xref: /qemu/hw/ppc/spapr.c (revision 52ea63de)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/device_tree.h"
41 #include "kvm_ppc.h"
42 #include "migration/migration.h"
43 #include "mmu-hash64.h"
44 #include "qom/cpu.h"
45 
46 #include "hw/boards.h"
47 #include "hw/ppc/ppc.h"
48 #include "hw/loader.h"
49 
50 #include "hw/ppc/spapr.h"
51 #include "hw/ppc/spapr_vio.h"
52 #include "hw/pci-host/spapr.h"
53 #include "hw/ppc/xics.h"
54 #include "hw/pci/msi.h"
55 
56 #include "hw/pci/pci.h"
57 #include "hw/scsi/scsi.h"
58 #include "hw/virtio/virtio-scsi.h"
59 
60 #include "exec/address-spaces.h"
61 #include "hw/usb.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "trace.h"
65 #include "hw/nmi.h"
66 
67 #include "hw/compat.h"
68 #include "qemu/cutils.h"
69 
70 #include <libfdt.h>
71 
72 /* SLOF memory layout:
73  *
74  * SLOF raw image loaded at 0, copies its romfs right below the flat
75  * device-tree, then position SLOF itself 31M below that
76  *
77  * So we set FW_OVERHEAD to 40MB which should account for all of that
78  * and more
79  *
80  * We load our kernel at 4M, leaving space for SLOF initial image
81  */
82 #define FDT_MAX_SIZE            0x100000
83 #define RTAS_MAX_SIZE           0x10000
84 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
85 #define FW_MAX_SIZE             0x400000
86 #define FW_FILE_NAME            "slof.bin"
87 #define FW_OVERHEAD             0x2800000
88 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
89 
90 #define MIN_RMA_SLOF            128UL
91 
92 #define TIMEBASE_FREQ           512000000ULL
93 
94 #define PHANDLE_XICP            0x00001111
95 
96 #define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
97 
98 static XICSState *try_create_xics(const char *type, int nr_servers,
99                                   int nr_irqs, Error **errp)
100 {
101     Error *err = NULL;
102     DeviceState *dev;
103 
104     dev = qdev_create(NULL, type);
105     qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
106     qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
107     object_property_set_bool(OBJECT(dev), true, "realized", &err);
108     if (err) {
109         error_propagate(errp, err);
110         object_unparent(OBJECT(dev));
111         return NULL;
112     }
113     return XICS_COMMON(dev);
114 }
115 
116 static XICSState *xics_system_init(MachineState *machine,
117                                    int nr_servers, int nr_irqs, Error **errp)
118 {
119     XICSState *icp = NULL;
120 
121     if (kvm_enabled()) {
122         Error *err = NULL;
123 
124         if (machine_kernel_irqchip_allowed(machine)) {
125             icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
126         }
127         if (machine_kernel_irqchip_required(machine) && !icp) {
128             error_reportf_err(err,
129                               "kernel_irqchip requested but unavailable: ");
130         } else {
131             error_free(err);
132         }
133     }
134 
135     if (!icp) {
136         icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, errp);
137     }
138 
139     return icp;
140 }
141 
142 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
143                                   int smt_threads)
144 {
145     int i, ret = 0;
146     uint32_t servers_prop[smt_threads];
147     uint32_t gservers_prop[smt_threads * 2];
148     int index = ppc_get_vcpu_dt_id(cpu);
149 
150     if (cpu->cpu_version) {
151         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
152         if (ret < 0) {
153             return ret;
154         }
155     }
156 
157     /* Build interrupt servers and gservers properties */
158     for (i = 0; i < smt_threads; i++) {
159         servers_prop[i] = cpu_to_be32(index + i);
160         /* Hack, direct the group queues back to cpu 0 */
161         gservers_prop[i*2] = cpu_to_be32(index + i);
162         gservers_prop[i*2 + 1] = 0;
163     }
164     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
165                       servers_prop, sizeof(servers_prop));
166     if (ret < 0) {
167         return ret;
168     }
169     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
170                       gservers_prop, sizeof(gservers_prop));
171 
172     return ret;
173 }
174 
175 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
176 {
177     int ret = 0;
178     PowerPCCPU *cpu = POWERPC_CPU(cs);
179     int index = ppc_get_vcpu_dt_id(cpu);
180     uint32_t associativity[] = {cpu_to_be32(0x5),
181                                 cpu_to_be32(0x0),
182                                 cpu_to_be32(0x0),
183                                 cpu_to_be32(0x0),
184                                 cpu_to_be32(cs->numa_node),
185                                 cpu_to_be32(index)};
186 
187     /* Advertise NUMA via ibm,associativity */
188     if (nb_numa_nodes > 1) {
189         ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
190                           sizeof(associativity));
191     }
192 
193     return ret;
194 }
195 
196 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
197 {
198     int ret = 0, offset, cpus_offset;
199     CPUState *cs;
200     char cpu_model[32];
201     int smt = kvmppc_smt_threads();
202     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
203 
204     CPU_FOREACH(cs) {
205         PowerPCCPU *cpu = POWERPC_CPU(cs);
206         DeviceClass *dc = DEVICE_GET_CLASS(cs);
207         int index = ppc_get_vcpu_dt_id(cpu);
208 
209         if ((index % smt) != 0) {
210             continue;
211         }
212 
213         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
214 
215         cpus_offset = fdt_path_offset(fdt, "/cpus");
216         if (cpus_offset < 0) {
217             cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
218                                           "cpus");
219             if (cpus_offset < 0) {
220                 return cpus_offset;
221             }
222         }
223         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
224         if (offset < 0) {
225             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
226             if (offset < 0) {
227                 return offset;
228             }
229         }
230 
231         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
232                           pft_size_prop, sizeof(pft_size_prop));
233         if (ret < 0) {
234             return ret;
235         }
236 
237         ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
238         if (ret < 0) {
239             return ret;
240         }
241 
242         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
243                                      ppc_get_compat_smt_threads(cpu));
244         if (ret < 0) {
245             return ret;
246         }
247     }
248     return ret;
249 }
250 
251 
252 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
253                                      size_t maxsize)
254 {
255     size_t maxcells = maxsize / sizeof(uint32_t);
256     int i, j, count;
257     uint32_t *p = prop;
258 
259     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
260         struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
261 
262         if (!sps->page_shift) {
263             break;
264         }
265         for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
266             if (sps->enc[count].page_shift == 0) {
267                 break;
268             }
269         }
270         if ((p - prop) >= (maxcells - 3 - count * 2)) {
271             break;
272         }
273         *(p++) = cpu_to_be32(sps->page_shift);
274         *(p++) = cpu_to_be32(sps->slb_enc);
275         *(p++) = cpu_to_be32(count);
276         for (j = 0; j < count; j++) {
277             *(p++) = cpu_to_be32(sps->enc[j].page_shift);
278             *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
279         }
280     }
281 
282     return (p - prop) * sizeof(uint32_t);
283 }
284 
285 static hwaddr spapr_node0_size(void)
286 {
287     MachineState *machine = MACHINE(qdev_get_machine());
288 
289     if (nb_numa_nodes) {
290         int i;
291         for (i = 0; i < nb_numa_nodes; ++i) {
292             if (numa_info[i].node_mem) {
293                 return MIN(pow2floor(numa_info[i].node_mem),
294                            machine->ram_size);
295             }
296         }
297     }
298     return machine->ram_size;
299 }
300 
301 #define _FDT(exp) \
302     do { \
303         int ret = (exp);                                           \
304         if (ret < 0) {                                             \
305             fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
306                     #exp, fdt_strerror(ret));                      \
307             exit(1);                                               \
308         }                                                          \
309     } while (0)
310 
311 static void add_str(GString *s, const gchar *s1)
312 {
313     g_string_append_len(s, s1, strlen(s1) + 1);
314 }
315 
316 static void *spapr_create_fdt_skel(hwaddr initrd_base,
317                                    hwaddr initrd_size,
318                                    hwaddr kernel_size,
319                                    bool little_endian,
320                                    const char *kernel_cmdline,
321                                    uint32_t epow_irq)
322 {
323     void *fdt;
324     uint32_t start_prop = cpu_to_be32(initrd_base);
325     uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
326     GString *hypertas = g_string_sized_new(256);
327     GString *qemu_hypertas = g_string_sized_new(256);
328     uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
329     uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
330     unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
331     char *buf;
332 
333     add_str(hypertas, "hcall-pft");
334     add_str(hypertas, "hcall-term");
335     add_str(hypertas, "hcall-dabr");
336     add_str(hypertas, "hcall-interrupt");
337     add_str(hypertas, "hcall-tce");
338     add_str(hypertas, "hcall-vio");
339     add_str(hypertas, "hcall-splpar");
340     add_str(hypertas, "hcall-bulk");
341     add_str(hypertas, "hcall-set-mode");
342     add_str(qemu_hypertas, "hcall-memop1");
343 
344     fdt = g_malloc0(FDT_MAX_SIZE);
345     _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
346 
