xref: /qemu/hw/ppc/spapr.c (revision 57446e32)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/cpus.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_ppc.h"
42 #include "migration/misc.h"
43 #include "migration/global_state.h"
44 #include "migration/register.h"
45 #include "mmu-hash64.h"
46 #include "mmu-book3s-v3.h"
47 #include "qom/cpu.h"
48 
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
52 
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/ppc/xics.h"
58 #include "hw/pci/msi.h"
59 
60 #include "hw/pci/pci.h"
61 #include "hw/scsi/scsi.h"
62 #include "hw/virtio/virtio-scsi.h"
63 #include "hw/virtio/vhost-scsi-common.h"
64 
65 #include "exec/address-spaces.h"
66 #include "hw/usb.h"
67 #include "qemu/config-file.h"
68 #include "qemu/error-report.h"
69 #include "trace.h"
70 #include "hw/nmi.h"
71 #include "hw/intc/intc.h"
72 
73 #include "hw/compat.h"
74 #include "qemu/cutils.h"
75 #include "hw/ppc/spapr_cpu_core.h"
76 #include "qmp-commands.h"
77 
78 #include <libfdt.h>
79 
80 /* SLOF memory layout:
81  *
82  * SLOF raw image loaded at 0, copies its romfs right below the flat
83  * device-tree, then position SLOF itself 31M below that
84  *
85  * So we set FW_OVERHEAD to 40MB which should account for all of that
86  * and more
87  *
88  * We load our kernel at 4M, leaving space for SLOF initial image
89  */
90 #define FDT_MAX_SIZE            0x100000
91 #define RTAS_MAX_SIZE           0x10000
92 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE             0x400000
94 #define FW_FILE_NAME            "slof.bin"
95 #define FW_OVERHEAD             0x2800000
96 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
97 
98 #define MIN_RMA_SLOF            128UL
99 
100 #define PHANDLE_XICP            0x00001111
101 
102 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
103                                   const char *type_ics,
104                                   int nr_irqs, Error **errp)
105 {
106     Error *local_err = NULL;
107     Object *obj;
108 
109     obj = object_new(type_ics);
110     object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
111     object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
112                                    &error_abort);
113     object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
114     if (local_err) {
115         goto error;
116     }
117     object_property_set_bool(obj, true, "realized", &local_err);
118     if (local_err) {
119         goto error;
120     }
121 
122     return ICS_SIMPLE(obj);
123 
124 error:
125     error_propagate(errp, local_err);
126     return NULL;
127 }
128 
129 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
130 {
131     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
132      * and newer QEMUs don't even have them. In both cases, we don't want
133      * to send anything on the wire.
134      */
135     return false;
136 }
137 
138 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
139     .name = "icp/server",
140     .version_id = 1,
141     .minimum_version_id = 1,
142     .needed = pre_2_10_vmstate_dummy_icp_needed,
143     .fields = (VMStateField[]) {
144         VMSTATE_UNUSED(4), /* uint32_t xirr */
145         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
146         VMSTATE_UNUSED(1), /* uint8_t mfrr */
147         VMSTATE_END_OF_LIST()
148     },
149 };
150 
151 static void pre_2_10_vmstate_register_dummy_icp(int i)
152 {
153     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
154                      (void *)(uintptr_t) i);
155 }
156 
157 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
158 {
159     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
160                        (void *)(uintptr_t) i);
161 }
162 
163 static inline int xics_max_server_number(void)
164 {
165     return DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), smp_threads);
166 }
167 
168 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
169 {
170     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
171     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
172 
173     if (kvm_enabled()) {
174         if (machine_kernel_irqchip_allowed(machine) &&
175             !xics_kvm_init(spapr, errp)) {
176             spapr->icp_type = TYPE_KVM_ICP;
177             spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
178         }
179         if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
180             error_prepend(errp, "kernel_irqchip requested but unavailable: ");
181             return;
182         }
183     }
184 
185     if (!spapr->ics) {
186         xics_spapr_init(spapr);
187         spapr->icp_type = TYPE_ICP;
188         spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
189         if (!spapr->ics) {
190             return;
191         }
192     }
193 
194     if (smc->pre_2_10_has_unused_icps) {
195         int i;
196 
197         for (i = 0; i < xics_max_server_number(); i++) {
198             /* Dummy entries get deregistered when real ICPState objects
199              * are registered during CPU core hotplug.
200              */
201             pre_2_10_vmstate_register_dummy_icp(i);
202         }
203     }
204 }
205 
206 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
207                                   int smt_threads)
208 {
209     int i, ret = 0;
210     uint32_t servers_prop[smt_threads];
211     uint32_t gservers_prop[smt_threads * 2];
212     int index = spapr_vcpu_id(cpu);
213 
214     if (cpu->compat_pvr) {
215         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
216         if (ret < 0) {
217             return ret;
218         }
219     }
220 
221     /* Build interrupt servers and gservers properties */
222     for (i = 0; i < smt_threads; i++) {
223         servers_prop[i] = cpu_to_be32(index + i);
224         /* Hack, direct the group queues back to cpu 0 */
225         gservers_prop[i*2] = cpu_to_be32(index + i);
226         gservers_prop[i*2 + 1] = 0;
227     }
228     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
229                       servers_prop, sizeof(servers_prop));
230     if (ret < 0) {
231         return ret;
232     }
233     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
234                       gservers_prop, sizeof(gservers_prop));
235 
236     return ret;
237 }
238 
239 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
240 {
241     int index = spapr_vcpu_id(cpu);
242     uint32_t associativity[] = {cpu_to_be32(0x5),
243                                 cpu_to_be32(0x0),
244                                 cpu_to_be32(0x0),
245                                 cpu_to_be32(0x0),
246                                 cpu_to_be32(cpu->node_id),
247                                 cpu_to_be32(index)};
248 
249     /* Advertise NUMA via ibm,associativity */
250     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
251                           sizeof(associativity));
252 }
253 
254 /* Populate the "ibm,pa-features" property */
255 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset,
256                                       bool legacy_guest)
257 {
258     uint8_t pa_features_206[] = { 6, 0,
259         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
260     uint8_t pa_features_207[] = { 24, 0,
261         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
262         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
263         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
264         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
265     uint8_t pa_features_300[] = { 66, 0,
266         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
267         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
268         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
269         /* 6: DS207 */
270         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
271         /* 16: Vector */
272         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
273         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
274         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
275         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
276         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
277         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
278         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
279         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
280         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
281         /* 42: PM, 44: PC RA, 46: SC vec'd */
282         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
283         /* 48: SIMD, 50: QP BFP, 52: String */
284         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
285         /* 54: DecFP, 56: DecI, 58: SHA */
286         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
287         /* 60: NM atomic, 62: RNG */
288         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
289     };
290     uint8_t *pa_features;
291     size_t pa_size;
292 
293     switch (POWERPC_MMU_VER(env->mmu_model)) {
294     case POWERPC_MMU_VER_2_06:
295         pa_features = pa_features_206;
296         pa_size = sizeof(pa_features_206);
297         break;
298     case POWERPC_MMU_VER_2_07:
299         pa_features = pa_features_207;
300         pa_size = sizeof(pa_features_207);
301         break;
302     case POWERPC_MMU_VER_3_00:
303         pa_features = pa_features_300;
304         pa_size = sizeof(pa_features_300);
305         break;
306     default:
307         return;
308     }
309 
310     if (env->ci_large_pages) {
311         /*
312          * Note: we keep CI large pages off by default because a 64K capable
313          * guest provisioned with large pages might otherwise try to map a qemu
314          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
315          * even if that qemu runs on a 4k host.
316          * We dd this bit back here if we are confident this is not an issue
317          */
318         pa_features[3] |= 0x20;
319     }
320     if (kvmppc_has_cap_htm() && pa_size > 24) {
321         pa_features[24] |= 0x80;    /* Transactional memory support */
322     }
323     if (legacy_guest && pa_size > 40) {
324         /* Workaround for broken kernels that attempt (guest) radix
325          * mode when they can't handle it, if they see the radix bit set
326          * in pa-features. So hide it from them. */
327         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
328     }
329 
330     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
331 }
332 
333 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
334 {
335     int ret = 0, offset, cpus_offset;
336     CPUState *cs;
337     char cpu_model[32];
338     int smt = kvmppc_smt_threads();
339     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
340 
341     CPU_FOREACH(cs) {
342         PowerPCCPU *cpu = POWERPC_CPU(cs);
343         CPUPPCState *env = &cpu->env;
344         DeviceClass *dc = DEVICE_GET_CLASS(cs);
345         int index = spapr_vcpu_id(cpu);
346         int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
347 
348         if ((index % smt) != 0) {
349             continue;
350         }
351 
352         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
353 
354         cpus_offset = fdt_path_offset(fdt, "/cpus");
355         if (cpus_offset < 0) {
356             cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
357                                           "cpus");
358             if (cpus_offset < 0) {
359                 return cpus_offset;
360             }
361         }
362         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
363         if (offset < 0) {
364             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
365             if (offset < 0) {
366                 return offset;
367             }
368         }
369 
370         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
371                           pft_size_prop, sizeof(pft_size_prop));
372         if (ret < 0) {
373             return ret;
374         }
375 
376         if (nb_numa_nodes > 1) {
377             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
378             if (ret < 0) {
379                 return ret;
380             }
381         }
382 
383         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
384         if (ret < 0) {
385             return ret;
386         }
387 
388         spapr_populate_pa_features(env, fdt, offset,
389                                          spapr->cas_legacy_guest_workaround);
390     }
391     return ret;
392 }
393 
394 static hwaddr spapr_node0_size(MachineState *machine)
395 {
396     if (nb_numa_nodes) {
397         int i;
398         for (i = 0; i < nb_numa_nodes; ++i) {
399             if (numa_info[i].node_mem) {
400                 return MIN(pow2floor(numa_info[i].node_mem),
401                            machine->ram_size);
402             }
403         }
404     }
405     return machine->ram_size;
406 }
407 
408 static void add_str(GString *s, const gchar *s1)
409 {
410     g_string_append_len(s, s1, strlen(s1) + 1);
411 }
412 
413 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
414                                        hwaddr size)
415 {
416     uint32_t associativity[] = {
417         cpu_to_be32(0x4), /* length */
418         cpu_to_be32(0x0), cpu_to_be32(0x0),
419         cpu_to_be32(0x0), cpu_to_be32(nodeid)
420     };
421     char mem_name[32];
422     uint64_t mem_reg_property[2];
423     int off;
424 
425     mem_reg_property[0] = cpu_to_be64(start);
426     mem_reg_property[1] = cpu_to_be64(size);
427 
428     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
429     off = fdt_add_subnode(fdt, 0, mem_name);
430     _FDT(off);
431     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
432     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
433                       sizeof(mem_reg_property))));
434     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
435                       sizeof(associativity))));
436     return off;
437 }
438 
439 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
440 {
441     MachineState *machine = MACHINE(spapr);
442     hwaddr mem_start, node_size;
443     int i, nb_nodes = nb_numa_nodes;
444     NodeInfo *nodes = numa_info;
445     NodeInfo ramnode;
446 
447     /* No NUMA nodes, assume there is just one node with whole RAM */
448     if (!nb_numa_nodes) {
449         nb_nodes = 1;
450         ramnode.node_mem = machine->ram_size;
451         nodes = &ramnode;
452     }
453 
454     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
455         if (!nodes[i].node_mem) {
456             continue;
457         }
458         if (mem_start >= machine->ram_size) {
459             node_size = 0;
460         } else {
461             node_size = nodes[i].node_mem;
462             if (node_size > machine->ram_size - mem_start) {
463                 node_size = machine->ram_size - mem_start;
464             }
465         }
466         if (!mem_start) {
467             /* ppc_spapr_init() checks for rma_size <= node0_size already */
468             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
469             mem_start += spapr->rma_size;
470             node_size -= spapr->rma_size;
471         }
472         for ( ; node_size; ) {
473             hwaddr sizetmp = pow2floor(node_size);
474 
475             /* mem_start != 0 here */
476             if (ctzl(mem_start) < ctzl(sizetmp)) {
477                 sizetmp = 1ULL << ctzl(mem_start);
478             }
479 
480             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
481             node_size -= sizetmp;
482             mem_start += sizetmp;
483         }
484     }
485 
486     return 0;
487 }
488 
489 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
490                                   sPAPRMachineState *spapr)
491 {
492     PowerPCCPU *cpu = POWERPC_CPU(cs);
493     CPUPPCState *env = &cpu->env;
494     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
495     int index = spapr_vcpu_id(cpu);
496     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
497                        0xffffffff, 0xffffffff};
498     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
499         : SPAPR_TIMEBASE_FREQ;
500     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
501     uint32_t page_sizes_prop[64];
502     size_t page_sizes_prop_size;
503     uint32_t vcpus_per_socket = smp_threads * smp_cores;
504     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
505     int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
506     sPAPRDRConnector *drc;
507     int drc_index;
508     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
509     int i;
510 
511     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
512     if (drc) {
513         drc_index = spapr_drc_index(drc);
514         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
515     }
516 
517     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
518     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
519 
520     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
521     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
522                            env->dcache_line_size)));
523     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
524                            env->dcache_line_size)));
525     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
526                            env->icache_line_size)));
527     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
528                            env->icache_line_size)));
529 
530     if (pcc->l1_dcache_size) {
531         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
532                                pcc->l1_dcache_size)));
533     } else {
534         warn_report("Unknown L1 dcache size for cpu");
535     }
536     if (pcc->l1_icache_size) {
537         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
538                                pcc->l1_icache_size)));
539     } else {
540         warn_report("Unknown L1 icache size for cpu");
541     }
542 
543     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
544     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
545     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
546     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
547     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
548     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
549 
550     if (env->spr_cb[SPR_PURR].oea_read) {
551         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
552     }
553 
554     if (env->mmu_model & POWERPC_MMU_1TSEG) {
555         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
556                           segs, sizeof(segs))));
557     }
558 
559     /* Advertise VMX/VSX (vector extensions) if available
560      *   0 / no property == no vector extensions
561      *   1               == VMX / Altivec available
562      *   2               == VSX available */
563     if (env->insns_flags & PPC_ALTIVEC) {
564         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
565 
566         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
567     }
568 
569     /* Advertise DFP (Decimal Floating Point) if available
570      *   0 / no property == no DFP
571      *   1               == DFP available */
572     if (env->insns_flags2 & PPC2_DFP) {
573         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
574     }
575 
576     page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
577                                                   sizeof(page_sizes_prop));
578     if (page_sizes_prop_size) {
579         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
580                           page_sizes_prop, page_sizes_prop_size)));
581     }
582 
583     spapr_populate_pa_features(env, fdt, offset, false);
584 
585     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
586                            cs->cpu_index / vcpus_per_socket)));
587 
588     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
589                       pft_size_prop, sizeof(pft_size_prop))));
590 
591     if (nb_numa_nodes > 1) {
592         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
593     }
594 
595     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
596 
597     if (pcc->radix_page_info) {
598         for (i = 0; i < pcc->radix_page_info->count; i++) {
599             radix_AP_encodings[i] =
600                 cpu_to_be32(pcc->radix_page_info->entries[i]);
601         }
602         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
603                           radix_AP_encodings,
604                           pcc->radix_page_info->count *
605                           sizeof(radix_AP_encodings[0]))));
606     }
607 }
608 
609 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
610 {
611     CPUState *cs;
612     int cpus_offset;
613     char *nodename;
614     int smt = kvmppc_smt_threads();
615 
616     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
617     _FDT(cpus_offset);
618     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
619     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
620 
621     /*
622      * We walk the CPUs in reverse order to ensure that CPU DT nodes
623      * created by fdt_add_subnode() end up in the right order in FDT
624      * for the guest kernel the enumerate the CPUs correctly.
