xref: /qemu/hw/ppc/spapr.c (revision 327d4b7f)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "qapi/error.h"
31 #include "qapi/qapi-events-machine.h"
32 #include "qapi/visitor.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hostmem.h"
35 #include "sysemu/numa.h"
36 #include "sysemu/qtest.h"
37 #include "sysemu/reset.h"
38 #include "sysemu/runstate.h"
39 #include "qemu/log.h"
40 #include "hw/fw-path-provider.h"
41 #include "elf.h"
42 #include "net/net.h"
43 #include "sysemu/device_tree.h"
44 #include "sysemu/cpus.h"
45 #include "sysemu/hw_accel.h"
46 #include "kvm_ppc.h"
47 #include "migration/misc.h"
48 #include "migration/qemu-file-types.h"
49 #include "migration/global_state.h"
50 #include "migration/register.h"
51 #include "migration/blocker.h"
52 #include "mmu-hash64.h"
53 #include "mmu-book3s-v3.h"
54 #include "cpu-models.h"
55 #include "hw/core/cpu.h"
56 
57 #include "hw/ppc/ppc.h"
58 #include "hw/loader.h"
59 
60 #include "hw/ppc/fdt.h"
61 #include "hw/ppc/spapr.h"
62 #include "hw/ppc/spapr_vio.h"
63 #include "hw/qdev-properties.h"
64 #include "hw/pci-host/spapr.h"
65 #include "hw/pci/msi.h"
66 
67 #include "hw/pci/pci.h"
68 #include "hw/scsi/scsi.h"
69 #include "hw/virtio/virtio-scsi.h"
70 #include "hw/virtio/vhost-scsi-common.h"
71 
72 #include "exec/ram_addr.h"
73 #include "hw/usb.h"
74 #include "qemu/config-file.h"
75 #include "qemu/error-report.h"
76 #include "trace.h"
77 #include "hw/nmi.h"
78 #include "hw/intc/intc.h"
79 
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "hw/ppc/spapr_nvdimm.h"
84 #include "hw/ppc/spapr_numa.h"
85 #include "hw/ppc/pef.h"
86 
87 #include "monitor/monitor.h"
88 
89 #include <libfdt.h>
90 
91 /* SLOF memory layout:
92  *
93  * SLOF raw image loaded at 0, copies its romfs right below the flat
94  * device-tree, then position SLOF itself 31M below that
95  *
96  * So we set FW_OVERHEAD to 40MB which should account for all of that
97  * and more
98  *
99  * We load our kernel at 4M, leaving space for SLOF initial image
100  */
101 #define FDT_MAX_ADDR            0x80000000 /* FDT must stay below that */
102 #define FW_MAX_SIZE             0x400000
103 #define FW_FILE_NAME            "slof.bin"
104 #define FW_FILE_NAME_VOF        "vof.bin"
105 #define FW_OVERHEAD             0x2800000
106 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
107 
108 #define MIN_RMA_SLOF            (128 * MiB)
109 
110 #define PHANDLE_INTC            0x00001111
111 
112 /* These two functions implement the VCPU id numbering: one to compute them
113  * all and one to identify thread 0 of a VCORE. Any change to the first one
114  * is likely to have an impact on the second one, so let's keep them close.
115  */
116 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
117 {
118     MachineState *ms = MACHINE(spapr);
119     unsigned int smp_threads = ms->smp.threads;
120 
121     assert(spapr->vsmt);
122     return
123         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
124 }
125 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
126                                       PowerPCCPU *cpu)
127 {
128     assert(spapr->vsmt);
129     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
130 }
131 
132 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
133 {
134     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
135      * and newer QEMUs don't even have them. In both cases, we don't want
136      * to send anything on the wire.
137      */
138     return false;
139 }
140 
141 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
142     .name = "icp/server",
143     .version_id = 1,
144     .minimum_version_id = 1,
145     .needed = pre_2_10_vmstate_dummy_icp_needed,
146     .fields = (VMStateField[]) {
147         VMSTATE_UNUSED(4), /* uint32_t xirr */
148         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
149         VMSTATE_UNUSED(1), /* uint8_t mfrr */
150         VMSTATE_END_OF_LIST()
151     },
152 };
153 
154 static void pre_2_10_vmstate_register_dummy_icp(int i)
155 {
156     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
157                      (void *)(uintptr_t) i);
158 }
159 
160 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
161 {
162     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
163                        (void *)(uintptr_t) i);
164 }
165 
166 int spapr_max_server_number(SpaprMachineState *spapr)
167 {
168     MachineState *ms = MACHINE(spapr);
169 
170     assert(spapr->vsmt);
171     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
172 }
173 
174 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
175                                   int smt_threads)
176 {
177     int i, ret = 0;
178     uint32_t servers_prop[smt_threads];
179     uint32_t gservers_prop[smt_threads * 2];
180     int index = spapr_get_vcpu_id(cpu);
181 
182     if (cpu->compat_pvr) {
183         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
184         if (ret < 0) {
185             return ret;
186         }
187     }
188 
189     /* Build interrupt servers and gservers properties */
190     for (i = 0; i < smt_threads; i++) {
191         servers_prop[i] = cpu_to_be32(index + i);
192         /* Hack, direct the group queues back to cpu 0 */
193         gservers_prop[i*2] = cpu_to_be32(index + i);
194         gservers_prop[i*2 + 1] = 0;
195     }
196     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
197                       servers_prop, sizeof(servers_prop));
198     if (ret < 0) {
199         return ret;
200     }
201     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
202                       gservers_prop, sizeof(gservers_prop));
203 
204     return ret;
205 }
206 
207 static void spapr_dt_pa_features(SpaprMachineState *spapr,
208                                  PowerPCCPU *cpu,
209                                  void *fdt, int offset)
210 {
211     uint8_t pa_features_206[] = { 6, 0,
212         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
213     uint8_t pa_features_207[] = { 24, 0,
214         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
215         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
216         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
217         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
218     uint8_t pa_features_300[] = { 66, 0,
219         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
220         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
221         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
222         /* 6: DS207 */
223         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
224         /* 16: Vector */
225         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
226         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
227         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
228         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
229         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
230         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
231         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
232         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
233         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
234         /* 42: PM, 44: PC RA, 46: SC vec'd */
235         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
236         /* 48: SIMD, 50: QP BFP, 52: String */
237         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
238         /* 54: DecFP, 56: DecI, 58: SHA */
239         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
240         /* 60: NM atomic, 62: RNG */
241         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
242     };
243     uint8_t *pa_features = NULL;
244     size_t pa_size;
245 
246     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
247         pa_features = pa_features_206;
248         pa_size = sizeof(pa_features_206);
249     }
250     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
251         pa_features = pa_features_207;
252         pa_size = sizeof(pa_features_207);
253     }
254     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
255         pa_features = pa_features_300;
256         pa_size = sizeof(pa_features_300);
257     }
258     if (!pa_features) {
259         return;
260     }
261 
262     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
263         /*
264          * Note: we keep CI large pages off by default because a 64K capable
265          * guest provisioned with large pages might otherwise try to map a qemu
266          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
267          * even if that qemu runs on a 4k host.
268          * We dd this bit back here if we are confident this is not an issue
269          */
270         pa_features[3] |= 0x20;
271     }
272     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
273         pa_features[24] |= 0x80;    /* Transactional memory support */
274     }
275     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
276         /* Workaround for broken kernels that attempt (guest) radix
277          * mode when they can't handle it, if they see the radix bit set
278          * in pa-features. So hide it from them. */
279         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
280     }
281 
282     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
283 }
284 
285 static hwaddr spapr_node0_size(MachineState *machine)
286 {
287     if (machine->numa_state->num_nodes) {
288         int i;
289         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
290             if (machine->numa_state->nodes[i].node_mem) {
291                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
292                            machine->ram_size);
293             }
294         }
295     }
296     return machine->ram_size;
297 }
298 
299 static void add_str(GString *s, const gchar *s1)
300 {
301     g_string_append_len(s, s1, strlen(s1) + 1);
302 }
303 
304 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
305                                 hwaddr start, hwaddr size)
306 {
307     char mem_name[32];
308     uint64_t mem_reg_property[2];
309     int off;
310 
311     mem_reg_property[0] = cpu_to_be64(start);
312     mem_reg_property[1] = cpu_to_be64(size);
313 
314     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
315     off = fdt_add_subnode(fdt, 0, mem_name);
316     _FDT(off);
317     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
318     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
319                       sizeof(mem_reg_property))));
320     spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
321     return off;
322 }
323 
324 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
325 {
326     MemoryDeviceInfoList *info;
327 
328     for (info = list; info; info = info->next) {
329         MemoryDeviceInfo *value = info->value;
330 
331         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
332             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
333 
334             if (addr >= pcdimm_info->addr &&
335                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
336                 return pcdimm_info->node;
337             }
338         }
339     }
340 
341     return -1;
342 }
343 
344 struct sPAPRDrconfCellV2 {
345      uint32_t seq_lmbs;
346      uint64_t base_addr;
347      uint32_t drc_index;
348      uint32_t aa_index;
349      uint32_t flags;
350 } QEMU_PACKED;
351 
352 typedef struct DrconfCellQueue {
353     struct sPAPRDrconfCellV2 cell;
354     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
355 } DrconfCellQueue;
356 
357 static DrconfCellQueue *
358 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
359                       uint32_t drc_index, uint32_t aa_index,
360                       uint32_t flags)
361 {
362     DrconfCellQueue *elem;
363 
364     elem = g_malloc0(sizeof(*elem));
365     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
366     elem->cell.base_addr = cpu_to_be64(base_addr);
367     elem->cell.drc_index = cpu_to_be32(drc_index);
368     elem->cell.aa_index = cpu_to_be32(aa_index);
369     elem->cell.flags = cpu_to_be32(flags);
370 
371     return elem;
372 }
373 
374 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
375                                       int offset, MemoryDeviceInfoList *dimms)
376 {
377     MachineState *machine = MACHINE(spapr);
378     uint8_t *int_buf, *cur_index;
379     int ret;
380     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
381     uint64_t addr, cur_addr, size;
382     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
383     uint64_t mem_end = machine->device_memory->base +
384                        memory_region_size(&machine->device_memory->mr);
385     uint32_t node, buf_len, nr_entries = 0;
386     SpaprDrc *drc;
387     DrconfCellQueue *elem, *next;
388     MemoryDeviceInfoList *info;
389     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
390         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
391 
392     /* Entry to cover RAM and the gap area */
393     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
394                                  SPAPR_LMB_FLAGS_RESERVED |
395                                  SPAPR_LMB_FLAGS_DRC_INVALID);
396     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
397     nr_entries++;
398 
399     cur_addr = machine->device_memory->base;
400     for (info = dimms; info; info = info->next) {
401         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
402 
403         addr = di->addr;
404         size = di->size;
405         node = di->node;
406 
407         /*
408          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
409          * area is marked hotpluggable in the next iteration for the bigger
410          * chunk including the NVDIMM occupied area.
411          */
412         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
413             continue;
414 
415         /* Entry for hot-pluggable area */
416         if (cur_addr < addr) {
417             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
418             g_assert(drc);
419             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
420                                          cur_addr, spapr_drc_index(drc), -1, 0);
421             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
422             nr_entries++;
423         }
424 
425         /* Entry for DIMM */
426         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
427         g_assert(drc);
428         elem = spapr_get_drconf_cell(size / lmb_size, addr,
429                                      spapr_drc_index(drc), node,
430                                      (SPAPR_LMB_FLAGS_ASSIGNED |
431                                       SPAPR_LMB_FLAGS_HOTREMOVABLE));
432         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
433         nr_entries++;
434         cur_addr = addr + size;
435     }
436 
437     /* Entry for remaining hotpluggable area */
438     if (cur_addr < mem_end) {
439         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
440         g_assert(drc);
441         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
442                                      cur_addr, spapr_drc_index(drc), -1, 0);
443         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
444         nr_entries++;
445     }
446 
447     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
448     int_buf = cur_index = g_malloc0(buf_len);
449     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
450     cur_index += sizeof(nr_entries);
451 
452     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
453         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
454         cur_index += sizeof(elem->cell);
455         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
456         g_free(elem);
457     }
458 
459     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
460     g_free(int_buf);
461     if (ret < 0) {
462         return -1;
463     }
464     return 0;
465 }
466 
467 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
468                                    int offset, MemoryDeviceInfoList *dimms)
469 {
470     MachineState *machine = MACHINE(spapr);
471     int i, ret;
472     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
473     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
474     uint32_t nr_lmbs = (machine->device_memory->base +
475                        memory_region_size(&machine->device_memory->mr)) /
476                        lmb_size;
477     uint32_t *int_buf, *cur_index, buf_len;
478 
479     /*
480      * Allocate enough buffer size to fit in ibm,dynamic-memory
481      */
482     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
483     cur_index = int_buf = g_malloc0(buf_len);
484     int_buf[0] = cpu_to_be32(nr_lmbs);
485     cur_index++;
486     for (i = 0; i < nr_lmbs; i++) {
487         uint64_t addr = i * lmb_size;
488         uint32_t *dynamic_memory = cur_index;
489 
490         if (i >= device_lmb_start) {
491             SpaprDrc *drc;
492 
493             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
494             g_assert(drc);
495 
496             dynamic_memory[0] = cpu_to_be32(addr >> 32);
497             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
498             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
499             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
500             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
501             if (memory_region_present(get_system_memory(), addr)) {
502                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
503             } else {
504                 dynamic_memory[5] = cpu_to_be32(0);
505             }
506         } else {
507             /*
508              * LMB information for RMA, boot time RAM and gap b/n RAM and
509              * device memory region -- all these are marked as reserved
510              * and as having no valid DRC.
511              */
512             dynamic_memory[0] = cpu_to_be32(addr >> 32);
513             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
514             dynamic_memory[2] = cpu_to_be32(0);
515             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
516             dynamic_memory[4] = cpu_to_be32(-1);
517             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
518                                             SPAPR_LMB_FLAGS_DRC_INVALID);
519         }
520 
521         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
522     }
523     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
524     g_free(int_buf);
525     if (ret < 0) {
526         return -1;
527     }
528     return 0;
529 }
530 
531 /*
532  * Adds ibm,dynamic-reconfiguration-memory node.
533  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
534  * of this device tree node.
535  */
536 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
537                                                    void *fdt)
538 {
539     MachineState *machine = MACHINE(spapr);
540     int ret, offset;
541     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
542     uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
543                                 cpu_to_be32(lmb_size & 0xffffffff)};
544     MemoryDeviceInfoList *dimms = NULL;
545 
546     /*
547      * Don't create the node if there is no device memory
548      */
549     if (machine->ram_size == machine->maxram_size) {
550         return 0;
551     }
552 
553     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
554 
555     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
556                     sizeof(prop_lmb_size));
557     if (ret < 0) {
558         return ret;
559     }
560 
561     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
562     if (ret < 0) {
563         return ret;
564     }
565 
566     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
567     if (ret < 0) {
568         return ret;
569     }
570 
571     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
572     dimms = qmp_memory_device_list();
573     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
574         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
575     } else {
576         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
577     }
578     qapi_free_MemoryDeviceInfoList(dimms);
579 
580     if (ret < 0) {
581         return ret;
582     }
583 
584     ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
585 
586     return ret;
587 }
588 
589 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
590 {
591     MachineState *machine = MACHINE(spapr);
592     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
593     hwaddr mem_start, node_size;
594     int i, nb_nodes = machine->numa_state->num_nodes;
595     NodeInfo *nodes = machine->numa_state->nodes;
596 
597     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
598         if (!nodes[i].node_mem) {
599             continue;
600         }
601         if (mem_start >= machine->ram_size) {
602             node_size = 0;
603         } else {
604             node_size = nodes[i].node_mem;
605             if (node_size > machine->ram_size - mem_start) {
606                 node_size = machine->ram_size - mem_start;
607             }
608         }
609         if (!mem_start) {
610             /* spapr_machine_init() checks for rma_size <= node0_size
611              * already */
612             spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
613             mem_start += spapr->rma_size;
614             node_size -= spapr->rma_size;
615         }
616         for ( ; node_size; ) {
617             hwaddr sizetmp = pow2floor(node_size);
618 
619             /* mem_start != 0 here */
620             if (ctzl(mem_start) < ctzl(sizetmp)) {
621                 sizetmp = 1ULL << ctzl(mem_start);
622             }
623 
624             spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
625             node_size -= sizetmp;
626             mem_start += sizetmp;
627         }
628     }
629 
630     /* Generate ibm,dynamic-reconfiguration-memory node if required */
631     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
632         int ret;
633 
634         g_assert(smc->dr_lmb_enabled);
635         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
636         if (ret) {
637             return ret;
638         }
639     }
640 
641     return 0;
642 }
643 
644 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
645                          SpaprMachineState *spapr)
646 {
647     MachineState *ms = MACHINE(spapr);
648     PowerPCCPU *cpu = POWERPC_CPU(cs);
649     CPUPPCState *env = &cpu->env;
650     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
651     int index = spapr_get_vcpu_id(cpu);
652     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
653                        0xffffffff, 0xffffffff};
654     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
655         : SPAPR_TIMEBASE_FREQ;
656     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
657     uint32_t page_sizes_prop[64];
658     size_t page_sizes_prop_size;
659     unsigned int smp_threads = ms->smp.threads;
660     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
661     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
662     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
663     SpaprDrc *drc;
664     int drc_index;
665     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
666     int i;
667 
668     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
669     if (drc) {
670         drc_index = spapr_drc_index(drc);
671         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
672     }
673 
674     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
675     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
676 
677     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
678     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
679                            env->dcache_line_size)));
680     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
681                            env->dcache_line_size)));
682     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
683                            env->icache_line_size)));
684     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
685                            env->icache_line_size)));
686 
687     if (pcc->l1_dcache_size) {
688         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
689                                pcc->l1_dcache_size)));
690     } else {
691         warn_report("Unknown L1 dcache size for cpu");
692     }
693     if (pcc->l1_icache_size) {
694         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
695                                pcc->l1_icache_size)));
696     } else {
697         warn_report("Unknown L1 icache size for cpu");
698     }
699 
700     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
701     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
702     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
703     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
704     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
705     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
706 
707     if (ppc_has_spr(cpu, SPR_PURR)) {
708         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
709     }
710     if (ppc_has_spr(cpu, SPR_PURR)) {
711         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
712     }
713 
714     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
715         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
716                           segs, sizeof(segs))));
717     }
718 
719     /* Advertise VSX (vector extensions) if available
720      *   1               == VMX / Altivec available
721      *   2               == VSX available
722      *
723      * Only CPUs for which we create core types in spapr_cpu_core.c
724      * are possible, and all of those have VMX */
725     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
726         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
727     } else {
728         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
729     }
730 
731     /* Advertise DFP (Decimal Floating Point) if available
732      *   0 / no property == no DFP
733      *   1               == DFP available */
734     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
735         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
736     }
737 
738     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
739                                                       sizeof(page_sizes_prop));
740     if (page_sizes_prop_size) {
741         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
742                           page_sizes_prop, page_sizes_prop_size)));
743     }
744 
745     spapr_dt_pa_features(spapr, cpu, fdt, offset);
746 
747     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
748                            cs->cpu_index / vcpus_per_socket)));
749 
750     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
751                       pft_size_prop, sizeof(pft_size_prop))));
752 
753     if (ms->numa_state->num_nodes > 1) {
754         _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
755     }
756 
757     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
758 
759     if (pcc->radix_page_info) {
760         for (i = 0; i < pcc->radix_page_info->count; i++) {
761             radix_AP_encodings[i] =
762                 cpu_to_be32(pcc->radix_page_info->entries[i]);
763         }
764         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
765                           radix_AP_encodings,
766                           pcc->radix_page_info->count *
767                           sizeof(radix_AP_encodings[0]))));
768     }
769 
770     /*
771      * We set this property to let the guest know that it can use the large
772      * decrementer and its width in bits.