347     if (kernel_size) {
348         _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
349     }
350     if (initrd_size) {
351         _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
352     }
353     _FDT((fdt_finish_reservemap(fdt)));
354 
355     /* Root node */
356     _FDT((fdt_begin_node(fdt, "")));
357     _FDT((fdt_property_string(fdt, "device_type", "chrp")));
358     _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
359     _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
360 
361     /*
362      * Add info to guest to indentify which host is it being run on
363      * and what is the uuid of the guest
364      */
365     if (kvmppc_get_host_model(&buf)) {
366         _FDT((fdt_property_string(fdt, "host-model", buf)));
367         g_free(buf);
368     }
369     if (kvmppc_get_host_serial(&buf)) {
370         _FDT((fdt_property_string(fdt, "host-serial", buf)));
371         g_free(buf);
372     }
373 
374     buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
375                           qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
376                           qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
377                           qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
378                           qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
379                           qemu_uuid[14], qemu_uuid[15]);
380 
381     _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
382     if (qemu_uuid_set) {
383         _FDT((fdt_property_string(fdt, "system-id", buf)));
384     }
385     g_free(buf);
386 
387     if (qemu_get_vm_name()) {
388         _FDT((fdt_property_string(fdt, "ibm,partition-name",
389                                   qemu_get_vm_name())));
390     }
391 
392     _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
393     _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
394 
395     /* /chosen */
396     _FDT((fdt_begin_node(fdt, "chosen")));
397 
398     /* Set Form1_affinity */
399     _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
400 
401     _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
402     _FDT((fdt_property(fdt, "linux,initrd-start",
403                        &start_prop, sizeof(start_prop))));
404     _FDT((fdt_property(fdt, "linux,initrd-end",
405                        &end_prop, sizeof(end_prop))));
406     if (kernel_size) {
407         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
408                               cpu_to_be64(kernel_size) };
409 
410         _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
411         if (little_endian) {
412             _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
413         }
414     }
415     if (boot_menu) {
416         _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
417     }
418     _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
419     _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
420     _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
421 
422     _FDT((fdt_end_node(fdt)));
423 
424     /* RTAS */
425     _FDT((fdt_begin_node(fdt, "rtas")));
426 
427     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
428         add_str(hypertas, "hcall-multi-tce");
429     }
430     _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
431                        hypertas->len)));
432     g_string_free(hypertas, TRUE);
433     _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
434                        qemu_hypertas->len)));
435     g_string_free(qemu_hypertas, TRUE);
436 
437     _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
438         refpoints, sizeof(refpoints))));
439 
440     _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
441     _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
442                             RTAS_EVENT_SCAN_RATE)));
443 
444     if (msi_nonbroken) {
445         _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
446     }
447 
448     /*
449      * According to PAPR, rtas ibm,os-term does not guarantee a return
450      * back to the guest cpu.
451      *
452      * While an additional ibm,extended-os-term property indicates that
453      * rtas call return will always occur. Set this property.
454      */
455     _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
456 
457     _FDT((fdt_end_node(fdt)));
458 
459     /* interrupt controller */
460     _FDT((fdt_begin_node(fdt, "interrupt-controller")));
461 
462     _FDT((fdt_property_string(fdt, "device_type",
463                               "PowerPC-External-Interrupt-Presentation")));
464     _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
465     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
466     _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
467                        interrupt_server_ranges_prop,
468                        sizeof(interrupt_server_ranges_prop))));
469     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
470     _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
471     _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
472 
473     _FDT((fdt_end_node(fdt)));
474 
475     /* vdevice */
476     _FDT((fdt_begin_node(fdt, "vdevice")));
477 
478     _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
479     _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
480     _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
481     _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
482     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
483     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
484 
485     _FDT((fdt_end_node(fdt)));
486 
487     /* event-sources */
488     spapr_events_fdt_skel(fdt, epow_irq);
489 
490     /* /hypervisor node */
491     if (kvm_enabled()) {
492         uint8_t hypercall[16];
493 
494         /* indicate KVM hypercall interface */
495         _FDT((fdt_begin_node(fdt, "hypervisor")));
496         _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
497         if (kvmppc_has_cap_fixup_hcalls()) {
498             /*
499              * Older KVM versions with older guest kernels were broken with the
500              * magic page, don't allow the guest to map it.
501              */
502             if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
503                                       sizeof(hypercall))) {
504                 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
505                                    sizeof(hypercall))));
506             }
507         }
508         _FDT((fdt_end_node(fdt)));
509     }
510 
511     _FDT((fdt_end_node(fdt))); /* close root node */
512     _FDT((fdt_finish(fdt)));
513 
514     return fdt;
515 }
516 
517 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
518                                        hwaddr size)
519 {
520     uint32_t associativity[] = {
521         cpu_to_be32(0x4), /* length */
522         cpu_to_be32(0x0), cpu_to_be32(0x0),
523         cpu_to_be32(0x0), cpu_to_be32(nodeid)
524     };
525     char mem_name[32];
526     uint64_t mem_reg_property[2];
527     int off;
528 
529     mem_reg_property[0] = cpu_to_be64(start);
530     mem_reg_property[1] = cpu_to_be64(size);
531 
532     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
533     off = fdt_add_subnode(fdt, 0, mem_name);
534     _FDT(off);
535     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
536     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
537                       sizeof(mem_reg_property))));
538     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
539                       sizeof(associativity))));
540     return off;
541 }
542 
543 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
544 {
545     MachineState *machine = MACHINE(spapr);
546     hwaddr mem_start, node_size;
547     int i, nb_nodes = nb_numa_nodes;
548     NodeInfo *nodes = numa_info;
549     NodeInfo ramnode;
550 
551     /* No NUMA nodes, assume there is just one node with whole RAM */
552     if (!nb_numa_nodes) {
553         nb_nodes = 1;
554         ramnode.node_mem = machine->ram_size;
555         nodes = &ramnode;
556     }
557 
558     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
559         if (!nodes[i].node_mem) {
560             continue;
561         }
562         if (mem_start >= machine->ram_size) {
563             node_size = 0;
564         } else {
565             node_size = nodes[i].node_mem;
566             if (node_size > machine->ram_size - mem_start) {
567                 node_size = machine->ram_size - mem_start;
568             }
569         }
570         if (!mem_start) {
571             /* ppc_spapr_init() checks for rma_size <= node0_size already */
572             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
573             mem_start += spapr->rma_size;
574             node_size -= spapr->rma_size;
575         }
576         for ( ; node_size; ) {
577             hwaddr sizetmp = pow2floor(node_size);
578 
579             /* mem_start != 0 here */
580             if (ctzl(mem_start) < ctzl(sizetmp)) {
581                 sizetmp = 1ULL << ctzl(mem_start);
582             }
583 
584             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
585             node_size -= sizetmp;
586             mem_start += sizetmp;
587         }
588     }
589 
590     return 0;
591 }
592 
593 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
594                                   sPAPRMachineState *spapr)
595 {
596     PowerPCCPU *cpu = POWERPC_CPU(cs);
597     CPUPPCState *env = &cpu->env;
598     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
599     int index = ppc_get_vcpu_dt_id(cpu);
600     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
601                        0xffffffff, 0xffffffff};
602     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
603     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
604     uint32_t page_sizes_prop[64];
605     size_t page_sizes_prop_size;
606     uint32_t vcpus_per_socket = smp_threads * smp_cores;
607     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
608 
609     /* Note: we keep CI large pages off for now because a 64K capable guest
610      * provisioned with large pages might otherwise try to map a qemu
611      * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
612      * even if that qemu runs on a 4k host.