625      */
626     CPU_FOREACH_REVERSE(cs) {
627         PowerPCCPU *cpu = POWERPC_CPU(cs);
628         int index = spapr_vcpu_id(cpu);
629         DeviceClass *dc = DEVICE_GET_CLASS(cs);
630         int offset;
631 
632         if ((index % smt) != 0) {
633             continue;
634         }
635 
636         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
637         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
638         g_free(nodename);
639         _FDT(offset);
640         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
641     }
642 
643 }
644 
645 /*
646  * Adds ibm,dynamic-reconfiguration-memory node.
647  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
648  * of this device tree node.
649  */
650 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
651 {
652     MachineState *machine = MACHINE(spapr);
653     int ret, i, offset;
654     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
655     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
656     uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
657     uint32_t nr_lmbs = (spapr->hotplug_memory.base +
658                        memory_region_size(&spapr->hotplug_memory.mr)) /
659                        lmb_size;
660     uint32_t *int_buf, *cur_index, buf_len;
661     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
662 
663     /*
664      * Don't create the node if there is no hotpluggable memory
665      */
666     if (machine->ram_size == machine->maxram_size) {
667         return 0;
668     }
669 
670     /*
671      * Allocate enough buffer size to fit in ibm,dynamic-memory
672      * or ibm,associativity-lookup-arrays
673      */
674     buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
675               * sizeof(uint32_t);
676     cur_index = int_buf = g_malloc0(buf_len);
677 
678     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
679 
680     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
681                     sizeof(prop_lmb_size));
682     if (ret < 0) {
683         goto out;
684     }
685 
686     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
687     if (ret < 0) {
688         goto out;
689     }
690 
691     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
692     if (ret < 0) {
693         goto out;
694     }
695 
696     /* ibm,dynamic-memory */
697     int_buf[0] = cpu_to_be32(nr_lmbs);
698     cur_index++;
699     for (i = 0; i < nr_lmbs; i++) {
700         uint64_t addr = i * lmb_size;
701         uint32_t *dynamic_memory = cur_index;
702 
703         if (i >= hotplug_lmb_start) {
704             sPAPRDRConnector *drc;
705 
706             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
707             g_assert(drc);
708 
709             dynamic_memory[0] = cpu_to_be32(addr >> 32);
710             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
711             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
712             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
713             dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
714             if (memory_region_present(get_system_memory(), addr)) {
715                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
716             } else {
717                 dynamic_memory[5] = cpu_to_be32(0);
718             }
719         } else {
720             /*
721              * LMB information for RMA, boot time RAM and gap b/n RAM and
722              * hotplug memory region -- all these are marked as reserved
723              * and as having no valid DRC.
724              */
725             dynamic_memory[0] = cpu_to_be32(addr >> 32);
726             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
727             dynamic_memory[2] = cpu_to_be32(0);
728             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
729             dynamic_memory[4] = cpu_to_be32(-1);
730             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
731                                             SPAPR_LMB_FLAGS_DRC_INVALID);
732         }
733 
734         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
735     }
736     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
737     if (ret < 0) {
738         goto out;
739     }
740 
741     /* ibm,associativity-lookup-arrays */
742     cur_index = int_buf;
743     int_buf[0] = cpu_to_be32(nr_nodes);
744     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
745     cur_index += 2;
746     for (i = 0; i < nr_nodes; i++) {
747         uint32_t associativity[] = {
748             cpu_to_be32(0x0),
749             cpu_to_be32(0x0),
750             cpu_to_be32(0x0),
751             cpu_to_be32(i)
752         };
753         memcpy(cur_index, associativity, sizeof(associativity));
754         cur_index += 4;
755     }
756     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
757             (cur_index - int_buf) * sizeof(uint32_t));
758 out:
759     g_free(int_buf);
760     return ret;
761 }
762 
763 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
764                                 sPAPROptionVector *ov5_updates)
765 {
766     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
767     int ret = 0, offset;
768 
769     /* Generate ibm,dynamic-reconfiguration-memory node if required */
770     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
771         g_assert(smc->dr_lmb_enabled);
772         ret = spapr_populate_drconf_memory(spapr, fdt);
773         if (ret) {
774             goto out;
775         }
776     }
777 
778     offset = fdt_path_offset(fdt, "/chosen");
779     if (offset < 0) {
780         offset = fdt_add_subnode(fdt, 0, "chosen");
781         if (offset < 0) {
782             return offset;
783         }
784     }
785     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
786                                  "ibm,architecture-vec-5");
787 
788 out:
789     return ret;
790 }
791 
792 static bool spapr_hotplugged_dev_before_cas(void)
793 {
794     Object *drc_container, *obj;
795     ObjectProperty *prop;
796     ObjectPropertyIterator iter;
797 
798     drc_container = container_get(object_get_root(), "/dr-connector");
799     object_property_iter_init(&iter, drc_container);
800     while ((prop = object_property_iter_next(&iter))) {
801         if (!strstart(prop->type, "link<", NULL)) {
802             continue;
803         }
804         obj = object_property_get_link(drc_container, prop->name, NULL);
805         if (spapr_drc_needed(obj)) {
806             return true;
807         }
808     }
809     return false;
810 }
811 
812 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
813                                  target_ulong addr, target_ulong size,
814                                  sPAPROptionVector *ov5_updates)
815 {
816     void *fdt, *fdt_skel;
817     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
818 
819     if (spapr_hotplugged_dev_before_cas()) {
820         return 1;
821     }
822 
823     size -= sizeof(hdr);
824 
825     /* Create skeleton */
826     fdt_skel = g_malloc0(size);
827     _FDT((fdt_create(fdt_skel, size)));
828     _FDT((fdt_begin_node(fdt_skel, "")));
829     _FDT((fdt_end_node(fdt_skel)));
830     _FDT((fdt_finish(fdt_skel)));
831     fdt = g_malloc0(size);
832     _FDT((fdt_open_into(fdt_skel, fdt, size)));
833     g_free(fdt_skel);
834 
835     /* Fixup cpu nodes */
836     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
837 
838     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
839         return -1;
840     }
841 
842     /* Pack resulting tree */
843     _FDT((fdt_pack(fdt)));
844 
845     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
846         trace_spapr_cas_failed(size);
847         return -1;
848     }
849 
850     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
851     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
852     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
853     g_free(fdt);
854 
855     return 0;
856 }
857 
858 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
859 {
860     int rtas;
861     GString *hypertas = g_string_sized_new(256);
862     GString *qemu_hypertas = g_string_sized_new(256);
863     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
864     uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
865         memory_region_size(&spapr->hotplug_memory.mr);
866     uint32_t lrdr_capacity[] = {
867         cpu_to_be32(max_hotplug_addr >> 32),
868         cpu_to_be32(max_hotplug_addr & 0xffffffff),
869         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
870         cpu_to_be32(max_cpus / smp_threads),
871     };
872 
873     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
874 
875     /* hypertas */
876     add_str(hypertas, "hcall-pft");
877     add_str(hypertas, "hcall-term");
878     add_str(hypertas, "hcall-dabr");
879     add_str(hypertas, "hcall-interrupt");
880     add_str(hypertas, "hcall-tce");
881     add_str(hypertas, "hcall-vio");
882     add_str(hypertas, "hcall-splpar");
883     add_str(hypertas, "hcall-bulk");
884     add_str(hypertas, "hcall-set-mode");
885     add_str(hypertas, "hcall-sprg0");
886     add_str(hypertas, "hcall-copy");
887     add_str(hypertas, "hcall-debug");
888     add_str(qemu_hypertas, "hcall-memop1");
889 
890     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
891         add_str(hypertas, "hcall-multi-tce");
892     }
893 
894     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
895         add_str(hypertas, "hcall-hpt-resize");
896     }
897 
898     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
899                      hypertas->str, hypertas->len));
900     g_string_free(hypertas, TRUE);
901     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
902                      qemu_hypertas->str, qemu_hypertas->len));
903     g_string_free(qemu_hypertas, TRUE);
904 
905     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
906                      refpoints, sizeof(refpoints)));
907 
908     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
909                           RTAS_ERROR_LOG_MAX));
910     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
911                           RTAS_EVENT_SCAN_RATE));
912 
913     if (msi_nonbroken) {
914         _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
915     }
916 
917     /*
918      * According to PAPR, rtas ibm,os-term does not guarantee a return
919      * back to the guest cpu.
920      *
921      * While an additional ibm,extended-os-term property indicates
922      * that rtas call return will always occur. Set this property.
923      */
924     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
925 
926     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
927                      lrdr_capacity, sizeof(lrdr_capacity)));
928 
929     spapr_dt_rtas_tokens(fdt, rtas);
930 }
931 
932 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
933  * that the guest may request and thus the valid values for bytes 24..26 of
934  * option vector 5: */
935 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
936 {
937     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
938 
939     char val[2 * 4] = {
940         23, 0x00, /* Xive mode, filled in below. */
941         24, 0x00, /* Hash/Radix, filled in below. */
942         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
943         26, 0x40, /* Radix options: GTSE == yes. */
944     };
945 
946     if (kvm_enabled()) {
947         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
948             val[3] = 0x80; /* OV5_MMU_BOTH */
949         } else if (kvmppc_has_cap_mmu_radix()) {
950             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
951         } else {
952             val[3] = 0x00; /* Hash */
953         }
954     } else {
955         if (first_ppc_cpu->env.mmu_model & POWERPC_MMU_V3) {
956             /* V3 MMU supports both hash and radix (with dynamic switching) */
957             val[3] = 0xC0;
958         } else {
959             /* Otherwise we can only do hash */
960             val[3] = 0x00;
961         }
962     }
963     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
964                      val, sizeof(val)));
965 }
966 
967 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
968 {
969     MachineState *machine = MACHINE(spapr);
970     int chosen;
971     const char *boot_device = machine->boot_order;
972     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
973     size_t cb = 0;
974     char *bootlist = get_boot_devices_list(&cb, true);
975 
976     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
977 
978     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
979     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
980                           spapr->initrd_base));
981     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
982                           spapr->initrd_base + spapr->initrd_size));
983 
984     if (spapr->kernel_size) {
985         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
986                               cpu_to_be64(spapr->kernel_size) };
987 
988         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
989                          &kprop, sizeof(kprop)));
990         if (spapr->kernel_le) {
991             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
992         }
993     }
994     if (boot_menu) {
995         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
996     }
997     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
998     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
999     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1000 
1001     if (cb && bootlist) {
1002         int i;
1003 
1004         for (i = 0; i < cb; i++) {
1005             if (bootlist[i] == '\n') {
1006                 bootlist[i] = ' ';
1007             }
1008         }
1009         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1010     }
1011 
1012     if (boot_device && strlen(boot_device)) {
1013         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1014     }
1015 
1016     if (!spapr->has_graphics && stdout_path) {
1017         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1018     }
1019 
1020     spapr_dt_ov5_platform_support(fdt, chosen);
1021 
1022     g_free(stdout_path);
1023     g_free(bootlist);
1024 }
1025 
1026 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1027 {
1028     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1029      * KVM to work under pHyp with some guest co-operation */
1030     int hypervisor;
1031     uint8_t hypercall[16];
1032 
1033     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1034     /* indicate KVM hypercall interface */
1035     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1036     if (kvmppc_has_cap_fixup_hcalls()) {
1037         /*
1038          * Older KVM versions with older guest kernels were broken
1039          * with the magic page, don't allow the guest to map it.
