xref: /qemu/hw/ppc/spapr.c (revision 7678b74a)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "mmu-hash64.h"
50 #include "mmu-book3s-v3.h"
51 #include "cpu-models.h"
52 #include "hw/core/cpu.h"
53 
54 #include "hw/boards.h"
55 #include "hw/ppc/ppc.h"
56 #include "hw/loader.h"
57 
58 #include "hw/ppc/fdt.h"
59 #include "hw/ppc/spapr.h"
60 #include "hw/ppc/spapr_vio.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/pci-host/spapr.h"
63 #include "hw/pci/msi.h"
64 
65 #include "hw/pci/pci.h"
66 #include "hw/scsi/scsi.h"
67 #include "hw/virtio/virtio-scsi.h"
68 #include "hw/virtio/vhost-scsi-common.h"
69 
70 #include "exec/address-spaces.h"
71 #include "exec/ram_addr.h"
72 #include "hw/usb.h"
73 #include "qemu/config-file.h"
74 #include "qemu/error-report.h"
75 #include "trace.h"
76 #include "hw/nmi.h"
77 #include "hw/intc/intc.h"
78 
79 #include "qemu/cutils.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 
84 #include "monitor/monitor.h"
85 
86 #include <libfdt.h>
87 
88 /* SLOF memory layout:
89  *
90  * SLOF raw image loaded at 0, copies its romfs right below the flat
91  * device-tree, then position SLOF itself 31M below that
92  *
93  * So we set FW_OVERHEAD to 40MB which should account for all of that
94  * and more
95  *
96  * We load our kernel at 4M, leaving space for SLOF initial image
97  */
98 #define FDT_MAX_SIZE            0x100000
99 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
100 #define FW_MAX_SIZE             0x400000
101 #define FW_FILE_NAME            "slof.bin"
102 #define FW_OVERHEAD             0x2800000
103 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
104 
105 #define MIN_RMA_SLOF            128UL
106 
107 #define PHANDLE_INTC            0x00001111
108 
109 /* These two functions implement the VCPU id numbering: one to compute them
110  * all and one to identify thread 0 of a VCORE. Any change to the first one
111  * is likely to have an impact on the second one, so let's keep them close.
112  */
113 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
114 {
115     MachineState *ms = MACHINE(spapr);
116     unsigned int smp_threads = ms->smp.threads;
117 
118     assert(spapr->vsmt);
119     return
120         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
121 }
122 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
123                                       PowerPCCPU *cpu)
124 {
125     assert(spapr->vsmt);
126     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
127 }
128 
129 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
130 {
131     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
132      * and newer QEMUs don't even have them. In both cases, we don't want
133      * to send anything on the wire.
134      */
135     return false;
136 }
137 
138 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
139     .name = "icp/server",
140     .version_id = 1,
141     .minimum_version_id = 1,
142     .needed = pre_2_10_vmstate_dummy_icp_needed,
143     .fields = (VMStateField[]) {
144         VMSTATE_UNUSED(4), /* uint32_t xirr */
145         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
146         VMSTATE_UNUSED(1), /* uint8_t mfrr */
147         VMSTATE_END_OF_LIST()
148     },
149 };
150 
151 static void pre_2_10_vmstate_register_dummy_icp(int i)
152 {
153     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
154                      (void *)(uintptr_t) i);
155 }
156 
157 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
158 {
159     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
160                        (void *)(uintptr_t) i);
161 }
162 
163 int spapr_max_server_number(SpaprMachineState *spapr)
164 {
165     MachineState *ms = MACHINE(spapr);
166 
167     assert(spapr->vsmt);
168     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
169 }
170 
171 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
172                                   int smt_threads)
173 {
174     int i, ret = 0;
175     uint32_t servers_prop[smt_threads];
176     uint32_t gservers_prop[smt_threads * 2];
177     int index = spapr_get_vcpu_id(cpu);
178 
179     if (cpu->compat_pvr) {
180         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
181         if (ret < 0) {
182             return ret;
183         }
184     }
185 
186     /* Build interrupt servers and gservers properties */
187     for (i = 0; i < smt_threads; i++) {
188         servers_prop[i] = cpu_to_be32(index + i);
189         /* Hack, direct the group queues back to cpu 0 */
190         gservers_prop[i*2] = cpu_to_be32(index + i);
191         gservers_prop[i*2 + 1] = 0;
192     }
193     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
194                       servers_prop, sizeof(servers_prop));
195     if (ret < 0) {
196         return ret;
197     }
198     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
199                       gservers_prop, sizeof(gservers_prop));
200 
201     return ret;
202 }
203 
204 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
205 {
206     int index = spapr_get_vcpu_id(cpu);
207     uint32_t associativity[] = {cpu_to_be32(0x5),
208                                 cpu_to_be32(0x0),
209                                 cpu_to_be32(0x0),
210                                 cpu_to_be32(0x0),
211                                 cpu_to_be32(cpu->node_id),
212                                 cpu_to_be32(index)};
213 
214     /* Advertise NUMA via ibm,associativity */
215     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
216                           sizeof(associativity));
217 }
218 
219 /* Populate the "ibm,pa-features" property */
220 static void spapr_populate_pa_features(SpaprMachineState *spapr,
221                                        PowerPCCPU *cpu,
222                                        void *fdt, int offset)
223 {
224     uint8_t pa_features_206[] = { 6, 0,
225         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
226     uint8_t pa_features_207[] = { 24, 0,
227         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
228         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
229         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
230         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
231     uint8_t pa_features_300[] = { 66, 0,
232         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
233         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
234         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
235         /* 6: DS207 */
236         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
237         /* 16: Vector */
238         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
239         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
240         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
241         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
242         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
243         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
244         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
245         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
246         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
247         /* 42: PM, 44: PC RA, 46: SC vec'd */
248         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
249         /* 48: SIMD, 50: QP BFP, 52: String */
250         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
251         /* 54: DecFP, 56: DecI, 58: SHA */
252         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
253         /* 60: NM atomic, 62: RNG */
254         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
255     };
256     uint8_t *pa_features = NULL;
257     size_t pa_size;
258 
259     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
260         pa_features = pa_features_206;
261         pa_size = sizeof(pa_features_206);
262     }
263     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
264         pa_features = pa_features_207;
265         pa_size = sizeof(pa_features_207);
266     }
267     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
268         pa_features = pa_features_300;
269         pa_size = sizeof(pa_features_300);
270     }
271     if (!pa_features) {
272         return;
273     }
274 
275     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
276         /*
277          * Note: we keep CI large pages off by default because a 64K capable
278          * guest provisioned with large pages might otherwise try to map a qemu
279          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
280          * even if that qemu runs on a 4k host.
281          * We dd this bit back here if we are confident this is not an issue
282          */
283         pa_features[3] |= 0x20;
284     }
285     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
286         pa_features[24] |= 0x80;    /* Transactional memory support */
287     }
288     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
289         /* Workaround for broken kernels that attempt (guest) radix
290          * mode when they can't handle it, if they see the radix bit set
291          * in pa-features. So hide it from them. */
292         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
293     }
294 
295     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
296 }
297 
298 static hwaddr spapr_node0_size(MachineState *machine)
299 {
300     if (machine->numa_state->num_nodes) {
301         int i;
302         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
303             if (machine->numa_state->nodes[i].node_mem) {
304                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
305                            machine->ram_size);
306             }
307         }
308     }
309     return machine->ram_size;
310 }
311 
312 static void add_str(GString *s, const gchar *s1)
313 {
314     g_string_append_len(s, s1, strlen(s1) + 1);
315 }
316 
317 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
318                                        hwaddr size)
319 {
320     uint32_t associativity[] = {
321         cpu_to_be32(0x4), /* length */
322         cpu_to_be32(0x0), cpu_to_be32(0x0),
323         cpu_to_be32(0x0), cpu_to_be32(nodeid)
324     };
325     char mem_name[32];
326     uint64_t mem_reg_property[2];
327     int off;
328 
329     mem_reg_property[0] = cpu_to_be64(start);
330     mem_reg_property[1] = cpu_to_be64(size);
331 
332     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
333     off = fdt_add_subnode(fdt, 0, mem_name);
334     _FDT(off);
335     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
336     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
337                       sizeof(mem_reg_property))));
338     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
339                       sizeof(associativity))));
340     return off;
341 }
342 
343 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
344 {
345     MachineState *machine = MACHINE(spapr);
346     hwaddr mem_start, node_size;
347     int i, nb_nodes = machine->numa_state->num_nodes;
348     NodeInfo *nodes = machine->numa_state->nodes;
349     NodeInfo ramnode;
350 
351     /* No NUMA nodes, assume there is just one node with whole RAM */
352     if (!nb_nodes) {
353         nb_nodes = 1;
354         ramnode.node_mem = machine->ram_size;
355         nodes = &ramnode;
356     }
357 
358     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
359         if (!nodes[i].node_mem) {
360             continue;
361         }
362         if (mem_start >= machine->ram_size) {
363             node_size = 0;
364         } else {
365             node_size = nodes[i].node_mem;
366             if (node_size > machine->ram_size - mem_start) {
367                 node_size = machine->ram_size - mem_start;
368             }
369         }
370         if (!mem_start) {
371             /* spapr_machine_init() checks for rma_size <= node0_size
372              * already */
373             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
374             mem_start += spapr->rma_size;
375             node_size -= spapr->rma_size;
376         }
377         for ( ; node_size; ) {
378             hwaddr sizetmp = pow2floor(node_size);
379 
380             /* mem_start != 0 here */
381             if (ctzl(mem_start) < ctzl(sizetmp)) {
382                 sizetmp = 1ULL << ctzl(mem_start);
383             }
384 
385             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
386             node_size -= sizetmp;
387             mem_start += sizetmp;
388         }
389     }
390 
391     return 0;
392 }
393 
394 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
395                                   SpaprMachineState *spapr)
396 {
397     MachineState *ms = MACHINE(spapr);
398     PowerPCCPU *cpu = POWERPC_CPU(cs);
399     CPUPPCState *env = &cpu->env;
400     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
401     int index = spapr_get_vcpu_id(cpu);
402     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
403                        0xffffffff, 0xffffffff};
404     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
405         : SPAPR_TIMEBASE_FREQ;
406     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
407     uint32_t page_sizes_prop[64];
408     size_t page_sizes_prop_size;
409     unsigned int smp_threads = ms->smp.threads;
410     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
411     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
412     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
413     SpaprDrc *drc;
414     int drc_index;
415     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
416     int i;
417 
418     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
419     if (drc) {
420         drc_index = spapr_drc_index(drc);
421         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
422     }
423 
424     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
425     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
426 
427     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
428     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
429                            env->dcache_line_size)));
430     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
431                            env->dcache_line_size)));
432     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
433                            env->icache_line_size)));
434     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
435                            env->icache_line_size)));
436 
437     if (pcc->l1_dcache_size) {
438         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
439                                pcc->l1_dcache_size)));
440     } else {
441         warn_report("Unknown L1 dcache size for cpu");
442     }
443     if (pcc->l1_icache_size) {
444         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
445                                pcc->l1_icache_size)));
446     } else {
447         warn_report("Unknown L1 icache size for cpu");
448     }
449 
450     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
451     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
452     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
453     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
454     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
455     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
456 
457     if (env->spr_cb[SPR_PURR].oea_read) {
458         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
459     }
460     if (env->spr_cb[SPR_SPURR].oea_read) {
461         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
462     }
463 
464     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
465         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
466                           segs, sizeof(segs))));
467     }
468 
469     /* Advertise VSX (vector extensions) if available
470      *   1               == VMX / Altivec available
471      *   2               == VSX available
472      *
473      * Only CPUs for which we create core types in spapr_cpu_core.c
474      * are possible, and all of those have VMX */
475     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
476         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
477     } else {
478         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
479     }
480 
481     /* Advertise DFP (Decimal Floating Point) if available
482      *   0 / no property == no DFP
483      *   1               == DFP available */
484     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
485         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
486     }
487 
488     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
489                                                       sizeof(page_sizes_prop));
490     if (page_sizes_prop_size) {
491         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
492                           page_sizes_prop, page_sizes_prop_size)));
493     }
494 
495     spapr_populate_pa_features(spapr, cpu, fdt, offset);
496 
497     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
498                            cs->cpu_index / vcpus_per_socket)));
499 
500     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
501                       pft_size_prop, sizeof(pft_size_prop))));
502 
503     if (ms->numa_state->num_nodes > 1) {
504         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
505     }
506 
507     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
508 
509     if (pcc->radix_page_info) {
510         for (i = 0; i < pcc->radix_page_info->count; i++) {
511             radix_AP_encodings[i] =
512                 cpu_to_be32(pcc->radix_page_info->entries[i]);
513         }
514         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
515                           radix_AP_encodings,
516                           pcc->radix_page_info->count *
517                           sizeof(radix_AP_encodings[0]))));
518     }
519 
520     /*
521      * We set this property to let the guest know that it can use the large
522      * decrementer and its width in bits.
523      */
524     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
525         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
526                               pcc->lrg_decr_bits)));
527 }
528 
529 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
530 {
531     CPUState **rev;
532     CPUState *cs;
533     int n_cpus;
534     int cpus_offset;
535     char *nodename;
536     int i;
537 
538     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
539     _FDT(cpus_offset);
540     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
541     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
542 
543     /*
544      * We walk the CPUs in reverse order to ensure that CPU DT nodes
545      * created by fdt_add_subnode() end up in the right order in FDT
546      * for the guest kernel the enumerate the CPUs correctly.
547      *
548      * The CPU list cannot be traversed in reverse order, so we need
549      * to do extra work.