613      *
614      * We can later add this bit back when we are confident this is not
615      * an issue (!HV KVM or 64K host)
616      */
617     uint8_t pa_features_206[] = { 6, 0,
618         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
619     uint8_t pa_features_207[] = { 24, 0,
620         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
621         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
622         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
623         0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
624     uint8_t *pa_features;
625     size_t pa_size;
626 
627     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
628     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
629 
630     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
631     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
632                            env->dcache_line_size)));
633     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
634                            env->dcache_line_size)));
635     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
636                            env->icache_line_size)));
637     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
638                            env->icache_line_size)));
639 
640     if (pcc->l1_dcache_size) {
641         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
642                                pcc->l1_dcache_size)));
643     } else {
644         fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
645     }
646     if (pcc->l1_icache_size) {
647         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
648                                pcc->l1_icache_size)));
649     } else {
650         fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
651     }
652 
653     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
654     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
655     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
656     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
657     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
658     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
659 
660     if (env->spr_cb[SPR_PURR].oea_read) {
661         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
662     }
663 
664     if (env->mmu_model & POWERPC_MMU_1TSEG) {
665         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
666                           segs, sizeof(segs))));
667     }
668 
669     /* Advertise VMX/VSX (vector extensions) if available
670      *   0 / no property == no vector extensions
671      *   1               == VMX / Altivec available
672      *   2               == VSX available */
673     if (env->insns_flags & PPC_ALTIVEC) {
674         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
675 
676         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
677     }
678 
679     /* Advertise DFP (Decimal Floating Point) if available
680      *   0 / no property == no DFP
681      *   1               == DFP available */
682     if (env->insns_flags2 & PPC2_DFP) {
683         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
684     }
685 
686     page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
687                                                   sizeof(page_sizes_prop));
688     if (page_sizes_prop_size) {
689         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
690                           page_sizes_prop, page_sizes_prop_size)));
691     }
692 
693     /* Do the ibm,pa-features property, adjust it for ci-large-pages */
694     if (env->mmu_model == POWERPC_MMU_2_06) {
695         pa_features = pa_features_206;
696         pa_size = sizeof(pa_features_206);
697     } else /* env->mmu_model == POWERPC_MMU_2_07 */ {
698         pa_features = pa_features_207;
699         pa_size = sizeof(pa_features_207);
700     }
701     if (env->ci_large_pages) {
702         pa_features[3] |= 0x20;
703     }
704     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
705 
706     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
707                            cs->cpu_index / vcpus_per_socket)));
708 
709     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
710                       pft_size_prop, sizeof(pft_size_prop))));
711 
712     _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
713 
714     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
715                                 ppc_get_compat_smt_threads(cpu)));
716 }
717 
718 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
719 {
720     CPUState *cs;
721     int cpus_offset;
722     char *nodename;
723     int smt = kvmppc_smt_threads();
724 
725     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
726     _FDT(cpus_offset);
727     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
728     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
729 
730     /*
731      * We walk the CPUs in reverse order to ensure that CPU DT nodes
732      * created by fdt_add_subnode() end up in the right order in FDT
733      * for the guest kernel the enumerate the CPUs correctly.
734      */
735     CPU_FOREACH_REVERSE(cs) {
736         PowerPCCPU *cpu = POWERPC_CPU(cs);
737         int index = ppc_get_vcpu_dt_id(cpu);
738         DeviceClass *dc = DEVICE_GET_CLASS(cs);
739         int offset;
740 
741         if ((index % smt) != 0) {
742             continue;
743         }
744 
745         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
746         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
747         g_free(nodename);
748         _FDT(offset);
749         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
750     }
751 
752 }
753 
754 /*
755  * Adds ibm,dynamic-reconfiguration-memory node.
756  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
757  * of this device tree node.
758  */
759 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
760 {
761     MachineState *machine = MACHINE(spapr);
762     int ret, i, offset;
763     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
764     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
765     uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
766     uint32_t nr_lmbs = (spapr->hotplug_memory.base +
767                        memory_region_size(&spapr->hotplug_memory.mr)) /
768                        lmb_size;
769     uint32_t *int_buf, *cur_index, buf_len;
770     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
771 
772     /*
773      * Don't create the node if there is no hotpluggable memory
774      */
775     if (machine->ram_size == machine->maxram_size) {
776         return 0;
777     }
778 
779     /*
780      * Allocate enough buffer size to fit in ibm,dynamic-memory
781      * or ibm,associativity-lookup-arrays
782      */
783     buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
784               * sizeof(uint32_t);
785     cur_index = int_buf = g_malloc0(buf_len);
786 
787     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
788 
789     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
790                     sizeof(prop_lmb_size));
791     if (ret < 0) {
792         goto out;
793     }
794 
795     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
796     if (ret < 0) {
797         goto out;
798     }
799 
800     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
801     if (ret < 0) {
802         goto out;
803     }
804 
805     /* ibm,dynamic-memory */
806     int_buf[0] = cpu_to_be32(nr_lmbs);
807     cur_index++;
808     for (i = 0; i < nr_lmbs; i++) {
809         uint64_t addr = i * lmb_size;
810         uint32_t *dynamic_memory = cur_index;
811 
812         if (i >= hotplug_lmb_start) {
813             sPAPRDRConnector *drc;
814             sPAPRDRConnectorClass *drck;
815 
816             drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
817             g_assert(drc);
818             drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
819 
820             dynamic_memory[0] = cpu_to_be32(addr >> 32);
821             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
822             dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
823             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
824             dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
825             if (memory_region_present(get_system_memory(), addr)) {
826                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
827             } else {
828                 dynamic_memory[5] = cpu_to_be32(0);
829             }
830         } else {
831             /*
832              * LMB information for RMA, boot time RAM and gap b/n RAM and
833              * hotplug memory region -- all these are marked as reserved
834              * and as having no valid DRC.
835              */
836             dynamic_memory[0] = cpu_to_be32(addr >> 32);
837             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
838             dynamic_memory[2] = cpu_to_be32(0);
839             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
840             dynamic_memory[4] = cpu_to_be32(-1);
841             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
842                                             SPAPR_LMB_FLAGS_DRC_INVALID);
843         }
844 
845         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
846     }
847     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
848     if (ret < 0) {
849         goto out;
850     }
851 
852     /* ibm,associativity-lookup-arrays */
853     cur_index = int_buf;
854     int_buf[0] = cpu_to_be32(nr_nodes);
855     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
856     cur_index += 2;
857     for (i = 0; i < nr_nodes; i++) {
858         uint32_t associativity[] = {
859             cpu_to_be32(0x0),
860             cpu_to_be32(0x0),
861             cpu_to_be32(0x0),
862             cpu_to_be32(i)
863         };
864         memcpy(cur_index, associativity, sizeof(associativity));
865         cur_index += 4;
866     }
867     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
868             (cur_index - int_buf) * sizeof(uint32_t));
869 out:
870     g_free(int_buf);
871     return ret;
872 }
873 
874 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
875                                  target_ulong addr, target_ulong size,
876                                  bool cpu_update, bool memory_update)
877 {
878     void *fdt, *fdt_skel;
879     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
880     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
881 
882     size -= sizeof(hdr);
883 
884     /* Create sceleton */
885     fdt_skel = g_malloc0(size);
886     _FDT((fdt_create(fdt_skel, size)));
887     _FDT((fdt_begin_node(fdt_skel, "")));
888     _FDT((fdt_end_node(fdt_skel)));
889     _FDT((fdt_finish(fdt_skel)));
890     fdt = g_malloc0(size);
891     _FDT((fdt_open_into(fdt_skel, fdt, size)));
892     g_free(fdt_skel);
893 
894     /* Fixup cpu nodes */
895     if (cpu_update) {
896         _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
897     }
898 
899     /* Generate ibm,dynamic-reconfiguration-memory node if required */
900     if (memory_update && smc->dr_lmb_enabled) {
901         _FDT((spapr_populate_drconf_memory(spapr, fdt)));
902     }
903 
904     /* Pack resulting tree */
905     _FDT((fdt_pack(fdt)));
906 
907     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
908         trace_spapr_cas_failed(size);
909         return -1;
910     }
911 
912     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
913     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
914     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