1040          */
1041         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1042                                   sizeof(hypercall))) {
1043             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1044                              hypercall, sizeof(hypercall)));
1045         }
1046     }
1047 }
1048 
1049 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1050                              hwaddr rtas_addr,
1051                              hwaddr rtas_size)
1052 {
1053     MachineState *machine = MACHINE(spapr);
1054     MachineClass *mc = MACHINE_GET_CLASS(machine);
1055     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1056     int ret;
1057     void *fdt;
1058     sPAPRPHBState *phb;
1059     char *buf;
1060 
1061     fdt = g_malloc0(FDT_MAX_SIZE);
1062     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1063 
1064     /* Root node */
1065     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1066     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1067     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1068 
1069     /*
1070      * Add info to guest to indentify which host is it being run on
1071      * and what is the uuid of the guest
1072      */
1073     if (kvmppc_get_host_model(&buf)) {
1074         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1075         g_free(buf);
1076     }
1077     if (kvmppc_get_host_serial(&buf)) {
1078         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1079         g_free(buf);
1080     }
1081 
1082     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1083 
1084     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1085     if (qemu_uuid_set) {
1086         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1087     }
1088     g_free(buf);
1089 
1090     if (qemu_get_vm_name()) {
1091         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1092                                 qemu_get_vm_name()));
1093     }
1094 
1095     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1096     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1097 
1098     /* /interrupt controller */
1099     spapr_dt_xics(xics_max_server_number(), fdt, PHANDLE_XICP);
1100 
1101     ret = spapr_populate_memory(spapr, fdt);
1102     if (ret < 0) {
1103         error_report("couldn't setup memory nodes in fdt");
1104         exit(1);
1105     }
1106 
1107     /* /vdevice */
1108     spapr_dt_vdevice(spapr->vio_bus, fdt);
1109 
1110     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1111         ret = spapr_rng_populate_dt(fdt);
1112         if (ret < 0) {
1113             error_report("could not set up rng device in the fdt");
1114             exit(1);
1115         }
1116     }
1117 
1118     QLIST_FOREACH(phb, &spapr->phbs, list) {
1119         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1120         if (ret < 0) {
1121             error_report("couldn't setup PCI devices in fdt");
1122             exit(1);
1123         }
1124     }
1125 
1126     /* cpus */
1127     spapr_populate_cpus_dt_node(fdt, spapr);
1128 
1129     if (smc->dr_lmb_enabled) {
1130         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1131     }
1132 
1133     if (mc->has_hotpluggable_cpus) {
1134         int offset = fdt_path_offset(fdt, "/cpus");
1135         ret = spapr_drc_populate_dt(fdt, offset, NULL,
1136                                     SPAPR_DR_CONNECTOR_TYPE_CPU);
1137         if (ret < 0) {
1138             error_report("Couldn't set up CPU DR device tree properties");
1139             exit(1);
1140         }
1141     }
1142 
1143     /* /event-sources */
1144     spapr_dt_events(spapr, fdt);
1145 
1146     /* /rtas */
1147     spapr_dt_rtas(spapr, fdt);
1148 
1149     /* /chosen */
1150     spapr_dt_chosen(spapr, fdt);
1151 
1152     /* /hypervisor */
1153     if (kvm_enabled()) {
1154         spapr_dt_hypervisor(spapr, fdt);
1155     }
1156 
1157     /* Build memory reserve map */
1158     if (spapr->kernel_size) {
1159         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1160     }
1161     if (spapr->initrd_size) {
1162         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1163     }
1164 
1165     /* ibm,client-architecture-support updates */
1166     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1167     if (ret < 0) {
1168         error_report("couldn't setup CAS properties fdt");
1169         exit(1);
1170     }
1171 
1172     return fdt;
1173 }
1174 
1175 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1176 {
1177     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1178 }
1179 
1180 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1181                                     PowerPCCPU *cpu)
1182 {
1183     CPUPPCState *env = &cpu->env;
1184 
1185     /* The TCG path should also be holding the BQL at this point */
1186     g_assert(qemu_mutex_iothread_locked());
1187 
1188     if (msr_pr) {
1189         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1190         env->gpr[3] = H_PRIVILEGE;
1191     } else {
1192         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1193     }
1194 }
1195 
1196 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1197 {
1198     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1199 
1200     return spapr->patb_entry;
1201 }
1202 
1203 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1204 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1205 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1206 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1207 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1208 
1209 /*
1210  * Get the fd to access the kernel htab, re-opening it if necessary
1211  */
1212 static int get_htab_fd(sPAPRMachineState *spapr)
1213 {
1214     if (spapr->htab_fd >= 0) {
1215         return spapr->htab_fd;
1216     }
1217 
1218     spapr->htab_fd = kvmppc_get_htab_fd(false);
1219     if (spapr->htab_fd < 0) {
1220         error_report("Unable to open fd for reading hash table from KVM: %s",
1221                      strerror(errno));
1222     }
1223 
1224     return spapr->htab_fd;
1225 }
1226 
1227 void close_htab_fd(sPAPRMachineState *spapr)
1228 {
1229     if (spapr->htab_fd >= 0) {
1230         close(spapr->htab_fd);
1231     }
1232     spapr->htab_fd = -1;
1233 }
1234 
1235 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1236 {
1237     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1238 
1239     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1240 }
1241 
1242 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1243                                                 hwaddr ptex, int n)
1244 {
1245     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1246     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1247 
1248     if (!spapr->htab) {
1249         /*
1250          * HTAB is controlled by KVM. Fetch into temporary buffer
1251          */
1252         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1253         kvmppc_read_hptes(hptes, ptex, n);
1254         return hptes;
1255     }
1256 
1257     /*
1258      * HTAB is controlled by QEMU. Just point to the internally
1259      * accessible PTEG.
1260      */
1261     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1262 }
1263 
1264 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1265                               const ppc_hash_pte64_t *hptes,
1266                               hwaddr ptex, int n)
1267 {
1268     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1269 
1270     if (!spapr->htab) {
1271         g_free((void *)hptes);
1272     }
1273 
1274     /* Nothing to do for qemu managed HPT */
1275 }
1276 
1277 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1278                              uint64_t pte0, uint64_t pte1)
1279 {
1280     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1281     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1282 
1283     if (!spapr->htab) {
1284         kvmppc_write_hpte(ptex, pte0, pte1);
1285     } else {
1286         stq_p(spapr->htab + offset, pte0);
1287         stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1288     }
1289 }
1290 
1291 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1292 {
1293     int shift;
1294 
1295     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1296      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1297      * that's much more than is needed for Linux guests */
1298     shift = ctz64(pow2ceil(ramsize)) - 7;
1299     shift = MAX(shift, 18); /* Minimum architected size */
1300     shift = MIN(shift, 46); /* Maximum architected size */
1301     return shift;
1302 }
1303 
1304 void spapr_free_hpt(sPAPRMachineState *spapr)
1305 {
1306     g_free(spapr->htab);
1307     spapr->htab = NULL;
1308     spapr->htab_shift = 0;
1309     close_htab_fd(spapr);
1310 }
1311 
1312 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1313                           Error **errp)
1314 {
1315     long rc;
1316 
1317     /* Clean up any HPT info from a previous boot */
1318     spapr_free_hpt(spapr);
1319 
1320     rc = kvmppc_reset_htab(shift);
1321     if (rc < 0) {
1322         /* kernel-side HPT needed, but couldn't allocate one */
1323         error_setg_errno(errp, errno,
1324                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1325                          shift);
1326         /* This is almost certainly fatal, but if the caller really
1327          * wants to carry on with shift == 0, it's welcome to try */
1328     } else if (rc > 0) {
1329         /* kernel-side HPT allocated */
1330         if (rc != shift) {
1331             error_setg(errp,
1332                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1333                        shift, rc);
1334         }
1335 
1336         spapr->htab_shift = shift;
1337         spapr->htab = NULL;
1338     } else {
1339         /* kernel-side HPT not needed, allocate in userspace instead */
1340         size_t size = 1ULL << shift;
1341         int i;
1342 
1343         spapr->htab = qemu_memalign(size, size);
1344         if (!spapr->htab) {
1345             error_setg_errno(errp, errno,
1346                              "Could not allocate HPT of order %d", shift);
1347             return;
1348         }
1349 
1350         memset(spapr->htab, 0, size);
1351         spapr->htab_shift = shift;
1352 
1353         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1354             DIRTY_HPTE(HPTE(spapr->htab, i));
1355         }
1356     }
1357 }
1358 
1359 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1360 {
1361     int hpt_shift;
1362 
1363     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1364         || (spapr->cas_reboot
1365             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1366         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1367     } else {
1368         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->ram_size);
1369     }
1370     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1371 
1372     if (spapr->vrma_adjust) {
1373         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1374                                           spapr->htab_shift);
1375     }
1376     /* We're setting up a hash table, so that means we're not radix */
1377     spapr->patb_entry = 0;
1378 }
1379 
1380 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1381 {
1382     bool matched = false;
1383 
1384     if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1385         matched = true;
1386     }
1387 
1388     if (!matched) {
1389         error_report("Device %s is not supported by this machine yet.",
1390                      qdev_fw_name(DEVICE(sbdev)));
1391         exit(1);
1392     }
1393 }
1394 
1395 static void ppc_spapr_reset(void)
1396 {
1397     MachineState *machine = MACHINE(qdev_get_machine());
1398     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1399     PowerPCCPU *first_ppc_cpu;
1400     uint32_t rtas_limit;
1401     hwaddr rtas_addr, fdt_addr;
1402     void *fdt;
1403     int rc;
1404 
1405     /* Check for unknown sysbus devices */
1406     foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1407 
1408     if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1409         /* If using KVM with radix mode available, VCPUs can be started
1410          * without a HPT because KVM will start them in radix mode.
1411          * Set the GR bit in PATB so that we know there is no HPT. */
1412         spapr->patb_entry = PATBE1_GR;
1413     } else {
1414         spapr_setup_hpt_and_vrma(spapr);
1415     }
1416 
1417     qemu_devices_reset();
1418     spapr_clear_pending_events(spapr);
1419 
1420     /*
1421      * We place the device tree and RTAS just below either the top of the RMA,
1422      * or just below 2GB, whichever is lowere, so that it can be
1423      * processed with 32-bit real mode code if necessary
1424      */
1425     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1426     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1427     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1428 
1429     /* if this reset wasn't generated by CAS, we should reset our
1430      * negotiated options and start from scratch */
1431     if (!spapr->cas_reboot) {
1432         spapr_ovec_cleanup(spapr->ov5_cas);
1433         spapr->ov5_cas = spapr_ovec_new();
1434 
1435         ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1436     }
1437 
1438     fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1439 
1440     spapr_load_rtas(spapr, fdt, rtas_addr);
1441 
1442     rc = fdt_pack(fdt);
1443 
1444     /* Should only fail if we've built a corrupted tree */
1445     assert(rc == 0);
1446 
1447     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1448         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1449                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1450         exit(1);
1451     }
1452 
1453     /* Load the fdt */
1454     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1455     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1456     g_free(fdt);
1457 
1458     /* Set up the entry state */
1459     first_ppc_cpu = POWERPC_CPU(first_cpu);
1460     first_ppc_cpu->env.gpr[3] = fdt_addr;
1461     first_ppc_cpu->env.gpr[5] = 0;
1462     first_cpu->halted = 0;
1463     first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1464 
1465     spapr->cas_reboot = false;
1466 }
1467 
1468 static void spapr_create_nvram(sPAPRMachineState *spapr)
1469 {
1470     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1471     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1472 
1473     if (dinfo) {
1474         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1475                             &error_fatal);
1476     }
1477 
1478     qdev_init_nofail(dev);
1479 
1480     spapr->nvram = (struct sPAPRNVRAM *)dev;
1481 }
1482 
1483 static void spapr_rtc_create(sPAPRMachineState *spapr)
1484 {
1485     object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1486     object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1487                               &error_fatal);
1488     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1489                               &error_fatal);
1490     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1491                               "date", &error_fatal);
1492 }
1493 
1494 /* Returns whether we want to use VGA or not */
1495 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1496 {
1497     switch (vga_interface_type) {
1498     case VGA_NONE:
1499         return false;
1500     case VGA_DEVICE:
1501         return true;
1502     case VGA_STD:
1503     case VGA_VIRTIO:
1504         return pci_vga_init(pci_bus) != NULL;
1505     default:
1506         error_setg(errp,
1507                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1508         return false;
1509     }
1510 }
1511 
1512 static int spapr_post_load(void *opaque, int version_id)
1513 {
1514     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1515     int err = 0;
1516 
1517     if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1518         CPUState *cs;
1519         CPU_FOREACH(cs) {
1520             PowerPCCPU *cpu = POWERPC_CPU(cs);
1521             icp_resend(ICP(cpu->intc));
1522         }
1523     }
1524 
1525     /* In earlier versions, there was no separate qdev for the PAPR
1526      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1527      * So when migrating from those versions, poke the incoming offset
1528      * value into the RTC device */
1529     if (version_id < 3) {
1530         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1531     }
1532 
1533     if (spapr->patb_entry) {
1534         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1535         bool radix = !!(spapr->patb_entry & PATBE1_GR);
1536         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1537 
1538         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1539         if (err) {
1540             error_report("Process table config unsupported by the host");
1541             return -EINVAL;
1542         }
1543     }
1544 
1545     return err;
1546 }
1547 
1548 static bool version_before_3(void *opaque, int version_id)
1549 {
1550     return version_id < 3;
1551 }
1552 
1553 static bool spapr_pending_events_needed(void *opaque)
1554 {
1555     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1556     return !QTAILQ_EMPTY(&spapr->pending_events);
1557 }
1558 
1559 static const VMStateDescription vmstate_spapr_event_entry = {
1560     .name = "spapr_event_log_entry",
1561     .version_id = 1,
1562     .minimum_version_id = 1,
1563     .fields = (VMStateField[]) {
1564         VMSTATE_UINT32(summary, sPAPREventLogEntry),
1565         VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1566         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1567                                      NULL, extended_length),
1568         VMSTATE_END_OF_LIST()
1569     },
1570 };
1571 
1572 static const VMStateDescription vmstate_spapr_pending_events = {
1573     .name = "spapr_pending_events",
1574     .version_id = 1,
1575     .minimum_version_id = 1,
1576     .needed = spapr_pending_events_needed,
1577     .fields = (VMStateField[]) {
1578         VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1579                          vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1580         VMSTATE_END_OF_LIST()
1581     },
1582 };
1583 
1584 static bool spapr_ov5_cas_needed(void *opaque)
1585 {
1586     sPAPRMachineState *spapr = opaque;
1587     sPAPROptionVector *ov5_mask = spapr_ovec_new();
1588     sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1589     sPAPROptionVector *ov5_removed = spapr_ovec_new();
1590     bool cas_needed;
1591 
1592     /* Prior to the introduction of sPAPROptionVector, we had two option
1593      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1594      * Both of these options encode machine topology into the device-tree
1595      * in such a way that the now-booted OS should still be able to interact
1596      * appropriately with QEMU regardless of what options were actually
1597      * negotiatied on the source side.