550      */
551     n_cpus = 0;
552     rev = NULL;
553     CPU_FOREACH(cs) {
554         rev = g_renew(CPUState *, rev, n_cpus + 1);
555         rev[n_cpus++] = cs;
556     }
557 
558     for (i = n_cpus - 1; i >= 0; i--) {
559         CPUState *cs = rev[i];
560         PowerPCCPU *cpu = POWERPC_CPU(cs);
561         int index = spapr_get_vcpu_id(cpu);
562         DeviceClass *dc = DEVICE_GET_CLASS(cs);
563         int offset;
564 
565         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
566             continue;
567         }
568 
569         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
570         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
571         g_free(nodename);
572         _FDT(offset);
573         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
574     }
575 
576     g_free(rev);
577 }
578 
579 static int spapr_rng_populate_dt(void *fdt)
580 {
581     int node;
582     int ret;
583 
584     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
585     if (node <= 0) {
586         return -1;
587     }
588     ret = fdt_setprop_string(fdt, node, "device_type",
589                              "ibm,platform-facilities");
590     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
591     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
592 
593     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
594     if (node <= 0) {
595         return -1;
596     }
597     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
598 
599     return ret ? -1 : 0;
600 }
601 
602 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
603 {
604     MemoryDeviceInfoList *info;
605 
606     for (info = list; info; info = info->next) {
607         MemoryDeviceInfo *value = info->value;
608 
609         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
610             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
611 
612             if (addr >= pcdimm_info->addr &&
613                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
614                 return pcdimm_info->node;
615             }
616         }
617     }
618 
619     return -1;
620 }
621 
622 struct sPAPRDrconfCellV2 {
623      uint32_t seq_lmbs;
624      uint64_t base_addr;
625      uint32_t drc_index;
626      uint32_t aa_index;
627      uint32_t flags;
628 } QEMU_PACKED;
629 
630 typedef struct DrconfCellQueue {
631     struct sPAPRDrconfCellV2 cell;
632     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
633 } DrconfCellQueue;
634 
635 static DrconfCellQueue *
636 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
637                       uint32_t drc_index, uint32_t aa_index,
638                       uint32_t flags)
639 {
640     DrconfCellQueue *elem;
641 
642     elem = g_malloc0(sizeof(*elem));
643     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
644     elem->cell.base_addr = cpu_to_be64(base_addr);
645     elem->cell.drc_index = cpu_to_be32(drc_index);
646     elem->cell.aa_index = cpu_to_be32(aa_index);
647     elem->cell.flags = cpu_to_be32(flags);
648 
649     return elem;
650 }
651 
652 /* ibm,dynamic-memory-v2 */
653 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
654                                    int offset, MemoryDeviceInfoList *dimms)
655 {
656     MachineState *machine = MACHINE(spapr);
657     uint8_t *int_buf, *cur_index;
658     int ret;
659     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
660     uint64_t addr, cur_addr, size;
661     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
662     uint64_t mem_end = machine->device_memory->base +
663                        memory_region_size(&machine->device_memory->mr);
664     uint32_t node, buf_len, nr_entries = 0;
665     SpaprDrc *drc;
666     DrconfCellQueue *elem, *next;
667     MemoryDeviceInfoList *info;
668     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
669         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
670 
671     /* Entry to cover RAM and the gap area */
672     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
673                                  SPAPR_LMB_FLAGS_RESERVED |
674                                  SPAPR_LMB_FLAGS_DRC_INVALID);
675     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
676     nr_entries++;
677 
678     cur_addr = machine->device_memory->base;
679     for (info = dimms; info; info = info->next) {
680         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
681 
682         addr = di->addr;
683         size = di->size;
684         node = di->node;
685 
686         /* Entry for hot-pluggable area */
687         if (cur_addr < addr) {
688             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
689             g_assert(drc);
690             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
691                                          cur_addr, spapr_drc_index(drc), -1, 0);
692             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
693             nr_entries++;
694         }
695 
696         /* Entry for DIMM */
697         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
698         g_assert(drc);
699         elem = spapr_get_drconf_cell(size / lmb_size, addr,
700                                      spapr_drc_index(drc), node,
701                                      SPAPR_LMB_FLAGS_ASSIGNED);
702         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
703         nr_entries++;
704         cur_addr = addr + size;
705     }
706 
707     /* Entry for remaining hotpluggable area */
708     if (cur_addr < mem_end) {
709         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
710         g_assert(drc);
711         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
712                                      cur_addr, spapr_drc_index(drc), -1, 0);
713         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
714         nr_entries++;
715     }
716 
717     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
718     int_buf = cur_index = g_malloc0(buf_len);
719     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
720     cur_index += sizeof(nr_entries);
721 
722     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
723         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
724         cur_index += sizeof(elem->cell);
725         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
726         g_free(elem);
727     }
728 
729     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
730     g_free(int_buf);
731     if (ret < 0) {
732         return -1;
733     }
734     return 0;
735 }
736 
737 /* ibm,dynamic-memory */
738 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
739                                    int offset, MemoryDeviceInfoList *dimms)
740 {
741     MachineState *machine = MACHINE(spapr);
742     int i, ret;
743     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
744     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
745     uint32_t nr_lmbs = (machine->device_memory->base +
746                        memory_region_size(&machine->device_memory->mr)) /
747                        lmb_size;
748     uint32_t *int_buf, *cur_index, buf_len;
749 
750     /*
751      * Allocate enough buffer size to fit in ibm,dynamic-memory
752      */
753     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
754     cur_index = int_buf = g_malloc0(buf_len);
755     int_buf[0] = cpu_to_be32(nr_lmbs);
756     cur_index++;
757     for (i = 0; i < nr_lmbs; i++) {
758         uint64_t addr = i * lmb_size;
759         uint32_t *dynamic_memory = cur_index;
760 
761         if (i >= device_lmb_start) {
762             SpaprDrc *drc;
763 
764             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
765             g_assert(drc);
766 
767             dynamic_memory[0] = cpu_to_be32(addr >> 32);
768             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
769             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
770             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
771             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
772             if (memory_region_present(get_system_memory(), addr)) {
773                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
774             } else {
775                 dynamic_memory[5] = cpu_to_be32(0);
776             }
777         } else {
778             /*
779              * LMB information for RMA, boot time RAM and gap b/n RAM and
780              * device memory region -- all these are marked as reserved
781              * and as having no valid DRC.
782              */
783             dynamic_memory[0] = cpu_to_be32(addr >> 32);
784             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
785             dynamic_memory[2] = cpu_to_be32(0);
786             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
787             dynamic_memory[4] = cpu_to_be32(-1);
788             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
789                                             SPAPR_LMB_FLAGS_DRC_INVALID);
790         }
791 
792         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
793     }
794     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
795     g_free(int_buf);
796     if (ret < 0) {
797         return -1;
798     }
799     return 0;
800 }
801 
802 /*
803  * Adds ibm,dynamic-reconfiguration-memory node.
804  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
805  * of this device tree node.
806  */
807 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
808 {
809     MachineState *machine = MACHINE(spapr);
810     int nb_numa_nodes = machine->numa_state->num_nodes;
811     int ret, i, offset;
812     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
813     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
814     uint32_t *int_buf, *cur_index, buf_len;
815     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
816     MemoryDeviceInfoList *dimms = NULL;
817 
818     /*
819      * Don't create the node if there is no device memory
820      */
821     if (machine->ram_size == machine->maxram_size) {
822         return 0;
823     }
824 
825     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
826 
827     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
828                     sizeof(prop_lmb_size));
829     if (ret < 0) {
830         return ret;
831     }
832 
833     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
834     if (ret < 0) {
835         return ret;
836     }
837 
838     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
839     if (ret < 0) {
840         return ret;
841     }
842 
843     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
844     dimms = qmp_memory_device_list();
845     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
846         ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
847     } else {
848         ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
849     }
850     qapi_free_MemoryDeviceInfoList(dimms);
851 
852     if (ret < 0) {
853         return ret;
854     }
855 
856     /* ibm,associativity-lookup-arrays */
857     buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
858     cur_index = int_buf = g_malloc0(buf_len);
859     int_buf[0] = cpu_to_be32(nr_nodes);
860     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
861     cur_index += 2;
862     for (i = 0; i < nr_nodes; i++) {
863         uint32_t associativity[] = {
864             cpu_to_be32(0x0),
865             cpu_to_be32(0x0),
866             cpu_to_be32(0x0),
867             cpu_to_be32(i)
868         };
869         memcpy(cur_index, associativity, sizeof(associativity));
870         cur_index += 4;
871     }
872     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
873             (cur_index - int_buf) * sizeof(uint32_t));
874     g_free(int_buf);
875 
876     return ret;
877 }
878 
879 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
880                                 SpaprOptionVector *ov5_updates)
881 {
882     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
883     int ret = 0, offset;
884 
885     /* Generate ibm,dynamic-reconfiguration-memory node if required */
886     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
887         g_assert(smc->dr_lmb_enabled);
888         ret = spapr_populate_drconf_memory(spapr, fdt);
889         if (ret) {
890             goto out;
891         }
892     }
893 
894     offset = fdt_path_offset(fdt, "/chosen");
895     if (offset < 0) {
896         offset = fdt_add_subnode(fdt, 0, "chosen");
897         if (offset < 0) {
898             return offset;
899         }
900     }
901     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
902                                  "ibm,architecture-vec-5");
903 
904 out:
905     return ret;
906 }
907 
908 static bool spapr_hotplugged_dev_before_cas(void)
909 {
910     Object *drc_container, *obj;
911     ObjectProperty *prop;
912     ObjectPropertyIterator iter;
913 
914     drc_container = container_get(object_get_root(), "/dr-connector");
915     object_property_iter_init(&iter, drc_container);
916     while ((prop = object_property_iter_next(&iter))) {
917         if (!strstart(prop->type, "link<", NULL)) {
918             continue;
919         }
920         obj = object_property_get_link(drc_container, prop->name, NULL);
921         if (spapr_drc_needed(obj)) {
922             return true;
923         }
924     }
925     return false;
926 }
927 
928 static void *spapr_build_fdt(SpaprMachineState *spapr);
929 
930 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
931                                  target_ulong addr, target_ulong size,
932                                  SpaprOptionVector *ov5_updates)
933 {
934     void *fdt;
935     SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
936 
937     if (spapr_hotplugged_dev_before_cas()) {
938         return 1;
939     }
940 
941     if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
942         error_report("SLOF provided an unexpected CAS buffer size "
943                      TARGET_FMT_lu " (min: %zu, max: %u)",
944                      size, sizeof(hdr), FW_MAX_SIZE);
945         exit(EXIT_FAILURE);
946     }
947 
948     size -= sizeof(hdr);
949 
950     fdt = spapr_build_fdt(spapr);
951     _FDT((fdt_pack(fdt)));
952 
953     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
954         g_free(fdt);
955         trace_spapr_cas_failed(size);
956         return -1;
957     }
958 
959     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
960     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
961     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
962 
963     g_free(spapr->fdt_blob);
964     spapr->fdt_size = fdt_totalsize(fdt);
965     spapr->fdt_initial_size = spapr->fdt_size;
966     spapr->fdt_blob = fdt;
967 
968     return 0;
969 }
970 
971 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
972 {
973     MachineState *ms = MACHINE(spapr);
974     int rtas;
975     GString *hypertas = g_string_sized_new(256);
976     GString *qemu_hypertas = g_string_sized_new(256);
977     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
978     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
979         memory_region_size(&MACHINE(spapr)->device_memory->mr);
980     uint32_t lrdr_capacity[] = {
981         cpu_to_be32(max_device_addr >> 32),
982         cpu_to_be32(max_device_addr & 0xffffffff),
983         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
984         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
985     };
986     uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
987     uint32_t maxdomains[] = {
988         cpu_to_be32(4),
989         maxdomain,
990         maxdomain,
991         maxdomain,
992         cpu_to_be32(spapr->gpu_numa_id),
993     };
994 
995     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
996 
997     /* hypertas */
998     add_str(hypertas, "hcall-pft");
999     add_str(hypertas, "hcall-term");
1000     add_str(hypertas, "hcall-dabr");
1001     add_str(hypertas, "hcall-interrupt");
1002     add_str(hypertas, "hcall-tce");
1003     add_str(hypertas, "hcall-vio");
1004     add_str(hypertas, "hcall-splpar");
1005     add_str(hypertas, "hcall-join");
1006     add_str(hypertas, "hcall-bulk");
1007     add_str(hypertas, "hcall-set-mode");
1008     add_str(hypertas, "hcall-sprg0");
1009     add_str(hypertas, "hcall-copy");
1010     add_str(hypertas, "hcall-debug");
1011     add_str(hypertas, "hcall-vphn");
1012     add_str(qemu_hypertas, "hcall-memop1");
1013 
1014     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1015         add_str(hypertas, "hcall-multi-tce");
1016     }
1017 
1018     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1019         add_str(hypertas, "hcall-hpt-resize");
1020     }
1021 
1022     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1023                      hypertas->str, hypertas->len));
1024     g_string_free(hypertas, TRUE);
1025     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1026                      qemu_hypertas->str, qemu_hypertas->len));
1027     g_string_free(qemu_hypertas, TRUE);
1028 
1029     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1030                      refpoints, sizeof(refpoints)));
1031 
1032     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1033                      maxdomains, sizeof(maxdomains)));
1034 
1035     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1036                           RTAS_ERROR_LOG_MAX));
1037     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1038                           RTAS_EVENT_SCAN_RATE));
1039 
1040     g_assert(msi_nonbroken);
1041     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1042 
1043     /*
1044      * According to PAPR, rtas ibm,os-term does not guarantee a return
1045      * back to the guest cpu.
1046      *
1047      * While an additional ibm,extended-os-term property indicates
1048      * that rtas call return will always occur. Set this property.
1049      */
1050     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1051 
1052     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1053                      lrdr_capacity, sizeof(lrdr_capacity)));
1054 
1055     spapr_dt_rtas_tokens(fdt, rtas);
1056 }
1057 
1058 /*
1059  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1060  * and the XIVE features that the guest may request and thus the valid
1061  * values for bytes 23..26 of option vector 5:
1062  */
1063 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1064                                           int chosen)
1065 {
1066     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1067 
1068     char val[2 * 4] = {
1069         23, spapr->irq->ov5, /* Xive mode. */
1070         24, 0x00, /* Hash/Radix, filled in below. */
1071         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1072         26, 0x40, /* Radix options: GTSE == yes. */
1073     };
1074 
1075     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1076                           first_ppc_cpu->compat_pvr)) {
1077         /*
1078          * If we're in a pre POWER9 compat mode then the guest should
1079          * do hash and use the legacy interrupt mode
1080          */
1081         val[1] = 0x00; /* XICS */
1082         val[3] = 0x00; /* Hash */
1083     } else if (kvm_enabled()) {
1084         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1085             val[3] = 0x80; /* OV5_MMU_BOTH */
1086         } else if (kvmppc_has_cap_mmu_radix()) {
1087             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1088         } else {
1089             val[3] = 0x00; /* Hash */
1090         }
1091     } else {
1092         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1093         val[3] = 0xC0;
1094     }
1095     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1096                      val, sizeof(val)));
1097 }
1098 
1099 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1100 {
1101     MachineState *machine = MACHINE(spapr);
1102     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1103     int chosen;
1104     const char *boot_device = machine->boot_order;
1105     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1106     size_t cb = 0;
1107     char *bootlist = get_boot_devices_list(&cb);
1108 
1109     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1110 
1111     if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1112         _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1113                                 machine->kernel_cmdline));
1114     }
1115     if (spapr->initrd_size) {
1116         _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1117                               spapr->initrd_base));
1118         _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1119                               spapr->initrd_base + spapr->initrd_size));
1120     }
1121 
1122     if (spapr->kernel_size) {
1123         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1124                               cpu_to_be64(spapr->kernel_size) };
1125 
1126         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1127                          &kprop, sizeof(kprop)));
1128         if (spapr->kernel_le) {
1129             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1130         }
1131     }
1132     if (boot_menu) {
1133         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1134     }
1135     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1136     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1137     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1138 
1139     if (cb && bootlist) {
1140         int i;
1141 
1142         for (i = 0; i < cb; i++) {
1143             if (bootlist[i] == '\n') {
1144                 bootlist[i] = ' ';
1145             }
1146         }
1147         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1148     }
1149 
1150     if (boot_device && strlen(boot_device)) {
1151         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1152     }
1153 
1154     if (!spapr->has_graphics && stdout_path) {
1155         /*
1156          * "linux,stdout-path" and "stdout" properties are deprecated by linux
1157          * kernel. New platforms should only use the "stdout-path" property. Set
1158          * the new property and continue using older property to remain
1159          * compatible with the existing firmware.