773      */
774     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
775         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
776                               pcc->lrg_decr_bits)));
777 }
778 
779 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
780 {
781     CPUState **rev;
782     CPUState *cs;
783     int n_cpus;
784     int cpus_offset;
785     int i;
786 
787     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
788     _FDT(cpus_offset);
789     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
790     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
791 
792     /*
793      * We walk the CPUs in reverse order to ensure that CPU DT nodes
794      * created by fdt_add_subnode() end up in the right order in FDT
795      * for the guest kernel the enumerate the CPUs correctly.
796      *
797      * The CPU list cannot be traversed in reverse order, so we need
798      * to do extra work.
799      */
800     n_cpus = 0;
801     rev = NULL;
802     CPU_FOREACH(cs) {
803         rev = g_renew(CPUState *, rev, n_cpus + 1);
804         rev[n_cpus++] = cs;
805     }
806 
807     for (i = n_cpus - 1; i >= 0; i--) {
808         CPUState *cs = rev[i];
809         PowerPCCPU *cpu = POWERPC_CPU(cs);
810         int index = spapr_get_vcpu_id(cpu);
811         DeviceClass *dc = DEVICE_GET_CLASS(cs);
812         g_autofree char *nodename = NULL;
813         int offset;
814 
815         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
816             continue;
817         }
818 
819         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
820         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
821         _FDT(offset);
822         spapr_dt_cpu(cs, fdt, offset, spapr);
823     }
824 
825     g_free(rev);
826 }
827 
828 static int spapr_dt_rng(void *fdt)
829 {
830     int node;
831     int ret;
832 
833     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
834     if (node <= 0) {
835         return -1;
836     }
837     ret = fdt_setprop_string(fdt, node, "device_type",
838                              "ibm,platform-facilities");
839     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
840     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
841 
842     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
843     if (node <= 0) {
844         return -1;
845     }
846     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
847 
848     return ret ? -1 : 0;
849 }
850 
851 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
852 {
853     MachineState *ms = MACHINE(spapr);
854     int rtas;
855     GString *hypertas = g_string_sized_new(256);
856     GString *qemu_hypertas = g_string_sized_new(256);
857     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
858         memory_region_size(&MACHINE(spapr)->device_memory->mr);
859     uint32_t lrdr_capacity[] = {
860         cpu_to_be32(max_device_addr >> 32),
861         cpu_to_be32(max_device_addr & 0xffffffff),
862         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
863         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
864         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
865     };
866 
867     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
868 
869     /* hypertas */
870     add_str(hypertas, "hcall-pft");
871     add_str(hypertas, "hcall-term");
872     add_str(hypertas, "hcall-dabr");
873     add_str(hypertas, "hcall-interrupt");
874     add_str(hypertas, "hcall-tce");
875     add_str(hypertas, "hcall-vio");
876     add_str(hypertas, "hcall-splpar");
877     add_str(hypertas, "hcall-join");
878     add_str(hypertas, "hcall-bulk");
879     add_str(hypertas, "hcall-set-mode");
880     add_str(hypertas, "hcall-sprg0");
881     add_str(hypertas, "hcall-copy");
882     add_str(hypertas, "hcall-debug");
883     add_str(hypertas, "hcall-vphn");
884     add_str(qemu_hypertas, "hcall-memop1");
885 
886     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
887         add_str(hypertas, "hcall-multi-tce");
888     }
889 
890     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
891         add_str(hypertas, "hcall-hpt-resize");
892     }
893 
894     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
895                      hypertas->str, hypertas->len));
896     g_string_free(hypertas, TRUE);
897     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
898                      qemu_hypertas->str, qemu_hypertas->len));
899     g_string_free(qemu_hypertas, TRUE);
900 
901     spapr_numa_write_rtas_dt(spapr, fdt, rtas);
902 
903     /*
904      * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
905      * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
906      *
907      * The system reset requirements are driven by existing Linux and PowerVM
908      * implementation which (contrary to PAPR) saves r3 in the error log
909      * structure like machine check, so Linux expects to find the saved r3
910      * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
911      * does not look at the error value).
912      *
913      * System reset interrupts are not subject to interlock like machine
914      * check, so this memory area could be corrupted if the sreset is
915      * interrupted by a machine check (or vice versa) if it was shared. To
916      * prevent this, system reset uses per-CPU areas for the sreset save
917      * area. A system reset that interrupts a system reset handler could
918      * still overwrite this area, but Linux doesn't try to recover in that
919      * case anyway.
920      *
921      * The extra 8 bytes is required because Linux's FWNMI error log check
922      * is off-by-one.
923      *
924      * RTAS_MIN_SIZE is required for the RTAS blob itself.
925      */
926     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
927                           RTAS_ERROR_LOG_MAX +
928                           ms->smp.max_cpus * sizeof(uint64_t) * 2 +
929                           sizeof(uint64_t)));
930     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
931                           RTAS_ERROR_LOG_MAX));
932     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
933                           RTAS_EVENT_SCAN_RATE));
934 
935     g_assert(msi_nonbroken);
936     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
937 
938     /*
939      * According to PAPR, rtas ibm,os-term does not guarantee a return
940      * back to the guest cpu.
941      *
942      * While an additional ibm,extended-os-term property indicates
943      * that rtas call return will always occur. Set this property.
944      */
945     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
946 
947     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
948                      lrdr_capacity, sizeof(lrdr_capacity)));
949 
950     spapr_dt_rtas_tokens(fdt, rtas);
951 }
952 
953 /*
954  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
955  * and the XIVE features that the guest may request and thus the valid
956  * values for bytes 23..26 of option vector 5:
957  */
958 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
959                                           int chosen)
960 {
961     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
962 
963     char val[2 * 4] = {
964         23, 0x00, /* XICS / XIVE mode */
965         24, 0x00, /* Hash/Radix, filled in below. */
966         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
967         26, 0x40, /* Radix options: GTSE == yes. */
968     };
969 
970     if (spapr->irq->xics && spapr->irq->xive) {
971         val[1] = SPAPR_OV5_XIVE_BOTH;
972     } else if (spapr->irq->xive) {
973         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
974     } else {
975         assert(spapr->irq->xics);
976         val[1] = SPAPR_OV5_XIVE_LEGACY;
977     }
978 
979     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
980                           first_ppc_cpu->compat_pvr)) {
981         /*
982          * If we're in a pre POWER9 compat mode then the guest should
983          * do hash and use the legacy interrupt mode
984          */
985         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
986         val[3] = 0x00; /* Hash */
987         spapr_check_mmu_mode(false);
988     } else if (kvm_enabled()) {
989         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
990             val[3] = 0x80; /* OV5_MMU_BOTH */
991         } else if (kvmppc_has_cap_mmu_radix()) {
992             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
993         } else {
994             val[3] = 0x00; /* Hash */
995         }
996     } else {
997         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
998         val[3] = 0xC0;
999     }
1000     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1001                      val, sizeof(val)));
1002 }
1003 
1004 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1005 {
1006     MachineState *machine = MACHINE(spapr);
1007     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1008     int chosen;
1009 
1010     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1011 
1012     if (reset) {
1013         const char *boot_device = spapr->boot_device;
1014         char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1015         size_t cb = 0;
1016         char *bootlist = get_boot_devices_list(&cb);
1017 
1018         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1019             _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1020                                     machine->kernel_cmdline));
1021         }
1022 
1023         if (spapr->initrd_size) {
1024             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1025                                   spapr->initrd_base));
1026             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1027                                   spapr->initrd_base + spapr->initrd_size));
1028         }
1029 
1030         if (spapr->kernel_size) {
1031             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1032                                   cpu_to_be64(spapr->kernel_size) };
1033 
1034             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1035                          &kprop, sizeof(kprop)));
1036             if (spapr->kernel_le) {
1037                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1038             }
1039         }
1040         if (boot_menu) {
1041             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1042         }
1043         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1044         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1045         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1046 
1047         if (cb && bootlist) {
1048             int i;
1049 
1050             for (i = 0; i < cb; i++) {
1051                 if (bootlist[i] == '\n') {
1052                     bootlist[i] = ' ';
1053                 }
1054             }
1055             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1056         }
1057 
1058         if (boot_device && strlen(boot_device)) {
1059             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1060         }
1061 
1062         if (!spapr->has_graphics && stdout_path) {
1063             /*
1064              * "linux,stdout-path" and "stdout" properties are
1065              * deprecated by linux kernel. New platforms should only
1066              * use the "stdout-path" property. Set the new property
1067              * and continue using older property to remain compatible
1068              * with the existing firmware.
1069              */
1070             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1071             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1072         }
1073 
1074         /*
1075          * We can deal with BAR reallocation just fine, advertise it
1076          * to the guest
1077          */
1078         if (smc->linux_pci_probe) {
1079             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1080         }
1081 
1082         spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1083 
1084         g_free(stdout_path);
1085         g_free(bootlist);
1086     }
1087 
1088     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1089 }
1090 
1091 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1092 {
1093     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1094      * KVM to work under pHyp with some guest co-operation */
1095     int hypervisor;
1096     uint8_t hypercall[16];
1097 
1098     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1099     /* indicate KVM hypercall interface */
1100     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1101     if (kvmppc_has_cap_fixup_hcalls()) {
1102         /*
1103          * Older KVM versions with older guest kernels were broken
1104          * with the magic page, don't allow the guest to map it.
1105          */
1106         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1107                                   sizeof(hypercall))) {
1108             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1109                              hypercall, sizeof(hypercall)));
1110         }
1111     }
1112 }
1113 
1114 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1115 {
1116     MachineState *machine = MACHINE(spapr);
1117     MachineClass *mc = MACHINE_GET_CLASS(machine);
1118     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1119     uint32_t root_drc_type_mask = 0;
1120     int ret;
1121     void *fdt;
1122     SpaprPhbState *phb;
1123     char *buf;
1124 
1125     fdt = g_malloc0(space);
1126     _FDT((fdt_create_empty_tree(fdt, space)));
1127 
1128     /* Root node */
1129     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1130     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1131     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1132 
1133     /* Guest UUID & Name*/
1134     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1135     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1136     if (qemu_uuid_set) {
1137         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1138     }
1139     g_free(buf);
1140 
1141     if (qemu_get_vm_name()) {
1142         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1143                                 qemu_get_vm_name()));
1144     }
1145 
1146     /* Host Model & Serial Number */
1147     if (spapr->host_model) {
1148         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1149     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1150         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1151         g_free(buf);
1152     }
1153 
1154     if (spapr->host_serial) {
1155         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1156     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1157         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1158         g_free(buf);
1159     }
1160 
1161     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1162     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1163 
1164     /* /interrupt controller */
1165     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1166 
1167     ret = spapr_dt_memory(spapr, fdt);
1168     if (ret < 0) {
1169         error_report("couldn't setup memory nodes in fdt");
1170         exit(1);
1171     }
1172 
1173     /* /vdevice */
1174     spapr_dt_vdevice(spapr->vio_bus, fdt);
1175 
1176     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1177         ret = spapr_dt_rng(fdt);
1178         if (ret < 0) {
1179             error_report("could not set up rng device in the fdt");
1180             exit(1);
1181         }
1182     }
1183 
1184     QLIST_FOREACH(phb, &spapr->phbs, list) {
1185         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1186         if (ret < 0) {
1187             error_report("couldn't setup PCI devices in fdt");
1188             exit(1);
1189         }
1190     }
1191 
1192     spapr_dt_cpus(fdt, spapr);
1193 
1194     /* ibm,drc-indexes and friends */
1195     if (smc->dr_lmb_enabled) {
1196         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1197     }
1198     if (smc->dr_phb_enabled) {
1199         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1200     }
1201     if (mc->nvdimm_supported) {
1202         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1203     }
1204     if (root_drc_type_mask) {
1205         _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1206     }
1207 
1208     if (mc->has_hotpluggable_cpus) {
1209         int offset = fdt_path_offset(fdt, "/cpus");
1210         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1211         if (ret < 0) {
1212             error_report("Couldn't set up CPU DR device tree properties");
1213             exit(1);
1214         }
1215     }
1216 
1217     /* /event-sources */
1218     spapr_dt_events(spapr, fdt);
1219 
1220     /* /rtas */
1221     spapr_dt_rtas(spapr, fdt);
1222 
1223     /* /chosen */
1224     spapr_dt_chosen(spapr, fdt, reset);
1225 
1226     /* /hypervisor */
1227     if (kvm_enabled()) {
1228         spapr_dt_hypervisor(spapr, fdt);
1229     }
1230 
1231     /* Build memory reserve map */
1232     if (reset) {
1233         if (spapr->kernel_size) {
1234             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1235                                   spapr->kernel_size)));
1236         }
1237         if (spapr->initrd_size) {
1238             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1239                                   spapr->initrd_size)));
1240         }
1241     }
1242 
1243     /* NVDIMM devices */
1244     if (mc->nvdimm_supported) {
1245         spapr_dt_persistent_memory(spapr, fdt);
1246     }
1247 
1248     return fdt;
1249 }
1250 
1251 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1252 {
1253     SpaprMachineState *spapr = opaque;
1254 
1255     return (addr & 0x0fffffff) + spapr->kernel_addr;
1256 }
1257 
1258 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1259                                     PowerPCCPU *cpu)
1260 {
1261     CPUPPCState *env = &cpu->env;
1262 
1263     /* The TCG path should also be holding the BQL at this point */
1264     g_assert(qemu_mutex_iothread_locked());
1265 
1266     if (msr_pr) {
1267         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1268         env->gpr[3] = H_PRIVILEGE;
1269     } else {
1270         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1271     }
1272 }
1273 
1274 struct LPCRSyncState {
1275     target_ulong value;
1276     target_ulong mask;
1277 };
1278 
1279 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1280 {
1281     struct LPCRSyncState *s = arg.host_ptr;
1282     PowerPCCPU *cpu = POWERPC_CPU(cs);
1283     CPUPPCState *env = &cpu->env;
1284     target_ulong lpcr;
1285 
1286     cpu_synchronize_state(cs);
1287     lpcr = env->spr[SPR_LPCR];
1288     lpcr &= ~s->mask;
1289     lpcr |= s->value;
1290     ppc_store_lpcr(cpu, lpcr);
1291 }
1292 
1293 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1294 {
1295     CPUState *cs;
1296     struct LPCRSyncState s = {
1297         .value = value,
1298         .mask = mask
1299     };
1300     CPU_FOREACH(cs) {
1301         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1302     }
1303 }
1304 
1305 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1306 {
1307     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1308 
1309     /* Copy PATE1:GR into PATE0:HR */
1310     entry->dw0 = spapr->patb_entry & PATE0_HR;
1311     entry->dw1 = spapr->patb_entry;
1312 }
1313 
1314 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1315 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1316 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1317 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1318 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1319 
1320 /*
1321  * Get the fd to access the kernel htab, re-opening it if necessary
1322  */
1323 static int get_htab_fd(SpaprMachineState *spapr)
1324 {
1325     Error *local_err = NULL;
1326 
1327     if (spapr->htab_fd >= 0) {
1328         return spapr->htab_fd;
1329     }
1330 
1331     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1332     if (spapr->htab_fd < 0) {
1333         error_report_err(local_err);
1334     }
1335 
1336     return spapr->htab_fd;
1337 }
1338 
1339 void close_htab_fd(SpaprMachineState *spapr)
1340 {
1341     if (spapr->htab_fd >= 0) {
1342         close(spapr->htab_fd);
1343     }
1344     spapr->htab_fd = -1;
1345 }
1346 
1347 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1348 {
1349     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1350 
1351     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1352 }
1353 
1354 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1355 {
1356     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1357 
1358     assert(kvm_enabled());
1359 
1360     if (!spapr->htab) {
1361         return 0;
1362     }
1363 
1364     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1365 }
1366 
1367 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1368                                                 hwaddr ptex, int n)
1369 {
1370     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1371     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1372 
1373     if (!spapr->htab) {
1374         /*
1375          * HTAB is controlled by KVM. Fetch into temporary buffer
1376          */
1377         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1378         kvmppc_read_hptes(hptes, ptex, n);
1379         return hptes;
1380     }
1381 
1382     /*
1383      * HTAB is controlled by QEMU. Just point to the internally
1384      * accessible PTEG.