1598      *
1599      * As such, we can avoid migrating the CAS-negotiated options if these
1600      * are the only options available on the current machine/platform.
1601      * Since these are the only options available for pseries-2.7 and
1602      * earlier, this allows us to maintain old->new/new->old migration
1603      * compatibility.
1604      *
1605      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1606      * via default pseries-2.8 machines and explicit command-line parameters.
1607      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1608      * of the actual CAS-negotiated values to continue working properly. For
1609      * example, availability of memory unplug depends on knowing whether
1610      * OV5_HP_EVT was negotiated via CAS.
1611      *
1612      * Thus, for any cases where the set of available CAS-negotiatable
1613      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1614      * include the CAS-negotiated options in the migration stream.
1615      */
1616     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1617     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1618 
1619     /* spapr_ovec_diff returns true if bits were removed. we avoid using
1620      * the mask itself since in the future it's possible "legacy" bits may be
1621      * removed via machine options, which could generate a false positive
1622      * that breaks migration.
1623      */
1624     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1625     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1626 
1627     spapr_ovec_cleanup(ov5_mask);
1628     spapr_ovec_cleanup(ov5_legacy);
1629     spapr_ovec_cleanup(ov5_removed);
1630 
1631     return cas_needed;
1632 }
1633 
1634 static const VMStateDescription vmstate_spapr_ov5_cas = {
1635     .name = "spapr_option_vector_ov5_cas",
1636     .version_id = 1,
1637     .minimum_version_id = 1,
1638     .needed = spapr_ov5_cas_needed,
1639     .fields = (VMStateField[]) {
1640         VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1641                                  vmstate_spapr_ovec, sPAPROptionVector),
1642         VMSTATE_END_OF_LIST()
1643     },
1644 };
1645 
1646 static bool spapr_patb_entry_needed(void *opaque)
1647 {
1648     sPAPRMachineState *spapr = opaque;
1649 
1650     return !!spapr->patb_entry;
1651 }
1652 
1653 static const VMStateDescription vmstate_spapr_patb_entry = {
1654     .name = "spapr_patb_entry",
1655     .version_id = 1,
1656     .minimum_version_id = 1,
1657     .needed = spapr_patb_entry_needed,
1658     .fields = (VMStateField[]) {
1659         VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1660         VMSTATE_END_OF_LIST()
1661     },
1662 };
1663 
1664 static const VMStateDescription vmstate_spapr = {
1665     .name = "spapr",
1666     .version_id = 3,
1667     .minimum_version_id = 1,
1668     .post_load = spapr_post_load,
1669     .fields = (VMStateField[]) {
1670         /* used to be @next_irq */
1671         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1672 
1673         /* RTC offset */
1674         VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1675 
1676         VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1677         VMSTATE_END_OF_LIST()
1678     },
1679     .subsections = (const VMStateDescription*[]) {
1680         &vmstate_spapr_ov5_cas,
1681         &vmstate_spapr_patb_entry,
1682         &vmstate_spapr_pending_events,
1683         NULL
1684     }
1685 };
1686 
1687 static int htab_save_setup(QEMUFile *f, void *opaque)
1688 {
1689     sPAPRMachineState *spapr = opaque;
1690 
1691     /* "Iteration" header */
1692     if (!spapr->htab_shift) {
1693         qemu_put_be32(f, -1);
1694     } else {
1695         qemu_put_be32(f, spapr->htab_shift);
1696     }
1697 
1698     if (spapr->htab) {
1699         spapr->htab_save_index = 0;
1700         spapr->htab_first_pass = true;
1701     } else {
1702         if (spapr->htab_shift) {
1703             assert(kvm_enabled());
1704         }
1705     }
1706 
1707 
1708     return 0;
1709 }
1710 
1711 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1712                                  int64_t max_ns)
1713 {
1714     bool has_timeout = max_ns != -1;
1715     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1716     int index = spapr->htab_save_index;
1717     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1718 
1719     assert(spapr->htab_first_pass);
1720 
1721     do {
1722         int chunkstart;
1723 
1724         /* Consume invalid HPTEs */
1725         while ((index < htabslots)
1726                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1727             CLEAN_HPTE(HPTE(spapr->htab, index));
1728             index++;
1729         }
1730 
1731         /* Consume valid HPTEs */
1732         chunkstart = index;
1733         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1734                && HPTE_VALID(HPTE(spapr->htab, index))) {
1735             CLEAN_HPTE(HPTE(spapr->htab, index));
1736             index++;
1737         }
1738 
1739         if (index > chunkstart) {
1740             int n_valid = index - chunkstart;
1741 
1742             qemu_put_be32(f, chunkstart);
1743             qemu_put_be16(f, n_valid);
1744             qemu_put_be16(f, 0);
1745             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1746                             HASH_PTE_SIZE_64 * n_valid);
1747 
1748             if (has_timeout &&
1749                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1750                 break;
1751             }
1752         }
1753     } while ((index < htabslots) && !qemu_file_rate_limit(f));
1754 
1755     if (index >= htabslots) {
1756         assert(index == htabslots);
1757         index = 0;
1758         spapr->htab_first_pass = false;
1759     }
1760     spapr->htab_save_index = index;
1761 }
1762 
1763 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1764                                 int64_t max_ns)
1765 {
1766     bool final = max_ns < 0;
1767     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1768     int examined = 0, sent = 0;
1769     int index = spapr->htab_save_index;
1770     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1771 
1772     assert(!spapr->htab_first_pass);
1773 
1774     do {
1775         int chunkstart, invalidstart;
1776 
1777         /* Consume non-dirty HPTEs */
1778         while ((index < htabslots)
1779                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1780             index++;
1781             examined++;
1782         }
1783 
1784         chunkstart = index;
1785         /* Consume valid dirty HPTEs */
1786         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1787                && HPTE_DIRTY(HPTE(spapr->htab, index))
1788                && HPTE_VALID(HPTE(spapr->htab, index))) {
1789             CLEAN_HPTE(HPTE(spapr->htab, index));
1790             index++;
1791             examined++;
1792         }
1793 
1794         invalidstart = index;
1795         /* Consume invalid dirty HPTEs */
1796         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1797                && HPTE_DIRTY(HPTE(spapr->htab, index))
1798                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1799             CLEAN_HPTE(HPTE(spapr->htab, index));
1800             index++;
1801             examined++;
1802         }
1803 
1804         if (index > chunkstart) {
1805             int n_valid = invalidstart - chunkstart;
1806             int n_invalid = index - invalidstart;
1807 
1808             qemu_put_be32(f, chunkstart);
1809             qemu_put_be16(f, n_valid);
1810             qemu_put_be16(f, n_invalid);
1811             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1812                             HASH_PTE_SIZE_64 * n_valid);
1813             sent += index - chunkstart;
1814 
1815             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1816                 break;
1817             }
1818         }
1819 
1820         if (examined >= htabslots) {
1821             break;
1822         }
1823 
1824         if (index >= htabslots) {
1825             assert(index == htabslots);
1826             index = 0;
1827         }
1828     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1829 
1830     if (index >= htabslots) {
1831         assert(index == htabslots);
1832         index = 0;
1833     }
1834 
1835     spapr->htab_save_index = index;
1836 
1837     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1838 }
1839 
1840 #define MAX_ITERATION_NS    5000000 /* 5 ms */
1841 #define MAX_KVM_BUF_SIZE    2048
1842 
1843 static int htab_save_iterate(QEMUFile *f, void *opaque)
1844 {
1845     sPAPRMachineState *spapr = opaque;
1846     int fd;
1847     int rc = 0;
1848 
1849     /* Iteration header */
1850     if (!spapr->htab_shift) {
1851         qemu_put_be32(f, -1);
1852         return 1;
1853     } else {
1854         qemu_put_be32(f, 0);
1855     }
1856 
1857     if (!spapr->htab) {
1858         assert(kvm_enabled());
1859 
1860         fd = get_htab_fd(spapr);
1861         if (fd < 0) {
1862             return fd;
1863         }
1864 
1865         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1866         if (rc < 0) {
1867             return rc;
1868         }
1869     } else  if (spapr->htab_first_pass) {
1870         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1871     } else {
1872         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1873     }
1874 
1875     /* End marker */
1876     qemu_put_be32(f, 0);
1877     qemu_put_be16(f, 0);
1878     qemu_put_be16(f, 0);
1879 
1880     return rc;
1881 }
1882 
1883 static int htab_save_complete(QEMUFile *f, void *opaque)
1884 {
1885     sPAPRMachineState *spapr = opaque;
1886     int fd;
1887 
1888     /* Iteration header */
1889     if (!spapr->htab_shift) {
1890         qemu_put_be32(f, -1);
1891         return 0;
1892     } else {
1893         qemu_put_be32(f, 0);
1894     }
1895 
1896     if (!spapr->htab) {
1897         int rc;
1898 
1899         assert(kvm_enabled());
1900 
1901         fd = get_htab_fd(spapr);
1902         if (fd < 0) {
1903             return fd;
1904         }
1905 
1906         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1907         if (rc < 0) {
1908             return rc;
1909         }
1910     } else {
1911         if (spapr->htab_first_pass) {
1912             htab_save_first_pass(f, spapr, -1);
1913         }
1914         htab_save_later_pass(f, spapr, -1);
1915     }
1916 
1917     /* End marker */
1918     qemu_put_be32(f, 0);
1919     qemu_put_be16(f, 0);
1920     qemu_put_be16(f, 0);
1921 
1922     return 0;
1923 }
1924 
1925 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1926 {
1927     sPAPRMachineState *spapr = opaque;
1928     uint32_t section_hdr;
1929     int fd = -1;
1930 
1931     if (version_id < 1 || version_id > 1) {
1932         error_report("htab_load() bad version");
1933         return -EINVAL;
1934     }
1935 
1936     section_hdr = qemu_get_be32(f);
1937 
1938     if (section_hdr == -1) {
1939         spapr_free_hpt(spapr);
1940         return 0;
1941     }
1942 
1943     if (section_hdr) {
1944         Error *local_err = NULL;
1945 
1946         /* First section gives the htab size */
1947         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1948         if (local_err) {
1949             error_report_err(local_err);
1950             return -EINVAL;
1951         }
1952         return 0;
1953     }
1954 
1955     if (!spapr->htab) {
1956         assert(kvm_enabled());
1957 
1958         fd = kvmppc_get_htab_fd(true);
1959         if (fd < 0) {
1960             error_report("Unable to open fd to restore KVM hash table: %s",
1961                          strerror(errno));
1962         }
1963     }
1964 
1965     while (true) {
1966         uint32_t index;
1967         uint16_t n_valid, n_invalid;
1968 
1969         index = qemu_get_be32(f);
1970         n_valid = qemu_get_be16(f);
1971         n_invalid = qemu_get_be16(f);
1972 
1973         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1974             /* End of Stream */
1975             break;
1976         }
1977 
1978         if ((index + n_valid + n_invalid) >
1979             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1980             /* Bad index in stream */
1981             error_report(
1982                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1983                 index, n_valid, n_invalid, spapr->htab_shift);
1984             return -EINVAL;
1985         }
1986 
1987         if (spapr->htab) {
1988             if (n_valid) {
1989                 qemu_get_buffer(f, HPTE(spapr->htab, index),
1990                                 HASH_PTE_SIZE_64 * n_valid);
1991             }
1992             if (n_invalid) {
1993                 memset(HPTE(spapr->htab, index + n_valid), 0,
1994                        HASH_PTE_SIZE_64 * n_invalid);
1995             }
1996         } else {
1997             int rc;
1998 
1999             assert(fd >= 0);
2000 
2001             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2002             if (rc < 0) {
2003                 return rc;
2004             }
2005         }
2006     }
2007 
2008     if (!spapr->htab) {
2009         assert(fd >= 0);
2010         close(fd);
2011     }
2012 
2013     return 0;
2014 }
2015 
2016 static void htab_save_cleanup(void *opaque)
2017 {
2018     sPAPRMachineState *spapr = opaque;
2019 
2020     close_htab_fd(spapr);
2021 }
2022 
2023 static SaveVMHandlers savevm_htab_handlers = {
2024     .save_setup = htab_save_setup,
2025     .save_live_iterate = htab_save_iterate,
2026     .save_live_complete_precopy = htab_save_complete,
2027     .save_cleanup = htab_save_cleanup,
2028     .load_state = htab_load,
2029 };
2030 
2031 static void spapr_boot_set(void *opaque, const char *boot_device,
2032                            Error **errp)
2033 {
2034     MachineState *machine = MACHINE(opaque);
2035     machine->boot_order = g_strdup(boot_device);
2036 }
2037 
2038 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2039 {
2040     MachineState *machine = MACHINE(spapr);
2041     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2042     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2043     int i;
2044 
2045     for (i = 0; i < nr_lmbs; i++) {
2046         uint64_t addr;
2047 
2048         addr = i * lmb_size + spapr->hotplug_memory.base;
2049         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2050                                addr / lmb_size);
2051     }
2052 }
2053 
2054 /*
2055  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2056  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2057  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2058  */
2059 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2060 {
2061     int i;
2062 
2063     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2064         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2065                    " is not aligned to %llu MiB",
2066                    machine->ram_size,
2067                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2068         return;
2069     }
2070 
2071     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2072         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2073                    " is not aligned to %llu MiB",
2074                    machine->ram_size,
2075                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2076         return;
2077     }
2078 
2079     for (i = 0; i < nb_numa_nodes; i++) {
2080         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2081             error_setg(errp,
2082                        "Node %d memory size 0x%" PRIx64
2083                        " is not aligned to %llu MiB",
2084                        i, numa_info[i].node_mem,
2085                        SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2086             return;
2087         }
2088     }
2089 }
2090 
2091 /* find cpu slot in machine->possible_cpus by core_id */
2092 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2093 {
2094     int index = id / smp_threads;
2095 
2096     if (index >= ms->possible_cpus->len) {
2097         return NULL;
2098     }
2099     if (idx) {
2100         *idx = index;
2101     }
2102     return &ms->possible_cpus->cpus[index];
2103 }
2104 
2105 static void spapr_init_cpus(sPAPRMachineState *spapr)
2106 {
2107     MachineState *machine = MACHINE(spapr);
2108     MachineClass *mc = MACHINE_GET_CLASS(machine);
2109     char *type = spapr_get_cpu_core_type(machine->cpu_model);
2110     int smt = kvmppc_smt_threads();
2111     const CPUArchIdList *possible_cpus;
2112     int boot_cores_nr = smp_cpus / smp_threads;
2113     int i;
2114 
2115     if (!type) {
2116         error_report("Unable to find sPAPR CPU Core definition");
2117         exit(1);
2118     }
2119 
2120     possible_cpus = mc->possible_cpu_arch_ids(machine);
2121     if (mc->has_hotpluggable_cpus) {
2122         if (smp_cpus % smp_threads) {
2123             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2124                          smp_cpus, smp_threads);
2125             exit(1);
2126         }
2127         if (max_cpus % smp_threads) {
2128             error_report("max_cpus (%u) must be multiple of threads (%u)",
2129                          max_cpus, smp_threads);
2130             exit(1);
2131         }
2132     } else {
2133         if (max_cpus != smp_cpus) {
2134             error_report("This machine version does not support CPU hotplug");
2135             exit(1);
2136         }
2137         boot_cores_nr = possible_cpus->len;
2138     }
2139 