1160          */
1161         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1162         _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1163     }
1164 
1165     /* We can deal with BAR reallocation just fine, advertise it to the guest */
1166     if (smc->linux_pci_probe) {
1167         _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1168     }
1169 
1170     spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1171 
1172     g_free(stdout_path);
1173     g_free(bootlist);
1174 }
1175 
1176 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1177 {
1178     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1179      * KVM to work under pHyp with some guest co-operation */
1180     int hypervisor;
1181     uint8_t hypercall[16];
1182 
1183     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1184     /* indicate KVM hypercall interface */
1185     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1186     if (kvmppc_has_cap_fixup_hcalls()) {
1187         /*
1188          * Older KVM versions with older guest kernels were broken
1189          * with the magic page, don't allow the guest to map it.
1190          */
1191         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1192                                   sizeof(hypercall))) {
1193             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1194                              hypercall, sizeof(hypercall)));
1195         }
1196     }
1197 }
1198 
1199 static void *spapr_build_fdt(SpaprMachineState *spapr)
1200 {
1201     MachineState *machine = MACHINE(spapr);
1202     MachineClass *mc = MACHINE_GET_CLASS(machine);
1203     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1204     int ret;
1205     void *fdt;
1206     SpaprPhbState *phb;
1207     char *buf;
1208 
1209     fdt = g_malloc0(FDT_MAX_SIZE);
1210     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1211 
1212     /* Root node */
1213     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1214     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1215     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1216 
1217     /* Guest UUID & Name*/
1218     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1219     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1220     if (qemu_uuid_set) {
1221         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1222     }
1223     g_free(buf);
1224 
1225     if (qemu_get_vm_name()) {
1226         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1227                                 qemu_get_vm_name()));
1228     }
1229 
1230     /* Host Model & Serial Number */
1231     if (spapr->host_model) {
1232         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1233     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1234         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1235         g_free(buf);
1236     }
1237 
1238     if (spapr->host_serial) {
1239         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1240     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1241         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1242         g_free(buf);
1243     }
1244 
1245     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1246     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1247 
1248     /* /interrupt controller */
1249     spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1250                           PHANDLE_INTC);
1251 
1252     ret = spapr_populate_memory(spapr, fdt);
1253     if (ret < 0) {
1254         error_report("couldn't setup memory nodes in fdt");
1255         exit(1);
1256     }
1257 
1258     /* /vdevice */
1259     spapr_dt_vdevice(spapr->vio_bus, fdt);
1260 
1261     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1262         ret = spapr_rng_populate_dt(fdt);
1263         if (ret < 0) {
1264             error_report("could not set up rng device in the fdt");
1265             exit(1);
1266         }
1267     }
1268 
1269     QLIST_FOREACH(phb, &spapr->phbs, list) {
1270         ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL);
1271         if (ret < 0) {
1272             error_report("couldn't setup PCI devices in fdt");
1273             exit(1);
1274         }
1275     }
1276 
1277     /* cpus */
1278     spapr_populate_cpus_dt_node(fdt, spapr);
1279 
1280     if (smc->dr_lmb_enabled) {
1281         _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1282     }
1283 
1284     if (mc->has_hotpluggable_cpus) {
1285         int offset = fdt_path_offset(fdt, "/cpus");
1286         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1287         if (ret < 0) {
1288             error_report("Couldn't set up CPU DR device tree properties");
1289             exit(1);
1290         }
1291     }
1292 
1293     /* /event-sources */
1294     spapr_dt_events(spapr, fdt);
1295 
1296     /* /rtas */
1297     spapr_dt_rtas(spapr, fdt);
1298 
1299     /* /chosen */
1300     spapr_dt_chosen(spapr, fdt);
1301 
1302     /* /hypervisor */
1303     if (kvm_enabled()) {
1304         spapr_dt_hypervisor(spapr, fdt);
1305     }
1306 
1307     /* Build memory reserve map */
1308     if (spapr->kernel_size) {
1309         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1310     }
1311     if (spapr->initrd_size) {
1312         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1313     }
1314 
1315     /* ibm,client-architecture-support updates */
1316     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1317     if (ret < 0) {
1318         error_report("couldn't setup CAS properties fdt");
1319         exit(1);
1320     }
1321 
1322     if (smc->dr_phb_enabled) {
1323         ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1324         if (ret < 0) {
1325             error_report("Couldn't set up PHB DR device tree properties");
1326             exit(1);
1327         }
1328     }
1329 
1330     return fdt;
1331 }
1332 
1333 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1334 {
1335     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1336 }
1337 
1338 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1339                                     PowerPCCPU *cpu)
1340 {
1341     CPUPPCState *env = &cpu->env;
1342 
1343     /* The TCG path should also be holding the BQL at this point */
1344     g_assert(qemu_mutex_iothread_locked());
1345 
1346     if (msr_pr) {
1347         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1348         env->gpr[3] = H_PRIVILEGE;
1349     } else {
1350         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1351     }
1352 }
1353 
1354 struct LPCRSyncState {
1355     target_ulong value;
1356     target_ulong mask;
1357 };
1358 
1359 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1360 {
1361     struct LPCRSyncState *s = arg.host_ptr;
1362     PowerPCCPU *cpu = POWERPC_CPU(cs);
1363     CPUPPCState *env = &cpu->env;
1364     target_ulong lpcr;
1365 
1366     cpu_synchronize_state(cs);
1367     lpcr = env->spr[SPR_LPCR];
1368     lpcr &= ~s->mask;
1369     lpcr |= s->value;
1370     ppc_store_lpcr(cpu, lpcr);
1371 }
1372 
1373 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1374 {
1375     CPUState *cs;
1376     struct LPCRSyncState s = {
1377         .value = value,
1378         .mask = mask
1379     };
1380     CPU_FOREACH(cs) {
1381         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1382     }
1383 }
1384 
1385 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1386 {
1387     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1388 
1389     /* Copy PATE1:GR into PATE0:HR */
1390     entry->dw0 = spapr->patb_entry & PATE0_HR;
1391     entry->dw1 = spapr->patb_entry;
1392 }
1393 
1394 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1395 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1396 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1397 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1398 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1399 
1400 /*
1401  * Get the fd to access the kernel htab, re-opening it if necessary
1402  */
1403 static int get_htab_fd(SpaprMachineState *spapr)
1404 {
1405     Error *local_err = NULL;
1406 
1407     if (spapr->htab_fd >= 0) {
1408         return spapr->htab_fd;
1409     }
1410 
1411     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1412     if (spapr->htab_fd < 0) {
1413         error_report_err(local_err);
1414     }
1415 
1416     return spapr->htab_fd;
1417 }
1418 
1419 void close_htab_fd(SpaprMachineState *spapr)
1420 {
1421     if (spapr->htab_fd >= 0) {
1422         close(spapr->htab_fd);
1423     }
1424     spapr->htab_fd = -1;
1425 }
1426 
1427 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1428 {
1429     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1430 
1431     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1432 }
1433 
1434 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1435 {
1436     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1437 
1438     assert(kvm_enabled());
1439 
1440     if (!spapr->htab) {
1441         return 0;
1442     }
1443 
1444     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1445 }
1446 
1447 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1448                                                 hwaddr ptex, int n)
1449 {
1450     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1451     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1452 
1453     if (!spapr->htab) {
1454         /*
1455          * HTAB is controlled by KVM. Fetch into temporary buffer
1456          */
1457         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1458         kvmppc_read_hptes(hptes, ptex, n);
1459         return hptes;
1460     }
1461 
1462     /*
1463      * HTAB is controlled by QEMU. Just point to the internally
1464      * accessible PTEG.
1465      */
1466     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1467 }
1468 
1469 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1470                               const ppc_hash_pte64_t *hptes,
1471                               hwaddr ptex, int n)
1472 {
1473     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1474 
1475     if (!spapr->htab) {
1476         g_free((void *)hptes);
1477     }
1478 
1479     /* Nothing to do for qemu managed HPT */
1480 }
1481 
1482 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1483                       uint64_t pte0, uint64_t pte1)
1484 {
1485     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1486     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1487 
1488     if (!spapr->htab) {
1489         kvmppc_write_hpte(ptex, pte0, pte1);
1490     } else {
1491         if (pte0 & HPTE64_V_VALID) {
1492             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1493             /*
1494              * When setting valid, we write PTE1 first. This ensures
1495              * proper synchronization with the reading code in
1496              * ppc_hash64_pteg_search()
1497              */
1498             smp_wmb();
1499             stq_p(spapr->htab + offset, pte0);
1500         } else {
1501             stq_p(spapr->htab + offset, pte0);
1502             /*
1503              * When clearing it we set PTE0 first. This ensures proper
1504              * synchronization with the reading code in
1505              * ppc_hash64_pteg_search()
1506              */
1507             smp_wmb();
1508             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1509         }
1510     }
1511 }
1512 
1513 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1514                              uint64_t pte1)
1515 {
1516     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1517     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1518 
1519     if (!spapr->htab) {
1520         /* There should always be a hash table when this is called */
1521         error_report("spapr_hpte_set_c called with no hash table !");
1522         return;
1523     }
1524 
1525     /* The HW performs a non-atomic byte update */
1526     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1527 }
1528 
1529 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1530                              uint64_t pte1)
1531 {
1532     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1533     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1534 
1535     if (!spapr->htab) {
1536         /* There should always be a hash table when this is called */
1537         error_report("spapr_hpte_set_r called with no hash table !");
1538         return;
1539     }
1540 
1541     /* The HW performs a non-atomic byte update */
1542     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1543 }
1544 
1545 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1546 {
1547     int shift;
1548 
1549     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1550      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1551      * that's much more than is needed for Linux guests */
1552     shift = ctz64(pow2ceil(ramsize)) - 7;
1553     shift = MAX(shift, 18); /* Minimum architected size */
1554     shift = MIN(shift, 46); /* Maximum architected size */
1555     return shift;
1556 }
1557 
1558 void spapr_free_hpt(SpaprMachineState *spapr)
1559 {
1560     g_free(spapr->htab);
1561     spapr->htab = NULL;
1562     spapr->htab_shift = 0;
1563     close_htab_fd(spapr);
1564 }
1565 
1566 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1567                           Error **errp)
1568 {
1569     long rc;
1570 
1571     /* Clean up any HPT info from a previous boot */
1572     spapr_free_hpt(spapr);
1573 
1574     rc = kvmppc_reset_htab(shift);
1575     if (rc < 0) {
1576         /* kernel-side HPT needed, but couldn't allocate one */
1577         error_setg_errno(errp, errno,
1578                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1579                          shift);
1580         /* This is almost certainly fatal, but if the caller really
1581          * wants to carry on with shift == 0, it's welcome to try */
1582     } else if (rc > 0) {
1583         /* kernel-side HPT allocated */
1584         if (rc != shift) {
1585             error_setg(errp,
1586                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1587                        shift, rc);
1588         }
1589 
1590         spapr->htab_shift = shift;
1591         spapr->htab = NULL;
1592     } else {
1593         /* kernel-side HPT not needed, allocate in userspace instead */
1594         size_t size = 1ULL << shift;
1595         int i;
1596 
1597         spapr->htab = qemu_memalign(size, size);
1598         if (!spapr->htab) {
1599             error_setg_errno(errp, errno,
1600                              "Could not allocate HPT of order %d", shift);
1601             return;
1602         }
1603 
1604         memset(spapr->htab, 0, size);
1605         spapr->htab_shift = shift;
1606 
1607         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1608             DIRTY_HPTE(HPTE(spapr->htab, i));
1609         }
1610     }
1611     /* We're setting up a hash table, so that means we're not radix */
1612     spapr->patb_entry = 0;
1613     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1614 }
1615 
1616 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1617 {
1618     int hpt_shift;
1619 
1620     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1621         || (spapr->cas_reboot
1622             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1623         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1624     } else {
1625         uint64_t current_ram_size;
1626 
1627         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1628         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1629     }
1630     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1631 
1632     if (spapr->vrma_adjust) {
1633         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1634                                           spapr->htab_shift);
1635     }
1636 }
1637 
1638 static int spapr_reset_drcs(Object *child, void *opaque)
1639 {
1640     SpaprDrc *drc =
1641         (SpaprDrc *) object_dynamic_cast(child,
1642                                                  TYPE_SPAPR_DR_CONNECTOR);
1643 
1644     if (drc) {
1645         spapr_drc_reset(drc);
1646     }
1647 
1648     return 0;
1649 }
1650 
1651 static void spapr_machine_reset(MachineState *machine)
1652 {
1653     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1654     PowerPCCPU *first_ppc_cpu;
1655     hwaddr fdt_addr;
1656     void *fdt;
1657     int rc;
1658 
1659     spapr_caps_apply(spapr);
1660 
1661     first_ppc_cpu = POWERPC_CPU(first_cpu);
1662     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1663         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1664                               spapr->max_compat_pvr)) {
1665         /*
1666          * If using KVM with radix mode available, VCPUs can be started
1667          * without a HPT because KVM will start them in radix mode.
1668          * Set the GR bit in PATE so that we know there is no HPT.
1669          */
1670         spapr->patb_entry = PATE1_GR;
1671         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1672     } else {
1673         spapr_setup_hpt_and_vrma(spapr);
1674     }
1675 
1676     qemu_devices_reset();
1677 
1678     /*
1679      * If this reset wasn't generated by CAS, we should reset our
1680      * negotiated options and start from scratch
1681      */
1682     if (!spapr->cas_reboot) {
1683         spapr_ovec_cleanup(spapr->ov5_cas);
1684         spapr->ov5_cas = spapr_ovec_new();
1685 
1686         ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1687     }
1688 
1689     /*
1690      * This is fixing some of the default configuration of the XIVE
1691      * devices. To be called after the reset of the machine devices.
1692      */
1693     spapr_irq_reset(spapr, &error_fatal);
1694 
1695     /*
1696      * There is no CAS under qtest. Simulate one to please the code that
1697      * depends on spapr->ov5_cas. This is especially needed to test device
1698      * unplug, so we do that before resetting the DRCs.
1699      */
1700     if (qtest_enabled()) {
1701         spapr_ovec_cleanup(spapr->ov5_cas);
1702         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1703     }
1704 
1705     /* DRC reset may cause a device to be unplugged. This will cause troubles
1706      * if this device is used by another device (eg, a running vhost backend
1707      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1708      * situations, we reset DRCs after all devices have been reset.