1385      */
1386     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1387 }
1388 
1389 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1390                               const ppc_hash_pte64_t *hptes,
1391                               hwaddr ptex, int n)
1392 {
1393     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1394 
1395     if (!spapr->htab) {
1396         g_free((void *)hptes);
1397     }
1398 
1399     /* Nothing to do for qemu managed HPT */
1400 }
1401 
1402 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1403                       uint64_t pte0, uint64_t pte1)
1404 {
1405     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1406     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1407 
1408     if (!spapr->htab) {
1409         kvmppc_write_hpte(ptex, pte0, pte1);
1410     } else {
1411         if (pte0 & HPTE64_V_VALID) {
1412             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1413             /*
1414              * When setting valid, we write PTE1 first. This ensures
1415              * proper synchronization with the reading code in
1416              * ppc_hash64_pteg_search()
1417              */
1418             smp_wmb();
1419             stq_p(spapr->htab + offset, pte0);
1420         } else {
1421             stq_p(spapr->htab + offset, pte0);
1422             /*
1423              * When clearing it we set PTE0 first. This ensures proper
1424              * synchronization with the reading code in
1425              * ppc_hash64_pteg_search()
1426              */
1427             smp_wmb();
1428             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1429         }
1430     }
1431 }
1432 
1433 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1434                              uint64_t pte1)
1435 {
1436     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1437     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1438 
1439     if (!spapr->htab) {
1440         /* There should always be a hash table when this is called */
1441         error_report("spapr_hpte_set_c called with no hash table !");
1442         return;
1443     }
1444 
1445     /* The HW performs a non-atomic byte update */
1446     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1447 }
1448 
1449 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1450                              uint64_t pte1)
1451 {
1452     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1453     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1454 
1455     if (!spapr->htab) {
1456         /* There should always be a hash table when this is called */
1457         error_report("spapr_hpte_set_r called with no hash table !");
1458         return;
1459     }
1460 
1461     /* The HW performs a non-atomic byte update */
1462     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1463 }
1464 
1465 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1466 {
1467     int shift;
1468 
1469     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1470      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1471      * that's much more than is needed for Linux guests */
1472     shift = ctz64(pow2ceil(ramsize)) - 7;
1473     shift = MAX(shift, 18); /* Minimum architected size */
1474     shift = MIN(shift, 46); /* Maximum architected size */
1475     return shift;
1476 }
1477 
1478 void spapr_free_hpt(SpaprMachineState *spapr)
1479 {
1480     g_free(spapr->htab);
1481     spapr->htab = NULL;
1482     spapr->htab_shift = 0;
1483     close_htab_fd(spapr);
1484 }
1485 
1486 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1487 {
1488     ERRP_GUARD();
1489     long rc;
1490 
1491     /* Clean up any HPT info from a previous boot */
1492     spapr_free_hpt(spapr);
1493 
1494     rc = kvmppc_reset_htab(shift);
1495 
1496     if (rc == -EOPNOTSUPP) {
1497         error_setg(errp, "HPT not supported in nested guests");
1498         return -EOPNOTSUPP;
1499     }
1500 
1501     if (rc < 0) {
1502         /* kernel-side HPT needed, but couldn't allocate one */
1503         error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1504                          shift);
1505         error_append_hint(errp, "Try smaller maxmem?\n");
1506         return -errno;
1507     } else if (rc > 0) {
1508         /* kernel-side HPT allocated */
1509         if (rc != shift) {
1510             error_setg(errp,
1511                        "Requested order %d HPT, but kernel allocated order %ld",
1512                        shift, rc);
1513             error_append_hint(errp, "Try smaller maxmem?\n");
1514             return -ENOSPC;
1515         }
1516 
1517         spapr->htab_shift = shift;
1518         spapr->htab = NULL;
1519     } else {
1520         /* kernel-side HPT not needed, allocate in userspace instead */
1521         size_t size = 1ULL << shift;
1522         int i;
1523 
1524         spapr->htab = qemu_memalign(size, size);
1525         memset(spapr->htab, 0, size);
1526         spapr->htab_shift = shift;
1527 
1528         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1529             DIRTY_HPTE(HPTE(spapr->htab, i));
1530         }
1531     }
1532     /* We're setting up a hash table, so that means we're not radix */
1533     spapr->patb_entry = 0;
1534     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1535     return 0;
1536 }
1537 
1538 void spapr_setup_hpt(SpaprMachineState *spapr)
1539 {
1540     int hpt_shift;
1541 
1542     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1543         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1544     } else {
1545         uint64_t current_ram_size;
1546 
1547         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1548         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1549     }
1550     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1551 
1552     if (kvm_enabled()) {
1553         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1554 
1555         /* Check our RMA fits in the possible VRMA */
1556         if (vrma_limit < spapr->rma_size) {
1557             error_report("Unable to create %" HWADDR_PRIu
1558                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1559                          spapr->rma_size / MiB, vrma_limit / MiB);
1560             exit(EXIT_FAILURE);
1561         }
1562     }
1563 }
1564 
1565 void spapr_check_mmu_mode(bool guest_radix)
1566 {
1567     if (guest_radix) {
1568         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1569             error_report("Guest requested unavailable MMU mode (radix).");
1570             exit(EXIT_FAILURE);
1571         }
1572     } else {
1573         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1574             && !kvmppc_has_cap_mmu_hash_v3()) {
1575             error_report("Guest requested unavailable MMU mode (hash).");
1576             exit(EXIT_FAILURE);
1577         }
1578     }
1579 }
1580 
1581 static void spapr_machine_reset(MachineState *machine)
1582 {
1583     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1584     PowerPCCPU *first_ppc_cpu;
1585     hwaddr fdt_addr;
1586     void *fdt;
1587     int rc;
1588 
1589     pef_kvm_reset(machine->cgs, &error_fatal);
1590     spapr_caps_apply(spapr);
1591 
1592     first_ppc_cpu = POWERPC_CPU(first_cpu);
1593     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1594         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1595                               spapr->max_compat_pvr)) {
1596         /*
1597          * If using KVM with radix mode available, VCPUs can be started
1598          * without a HPT because KVM will start them in radix mode.
1599          * Set the GR bit in PATE so that we know there is no HPT.
1600          */
1601         spapr->patb_entry = PATE1_GR;
1602         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1603     } else {
1604         spapr_setup_hpt(spapr);
1605     }
1606 
1607     qemu_devices_reset();
1608 
1609     spapr_ovec_cleanup(spapr->ov5_cas);
1610     spapr->ov5_cas = spapr_ovec_new();
1611 
1612     ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1613 
1614     /*
1615      * This is fixing some of the default configuration of the XIVE
1616      * devices. To be called after the reset of the machine devices.
1617      */
1618     spapr_irq_reset(spapr, &error_fatal);
1619 
1620     /*
1621      * There is no CAS under qtest. Simulate one to please the code that
1622      * depends on spapr->ov5_cas. This is especially needed to test device
1623      * unplug, so we do that before resetting the DRCs.
1624      */
1625     if (qtest_enabled()) {
1626         spapr_ovec_cleanup(spapr->ov5_cas);
1627         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1628     }
1629 
1630     /* DRC reset may cause a device to be unplugged. This will cause troubles
1631      * if this device is used by another device (eg, a running vhost backend
1632      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1633      * situations, we reset DRCs after all devices have been reset.
1634      */
1635     spapr_drc_reset_all(spapr);
1636 
1637     spapr_clear_pending_events(spapr);
1638 
1639     /*
1640      * We place the device tree just below either the top of the RMA,
1641      * or just below 2GB, whichever is lower, so that it can be
1642      * processed with 32-bit real mode code if necessary
1643      */
1644     fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1645 
1646     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1647     if (spapr->vof) {
1648         spapr_vof_reset(spapr, fdt, &error_fatal);
1649         /*
1650          * Do not pack the FDT as the client may change properties.
1651          * VOF client does not expect the FDT so we do not load it to the VM.
1652          */
1653     } else {
1654         rc = fdt_pack(fdt);
1655         /* Should only fail if we've built a corrupted tree */
1656         assert(rc == 0);
1657 
1658         spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1659                                   0, fdt_addr, 0);
1660         cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1661     }
1662     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1663 
1664     g_free(spapr->fdt_blob);
1665     spapr->fdt_size = fdt_totalsize(fdt);
1666     spapr->fdt_initial_size = spapr->fdt_size;
1667     spapr->fdt_blob = fdt;
1668 
1669     /* Set up the entry state */
1670     first_ppc_cpu->env.gpr[5] = 0;
1671 
1672     spapr->fwnmi_system_reset_addr = -1;
1673     spapr->fwnmi_machine_check_addr = -1;
1674     spapr->fwnmi_machine_check_interlock = -1;
1675 
1676     /* Signal all vCPUs waiting on this condition */
1677     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1678 
1679     migrate_del_blocker(spapr->fwnmi_migration_blocker);
1680 }
1681 
1682 static void spapr_create_nvram(SpaprMachineState *spapr)
1683 {
1684     DeviceState *dev = qdev_new("spapr-nvram");
1685     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1686 
1687     if (dinfo) {
1688         qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1689                                 &error_fatal);
1690     }
1691 
1692     qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1693 
1694     spapr->nvram = (struct SpaprNvram *)dev;
1695 }
1696 
1697 static void spapr_rtc_create(SpaprMachineState *spapr)
1698 {
1699     object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1700                                        sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1701                                        &error_fatal, NULL);
1702     qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1703     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1704                               "date");
1705 }
1706 
1707 /* Returns whether we want to use VGA or not */
1708 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1709 {
1710     switch (vga_interface_type) {
1711     case VGA_NONE:
1712         return false;
1713     case VGA_DEVICE:
1714         return true;
1715     case VGA_STD:
1716     case VGA_VIRTIO:
1717     case VGA_CIRRUS:
1718         return pci_vga_init(pci_bus) != NULL;
1719     default:
1720         error_setg(errp,
1721                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1722         return false;
1723     }
1724 }
1725 
1726 static int spapr_pre_load(void *opaque)
1727 {
1728     int rc;
1729 
1730     rc = spapr_caps_pre_load(opaque);
1731     if (rc) {
1732         return rc;
1733     }
1734 
1735     return 0;
1736 }
1737 
1738 static int spapr_post_load(void *opaque, int version_id)
1739 {
1740     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1741     int err = 0;
1742 
1743     err = spapr_caps_post_migration(spapr);
1744     if (err) {
1745         return err;
1746     }
1747 
1748     /*
1749      * In earlier versions, there was no separate qdev for the PAPR
1750      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1751      * So when migrating from those versions, poke the incoming offset
1752      * value into the RTC device
1753      */
1754     if (version_id < 3) {
1755         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1756         if (err) {
1757             return err;
1758         }
1759     }
1760 
1761     if (kvm_enabled() && spapr->patb_entry) {
1762         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1763         bool radix = !!(spapr->patb_entry & PATE1_GR);
1764         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1765 
1766         /*
1767          * Update LPCR:HR and UPRT as they may not be set properly in
1768          * the stream
1769          */
1770         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1771                             LPCR_HR | LPCR_UPRT);
1772 
1773         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1774         if (err) {
1775             error_report("Process table config unsupported by the host");
1776             return -EINVAL;
1777         }
1778     }
1779 
1780     err = spapr_irq_post_load(spapr, version_id);
1781     if (err) {
1782         return err;
1783     }
1784 
1785     return err;
1786 }
1787 
1788 static int spapr_pre_save(void *opaque)
1789 {
1790     int rc;
1791 
1792     rc = spapr_caps_pre_save(opaque);
1793     if (rc) {
1794         return rc;
1795     }
1796 
1797     return 0;
1798 }
1799 
1800 static bool version_before_3(void *opaque, int version_id)
1801 {
1802     return version_id < 3;
1803 }
1804 
1805 static bool spapr_pending_events_needed(void *opaque)
1806 {
1807     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1808     return !QTAILQ_EMPTY(&spapr->pending_events);
1809 }
1810 
1811 static const VMStateDescription vmstate_spapr_event_entry = {
1812     .name = "spapr_event_log_entry",
1813     .version_id = 1,
1814     .minimum_version_id = 1,
1815     .fields = (VMStateField[]) {
1816         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1817         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1818         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1819                                      NULL, extended_length),
1820         VMSTATE_END_OF_LIST()
1821     },
1822 };
1823 
1824 static const VMStateDescription vmstate_spapr_pending_events = {
1825     .name = "spapr_pending_events",
1826     .version_id = 1,
1827     .minimum_version_id = 1,
1828     .needed = spapr_pending_events_needed,
1829     .fields = (VMStateField[]) {
1830         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1831                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1832         VMSTATE_END_OF_LIST()
1833     },
1834 };
1835 
1836 static bool spapr_ov5_cas_needed(void *opaque)
1837 {
1838     SpaprMachineState *spapr = opaque;
1839     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1840     bool cas_needed;
1841 
1842     /* Prior to the introduction of SpaprOptionVector, we had two option
1843      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1844      * Both of these options encode machine topology into the device-tree
1845      * in such a way that the now-booted OS should still be able to interact
1846      * appropriately with QEMU regardless of what options were actually
1847      * negotiatied on the source side.
1848      *
1849      * As such, we can avoid migrating the CAS-negotiated options if these
1850      * are the only options available on the current machine/platform.
1851      * Since these are the only options available for pseries-2.7 and
1852      * earlier, this allows us to maintain old->new/new->old migration
1853      * compatibility.
1854      *
1855      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1856      * via default pseries-2.8 machines and explicit command-line parameters.
1857      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1858      * of the actual CAS-negotiated values to continue working properly. For
1859      * example, availability of memory unplug depends on knowing whether
1860      * OV5_HP_EVT was negotiated via CAS.
1861      *
1862      * Thus, for any cases where the set of available CAS-negotiatable
1863      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1864      * include the CAS-negotiated options in the migration stream, unless
1865      * if they affect boot time behaviour only.
1866      */
1867     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1868     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1869     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1870 
1871     /* We need extra information if we have any bits outside the mask
1872      * defined above */
1873     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1874 
1875     spapr_ovec_cleanup(ov5_mask);
1876 
1877     return cas_needed;
1878 }
1879 
1880 static const VMStateDescription vmstate_spapr_ov5_cas = {
1881     .name = "spapr_option_vector_ov5_cas",
1882     .version_id = 1,
1883     .minimum_version_id = 1,
1884     .needed = spapr_ov5_cas_needed,
1885     .fields = (VMStateField[]) {
1886         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1887                                  vmstate_spapr_ovec, SpaprOptionVector),
1888         VMSTATE_END_OF_LIST()
1889     },
1890 };
1891 
1892 static bool spapr_patb_entry_needed(void *opaque)
1893 {
1894     SpaprMachineState *spapr = opaque;
1895 
1896     return !!spapr->patb_entry;
1897 }
1898 
1899 static const VMStateDescription vmstate_spapr_patb_entry = {
1900     .name = "spapr_patb_entry",
1901     .version_id = 1,
1902     .minimum_version_id = 1,
1903     .needed = spapr_patb_entry_needed,
1904     .fields = (VMStateField[]) {
1905         VMSTATE_UINT64(patb_entry, SpaprMachineState),
1906         VMSTATE_END_OF_LIST()
1907     },
1908 };
1909 
1910 static bool spapr_irq_map_needed(void *opaque)
1911 {
1912     SpaprMachineState *spapr = opaque;
1913 
1914     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1915 }
1916 
1917 static const VMStateDescription vmstate_spapr_irq_map = {
1918     .name = "spapr_irq_map",
1919     .version_id = 1,
1920     .minimum_version_id = 1,
1921     .needed = spapr_irq_map_needed,
1922     .fields = (VMStateField[]) {
1923         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1924         VMSTATE_END_OF_LIST()
1925     },
1926 };
1927 
1928 static bool spapr_dtb_needed(void *opaque)
1929 {
1930     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1931 
1932     return smc->update_dt_enabled;
1933 }
1934 
1935 static int spapr_dtb_pre_load(void *opaque)
1936 {
1937     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1938 
1939     g_free(spapr->fdt_blob);
1940     spapr->fdt_blob = NULL;
1941     spapr->fdt_size = 0;
1942 
1943     return 0;
1944 }
1945 
1946 static const VMStateDescription vmstate_spapr_dtb = {
1947     .name = "spapr_dtb",
1948     .version_id = 1,
1949     .minimum_version_id = 1,
1950     .needed = spapr_dtb_needed,
1951     .pre_load = spapr_dtb_pre_load,
1952     .fields = (VMStateField[]) {
1953         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1954         VMSTATE_UINT32(fdt_size, SpaprMachineState),
1955         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1956                                      fdt_size),
1957         VMSTATE_END_OF_LIST()
1958     },
1959 };
1960 
1961 static bool spapr_fwnmi_needed(void *opaque)
1962 {
1963     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1964 
1965     return spapr->fwnmi_machine_check_addr != -1;
1966 }
1967 
1968 static int spapr_fwnmi_pre_save(void *opaque)
1969 {
1970     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1971 
1972     /*
1973      * Check if machine check handling is in progress and print a
1974      * warning message.