2140     for (i = 0; i < possible_cpus->len; i++) {
2141         int core_id = i * smp_threads;
2142 
2143         if (mc->has_hotpluggable_cpus) {
2144             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2145                                    (core_id / smp_threads) * smt);
2146         }
2147 
2148         if (i < boot_cores_nr) {
2149             Object *core  = object_new(type);
2150             int nr_threads = smp_threads;
2151 
2152             /* Handle the partially filled core for older machine types */
2153             if ((i + 1) * smp_threads >= smp_cpus) {
2154                 nr_threads = smp_cpus - i * smp_threads;
2155             }
2156 
2157             object_property_set_int(core, nr_threads, "nr-threads",
2158                                     &error_fatal);
2159             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2160                                     &error_fatal);
2161             object_property_set_bool(core, true, "realized", &error_fatal);
2162         }
2163     }
2164     g_free(type);
2165 }
2166 
2167 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2168 {
2169     Error *local_err = NULL;
2170     bool vsmt_user = !!spapr->vsmt;
2171     int kvm_smt = kvmppc_smt_threads();
2172     int ret;
2173 
2174     if (!kvm_enabled() && (smp_threads > 1)) {
2175         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2176                      "on a pseries machine");
2177         goto out;
2178     }
2179     if (!is_power_of_2(smp_threads)) {
2180         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2181                      "machine because it must be a power of 2", smp_threads);
2182         goto out;
2183     }
2184 
2185     /* Detemine the VSMT mode to use: */
2186     if (vsmt_user) {
2187         if (spapr->vsmt < smp_threads) {
2188             error_setg(&local_err, "Cannot support VSMT mode %d"
2189                          " because it must be >= threads/core (%d)",
2190                          spapr->vsmt, smp_threads);
2191             goto out;
2192         }
2193         /* In this case, spapr->vsmt has been set by the command line */
2194     } else {
2195         /* Choose a VSMT mode that may be higher than necessary but is
2196          * likely to be compatible with hosts that don't have VSMT. */
2197         spapr->vsmt = MAX(kvm_smt, smp_threads);
2198     }
2199 
2200     /* KVM: If necessary, set the SMT mode: */
2201     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2202         ret = kvmppc_set_smt_threads(spapr->vsmt);
2203         if (ret) {
2204             error_setg(&local_err,
2205                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2206                        spapr->vsmt, ret);
2207             if (!vsmt_user) {
2208                 error_append_hint(&local_err, "On PPC, a VM with %d threads/"
2209                              "core on a host with %d threads/core requires "
2210                              " the use of VSMT mode %d.\n",
2211                              smp_threads, kvm_smt, spapr->vsmt);
2212             }
2213             kvmppc_hint_smt_possible(&local_err);
2214             goto out;
2215         }
2216     }
2217     /* else TCG: nothing to do currently */
2218 out:
2219     error_propagate(errp, local_err);
2220 }
2221 
2222 /* pSeries LPAR / sPAPR hardware init */
2223 static void ppc_spapr_init(MachineState *machine)
2224 {
2225     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2226     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2227     const char *kernel_filename = machine->kernel_filename;
2228     const char *initrd_filename = machine->initrd_filename;
2229     PCIHostState *phb;
2230     int i;
2231     MemoryRegion *sysmem = get_system_memory();
2232     MemoryRegion *ram = g_new(MemoryRegion, 1);
2233     MemoryRegion *rma_region;
2234     void *rma = NULL;
2235     hwaddr rma_alloc_size;
2236     hwaddr node0_size = spapr_node0_size(machine);
2237     long load_limit, fw_size;
2238     char *filename;
2239     Error *resize_hpt_err = NULL;
2240 
2241     msi_nonbroken = true;
2242 
2243     QLIST_INIT(&spapr->phbs);
2244     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2245 
2246     /* Check HPT resizing availability */
2247     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2248     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2249         /*
2250          * If the user explicitly requested a mode we should either
2251          * supply it, or fail completely (which we do below).  But if
2252          * it's not set explicitly, we reset our mode to something
2253          * that works
2254          */
2255         if (resize_hpt_err) {
2256             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2257             error_free(resize_hpt_err);
2258             resize_hpt_err = NULL;
2259         } else {
2260             spapr->resize_hpt = smc->resize_hpt_default;
2261         }
2262     }
2263 
2264     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2265 
2266     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2267         /*
2268          * User requested HPT resize, but this host can't supply it.  Bail out
2269          */
2270         error_report_err(resize_hpt_err);
2271         exit(1);
2272     }
2273 
2274     /* Allocate RMA if necessary */
2275     rma_alloc_size = kvmppc_alloc_rma(&rma);
2276 
2277     if (rma_alloc_size == -1) {
2278         error_report("Unable to create RMA");
2279         exit(1);
2280     }
2281 
2282     if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2283         spapr->rma_size = rma_alloc_size;
2284     } else {
2285         spapr->rma_size = node0_size;
2286 
2287         /* With KVM, we don't actually know whether KVM supports an
2288          * unbounded RMA (PR KVM) or is limited by the hash table size
2289          * (HV KVM using VRMA), so we always assume the latter
2290          *
2291          * In that case, we also limit the initial allocations for RTAS
2292          * etc... to 256M since we have no way to know what the VRMA size
2293          * is going to be as it depends on the size of the hash table
2294          * isn't determined yet.
2295          */
2296         if (kvm_enabled()) {
2297             spapr->vrma_adjust = 1;
2298             spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2299         }
2300 
2301         /* Actually we don't support unbounded RMA anymore since we
2302          * added proper emulation of HV mode. The max we can get is
2303          * 16G which also happens to be what we configure for PAPR
2304          * mode so make sure we don't do anything bigger than that
2305          */
2306         spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2307     }
2308 
2309     if (spapr->rma_size > node0_size) {
2310         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2311                      spapr->rma_size);
2312         exit(1);
2313     }
2314 
2315     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2316     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2317 
2318     /* Set up Interrupt Controller before we create the VCPUs */
2319     xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2320 
2321     /* Set up containers for ibm,client-set-architecture negotiated options */
2322     spapr->ov5 = spapr_ovec_new();
2323     spapr->ov5_cas = spapr_ovec_new();
2324 
2325     if (smc->dr_lmb_enabled) {
2326         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2327         spapr_validate_node_memory(machine, &error_fatal);
2328     }
2329 
2330     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2331     if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2332         /* KVM and TCG always allow GTSE with radix... */
2333         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2334     }
2335     /* ... but not with hash (currently). */
2336 
2337     /* advertise support for dedicated HP event source to guests */
2338     if (spapr->use_hotplug_event_source) {
2339         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2340     }
2341 
2342     /* advertise support for HPT resizing */
2343     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2344         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2345     }
2346 
2347     /* init CPUs */
2348     if (machine->cpu_model == NULL) {
2349         machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
2350     }
2351 
2352     spapr_cpu_parse_features(spapr);
2353 
2354     spapr_set_vsmt_mode(spapr, &error_fatal);
2355 
2356     spapr_init_cpus(spapr);
2357 
2358     if (kvm_enabled()) {
2359         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2360         kvmppc_enable_logical_ci_hcalls();
2361         kvmppc_enable_set_mode_hcall();
2362 
2363         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2364         kvmppc_enable_clear_ref_mod_hcalls();
2365     }
2366 
2367     /* allocate RAM */
2368     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2369                                          machine->ram_size);
2370     memory_region_add_subregion(sysmem, 0, ram);
2371 
2372     if (rma_alloc_size && rma) {
2373         rma_region = g_new(MemoryRegion, 1);
2374         memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2375                                    rma_alloc_size, rma);
2376         vmstate_register_ram_global(rma_region);
2377         memory_region_add_subregion(sysmem, 0, rma_region);
2378     }
2379 
2380     /* initialize hotplug memory address space */
2381     if (machine->ram_size < machine->maxram_size) {
2382         ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2383         /*
2384          * Limit the number of hotpluggable memory slots to half the number
2385          * slots that KVM supports, leaving the other half for PCI and other
2386          * devices. However ensure that number of slots doesn't drop below 32.
2387          */
2388         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2389                            SPAPR_MAX_RAM_SLOTS;
2390 
2391         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2392             max_memslots = SPAPR_MAX_RAM_SLOTS;
2393         }
2394         if (machine->ram_slots > max_memslots) {
2395             error_report("Specified number of memory slots %"
2396                          PRIu64" exceeds max supported %d",
2397                          machine->ram_slots, max_memslots);
2398             exit(1);
2399         }
2400 
2401         spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2402                                               SPAPR_HOTPLUG_MEM_ALIGN);
2403         memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2404                            "hotplug-memory", hotplug_mem_size);
2405         memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2406                                     &spapr->hotplug_memory.mr);
2407     }
2408 
2409     if (smc->dr_lmb_enabled) {
2410         spapr_create_lmb_dr_connectors(spapr);
2411     }
2412 
2413     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2414     if (!filename) {
2415         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2416         exit(1);
2417     }
2418     spapr->rtas_size = get_image_size(filename);
2419     if (spapr->rtas_size < 0) {
2420         error_report("Could not get size of LPAR rtas '%s'", filename);
2421         exit(1);
2422     }
2423     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2424     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2425         error_report("Could not load LPAR rtas '%s'", filename);
2426         exit(1);
2427     }
2428     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2429         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2430                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2431         exit(1);
2432     }
2433     g_free(filename);
2434 
2435     /* Set up RTAS event infrastructure */
2436     spapr_events_init(spapr);
2437 
2438     /* Set up the RTC RTAS interfaces */
2439     spapr_rtc_create(spapr);
2440 
2441     /* Set up VIO bus */
2442     spapr->vio_bus = spapr_vio_bus_init();
2443 
2444     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2445         if (serial_hds[i]) {
2446             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2447         }
2448     }
2449 
2450     /* We always have at least the nvram device on VIO */
2451     spapr_create_nvram(spapr);
2452 
2453     /* Set up PCI */
2454     spapr_pci_rtas_init();
2455 
2456     phb = spapr_create_phb(spapr, 0);
2457 
2458     for (i = 0; i < nb_nics; i++) {
2459         NICInfo *nd = &nd_table[i];
2460 
2461         if (!nd->model) {
2462             nd->model = g_strdup("ibmveth");
2463         }
2464 
2465         if (strcmp(nd->model, "ibmveth") == 0) {
2466             spapr_vlan_create(spapr->vio_bus, nd);
2467         } else {
2468             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2469         }
2470     }
2471 
2472     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2473         spapr_vscsi_create(spapr->vio_bus);
2474     }
2475 
2476     /* Graphics */
2477     if (spapr_vga_init(phb->bus, &error_fatal)) {
2478         spapr->has_graphics = true;
2479         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2480     }
2481 
2482     if (machine->usb) {
2483         if (smc->use_ohci_by_default) {
2484             pci_create_simple(phb->bus, -1, "pci-ohci");
2485         } else {
2486             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2487         }
2488 
2489         if (spapr->has_graphics) {
2490             USBBus *usb_bus = usb_bus_find(-1);
2491 
2492             usb_create_simple(usb_bus, "usb-kbd");
2493             usb_create_simple(usb_bus, "usb-mouse");
2494         }
2495     }
2496 
2497     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2498         error_report(
2499             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2500             MIN_RMA_SLOF);
2501         exit(1);
2502     }
2503 
2504     if (kernel_filename) {
2505         uint64_t lowaddr = 0;
2506 
2507         spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2508                                       NULL, NULL, &lowaddr, NULL, 1,
2509                                       PPC_ELF_MACHINE, 0, 0);
2510         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2511             spapr->kernel_size = load_elf(kernel_filename,
2512                                           translate_kernel_address, NULL, NULL,
2513                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2514                                           0, 0);
2515             spapr->kernel_le = spapr->kernel_size > 0;
2516         }
2517         if (spapr->kernel_size < 0) {
2518             error_report("error loading %s: %s", kernel_filename,
2519                          load_elf_strerror(spapr->kernel_size));
2520             exit(1);
2521         }
2522 
2523         /* load initrd */
2524         if (initrd_filename) {
2525             /* Try to locate the initrd in the gap between the kernel
2526              * and the firmware. Add a bit of space just in case
2527              */
2528             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2529                                   + 0x1ffff) & ~0xffff;
2530             spapr->initrd_size = load_image_targphys(initrd_filename,
2531                                                      spapr->initrd_base,
2532                                                      load_limit
2533                                                      - spapr->initrd_base);
2534             if (spapr->initrd_size < 0) {
2535                 error_report("could not load initial ram disk '%s'",
2536                              initrd_filename);
2537                 exit(1);
2538             }
2539         }
2540     }
2541 
2542     if (bios_name == NULL) {
2543         bios_name = FW_FILE_NAME;
2544     }
2545     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2546     if (!filename) {
2547         error_report("Could not find LPAR firmware '%s'", bios_name);
2548         exit(1);
2549     }
2550     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2551     if (fw_size <= 0) {
2552         error_report("Could not load LPAR firmware '%s'", filename);
2553         exit(1);
2554     }
2555     g_free(filename);
2556 
2557     /* FIXME: Should register things through the MachineState's qdev
2558      * interface, this is a legacy from the sPAPREnvironment structure
2559      * which predated MachineState but had a similar function */
2560     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2561     register_savevm_live(NULL, "spapr/htab", -1, 1,
2562                          &savevm_htab_handlers, spapr);
2563 
2564     qemu_register_boot_set(spapr_boot_set, spapr);
2565 
2566     if (kvm_enabled()) {
2567         /* to stop and start vmclock */
2568         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2569                                          &spapr->tb);
2570 
2571         kvmppc_spapr_enable_inkernel_multitce();
2572     }
2573 }
2574 
2575 static int spapr_kvm_type(const char *vm_type)
2576 {
2577     if (!vm_type) {
2578         return 0;
2579     }
2580 
2581     if (!strcmp(vm_type, "HV")) {
2582         return 1;
2583     }
2584 
2585     if (!strcmp(vm_type, "PR")) {
2586         return 2;
2587     }
2588 
2589     error_report("Unknown kvm-type specified '%s'", vm_type);
2590     exit(1);
2591 }
2592 
2593 /*
2594  * Implementation of an interface to adjust firmware path
2595  * for the bootindex property handling.