915     g_free(fdt);
916 
917     return 0;
918 }
919 
920 static void spapr_finalize_fdt(sPAPRMachineState *spapr,
921                                hwaddr fdt_addr,
922                                hwaddr rtas_addr,
923                                hwaddr rtas_size)
924 {
925     MachineState *machine = MACHINE(qdev_get_machine());
926     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
927     const char *boot_device = machine->boot_order;
928     int ret, i;
929     size_t cb = 0;
930     char *bootlist;
931     void *fdt;
932     sPAPRPHBState *phb;
933 
934     fdt = g_malloc(FDT_MAX_SIZE);
935 
936     /* open out the base tree into a temp buffer for the final tweaks */
937     _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
938 
939     ret = spapr_populate_memory(spapr, fdt);
940     if (ret < 0) {
941         fprintf(stderr, "couldn't setup memory nodes in fdt\n");
942         exit(1);
943     }
944 
945     ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
946     if (ret < 0) {
947         fprintf(stderr, "couldn't setup vio devices in fdt\n");
948         exit(1);
949     }
950 
951     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
952         ret = spapr_rng_populate_dt(fdt);
953         if (ret < 0) {
954             fprintf(stderr, "could not set up rng device in the fdt\n");
955             exit(1);
956         }
957     }
958 
959     QLIST_FOREACH(phb, &spapr->phbs, list) {
960         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
961         if (ret < 0) {
962             error_report("couldn't setup PCI devices in fdt");
963             exit(1);
964         }
965     }
966 
967     /* RTAS */
968     ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
969     if (ret < 0) {
970         fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
971     }
972 
973     /* cpus */
974     spapr_populate_cpus_dt_node(fdt, spapr);
975 
976     bootlist = get_boot_devices_list(&cb, true);
977     if (cb && bootlist) {
978         int offset = fdt_path_offset(fdt, "/chosen");
979         if (offset < 0) {
980             exit(1);
981         }
982         for (i = 0; i < cb; i++) {
983             if (bootlist[i] == '\n') {
984                 bootlist[i] = ' ';
985             }
986 
987         }
988         ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
989     }
990 
991     if (boot_device && strlen(boot_device)) {
992         int offset = fdt_path_offset(fdt, "/chosen");
993 
994         if (offset < 0) {
995             exit(1);
996         }
997         fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
998     }
999 
1000     if (!spapr->has_graphics) {
1001         spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
1002     }
1003 
1004     if (smc->dr_lmb_enabled) {
1005         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1006     }
1007 
1008     _FDT((fdt_pack(fdt)));
1009 
1010     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1011         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1012                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1013         exit(1);
1014     }
1015 
1016     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1017     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1018 
1019     g_free(bootlist);
1020     g_free(fdt);
1021 }
1022 
1023 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1024 {
1025     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1026 }
1027 
1028 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
1029 {
1030     CPUPPCState *env = &cpu->env;
1031 
1032     if (msr_pr) {
1033         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1034         env->gpr[3] = H_PRIVILEGE;
1035     } else {
1036         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1037     }
1038 }
1039 
1040 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1041 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1042 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1043 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1044 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1045 
1046 /*
1047  * Get the fd to access the kernel htab, re-opening it if necessary
1048  */
1049 static int get_htab_fd(sPAPRMachineState *spapr)
1050 {
1051     if (spapr->htab_fd >= 0) {
1052         return spapr->htab_fd;
1053     }
1054 
1055     spapr->htab_fd = kvmppc_get_htab_fd(false);
1056     if (spapr->htab_fd < 0) {
1057         error_report("Unable to open fd for reading hash table from KVM: %s",
1058                      strerror(errno));
1059     }
1060 
1061     return spapr->htab_fd;
1062 }
1063 
1064 static void close_htab_fd(sPAPRMachineState *spapr)
1065 {
1066     if (spapr->htab_fd >= 0) {
1067         close(spapr->htab_fd);
1068     }
1069     spapr->htab_fd = -1;
1070 }
1071 
1072 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1073 {
1074     int shift;
1075 
1076     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1077      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1078      * that's much more than is needed for Linux guests */
1079     shift = ctz64(pow2ceil(ramsize)) - 7;
1080     shift = MAX(shift, 18); /* Minimum architected size */
1081     shift = MIN(shift, 46); /* Maximum architected size */
1082     return shift;
1083 }
1084 
1085 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1086                                  Error **errp)
1087 {
1088     long rc;
1089 
1090     /* Clean up any HPT info from a previous boot */
1091     g_free(spapr->htab);
1092     spapr->htab = NULL;
1093     spapr->htab_shift = 0;
1094     close_htab_fd(spapr);
1095 
1096     rc = kvmppc_reset_htab(shift);
1097     if (rc < 0) {
1098         /* kernel-side HPT needed, but couldn't allocate one */
1099         error_setg_errno(errp, errno,
1100                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1101                          shift);
1102         /* This is almost certainly fatal, but if the caller really
1103          * wants to carry on with shift == 0, it's welcome to try */
1104     } else if (rc > 0) {
1105         /* kernel-side HPT allocated */
1106         if (rc != shift) {
1107             error_setg(errp,
1108                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1109                        shift, rc);
1110         }
1111 
1112         spapr->htab_shift = shift;
1113         spapr->htab = NULL;
1114     } else {
1115         /* kernel-side HPT not needed, allocate in userspace instead */
1116         size_t size = 1ULL << shift;
1117         int i;
1118 
1119         spapr->htab = qemu_memalign(size, size);
1120         if (!spapr->htab) {
1121             error_setg_errno(errp, errno,
1122                              "Could not allocate HPT of order %d", shift);
1123             return;
1124         }
1125 
1126         memset(spapr->htab, 0, size);
1127         spapr->htab_shift = shift;
1128 
1129         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1130             DIRTY_HPTE(HPTE(spapr->htab, i));
1131         }
1132     }
1133 }
1134 
1135 static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1136 {
1137     bool matched = false;
1138 
1139     if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1140         matched = true;
1141     }
1142 
1143     if (!matched) {
1144         error_report("Device %s is not supported by this machine yet.",
1145                      qdev_fw_name(DEVICE(sbdev)));
1146         exit(1);
1147     }
1148 
1149     return 0;
1150 }
1151 
1152 static void ppc_spapr_reset(void)
1153 {
1154     MachineState *machine = MACHINE(qdev_get_machine());
1155     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1156     PowerPCCPU *first_ppc_cpu;
1157     uint32_t rtas_limit;
1158 
1159     /* Check for unknown sysbus devices */
1160     foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1161 
1162     /* Allocate and/or reset the hash page table */
1163     spapr_reallocate_hpt(spapr,
1164                          spapr_hpt_shift_for_ramsize(machine->maxram_size),
1165                          &error_fatal);
1166 
1167     /* Update the RMA size if necessary */
1168     if (spapr->vrma_adjust) {
1169         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1170                                           spapr->htab_shift);
1171     }
1172 
1173     qemu_devices_reset();
1174 
1175     /*
1176      * We place the device tree and RTAS just below either the top of the RMA,
1177      * or just below 2GB, whichever is lowere, so that it can be
1178      * processed with 32-bit real mode code if necessary
1179      */
1180     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1181     spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1182     spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1183 
1184     /* Load the fdt */
1185     spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
1186                        spapr->rtas_size);
1187 
1188     /* Copy RTAS over */
1189     cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
1190                               spapr->rtas_size);
1191 
1192     /* Set up the entry state */
1193     first_ppc_cpu = POWERPC_CPU(first_cpu);
1194     first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
1195     first_ppc_cpu->env.gpr[5] = 0;
1196     first_cpu->halted = 0;
1197     first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1198 
1199 }
1200 
1201 static void spapr_cpu_reset(void *opaque)
1202 {
1203     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1204     PowerPCCPU *cpu = opaque;
1205     CPUState *cs = CPU(cpu);
1206     CPUPPCState *env = &cpu->env;
1207 
1208     cpu_reset(cs);
1209 
1210     /* All CPUs start halted.  CPU0 is unhalted from the machine level
1211      * reset code and the rest are explicitly started up by the guest
1212      * using an RTAS call */
1213     cs->halted = 1;
1214 
1215     env->spr[SPR_HIOR] = 0;
1216 
1217     ppc_hash64_set_external_hpt(cpu, spapr->htab, spapr->htab_shift,
1218                                 &error_fatal);
1219 }
1220 
1221 static void spapr_create_nvram(sPAPRMachineState *spapr)
1222 {
1223     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1224     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1225 
1226     if (dinfo) {
1227         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1228                             &error_fatal);
1229     }
1230 
1231     qdev_init_nofail(dev);
1232 
1233     spapr->nvram = (struct sPAPRNVRAM *)dev;
1234 }
1235 
1236 static void spapr_rtc_create(sPAPRMachineState *spapr)
1237 {
1238     DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1239 
1240     qdev_init_nofail(dev);
1241     spapr->rtc = dev;
1242 
1243     object_property_add_alias(qdev_get_machine(), "rtc-time",
1244                               OBJECT(spapr->rtc), "date", NULL);
1245 }
1246 
1247 /* Returns whether we want to use VGA or not */
1248 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1249 {
1250     switch (vga_interface_type) {
1251     case VGA_NONE:
1252         return false;
1253     case VGA_DEVICE:
1254         return true;
1255     case VGA_STD:
1256     case VGA_VIRTIO:
1257         return pci_vga_init(pci_bus) != NULL;
1258     default:
1259         error_setg(errp,
1260                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1261         return false;
1262     }
1263 }
1264 
1265 static int spapr_post_load(void *opaque, int version_id)
1266 {
1267     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1268     int err = 0;
1269 
1270     /* In earlier versions, there was no separate qdev for the PAPR