1709      */
1710     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1711 
1712     spapr_clear_pending_events(spapr);
1713 
1714     /*
1715      * We place the device tree and RTAS just below either the top of the RMA,
1716      * or just below 2GB, whichever is lower, so that it can be
1717      * processed with 32-bit real mode code if necessary
1718      */
1719     fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1720 
1721     fdt = spapr_build_fdt(spapr);
1722 
1723     rc = fdt_pack(fdt);
1724 
1725     /* Should only fail if we've built a corrupted tree */
1726     assert(rc == 0);
1727 
1728     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1729         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1730                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1731         exit(1);
1732     }
1733 
1734     /* Load the fdt */
1735     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1736     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1737     g_free(spapr->fdt_blob);
1738     spapr->fdt_size = fdt_totalsize(fdt);
1739     spapr->fdt_initial_size = spapr->fdt_size;
1740     spapr->fdt_blob = fdt;
1741 
1742     /* Set up the entry state */
1743     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1744     first_ppc_cpu->env.gpr[5] = 0;
1745 
1746     spapr->cas_reboot = false;
1747 }
1748 
1749 static void spapr_create_nvram(SpaprMachineState *spapr)
1750 {
1751     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1752     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1753 
1754     if (dinfo) {
1755         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1756                             &error_fatal);
1757     }
1758 
1759     qdev_init_nofail(dev);
1760 
1761     spapr->nvram = (struct SpaprNvram *)dev;
1762 }
1763 
1764 static void spapr_rtc_create(SpaprMachineState *spapr)
1765 {
1766     object_initialize_child(OBJECT(spapr), "rtc",
1767                             &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1768                             &error_fatal, NULL);
1769     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1770                               &error_fatal);
1771     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1772                               "date", &error_fatal);
1773 }
1774 
1775 /* Returns whether we want to use VGA or not */
1776 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1777 {
1778     switch (vga_interface_type) {
1779     case VGA_NONE:
1780         return false;
1781     case VGA_DEVICE:
1782         return true;
1783     case VGA_STD:
1784     case VGA_VIRTIO:
1785     case VGA_CIRRUS:
1786         return pci_vga_init(pci_bus) != NULL;
1787     default:
1788         error_setg(errp,
1789                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1790         return false;
1791     }
1792 }
1793 
1794 static int spapr_pre_load(void *opaque)
1795 {
1796     int rc;
1797 
1798     rc = spapr_caps_pre_load(opaque);
1799     if (rc) {
1800         return rc;
1801     }
1802 
1803     return 0;
1804 }
1805 
1806 static int spapr_post_load(void *opaque, int version_id)
1807 {
1808     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1809     int err = 0;
1810 
1811     err = spapr_caps_post_migration(spapr);
1812     if (err) {
1813         return err;
1814     }
1815 
1816     /*
1817      * In earlier versions, there was no separate qdev for the PAPR
1818      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1819      * So when migrating from those versions, poke the incoming offset
1820      * value into the RTC device
1821      */
1822     if (version_id < 3) {
1823         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1824         if (err) {
1825             return err;
1826         }
1827     }
1828 
1829     if (kvm_enabled() && spapr->patb_entry) {
1830         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1831         bool radix = !!(spapr->patb_entry & PATE1_GR);
1832         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1833 
1834         /*
1835          * Update LPCR:HR and UPRT as they may not be set properly in
1836          * the stream
1837          */
1838         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1839                             LPCR_HR | LPCR_UPRT);
1840 
1841         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1842         if (err) {
1843             error_report("Process table config unsupported by the host");
1844             return -EINVAL;
1845         }
1846     }
1847 
1848     err = spapr_irq_post_load(spapr, version_id);
1849     if (err) {
1850         return err;
1851     }
1852 
1853     return err;
1854 }
1855 
1856 static int spapr_pre_save(void *opaque)
1857 {
1858     int rc;
1859 
1860     rc = spapr_caps_pre_save(opaque);
1861     if (rc) {
1862         return rc;
1863     }
1864 
1865     return 0;
1866 }
1867 
1868 static bool version_before_3(void *opaque, int version_id)
1869 {
1870     return version_id < 3;
1871 }
1872 
1873 static bool spapr_pending_events_needed(void *opaque)
1874 {
1875     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1876     return !QTAILQ_EMPTY(&spapr->pending_events);
1877 }
1878 
1879 static const VMStateDescription vmstate_spapr_event_entry = {
1880     .name = "spapr_event_log_entry",
1881     .version_id = 1,
1882     .minimum_version_id = 1,
1883     .fields = (VMStateField[]) {
1884         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1885         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1886         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1887                                      NULL, extended_length),
1888         VMSTATE_END_OF_LIST()
1889     },
1890 };
1891 
1892 static const VMStateDescription vmstate_spapr_pending_events = {
1893     .name = "spapr_pending_events",
1894     .version_id = 1,
1895     .minimum_version_id = 1,
1896     .needed = spapr_pending_events_needed,
1897     .fields = (VMStateField[]) {
1898         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1899                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1900         VMSTATE_END_OF_LIST()
1901     },
1902 };
1903 
1904 static bool spapr_ov5_cas_needed(void *opaque)
1905 {
1906     SpaprMachineState *spapr = opaque;
1907     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1908     SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1909     SpaprOptionVector *ov5_removed = spapr_ovec_new();
1910     bool cas_needed;
1911 
1912     /* Prior to the introduction of SpaprOptionVector, we had two option
1913      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1914      * Both of these options encode machine topology into the device-tree
1915      * in such a way that the now-booted OS should still be able to interact
1916      * appropriately with QEMU regardless of what options were actually
1917      * negotiatied on the source side.
1918      *
1919      * As such, we can avoid migrating the CAS-negotiated options if these
1920      * are the only options available on the current machine/platform.
1921      * Since these are the only options available for pseries-2.7 and
1922      * earlier, this allows us to maintain old->new/new->old migration
1923      * compatibility.
1924      *
1925      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1926      * via default pseries-2.8 machines and explicit command-line parameters.
1927      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1928      * of the actual CAS-negotiated values to continue working properly. For
1929      * example, availability of memory unplug depends on knowing whether
1930      * OV5_HP_EVT was negotiated via CAS.
1931      *
1932      * Thus, for any cases where the set of available CAS-negotiatable
1933      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1934      * include the CAS-negotiated options in the migration stream, unless
1935      * if they affect boot time behaviour only.
1936      */
1937     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1938     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1939     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1940 
1941     /* spapr_ovec_diff returns true if bits were removed. we avoid using
1942      * the mask itself since in the future it's possible "legacy" bits may be
1943      * removed via machine options, which could generate a false positive
1944      * that breaks migration.
1945      */
1946     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1947     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1948 
1949     spapr_ovec_cleanup(ov5_mask);
1950     spapr_ovec_cleanup(ov5_legacy);
1951     spapr_ovec_cleanup(ov5_removed);
1952 
1953     return cas_needed;
1954 }
1955 
1956 static const VMStateDescription vmstate_spapr_ov5_cas = {
1957     .name = "spapr_option_vector_ov5_cas",
1958     .version_id = 1,
1959     .minimum_version_id = 1,
1960     .needed = spapr_ov5_cas_needed,
1961     .fields = (VMStateField[]) {
1962         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1963                                  vmstate_spapr_ovec, SpaprOptionVector),
1964         VMSTATE_END_OF_LIST()
1965     },
1966 };
1967 
1968 static bool spapr_patb_entry_needed(void *opaque)
1969 {
1970     SpaprMachineState *spapr = opaque;
1971 
1972     return !!spapr->patb_entry;
1973 }
1974 
1975 static const VMStateDescription vmstate_spapr_patb_entry = {
1976     .name = "spapr_patb_entry",
1977     .version_id = 1,
1978     .minimum_version_id = 1,
1979     .needed = spapr_patb_entry_needed,
1980     .fields = (VMStateField[]) {
1981         VMSTATE_UINT64(patb_entry, SpaprMachineState),
1982         VMSTATE_END_OF_LIST()
1983     },
1984 };
1985 
1986 static bool spapr_irq_map_needed(void *opaque)
1987 {
1988     SpaprMachineState *spapr = opaque;
1989 
1990     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1991 }
1992 
1993 static const VMStateDescription vmstate_spapr_irq_map = {
1994     .name = "spapr_irq_map",
1995     .version_id = 1,
1996     .minimum_version_id = 1,
1997     .needed = spapr_irq_map_needed,
1998     .fields = (VMStateField[]) {
1999         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2000         VMSTATE_END_OF_LIST()
2001     },
2002 };
2003 
2004 static bool spapr_dtb_needed(void *opaque)
2005 {
2006     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2007 
2008     return smc->update_dt_enabled;
2009 }
2010 
2011 static int spapr_dtb_pre_load(void *opaque)
2012 {
2013     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2014 
2015     g_free(spapr->fdt_blob);
2016     spapr->fdt_blob = NULL;
2017     spapr->fdt_size = 0;
2018 
2019     return 0;
2020 }
2021 
2022 static const VMStateDescription vmstate_spapr_dtb = {
2023     .name = "spapr_dtb",
2024     .version_id = 1,
2025     .minimum_version_id = 1,
2026     .needed = spapr_dtb_needed,
2027     .pre_load = spapr_dtb_pre_load,
2028     .fields = (VMStateField[]) {
2029         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2030         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2031         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2032                                      fdt_size),
2033         VMSTATE_END_OF_LIST()
2034     },
2035 };
2036 
2037 static const VMStateDescription vmstate_spapr = {
2038     .name = "spapr",
2039     .version_id = 3,
2040     .minimum_version_id = 1,
2041     .pre_load = spapr_pre_load,
2042     .post_load = spapr_post_load,
2043     .pre_save = spapr_pre_save,
2044     .fields = (VMStateField[]) {
2045         /* used to be @next_irq */
2046         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2047 
2048         /* RTC offset */
2049         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2050 
2051         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2052         VMSTATE_END_OF_LIST()
2053     },
2054     .subsections = (const VMStateDescription*[]) {
2055         &vmstate_spapr_ov5_cas,
2056         &vmstate_spapr_patb_entry,
2057         &vmstate_spapr_pending_events,
2058         &vmstate_spapr_cap_htm,
2059         &vmstate_spapr_cap_vsx,
2060         &vmstate_spapr_cap_dfp,
2061         &vmstate_spapr_cap_cfpc,
2062         &vmstate_spapr_cap_sbbc,
2063         &vmstate_spapr_cap_ibs,
2064         &vmstate_spapr_cap_hpt_maxpagesize,
2065         &vmstate_spapr_irq_map,
2066         &vmstate_spapr_cap_nested_kvm_hv,
2067         &vmstate_spapr_dtb,
2068         &vmstate_spapr_cap_large_decr,
2069         &vmstate_spapr_cap_ccf_assist,
2070         NULL
2071     }
2072 };
2073 
2074 static int htab_save_setup(QEMUFile *f, void *opaque)
2075 {
2076     SpaprMachineState *spapr = opaque;
2077 
2078     /* "Iteration" header */
2079     if (!spapr->htab_shift) {
2080         qemu_put_be32(f, -1);
2081     } else {
2082         qemu_put_be32(f, spapr->htab_shift);
2083     }
2084 
2085     if (spapr->htab) {
2086         spapr->htab_save_index = 0;
2087         spapr->htab_first_pass = true;
2088     } else {
2089         if (spapr->htab_shift) {
2090             assert(kvm_enabled());
2091         }
2092     }
2093 
2094 
2095     return 0;
2096 }
2097 
2098 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2099                             int chunkstart, int n_valid, int n_invalid)
2100 {
2101     qemu_put_be32(f, chunkstart);
2102     qemu_put_be16(f, n_valid);
2103     qemu_put_be16(f, n_invalid);
2104     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2105                     HASH_PTE_SIZE_64 * n_valid);
2106 }
2107 
2108 static void htab_save_end_marker(QEMUFile *f)
2109 {
2110     qemu_put_be32(f, 0);
2111     qemu_put_be16(f, 0);
2112     qemu_put_be16(f, 0);
2113 }
2114 
2115 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2116                                  int64_t max_ns)
2117 {
2118     bool has_timeout = max_ns != -1;
2119     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2120     int index = spapr->htab_save_index;
2121     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2122 
2123     assert(spapr->htab_first_pass);
2124 
2125     do {
2126         int chunkstart;
2127 
2128         /* Consume invalid HPTEs */
2129         while ((index < htabslots)
2130                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2131             CLEAN_HPTE(HPTE(spapr->htab, index));
2132             index++;
2133         }
2134 
2135         /* Consume valid HPTEs */
2136         chunkstart = index;
2137         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2138                && HPTE_VALID(HPTE(spapr->htab, index))) {
2139             CLEAN_HPTE(HPTE(spapr->htab, index));
2140             index++;
2141         }
2142 
2143         if (index > chunkstart) {
2144             int n_valid = index - chunkstart;
2145 
2146             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2147 
2148             if (has_timeout &&
2149                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2150                 break;
2151             }
2152         }
2153     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2154 
2155     if (index >= htabslots) {
2156         assert(index == htabslots);
2157         index = 0;
2158         spapr->htab_first_pass = false;
2159     }
2160     spapr->htab_save_index = index;
2161 }
2162 
2163 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2164                                 int64_t max_ns)
2165 {
2166     bool final = max_ns < 0;
2167     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2168     int examined = 0, sent = 0;
2169     int index = spapr->htab_save_index;
2170     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2171 
2172     assert(!spapr->htab_first_pass);
2173 
2174     do {
2175         int chunkstart, invalidstart;
2176 
2177         /* Consume non-dirty HPTEs */
2178         while ((index < htabslots)
2179                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2180             index++;
2181             examined++;
2182         }
2183 
2184         chunkstart = index;
2185         /* Consume valid dirty HPTEs */
2186         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2187                && HPTE_DIRTY(HPTE(spapr->htab, index))
2188                && HPTE_VALID(HPTE(spapr->htab, index))) {
2189             CLEAN_HPTE(HPTE(spapr->htab, index));
2190             index++;
2191             examined++;
2192         }
2193 
2194         invalidstart = index;
2195         /* Consume invalid dirty HPTEs */
2196         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2197                && HPTE_DIRTY(HPTE(spapr->htab, index))
2198                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2199             CLEAN_HPTE(HPTE(spapr->htab, index));
2200             index++;
2201             examined++;
2202         }
2203 
2204         if (index > chunkstart) {
2205             int n_valid = invalidstart - chunkstart;
2206             int n_invalid = index - invalidstart;
2207 
2208             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2209             sent += index - chunkstart;
2210 
2211             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2212                 break;
2213             }
2214         }
2215 
2216         if (examined >= htabslots) {
2217             break;
2218         }
2219 
2220         if (index >= htabslots) {
2221             assert(index == htabslots);
2222             index = 0;
2223         }
2224     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2225 
2226     if (index >= htabslots) {
2227         assert(index == htabslots);
2228         index = 0;
2229     }
2230 
2231     spapr->htab_save_index = index;
2232 
2233     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2234 }
2235 
2236 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2237 #define MAX_KVM_BUF_SIZE    2048
2238 
2239 static int htab_save_iterate(QEMUFile *f, void *opaque)
2240 {
2241     SpaprMachineState *spapr = opaque;
2242     int fd;
2243     int rc = 0;
2244 
2245     /* Iteration header */
2246     if (!spapr->htab_shift) {
2247         qemu_put_be32(f, -1);
2248         return 1;
2249     } else {
2250         qemu_put_be32(f, 0);
2251     }
2252 
2253     if (!spapr->htab) {
2254         assert(kvm_enabled());
2255 
2256         fd = get_htab_fd(spapr);
2257         if (fd < 0) {
2258             return fd;
2259         }
2260 