2596  */
2597 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2598                                    DeviceState *dev)
2599 {
2600 #define CAST(type, obj, name) \
2601     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2602     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2603     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2604     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2605 
2606     if (d) {
2607         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2608         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2609         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2610 
2611         if (spapr) {
2612             /*
2613              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2614              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2615              * in the top 16 bits of the 64-bit LUN
2616              */
2617             unsigned id = 0x8000 | (d->id << 8) | d->lun;
2618             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2619                                    (uint64_t)id << 48);
2620         } else if (virtio) {
2621             /*
2622              * We use SRP luns of the form 01000000 | (target << 8) | lun
2623              * in the top 32 bits of the 64-bit LUN
2624              * Note: the quote above is from SLOF and it is wrong,
2625              * the actual binding is:
2626              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2627              */
2628             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2629             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2630                                    (uint64_t)id << 32);
2631         } else if (usb) {
2632             /*
2633              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2634              * in the top 32 bits of the 64-bit LUN
2635              */
2636             unsigned usb_port = atoi(usb->port->path);
2637             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2638             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2639                                    (uint64_t)id << 32);
2640         }
2641     }
2642 
2643     /*
2644      * SLOF probes the USB devices, and if it recognizes that the device is a
2645      * storage device, it changes its name to "storage" instead of "usb-host",
2646      * and additionally adds a child node for the SCSI LUN, so the correct
2647      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2648      */
2649     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2650         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2651         if (usb_host_dev_is_scsi_storage(usbdev)) {
2652             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2653         }
2654     }
2655 
2656     if (phb) {
2657         /* Replace "pci" with "pci@800000020000000" */
2658         return g_strdup_printf("pci@%"PRIX64, phb->buid);
2659     }
2660 
2661     if (vsc) {
2662         /* Same logic as virtio above */
2663         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2664         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2665     }
2666 
2667     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2668         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2669         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2670         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2671     }
2672 
2673     return NULL;
2674 }
2675 
2676 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2677 {
2678     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2679 
2680     return g_strdup(spapr->kvm_type);
2681 }
2682 
2683 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2684 {
2685     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2686 
2687     g_free(spapr->kvm_type);
2688     spapr->kvm_type = g_strdup(value);
2689 }
2690 
2691 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2692 {
2693     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2694 
2695     return spapr->use_hotplug_event_source;
2696 }
2697 
2698 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2699                                             Error **errp)
2700 {
2701     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2702 
2703     spapr->use_hotplug_event_source = value;
2704 }
2705 
2706 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2707 {
2708     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2709 
2710     switch (spapr->resize_hpt) {
2711     case SPAPR_RESIZE_HPT_DEFAULT:
2712         return g_strdup("default");
2713     case SPAPR_RESIZE_HPT_DISABLED:
2714         return g_strdup("disabled");
2715     case SPAPR_RESIZE_HPT_ENABLED:
2716         return g_strdup("enabled");
2717     case SPAPR_RESIZE_HPT_REQUIRED:
2718         return g_strdup("required");
2719     }
2720     g_assert_not_reached();
2721 }
2722 
2723 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
2724 {
2725     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2726 
2727     if (strcmp(value, "default") == 0) {
2728         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
2729     } else if (strcmp(value, "disabled") == 0) {
2730         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2731     } else if (strcmp(value, "enabled") == 0) {
2732         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
2733     } else if (strcmp(value, "required") == 0) {
2734         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
2735     } else {
2736         error_setg(errp, "Bad value for \"resize-hpt\" property");
2737     }
2738 }
2739 
2740 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
2741                                    void *opaque, Error **errp)
2742 {
2743     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2744 }
2745 
2746 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
2747                                    void *opaque, Error **errp)
2748 {
2749     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2750 }
2751 
2752 static void spapr_machine_initfn(Object *obj)
2753 {
2754     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2755 
2756     spapr->htab_fd = -1;
2757     spapr->use_hotplug_event_source = true;
2758     object_property_add_str(obj, "kvm-type",
2759                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2760     object_property_set_description(obj, "kvm-type",
2761                                     "Specifies the KVM virtualization mode (HV, PR)",
2762                                     NULL);
2763     object_property_add_bool(obj, "modern-hotplug-events",
2764                             spapr_get_modern_hotplug_events,
2765                             spapr_set_modern_hotplug_events,
2766                             NULL);
2767     object_property_set_description(obj, "modern-hotplug-events",
2768                                     "Use dedicated hotplug event mechanism in"
2769                                     " place of standard EPOW events when possible"
2770                                     " (required for memory hot-unplug support)",
2771                                     NULL);
2772 
2773     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
2774                             "Maximum permitted CPU compatibility mode",
2775                             &error_fatal);
2776 
2777     object_property_add_str(obj, "resize-hpt",
2778                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
2779     object_property_set_description(obj, "resize-hpt",
2780                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
2781                                     NULL);
2782     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
2783                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
2784     object_property_set_description(obj, "vsmt",
2785                                     "Virtual SMT: KVM behaves as if this were"
2786                                     " the host's SMT mode", &error_abort);
2787 }
2788 
2789 static void spapr_machine_finalizefn(Object *obj)
2790 {
2791     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2792 
2793     g_free(spapr->kvm_type);
2794 }
2795 
2796 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2797 {
2798     cpu_synchronize_state(cs);
2799     ppc_cpu_do_system_reset(cs);
2800 }
2801 
2802 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2803 {
2804     CPUState *cs;
2805 
2806     CPU_FOREACH(cs) {
2807         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2808     }
2809 }
2810 
2811 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2812                            uint32_t node, bool dedicated_hp_event_source,
2813                            Error **errp)
2814 {
2815     sPAPRDRConnector *drc;
2816     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2817     int i, fdt_offset, fdt_size;
2818     void *fdt;
2819     uint64_t addr = addr_start;
2820     bool hotplugged = spapr_drc_hotplugged(dev);
2821     Error *local_err = NULL;
2822 
2823     for (i = 0; i < nr_lmbs; i++) {
2824         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2825                               addr / SPAPR_MEMORY_BLOCK_SIZE);
2826         g_assert(drc);
2827 
2828         fdt = create_device_tree(&fdt_size);
2829         fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2830                                                 SPAPR_MEMORY_BLOCK_SIZE);
2831 
2832         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2833         if (local_err) {
2834             while (addr > addr_start) {
2835                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
2836                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2837                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
2838                 spapr_drc_detach(drc);
2839             }
2840             g_free(fdt);
2841             error_propagate(errp, local_err);
2842             return;
2843         }
2844         if (!hotplugged) {
2845             spapr_drc_reset(drc);
2846         }
2847         addr += SPAPR_MEMORY_BLOCK_SIZE;
2848     }
2849     /* send hotplug notification to the
2850      * guest only in case of hotplugged memory
2851      */
2852     if (hotplugged) {
2853         if (dedicated_hp_event_source) {
2854             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2855                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2856             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2857                                                    nr_lmbs,
2858                                                    spapr_drc_index(drc));
2859         } else {
2860             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2861                                            nr_lmbs);
2862         }
2863     }
2864 }
2865 
2866 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2867                               uint32_t node, Error **errp)
2868 {
2869     Error *local_err = NULL;
2870     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2871     PCDIMMDevice *dimm = PC_DIMM(dev);
2872     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2873     MemoryRegion *mr;
2874     uint64_t align, size, addr;
2875 
2876     mr = ddc->get_memory_region(dimm, &local_err);
2877     if (local_err) {
2878         goto out;
2879     }
2880     align = memory_region_get_alignment(mr);
2881     size = memory_region_size(mr);
2882 
2883     pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2884     if (local_err) {
2885         goto out;
2886     }
2887 
2888     addr = object_property_get_uint(OBJECT(dimm),
2889                                     PC_DIMM_ADDR_PROP, &local_err);
2890     if (local_err) {
2891         goto out_unplug;
2892     }
2893 
2894     spapr_add_lmbs(dev, addr, size, node,
2895                    spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2896                    &local_err);
2897     if (local_err) {
2898         goto out_unplug;
2899     }
2900 
2901     return;
2902 
2903 out_unplug:
2904     pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2905 out:
2906     error_propagate(errp, local_err);
2907 }
2908 
2909 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2910                                   Error **errp)
2911 {
2912     PCDIMMDevice *dimm = PC_DIMM(dev);
2913     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2914     MemoryRegion *mr;
2915     uint64_t size;
2916     char *mem_dev;
2917 
2918     mr = ddc->get_memory_region(dimm, errp);
2919     if (!mr) {
2920         return;
2921     }
2922     size = memory_region_size(mr);
2923 
2924     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2925         error_setg(errp, "Hotplugged memory size must be a multiple of "
2926                       "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2927         return;
2928     }
2929 
2930     mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2931     if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2932         error_setg(errp, "Memory backend has bad page size. "
2933                    "Use 'memory-backend-file' with correct mem-path.");
2934         goto out;
2935     }
2936 
2937 out:
2938     g_free(mem_dev);
2939 }
2940 
2941 struct sPAPRDIMMState {
2942     PCDIMMDevice *dimm;
2943     uint32_t nr_lmbs;
2944     QTAILQ_ENTRY(sPAPRDIMMState) next;
2945 };
2946 
2947 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
2948                                                        PCDIMMDevice *dimm)
2949 {
2950     sPAPRDIMMState *dimm_state = NULL;
2951 
2952     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
2953         if (dimm_state->dimm == dimm) {
2954             break;
2955         }
2956     }
2957     return dimm_state;
2958 }
2959 
2960 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
2961                                                       uint32_t nr_lmbs,
2962                                                       PCDIMMDevice *dimm)
2963 {
2964     sPAPRDIMMState *ds = NULL;
2965 
2966     /*
2967      * If this request is for a DIMM whose removal had failed earlier
2968      * (due to guest's refusal to remove the LMBs), we would have this
2969      * dimm already in the pending_dimm_unplugs list. In that
2970      * case don't add again.
2971      */
2972     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
2973     if (!ds) {
2974         ds = g_malloc0(sizeof(sPAPRDIMMState));
2975         ds->nr_lmbs = nr_lmbs;
2976         ds->dimm = dimm;
2977         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
2978     }
2979     return ds;
2980 }
2981 
2982 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
2983                                               sPAPRDIMMState *dimm_state)
2984 {
2985     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
2986     g_free(dimm_state);
2987 }
2988 
2989 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
2990                                                         PCDIMMDevice *dimm)
2991 {
2992     sPAPRDRConnector *drc;
2993     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2994     MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
2995     uint64_t size = memory_region_size(mr);
2996     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2997     uint32_t avail_lmbs = 0;
2998     uint64_t addr_start, addr;
2999     int i;
3000 
3001     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3002                                          &error_abort);
3003 
3004     addr = addr_start;
3005     for (i = 0; i < nr_lmbs; i++) {
3006         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3007                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3008         g_assert(drc);
3009         if (drc->dev) {
3010             avail_lmbs++;
3011         }
3012         addr += SPAPR_MEMORY_BLOCK_SIZE;
3013     }
3014 
3015     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3016 }
3017 
3018 /* Callback to be called during DRC release. */
3019 void spapr_lmb_release(DeviceState *dev)
3020 {
3021     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
3022     PCDIMMDevice *dimm = PC_DIMM(dev);
3023     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3024     MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3025     sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3026 
3027     /* This information will get lost if a migration occurs
3028      * during the unplug process. In this case recover it. */
3029     if (ds == NULL) {
3030         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3031         g_assert(ds);
3032         /* The DRC being examined by the caller at least must be counted */
3033         g_assert(ds->nr_lmbs);
3034     }
3035 
3036     if (--ds->nr_lmbs) {
3037         return;
3038     }
3039 
3040     spapr_pending_dimm_unplugs_remove(spapr, ds);
3041 
3042     /*
3043      * Now that all the LMBs have been removed by the guest, call the
3044      * pc-dimm unplug handler to cleanup up the pc-dimm device.