1271      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1272      * So when migrating from those versions, poke the incoming offset
1273      * value into the RTC device */
1274     if (version_id < 3) {
1275         err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1276     }
1277 
1278     return err;
1279 }
1280 
1281 static bool version_before_3(void *opaque, int version_id)
1282 {
1283     return version_id < 3;
1284 }
1285 
1286 static const VMStateDescription vmstate_spapr = {
1287     .name = "spapr",
1288     .version_id = 3,
1289     .minimum_version_id = 1,
1290     .post_load = spapr_post_load,
1291     .fields = (VMStateField[]) {
1292         /* used to be @next_irq */
1293         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1294 
1295         /* RTC offset */
1296         VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1297 
1298         VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1299         VMSTATE_END_OF_LIST()
1300     },
1301 };
1302 
1303 static int htab_save_setup(QEMUFile *f, void *opaque)
1304 {
1305     sPAPRMachineState *spapr = opaque;
1306 
1307     /* "Iteration" header */
1308     qemu_put_be32(f, spapr->htab_shift);
1309 
1310     if (spapr->htab) {
1311         spapr->htab_save_index = 0;
1312         spapr->htab_first_pass = true;
1313     } else {
1314         assert(kvm_enabled());
1315     }
1316 
1317 
1318     return 0;
1319 }
1320 
1321 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1322                                  int64_t max_ns)
1323 {
1324     bool has_timeout = max_ns != -1;
1325     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1326     int index = spapr->htab_save_index;
1327     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1328 
1329     assert(spapr->htab_first_pass);
1330 
1331     do {
1332         int chunkstart;
1333 
1334         /* Consume invalid HPTEs */
1335         while ((index < htabslots)
1336                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1337             index++;
1338             CLEAN_HPTE(HPTE(spapr->htab, index));
1339         }
1340 
1341         /* Consume valid HPTEs */
1342         chunkstart = index;
1343         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1344                && HPTE_VALID(HPTE(spapr->htab, index))) {
1345             index++;
1346             CLEAN_HPTE(HPTE(spapr->htab, index));
1347         }
1348 
1349         if (index > chunkstart) {
1350             int n_valid = index - chunkstart;
1351 
1352             qemu_put_be32(f, chunkstart);
1353             qemu_put_be16(f, n_valid);
1354             qemu_put_be16(f, 0);
1355             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1356                             HASH_PTE_SIZE_64 * n_valid);
1357 
1358             if (has_timeout &&
1359                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1360                 break;
1361             }
1362         }
1363     } while ((index < htabslots) && !qemu_file_rate_limit(f));
1364 
1365     if (index >= htabslots) {
1366         assert(index == htabslots);
1367         index = 0;
1368         spapr->htab_first_pass = false;
1369     }
1370     spapr->htab_save_index = index;
1371 }
1372 
1373 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1374                                 int64_t max_ns)
1375 {
1376     bool final = max_ns < 0;
1377     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1378     int examined = 0, sent = 0;
1379     int index = spapr->htab_save_index;
1380     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1381 
1382     assert(!spapr->htab_first_pass);
1383 
1384     do {
1385         int chunkstart, invalidstart;
1386 
1387         /* Consume non-dirty HPTEs */
1388         while ((index < htabslots)
1389                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1390             index++;
1391             examined++;
1392         }
1393 
1394         chunkstart = index;
1395         /* Consume valid dirty HPTEs */
1396         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1397                && HPTE_DIRTY(HPTE(spapr->htab, index))
1398                && HPTE_VALID(HPTE(spapr->htab, index))) {
1399             CLEAN_HPTE(HPTE(spapr->htab, index));
1400             index++;
1401             examined++;
1402         }
1403 
1404         invalidstart = index;
1405         /* Consume invalid dirty HPTEs */
1406         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1407                && HPTE_DIRTY(HPTE(spapr->htab, index))
1408                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1409             CLEAN_HPTE(HPTE(spapr->htab, index));
1410             index++;
1411             examined++;
1412         }
1413 
1414         if (index > chunkstart) {
1415             int n_valid = invalidstart - chunkstart;
1416             int n_invalid = index - invalidstart;
1417 
1418             qemu_put_be32(f, chunkstart);
1419             qemu_put_be16(f, n_valid);
1420             qemu_put_be16(f, n_invalid);
1421             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1422                             HASH_PTE_SIZE_64 * n_valid);
1423             sent += index - chunkstart;
1424 
1425             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1426                 break;
1427             }
1428         }
1429 
1430         if (examined >= htabslots) {
1431             break;
1432         }
1433 
1434         if (index >= htabslots) {
1435             assert(index == htabslots);
1436             index = 0;
1437         }
1438     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1439 
1440     if (index >= htabslots) {
1441         assert(index == htabslots);
1442         index = 0;
1443     }
1444 
1445     spapr->htab_save_index = index;
1446 
1447     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1448 }
1449 
1450 #define MAX_ITERATION_NS    5000000 /* 5 ms */
1451 #define MAX_KVM_BUF_SIZE    2048
1452 
1453 static int htab_save_iterate(QEMUFile *f, void *opaque)
1454 {
1455     sPAPRMachineState *spapr = opaque;
1456     int fd;
1457     int rc = 0;
1458 
1459     /* Iteration header */
1460     qemu_put_be32(f, 0);
1461 
1462     if (!spapr->htab) {
1463         assert(kvm_enabled());
1464 
1465         fd = get_htab_fd(spapr);
1466         if (fd < 0) {
1467             return fd;
1468         }
1469 
1470         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1471         if (rc < 0) {
1472             return rc;
1473         }
1474     } else  if (spapr->htab_first_pass) {
1475         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1476     } else {
1477         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1478     }
1479 
1480     /* End marker */
1481     qemu_put_be32(f, 0);
1482     qemu_put_be16(f, 0);
1483     qemu_put_be16(f, 0);
1484 
1485     return rc;
1486 }
1487 
1488 static int htab_save_complete(QEMUFile *f, void *opaque)
1489 {
1490     sPAPRMachineState *spapr = opaque;
1491     int fd;
1492 
1493     /* Iteration header */
1494     qemu_put_be32(f, 0);
1495 
1496     if (!spapr->htab) {
1497         int rc;
1498 
1499         assert(kvm_enabled());
1500 
1501         fd = get_htab_fd(spapr);
1502         if (fd < 0) {
1503             return fd;
1504         }
1505 
1506         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1507         if (rc < 0) {
1508             return rc;
1509         }
1510         close_htab_fd(spapr);
1511     } else {
1512         if (spapr->htab_first_pass) {
1513             htab_save_first_pass(f, spapr, -1);
1514         }
1515         htab_save_later_pass(f, spapr, -1);
1516     }
1517 
1518     /* End marker */
1519     qemu_put_be32(f, 0);
1520     qemu_put_be16(f, 0);
1521     qemu_put_be16(f, 0);
1522 
1523     return 0;
1524 }
1525 
1526 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1527 {
1528     sPAPRMachineState *spapr = opaque;
1529     uint32_t section_hdr;
1530     int fd = -1;
1531 
1532     if (version_id < 1 || version_id > 1) {
1533         error_report("htab_load() bad version");
1534         return -EINVAL;
1535     }
1536 
1537     section_hdr = qemu_get_be32(f);
1538 
1539     if (section_hdr) {
1540         Error *local_err = NULL;
1541 
1542         /* First section gives the htab size */
1543         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1544         if (local_err) {
1545             error_report_err(local_err);
1546             return -EINVAL;
1547         }
1548         return 0;
1549     }
1550 
1551     if (!spapr->htab) {
1552         assert(kvm_enabled());
1553 
1554         fd = kvmppc_get_htab_fd(true);
1555         if (fd < 0) {
1556             error_report("Unable to open fd to restore KVM hash table: %s",
1557                          strerror(errno));
1558         }
1559     }
1560 
1561     while (true) {
1562         uint32_t index;
1563         uint16_t n_valid, n_invalid;
1564 
1565         index = qemu_get_be32(f);
1566         n_valid = qemu_get_be16(f);
1567         n_invalid = qemu_get_be16(f);
1568 
1569         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1570             /* End of Stream */
1571             break;
1572         }
1573 
1574         if ((index + n_valid + n_invalid) >
1575             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1576             /* Bad index in stream */
1577             error_report(
1578                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1579                 index, n_valid, n_invalid, spapr->htab_shift);
1580             return -EINVAL;
1581         }
1582 
1583         if (spapr->htab) {
1584             if (n_valid) {
1585                 qemu_get_buffer(f, HPTE(spapr->htab, index),
1586                                 HASH_PTE_SIZE_64 * n_valid);
1587             }
1588             if (n_invalid) {
1589                 memset(HPTE(spapr->htab, index + n_valid), 0,
1590                        HASH_PTE_SIZE_64 * n_invalid);
1591             }
1592         } else {
1593             int rc;
1594 
1595             assert(fd >= 0);
1596 
1597             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1598             if (rc < 0) {
1599                 return rc;
1600             }
1601         }
1602     }
1603 
1604     if (!spapr->htab) {
1605         assert(fd >= 0);
1606         close(fd);
1607     }
1608 
1609     return 0;
1610 }
1611 
1612 static SaveVMHandlers savevm_htab_handlers = {
1613     .save_live_setup = htab_save_setup,
1614     .save_live_iterate = htab_save_iterate,
1615     .save_live_complete_precopy = htab_save_complete,
1616     .load_state = htab_load,
1617 };
1618 
1619 static void spapr_boot_set(void *opaque, const char *boot_device,
1620                            Error **errp)
1621 {
1622     MachineState *machine = MACHINE(qdev_get_machine());
1623     machine->boot_order = g_strdup(boot_device);
1624 }
1625 
1626 static void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu,
1627                            Error **errp)
1628 {
1629     CPUPPCState *env = &cpu->env;
1630 
1631     /* Set time-base frequency to 512 MHz */
1632     cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1633 
1634     /* Enable PAPR mode in TCG or KVM */
1635     cpu_ppc_set_papr(cpu);
1636 
1637     if (cpu->max_compat) {
1638         Error *local_err = NULL;
1639 
1640         ppc_set_compat(cpu, cpu->max_compat, &local_err);
1641         if (local_err) {
1642             error_propagate(errp, local_err);
1643             return;
1644         }
1645     }
1646 
1647     xics_cpu_setup(spapr->icp, cpu);
1648 
1649     qemu_register_reset(spapr_cpu_reset, cpu);
1650 }
1651 
1652 /*
1653  * Reset routine for LMB DR devices.