2261         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2262         if (rc < 0) {
2263             return rc;
2264         }
2265     } else  if (spapr->htab_first_pass) {
2266         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2267     } else {
2268         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2269     }
2270 
2271     htab_save_end_marker(f);
2272 
2273     return rc;
2274 }
2275 
2276 static int htab_save_complete(QEMUFile *f, void *opaque)
2277 {
2278     SpaprMachineState *spapr = opaque;
2279     int fd;
2280 
2281     /* Iteration header */
2282     if (!spapr->htab_shift) {
2283         qemu_put_be32(f, -1);
2284         return 0;
2285     } else {
2286         qemu_put_be32(f, 0);
2287     }
2288 
2289     if (!spapr->htab) {
2290         int rc;
2291 
2292         assert(kvm_enabled());
2293 
2294         fd = get_htab_fd(spapr);
2295         if (fd < 0) {
2296             return fd;
2297         }
2298 
2299         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2300         if (rc < 0) {
2301             return rc;
2302         }
2303     } else {
2304         if (spapr->htab_first_pass) {
2305             htab_save_first_pass(f, spapr, -1);
2306         }
2307         htab_save_later_pass(f, spapr, -1);
2308     }
2309 
2310     /* End marker */
2311     htab_save_end_marker(f);
2312 
2313     return 0;
2314 }
2315 
2316 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2317 {
2318     SpaprMachineState *spapr = opaque;
2319     uint32_t section_hdr;
2320     int fd = -1;
2321     Error *local_err = NULL;
2322 
2323     if (version_id < 1 || version_id > 1) {
2324         error_report("htab_load() bad version");
2325         return -EINVAL;
2326     }
2327 
2328     section_hdr = qemu_get_be32(f);
2329 
2330     if (section_hdr == -1) {
2331         spapr_free_hpt(spapr);
2332         return 0;
2333     }
2334 
2335     if (section_hdr) {
2336         /* First section gives the htab size */
2337         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2338         if (local_err) {
2339             error_report_err(local_err);
2340             return -EINVAL;
2341         }
2342         return 0;
2343     }
2344 
2345     if (!spapr->htab) {
2346         assert(kvm_enabled());
2347 
2348         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2349         if (fd < 0) {
2350             error_report_err(local_err);
2351             return fd;
2352         }
2353     }
2354 
2355     while (true) {
2356         uint32_t index;
2357         uint16_t n_valid, n_invalid;
2358 
2359         index = qemu_get_be32(f);
2360         n_valid = qemu_get_be16(f);
2361         n_invalid = qemu_get_be16(f);
2362 
2363         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2364             /* End of Stream */
2365             break;
2366         }
2367 
2368         if ((index + n_valid + n_invalid) >
2369             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2370             /* Bad index in stream */
2371             error_report(
2372                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2373                 index, n_valid, n_invalid, spapr->htab_shift);
2374             return -EINVAL;
2375         }
2376 
2377         if (spapr->htab) {
2378             if (n_valid) {
2379                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2380                                 HASH_PTE_SIZE_64 * n_valid);
2381             }
2382             if (n_invalid) {
2383                 memset(HPTE(spapr->htab, index + n_valid), 0,
2384                        HASH_PTE_SIZE_64 * n_invalid);
2385             }
2386         } else {
2387             int rc;
2388 
2389             assert(fd >= 0);
2390 
2391             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2392             if (rc < 0) {
2393                 return rc;
2394             }
2395         }
2396     }
2397 
2398     if (!spapr->htab) {
2399         assert(fd >= 0);
2400         close(fd);
2401     }
2402 
2403     return 0;
2404 }
2405 
2406 static void htab_save_cleanup(void *opaque)
2407 {
2408     SpaprMachineState *spapr = opaque;
2409 
2410     close_htab_fd(spapr);
2411 }
2412 
2413 static SaveVMHandlers savevm_htab_handlers = {
2414     .save_setup = htab_save_setup,
2415     .save_live_iterate = htab_save_iterate,
2416     .save_live_complete_precopy = htab_save_complete,
2417     .save_cleanup = htab_save_cleanup,
2418     .load_state = htab_load,
2419 };
2420 
2421 static void spapr_boot_set(void *opaque, const char *boot_device,
2422                            Error **errp)
2423 {
2424     MachineState *machine = MACHINE(opaque);
2425     machine->boot_order = g_strdup(boot_device);
2426 }
2427 
2428 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2429 {
2430     MachineState *machine = MACHINE(spapr);
2431     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2432     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2433     int i;
2434 
2435     for (i = 0; i < nr_lmbs; i++) {
2436         uint64_t addr;
2437 
2438         addr = i * lmb_size + machine->device_memory->base;
2439         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2440                                addr / lmb_size);
2441     }
2442 }
2443 
2444 /*
2445  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2446  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2447  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2448  */
2449 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2450 {
2451     int i;
2452 
2453     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2454         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2455                    " is not aligned to %" PRIu64 " MiB",
2456                    machine->ram_size,
2457                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2458         return;
2459     }
2460 
2461     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2462         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2463                    " is not aligned to %" PRIu64 " MiB",
2464                    machine->ram_size,
2465                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2466         return;
2467     }
2468 
2469     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2470         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2471             error_setg(errp,
2472                        "Node %d memory size 0x%" PRIx64
2473                        " is not aligned to %" PRIu64 " MiB",
2474                        i, machine->numa_state->nodes[i].node_mem,
2475                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2476             return;
2477         }
2478     }
2479 }
2480 
2481 /* find cpu slot in machine->possible_cpus by core_id */
2482 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2483 {
2484     int index = id / ms->smp.threads;
2485 
2486     if (index >= ms->possible_cpus->len) {
2487         return NULL;
2488     }
2489     if (idx) {
2490         *idx = index;
2491     }
2492     return &ms->possible_cpus->cpus[index];
2493 }
2494 
2495 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2496 {
2497     MachineState *ms = MACHINE(spapr);
2498     Error *local_err = NULL;
2499     bool vsmt_user = !!spapr->vsmt;
2500     int kvm_smt = kvmppc_smt_threads();
2501     int ret;
2502     unsigned int smp_threads = ms->smp.threads;
2503 
2504     if (!kvm_enabled() && (smp_threads > 1)) {
2505         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2506                      "on a pseries machine");
2507         goto out;
2508     }
2509     if (!is_power_of_2(smp_threads)) {
2510         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2511                      "machine because it must be a power of 2", smp_threads);
2512         goto out;
2513     }
2514 
2515     /* Detemine the VSMT mode to use: */
2516     if (vsmt_user) {
2517         if (spapr->vsmt < smp_threads) {
2518             error_setg(&local_err, "Cannot support VSMT mode %d"
2519                          " because it must be >= threads/core (%d)",
2520                          spapr->vsmt, smp_threads);
2521             goto out;
2522         }
2523         /* In this case, spapr->vsmt has been set by the command line */
2524     } else {
2525         /*
2526          * Default VSMT value is tricky, because we need it to be as
2527          * consistent as possible (for migration), but this requires
2528          * changing it for at least some existing cases.  We pick 8 as
2529          * the value that we'd get with KVM on POWER8, the
2530          * overwhelmingly common case in production systems.
2531          */
2532         spapr->vsmt = MAX(8, smp_threads);
2533     }
2534 
2535     /* KVM: If necessary, set the SMT mode: */
2536     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2537         ret = kvmppc_set_smt_threads(spapr->vsmt);
2538         if (ret) {
2539             /* Looks like KVM isn't able to change VSMT mode */
2540             error_setg(&local_err,
2541                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2542                        spapr->vsmt, ret);
2543             /* We can live with that if the default one is big enough
2544              * for the number of threads, and a submultiple of the one
2545              * we want.  In this case we'll waste some vcpu ids, but
2546              * behaviour will be correct */
2547             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2548                 warn_report_err(local_err);
2549                 local_err = NULL;
2550                 goto out;
2551             } else {
2552                 if (!vsmt_user) {
2553                     error_append_hint(&local_err,
2554                                       "On PPC, a VM with %d threads/core"
2555                                       " on a host with %d threads/core"
2556                                       " requires the use of VSMT mode %d.\n",
2557                                       smp_threads, kvm_smt, spapr->vsmt);
2558                 }
2559                 kvmppc_hint_smt_possible(&local_err);
2560                 goto out;
2561             }
2562         }
2563     }
2564     /* else TCG: nothing to do currently */
2565 out:
2566     error_propagate(errp, local_err);
2567 }
2568 
2569 static void spapr_init_cpus(SpaprMachineState *spapr)
2570 {
2571     MachineState *machine = MACHINE(spapr);
2572     MachineClass *mc = MACHINE_GET_CLASS(machine);
2573     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2574     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2575     const CPUArchIdList *possible_cpus;
2576     unsigned int smp_cpus = machine->smp.cpus;
2577     unsigned int smp_threads = machine->smp.threads;
2578     unsigned int max_cpus = machine->smp.max_cpus;
2579     int boot_cores_nr = smp_cpus / smp_threads;
2580     int i;
2581 
2582     possible_cpus = mc->possible_cpu_arch_ids(machine);
2583     if (mc->has_hotpluggable_cpus) {
2584         if (smp_cpus % smp_threads) {
2585             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2586                          smp_cpus, smp_threads);
2587             exit(1);
2588         }
2589         if (max_cpus % smp_threads) {
2590             error_report("max_cpus (%u) must be multiple of threads (%u)",
2591                          max_cpus, smp_threads);
2592             exit(1);
2593         }
2594     } else {
2595         if (max_cpus != smp_cpus) {
2596             error_report("This machine version does not support CPU hotplug");
2597             exit(1);
2598         }
2599         boot_cores_nr = possible_cpus->len;
2600     }
2601 
2602     if (smc->pre_2_10_has_unused_icps) {
2603         int i;
2604 
2605         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2606             /* Dummy entries get deregistered when real ICPState objects
2607              * are registered during CPU core hotplug.
2608              */
2609             pre_2_10_vmstate_register_dummy_icp(i);
2610         }
2611     }
2612 
2613     for (i = 0; i < possible_cpus->len; i++) {
2614         int core_id = i * smp_threads;
2615 
2616         if (mc->has_hotpluggable_cpus) {
2617             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2618                                    spapr_vcpu_id(spapr, core_id));
2619         }
2620 
2621         if (i < boot_cores_nr) {
2622             Object *core  = object_new(type);
2623             int nr_threads = smp_threads;
2624 
2625             /* Handle the partially filled core for older machine types */
2626             if ((i + 1) * smp_threads >= smp_cpus) {
2627                 nr_threads = smp_cpus - i * smp_threads;
2628             }
2629 
2630             object_property_set_int(core, nr_threads, "nr-threads",
2631                                     &error_fatal);
2632             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2633                                     &error_fatal);
2634             object_property_set_bool(core, true, "realized", &error_fatal);
2635 
2636             object_unref(core);
2637         }
2638     }
2639 }
2640 
2641 static PCIHostState *spapr_create_default_phb(void)
2642 {
2643     DeviceState *dev;
2644 
2645     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2646     qdev_prop_set_uint32(dev, "index", 0);
2647     qdev_init_nofail(dev);
2648 
2649     return PCI_HOST_BRIDGE(dev);
2650 }
2651 
2652 /* pSeries LPAR / sPAPR hardware init */
2653 static void spapr_machine_init(MachineState *machine)
2654 {
2655     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2656     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2657     const char *kernel_filename = machine->kernel_filename;
2658     const char *initrd_filename = machine->initrd_filename;
2659     PCIHostState *phb;
2660     int i;
2661     MemoryRegion *sysmem = get_system_memory();
2662     MemoryRegion *ram = g_new(MemoryRegion, 1);
2663     hwaddr node0_size = spapr_node0_size(machine);
2664     long load_limit, fw_size;
2665     char *filename;
2666     Error *resize_hpt_err = NULL;
2667 
2668     msi_nonbroken = true;
2669 
2670     QLIST_INIT(&spapr->phbs);
2671     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2672 
2673     /* Determine capabilities to run with */
2674     spapr_caps_init(spapr);
2675 
2676     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2677     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2678         /*
2679          * If the user explicitly requested a mode we should either
2680          * supply it, or fail completely (which we do below).  But if
2681          * it's not set explicitly, we reset our mode to something
2682          * that works
2683          */
2684         if (resize_hpt_err) {
2685             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2686             error_free(resize_hpt_err);
2687             resize_hpt_err = NULL;
2688         } else {
2689             spapr->resize_hpt = smc->resize_hpt_default;
2690         }
2691     }
2692 
2693     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2694 
2695     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2696         /*
2697          * User requested HPT resize, but this host can't supply it.  Bail out
2698          */
2699         error_report_err(resize_hpt_err);
2700         exit(1);
2701     }
2702 
2703     spapr->rma_size = node0_size;
2704 
2705     /* With KVM, we don't actually know whether KVM supports an
2706      * unbounded RMA (PR KVM) or is limited by the hash table size
2707      * (HV KVM using VRMA), so we always assume the latter
2708      *
2709      * In that case, we also limit the initial allocations for RTAS
2710      * etc... to 256M since we have no way to know what the VRMA size
2711      * is going to be as it depends on the size of the hash table
2712      * which isn't determined yet.
2713      */
2714     if (kvm_enabled()) {
2715         spapr->vrma_adjust = 1;
2716         spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2717     }
2718 
2719     /* Actually we don't support unbounded RMA anymore since we added
2720      * proper emulation of HV mode. The max we can get is 16G which
2721      * also happens to be what we configure for PAPR mode so make sure
2722      * we don't do anything bigger than that
2723      */
2724     spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2725 
2726     if (spapr->rma_size > node0_size) {
2727         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2728                      spapr->rma_size);
2729         exit(1);
2730     }
2731 
2732     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2733     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2734 
2735     /*
2736      * VSMT must be set in order to be able to compute VCPU ids, ie to
2737      * call spapr_max_server_number() or spapr_vcpu_id().
2738      */
2739     spapr_set_vsmt_mode(spapr, &error_fatal);
2740 
2741     /* Set up Interrupt Controller before we create the VCPUs */
2742     spapr_irq_init(spapr, &error_fatal);
2743 
2744     /* Set up containers for ibm,client-architecture-support negotiated options
2745      */
2746     spapr->ov5 = spapr_ovec_new();
2747     spapr->ov5_cas = spapr_ovec_new();
2748 
2749     if (smc->dr_lmb_enabled) {
2750         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2751         spapr_validate_node_memory(machine, &error_fatal);
2752     }
2753 
2754     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2755 
2756     /* advertise support for dedicated HP event source to guests */
2757     if (spapr->use_hotplug_event_source) {
2758         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2759     }
2760 
2761     /* advertise support for HPT resizing */
2762     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2763         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2764     }
2765 
2766     /* advertise support for ibm,dyamic-memory-v2 */
2767     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2768 
2769     /* advertise XIVE on POWER9 machines */
2770     if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2771         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2772     }
2773 
2774     /* init CPUs */
2775     spapr_init_cpus(spapr);
2776 
2777     /*
2778      * check we don't have a memory-less/cpu-less NUMA node
2779      * Firmware relies on the existing memory/cpu topology to provide the
2780      * NUMA topology to the kernel.