3045      */
3046     pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr);
3047     object_unparent(OBJECT(dev));
3048 }
3049 
3050 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3051                                         DeviceState *dev, Error **errp)
3052 {
3053     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3054     Error *local_err = NULL;
3055     PCDIMMDevice *dimm = PC_DIMM(dev);
3056     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3057     MemoryRegion *mr;
3058     uint32_t nr_lmbs;
3059     uint64_t size, addr_start, addr;
3060     int i;
3061     sPAPRDRConnector *drc;
3062 
3063     mr = ddc->get_memory_region(dimm, &local_err);
3064     if (local_err) {
3065         goto out;
3066     }
3067     size = memory_region_size(mr);
3068     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3069 
3070     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3071                                          &local_err);
3072     if (local_err) {
3073         goto out;
3074     }
3075 
3076     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3077 
3078     addr = addr_start;
3079     for (i = 0; i < nr_lmbs; i++) {
3080         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3081                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3082         g_assert(drc);
3083 
3084         spapr_drc_detach(drc);
3085         addr += SPAPR_MEMORY_BLOCK_SIZE;
3086     }
3087 
3088     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3089                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3090     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3091                                               nr_lmbs, spapr_drc_index(drc));
3092 out:
3093     error_propagate(errp, local_err);
3094 }
3095 
3096 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3097                                            sPAPRMachineState *spapr)
3098 {
3099     PowerPCCPU *cpu = POWERPC_CPU(cs);
3100     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3101     int id = spapr_vcpu_id(cpu);
3102     void *fdt;
3103     int offset, fdt_size;
3104     char *nodename;
3105 
3106     fdt = create_device_tree(&fdt_size);
3107     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3108     offset = fdt_add_subnode(fdt, 0, nodename);
3109 
3110     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3111     g_free(nodename);
3112 
3113     *fdt_offset = offset;
3114     return fdt;
3115 }
3116 
3117 /* Callback to be called during DRC release. */
3118 void spapr_core_release(DeviceState *dev)
3119 {
3120     MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
3121     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3122     CPUCore *cc = CPU_CORE(dev);
3123     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3124 
3125     if (smc->pre_2_10_has_unused_icps) {
3126         sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3127         sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3128         const char *typename = object_class_get_name(scc->cpu_class);
3129         size_t size = object_type_get_instance_size(typename);
3130         int i;
3131 
3132         for (i = 0; i < cc->nr_threads; i++) {
3133             CPUState *cs = CPU(sc->threads + i * size);
3134 
3135             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3136         }
3137     }
3138 
3139     assert(core_slot);
3140     core_slot->cpu = NULL;
3141     object_unparent(OBJECT(dev));
3142 }
3143 
3144 static
3145 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3146                                Error **errp)
3147 {
3148     int index;
3149     sPAPRDRConnector *drc;
3150     CPUCore *cc = CPU_CORE(dev);
3151     int smt = kvmppc_smt_threads();
3152 
3153     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3154         error_setg(errp, "Unable to find CPU core with core-id: %d",
3155                    cc->core_id);
3156         return;
3157     }
3158     if (index == 0) {
3159         error_setg(errp, "Boot CPU core may not be unplugged");
3160         return;
3161     }
3162 
3163     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3164     g_assert(drc);
3165 
3166     spapr_drc_detach(drc);
3167 
3168     spapr_hotplug_req_remove_by_index(drc);
3169 }
3170 
3171 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3172                             Error **errp)
3173 {
3174     sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3175     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3176     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3177     sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3178     CPUCore *cc = CPU_CORE(dev);
3179     CPUState *cs = CPU(core->threads);
3180     sPAPRDRConnector *drc;
3181     Error *local_err = NULL;
3182     int smt = kvmppc_smt_threads();
3183     CPUArchId *core_slot;
3184     int index;
3185     bool hotplugged = spapr_drc_hotplugged(dev);
3186 
3187     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3188     if (!core_slot) {
3189         error_setg(errp, "Unable to find CPU core with core-id: %d",
3190                    cc->core_id);
3191         return;
3192     }
3193     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3194 
3195     g_assert(drc || !mc->has_hotpluggable_cpus);
3196 
3197     if (drc) {
3198         void *fdt;
3199         int fdt_offset;
3200 
3201         fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3202 
3203         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3204         if (local_err) {
3205             g_free(fdt);
3206             error_propagate(errp, local_err);
3207             return;
3208         }
3209 
3210         if (hotplugged) {
3211             /*
3212              * Send hotplug notification interrupt to the guest only
3213              * in case of hotplugged CPUs.
3214              */
3215             spapr_hotplug_req_add_by_index(drc);
3216         } else {
3217             spapr_drc_reset(drc);
3218         }
3219     }
3220 
3221     core_slot->cpu = OBJECT(dev);
3222 
3223     if (smc->pre_2_10_has_unused_icps) {
3224         sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3225         const char *typename = object_class_get_name(scc->cpu_class);
3226         size_t size = object_type_get_instance_size(typename);
3227         int i;
3228 
3229         for (i = 0; i < cc->nr_threads; i++) {
3230             sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev);
3231             void *obj = sc->threads + i * size;
3232 
3233             cs = CPU(obj);
3234             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3235         }
3236     }
3237 }
3238 
3239 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3240                                 Error **errp)
3241 {
3242     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3243     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3244     Error *local_err = NULL;
3245     CPUCore *cc = CPU_CORE(dev);
3246     char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
3247     const char *type = object_get_typename(OBJECT(dev));
3248     CPUArchId *core_slot;
3249     int index;
3250 
3251     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3252         error_setg(&local_err, "CPU hotplug not supported for this machine");
3253         goto out;
3254     }
3255 
3256     if (strcmp(base_core_type, type)) {
3257         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3258         goto out;
3259     }
3260 
3261     if (cc->core_id % smp_threads) {
3262         error_setg(&local_err, "invalid core id %d", cc->core_id);
3263         goto out;
3264     }
3265 
3266     /*
3267      * In general we should have homogeneous threads-per-core, but old
3268      * (pre hotplug support) machine types allow the last core to have
3269      * reduced threads as a compatibility hack for when we allowed
3270      * total vcpus not a multiple of threads-per-core.
3271      */
3272     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3273         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3274                    cc->nr_threads, smp_threads);
3275         goto out;
3276     }
3277 
3278     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3279     if (!core_slot) {
3280         error_setg(&local_err, "core id %d out of range", cc->core_id);
3281         goto out;
3282     }
3283 
3284     if (core_slot->cpu) {
3285         error_setg(&local_err, "core %d already populated", cc->core_id);
3286         goto out;
3287     }
3288 
3289     numa_cpu_pre_plug(core_slot, dev, &local_err);
3290 
3291 out:
3292     g_free(base_core_type);
3293     error_propagate(errp, local_err);
3294 }
3295 
3296 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3297                                       DeviceState *dev, Error **errp)
3298 {
3299     MachineState *ms = MACHINE(hotplug_dev);
3300     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3301 
3302     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3303         int node;
3304 
3305         if (!smc->dr_lmb_enabled) {
3306             error_setg(errp, "Memory hotplug not supported for this machine");
3307             return;
3308         }
3309         node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3310         if (*errp) {
3311             return;
3312         }
3313         if (node < 0 || node >= MAX_NODES) {
3314             error_setg(errp, "Invaild node %d", node);
3315             return;
3316         }
3317 
3318         /*
3319          * Currently PowerPC kernel doesn't allow hot-adding memory to
3320          * memory-less node, but instead will silently add the memory
3321          * to the first node that has some memory. This causes two
3322          * unexpected behaviours for the user.
3323          *
3324          * - Memory gets hotplugged to a different node than what the user
3325          *   specified.
3326          * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3327          *   to memory-less node, a reboot will set things accordingly
3328          *   and the previously hotplugged memory now ends in the right node.
3329          *   This appears as if some memory moved from one node to another.
3330          *
3331          * So until kernel starts supporting memory hotplug to memory-less
3332          * nodes, just prevent such attempts upfront in QEMU.
3333          */
3334         if (nb_numa_nodes && !numa_info[node].node_mem) {
3335             error_setg(errp, "Can't hotplug memory to memory-less node %d",
3336                        node);
3337             return;
3338         }
3339 
3340         spapr_memory_plug(hotplug_dev, dev, node, errp);
3341     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3342         spapr_core_plug(hotplug_dev, dev, errp);
3343     }
3344 }
3345 
3346 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3347                                                 DeviceState *dev, Error **errp)
3348 {
3349     sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3350     MachineClass *mc = MACHINE_GET_CLASS(sms);
3351 
3352     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3353         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3354             spapr_memory_unplug_request(hotplug_dev, dev, errp);
3355         } else {
3356             /* NOTE: this means there is a window after guest reset, prior to
3357              * CAS negotiation, where unplug requests will fail due to the
3358              * capability not being detected yet. This is a bit different than
3359              * the case with PCI unplug, where the events will be queued and
3360              * eventually handled by the guest after boot
3361              */
3362             error_setg(errp, "Memory hot unplug not supported for this guest");
3363         }
3364     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3365         if (!mc->has_hotpluggable_cpus) {
3366             error_setg(errp, "CPU hot unplug not supported on this machine");
3367             return;
3368         }
3369         spapr_core_unplug_request(hotplug_dev, dev, errp);
3370     }
3371 }
3372 
3373 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3374                                           DeviceState *dev, Error **errp)
3375 {
3376     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3377         spapr_memory_pre_plug(hotplug_dev, dev, errp);
3378     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3379         spapr_core_pre_plug(hotplug_dev, dev, errp);
3380     }
3381 }
3382 
3383 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3384                                                  DeviceState *dev)
3385 {
3386     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3387         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3388         return HOTPLUG_HANDLER(machine);
3389     }
3390     return NULL;
3391 }
3392 
3393 static CpuInstanceProperties
3394 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3395 {
3396     CPUArchId *core_slot;
3397     MachineClass *mc = MACHINE_GET_CLASS(machine);
3398 
3399     /* make sure possible_cpu are intialized */
3400     mc->possible_cpu_arch_ids(machine);
3401     /* get CPU core slot containing thread that matches cpu_index */
3402     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3403     assert(core_slot);
3404     return core_slot->props;
3405 }
3406 
3407 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3408 {
3409     return idx / smp_cores % nb_numa_nodes;
3410 }
3411 
3412 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3413 {
3414     int i;
3415     int spapr_max_cores = max_cpus / smp_threads;
3416     MachineClass *mc = MACHINE_GET_CLASS(machine);
3417 
3418     if (!mc->has_hotpluggable_cpus) {
3419         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3420     }
3421     if (machine->possible_cpus) {
3422         assert(machine->possible_cpus->len == spapr_max_cores);
3423         return machine->possible_cpus;
3424     }
3425 
3426     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3427                              sizeof(CPUArchId) * spapr_max_cores);
3428     machine->possible_cpus->len = spapr_max_cores;
3429     for (i = 0; i < machine->possible_cpus->len; i++) {
3430         int core_id = i * smp_threads;
3431 
3432         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3433         machine->possible_cpus->cpus[i].arch_id = core_id;
3434         machine->possible_cpus->cpus[i].props.has_core_id = true;
3435         machine->possible_cpus->cpus[i].props.core_id = core_id;
3436     }
3437     return machine->possible_cpus;
3438 }
3439 
3440 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3441                                 uint64_t *buid, hwaddr *pio,
3442                                 hwaddr *mmio32, hwaddr *mmio64,
3443                                 unsigned n_dma, uint32_t *liobns, Error **errp)
3444 {
3445     /*
3446      * New-style PHB window placement.
3447      *
3448      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3449      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3450      * windows.
3451      *
3452      * Some guest kernels can't work with MMIO windows above 1<<46
3453      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3454      *
3455      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3456      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
3457      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
3458      * 1TiB 64-bit MMIO windows for each PHB.