1654  *
1655  * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1656  * routine. Reset for PCI DR devices will be handled by PHB reset routine
1657  * when it walks all its children devices. LMB devices reset occurs
1658  * as part of spapr_ppc_reset().
1659  */
1660 static void spapr_drc_reset(void *opaque)
1661 {
1662     sPAPRDRConnector *drc = opaque;
1663     DeviceState *d = DEVICE(drc);
1664 
1665     if (d) {
1666         device_reset(d);
1667     }
1668 }
1669 
1670 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1671 {
1672     MachineState *machine = MACHINE(spapr);
1673     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1674     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1675     int i;
1676 
1677     for (i = 0; i < nr_lmbs; i++) {
1678         sPAPRDRConnector *drc;
1679         uint64_t addr;
1680 
1681         addr = i * lmb_size + spapr->hotplug_memory.base;
1682         drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1683                                      addr/lmb_size);
1684         qemu_register_reset(spapr_drc_reset, drc);
1685     }
1686 }
1687 
1688 /*
1689  * If RAM size, maxmem size and individual node mem sizes aren't aligned
1690  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1691  * since we can't support such unaligned sizes with DRCONF_MEMORY.
1692  */
1693 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1694 {
1695     int i;
1696 
1697     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1698         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1699                    " is not aligned to %llu MiB",
1700                    machine->ram_size,
1701                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1702         return;
1703     }
1704 
1705     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1706         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1707                    " is not aligned to %llu MiB",
1708                    machine->ram_size,
1709                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1710         return;
1711     }
1712 
1713     for (i = 0; i < nb_numa_nodes; i++) {
1714         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1715             error_setg(errp,
1716                        "Node %d memory size 0x%" PRIx64
1717                        " is not aligned to %llu MiB",
1718                        i, numa_info[i].node_mem,
1719                        SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1720             return;
1721         }
1722     }
1723 }
1724 
1725 /* pSeries LPAR / sPAPR hardware init */
1726 static void ppc_spapr_init(MachineState *machine)
1727 {
1728     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1729     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1730     const char *kernel_filename = machine->kernel_filename;
1731     const char *kernel_cmdline = machine->kernel_cmdline;
1732     const char *initrd_filename = machine->initrd_filename;
1733     PowerPCCPU *cpu;
1734     PCIHostState *phb;
1735     int i;
1736     MemoryRegion *sysmem = get_system_memory();
1737     MemoryRegion *ram = g_new(MemoryRegion, 1);
1738     MemoryRegion *rma_region;
1739     void *rma = NULL;
1740     hwaddr rma_alloc_size;
1741     hwaddr node0_size = spapr_node0_size();
1742     uint32_t initrd_base = 0;
1743     long kernel_size = 0, initrd_size = 0;
1744     long load_limit, fw_size;
1745     bool kernel_le = false;
1746     char *filename;
1747 
1748     msi_nonbroken = true;
1749 
1750     QLIST_INIT(&spapr->phbs);
1751 
1752     cpu_ppc_hypercall = emulate_spapr_hypercall;
1753 
1754     /* Allocate RMA if necessary */
1755     rma_alloc_size = kvmppc_alloc_rma(&rma);
1756 
1757     if (rma_alloc_size == -1) {
1758         error_report("Unable to create RMA");
1759         exit(1);
1760     }
1761 
1762     if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1763         spapr->rma_size = rma_alloc_size;
1764     } else {
1765         spapr->rma_size = node0_size;
1766 
1767         /* With KVM, we don't actually know whether KVM supports an
1768          * unbounded RMA (PR KVM) or is limited by the hash table size
1769          * (HV KVM using VRMA), so we always assume the latter
1770          *
1771          * In that case, we also limit the initial allocations for RTAS
1772          * etc... to 256M since we have no way to know what the VRMA size
1773          * is going to be as it depends on the size of the hash table
1774          * isn't determined yet.
1775          */
1776         if (kvm_enabled()) {
1777             spapr->vrma_adjust = 1;
1778             spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1779         }
1780     }
1781 
1782     if (spapr->rma_size > node0_size) {
1783         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
1784                      spapr->rma_size);
1785         exit(1);
1786     }
1787 
1788     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1789     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1790 
1791     /* Set up Interrupt Controller before we create the VCPUs */
1792     spapr->icp = xics_system_init(machine,
1793                                   DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(),
1794                                                smp_threads),
1795                                   XICS_IRQS, &error_fatal);
1796 
1797     if (smc->dr_lmb_enabled) {
1798         spapr_validate_node_memory(machine, &error_fatal);
1799     }
1800 
1801     /* init CPUs */
1802     if (machine->cpu_model == NULL) {
1803         machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
1804     }
1805     for (i = 0; i < smp_cpus; i++) {
1806         cpu = cpu_ppc_init(machine->cpu_model);
1807         if (cpu == NULL) {
1808             error_report("Unable to find PowerPC CPU definition");
1809             exit(1);
1810         }
1811         spapr_cpu_init(spapr, cpu, &error_fatal);
1812     }
1813 
1814     if (kvm_enabled()) {
1815         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1816         kvmppc_enable_logical_ci_hcalls();
1817         kvmppc_enable_set_mode_hcall();
1818     }
1819 
1820     /* allocate RAM */
1821     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1822                                          machine->ram_size);
1823     memory_region_add_subregion(sysmem, 0, ram);
1824 
1825     if (rma_alloc_size && rma) {
1826         rma_region = g_new(MemoryRegion, 1);
1827         memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1828                                    rma_alloc_size, rma);
1829         vmstate_register_ram_global(rma_region);
1830         memory_region_add_subregion(sysmem, 0, rma_region);
1831     }
1832 
1833     /* initialize hotplug memory address space */
1834     if (machine->ram_size < machine->maxram_size) {
1835         ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1836         /*
1837          * Limit the number of hotpluggable memory slots to half the number
1838          * slots that KVM supports, leaving the other half for PCI and other
1839          * devices. However ensure that number of slots doesn't drop below 32.
1840          */
1841         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
1842                            SPAPR_MAX_RAM_SLOTS;
1843 
1844         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
1845             max_memslots = SPAPR_MAX_RAM_SLOTS;
1846         }
1847         if (machine->ram_slots > max_memslots) {
1848             error_report("Specified number of memory slots %"
1849                          PRIu64" exceeds max supported %d",
1850                          machine->ram_slots, max_memslots);
1851             exit(1);
1852         }
1853 
1854         spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1855                                               SPAPR_HOTPLUG_MEM_ALIGN);
1856         memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1857                            "hotplug-memory", hotplug_mem_size);
1858         memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1859                                     &spapr->hotplug_memory.mr);
1860     }
1861 
1862     if (smc->dr_lmb_enabled) {
1863         spapr_create_lmb_dr_connectors(spapr);
1864     }
1865 
1866     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1867     if (!filename) {
1868         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1869         exit(1);
1870     }
1871     spapr->rtas_size = get_image_size(filename);
1872     if (spapr->rtas_size < 0) {
1873         error_report("Could not get size of LPAR rtas '%s'", filename);
1874         exit(1);
1875     }
1876     spapr->rtas_blob = g_malloc(spapr->rtas_size);
1877     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1878         error_report("Could not load LPAR rtas '%s'", filename);
1879         exit(1);
1880     }
1881     if (spapr->rtas_size > RTAS_MAX_SIZE) {
1882         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1883                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1884         exit(1);
1885     }
1886     g_free(filename);
1887 
1888     /* Set up EPOW events infrastructure */
1889     spapr_events_init(spapr);
1890 
1891     /* Set up the RTC RTAS interfaces */
1892     spapr_rtc_create(spapr);
1893 
1894     /* Set up VIO bus */
1895     spapr->vio_bus = spapr_vio_bus_init();
1896 
1897     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1898         if (serial_hds[i]) {
1899             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1900         }
1901     }
1902 
1903     /* We always have at least the nvram device on VIO */
1904     spapr_create_nvram(spapr);
1905 
1906     /* Set up PCI */
1907     spapr_pci_rtas_init();
1908 
1909     phb = spapr_create_phb(spapr, 0);
1910 
1911     for (i = 0; i < nb_nics; i++) {
1912         NICInfo *nd = &nd_table[i];
1913 
1914         if (!nd->model) {
1915             nd->model = g_strdup("ibmveth");
1916         }
1917 
1918         if (strcmp(nd->model, "ibmveth") == 0) {
1919             spapr_vlan_create(spapr->vio_bus, nd);
1920         } else {
1921             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1922         }
1923     }
1924 
1925     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1926         spapr_vscsi_create(spapr->vio_bus);
1927     }
1928 
1929     /* Graphics */
1930     if (spapr_vga_init(phb->bus, &error_fatal)) {
1931         spapr->has_graphics = true;
1932         machine->usb |= defaults_enabled() && !machine->usb_disabled;
1933     }
1934 
1935     if (machine->usb) {
1936         if (smc->use_ohci_by_default) {
1937             pci_create_simple(phb->bus, -1, "pci-ohci");
1938         } else {
1939             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
1940         }
1941 
1942         if (spapr->has_graphics) {
1943             USBBus *usb_bus = usb_bus_find(-1);
1944 
1945             usb_create_simple(usb_bus, "usb-kbd");
1946             usb_create_simple(usb_bus, "usb-mouse");
1947         }
1948     }
1949 
1950     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1951         error_report(
1952             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
1953             MIN_RMA_SLOF);