2781      * And the linux kernel needs to know the NUMA topology at start
2782      * to be able to hotplug CPUs later.
2783      */
2784     if (machine->numa_state->num_nodes) {
2785         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2786             /* check for memory-less node */
2787             if (machine->numa_state->nodes[i].node_mem == 0) {
2788                 CPUState *cs;
2789                 int found = 0;
2790                 /* check for cpu-less node */
2791                 CPU_FOREACH(cs) {
2792                     PowerPCCPU *cpu = POWERPC_CPU(cs);
2793                     if (cpu->node_id == i) {
2794                         found = 1;
2795                         break;
2796                     }
2797                 }
2798                 /* memory-less and cpu-less node */
2799                 if (!found) {
2800                     error_report(
2801                        "Memory-less/cpu-less nodes are not supported (node %d)",
2802                                  i);
2803                     exit(1);
2804                 }
2805             }
2806         }
2807 
2808     }
2809 
2810     /*
2811      * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2812      * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2813      * called from vPHB reset handler so we initialize the counter here.
2814      * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2815      * must be equally distant from any other node.
2816      * The final value of spapr->gpu_numa_id is going to be written to
2817      * max-associativity-domains in spapr_build_fdt().
2818      */
2819     spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2820 
2821     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2822         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2823                               spapr->max_compat_pvr)) {
2824         /* KVM and TCG always allow GTSE with radix... */
2825         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2826     }
2827     /* ... but not with hash (currently). */
2828 
2829     if (kvm_enabled()) {
2830         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2831         kvmppc_enable_logical_ci_hcalls();
2832         kvmppc_enable_set_mode_hcall();
2833 
2834         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2835         kvmppc_enable_clear_ref_mod_hcalls();
2836 
2837         /* Enable H_PAGE_INIT */
2838         kvmppc_enable_h_page_init();
2839     }
2840 
2841     /* allocate RAM */
2842     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2843                                          machine->ram_size);
2844     memory_region_add_subregion(sysmem, 0, ram);
2845 
2846     /* always allocate the device memory information */
2847     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2848 
2849     /* initialize hotplug memory address space */
2850     if (machine->ram_size < machine->maxram_size) {
2851         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2852         /*
2853          * Limit the number of hotpluggable memory slots to half the number
2854          * slots that KVM supports, leaving the other half for PCI and other
2855          * devices. However ensure that number of slots doesn't drop below 32.
2856          */
2857         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2858                            SPAPR_MAX_RAM_SLOTS;
2859 
2860         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2861             max_memslots = SPAPR_MAX_RAM_SLOTS;
2862         }
2863         if (machine->ram_slots > max_memslots) {
2864             error_report("Specified number of memory slots %"
2865                          PRIu64" exceeds max supported %d",
2866                          machine->ram_slots, max_memslots);
2867             exit(1);
2868         }
2869 
2870         machine->device_memory->base = ROUND_UP(machine->ram_size,
2871                                                 SPAPR_DEVICE_MEM_ALIGN);
2872         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2873                            "device-memory", device_mem_size);
2874         memory_region_add_subregion(sysmem, machine->device_memory->base,
2875                                     &machine->device_memory->mr);
2876     }
2877 
2878     if (smc->dr_lmb_enabled) {
2879         spapr_create_lmb_dr_connectors(spapr);
2880     }
2881 
2882     /* Set up RTAS event infrastructure */
2883     spapr_events_init(spapr);
2884 
2885     /* Set up the RTC RTAS interfaces */
2886     spapr_rtc_create(spapr);
2887 
2888     /* Set up VIO bus */
2889     spapr->vio_bus = spapr_vio_bus_init();
2890 
2891     for (i = 0; i < serial_max_hds(); i++) {
2892         if (serial_hd(i)) {
2893             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2894         }
2895     }
2896 
2897     /* We always have at least the nvram device on VIO */
2898     spapr_create_nvram(spapr);
2899 
2900     /*
2901      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2902      * connectors (described in root DT node's "ibm,drc-types" property)
2903      * are pre-initialized here. additional child connectors (such as
2904      * connectors for a PHBs PCI slots) are added as needed during their
2905      * parent's realization.
2906      */
2907     if (smc->dr_phb_enabled) {
2908         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2909             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2910         }
2911     }
2912 
2913     /* Set up PCI */
2914     spapr_pci_rtas_init();
2915 
2916     phb = spapr_create_default_phb();
2917 
2918     for (i = 0; i < nb_nics; i++) {
2919         NICInfo *nd = &nd_table[i];
2920 
2921         if (!nd->model) {
2922             nd->model = g_strdup("spapr-vlan");
2923         }
2924 
2925         if (g_str_equal(nd->model, "spapr-vlan") ||
2926             g_str_equal(nd->model, "ibmveth")) {
2927             spapr_vlan_create(spapr->vio_bus, nd);
2928         } else {
2929             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2930         }
2931     }
2932 
2933     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2934         spapr_vscsi_create(spapr->vio_bus);
2935     }
2936 
2937     /* Graphics */
2938     if (spapr_vga_init(phb->bus, &error_fatal)) {
2939         spapr->has_graphics = true;
2940         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2941     }
2942 
2943     if (machine->usb) {
2944         if (smc->use_ohci_by_default) {
2945             pci_create_simple(phb->bus, -1, "pci-ohci");
2946         } else {
2947             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2948         }
2949 
2950         if (spapr->has_graphics) {
2951             USBBus *usb_bus = usb_bus_find(-1);
2952 
2953             usb_create_simple(usb_bus, "usb-kbd");
2954             usb_create_simple(usb_bus, "usb-mouse");
2955         }
2956     }
2957 
2958     if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2959         error_report(
2960             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2961             MIN_RMA_SLOF);
2962         exit(1);
2963     }
2964 
2965     if (kernel_filename) {
2966         uint64_t lowaddr = 0;
2967 
2968         spapr->kernel_size = load_elf(kernel_filename, NULL,
2969                                       translate_kernel_address, NULL,
2970                                       NULL, &lowaddr, NULL, 1,
2971                                       PPC_ELF_MACHINE, 0, 0);
2972         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2973             spapr->kernel_size = load_elf(kernel_filename, NULL,
2974                                           translate_kernel_address, NULL, NULL,
2975                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2976                                           0, 0);
2977             spapr->kernel_le = spapr->kernel_size > 0;
2978         }
2979         if (spapr->kernel_size < 0) {
2980             error_report("error loading %s: %s", kernel_filename,
2981                          load_elf_strerror(spapr->kernel_size));
2982             exit(1);
2983         }
2984 
2985         /* load initrd */
2986         if (initrd_filename) {
2987             /* Try to locate the initrd in the gap between the kernel
2988              * and the firmware. Add a bit of space just in case
2989              */
2990             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2991                                   + 0x1ffff) & ~0xffff;
2992             spapr->initrd_size = load_image_targphys(initrd_filename,
2993                                                      spapr->initrd_base,
2994                                                      load_limit
2995                                                      - spapr->initrd_base);
2996             if (spapr->initrd_size < 0) {
2997                 error_report("could not load initial ram disk '%s'",
2998                              initrd_filename);
2999                 exit(1);
3000             }
3001         }
3002     }
3003 
3004     if (bios_name == NULL) {
3005         bios_name = FW_FILE_NAME;
3006     }
3007     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3008     if (!filename) {
3009         error_report("Could not find LPAR firmware '%s'", bios_name);
3010         exit(1);
3011     }
3012     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3013     if (fw_size <= 0) {
3014         error_report("Could not load LPAR firmware '%s'", filename);
3015         exit(1);
3016     }
3017     g_free(filename);
3018 
3019     /* FIXME: Should register things through the MachineState's qdev
3020      * interface, this is a legacy from the sPAPREnvironment structure
3021      * which predated MachineState but had a similar function */
3022     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3023     register_savevm_live("spapr/htab", -1, 1,
3024                          &savevm_htab_handlers, spapr);
3025 
3026     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3027                              &error_fatal);
3028 
3029     qemu_register_boot_set(spapr_boot_set, spapr);
3030 
3031     /*
3032      * Nothing needs to be done to resume a suspended guest because
3033      * suspending does not change the machine state, so no need for
3034      * a ->wakeup method.
3035      */
3036     qemu_register_wakeup_support();
3037 
3038     if (kvm_enabled()) {
3039         /* to stop and start vmclock */
3040         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3041                                          &spapr->tb);
3042 
3043         kvmppc_spapr_enable_inkernel_multitce();
3044     }
3045 }
3046 
3047 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3048 {
3049     if (!vm_type) {
3050         return 0;
3051     }
3052 
3053     if (!strcmp(vm_type, "HV")) {
3054         return 1;
3055     }
3056 
3057     if (!strcmp(vm_type, "PR")) {
3058         return 2;
3059     }
3060 
3061     error_report("Unknown kvm-type specified '%s'", vm_type);
3062     exit(1);
3063 }
3064 
3065 /*
3066  * Implementation of an interface to adjust firmware path
3067  * for the bootindex property handling.
3068  */
3069 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3070                                    DeviceState *dev)
3071 {
3072 #define CAST(type, obj, name) \
3073     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3074     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3075     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3076     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3077 
3078     if (d) {
3079         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3080         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3081         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3082 
3083         if (spapr) {
3084             /*
3085              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3086              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3087              * 0x8000 | (target << 8) | (bus << 5) | lun
3088              * (see the "Logical unit addressing format" table in SAM5)
3089              */
3090             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3091             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3092                                    (uint64_t)id << 48);
3093         } else if (virtio) {
3094             /*
3095              * We use SRP luns of the form 01000000 | (target << 8) | lun
3096              * in the top 32 bits of the 64-bit LUN
3097              * Note: the quote above is from SLOF and it is wrong,
3098              * the actual binding is:
3099              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3100              */
3101             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3102             if (d->lun >= 256) {
3103                 /* Use the LUN "flat space addressing method" */
3104                 id |= 0x4000;
3105             }
3106             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3107                                    (uint64_t)id << 32);
3108         } else if (usb) {
3109             /*
3110              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3111              * in the top 32 bits of the 64-bit LUN
3112              */
3113             unsigned usb_port = atoi(usb->port->path);
3114             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3115             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3116                                    (uint64_t)id << 32);
3117         }
3118     }
3119 
3120     /*
3121      * SLOF probes the USB devices, and if it recognizes that the device is a
3122      * storage device, it changes its name to "storage" instead of "usb-host",
3123      * and additionally adds a child node for the SCSI LUN, so the correct
3124      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3125      */
3126     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3127         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3128         if (usb_host_dev_is_scsi_storage(usbdev)) {
3129             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3130         }
3131     }
3132 
3133     if (phb) {
3134         /* Replace "pci" with "pci@800000020000000" */
3135         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3136     }
3137 
3138     if (vsc) {
3139         /* Same logic as virtio above */
3140         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3141         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3142     }
3143 
3144     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3145         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3146         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3147         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3148     }
3149 
3150     return NULL;
3151 }
3152 
3153 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3154 {
3155     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3156 
3157     return g_strdup(spapr->kvm_type);
3158 }
3159 
3160 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3161 {
3162     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3163 
3164     g_free(spapr->kvm_type);
3165     spapr->kvm_type = g_strdup(value);
3166 }
3167 
3168 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3169 {
3170     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3171 
3172     return spapr->use_hotplug_event_source;
3173 }
3174 
3175 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3176                                             Error **errp)
3177 {
3178     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3179 
3180     spapr->use_hotplug_event_source = value;
3181 }
3182 
3183 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3184 {
3185     return true;
3186 }
3187 
3188 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3189 {
3190     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3191 
3192     switch (spapr->resize_hpt) {
3193     case SPAPR_RESIZE_HPT_DEFAULT:
3194         return g_strdup("default");
3195     case SPAPR_RESIZE_HPT_DISABLED:
3196         return g_strdup("disabled");
3197     case SPAPR_RESIZE_HPT_ENABLED:
3198         return g_strdup("enabled");
3199     case SPAPR_RESIZE_HPT_REQUIRED:
3200         return g_strdup("required");
3201     }
3202     g_assert_not_reached();
3203 }
3204 
3205 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3206 {
3207     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3208 
3209     if (strcmp(value, "default") == 0) {
3210         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3211     } else if (strcmp(value, "disabled") == 0) {
3212         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3213     } else if (strcmp(value, "enabled") == 0) {
3214         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3215     } else if (strcmp(value, "required") == 0) {
3216         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3217     } else {
3218         error_setg(errp, "Bad value for \"resize-hpt\" property");
3219     }
3220 }
3221 
3222 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3223                                    void *opaque, Error **errp)
3224 {
3225     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3226 }
3227 
3228 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3229                                    void *opaque, Error **errp)
3230 {
3231     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3232 }
3233 
3234 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3235 {
3236     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3237 
3238     if (spapr->irq == &spapr_irq_xics_legacy) {
3239         return g_strdup("legacy");
3240     } else if (spapr->irq == &spapr_irq_xics) {
3241         return g_strdup("xics");
3242     } else if (spapr->irq == &spapr_irq_xive) {
3243         return g_strdup("xive");
3244     } else if (spapr->irq == &spapr_irq_dual) {
3245         return g_strdup("dual");
3246     }
3247     g_assert_not_reached();
3248 }
3249 
3250 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3251 {
3252     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3253 
3254     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3255         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3256         return;
3257     }
3258 
3259     /* The legacy IRQ backend can not be set */
3260     if (strcmp(value, "xics") == 0) {
3261         spapr->irq = &spapr_irq_xics;
3262     } else if (strcmp(value, "xive") == 0) {
3263         spapr->irq = &spapr_irq_xive;
3264     } else if (strcmp(value, "dual") == 0) {
3265         spapr->irq = &spapr_irq_dual;
3266     } else {
3267         error_setg(errp, "Bad value for \"ic-mode\" property");
3268     }
3269 }
3270 
3271 static char *spapr_get_host_model(Object *obj, Error **errp)
3272 {
3273     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3274 
3275     return g_strdup(spapr->host_model);
3276 }
3277 
3278 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3279 {
3280     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3281 
3282     g_free(spapr->host_model);
3283     spapr->host_model = g_strdup(value);
3284 }
3285 
3286 static char *spapr_get_host_serial(Object *obj, Error **errp)
3287 {
3288     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3289 
3290     return g_strdup(spapr->host_serial);
3291 }
3292 
3293 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3294 {
3295     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3296 
3297     g_free(spapr->host_serial);
3298     spapr->host_serial = g_strdup(value);
3299 }
3300 
3301 static void spapr_instance_init(Object *obj)
3302 {
3303     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3304     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3305 
3306     spapr->htab_fd = -1;
3307     spapr->use_hotplug_event_source = true;
3308     object_property_add_str(obj, "kvm-type",
3309                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3310     object_property_set_description(obj, "kvm-type",
3311                                     "Specifies the KVM virtualization mode (HV, PR)",
3312                                     NULL);
3313     object_property_add_bool(obj, "modern-hotplug-events",
3314                             spapr_get_modern_hotplug_events,
