-buffer-pools", \
4275         .value    = "off", \
4276     },
4277 
4278 static void spapr_machine_2_5_instance_options(MachineState *machine)
4279 {
4280     spapr_machine_2_6_instance_options(machine);
4281 }
4282 
4283 static void spapr_machine_2_5_class_options(MachineClass *mc)
4284 {
4285     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4286 
4287     spapr_machine_2_6_class_options(mc);
4288     smc->use_ohci_by_default = true;
4289     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
4290 }
4291 
4292 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4293 
4294 /*
4295  * pseries-2.4
4296  */
4297 #define SPAPR_COMPAT_2_4 \
4298         HW_COMPAT_2_4
4299 
4300 static void spapr_machine_2_4_instance_options(MachineState *machine)
4301 {
4302     spapr_machine_2_5_instance_options(machine);
4303 }
4304 
4305 static void spapr_machine_2_4_class_options(MachineClass *mc)
4306 {
4307     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4308 
4309     spapr_machine_2_5_class_options(mc);
4310     smc->dr_lmb_enabled = false;
4311     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
4312 }
4313 
4314 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4315 
4316 /*
4317  * pseries-2.3
4318  */
4319 #define SPAPR_COMPAT_2_3 \
4320         HW_COMPAT_2_3 \
4321         {\
4322             .driver   = "spapr-pci-host-bridge",\
4323             .property = "dynamic-reconfiguration",\
4324             .value    = "off",\
4325         },
4326 
4327 static void spapr_machine_2_3_instance_options(MachineState *machine)
4328 {
4329     spapr_machine_2_4_instance_options(machine);
4330 }
4331 
4332 static void spapr_machine_2_3_class_options(MachineClass *mc)
4333 {
4334     spapr_machine_2_4_class_options(mc);
4335     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
4336 }
4337 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4338 
4339 /*
4340  * pseries-2.2
4341  */
4342 
4343 #define SPAPR_COMPAT_2_2 \
4344         HW_COMPAT_2_2 \
4345         {\
4346             .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4347             .property = "mem_win_size",\
4348             .value    = "0x20000000",\
4349         },
4350 
4351 static void spapr_machine_2_2_instance_options(MachineState *machine)
4352 {
4353     spapr_machine_2_3_instance_options(machine);
4354     machine->suppress_vmdesc = true;
4355 }
4356 
4357 static void spapr_machine_2_2_class_options(MachineClass *mc)
4358 {
4359     spapr_machine_2_3_class_options(mc);
4360     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4361 }
4362 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4363 
4364 /*
4365  * pseries-2.1
4366  */
4367 #define SPAPR_COMPAT_2_1 \
4368         HW_COMPAT_2_1
4369 
4370 static void spapr_machine_2_1_instance_options(MachineState *machine)
4371 {
4372     spapr_machine_2_2_instance_options(machine);
4373 }
4374 
4375 static void spapr_machine_2_1_class_options(MachineClass *mc)
4376 {
4377     spapr_machine_2_2_class_options(mc);
4378     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4379 }
4380 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4381 
4382 static void spapr_machine_register_types(void)
4383 {
4384     type_register_static(&spapr_machine_info);
4385 }
4386 
4387 type_init(spapr_machine_register_types)
4388