1954         exit(1);
1955     }
1956 
1957     if (kernel_filename) {
1958         uint64_t lowaddr = 0;
1959 
1960         kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1961                                NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE,
1962                                0, 0);
1963         if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1964             kernel_size = load_elf(kernel_filename,
1965                                    translate_kernel_address, NULL,
1966                                    NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE,
1967                                    0, 0);
1968             kernel_le = kernel_size > 0;
1969         }
1970         if (kernel_size < 0) {
1971             error_report("error loading %s: %s",
1972                          kernel_filename, load_elf_strerror(kernel_size));
1973             exit(1);
1974         }
1975 
1976         /* load initrd */
1977         if (initrd_filename) {
1978             /* Try to locate the initrd in the gap between the kernel
1979              * and the firmware. Add a bit of space just in case
1980              */
1981             initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1982             initrd_size = load_image_targphys(initrd_filename, initrd_base,
1983                                               load_limit - initrd_base);
1984             if (initrd_size < 0) {
1985                 error_report("could not load initial ram disk '%s'",
1986                              initrd_filename);
1987                 exit(1);
1988             }
1989         } else {
1990             initrd_base = 0;
1991             initrd_size = 0;
1992         }
1993     }
1994 
1995     if (bios_name == NULL) {
1996         bios_name = FW_FILE_NAME;
1997     }
1998     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1999     if (!filename) {
2000         error_report("Could not find LPAR firmware '%s'", bios_name);
2001         exit(1);
2002     }
2003     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2004     if (fw_size <= 0) {
2005         error_report("Could not load LPAR firmware '%s'", filename);
2006         exit(1);
2007     }
2008     g_free(filename);
2009 
2010     /* FIXME: Should register things through the MachineState's qdev
2011      * interface, this is a legacy from the sPAPREnvironment structure
2012      * which predated MachineState but had a similar function */
2013     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2014     register_savevm_live(NULL, "spapr/htab", -1, 1,
2015                          &savevm_htab_handlers, spapr);
2016 
2017     /* Prepare the device tree */
2018     spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
2019                                             kernel_size, kernel_le,
2020                                             kernel_cmdline,
2021                                             spapr->check_exception_irq);
2022     assert(spapr->fdt_skel != NULL);
2023 
2024     /* used by RTAS */
2025     QTAILQ_INIT(&spapr->ccs_list);
2026     qemu_register_reset(spapr_ccs_reset_hook, spapr);
2027 
2028     qemu_register_boot_set(spapr_boot_set, spapr);
2029 }
2030 
2031 static int spapr_kvm_type(const char *vm_type)
2032 {
2033     if (!vm_type) {
2034         return 0;
2035     }
2036 
2037     if (!strcmp(vm_type, "HV")) {
2038         return 1;
2039     }
2040 
2041     if (!strcmp(vm_type, "PR")) {
2042         return 2;
2043     }
2044 
2045     error_report("Unknown kvm-type specified '%s'", vm_type);
2046     exit(1);
2047 }
2048 
2049 /*
2050  * Implementation of an interface to adjust firmware path
2051  * for the bootindex property handling.
2052  */
2053 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2054                                    DeviceState *dev)
2055 {
2056 #define CAST(type, obj, name) \
2057     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2058     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2059     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2060 
2061     if (d) {
2062         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2063         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2064         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2065 
2066         if (spapr) {
2067             /*
2068              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2069              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2070              * in the top 16 bits of the 64-bit LUN
2071              */
2072             unsigned id = 0x8000 | (d->id << 8) | d->lun;
2073             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2074                                    (uint64_t)id << 48);
2075         } else if (virtio) {
2076             /*
2077              * We use SRP luns of the form 01000000 | (target << 8) | lun
2078              * in the top 32 bits of the 64-bit LUN
2079              * Note: the quote above is from SLOF and it is wrong,
2080              * the actual binding is:
2081              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2082              */
2083             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2084             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2085                                    (uint64_t)id << 32);
2086         } else if (usb) {
2087             /*
2088              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2089              * in the top 32 bits of the 64-bit LUN
2090              */
2091             unsigned usb_port = atoi(usb->port->path);
2092             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2093             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2094                                    (uint64_t)id << 32);
2095         }
2096     }
2097 
2098     if (phb) {
2099         /* Replace "pci" with "pci@800000020000000" */
2100         return g_strdup_printf("pci@%"PRIX64, phb->buid);
2101     }
2102 
2103     return NULL;
2104 }
2105 
2106 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2107 {
2108     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2109 
2110     return g_strdup(spapr->kvm_type);
2111 }
2112 
2113 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2114 {
2115     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2116 
2117     g_free(spapr->kvm_type);
2118     spapr->kvm_type = g_strdup(value);
2119 }
2120 
2121 static void spapr_machine_initfn(Object *obj)
2122 {
2123     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2124 
2125     spapr->htab_fd = -1;
2126     object_property_add_str(obj, "kvm-type",
2127                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2128     object_property_set_description(obj, "kvm-type",
2129                                     "Specifies the KVM virtualization mode (HV, PR)",
2130                                     NULL);
2131 }
2132 
2133 static void spapr_machine_finalizefn(Object *obj)
2134 {
2135     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2136 
2137     g_free(spapr->kvm_type);
2138 }
2139 
2140 static void ppc_cpu_do_nmi_on_cpu(void *arg)
2141 {
2142     CPUState *cs = arg;
2143 
2144     cpu_synchronize_state(cs);
2145     ppc_cpu_do_system_reset(cs);
2146 }
2147 
2148 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2149 {
2150     CPUState *cs;
2151 
2152     CPU_FOREACH(cs) {
2153         async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
2154     }
2155 }
2156 
2157 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
2158                            uint32_t node, Error **errp)
2159 {
2160     sPAPRDRConnector *drc;
2161     sPAPRDRConnectorClass *drck;
2162     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2163     int i, fdt_offset, fdt_size;
2164     void *fdt;
2165 
2166     for (i = 0; i < nr_lmbs; i++) {
2167         drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2168                 addr/SPAPR_MEMORY_BLOCK_SIZE);
2169         g_assert(drc);
2170 
2171         fdt = create_device_tree(&fdt_size);
2172         fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2173                                                 SPAPR_MEMORY_BLOCK_SIZE);
2174 
2175         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2176         drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2177         addr += SPAPR_MEMORY_BLOCK_SIZE;
2178     }
2179     /* send hotplug notification to the
2180      * guest only in case of hotplugged memory
2181      */
2182     if (dev->hotplugged) {
2183        spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
2184     }
2185 }
2186 
2187 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2188                               uint32_t node, Error **errp)
2189 {
2190     Error *local_err = NULL;
2191     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2192     PCDIMMDevice *dimm = PC_DIMM(dev);
2193     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2194     MemoryRegion *mr = ddc->get_memory_region(dimm);
2195     uint64_t align = memory_region_get_alignment(mr);
2196     uint64_t size = memory_region_size(mr);
2197     uint64_t addr;
2198 
2199     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2200         error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2201                       "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2202         goto out;
2203     }
2204 
2205     pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2206     if (local_err) {
2207         goto out;
2208     }
2209 
2210     addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2211     if (local_err) {
2212         pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2213         goto out;
2214     }
2215 
2216     spapr_add_lmbs(dev, addr, size, node, &error_abort);
2217 
2218 out:
2219     error_propagate(errp, local_err);
2220 }
2221 
2222 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2223                                       DeviceState *dev, Error **errp)
2224 {
2225     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2226 
2227     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2228         int node;
2229 
2230         if (!smc->dr_lmb_enabled) {
2231             error_setg(errp, "Memory hotplug not supported for this machine");
2232             return;
2233         }
2234         node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2235         if (*errp) {
2236             return;
2237         }
2238         if (node < 0 || node >= MAX_NODES) {
2239             error_setg(errp, "Invaild node %d", node);
2240             return;
2241         }
2242 
2243         /*
2244          * Currently PowerPC kernel doesn't allow hot-adding memory to
2245          * memory-less node, but instead will silently add the memory
2246          * to the first node that has some memory. This causes two
2247          * unexpected behaviours for the user.
2248          *
2249          * - Memory gets hotplugged to a different node than what the user
2250          *   specified.
2251          * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2252          *   to memory-less node, a reboot will set things accordingly
2253          *   and the previously hotplugged memory now ends in the right node.