1975      */
1976     if (spapr->fwnmi_machine_check_interlock != -1) {
1977         warn_report("A machine check is being handled during migration. The"
1978                 "handler may run and log hardware error on the destination");
1979     }
1980 
1981     return 0;
1982 }
1983 
1984 static const VMStateDescription vmstate_spapr_fwnmi = {
1985     .name = "spapr_fwnmi",
1986     .version_id = 1,
1987     .minimum_version_id = 1,
1988     .needed = spapr_fwnmi_needed,
1989     .pre_save = spapr_fwnmi_pre_save,
1990     .fields = (VMStateField[]) {
1991         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
1992         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
1993         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
1994         VMSTATE_END_OF_LIST()
1995     },
1996 };
1997 
1998 static const VMStateDescription vmstate_spapr = {
1999     .name = "spapr",
2000     .version_id = 3,
2001     .minimum_version_id = 1,
2002     .pre_load = spapr_pre_load,
2003     .post_load = spapr_post_load,
2004     .pre_save = spapr_pre_save,
2005     .fields = (VMStateField[]) {
2006         /* used to be @next_irq */
2007         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2008 
2009         /* RTC offset */
2010         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2011 
2012         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2013         VMSTATE_END_OF_LIST()
2014     },
2015     .subsections = (const VMStateDescription*[]) {
2016         &vmstate_spapr_ov5_cas,
2017         &vmstate_spapr_patb_entry,
2018         &vmstate_spapr_pending_events,
2019         &vmstate_spapr_cap_htm,
2020         &vmstate_spapr_cap_vsx,
2021         &vmstate_spapr_cap_dfp,
2022         &vmstate_spapr_cap_cfpc,
2023         &vmstate_spapr_cap_sbbc,
2024         &vmstate_spapr_cap_ibs,
2025         &vmstate_spapr_cap_hpt_maxpagesize,
2026         &vmstate_spapr_irq_map,
2027         &vmstate_spapr_cap_nested_kvm_hv,
2028         &vmstate_spapr_dtb,
2029         &vmstate_spapr_cap_large_decr,
2030         &vmstate_spapr_cap_ccf_assist,
2031         &vmstate_spapr_cap_fwnmi,
2032         &vmstate_spapr_fwnmi,
2033         NULL
2034     }
2035 };
2036 
2037 static int htab_save_setup(QEMUFile *f, void *opaque)
2038 {
2039     SpaprMachineState *spapr = opaque;
2040 
2041     /* "Iteration" header */
2042     if (!spapr->htab_shift) {
2043         qemu_put_be32(f, -1);
2044     } else {
2045         qemu_put_be32(f, spapr->htab_shift);
2046     }
2047 
2048     if (spapr->htab) {
2049         spapr->htab_save_index = 0;
2050         spapr->htab_first_pass = true;
2051     } else {
2052         if (spapr->htab_shift) {
2053             assert(kvm_enabled());
2054         }
2055     }
2056 
2057 
2058     return 0;
2059 }
2060 
2061 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2062                             int chunkstart, int n_valid, int n_invalid)
2063 {
2064     qemu_put_be32(f, chunkstart);
2065     qemu_put_be16(f, n_valid);
2066     qemu_put_be16(f, n_invalid);
2067     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2068                     HASH_PTE_SIZE_64 * n_valid);
2069 }
2070 
2071 static void htab_save_end_marker(QEMUFile *f)
2072 {
2073     qemu_put_be32(f, 0);
2074     qemu_put_be16(f, 0);
2075     qemu_put_be16(f, 0);
2076 }
2077 
2078 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2079                                  int64_t max_ns)
2080 {
2081     bool has_timeout = max_ns != -1;
2082     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2083     int index = spapr->htab_save_index;
2084     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2085 
2086     assert(spapr->htab_first_pass);
2087 
2088     do {
2089         int chunkstart;
2090 
2091         /* Consume invalid HPTEs */
2092         while ((index < htabslots)
2093                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2094             CLEAN_HPTE(HPTE(spapr->htab, index));
2095             index++;
2096         }
2097 
2098         /* Consume valid HPTEs */
2099         chunkstart = index;
2100         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2101                && HPTE_VALID(HPTE(spapr->htab, index))) {
2102             CLEAN_HPTE(HPTE(spapr->htab, index));
2103             index++;
2104         }
2105 
2106         if (index > chunkstart) {
2107             int n_valid = index - chunkstart;
2108 
2109             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2110 
2111             if (has_timeout &&
2112                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2113                 break;
2114             }
2115         }
2116     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2117 
2118     if (index >= htabslots) {
2119         assert(index == htabslots);
2120         index = 0;
2121         spapr->htab_first_pass = false;
2122     }
2123     spapr->htab_save_index = index;
2124 }
2125 
2126 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2127                                 int64_t max_ns)
2128 {
2129     bool final = max_ns < 0;
2130     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2131     int examined = 0, sent = 0;
2132     int index = spapr->htab_save_index;
2133     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2134 
2135     assert(!spapr->htab_first_pass);
2136 
2137     do {
2138         int chunkstart, invalidstart;
2139 
2140         /* Consume non-dirty HPTEs */
2141         while ((index < htabslots)
2142                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2143             index++;
2144             examined++;
2145         }
2146 
2147         chunkstart = index;
2148         /* Consume valid dirty HPTEs */
2149         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2150                && HPTE_DIRTY(HPTE(spapr->htab, index))
2151                && HPTE_VALID(HPTE(spapr->htab, index))) {
2152             CLEAN_HPTE(HPTE(spapr->htab, index));
2153             index++;
2154             examined++;
2155         }
2156 
2157         invalidstart = index;
2158         /* Consume invalid dirty HPTEs */
2159         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2160                && HPTE_DIRTY(HPTE(spapr->htab, index))
2161                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2162             CLEAN_HPTE(HPTE(spapr->htab, index));
2163             index++;
2164             examined++;
2165         }
2166 
2167         if (index > chunkstart) {
2168             int n_valid = invalidstart - chunkstart;
2169             int n_invalid = index - invalidstart;
2170 
2171             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2172             sent += index - chunkstart;
2173 
2174             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2175                 break;
2176             }
2177         }
2178 
2179         if (examined >= htabslots) {
2180             break;
2181         }
2182 
2183         if (index >= htabslots) {
2184             assert(index == htabslots);
2185             index = 0;
2186         }
2187     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2188 
2189     if (index >= htabslots) {
2190         assert(index == htabslots);
2191         index = 0;
2192     }
2193 
2194     spapr->htab_save_index = index;
2195 
2196     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2197 }
2198 
2199 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2200 #define MAX_KVM_BUF_SIZE    2048
2201 
2202 static int htab_save_iterate(QEMUFile *f, void *opaque)
2203 {
2204     SpaprMachineState *spapr = opaque;
2205     int fd;
2206     int rc = 0;
2207 
2208     /* Iteration header */
2209     if (!spapr->htab_shift) {
2210         qemu_put_be32(f, -1);
2211         return 1;
2212     } else {
2213         qemu_put_be32(f, 0);
2214     }
2215 
2216     if (!spapr->htab) {
2217         assert(kvm_enabled());
2218 
2219         fd = get_htab_fd(spapr);
2220         if (fd < 0) {
2221             return fd;
2222         }
2223 
2224         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2225         if (rc < 0) {
2226             return rc;
2227         }
2228     } else  if (spapr->htab_first_pass) {
2229         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2230     } else {
2231         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2232     }
2233 
2234     htab_save_end_marker(f);
2235 
2236     return rc;
2237 }
2238 
2239 static int htab_save_complete(QEMUFile *f, void *opaque)
2240 {
2241     SpaprMachineState *spapr = opaque;
2242     int fd;
2243 
2244     /* Iteration header */
2245     if (!spapr->htab_shift) {
2246         qemu_put_be32(f, -1);
2247         return 0;
2248     } else {
2249         qemu_put_be32(f, 0);
2250     }
2251 
2252     if (!spapr->htab) {
2253         int rc;
2254 
2255         assert(kvm_enabled());
2256 
2257         fd = get_htab_fd(spapr);
2258         if (fd < 0) {
2259             return fd;
2260         }
2261 
2262         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2263         if (rc < 0) {
2264             return rc;
2265         }
2266     } else {
2267         if (spapr->htab_first_pass) {
2268             htab_save_first_pass(f, spapr, -1);
2269         }
2270         htab_save_later_pass(f, spapr, -1);
2271     }
2272 
2273     /* End marker */
2274     htab_save_end_marker(f);
2275 
2276     return 0;
2277 }
2278 
2279 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2280 {
2281     SpaprMachineState *spapr = opaque;
2282     uint32_t section_hdr;
2283     int fd = -1;
2284     Error *local_err = NULL;
2285 
2286     if (version_id < 1 || version_id > 1) {
2287         error_report("htab_load() bad version");
2288         return -EINVAL;
2289     }
2290 
2291     section_hdr = qemu_get_be32(f);
2292 
2293     if (section_hdr == -1) {
2294         spapr_free_hpt(spapr);
2295         return 0;
2296     }
2297 
2298     if (section_hdr) {
2299         int ret;
2300 
2301         /* First section gives the htab size */
2302         ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2303         if (ret < 0) {
2304             error_report_err(local_err);
2305             return ret;
2306         }
2307         return 0;
2308     }
2309 
2310     if (!spapr->htab) {
2311         assert(kvm_enabled());
2312 
2313         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2314         if (fd < 0) {
2315             error_report_err(local_err);
2316             return fd;
2317         }
2318     }
2319 
2320     while (true) {
2321         uint32_t index;
2322         uint16_t n_valid, n_invalid;
2323 
2324         index = qemu_get_be32(f);
2325         n_valid = qemu_get_be16(f);
2326         n_invalid = qemu_get_be16(f);
2327 
2328         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2329             /* End of Stream */
2330             break;
2331         }
2332 
2333         if ((index + n_valid + n_invalid) >
2334             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2335             /* Bad index in stream */
2336             error_report(
2337                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2338                 index, n_valid, n_invalid, spapr->htab_shift);
2339             return -EINVAL;
2340         }
2341 
2342         if (spapr->htab) {
2343             if (n_valid) {
2344                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2345                                 HASH_PTE_SIZE_64 * n_valid);
2346             }
2347             if (n_invalid) {
2348                 memset(HPTE(spapr->htab, index + n_valid), 0,
2349                        HASH_PTE_SIZE_64 * n_invalid);
2350             }
2351         } else {
2352             int rc;
2353 
2354             assert(fd >= 0);
2355 
2356             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2357                                         &local_err);
2358             if (rc < 0) {
2359                 error_report_err(local_err);
2360                 return rc;
2361             }
2362         }
2363     }
2364 
2365     if (!spapr->htab) {
2366         assert(fd >= 0);
2367         close(fd);
2368     }
2369 
2370     return 0;
2371 }
2372 
2373 static void htab_save_cleanup(void *opaque)
2374 {
2375     SpaprMachineState *spapr = opaque;
2376 
2377     close_htab_fd(spapr);
2378 }
2379 
2380 static SaveVMHandlers savevm_htab_handlers = {
2381     .save_setup = htab_save_setup,
2382     .save_live_iterate = htab_save_iterate,
2383     .save_live_complete_precopy = htab_save_complete,
2384     .save_cleanup = htab_save_cleanup,
2385     .load_state = htab_load,
2386 };
2387 
2388 static void spapr_boot_set(void *opaque, const char *boot_device,
2389                            Error **errp)
2390 {
2391     SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2392 
2393     g_free(spapr->boot_device);
2394     spapr->boot_device = g_strdup(boot_device);
2395 }
2396 
2397 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2398 {
2399     MachineState *machine = MACHINE(spapr);
2400     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2401     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2402     int i;
2403 
2404     for (i = 0; i < nr_lmbs; i++) {
2405         uint64_t addr;
2406 
2407         addr = i * lmb_size + machine->device_memory->base;
2408         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2409                                addr / lmb_size);
2410     }
2411 }
2412 
2413 /*
2414  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2415  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2416  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2417  */
2418 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2419 {
2420     int i;
2421 
2422     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2423         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2424                    " is not aligned to %" PRIu64 " MiB",
2425                    machine->ram_size,
2426                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2427         return;
2428     }
2429 
2430     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2431         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2432                    " is not aligned to %" PRIu64 " MiB",
2433                    machine->ram_size,
2434                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2435         return;
2436     }
2437 
2438     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2439         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2440             error_setg(errp,
2441                        "Node %d memory size 0x%" PRIx64
2442                        " is not aligned to %" PRIu64 " MiB",
2443                        i, machine->numa_state->nodes[i].node_mem,
2444                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2445             return;
2446         }
2447     }
2448 }
2449 
2450 /* find cpu slot in machine->possible_cpus by core_id */
2451 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2452 {
2453     int index = id / ms->smp.threads;
2454 
2455     if (index >= ms->possible_cpus->len) {
2456         return NULL;
2457     }
2458     if (idx) {
2459         *idx = index;
2460     }
2461     return &ms->possible_cpus->cpus[index];
2462 }
2463 
2464 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2465 {
2466     MachineState *ms = MACHINE(spapr);
2467     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2468     Error *local_err = NULL;
2469     bool vsmt_user = !!spapr->vsmt;
2470     int kvm_smt = kvmppc_smt_threads();
2471     int ret;
2472     unsigned int smp_threads = ms->smp.threads;
2473 
2474     if (!kvm_enabled() && (smp_threads > 1)) {
2475         error_setg(errp, "TCG cannot support more than 1 thread/core "
2476                    "on a pseries machine");
2477         return;
2478     }
2479     if (!is_power_of_2(smp_threads)) {
2480         error_setg(errp, "Cannot support %d threads/core on a pseries "
2481                    "machine because it must be a power of 2", smp_threads);
2482         return;
2483     }
2484 
2485     /* Detemine the VSMT mode to use: */
2486     if (vsmt_user) {
2487         if (spapr->vsmt < smp_threads) {
2488             error_setg(errp, "Cannot support VSMT mode %d"
2489                        " because it must be >= threads/core (%d)",
2490                        spapr->vsmt, smp_threads);
2491             return;
2492         }
2493         /* In this case, spapr->vsmt has been set by the command line */
2494     } else if (!smc->smp_threads_vsmt) {
2495         /*
2496          * Default VSMT value is tricky, because we need it to be as
2497          * consistent as possible (for migration), but this requires
2498          * changing it for at least some existing cases.  We pick 8 as
2499          * the value that we'd get with KVM on POWER8, the
2500          * overwhelmingly common case in production systems.
2501          */
2502         spapr->vsmt = MAX(8, smp_threads);
2503     } else {
2504         spapr->vsmt = smp_threads;
2505     }
2506 
2507     /* KVM: If necessary, set the SMT mode: */
2508     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2509         ret = kvmppc_set_smt_threads(spapr->vsmt);
2510         if (ret) {
2511             /* Looks like KVM isn't able to change VSMT mode */
2512             error_setg(&local_err,
2513                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2514                        spapr->vsmt, ret);
2515             /* We can live with that if the default one is big enough
2516              * for the number of threads, and a submultiple of the one
2517              * we want.  In this case we'll waste some vcpu ids, but
2518              * behaviour will be correct */
2519             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2520                 warn_report_err(local_err);
2521             } else {
2522                 if (!vsmt_user) {
2523                     error_append_hint(&local_err,
2524                                       "On PPC, a VM with %d threads/core"
2525                                       " on a host with %d threads/core"
2526                                       " requires the use of VSMT mode %d.\n",
2527                                       smp_threads, kvm_smt, spapr->vsmt);
2528                 }
2529                 kvmppc_error_append_smt_possible_hint(&local_err);
2530                 error_propagate(errp, local_err);
2531             }
2532         }
2533     }
2534     /* else TCG: nothing to do currently */
2535 }
2536 
2537 static void spapr_init_cpus(SpaprMachineState *spapr)
2538 {
2539     MachineState *machine = MACHINE(spapr);
2540     MachineClass *mc = MACHINE_GET_CLASS(machine);
2541     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2542     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2543     const CPUArchIdList *possible_cpus;
2544     unsigned int smp_cpus = machine->smp.cpus;
2545     unsigned int smp_threads = machine->smp.threads;
2546     unsigned int max_cpus = machine->smp.max_cpus;
2547     int boot_cores_nr = smp_cpus / smp_threads;
2548     int i;
2549 
2550     possible_cpus = mc->possible_cpu_arch_ids(machine);
2551     if (mc->has_hotpluggable_cpus) {
2552         if (smp_cpus % smp_threads) {
2553             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2554                          smp_cpus, smp_threads);
2555             exit(1);
2556         }
2557         if (max_cpus % smp_threads) {
2558             error_report("max_cpus (%u) must be multiple of threads (%u)",
2559                          max_cpus, smp_threads);
2560             exit(1);
2561         }
2562     } else {
2563         if (max_cpus != smp_cpus) {
2564             error_report("This machine version does not support CPU hotplug");
2565             exit(1);
2566         }
2567         boot_cores_nr = possible_cpus->len;
2568     }
2569 
2570     if (smc->pre_2_10_has_unused_icps) {
2571         int i;
2572 
2573         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2574             /* Dummy entries get deregistered when real ICPState objects
2575              * are registered during CPU core hotplug.