3315                             spapr_set_modern_hotplug_events,
3316                             NULL);
3317     object_property_set_description(obj, "modern-hotplug-events",
3318                                     "Use dedicated hotplug event mechanism in"
3319                                     " place of standard EPOW events when possible"
3320                                     " (required for memory hot-unplug support)",
3321                                     NULL);
3322     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3323                             "Maximum permitted CPU compatibility mode",
3324                             &error_fatal);
3325 
3326     object_property_add_str(obj, "resize-hpt",
3327                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3328     object_property_set_description(obj, "resize-hpt",
3329                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
3330                                     NULL);
3331     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3332                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3333     object_property_set_description(obj, "vsmt",
3334                                     "Virtual SMT: KVM behaves as if this were"
3335                                     " the host's SMT mode", &error_abort);
3336     object_property_add_bool(obj, "vfio-no-msix-emulation",
3337                              spapr_get_msix_emulation, NULL, NULL);
3338 
3339     /* The machine class defines the default interrupt controller mode */
3340     spapr->irq = smc->irq;
3341     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3342                             spapr_set_ic_mode, NULL);
3343     object_property_set_description(obj, "ic-mode",
3344                  "Specifies the interrupt controller mode (xics, xive, dual)",
3345                  NULL);
3346 
3347     object_property_add_str(obj, "host-model",
3348         spapr_get_host_model, spapr_set_host_model,
3349         &error_abort);
3350     object_property_set_description(obj, "host-model",
3351         "Host model to advertise in guest device tree", &error_abort);
3352     object_property_add_str(obj, "host-serial",
3353         spapr_get_host_serial, spapr_set_host_serial,
3354         &error_abort);
3355     object_property_set_description(obj, "host-serial",
3356         "Host serial number to advertise in guest device tree", &error_abort);
3357 }
3358 
3359 static void spapr_machine_finalizefn(Object *obj)
3360 {
3361     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3362 
3363     g_free(spapr->kvm_type);
3364 }
3365 
3366 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3367 {
3368     cpu_synchronize_state(cs);
3369     ppc_cpu_do_system_reset(cs);
3370 }
3371 
3372 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3373 {
3374     CPUState *cs;
3375 
3376     CPU_FOREACH(cs) {
3377         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3378     }
3379 }
3380 
3381 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3382                           void *fdt, int *fdt_start_offset, Error **errp)
3383 {
3384     uint64_t addr;
3385     uint32_t node;
3386 
3387     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3388     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3389                                     &error_abort);
3390     *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3391                                                    SPAPR_MEMORY_BLOCK_SIZE);
3392     return 0;
3393 }
3394 
3395 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3396                            bool dedicated_hp_event_source, Error **errp)
3397 {
3398     SpaprDrc *drc;
3399     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3400     int i;
3401     uint64_t addr = addr_start;
3402     bool hotplugged = spapr_drc_hotplugged(dev);
3403     Error *local_err = NULL;
3404 
3405     for (i = 0; i < nr_lmbs; i++) {
3406         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3407                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3408         g_assert(drc);
3409 
3410         spapr_drc_attach(drc, dev, &local_err);
3411         if (local_err) {
3412             while (addr > addr_start) {
3413                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3414                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3415                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3416                 spapr_drc_detach(drc);
3417             }
3418             error_propagate(errp, local_err);
3419             return;
3420         }
3421         if (!hotplugged) {
3422             spapr_drc_reset(drc);
3423         }
3424         addr += SPAPR_MEMORY_BLOCK_SIZE;
3425     }
3426     /* send hotplug notification to the
3427      * guest only in case of hotplugged memory
3428      */
3429     if (hotplugged) {
3430         if (dedicated_hp_event_source) {
3431             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3432                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3433             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3434                                                    nr_lmbs,
3435                                                    spapr_drc_index(drc));
3436         } else {
3437             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3438                                            nr_lmbs);
3439         }
3440     }
3441 }
3442 
3443 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3444                               Error **errp)
3445 {
3446     Error *local_err = NULL;
3447     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3448     PCDIMMDevice *dimm = PC_DIMM(dev);
3449     uint64_t size, addr;
3450 
3451     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3452 
3453     pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3454     if (local_err) {
3455         goto out;
3456     }
3457 
3458     addr = object_property_get_uint(OBJECT(dimm),
3459                                     PC_DIMM_ADDR_PROP, &local_err);
3460     if (local_err) {
3461         goto out_unplug;
3462     }
3463 
3464     spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3465                    &local_err);
3466     if (local_err) {
3467         goto out_unplug;
3468     }
3469 
3470     return;
3471 
3472 out_unplug:
3473     pc_dimm_unplug(dimm, MACHINE(ms));
3474 out:
3475     error_propagate(errp, local_err);
3476 }
3477 
3478 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3479                                   Error **errp)
3480 {
3481     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3482     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3483     PCDIMMDevice *dimm = PC_DIMM(dev);
3484     Error *local_err = NULL;
3485     uint64_t size;
3486     Object *memdev;
3487     hwaddr pagesize;
3488 
3489     if (!smc->dr_lmb_enabled) {
3490         error_setg(errp, "Memory hotplug not supported for this machine");
3491         return;
3492     }
3493 
3494     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3495     if (local_err) {
3496         error_propagate(errp, local_err);
3497         return;
3498     }
3499 
3500     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3501         error_setg(errp, "Hotplugged memory size must be a multiple of "
3502                       "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3503         return;
3504     }
3505 
3506     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3507                                       &error_abort);
3508     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3509     spapr_check_pagesize(spapr, pagesize, &local_err);
3510     if (local_err) {
3511         error_propagate(errp, local_err);
3512         return;
3513     }
3514 
3515     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3516 }
3517 
3518 struct SpaprDimmState {
3519     PCDIMMDevice *dimm;
3520     uint32_t nr_lmbs;
3521     QTAILQ_ENTRY(SpaprDimmState) next;
3522 };
3523 
3524 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3525                                                        PCDIMMDevice *dimm)
3526 {
3527     SpaprDimmState *dimm_state = NULL;
3528 
3529     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3530         if (dimm_state->dimm == dimm) {
3531             break;
3532         }
3533     }
3534     return dimm_state;
3535 }
3536 
3537 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3538                                                       uint32_t nr_lmbs,
3539                                                       PCDIMMDevice *dimm)
3540 {
3541     SpaprDimmState *ds = NULL;
3542 
3543     /*
3544      * If this request is for a DIMM whose removal had failed earlier
3545      * (due to guest's refusal to remove the LMBs), we would have this
3546      * dimm already in the pending_dimm_unplugs list. In that
3547      * case don't add again.
3548      */
3549     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3550     if (!ds) {
3551         ds = g_malloc0(sizeof(SpaprDimmState));
3552         ds->nr_lmbs = nr_lmbs;
3553         ds->dimm = dimm;
3554         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3555     }
3556     return ds;
3557 }
3558 
3559 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3560                                               SpaprDimmState *dimm_state)
3561 {
3562     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3563     g_free(dimm_state);
3564 }
3565 
3566 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3567                                                         PCDIMMDevice *dimm)
3568 {
3569     SpaprDrc *drc;
3570     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3571                                                   &error_abort);
3572     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3573     uint32_t avail_lmbs = 0;
3574     uint64_t addr_start, addr;
3575     int i;
3576 
3577     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3578                                          &error_abort);
3579 
3580     addr = addr_start;
3581     for (i = 0; i < nr_lmbs; i++) {
3582         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3583                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3584         g_assert(drc);
3585         if (drc->dev) {
3586             avail_lmbs++;
3587         }
3588         addr += SPAPR_MEMORY_BLOCK_SIZE;
3589     }
3590 
3591     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3592 }
3593 
3594 /* Callback to be called during DRC release. */
3595 void spapr_lmb_release(DeviceState *dev)
3596 {
3597     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3598     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3599     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3600 
3601     /* This information will get lost if a migration occurs
3602      * during the unplug process. In this case recover it. */
3603     if (ds == NULL) {
3604         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3605         g_assert(ds);
3606         /* The DRC being examined by the caller at least must be counted */
3607         g_assert(ds->nr_lmbs);
3608     }
3609 
3610     if (--ds->nr_lmbs) {
3611         return;
3612     }
3613 
3614     /*
3615      * Now that all the LMBs have been removed by the guest, call the
3616      * unplug handler chain. This can never fail.
3617      */
3618     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3619     object_unparent(OBJECT(dev));
3620 }
3621 
3622 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3623 {
3624     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3625     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3626 
3627     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3628     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3629     spapr_pending_dimm_unplugs_remove(spapr, ds);
3630 }
3631 
3632 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3633                                         DeviceState *dev, Error **errp)
3634 {
3635     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3636     Error *local_err = NULL;
3637     PCDIMMDevice *dimm = PC_DIMM(dev);
3638     uint32_t nr_lmbs;
3639     uint64_t size, addr_start, addr;
3640     int i;
3641     SpaprDrc *drc;
3642 
3643     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3644     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3645 
3646     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3647                                          &local_err);
3648     if (local_err) {
3649         goto out;
3650     }
3651 
3652     /*
3653      * An existing pending dimm state for this DIMM means that there is an
3654      * unplug operation in progress, waiting for the spapr_lmb_release
3655      * callback to complete the job (BQL can't cover that far). In this case,
3656      * bail out to avoid detaching DRCs that were already released.
3657      */
3658     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3659         error_setg(&local_err,
3660                    "Memory unplug already in progress for device %s",
3661                    dev->id);
3662         goto out;
3663     }
3664 
3665     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3666 
3667     addr = addr_start;
3668     for (i = 0; i < nr_lmbs; i++) {
3669         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3670                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3671         g_assert(drc);
3672 
3673         spapr_drc_detach(drc);
3674         addr += SPAPR_MEMORY_BLOCK_SIZE;
3675     }
3676 
3677     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3678                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3679     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3680                                               nr_lmbs, spapr_drc_index(drc));
3681 out:
3682     error_propagate(errp, local_err);
3683 }
3684 
3685 /* Callback to be called during DRC release. */
3686 void spapr_core_release(DeviceState *dev)
3687 {
3688     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3689 
3690     /* Call the unplug handler chain. This can never fail. */
3691     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3692     object_unparent(OBJECT(dev));
3693 }
3694 
3695 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3696 {
3697     MachineState *ms = MACHINE(hotplug_dev);
3698     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3699     CPUCore *cc = CPU_CORE(dev);
3700     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3701 
3702     if (smc->pre_2_10_has_unused_icps) {
3703         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3704         int i;
3705 
3706         for (i = 0; i < cc->nr_threads; i++) {
3707             CPUState *cs = CPU(sc->threads[i]);
3708 
3709             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3710         }
3711     }
3712 
3713     assert(core_slot);
3714     core_slot->cpu = NULL;
3715     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3716 }
3717 
3718 static
3719 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3720                                Error **errp)
3721 {
3722     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3723     int index;
3724     SpaprDrc *drc;
3725     CPUCore *cc = CPU_CORE(dev);
3726 
3727     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3728         error_setg(errp, "Unable to find CPU core with core-id: %d",
3729                    cc->core_id);
3730         return;
3731     }
3732     if (index == 0) {
3733         error_setg(errp, "Boot CPU core may not be unplugged");
3734         return;
3735     }
3736 
3737     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3738                           spapr_vcpu_id(spapr, cc->core_id));
3739     g_assert(drc);
3740 
3741     spapr_drc_detach(drc);
3742 
3743     spapr_hotplug_req_remove_by_index(drc);
3744 }
3745 
3746 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3747                            void *fdt, int *fdt_start_offset, Error **errp)
3748 {
3749     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3750     CPUState *cs = CPU(core->threads[0]);
3751     PowerPCCPU *cpu = POWERPC_CPU(cs);
3752     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3753     int id = spapr_get_vcpu_id(cpu);
3754     char *nodename;
3755     int offset;
3756 
3757     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3758     offset = fdt_add_subnode(fdt, 0, nodename);
3759     g_free(nodename);
3760 
3761     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3762 
3763     *fdt_start_offset = offset;
3764     return 0;
3765 }
3766 
3767 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3768                             Error **errp)
3769 {
3770     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3771     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3772     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3773     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3774     CPUCore *cc = CPU_CORE(dev);
3775     CPUState *cs;
3776     SpaprDrc *drc;
3777     Error *local_err = NULL;
3778     CPUArchId *core_slot;
3779     int index;
3780     bool hotplugged = spapr_drc_hotplugged(dev);
3781     int i;
3782 
3783     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3784     if (!core_slot) {
3785         error_setg(errp, "Unable to find CPU core with core-id: %d",
3786                    cc->core_id);
3787         return;
3788     }
3789     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3790                           spapr_vcpu_id(spapr, cc->core_id));
3791 
3792     g_assert(drc || !mc->has_hotpluggable_cpus);
3793 
3794     if (drc) {
3795         spapr_drc_attach(drc, dev, &local_err);
3796         if (local_err) {
3797             error_propagate(errp, local_err);
3798             return;
3799         }
3800 
3801         if (hotplugged) {
3802             /*
3803              * Send hotplug notification interrupt to the guest only
3804              * in case of hotplugged CPUs.
3805              */
3806             spapr_hotplug_req_add_by_index(drc);
3807         } else {
3808             spapr_drc_reset(drc);
3809         }
3810     }
3811 
3812     core_slot->cpu = OBJECT(dev);
3813 
3814     if (smc->pre_2_10_has_unused_icps) {
3815         for (i = 0; i < cc->nr_threads; i++) {
3816             cs = CPU(core->threads[i]);
3817             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3818         }
3819     }
3820 
3821     /*
3822      * Set compatibility mode to match the boot CPU, which was either set
3823      * by the machine reset code or by CAS.
3824      */
3825     if (hotplugged) {
3826         for (i = 0; i < cc->nr_threads; i++) {
3827             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3828                            &local_err);
3829             if (local_err) {
3830                 error_propagate(errp, local_err);
3831                 return;
3832             }
3833         }
3834     }
3835 }
3836 
3837 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3838                                 Error **errp)
3839 {
3840     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3841     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3842     Error *local_err = NULL;
3843     CPUCore *cc = CPU_CORE(dev);
3844     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3845     const char *type = object_get_typename(OBJECT(dev));
3846     CPUArchId *core_slot;
3847     int index;
3848     unsigned int smp_threads = machine->smp.threads;
3849 
3850     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3851         error_setg(&local_err, "CPU hotplug not supported for this machine");
3852         goto out;
3853     }
3854 
3855     if (strcmp(base_core_type, type)) {
3856         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3857         goto out;
3858     }
3859 
3860     if (cc->core_id % smp_threads) {
3861         error_setg(&local_err, "invalid core id %d", cc->core_id);
3862         goto out;
3863     }
3864 
3865     /*
3866      * In general we should have homogeneous threads-per-core, but old
3867      * (pre hotplug support) machine types allow the last core to have
3868      * reduced threads as a compatibility hack for when we allowed
3869      * total vcpus not a multiple of threads-per-core.