2254          *   This appears as if some memory moved from one node to another.
2255          *
2256          * So until kernel starts supporting memory hotplug to memory-less
2257          * nodes, just prevent such attempts upfront in QEMU.
2258          */
2259         if (nb_numa_nodes && !numa_info[node].node_mem) {
2260             error_setg(errp, "Can't hotplug memory to memory-less node %d",
2261                        node);
2262             return;
2263         }
2264 
2265         spapr_memory_plug(hotplug_dev, dev, node, errp);
2266     }
2267 }
2268 
2269 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2270                                       DeviceState *dev, Error **errp)
2271 {
2272     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2273         error_setg(errp, "Memory hot unplug not supported by sPAPR");
2274     }
2275 }
2276 
2277 static HotplugHandler *spapr_get_hotpug_handler(MachineState *machine,
2278                                              DeviceState *dev)
2279 {
2280     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2281         return HOTPLUG_HANDLER(machine);
2282     }
2283     return NULL;
2284 }
2285 
2286 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2287 {
2288     /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2289      * socket means much for the paravirtualized PAPR platform) */
2290     return cpu_index / smp_threads / smp_cores;
2291 }
2292 
2293 static void spapr_machine_class_init(ObjectClass *oc, void *data)
2294 {
2295     MachineClass *mc = MACHINE_CLASS(oc);
2296     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2297     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2298     NMIClass *nc = NMI_CLASS(oc);
2299     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2300 
2301     mc->desc = "pSeries Logical Partition (PAPR compliant)";
2302 
2303     /*
2304      * We set up the default / latest behaviour here.  The class_init
2305      * functions for the specific versioned machine types can override
2306      * these details for backwards compatibility
2307      */
2308     mc->init = ppc_spapr_init;
2309     mc->reset = ppc_spapr_reset;
2310     mc->block_default_type = IF_SCSI;
2311     mc->max_cpus = MAX_CPUMASK_BITS;
2312     mc->no_parallel = 1;
2313     mc->default_boot_order = "";
2314     mc->default_ram_size = 512 * M_BYTE;
2315     mc->kvm_type = spapr_kvm_type;
2316     mc->has_dynamic_sysbus = true;
2317     mc->pci_allow_0_address = true;
2318     mc->get_hotplug_handler = spapr_get_hotpug_handler;
2319     hc->plug = spapr_machine_device_plug;
2320     hc->unplug = spapr_machine_device_unplug;
2321     mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
2322 
2323     smc->dr_lmb_enabled = true;
2324     fwc->get_dev_path = spapr_get_fw_dev_path;
2325     nc->nmi_monitor_handler = spapr_nmi;
2326 }
2327 
2328 static const TypeInfo spapr_machine_info = {
2329     .name          = TYPE_SPAPR_MACHINE,
2330     .parent        = TYPE_MACHINE,
2331     .abstract      = true,
2332     .instance_size = sizeof(sPAPRMachineState),
2333     .instance_init = spapr_machine_initfn,
2334     .instance_finalize = spapr_machine_finalizefn,
2335     .class_size    = sizeof(sPAPRMachineClass),
2336     .class_init    = spapr_machine_class_init,
2337     .interfaces = (InterfaceInfo[]) {
2338         { TYPE_FW_PATH_PROVIDER },
2339         { TYPE_NMI },
2340         { TYPE_HOTPLUG_HANDLER },
2341         { }
2342     },
2343 };
2344 
2345 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
2346     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
2347                                                     void *data)      \
2348     {                                                                \
2349         MachineClass *mc = MACHINE_CLASS(oc);                        \
2350         spapr_machine_##suffix##_class_options(mc);                  \
2351         if (latest) {                                                \
2352             mc->alias = "pseries";                                   \
2353             mc->is_default = 1;                                      \
2354         }                                                            \
2355     }                                                                \
2356     static void spapr_machine_##suffix##_instance_init(Object *obj)  \
2357     {                                                                \
2358         MachineState *machine = MACHINE(obj);                        \
2359         spapr_machine_##suffix##_instance_options(machine);          \
2360     }                                                                \
2361     static const TypeInfo spapr_machine_##suffix##_info = {          \
2362         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
2363         .parent = TYPE_SPAPR_MACHINE,                                \
2364         .class_init = spapr_machine_##suffix##_class_init,           \
2365         .instance_init = spapr_machine_##suffix##_instance_init,     \
2366     };                                                               \
2367     static void spapr_machine_register_##suffix(void)                \
2368     {                                                                \
2369         type_register(&spapr_machine_##suffix##_info);               \
2370     }                                                                \
2371     type_init(spapr_machine_register_##suffix)
2372 
2373 /*
2374  * pseries-2.7
2375  */
2376 static void spapr_machine_2_7_instance_options(MachineState *machine)
2377 {
2378 }
2379 
2380 static void spapr_machine_2_7_class_options(MachineClass *mc)
2381 {
2382     /* Defaults for the latest behaviour inherited from the base class */
2383 }
2384 
2385 DEFINE_SPAPR_MACHINE(2_7, "2.7", true);
2386 
2387 /*
2388  * pseries-2.6
2389  */
2390 #define SPAPR_COMPAT_2_6 \
2391     HW_COMPAT_2_6
2392 
2393 static void spapr_machine_2_6_instance_options(MachineState *machine)
2394 {
2395 }
2396 
2397 static void spapr_machine_2_6_class_options(MachineClass *mc)
2398 {
2399     spapr_machine_2_7_class_options(mc);
2400     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
2401 }
2402 
2403 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
2404 
2405 /*
2406  * pseries-2.5
2407  */
2408 #define SPAPR_COMPAT_2_5 \
2409     HW_COMPAT_2_5 \
2410     { \
2411         .driver   = "spapr-vlan", \
2412         .property = "use-rx-buffer-pools", \
2413         .value    = "off", \
2414     },
2415 
2416 static void spapr_machine_2_5_instance_options(MachineState *machine)
2417 {
2418 }
2419 
2420 static void spapr_machine_2_5_class_options(MachineClass *mc)
2421 {
2422     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2423 
2424     spapr_machine_2_6_class_options(mc);
2425     smc->use_ohci_by_default = true;
2426     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
2427 }
2428 
2429 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
2430 
2431 /*
2432  * pseries-2.4
2433  */
2434 #define SPAPR_COMPAT_2_4 \
2435         HW_COMPAT_2_4
2436 
2437 static void spapr_machine_2_4_instance_options(MachineState *machine)
2438 {
2439     spapr_machine_2_5_instance_options(machine);
2440 }
2441 
2442 static void spapr_machine_2_4_class_options(MachineClass *mc)
2443 {
2444     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2445 
2446     spapr_machine_2_5_class_options(mc);
2447     smc->dr_lmb_enabled = false;
2448     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
2449 }
2450 
2451 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
2452 
2453 /*
2454  * pseries-2.3
2455  */
2456 #define SPAPR_COMPAT_2_3 \
2457         HW_COMPAT_2_3 \
2458         {\
2459             .driver   = "spapr-pci-host-bridge",\
2460             .property = "dynamic-reconfiguration",\
2461             .value    = "off",\
2462         },
2463 
2464 static void spapr_machine_2_3_instance_options(MachineState *machine)
2465 {
2466     spapr_machine_2_4_instance_options(machine);
2467     savevm_skip_section_footers();
2468     global_state_set_optional();
2469     savevm_skip_configuration();
2470 }
2471 
2472 static void spapr_machine_2_3_class_options(MachineClass *mc)
2473 {
2474     spapr_machine_2_4_class_options(mc);
2475     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
2476 }
2477 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
2478 
2479 /*
2480  * pseries-2.2
2481  */
2482 
2483 #define SPAPR_COMPAT_2_2 \
2484         HW_COMPAT_2_2 \
2485         {\
2486             .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2487             .property = "mem_win_size",\
2488             .value    = "0x20000000",\
2489         },
2490 
2491 static void spapr_machine_2_2_instance_options(MachineState *machine)
2492 {
2493     spapr_machine_2_3_instance_options(machine);
2494     machine->suppress_vmdesc = true;
2495 }
2496 
2497 static void spapr_machine_2_2_class_options(MachineClass *mc)
2498 {
2499     spapr_machine_2_3_class_options(mc);
2500     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
2501 }
2502 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
2503 
2504 /*
2505  * pseries-2.1
2506  */
2507 #define SPAPR_COMPAT_2_1 \
2508         HW_COMPAT_2_1
2509 
2510 static void spapr_machine_2_1_instance_options(MachineState *machine)
2511 {
2512     spapr_machine_2_2_instance_options(machine);
2513 }
2514 
2515 static void spapr_machine_2_1_class_options(MachineClass *mc)
2516 {
2517     spapr_machine_2_2_class_options(mc);
2518     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
2519 }
2520 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
2521 
2522 static void spapr_machine_register_types(void)
2523 {
2524     type_register_static(&spapr_machine_info);
2525 }
2526 
2527 type_init(spapr_machine_register_types)
2528