2576              */
2577             pre_2_10_vmstate_register_dummy_icp(i);
2578         }
2579     }
2580 
2581     for (i = 0; i < possible_cpus->len; i++) {
2582         int core_id = i * smp_threads;
2583 
2584         if (mc->has_hotpluggable_cpus) {
2585             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2586                                    spapr_vcpu_id(spapr, core_id));
2587         }
2588 
2589         if (i < boot_cores_nr) {
2590             Object *core  = object_new(type);
2591             int nr_threads = smp_threads;
2592 
2593             /* Handle the partially filled core for older machine types */
2594             if ((i + 1) * smp_threads >= smp_cpus) {
2595                 nr_threads = smp_cpus - i * smp_threads;
2596             }
2597 
2598             object_property_set_int(core, "nr-threads", nr_threads,
2599                                     &error_fatal);
2600             object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2601                                     &error_fatal);
2602             qdev_realize(DEVICE(core), NULL, &error_fatal);
2603 
2604             object_unref(core);
2605         }
2606     }
2607 }
2608 
2609 static PCIHostState *spapr_create_default_phb(void)
2610 {
2611     DeviceState *dev;
2612 
2613     dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2614     qdev_prop_set_uint32(dev, "index", 0);
2615     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2616 
2617     return PCI_HOST_BRIDGE(dev);
2618 }
2619 
2620 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2621 {
2622     MachineState *machine = MACHINE(spapr);
2623     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2624     hwaddr rma_size = machine->ram_size;
2625     hwaddr node0_size = spapr_node0_size(machine);
2626 
2627     /* RMA has to fit in the first NUMA node */
2628     rma_size = MIN(rma_size, node0_size);
2629 
2630     /*
2631      * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2632      * never exceed that
2633      */
2634     rma_size = MIN(rma_size, 1 * TiB);
2635 
2636     /*
2637      * Clamp the RMA size based on machine type.  This is for
2638      * migration compatibility with older qemu versions, which limited
2639      * the RMA size for complicated and mostly bad reasons.
2640      */
2641     if (smc->rma_limit) {
2642         rma_size = MIN(rma_size, smc->rma_limit);
2643     }
2644 
2645     if (rma_size < MIN_RMA_SLOF) {
2646         error_setg(errp,
2647                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2648                    "ldMiB guest RMA (Real Mode Area memory)",
2649                    MIN_RMA_SLOF / MiB);
2650         return 0;
2651     }
2652 
2653     return rma_size;
2654 }
2655 
2656 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2657 {
2658     MachineState *machine = MACHINE(spapr);
2659     int i;
2660 
2661     for (i = 0; i < machine->ram_slots; i++) {
2662         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2663     }
2664 }
2665 
2666 /* pSeries LPAR / sPAPR hardware init */
2667 static void spapr_machine_init(MachineState *machine)
2668 {
2669     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2670     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2671     MachineClass *mc = MACHINE_GET_CLASS(machine);
2672     const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2673     const char *bios_name = machine->firmware ?: bios_default;
2674     const char *kernel_filename = machine->kernel_filename;
2675     const char *initrd_filename = machine->initrd_filename;
2676     PCIHostState *phb;
2677     int i;
2678     MemoryRegion *sysmem = get_system_memory();
2679     long load_limit, fw_size;
2680     char *filename;
2681     Error *resize_hpt_err = NULL;
2682 
2683     /*
2684      * if Secure VM (PEF) support is configured, then initialize it
2685      */
2686     pef_kvm_init(machine->cgs, &error_fatal);
2687 
2688     msi_nonbroken = true;
2689 
2690     QLIST_INIT(&spapr->phbs);
2691     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2692 
2693     /* Determine capabilities to run with */
2694     spapr_caps_init(spapr);
2695 
2696     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2697     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2698         /*
2699          * If the user explicitly requested a mode we should either
2700          * supply it, or fail completely (which we do below).  But if
2701          * it's not set explicitly, we reset our mode to something
2702          * that works
2703          */
2704         if (resize_hpt_err) {
2705             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2706             error_free(resize_hpt_err);
2707             resize_hpt_err = NULL;
2708         } else {
2709             spapr->resize_hpt = smc->resize_hpt_default;
2710         }
2711     }
2712 
2713     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2714 
2715     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2716         /*
2717          * User requested HPT resize, but this host can't supply it.  Bail out
2718          */
2719         error_report_err(resize_hpt_err);
2720         exit(1);
2721     }
2722     error_free(resize_hpt_err);
2723 
2724     spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2725 
2726     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2727     load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2728 
2729     /*
2730      * VSMT must be set in order to be able to compute VCPU ids, ie to
2731      * call spapr_max_server_number() or spapr_vcpu_id().
2732      */
2733     spapr_set_vsmt_mode(spapr, &error_fatal);
2734 
2735     /* Set up Interrupt Controller before we create the VCPUs */
2736     spapr_irq_init(spapr, &error_fatal);
2737 
2738     /* Set up containers for ibm,client-architecture-support negotiated options
2739      */
2740     spapr->ov5 = spapr_ovec_new();
2741     spapr->ov5_cas = spapr_ovec_new();
2742 
2743     if (smc->dr_lmb_enabled) {
2744         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2745         spapr_validate_node_memory(machine, &error_fatal);
2746     }
2747 
2748     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2749 
2750     /* advertise support for dedicated HP event source to guests */
2751     if (spapr->use_hotplug_event_source) {
2752         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2753     }
2754 
2755     /* advertise support for HPT resizing */
2756     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2757         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2758     }
2759 
2760     /* advertise support for ibm,dyamic-memory-v2 */
2761     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2762 
2763     /* advertise XIVE on POWER9 machines */
2764     if (spapr->irq->xive) {
2765         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2766     }
2767 
2768     /* init CPUs */
2769     spapr_init_cpus(spapr);
2770 
2771     /*
2772      * check we don't have a memory-less/cpu-less NUMA node
2773      * Firmware relies on the existing memory/cpu topology to provide the
2774      * NUMA topology to the kernel.
2775      * And the linux kernel needs to know the NUMA topology at start
2776      * to be able to hotplug CPUs later.
2777      */
2778     if (machine->numa_state->num_nodes) {
2779         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2780             /* check for memory-less node */
2781             if (machine->numa_state->nodes[i].node_mem == 0) {
2782                 CPUState *cs;
2783                 int found = 0;
2784                 /* check for cpu-less node */
2785                 CPU_FOREACH(cs) {
2786                     PowerPCCPU *cpu = POWERPC_CPU(cs);
2787                     if (cpu->node_id == i) {
2788                         found = 1;
2789                         break;
2790                     }
2791                 }
2792                 /* memory-less and cpu-less node */
2793                 if (!found) {
2794                     error_report(
2795                        "Memory-less/cpu-less nodes are not supported (node %d)",
2796                                  i);
2797                     exit(1);
2798                 }
2799             }
2800         }
2801 
2802     }
2803 
2804     spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2805 
2806     /* Init numa_assoc_array */
2807     spapr_numa_associativity_init(spapr, machine);
2808 
2809     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2810         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2811                               spapr->max_compat_pvr)) {
2812         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2813         /* KVM and TCG always allow GTSE with radix... */
2814         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2815     }
2816     /* ... but not with hash (currently). */
2817 
2818     if (kvm_enabled()) {
2819         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2820         kvmppc_enable_logical_ci_hcalls();
2821         kvmppc_enable_set_mode_hcall();
2822 
2823         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2824         kvmppc_enable_clear_ref_mod_hcalls();
2825 
2826         /* Enable H_PAGE_INIT */
2827         kvmppc_enable_h_page_init();
2828     }
2829 
2830     /* map RAM */
2831     memory_region_add_subregion(sysmem, 0, machine->ram);
2832 
2833     /* always allocate the device memory information */
2834     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2835 
2836     /* initialize hotplug memory address space */
2837     if (machine->ram_size < machine->maxram_size) {
2838         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2839         /*
2840          * Limit the number of hotpluggable memory slots to half the number
2841          * slots that KVM supports, leaving the other half for PCI and other
2842          * devices. However ensure that number of slots doesn't drop below 32.
2843          */
2844         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2845                            SPAPR_MAX_RAM_SLOTS;
2846 
2847         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2848             max_memslots = SPAPR_MAX_RAM_SLOTS;
2849         }
2850         if (machine->ram_slots > max_memslots) {
2851             error_report("Specified number of memory slots %"
2852                          PRIu64" exceeds max supported %d",
2853                          machine->ram_slots, max_memslots);
2854             exit(1);
2855         }
2856 
2857         machine->device_memory->base = ROUND_UP(machine->ram_size,
2858                                                 SPAPR_DEVICE_MEM_ALIGN);
2859         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2860                            "device-memory", device_mem_size);
2861         memory_region_add_subregion(sysmem, machine->device_memory->base,
2862                                     &machine->device_memory->mr);
2863     }
2864 
2865     if (smc->dr_lmb_enabled) {
2866         spapr_create_lmb_dr_connectors(spapr);
2867     }
2868 
2869     if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2870         /* Create the error string for live migration blocker */
2871         error_setg(&spapr->fwnmi_migration_blocker,
2872             "A machine check is being handled during migration. The handler"
2873             "may run and log hardware error on the destination");
2874     }
2875 
2876     if (mc->nvdimm_supported) {
2877         spapr_create_nvdimm_dr_connectors(spapr);
2878     }
2879 
2880     /* Set up RTAS event infrastructure */
2881     spapr_events_init(spapr);
2882 
2883     /* Set up the RTC RTAS interfaces */
2884     spapr_rtc_create(spapr);
2885 
2886     /* Set up VIO bus */
2887     spapr->vio_bus = spapr_vio_bus_init();
2888 
2889     for (i = 0; serial_hd(i); i++) {
2890         spapr_vty_create(spapr->vio_bus, serial_hd(i));
2891     }
2892 
2893     /* We always have at least the nvram device on VIO */
2894     spapr_create_nvram(spapr);
2895 
2896     /*
2897      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2898      * connectors (described in root DT node's "ibm,drc-types" property)
2899      * are pre-initialized here. additional child connectors (such as
2900      * connectors for a PHBs PCI slots) are added as needed during their
2901      * parent's realization.
2902      */
2903     if (smc->dr_phb_enabled) {
2904         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2905             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2906         }
2907     }
2908 
2909     /* Set up PCI */
2910     spapr_pci_rtas_init();
2911 
2912     phb = spapr_create_default_phb();
2913 
2914     for (i = 0; i < nb_nics; i++) {
2915         NICInfo *nd = &nd_table[i];
2916 
2917         if (!nd->model) {
2918             nd->model = g_strdup("spapr-vlan");
2919         }
2920 
2921         if (g_str_equal(nd->model, "spapr-vlan") ||
2922             g_str_equal(nd->model, "ibmveth")) {
2923             spapr_vlan_create(spapr->vio_bus, nd);
2924         } else {
2925             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2926         }
2927     }
2928 
2929     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2930         spapr_vscsi_create(spapr->vio_bus);
2931     }
2932 
2933     /* Graphics */
2934     if (spapr_vga_init(phb->bus, &error_fatal)) {
2935         spapr->has_graphics = true;
2936         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2937     }
2938 
2939     if (machine->usb) {
2940         if (smc->use_ohci_by_default) {
2941             pci_create_simple(phb->bus, -1, "pci-ohci");
2942         } else {
2943             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2944         }
2945 
2946         if (spapr->has_graphics) {
2947             USBBus *usb_bus = usb_bus_find(-1);
2948 
2949             usb_create_simple(usb_bus, "usb-kbd");
2950             usb_create_simple(usb_bus, "usb-mouse");
2951         }
2952     }
2953 
2954     if (kernel_filename) {
2955         spapr->kernel_size = load_elf(kernel_filename, NULL,
2956                                       translate_kernel_address, spapr,
2957                                       NULL, NULL, NULL, NULL, 1,
2958                                       PPC_ELF_MACHINE, 0, 0);
2959         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2960             spapr->kernel_size = load_elf(kernel_filename, NULL,
2961                                           translate_kernel_address, spapr,
2962                                           NULL, NULL, NULL, NULL, 0,
2963                                           PPC_ELF_MACHINE, 0, 0);
2964             spapr->kernel_le = spapr->kernel_size > 0;
2965         }
2966         if (spapr->kernel_size < 0) {
2967             error_report("error loading %s: %s", kernel_filename,
2968                          load_elf_strerror(spapr->kernel_size));
2969             exit(1);
2970         }
2971 
2972         /* load initrd */
2973         if (initrd_filename) {
2974             /* Try to locate the initrd in the gap between the kernel
2975              * and the firmware. Add a bit of space just in case
2976              */
2977             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2978                                   + 0x1ffff) & ~0xffff;
2979             spapr->initrd_size = load_image_targphys(initrd_filename,
2980                                                      spapr->initrd_base,
2981                                                      load_limit
2982                                                      - spapr->initrd_base);
2983             if (spapr->initrd_size < 0) {
2984                 error_report("could not load initial ram disk '%s'",
2985                              initrd_filename);
2986                 exit(1);
2987             }
2988         }
2989     }
2990 
2991     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2992     if (!filename) {
2993         error_report("Could not find LPAR firmware '%s'", bios_name);
2994         exit(1);
2995     }
2996     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2997     if (fw_size <= 0) {
2998         error_report("Could not load LPAR firmware '%s'", filename);
2999         exit(1);
3000     }
3001     g_free(filename);
3002 
3003     /* FIXME: Should register things through the MachineState's qdev
3004      * interface, this is a legacy from the sPAPREnvironment structure
3005      * which predated MachineState but had a similar function */
3006     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3007     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3008                          &savevm_htab_handlers, spapr);
3009 
3010     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3011 
3012     qemu_register_boot_set(spapr_boot_set, spapr);
3013 
3014     /*
3015      * Nothing needs to be done to resume a suspended guest because
3016      * suspending does not change the machine state, so no need for
3017      * a ->wakeup method.
3018      */
3019     qemu_register_wakeup_support();
3020 
3021     if (kvm_enabled()) {
3022         /* to stop and start vmclock */
3023         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3024                                          &spapr->tb);
3025 
3026         kvmppc_spapr_enable_inkernel_multitce();
3027     }
3028 
3029     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3030     if (spapr->vof) {
3031         spapr->vof->fw_size = fw_size; /* for claim() on itself */
3032         spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3033     }
3034 }
3035 
3036 #define DEFAULT_KVM_TYPE "auto"
3037 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3038 {
3039     /*
3040      * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3041      * accomodate the 'HV' and 'PV' formats that exists in the
3042      * wild. The 'auto' mode is being introduced already as
3043      * lower-case, thus we don't need to bother checking for
3044      * "AUTO".
3045      */
3046     if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3047         return 0;
3048     }
3049 
3050     if (!g_ascii_strcasecmp(vm_type, "hv")) {
3051         return 1;
3052     }
3053 
3054     if (!g_ascii_strcasecmp(vm_type, "pr")) {
3055         return 2;
3056     }
3057 
3058     error_report("Unknown kvm-type specified '%s'", vm_type);
3059     exit(1);
3060 }
3061 
3062 /*
3063  * Implementation of an interface to adjust firmware path
3064  * for the bootindex property handling.