3459      */
3460     const uint64_t base_buid = 0x800000020000000ULL;
3461 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3462                         SPAPR_PCI_MEM64_WIN_SIZE - 1)
3463     int i;
3464 
3465     /* Sanity check natural alignments */
3466     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3467     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3468     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3469     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3470     /* Sanity check bounds */
3471     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3472                       SPAPR_PCI_MEM32_WIN_SIZE);
3473     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3474                       SPAPR_PCI_MEM64_WIN_SIZE);
3475 
3476     if (index >= SPAPR_MAX_PHBS) {
3477         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3478                    SPAPR_MAX_PHBS - 1);
3479         return;
3480     }
3481 
3482     *buid = base_buid + index;
3483     for (i = 0; i < n_dma; ++i) {
3484         liobns[i] = SPAPR_PCI_LIOBN(index, i);
3485     }
3486 
3487     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3488     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3489     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3490 }
3491 
3492 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3493 {
3494     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3495 
3496     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3497 }
3498 
3499 static void spapr_ics_resend(XICSFabric *dev)
3500 {
3501     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3502 
3503     ics_resend(spapr->ics);
3504 }
3505 
3506 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3507 {
3508     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3509 
3510     return cpu ? ICP(cpu->intc) : NULL;
3511 }
3512 
3513 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3514                                  Monitor *mon)
3515 {
3516     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3517     CPUState *cs;
3518 
3519     CPU_FOREACH(cs) {
3520         PowerPCCPU *cpu = POWERPC_CPU(cs);
3521 
3522         icp_pic_print_info(ICP(cpu->intc), mon);
3523     }
3524 
3525     ics_pic_print_info(spapr->ics, mon);
3526 }
3527 
3528 int spapr_vcpu_id(PowerPCCPU *cpu)
3529 {
3530     CPUState *cs = CPU(cpu);
3531 
3532     if (kvm_enabled()) {
3533         return kvm_arch_vcpu_id(cs);
3534     } else {
3535         return cs->cpu_index;
3536     }
3537 }
3538 
3539 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3540 {
3541     CPUState *cs;
3542 
3543     CPU_FOREACH(cs) {
3544         PowerPCCPU *cpu = POWERPC_CPU(cs);
3545 
3546         if (spapr_vcpu_id(cpu) == vcpu_id) {
3547             return cpu;
3548         }
3549     }
3550 
3551     return NULL;
3552 }
3553 
3554 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3555 {
3556     MachineClass *mc = MACHINE_CLASS(oc);
3557     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3558     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3559     NMIClass *nc = NMI_CLASS(oc);
3560     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3561     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3562     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3563     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3564 
3565     mc->desc = "pSeries Logical Partition (PAPR compliant)";
3566 
3567     /*
3568      * We set up the default / latest behaviour here.  The class_init
3569      * functions for the specific versioned machine types can override
3570      * these details for backwards compatibility
3571      */
3572     mc->init = ppc_spapr_init;
3573     mc->reset = ppc_spapr_reset;
3574     mc->block_default_type = IF_SCSI;
3575     mc->max_cpus = 1024;
3576     mc->no_parallel = 1;
3577     mc->default_boot_order = "";
3578     mc->default_ram_size = 512 * M_BYTE;
3579     mc->kvm_type = spapr_kvm_type;
3580     mc->has_dynamic_sysbus = true;
3581     mc->pci_allow_0_address = true;
3582     mc->get_hotplug_handler = spapr_get_hotplug_handler;
3583     hc->pre_plug = spapr_machine_device_pre_plug;
3584     hc->plug = spapr_machine_device_plug;
3585     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3586     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3587     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3588     hc->unplug_request = spapr_machine_device_unplug_request;
3589 
3590     smc->dr_lmb_enabled = true;
3591     smc->tcg_default_cpu = "POWER8";
3592     mc->has_hotpluggable_cpus = true;
3593     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3594     fwc->get_dev_path = spapr_get_fw_dev_path;
3595     nc->nmi_monitor_handler = spapr_nmi;
3596     smc->phb_placement = spapr_phb_placement;
3597     vhc->hypercall = emulate_spapr_hypercall;
3598     vhc->hpt_mask = spapr_hpt_mask;
3599     vhc->map_hptes = spapr_map_hptes;
3600     vhc->unmap_hptes = spapr_unmap_hptes;
3601     vhc->store_hpte = spapr_store_hpte;
3602     vhc->get_patbe = spapr_get_patbe;
3603     xic->ics_get = spapr_ics_get;
3604     xic->ics_resend = spapr_ics_resend;
3605     xic->icp_get = spapr_icp_get;
3606     ispc->print_info = spapr_pic_print_info;
3607     /* Force NUMA node memory size to be a multiple of
3608      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3609      * in which LMBs are represented and hot-added
3610      */
3611     mc->numa_mem_align_shift = 28;
3612 }
3613 
3614 static const TypeInfo spapr_machine_info = {
3615     .name          = TYPE_SPAPR_MACHINE,
3616     .parent        = TYPE_MACHINE,
3617     .abstract      = true,
3618     .instance_size = sizeof(sPAPRMachineState),
3619     .instance_init = spapr_machine_initfn,
3620     .instance_finalize = spapr_machine_finalizefn,
3621     .class_size    = sizeof(sPAPRMachineClass),
3622     .class_init    = spapr_machine_class_init,
3623     .interfaces = (InterfaceInfo[]) {
3624         { TYPE_FW_PATH_PROVIDER },
3625         { TYPE_NMI },
3626         { TYPE_HOTPLUG_HANDLER },
3627         { TYPE_PPC_VIRTUAL_HYPERVISOR },
3628         { TYPE_XICS_FABRIC },
3629         { TYPE_INTERRUPT_STATS_PROVIDER },
3630         { }
3631     },
3632 };
3633 
3634 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
3635     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3636                                                     void *data)      \
3637     {                                                                \
3638         MachineClass *mc = MACHINE_CLASS(oc);                        \
3639         spapr_machine_##suffix##_class_options(mc);                  \
3640         if (latest) {                                                \
3641             mc->alias = "pseries";                                   \
3642             mc->is_default = 1;                                      \
3643         }                                                            \
3644     }                                                                \
3645     static void spapr_machine_##suffix##_instance_init(Object *obj)  \
3646     {                                                                \
3647         MachineState *machine = MACHINE(obj);                        \
3648         spapr_machine_##suffix##_instance_options(machine);          \
3649     }                                                                \
3650     static const TypeInfo spapr_machine_##suffix##_info = {          \
3651         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
3652         .parent = TYPE_SPAPR_MACHINE,                                \
3653         .class_init = spapr_machine_##suffix##_class_init,           \
3654         .instance_init = spapr_machine_##suffix##_instance_init,     \
3655     };                                                               \
3656     static void spapr_machine_register_##suffix(void)                \
3657     {                                                                \
3658         type_register(&spapr_machine_##suffix##_info);               \
3659     }                                                                \
3660     type_init(spapr_machine_register_##suffix)
3661 
3662 /*
3663  * pseries-2.11
3664  */
3665 static void spapr_machine_2_11_instance_options(MachineState *machine)
3666 {
3667 }
3668 
3669 static void spapr_machine_2_11_class_options(MachineClass *mc)
3670 {
3671     /* Defaults for the latest behaviour inherited from the base class */
3672 }
3673 
3674 DEFINE_SPAPR_MACHINE(2_11, "2.11", true);
3675 
3676 /*
3677  * pseries-2.10
3678  */
3679 #define SPAPR_COMPAT_2_10                                              \
3680     HW_COMPAT_2_10                                                     \
3681 
3682 static void spapr_machine_2_10_instance_options(MachineState *machine)
3683 {
3684 }
3685 
3686 static void spapr_machine_2_10_class_options(MachineClass *mc)
3687 {
3688     spapr_machine_2_11_class_options(mc);
3689     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
3690 }
3691 
3692 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
3693 
3694 /*
3695  * pseries-2.9
3696  */
3697 #define SPAPR_COMPAT_2_9                                               \
3698     HW_COMPAT_2_9                                                      \
3699     {                                                                  \
3700         .driver = TYPE_POWERPC_CPU,                                    \
3701         .property = "pre-2.10-migration",                              \
3702         .value    = "on",                                              \
3703     },                                                                 \
3704 
3705 static void spapr_machine_2_9_instance_options(MachineState *machine)
3706 {
3707     spapr_machine_2_10_instance_options(machine);
3708 }
3709 
3710 static void spapr_machine_2_9_class_options(MachineClass *mc)
3711 {
3712     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3713 
3714     spapr_machine_2_10_class_options(mc);
3715     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3716     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
3717     smc->pre_2_10_has_unused_icps = true;
3718     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
3719 }
3720 
3721 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
3722 
3723 /*
3724  * pseries-2.8
3725  */
3726 #define SPAPR_COMPAT_2_8                                        \
3727     HW_COMPAT_2_8                                               \
3728     {                                                           \
3729         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,                 \
3730         .property = "pcie-extended-configuration-space",        \
3731         .value    = "off",                                      \
3732     },
3733 
3734 static void spapr_machine_2_8_instance_options(MachineState *machine)
3735 {
3736     spapr_machine_2_9_instance_options(machine);
3737 }
3738 
3739 static void spapr_machine_2_8_class_options(MachineClass *mc)
3740 {
3741     spapr_machine_2_9_class_options(mc);
3742     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3743     mc->numa_mem_align_shift = 23;
3744 }
3745 
3746 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3747 
3748 /*
3749  * pseries-2.7
3750  */
3751 #define SPAPR_COMPAT_2_7                            \
3752     HW_COMPAT_2_7                                   \
3753     {                                               \
3754         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
3755         .property = "mem_win_size",                 \
3756         .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3757     },                                              \
3758     {                                               \
3759         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
3760         .property = "mem64_win_size",               \
3761         .value    = "0",                            \
3762     },                                              \
3763     {                                               \
3764         .driver = TYPE_POWERPC_CPU,                 \
3765         .property = "pre-2.8-migration",            \
3766         .value    = "on",                           \
3767     },                                              \
3768     {                                               \
3769         .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
3770         .property = "pre-2.8-migration",            \
3771         .value    = "on",                           \
3772     },
3773 
3774 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3775                               uint64_t *buid, hwaddr *pio,
3776                               hwaddr *mmio32, hwaddr *mmio64,
3777                               unsigned n_dma, uint32_t *liobns, Error **errp)
3778 {
3779     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3780     const uint64_t base_buid = 0x800000020000000ULL;
3781     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3782     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3783     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3784     const uint32_t max_index = 255;
3785     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3786 
3787     uint64_t ram_top = MACHINE(spapr)->ram_size;
3788     hwaddr phb0_base, phb_base;
3789     int i;
3790 
3791     /* Do we have hotpluggable memory? */
3792     if (MACHINE(spapr)->maxram_size > ram_top) {
3793         /* Can't just use maxram_size, because there may be an
3794          * alignment gap between normal and hotpluggable memory
3795          * regions */
3796         ram_top = spapr->hotplug_memory.base +
3797             memory_region_size(&spapr->hotplug_memory.mr);
3798     }
3799 
3800     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3801 
3802     if (index > max_index) {
3803         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3804                    max_index);
3805         return;
3806     }
3807 
3808     *buid = base_buid + index;
3809     for (i = 0; i < n_dma; ++i) {
3810         liobns[i] = SPAPR_PCI_LIOBN(index, i);
3811     }
3812 
3813     phb_base = phb0_base + index * phb_spacing;
3814     *pio = phb_base + pio_offset;
3815     *mmio32 = phb_base + mmio_offset;
3816     /*
3817      * We don't set the 64-bit MMIO window, relying on the PHB's
3818      * fallback behaviour of automatically splitting a large "32-bit"
3819      * window into contiguous 32-bit and 64-bit windows
3820      */
3821 }
3822 
3823 static void spapr_machine_2_7_instance_options(MachineState *machine)
3824 {
3825     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3826 
3827     spapr_machine_2_8_instance_options(machine);
3828     spapr->use_hotplug_event_source = false;
3829 }
3830 
3831 static void spapr_machine_2_7_class_options(MachineClass *mc)
3832 {
3833     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3834 
3835     spapr_machine_2_8_class_options(mc);
3836     smc->tcg_default_cpu = "POWER7";
3837     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3838     smc->phb_placement = phb_placement_2_7;
3839 }
3840 
3841 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3842 
3843 /*
3844  * pseries-2.6
3845  */
3846 #define SPAPR_COMPAT_2_6 \
3847     HW_COMPAT_2_6 \
3848     { \
3849         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3850         .property = "ddw",\
3851         .value    = stringify(off),\
3852     },
3853 
3854 static void spapr_machine_2_6_instance_options(MachineState *machine)
3855 {
3856     spapr_machine_2_7_instance_options(machine);
3857 }
3858 
3859 static void spapr_machine_2_6_class_options(MachineClass *mc)
3860 {
3861     spapr_machine_2_7_class_options(mc);
3862     mc->has_hotpluggable_cpus = false;
3863     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3864 }
3865 
3866 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3867 
3868 /*
3869  * pseries-2.5
3870  */
3871 #define SPAPR_COMPAT_2_5 \
3872     HW_COMPAT_2_5 \
3873     { \
3874         .driver   = "spapr-vlan", \
3875         .property = "use-rx-buffer-pools", \
3876         .value    = "off", \
3877     },
3878 
3879 static void spapr_machine_2_5_instance_options(MachineState *machine)
3880 {
3881     spapr_machine_2_6_instance_options(machine);
3882 }
3883 
3884 static void spapr_machine_2_5_class_options(MachineClass *mc)
3885 {
3886     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3887 
3888     spapr_machine_2_6_class_options(mc);
3889     smc->use_ohci_by_default = true;
3890     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3891 }
3892 
3893 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3894 
3895 /*
3896  * pseries-2.4
3897  */
3898 #define SPAPR_COMPAT_2_4 \
3899         HW_COMPAT_2_4
3900 
3901 static void spapr_machine_2_4_instance_options(MachineState *machine)
3902 {
3903     spapr_machine_2_5_instance_options(machine);
3904 }
3905 
3906 static void spapr_machine_2_4_class_options(MachineClass *mc)
3907 {
3908     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3909 
3910     spapr_machine_2_5_class_options(mc);
3911     smc->dr_lmb_enabled = false;
3912     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3913 }
3914 
3915 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3916 
3917 /*
3918  * pseries-2.3
3919  */
3920 #define SPAPR_COMPAT_2_3 \
3921         HW_COMPAT_2_3 \
3922         {\
3923             .driver   = "spapr-pci-host-bridge",\
3924             .property = "dynamic-reconfiguration",\
3925             .value    = "off",\
3926         },
3927 
3928 static void spapr_machine_2_3_instance_options(MachineState *machine)
3929 {
3930     spapr_machine_2_4_instance_options(machine);
3931 }
3932 
3933 static void spapr_machine_2_3_class_options(MachineClass *mc)
3934 {
3935     spapr_machine_2_4_class_options(mc);
3936     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3937 }
3938 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3939 
3940 /*
3941  * pseries-2.2
3942  */
3943 
3944 #define SPAPR_COMPAT_2_2 \
3945         HW_COMPAT_2_2 \
3946         {\
3947             .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3948             .property = "mem_win_size",\
3949             .value    = "0x20000000",\
3950         },
3951 
3952 static void spapr_machine_2_2_instance_options(MachineState *machine)
3953 {
3954     spapr_machine_2_3_instance_options(machine);
3955     machine->suppress_vmdesc = true;
3956 }
3957 
3958 static void spapr_machine_2_2_class_options(MachineClass *mc)
3959 {
3960     spapr_machine_2_3_class_options(mc);
3961     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3962 }
3963 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3964 
3965 /*
3966  * pseries-2.1
3967  */
3968 #define SPAPR_COMPAT_2_1 \
3969         HW_COMPAT_2_1
3970 
3971 static void spapr_machine_2_1_instance_options(MachineState *machine)
3972 {
3973     spapr_machine_2_2_instance_options(machine);
3974 }
3975 
3976 static void spapr_machine_2_1_class_options(MachineClass *mc)
3977 {
3978     spapr_machine_2_2_class_options(mc);
3979     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
3980 }
3981 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
3982 
3983 static void spapr_machine_register_types(void)
3984 {
3985     type_register_static(&spapr_machine_info);
3986 }
3987 
3988 type_init(spapr_machine_register_types)
3989