3065  */
3066 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3067                                    DeviceState *dev)
3068 {
3069 #define CAST(type, obj, name) \
3070     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3071     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3072     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3073     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3074     PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3075 
3076     if (d) {
3077         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3078         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3079         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3080 
3081         if (spapr) {
3082             /*
3083              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3084              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3085              * 0x8000 | (target << 8) | (bus << 5) | lun
3086              * (see the "Logical unit addressing format" table in SAM5)
3087              */
3088             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3089             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3090                                    (uint64_t)id << 48);
3091         } else if (virtio) {
3092             /*
3093              * We use SRP luns of the form 01000000 | (target << 8) | lun
3094              * in the top 32 bits of the 64-bit LUN
3095              * Note: the quote above is from SLOF and it is wrong,
3096              * the actual binding is:
3097              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3098              */
3099             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3100             if (d->lun >= 256) {
3101                 /* Use the LUN "flat space addressing method" */
3102                 id |= 0x4000;
3103             }
3104             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3105                                    (uint64_t)id << 32);
3106         } else if (usb) {
3107             /*
3108              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3109              * in the top 32 bits of the 64-bit LUN
3110              */
3111             unsigned usb_port = atoi(usb->port->path);
3112             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3113             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3114                                    (uint64_t)id << 32);
3115         }
3116     }
3117 
3118     /*
3119      * SLOF probes the USB devices, and if it recognizes that the device is a
3120      * storage device, it changes its name to "storage" instead of "usb-host",
3121      * and additionally adds a child node for the SCSI LUN, so the correct
3122      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3123      */
3124     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3125         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3126         if (usb_host_dev_is_scsi_storage(usbdev)) {
3127             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3128         }
3129     }
3130 
3131     if (phb) {
3132         /* Replace "pci" with "pci@800000020000000" */
3133         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3134     }
3135 
3136     if (vsc) {
3137         /* Same logic as virtio above */
3138         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3139         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3140     }
3141 
3142     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3143         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3144         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3145         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3146     }
3147 
3148     if (pcidev) {
3149         return spapr_pci_fw_dev_name(pcidev);
3150     }
3151 
3152     return NULL;
3153 }
3154 
3155 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3156 {
3157     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3158 
3159     return g_strdup(spapr->kvm_type);
3160 }
3161 
3162 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3163 {
3164     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3165 
3166     g_free(spapr->kvm_type);
3167     spapr->kvm_type = g_strdup(value);
3168 }
3169 
3170 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3171 {
3172     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3173 
3174     return spapr->use_hotplug_event_source;
3175 }
3176 
3177 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3178                                             Error **errp)
3179 {
3180     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3181 
3182     spapr->use_hotplug_event_source = value;
3183 }
3184 
3185 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3186 {
3187     return true;
3188 }
3189 
3190 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3191 {
3192     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3193 
3194     switch (spapr->resize_hpt) {
3195     case SPAPR_RESIZE_HPT_DEFAULT:
3196         return g_strdup("default");
3197     case SPAPR_RESIZE_HPT_DISABLED:
3198         return g_strdup("disabled");
3199     case SPAPR_RESIZE_HPT_ENABLED:
3200         return g_strdup("enabled");
3201     case SPAPR_RESIZE_HPT_REQUIRED:
3202         return g_strdup("required");
3203     }
3204     g_assert_not_reached();
3205 }
3206 
3207 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3208 {
3209     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3210 
3211     if (strcmp(value, "default") == 0) {
3212         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3213     } else if (strcmp(value, "disabled") == 0) {
3214         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3215     } else if (strcmp(value, "enabled") == 0) {
3216         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3217     } else if (strcmp(value, "required") == 0) {
3218         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3219     } else {
3220         error_setg(errp, "Bad value for \"resize-hpt\" property");
3221     }
3222 }
3223 
3224 static bool spapr_get_vof(Object *obj, Error **errp)
3225 {
3226     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3227 
3228     return spapr->vof != NULL;
3229 }
3230 
3231 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3232 {
3233     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3234 
3235     if (spapr->vof) {
3236         vof_cleanup(spapr->vof);
3237         g_free(spapr->vof);
3238         spapr->vof = NULL;
3239     }
3240     if (!value) {
3241         return;
3242     }
3243     spapr->vof = g_malloc0(sizeof(*spapr->vof));
3244 }
3245 
3246 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3247 {
3248     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3249 
3250     if (spapr->irq == &spapr_irq_xics_legacy) {
3251         return g_strdup("legacy");
3252     } else if (spapr->irq == &spapr_irq_xics) {
3253         return g_strdup("xics");
3254     } else if (spapr->irq == &spapr_irq_xive) {
3255         return g_strdup("xive");
3256     } else if (spapr->irq == &spapr_irq_dual) {
3257         return g_strdup("dual");
3258     }
3259     g_assert_not_reached();
3260 }
3261 
3262 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3263 {
3264     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3265 
3266     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3267         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3268         return;
3269     }
3270 
3271     /* The legacy IRQ backend can not be set */
3272     if (strcmp(value, "xics") == 0) {
3273         spapr->irq = &spapr_irq_xics;
3274     } else if (strcmp(value, "xive") == 0) {
3275         spapr->irq = &spapr_irq_xive;
3276     } else if (strcmp(value, "dual") == 0) {
3277         spapr->irq = &spapr_irq_dual;
3278     } else {
3279         error_setg(errp, "Bad value for \"ic-mode\" property");
3280     }
3281 }
3282 
3283 static char *spapr_get_host_model(Object *obj, Error **errp)
3284 {
3285     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3286 
3287     return g_strdup(spapr->host_model);
3288 }
3289 
3290 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3291 {
3292     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3293 
3294     g_free(spapr->host_model);
3295     spapr->host_model = g_strdup(value);
3296 }
3297 
3298 static char *spapr_get_host_serial(Object *obj, Error **errp)
3299 {
3300     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3301 
3302     return g_strdup(spapr->host_serial);
3303 }
3304 
3305 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3306 {
3307     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3308 
3309     g_free(spapr->host_serial);
3310     spapr->host_serial = g_strdup(value);
3311 }
3312 
3313 static void spapr_instance_init(Object *obj)
3314 {
3315     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3316     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3317     MachineState *ms = MACHINE(spapr);
3318     MachineClass *mc = MACHINE_GET_CLASS(ms);
3319 
3320     /*
3321      * NVDIMM support went live in 5.1 without considering that, in
3322      * other archs, the user needs to enable NVDIMM support with the
3323      * 'nvdimm' machine option and the default behavior is NVDIMM
3324      * support disabled. It is too late to roll back to the standard
3325      * behavior without breaking 5.1 guests.
3326      */
3327     if (mc->nvdimm_supported) {
3328         ms->nvdimms_state->is_enabled = true;
3329     }
3330 
3331     spapr->htab_fd = -1;
3332     spapr->use_hotplug_event_source = true;
3333     spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3334     object_property_add_str(obj, "kvm-type",
3335                             spapr_get_kvm_type, spapr_set_kvm_type);
3336     object_property_set_description(obj, "kvm-type",
3337                                     "Specifies the KVM virtualization mode (auto,"
3338                                     " hv, pr). Defaults to 'auto'. This mode will use"
3339                                     " any available KVM module loaded in the host,"
3340                                     " where kvm_hv takes precedence if both kvm_hv and"
3341                                     " kvm_pr are loaded.");
3342     object_property_add_bool(obj, "modern-hotplug-events",
3343                             spapr_get_modern_hotplug_events,
3344                             spapr_set_modern_hotplug_events);
3345     object_property_set_description(obj, "modern-hotplug-events",
3346                                     "Use dedicated hotplug event mechanism in"
3347                                     " place of standard EPOW events when possible"
3348                                     " (required for memory hot-unplug support)");
3349     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3350                             "Maximum permitted CPU compatibility mode");
3351 
3352     object_property_add_str(obj, "resize-hpt",
3353                             spapr_get_resize_hpt, spapr_set_resize_hpt);
3354     object_property_set_description(obj, "resize-hpt",
3355                                     "Resizing of the Hash Page Table (enabled, disabled, required)");
3356     object_property_add_uint32_ptr(obj, "vsmt",
3357                                    &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3358     object_property_set_description(obj, "vsmt",
3359                                     "Virtual SMT: KVM behaves as if this were"
3360                                     " the host's SMT mode");
3361 
3362     object_property_add_bool(obj, "vfio-no-msix-emulation",
3363                              spapr_get_msix_emulation, NULL);
3364 
3365     object_property_add_uint64_ptr(obj, "kernel-addr",
3366                                    &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3367     object_property_set_description(obj, "kernel-addr",
3368                                     stringify(KERNEL_LOAD_ADDR)
3369                                     " for -kernel is the default");
3370     spapr->kernel_addr = KERNEL_LOAD_ADDR;
3371 
3372     object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3373     object_property_set_description(obj, "x-vof",
3374                                     "Enable Virtual Open Firmware (experimental)");
3375 
3376     /* The machine class defines the default interrupt controller mode */
3377     spapr->irq = smc->irq;
3378     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3379                             spapr_set_ic_mode);
3380     object_property_set_description(obj, "ic-mode",
3381                  "Specifies the interrupt controller mode (xics, xive, dual)");
3382 
3383     object_property_add_str(obj, "host-model",
3384         spapr_get_host_model, spapr_set_host_model);
3385     object_property_set_description(obj, "host-model",
3386         "Host model to advertise in guest device tree");
3387     object_property_add_str(obj, "host-serial",
3388         spapr_get_host_serial, spapr_set_host_serial);
3389     object_property_set_description(obj, "host-serial",
3390         "Host serial number to advertise in guest device tree");
3391 }
3392 
3393 static void spapr_machine_finalizefn(Object *obj)
3394 {
3395     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3396 
3397     g_free(spapr->kvm_type);
3398 }
3399 
3400 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3401 {
3402     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3403     PowerPCCPU *cpu = POWERPC_CPU(cs);
3404     CPUPPCState *env = &cpu->env;
3405 
3406     cpu_synchronize_state(cs);
3407     /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3408     if (spapr->fwnmi_system_reset_addr != -1) {
3409         uint64_t rtas_addr, addr;
3410 
3411         /* get rtas addr from fdt */
3412         rtas_addr = spapr_get_rtas_addr();
3413         if (!rtas_addr) {
3414             qemu_system_guest_panicked(NULL);
3415             return;
3416         }
3417 
3418         addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3419         stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3420         stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3421         env->gpr[3] = addr;
3422     }
3423     ppc_cpu_do_system_reset(cs);
3424     if (spapr->fwnmi_system_reset_addr != -1) {
3425         env->nip = spapr->fwnmi_system_reset_addr;
3426     }
3427 }
3428 
3429 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3430 {
3431     CPUState *cs;
3432 
3433     CPU_FOREACH(cs) {
3434         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3435     }
3436 }
3437 
3438 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3439                           void *fdt, int *fdt_start_offset, Error **errp)
3440 {
3441     uint64_t addr;
3442     uint32_t node;
3443 
3444     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3445     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3446                                     &error_abort);
3447     *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3448                                              SPAPR_MEMORY_BLOCK_SIZE);
3449     return 0;
3450 }
3451 
3452 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3453                            bool dedicated_hp_event_source)
3454 {
3455     SpaprDrc *drc;
3456     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3457     int i;
3458     uint64_t addr = addr_start;
3459     bool hotplugged = spapr_drc_hotplugged(dev);
3460 
3461     for (i = 0; i < nr_lmbs; i++) {
3462         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3463                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3464         g_assert(drc);
3465 
3466         /*
3467          * memory_device_get_free_addr() provided a range of free addresses
3468          * that doesn't overlap with any existing mapping at pre-plug. The
3469          * corresponding LMB DRCs are thus assumed to be all attachable.
3470          */
3471         spapr_drc_attach(drc, dev);
3472         if (!hotplugged) {
3473             spapr_drc_reset(drc);
3474         }
3475         addr += SPAPR_MEMORY_BLOCK_SIZE;
3476     }
3477     /* send hotplug notification to the
3478      * guest only in case of hotplugged memory
3479      */
3480     if (hotplugged) {
3481         if (dedicated_hp_event_source) {
3482             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3483                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3484             g_assert(drc);
3485             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3486                                                    nr_lmbs,
3487                                                    spapr_drc_index(drc));
3488         } else {
3489             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3490                                            nr_lmbs);
3491         }
3492     }
3493 }
3494 
3495 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3496 {
3497     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3498     PCDIMMDevice *dimm = PC_DIMM(dev);
3499     uint64_t size, addr;
3500     int64_t slot;
3501     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3502 
3503     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3504 
3505     pc_dimm_plug(dimm, MACHINE(ms));
3506 
3507     if (!is_nvdimm) {
3508         addr = object_property_get_uint(OBJECT(dimm),
3509                                         PC_DIMM_ADDR_PROP, &error_abort);
3510         spapr_add_lmbs(dev, addr, size,
3511                        spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3512     } else {
3513         slot = object_property_get_int(OBJECT(dimm),
3514                                        PC_DIMM_SLOT_PROP, &error_abort);
3515         /* We should have valid slot number at this point */
3516         g_assert(slot >= 0);
3517         spapr_add_nvdimm(dev, slot);
3518     }
3519 }
3520 
3521 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3522                                   Error **errp)
3523 {
3524     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3525     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3526     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3527     PCDIMMDevice *dimm = PC_DIMM(dev);
3528     Error *local_err = NULL;
3529     uint64_t size;
3530     Object *memdev;
3531     hwaddr pagesize;
3532 
3533     if (!smc->dr_lmb_enabled) {
3534         error_setg(errp, "Memory hotplug not supported for this machine");
3535         return;
3536     }
3537 
3538     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3539     if (local_err) {
3540         error_propagate(errp, local_err);
3541         return;
3542     }
3543 
3544     if (is_nvdimm) {
3545         if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3546             return;
3547         }
3548     } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3549         error_setg(errp, "Hotplugged memory size must be a multiple of "
3550                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3551         return;
3552     }
3553 
3554     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3555                                       &error_abort);
3556     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3557     if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3558         return;
3559     }
3560 
3561     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3562 }
3563 
3564 struct SpaprDimmState {
3565     PCDIMMDevice *dimm;
3566     uint32_t nr_lmbs;
3567     QTAILQ_ENTRY(SpaprDimmState) next;
3568 };
3569 
3570 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3571                                                        PCDIMMDevice *dimm)
3572 {
3573     SpaprDimmState *dimm_state = NULL;
3574 
3575     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3576         if (dimm_state->dimm == dimm) {
3577             break;
3578         }
3579     }
3580     return dimm_state;
3581 }
3582 
3583 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3584                                                       uint32_t nr_lmbs,
3585                                                       PCDIMMDevice *dimm)
3586 {
3587     SpaprDimmState *ds = NULL;
3588 
3589     /*
3590      * If this request is for a DIMM whose removal had failed earlier
3591      * (due to guest's refusal to remove the LMBs), we would have this
3592      * dimm already in the pending_dimm_unplugs list. In that
3593      * case don't add again.
3594      */
3595     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3596     if (!ds) {
3597         ds = g_malloc0(sizeof(SpaprDimmState));
3598         ds->nr_lmbs = nr_lmbs;
3599         ds->dimm = dimm;
3600         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3601     }
3602     return ds;
3603 }
3604 
3605 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3606                                               SpaprDimmState *dimm_state)
3607 {
3608     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3609     g_free(dimm_state);
3610 }
3611 
3612 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3613                                                         PCDIMMDevice *dimm)
3614 {
3615     SpaprDrc *drc;
3616     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3617                                                   &error_abort);
3618     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3619     uint32_t avail_lmbs = 0;
3620     uint64_t addr_start, addr;
3621     int i;
3622 
3623     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3624                                           &error_abort);
3625 
3626     addr = addr_start;
3627     for (i = 0; i < nr_lmbs; i++) {
3628         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3629                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3630         g_assert(drc);
3631         if (drc->dev) {
3632             avail_lmbs++;
3633         }
3634         addr += SPAPR_MEMORY_BLOCK_SIZE;
3635     }
3636 
3637     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3638 }
3639 
3640 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3641 {
3642     SpaprDimmState *ds;
3643     PCDIMMDevice *dimm;
3644     SpaprDrc *drc;
3645     uint32_t nr_lmbs;
3646     uint64_t size, addr_start, addr;
3647     g_autofree char *qapi_error = NULL;
3648     int i;
3649 
3650     if (!dev) {
3651         return;
3652     }
3653 
3654     dimm = PC_DIMM(dev);
3655     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3656 
3657     /*
3658      * 'ds == NULL' would mean that the DIMM doesn't have a pending
3659      * unplug state, but one of its DRC is marked as unplug_requested.
3660      * This is bad and weird enough to g_assert() out.
3661      */
3662     g_assert(ds);
3663 
3664     spapr_pending_dimm_unplugs_remove(spapr, ds);
3665 
3666     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3667     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3668 
3669     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3670                                           &error_abort);
3671 
3672     addr = addr_start;
3673     for (i = 0; i < nr_lmbs; i++) {
3674         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3675                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3676         g_assert(drc);
3677 
3678         drc->unplug_requested = false;
3679         addr += SPAPR_MEMORY_BLOCK_SIZE;
3680     }
3681 
3682     /*
3683      * Tell QAPI that something happened and the memory
3684      * hotunplug wasn't successful.
3685      */
3686     qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3687                                  "for device %s", dev->id);
3688     qapi_event_send_mem_unplug_error(dev->id, qapi_error);
3689 }
3690 
3691 /* Callback to be called during DRC release. */
3692 void spapr_lmb_release(DeviceState *dev)
3693 {
3694     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3695     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3696     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3697 
3698     /* This information will get lost if a migration occurs
3699      * during the unplug process. In this case recover it. */
3700     if (ds == NULL) {
3701         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3702         g_assert(ds);
3703         /* The DRC being examined by the caller at least must be counted */
3704         g_assert(ds->nr_lmbs);
3705     }
3706 
3707     if (--ds->nr_lmbs) {
3708         return;
3709     }
3710 
3711     /*
3712      * Now that all the LMBs have been removed by the guest, call the
3713      * unplug handler chain. This can never fail.
3714      */
3715     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3716     object_unparent(OBJECT(dev));
3717 }
3718 
3719 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3720 {
3721     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3722     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3723 
3724     /* We really shouldn't get this far without anything to unplug */
3725     g_assert(ds);
3726 
3727     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3728     qdev_unrealize(dev);
3729     spapr_pending_dimm_unplugs_remove(spapr, ds);
3730 }
3731 
3732 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3733                                         DeviceState *dev, Error **errp)
3734 {
3735     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3736     PCDIMMDevice *dimm = PC_DIMM(dev);
3737     uint32_t nr_lmbs;
3738     uint64_t size, addr_start, addr;
3739     int i;
3740     SpaprDrc *drc;
3741 
3742     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3743         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3744         return;
3745     }
3746 
3747     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3748     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3749 
3750     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3751                                           &error_abort);
3752 
3753     /*
3754      * An existing pending dimm state for this DIMM means that there is an
3755      * unplug operation in progress, waiting for the spapr_lmb_release
3756      * callback to complete the job (BQL can't cover that far). In this case,
3757      * bail out to avoid detaching DRCs that were already released.
3758      */
3759     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3760         error_setg(errp, "Memory unplug already in progress for device %s",
3761                    dev->id);
3762         return;
3763     }
3764 
3765     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3766 
3767     addr = addr_start;
3768     for (i = 0; i < nr_lmbs; i++) {
3769         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3770                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3771         g_assert(drc);
3772 
3773         spapr_drc_unplug_request(drc);
3774         addr += SPAPR_MEMORY_BLOCK_SIZE;
3775     }
3776 
3777     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3778                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3779     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3780                                               nr_lmbs, spapr_drc_index(drc));
3781 }
3782 
3783 /* Callback to be called during DRC release. */
3784 void spapr_core_release(DeviceState *dev)
3785 {
3786     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3787 
3788     /* Call the unplug handler chain. This can never fail. */
3789     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3790     object_unparent(OBJECT(dev));
3791 }
3792 
3793 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3794 {
3795     MachineState *ms = MACHINE(hotplug_dev);
3796     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3797     CPUCore *cc = CPU_CORE(dev);
3798     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3799 
3800     if (smc->pre_2_10_has_unused_icps) {
3801         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3802         int i;
3803 
3804         for (i = 0; i < cc->nr_threads; i++) {
3805             CPUState *cs = CPU(sc->threads[i]);
3806 
3807             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3808         }
3809     }
3810 
3811     assert(core_slot);
3812     core_slot->cpu = NULL;
3813     qdev_unrealize(dev);
3814 }
3815 
3816 static
3817 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3818                                Error **errp)
3819 {
3820     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3821     int index;
3822     SpaprDrc *drc;
3823     CPUCore *cc = CPU_CORE(dev);
3824 
3825     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3826         error_setg(errp, "Unable to find CPU core with core-id: %d",
3827                    cc->core_id);
3828         return;
3829     }
3830     if (index == 0) {
3831         error_setg(errp, "Boot CPU core may not be unplugged");
3832         return;
3833     }
3834 
3835     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3836                           spapr_vcpu_id(spapr, cc->core_id));
3837     g_assert(drc);
3838 
3839     if (!spapr_drc_unplug_requested(drc)) {
3840         spapr_drc_unplug_request(drc);
3841     }
3842 
3843     /*
3844      * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3845      * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3846      * pulses removing the same CPU. Otherwise, in an failed hotunplug
3847      * attempt (e.g. the kernel will refuse to remove the last online
3848      * CPU), we will never attempt it again because unplug_requested
3849      * will still be 'true' in that case.
3850      */
3851     spapr_hotplug_req_remove_by_index(drc);
3852 }
3853 
3854 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3855                            void *fdt, int *fdt_start_offset, Error **errp)
3856 {
3857     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3858     CPUState *cs = CPU(core->threads[0]);
3859     PowerPCCPU *cpu = POWERPC_CPU(cs);
3860     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3861     int id = spapr_get_vcpu_id(cpu);
3862     g_autofree char *nodename = NULL;
3863     int offset;
3864 
3865     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3866     offset = fdt_add_subnode(fdt, 0, nodename);
3867 
3868     spapr_dt_cpu(cs, fdt, offset, spapr);
3869 
3870     /*
3871      * spapr_dt_cpu() does not fill the 'name' property in the
3872      * CPU node. The function is called during boot process, before
3873      * and after CAS, and overwriting the 'name' property written
3874      * by SLOF is not allowed.
3875      *
3876      * Write it manually after spapr_dt_cpu(). This makes the hotplug
3877      * CPUs more compatible with the coldplugged ones, which have
3878      * the 'name' property. Linux Kernel also relies on this
3879      * property to identify CPU nodes.
3880      */
3881     _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3882 
3883     *fdt_start_offset = offset;
3884     return 0;
3885 }
3886 
3887 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3888 {
3889     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3890     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3891     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3892     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3893     CPUCore *cc = CPU_CORE(dev);
3894     CPUState *cs;
3895     SpaprDrc *drc;
3896     CPUArchId *core_slot;
3897     int index;
3898     bool hotplugged = spapr_drc_hotplugged(dev);
3899     int i;
3900 
3901     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3902     g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3903 
3904     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3905                           spapr_vcpu_id(spapr, cc->core_id));
3906 
3907     g_assert(drc || !mc->has_hotpluggable_cpus);
3908 
3909     if (drc) {
3910         /*
3911          * spapr_core_pre_plug() already buys us this is a brand new
3912          * core being plugged into a free slot. Nothing should already
3913          * be attached to the corresponding DRC.
3914          */
3915         spapr_drc_attach(drc, dev);
3916 
3917         if (hotplugged) {
3918             /*
3919              * Send hotplug notification interrupt to the guest only
3920              * in case of hotplugged CPUs.
3921              */
3922             spapr_hotplug_req_add_by_index(drc);
3923         } else {
3924             spapr_drc_reset(drc);
3925         }
3926     }
3927 
3928     core_slot->cpu = OBJECT(dev);
3929 
3930     /*
3931      * Set compatibility mode to match the boot CPU, which was either set
3932      * by the machine reset code or by CAS. This really shouldn't fail at
3933      * this point.
3934      */
3935     if (hotplugged) {
3936         for (i = 0; i < cc->nr_threads; i++) {
3937             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3938                            &error_abort);
3939         }
3940     }
3941 
3942     if (smc->pre_2_10_has_unused_icps) {
3943         for (i = 0; i < cc->nr_threads; i++) {
3944             cs = CPU(core->threads[i]);
3945             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3946         }
3947     }
3948 }
3949 
3950 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3951                                 Error **errp)
3952 {
3953     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3954     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3955     CPUCore *cc = CPU_CORE(dev);
3956     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3957     const char *type = object_get_typename(OBJECT(dev));
3958     CPUArchId *core_slot;
3959     int index;
3960     unsigned int smp_threads = machine->smp.threads;
3961 
3962     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3963         error_setg(errp, "CPU hotplug not supported for this machine");
3964         return;
3965     }
3966 
3967     if (strcmp(base_core_type, type)) {
3968         error_setg(errp, "CPU core type should be %s", base_core_type);
3969         return;
3970     }
3971 
3972     if (cc->core_id % smp_threads) {
3973         error_setg(errp, "invalid core id %d", cc->core_id);
3974         return;
3975     }
3976 
3977     /*
3978      * In general we should have homogeneous threads-per-core, but old
3979      * (pre hotplug support) machine types allow the last core to have
3980      * reduced threads as a compatibility hack for when we allowed
3981      * total vcpus not a multiple of threads-per-core.
3982      */
3983     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3984         error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3985                    smp_threads);
3986         return;
3987     }
3988 
3989     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3990     if (!core_slot) {
3991         error_setg(errp, "core id %d out of range", cc->core_id);
3992         return;
3993     }
3994 
3995     if (core_slot->cpu) {
3996         error_setg(errp, "core %d already populated", cc->core_id);
3997         return;
3998     }
3999 
4000     numa_cpu_pre_plug(core_slot, dev, errp);
4001 }
4002 
4003 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4004                           void *fdt, int *fdt_start_offset, Error **errp)
4005 {
4006     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4007     int intc_phandle;
4008 
4009     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4010     if (intc_phandle <= 0) {
4011         return -1;
4012     }
4013 
4014     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4015         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4016         return -1;
4017     }
4018 
4019     /* generally SLOF creates these, for hotplug it's up to QEMU */
4020     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4021 
4022     return 0;
4023 }
4024 
4025 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4026                                Error **errp)
4027 {
4028     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4029     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4030     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4031     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4032     SpaprDrc *drc;
4033 
4034     if (dev->hotplugged && !smc->dr_phb_enabled) {
4035         error_setg(errp, "PHB hotplug not supported for this machine");
4036         return false;
4037     }
4038 
4039     if (sphb->index == (uint32_t)-1) {
4040         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4041         return false;
4042     }
4043 
4044     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4045     if (drc && drc->dev) {
4046         error_setg(errp, "PHB %d already attached", sphb->index);
4047         return false;
4048     }
4049 
4050     /*
4051      * This will check that sphb->index doesn't exceed the maximum number of
4052      * PHBs for the current machine type.
4053      */
4054     return
4055         smc->phb_placement(spapr, sphb->index,
4056                            &sphb->buid, &sphb->io_win_addr,
4057                            &sphb->mem_win_addr, &sphb->mem64_win_addr,
4058                            windows_supported, sphb->dma_liobn,
4059                            &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4060                            errp);
4061 }
4062 
4063 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4064 {
4065     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4066     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4067     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4068     SpaprDrc *drc;
4069     bool hotplugged = spapr_drc_hotplugged(dev);
4070 
4071     if (!smc->dr_phb_enabled) {
4072         return;
4073     }
4074 
4075     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4076     /* hotplug hooks should check it's enabled before getting this far */
4077     assert(drc);
4078 
4079     /* spapr_phb_pre_plug() already checked the DRC is attachable */
4080     spapr_drc_attach(drc, dev);
4081 
4082     if (hotplugged) {
4083         spapr_hotplug_req_add_by_index(drc);
4084     } else {
4085         spapr_drc_reset(drc);
4086     }
4087 }
4088 
4089 void spapr_phb_release(DeviceState *dev)
4090 {
4091     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4092 
4093     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4094     object_unparent(OBJECT(dev));
4095 }
4096 
4097 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4098 {
4099     qdev_unrealize(dev);
4100 }
4101 
4102 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4103                                      DeviceState *dev, Error **errp)
4104 {
4105     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4106     SpaprDrc *drc;
4107 
4108     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4109     assert(drc);
4110 
4111     if (!spapr_drc_unplug_requested(drc)) {
4112         spapr_drc_unplug_request(drc);
4113         spapr_hotplug_req_remove_by_index(drc);
4114     } else {
4115         error_setg(errp,
4116                    "PCI Host Bridge unplug already in progress for device %s",
4117                    dev->id);
4118     }
4119 }
4120 
4121 static
4122 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4123                               Error **errp)
4124 {
4125     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4126 
4127     if (spapr->tpm_proxy != NULL) {
4128         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4129         return false;
4130     }
4131 
4132     return true;
4133 }
4134 
4135 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4136 {
4137     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4138     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4139 
4140     /* Already checked in spapr_tpm_proxy_pre_plug() */
4141     g_assert(spapr->tpm_proxy == NULL);
4142 
4143     spapr->tpm_proxy = tpm_proxy;
4144 }
4145 
4146 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4147 {
4148     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4149 
4150     qdev_unrealize(dev);
4151     object_unparent(OBJECT(dev));
4152     spapr->tpm_proxy = NULL;
4153 }
4154 
4155 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4156                                       DeviceState *dev, Error **errp)
4157 {
4158     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4159         spapr_memory_plug(hotplug_dev, dev);
4160     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4161         spapr_core_plug(hotplug_dev, dev);
4162     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4163         spapr_phb_plug(hotplug_dev, dev);
4164     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4165         spapr_tpm_proxy_plug(hotplug_dev, dev);
4166     }
4167 }
4168 
4169 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4170                                         DeviceState *dev, Error **errp)
4171 {
4172     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4173         spapr_memory_unplug(hotplug_dev, dev);
4174     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4175         spapr_core_unplug(hotplug_dev, dev);
4176     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4177         spapr_phb_unplug(hotplug_dev, dev);
4178     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4179         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4180     }
4181 }
4182 
4183 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4184 {
4185     return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4186         /*
4187          * CAS will process all pending unplug requests.
4188          *
4189          * HACK: a guest could theoretically have cleared all bits in OV5,
4190          * but none of the guests we care for do.
4191          */
4192         spapr_ovec_empty(spapr->ov5_cas);
4193 }
4194 
4195 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4196                                                 DeviceState *dev, Error **errp)
4197 {
4198     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4199     MachineClass *mc = MACHINE_GET_CLASS(sms);
4200     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4201 
4202     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4203         if (spapr_memory_hot_unplug_supported(sms)) {
4204             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4205         } else {
4206             error_setg(errp, "Memory hot unplug not supported for this guest");
4207         }
4208     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4209         if (!mc->has_hotpluggable_cpus) {
4210             error_setg(errp, "CPU hot unplug not supported on this machine");
4211             return;
4212         }
4213         spapr_core_unplug_request(hotplug_dev, dev, errp);
4214     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4215         if (!smc->dr_phb_enabled) {
4216             error_setg(errp, "PHB hot unplug not supported on this machine");
4217             return;
4218         }
4219         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4220     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4221         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4222     }
4223 }
4224 
4225 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4226                                           DeviceState *dev, Error **errp)
4227 {
4228     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4229         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4230     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4231         spapr_core_pre_plug(hotplug_dev, dev, errp);
4232     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4233         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4234     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4235         spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4236     }
4237 }
4238 
4239 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4240                                                  DeviceState *dev)
4241 {
4242     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4243         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4244         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4245         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4246         return HOTPLUG_HANDLER(machine);
4247     }
4248     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4249         PCIDevice *pcidev = PCI_DEVICE(dev);
4250         PCIBus *root = pci_device_root_bus(pcidev);
4251         SpaprPhbState *phb =
4252             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4253                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4254 
4255         if (phb) {
4256             return HOTPLUG_HANDLER(phb);
4257         }
4258     }
4259     return NULL;
4260 }
4261 
4262 static CpuInstanceProperties
4263 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4264 {
4265     CPUArchId *core_slot;
4266     MachineClass *mc = MACHINE_GET_CLASS(machine);
4267 
4268     /* make sure possible_cpu are intialized */
4269     mc->possible_cpu_arch_ids(machine);
4270     /* get CPU core slot containing thread that matches cpu_index */
4271     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4272     assert(core_slot);
4273     return core_slot->props;
4274 }
4275 
4276 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4277 {
4278     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4279 }
4280 
4281 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4282 {
4283     int i;
4284     unsigned int smp_threads = machine->smp.threads;
4285     unsigned int smp_cpus = machine->smp.cpus;
4286     const char *core_type;
4287     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4288     MachineClass *mc = MACHINE_GET_CLASS(machine);
4289 
4290     if (!mc->has_hotpluggable_cpus) {
4291         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4292     }
4293     if (machine->possible_cpus) {
4294         assert(machine->possible_cpus->len == spapr_max_cores);
4295         return machine->possible_cpus;
4296     }
4297 
4298     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4299     if (!core_type) {
4300         error_report("Unable to find sPAPR CPU Core definition");
4301         exit(1);
4302     }
4303 
4304     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4305                              sizeof(CPUArchId) * spapr_max_cores);
4306     machine->possible_cpus->len = spapr_max_cores;
4307     for (i = 0; i < machine->possible_cpus->len; i++) {
4308         int core_id = i * smp_threads;
4309 
4310         machine->possible_cpus->cpus[i].type = core_type;
4311         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4312         machine->possible_cpus->cpus[i].arch_id = core_id;
4313         machine->possible_cpus->cpus[i].props.has_core_id = true;
4314         machine->possible_cpus->cpus[i].props.core_id = core_id;
4315     }
4316     return machine->possible_cpus;
4317 }
4318 
4319 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4320                                 uint64_t *buid, hwaddr *pio,
4321                                 hwaddr *mmio32, hwaddr *mmio64,
4322                                 unsigned n_dma, uint32_t *liobns,
4323                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4324 {
4325     /*
4326      * New-style PHB window placement.
4327      *
4328      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4329      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4330      * windows.
4331      *
4332      * Some guest kernels can't work with MMIO windows above 1<<46
4333      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4334      *
4335      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4336      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4337      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4338      * 1TiB 64-bit MMIO windows for each PHB.
4339      */
4340     const uint64_t base_buid = 0x800000020000000ULL;
4341     int i;
4342 
4343     /* Sanity check natural alignments */
4344     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4345     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4346     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4347     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4348     /* Sanity check bounds */
4349     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4350                       SPAPR_PCI_MEM32_WIN_SIZE);
4351     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4352                       SPAPR_PCI_MEM64_WIN_SIZE);
4353 
4354     if (index >= SPAPR_MAX_PHBS) {
4355         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4356                    SPAPR_MAX_PHBS - 1);
4357         return false;
4358     }
4359 
4360     *buid = base_buid + index;
4361     for (i = 0; i < n_dma; ++i) {
4362         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4363     }
4364 
4365     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4366     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4367     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4368 
4369     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4370     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4371     return true;
4372 }
4373 
4374 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4375 {
4376     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4377 
4378     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4379 }
4380 
4381 static void spapr_ics_resend(XICSFabric *dev)
4382 {
4383     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4384 
4385     ics_resend(spapr->ics);
4386 }
4387 
4388 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4389 {
4390     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4391 
4392     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4393 }
4394 
4395 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4396                                  Monitor *mon)
4397 {
4398     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4399 
4400     spapr_irq_print_info(spapr, mon);
4401     monitor_printf(mon, "irqchip: %s\n",
4402                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4403 }
4404 
4405 /*
4406  * This is a XIVE only operation
4407  */
4408 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4409                            uint8_t nvt_blk, uint32_t nvt_idx,
4410                            bool cam_ignore, uint8_t priority,
4411                            uint32_t logic_serv, XiveTCTXMatch *match)
4412 {
4413     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4414     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4415     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4416     int count;
4417 
4418     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4419                            priority, logic_serv, match);
4420     if (count < 0) {
4421         return count;
4422     }
4423 
4424     /*
4425      * When we implement the save and restore of the thread interrupt
4426      * contexts in the enter/exit CPU handlers of the machine and the
4427      * escalations in QEMU, we should be able to handle non dispatched
4428      * vCPUs.
4429      *
4430      * Until this is done, the sPAPR machine should find at least one
4431      * matching context always.
4432      */
4433     if (count == 0) {
4434         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4435                       nvt_blk, nvt_idx);
4436     }
4437 
4438     return count;
4439 }
4440 
4441 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4442 {
4443     return cpu->vcpu_id;
4444 }
4445 
4446 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4447 {
4448     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4449     MachineState *ms = MACHINE(spapr);
4450     int vcpu_id;
4451 
4452     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4453 
4454     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4455         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4456         error_append_hint(errp, "Adjust the number of cpus to %d "
4457                           "or try to raise the number of threads per core\n",
4458                           vcpu_id * ms->smp.threads / spapr->vsmt);
4459         return false;
4460     }
4461 
4462     cpu->vcpu_id = vcpu_id;
4463     return true;
4464 }
4465 
4466 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4467 {
4468     CPUState *cs;
4469 
4470     CPU_FOREACH(cs) {
4471         PowerPCCPU *cpu = POWERPC_CPU(cs);
4472 
4473         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4474             return cpu;
4475         }
4476     }
4477 
4478     return NULL;
4479 }
4480 
4481 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4482 {
4483     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4484 
4485     /* These are only called by TCG, KVM maintains dispatch state */
4486 
4487     spapr_cpu->prod = false;
4488     if (spapr_cpu->vpa_addr) {
4489         CPUState *cs = CPU(cpu);
4490         uint32_t dispatch;
4491 
4492         dispatch = ldl_be_phys(cs->as,
4493                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4494         dispatch++;
4495         if ((dispatch & 1) != 0) {
4496             qemu_log_mask(LOG_GUEST_ERROR,
4497                           "VPA: incorrect dispatch counter value for "
4498                           "dispatched partition %u, correcting.\n", dispatch);
4499             dispatch++;
4500         }
4501         stl_be_phys(cs->as,
4502                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4503     }
4504 }
4505 
4506 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4507 {
4508     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4509 
4510     if (spapr_cpu->vpa_addr) {
4511         CPUState *cs = CPU(cpu);
4512         uint32_t dispatch;
4513 
4514         dispatch = ldl_be_phys(cs->as,
4515                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4516         dispatch++;
4517         if ((dispatch & 1) != 1) {
4518             qemu_log_mask(LOG_GUEST_ERROR,
4519                           "VPA: incorrect dispatch counter value for "
4520                           "preempted partition %u, correcting.\n", dispatch);
4521             dispatch++;
4522         }
4523         stl_be_phys(cs->as,
4524                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4525     }
4526 }
4527 
4528 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4529 {
4530     MachineClass *mc = MACHINE_CLASS(oc);
4531     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4532     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4533     NMIClass *nc = NMI_CLASS(oc);
4534     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4535     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4536     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4537     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4538     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4539     VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4540 
4541     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4542     mc->ignore_boot_device_suffixes = true;
4543 
4544     /*
4545      * We set up the default / latest behaviour here.  The class_init
4546      * functions for the specific versioned machine types can override
4547      * these details for backwards compatibility
4548      */
4549     mc->init = spapr_machine_init;
4550     mc->reset = spapr_machine_reset;
4551     mc->block_default_type = IF_SCSI;
4552 
4553     /*
4554      * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4555      * should be limited by the host capability instead of hardcoded.
4556      * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4557      * guests are welcome to have as many CPUs as the host are capable
4558      * of emulate.
4559      */
4560     mc->max_cpus = INT32_MAX;
4561 
4562     mc->no_parallel = 1;
4563     mc->default_boot_order = "";
4564     mc->default_ram_size = 512 * MiB;
4565     mc->default_ram_id = "ppc_spapr.ram";
4566     mc->default_display = "std";
4567     mc->kvm_type = spapr_kvm_type;
4568     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4569     mc->pci_allow_0_address = true;
4570     assert(!mc->get_hotplug_handler);
4571     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4572     hc->pre_plug = spapr_machine_device_pre_plug;
4573     hc->plug = spapr_machine_device_plug;
4574     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4575     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4576     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4577     hc->unplug_request = spapr_machine_device_unplug_request;
4578     hc->unplug = spapr_machine_device_unplug;
4579 
4580     smc->dr_lmb_enabled = true;
4581     smc->update_dt_enabled = true;
4582     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4583     mc->has_hotpluggable_cpus = true;
4584     mc->nvdimm_supported = true;
4585     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4586     fwc->get_dev_path = spapr_get_fw_dev_path;
4587     nc->nmi_monitor_handler = spapr_nmi;
4588     smc->phb_placement = spapr_phb_placement;
4589     vhc->hypercall = emulate_spapr_hypercall;
4590     vhc->hpt_mask = spapr_hpt_mask;
4591     vhc->map_hptes = spapr_map_hptes;
4592     vhc->unmap_hptes = spapr_unmap_hptes;
4593     vhc->hpte_set_c = spapr_hpte_set_c;
4594     vhc->hpte_set_r = spapr_hpte_set_r;
4595     vhc->get_pate = spapr_get_pate;
4596     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4597     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4598     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4599     xic->ics_get = spapr_ics_get;
4600     xic->ics_resend = spapr_ics_resend;
4601     xic->icp_get = spapr_icp_get;
4602     ispc->print_info = spapr_pic_print_info;
4603     /* Force NUMA node memory size to be a multiple of
4604      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4605      * in which LMBs are represented and hot-added
4606      */
4607     mc->numa_mem_align_shift = 28;
4608     mc->auto_enable_numa = true;
4609 
4610     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4611     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4612     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4613     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4614     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4615     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4616     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4617     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4618     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4619     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4620     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4621     spapr_caps_add_properties(smc);
4622     smc->irq = &spapr_irq_dual;
4623     smc->dr_phb_enabled = true;
4624     smc->linux_pci_probe = true;
4625     smc->smp_threads_vsmt = true;
4626     smc->nr_xirqs = SPAPR_NR_XIRQS;
4627     xfc->match_nvt = spapr_match_nvt;
4628     vmc->client_architecture_support = spapr_vof_client_architecture_support;
4629     vmc->quiesce = spapr_vof_quiesce;
4630     vmc->setprop = spapr_vof_setprop;
4631 }
4632 
4633 static const TypeInfo spapr_machine_info = {
4634     .name          = TYPE_SPAPR_MACHINE,
4635     .parent        = TYPE_MACHINE,
4636     .abstract      = true,
4637     .instance_size = sizeof(SpaprMachineState),
4638     .instance_init = spapr_instance_init,
4639     .instance_finalize = spapr_machine_finalizefn,
4640     .class_size    = sizeof(SpaprMachineClass),
4641     .class_init    = spapr_machine_class_init,
4642     .interfaces = (InterfaceInfo[]) {
4643         { TYPE_FW_PATH_PROVIDER },
4644         { TYPE_NMI },
4645         { TYPE_HOTPLUG_HANDLER },
4646         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4647         { TYPE_XICS_FABRIC },
4648         { TYPE_INTERRUPT_STATS_PROVIDER },
4649         { TYPE_XIVE_FABRIC },
4650         { TYPE_VOF_MACHINE_IF },
4651         { }
4652     },
4653 };
4654 
4655 static void spapr_machine_latest_class_options(MachineClass *mc)
4656 {
4657     mc->alias = "pseries";
4658     mc->is_default = true;
4659 }
4660 
4661 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4662     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4663                                                     void *data)      \
4664     {                                                                \
4665         MachineClass *mc = MACHINE_CLASS(oc);                        \
4666         spapr_machine_##suffix##_class_options(mc);                  \
4667         if (latest) {                                                \
4668             spapr_machine_latest_class_options(mc);                  \
4669         }                                                            \
4670     }                                                                \
4671     static const TypeInfo spapr_machine_##suffix##_info = {          \
4672         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4673         .parent = TYPE_SPAPR_MACHINE,                                \
4674         .class_init = spapr_machine_##suffix##_class_init,           \
4675     };                                                               \
4676     static void spapr_machine_register_##suffix(void)                \
4677     {                                                                \
4678         type_register(&spapr_machine_##suffix##_info);               \
4679     }                                                                \
4680     type_init(spapr_machine_register_##suffix)
4681 
4682 /*
4683  * pseries-6.1
4684  */
4685 static void spapr_machine_6_1_class_options(MachineClass *mc)
4686 {
4687     /* Defaults for the latest behaviour inherited from the base class */
4688 }
4689 
4690 DEFINE_SPAPR_MACHINE(6_1, "6.1", true);
4691 
4692 /*
4693  * pseries-6.0
4694  */
4695 static void spapr_machine_6_0_class_options(MachineClass *mc)
4696 {
4697     spapr_machine_6_1_class_options(mc);
4698     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4699 }
4700 
4701 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4702 
4703 /*
4704  * pseries-5.2
4705  */
4706 static void spapr_machine_5_2_class_options(MachineClass *mc)
4707 {
4708     spapr_machine_6_0_class_options(mc);
4709     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4710 }
4711 
4712 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4713 
4714 /*
4715  * pseries-5.1
4716  */
4717 static void spapr_machine_5_1_class_options(MachineClass *mc)
4718 {
4719     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4720 
4721     spapr_machine_5_2_class_options(mc);
4722     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4723     smc->pre_5_2_numa_associativity = true;
4724 }
4725 
4726 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4727 
4728 /*
4729  * pseries-5.0
4730  */
4731 static void spapr_machine_5_0_class_options(MachineClass *mc)
4732 {
4733     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4734     static GlobalProperty compat[] = {
4735         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4736     };
4737 
4738     spapr_machine_5_1_class_options(mc);
4739     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4740     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4741     mc->numa_mem_supported = true;
4742     smc->pre_5_1_assoc_refpoints = true;
4743 }
4744 
4745 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4746 
4747 /*
4748  * pseries-4.2
4749  */
4750 static void spapr_machine_4_2_class_options(MachineClass *mc)
4751 {
4752     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4753 
4754     spapr_machine_5_0_class_options(mc);
4755     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4756     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4757     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4758     smc->rma_limit = 16 * GiB;
4759     mc->nvdimm_supported = false;
4760 }
4761 
4762 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4763 
4764 /*
4765  * pseries-4.1
4766  */
4767 static void spapr_machine_4_1_class_options(MachineClass *mc)
4768 {
4769     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4770     static GlobalProperty compat[] = {
4771         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4772         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4773     };
4774 
4775     spapr_machine_4_2_class_options(mc);
4776     smc->linux_pci_probe = false;
4777     smc->smp_threads_vsmt = false;
4778     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4779     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4780 }
4781 
4782 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4783 
4784 /*
4785  * pseries-4.0
4786  */
4787 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4788                               uint64_t *buid, hwaddr *pio,
4789                               hwaddr *mmio32, hwaddr *mmio64,
4790                               unsigned n_dma, uint32_t *liobns,
4791                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4792 {
4793     if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4794                              liobns, nv2gpa, nv2atsd, errp)) {
4795         return false;
4796     }
4797 
4798     *nv2gpa = 0;
4799     *nv2atsd = 0;
4800     return true;
4801 }
4802 static void spapr_machine_4_0_class_options(MachineClass *mc)
4803 {
4804     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4805 
4806     spapr_machine_4_1_class_options(mc);
4807     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4808     smc->phb_placement = phb_placement_4_0;
4809     smc->irq = &spapr_irq_xics;
4810     smc->pre_4_1_migration = true;
4811 }
4812 
4813 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4814 
4815 /*
4816  * pseries-3.1
4817  */
4818 static void spapr_machine_3_1_class_options(MachineClass *mc)
4819 {
4820     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4821 
4822     spapr_machine_4_0_class_options(mc);
4823     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4824 
4825     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4826     smc->update_dt_enabled = false;
4827     smc->dr_phb_enabled = false;
4828     smc->broken_host_serial_model = true;
4829     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4830     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4831     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4832     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4833 }
4834 
4835 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4836 
4837 /*
4838  * pseries-3.0
4839  */
4840 
4841 static void spapr_machine_3_0_class_options(MachineClass *mc)
4842 {
4843     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4844 
4845     spapr_machine_3_1_class_options(mc);
4846     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4847 
4848     smc->legacy_irq_allocation = true;
4849     smc->nr_xirqs = 0x400;
4850     smc->irq = &spapr_irq_xics_legacy;
4851 }
4852 
4853 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4854 
4855 /*
4856  * pseries-2.12
4857  */
4858 static void spapr_machine_2_12_class_options(MachineClass *mc)
4859 {
4860     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4861     static GlobalProperty compat[] = {
4862         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4863         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4864     };
4865 
4866     spapr_machine_3_0_class_options(mc);
4867     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4868     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4869 
4870     /* We depend on kvm_enabled() to choose a default value for the
4871      * hpt-max-page-size capability. Of course we can't do it here
4872      * because this is too early and the HW accelerator isn't initialzed
4873      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4874      */
4875     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4876 }
4877 
4878 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4879 
4880 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4881 {
4882     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4883 
4884     spapr_machine_2_12_class_options(mc);
4885     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4886     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4887     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4888 }
4889 
4890 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4891 
4892 /*
4893  * pseries-2.11
4894  */
4895 
4896 static void spapr_machine_2_11_class_options(MachineClass *mc)
4897 {
4898     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4899 
4900     spapr_machine_2_12_class_options(mc);
4901     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4902     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4903 }
4904 
4905 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4906 
4907 /*
4908  * pseries-2.10
4909  */
4910 
4911 static void spapr_machine_2_10_class_options(MachineClass *mc)
4912 {
4913     spapr_machine_2_11_class_options(mc);
4914     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4915 }
4916 
4917 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4918 
4919 /*
4920  * pseries-2.9
4921  */
4922 
4923 static void spapr_machine_2_9_class_options(MachineClass *mc)
4924 {
4925     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4926     static GlobalProperty compat[] = {
4927         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4928     };
4929 
4930     spapr_machine_2_10_class_options(mc);
4931     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4932     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4933     smc->pre_2_10_has_unused_icps = true;
4934     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4935 }
4936 
4937 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4938 
4939 /*
4940  * pseries-2.8
4941  */
4942 
4943 static void spapr_machine_2_8_class_options(MachineClass *mc)
4944 {
4945     static GlobalProperty compat[] = {
4946         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4947     };
4948 
4949     spapr_machine_2_9_class_options(mc);
4950     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4951     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4952     mc->numa_mem_align_shift = 23;
4953 }
4954 
4955 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4956 
4957 /*
4958  * pseries-2.7
4959  */
4960 
4961 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4962                               uint64_t *buid, hwaddr *pio,
4963                               hwaddr *mmio32, hwaddr *mmio64,
4964                               unsigned n_dma, uint32_t *liobns,
4965                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4966 {
4967     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4968     const uint64_t base_buid = 0x800000020000000ULL;
4969     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4970     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4971     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4972     const uint32_t max_index = 255;
4973     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4974 
4975     uint64_t ram_top = MACHINE(spapr)->ram_size;
4976     hwaddr phb0_base, phb_base;
4977     int i;
4978 
4979     /* Do we have device memory? */
4980     if (MACHINE(spapr)->maxram_size > ram_top) {
4981         /* Can't just use maxram_size, because there may be an
4982          * alignment gap between normal and device memory regions
4983          */
4984         ram_top = MACHINE(spapr)->device_memory->base +
4985             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4986     }
4987 
4988     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4989 
4990     if (index > max_index) {
4991         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4992                    max_index);
4993         return false;
4994     }
4995 
4996     *buid = base_buid + index;
4997     for (i = 0; i < n_dma; ++i) {
4998         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4999     }
5000 
5001     phb_base = phb0_base + index * phb_spacing;
5002     *pio = phb_base + pio_offset;
5003     *mmio32 = phb_base + mmio_offset;
5004     /*
5005      * We don't set the 64-bit MMIO window, relying on the PHB's
5006      * fallback behaviour of automatically splitting a large "32-bit"
5007      * window into contiguous 32-bit and 64-bit windows
5008      */
5009 
5010     *nv2gpa = 0;
5011     *nv2atsd = 0;
5012     return true;
5013 }
5014 
5015 static void spapr_machine_2_7_class_options(MachineClass *mc)
5016 {
5017     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5018     static GlobalProperty compat[] = {
5019         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5020         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5021         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5022         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5023     };
5024 
5025     spapr_machine_2_8_class_options(mc);
5026     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5027     mc->default_machine_opts = "modern-hotplug-events=off";
5028     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5029     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5030     smc->phb_placement = phb_placement_2_7;
5031 }
5032 
5033 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5034 
5035 /*
5036  * pseries-2.6
5037  */
5038 
5039 static void spapr_machine_2_6_class_options(MachineClass *mc)
5040 {
5041     static GlobalProperty compat[] = {
5042         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5043     };
5044 
5045     spapr_machine_2_7_class_options(mc);
5046     mc->has_hotpluggable_cpus = false;
5047     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5048     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5049 }
5050 
5051 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5052 
5053 /*
5054  * pseries-2.5
5055  */
5056 
5057 static void spapr_machine_2_5_class_options(MachineClass *mc)
5058 {
5059     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5060     static GlobalProperty compat[] = {
5061         { "spapr-vlan", "use-rx-buffer-pools", "off" },
5062     };
5063 
5064     spapr_machine_2_6_class_options(mc);
5065     smc->use_ohci_by_default = true;
5066     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5067     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5068 }
5069 
5070 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5071 
5072 /*
5073  * pseries-2.4
5074  */
5075 
5076 static void spapr_machine_2_4_class_options(MachineClass *mc)
5077 {
5078     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5079 
5080     spapr_machine_2_5_class_options(mc);
5081     smc->dr_lmb_enabled = false;
5082     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5083 }
5084 
5085 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5086 
5087 /*
5088  * pseries-2.3
5089  */
5090 
5091 static void spapr_machine_2_3_class_options(MachineClass *mc)
5092 {
5093     static GlobalProperty compat[] = {
5094         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5095     };
5096     spapr_machine_2_4_class_options(mc);
5097     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5098     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5099 }
5100 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5101 
5102 /*
5103  * pseries-2.2
5104  */
5105 
5106 static void spapr_machine_2_2_class_options(MachineClass *mc)
5107 {
5108     static GlobalProperty compat[] = {
5109         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5110     };
5111 
5112     spapr_machine_2_3_class_options(mc);
5113     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5114     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5115     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5116 }
5117 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5118 
5119 /*
5120  * pseries-2.1
5121  */
5122 
5123 static void spapr_machine_2_1_class_options(MachineClass *mc)
5124 {
5125     spapr_machine_2_2_class_options(mc);
5126     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5127 }
5128 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5129 
5130 static void spapr_machine_register_types(void)
5131 {
5132     type_register_static(&spapr_machine_info);
5133 }
5134 
5135 type_init(spapr_machine_register_types)
5136