3870      */
3871     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3872         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3873                    cc->nr_threads, smp_threads);
3874         goto out;
3875     }
3876 
3877     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3878     if (!core_slot) {
3879         error_setg(&local_err, "core id %d out of range", cc->core_id);
3880         goto out;
3881     }
3882 
3883     if (core_slot->cpu) {
3884         error_setg(&local_err, "core %d already populated", cc->core_id);
3885         goto out;
3886     }
3887 
3888     numa_cpu_pre_plug(core_slot, dev, &local_err);
3889 
3890 out:
3891     error_propagate(errp, local_err);
3892 }
3893 
3894 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3895                           void *fdt, int *fdt_start_offset, Error **errp)
3896 {
3897     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3898     int intc_phandle;
3899 
3900     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3901     if (intc_phandle <= 0) {
3902         return -1;
3903     }
3904 
3905     if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3906                      fdt_start_offset)) {
3907         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3908         return -1;
3909     }
3910 
3911     /* generally SLOF creates these, for hotplug it's up to QEMU */
3912     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3913 
3914     return 0;
3915 }
3916 
3917 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3918                                Error **errp)
3919 {
3920     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3921     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3922     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3923     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3924 
3925     if (dev->hotplugged && !smc->dr_phb_enabled) {
3926         error_setg(errp, "PHB hotplug not supported for this machine");
3927         return;
3928     }
3929 
3930     if (sphb->index == (uint32_t)-1) {
3931         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3932         return;
3933     }
3934 
3935     /*
3936      * This will check that sphb->index doesn't exceed the maximum number of
3937      * PHBs for the current machine type.
3938      */
3939     smc->phb_placement(spapr, sphb->index,
3940                        &sphb->buid, &sphb->io_win_addr,
3941                        &sphb->mem_win_addr, &sphb->mem64_win_addr,
3942                        windows_supported, sphb->dma_liobn,
3943                        &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3944                        errp);
3945 }
3946 
3947 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3948                            Error **errp)
3949 {
3950     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3951     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3952     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3953     SpaprDrc *drc;
3954     bool hotplugged = spapr_drc_hotplugged(dev);
3955     Error *local_err = NULL;
3956 
3957     if (!smc->dr_phb_enabled) {
3958         return;
3959     }
3960 
3961     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3962     /* hotplug hooks should check it's enabled before getting this far */
3963     assert(drc);
3964 
3965     spapr_drc_attach(drc, DEVICE(dev), &local_err);
3966     if (local_err) {
3967         error_propagate(errp, local_err);
3968         return;
3969     }
3970 
3971     if (hotplugged) {
3972         spapr_hotplug_req_add_by_index(drc);
3973     } else {
3974         spapr_drc_reset(drc);
3975     }
3976 }
3977 
3978 void spapr_phb_release(DeviceState *dev)
3979 {
3980     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3981 
3982     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3983     object_unparent(OBJECT(dev));
3984 }
3985 
3986 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3987 {
3988     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3989 }
3990 
3991 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
3992                                      DeviceState *dev, Error **errp)
3993 {
3994     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3995     SpaprDrc *drc;
3996 
3997     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3998     assert(drc);
3999 
4000     if (!spapr_drc_unplug_requested(drc)) {
4001         spapr_drc_detach(drc);
4002         spapr_hotplug_req_remove_by_index(drc);
4003     }
4004 }
4005 
4006 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4007                                  Error **errp)
4008 {
4009     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4010     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4011 
4012     if (spapr->tpm_proxy != NULL) {
4013         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4014         return;
4015     }
4016 
4017     spapr->tpm_proxy = tpm_proxy;
4018 }
4019 
4020 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4021 {
4022     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4023 
4024     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4025     object_unparent(OBJECT(dev));
4026     spapr->tpm_proxy = NULL;
4027 }
4028 
4029 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4030                                       DeviceState *dev, Error **errp)
4031 {
4032     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4033         spapr_memory_plug(hotplug_dev, dev, errp);
4034     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4035         spapr_core_plug(hotplug_dev, dev, errp);
4036     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4037         spapr_phb_plug(hotplug_dev, dev, errp);
4038     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4039         spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4040     }
4041 }
4042 
4043 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4044                                         DeviceState *dev, Error **errp)
4045 {
4046     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4047         spapr_memory_unplug(hotplug_dev, dev);
4048     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4049         spapr_core_unplug(hotplug_dev, dev);
4050     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4051         spapr_phb_unplug(hotplug_dev, dev);
4052     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4053         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4054     }
4055 }
4056 
4057 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4058                                                 DeviceState *dev, Error **errp)
4059 {
4060     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4061     MachineClass *mc = MACHINE_GET_CLASS(sms);
4062     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4063 
4064     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4065         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4066             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4067         } else {
4068             /* NOTE: this means there is a window after guest reset, prior to
4069              * CAS negotiation, where unplug requests will fail due to the
4070              * capability not being detected yet. This is a bit different than
4071              * the case with PCI unplug, where the events will be queued and
4072              * eventually handled by the guest after boot
4073              */
4074             error_setg(errp, "Memory hot unplug not supported for this guest");
4075         }
4076     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4077         if (!mc->has_hotpluggable_cpus) {
4078             error_setg(errp, "CPU hot unplug not supported on this machine");
4079             return;
4080         }
4081         spapr_core_unplug_request(hotplug_dev, dev, errp);
4082     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4083         if (!smc->dr_phb_enabled) {
4084             error_setg(errp, "PHB hot unplug not supported on this machine");
4085             return;
4086         }
4087         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4088     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4089         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4090     }
4091 }
4092 
4093 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4094                                           DeviceState *dev, Error **errp)
4095 {
4096     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4097         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4098     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4099         spapr_core_pre_plug(hotplug_dev, dev, errp);
4100     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4101         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4102     }
4103 }
4104 
4105 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4106                                                  DeviceState *dev)
4107 {
4108     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4109         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4110         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4111         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4112         return HOTPLUG_HANDLER(machine);
4113     }
4114     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4115         PCIDevice *pcidev = PCI_DEVICE(dev);
4116         PCIBus *root = pci_device_root_bus(pcidev);
4117         SpaprPhbState *phb =
4118             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4119                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4120 
4121         if (phb) {
4122             return HOTPLUG_HANDLER(phb);
4123         }
4124     }
4125     return NULL;
4126 }
4127 
4128 static CpuInstanceProperties
4129 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4130 {
4131     CPUArchId *core_slot;
4132     MachineClass *mc = MACHINE_GET_CLASS(machine);
4133 
4134     /* make sure possible_cpu are intialized */
4135     mc->possible_cpu_arch_ids(machine);
4136     /* get CPU core slot containing thread that matches cpu_index */
4137     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4138     assert(core_slot);
4139     return core_slot->props;
4140 }
4141 
4142 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4143 {
4144     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4145 }
4146 
4147 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4148 {
4149     int i;
4150     unsigned int smp_threads = machine->smp.threads;
4151     unsigned int smp_cpus = machine->smp.cpus;
4152     const char *core_type;
4153     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4154     MachineClass *mc = MACHINE_GET_CLASS(machine);
4155 
4156     if (!mc->has_hotpluggable_cpus) {
4157         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4158     }
4159     if (machine->possible_cpus) {
4160         assert(machine->possible_cpus->len == spapr_max_cores);
4161         return machine->possible_cpus;
4162     }
4163 
4164     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4165     if (!core_type) {
4166         error_report("Unable to find sPAPR CPU Core definition");
4167         exit(1);
4168     }
4169 
4170     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4171                              sizeof(CPUArchId) * spapr_max_cores);
4172     machine->possible_cpus->len = spapr_max_cores;
4173     for (i = 0; i < machine->possible_cpus->len; i++) {
4174         int core_id = i * smp_threads;
4175 
4176         machine->possible_cpus->cpus[i].type = core_type;
4177         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4178         machine->possible_cpus->cpus[i].arch_id = core_id;
4179         machine->possible_cpus->cpus[i].props.has_core_id = true;
4180         machine->possible_cpus->cpus[i].props.core_id = core_id;
4181     }
4182     return machine->possible_cpus;
4183 }
4184 
4185 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4186                                 uint64_t *buid, hwaddr *pio,
4187                                 hwaddr *mmio32, hwaddr *mmio64,
4188                                 unsigned n_dma, uint32_t *liobns,
4189                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4190 {
4191     /*
4192      * New-style PHB window placement.
4193      *
4194      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4195      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4196      * windows.
4197      *
4198      * Some guest kernels can't work with MMIO windows above 1<<46
4199      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4200      *
4201      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4202      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4203      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4204      * 1TiB 64-bit MMIO windows for each PHB.
4205      */
4206     const uint64_t base_buid = 0x800000020000000ULL;
4207     int i;
4208 
4209     /* Sanity check natural alignments */
4210     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4211     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4212     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4213     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4214     /* Sanity check bounds */
4215     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4216                       SPAPR_PCI_MEM32_WIN_SIZE);
4217     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4218                       SPAPR_PCI_MEM64_WIN_SIZE);
4219 
4220     if (index >= SPAPR_MAX_PHBS) {
4221         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4222                    SPAPR_MAX_PHBS - 1);
4223         return;
4224     }
4225 
4226     *buid = base_buid + index;
4227     for (i = 0; i < n_dma; ++i) {
4228         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4229     }
4230 
4231     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4232     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4233     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4234 
4235     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4236     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4237 }
4238 
4239 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4240 {
4241     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4242 
4243     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4244 }
4245 
4246 static void spapr_ics_resend(XICSFabric *dev)
4247 {
4248     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4249 
4250     ics_resend(spapr->ics);
4251 }
4252 
4253 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4254 {
4255     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4256 
4257     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4258 }
4259 
4260 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4261                                  Monitor *mon)
4262 {
4263     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4264 
4265     spapr->irq->print_info(spapr, mon);
4266     monitor_printf(mon, "irqchip: %s\n",
4267                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4268 }
4269 
4270 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4271 {
4272     return cpu->vcpu_id;
4273 }
4274 
4275 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4276 {
4277     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4278     MachineState *ms = MACHINE(spapr);
4279     int vcpu_id;
4280 
4281     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4282 
4283     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4284         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4285         error_append_hint(errp, "Adjust the number of cpus to %d "
4286                           "or try to raise the number of threads per core\n",
4287                           vcpu_id * ms->smp.threads / spapr->vsmt);
4288         return;
4289     }
4290 
4291     cpu->vcpu_id = vcpu_id;
4292 }
4293 
4294 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4295 {
4296     CPUState *cs;
4297 
4298     CPU_FOREACH(cs) {
4299         PowerPCCPU *cpu = POWERPC_CPU(cs);
4300 
4301         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4302             return cpu;
4303         }
4304     }
4305 
4306     return NULL;
4307 }
4308 
4309 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4310 {
4311     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4312 
4313     /* These are only called by TCG, KVM maintains dispatch state */
4314 
4315     spapr_cpu->prod = false;
4316     if (spapr_cpu->vpa_addr) {
4317         CPUState *cs = CPU(cpu);
4318         uint32_t dispatch;
4319 
4320         dispatch = ldl_be_phys(cs->as,
4321                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4322         dispatch++;
4323         if ((dispatch & 1) != 0) {
4324             qemu_log_mask(LOG_GUEST_ERROR,
4325                           "VPA: incorrect dispatch counter value for "
4326                           "dispatched partition %u, correcting.\n", dispatch);
4327             dispatch++;
4328         }
4329         stl_be_phys(cs->as,
4330                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4331     }
4332 }
4333 
4334 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4335 {
4336     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4337 
4338     if (spapr_cpu->vpa_addr) {
4339         CPUState *cs = CPU(cpu);
4340         uint32_t dispatch;
4341 
4342         dispatch = ldl_be_phys(cs->as,
4343                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4344         dispatch++;
4345         if ((dispatch & 1) != 1) {
4346             qemu_log_mask(LOG_GUEST_ERROR,
4347                           "VPA: incorrect dispatch counter value for "
4348                           "preempted partition %u, correcting.\n", dispatch);
4349             dispatch++;
4350         }
4351         stl_be_phys(cs->as,
4352                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4353     }
4354 }
4355 
4356 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4357 {
4358     MachineClass *mc = MACHINE_CLASS(oc);
4359     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4360     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4361     NMIClass *nc = NMI_CLASS(oc);
4362     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4363     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4364     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4365     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4366 
4367     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4368     mc->ignore_boot_device_suffixes = true;
4369 
4370     /*
4371      * We set up the default / latest behaviour here.  The class_init
4372      * functions for the specific versioned machine types can override
4373      * these details for backwards compatibility
4374      */
4375     mc->init = spapr_machine_init;
4376     mc->reset = spapr_machine_reset;
4377     mc->block_default_type = IF_SCSI;
4378     mc->max_cpus = 1024;
4379     mc->no_parallel = 1;
4380     mc->default_boot_order = "";
4381     mc->default_ram_size = 512 * MiB;
4382     mc->default_display = "std";
4383     mc->kvm_type = spapr_kvm_type;
4384     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4385     mc->pci_allow_0_address = true;
4386     assert(!mc->get_hotplug_handler);
4387     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4388     hc->pre_plug = spapr_machine_device_pre_plug;
4389     hc->plug = spapr_machine_device_plug;
4390     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4391     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4392     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4393     hc->unplug_request = spapr_machine_device_unplug_request;
4394     hc->unplug = spapr_machine_device_unplug;
4395 
4396     smc->dr_lmb_enabled = true;
4397     smc->update_dt_enabled = true;
4398     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4399     mc->has_hotpluggable_cpus = true;
4400     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4401     fwc->get_dev_path = spapr_get_fw_dev_path;
4402     nc->nmi_monitor_handler = spapr_nmi;
4403     smc->phb_placement = spapr_phb_placement;
4404     vhc->hypercall = emulate_spapr_hypercall;
4405     vhc->hpt_mask = spapr_hpt_mask;
4406     vhc->map_hptes = spapr_map_hptes;
4407     vhc->unmap_hptes = spapr_unmap_hptes;
4408     vhc->hpte_set_c = spapr_hpte_set_c;
4409     vhc->hpte_set_r = spapr_hpte_set_r;
4410     vhc->get_pate = spapr_get_pate;
4411     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4412     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4413     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4414     xic->ics_get = spapr_ics_get;
4415     xic->ics_resend = spapr_ics_resend;
4416     xic->icp_get = spapr_icp_get;
4417     ispc->print_info = spapr_pic_print_info;
4418     /* Force NUMA node memory size to be a multiple of
4419      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4420      * in which LMBs are represented and hot-added
4421      */
4422     mc->numa_mem_align_shift = 28;
4423     mc->numa_mem_supported = true;
4424 
4425     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4426     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4427     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4428     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4429     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4430     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4431     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4432     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4433     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4434     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4435     spapr_caps_add_properties(smc, &error_abort);
4436     smc->irq = &spapr_irq_dual;
4437     smc->dr_phb_enabled = true;
4438     smc->linux_pci_probe = true;
4439 }
4440 
4441 static const TypeInfo spapr_machine_info = {
4442     .name          = TYPE_SPAPR_MACHINE,
4443     .parent        = TYPE_MACHINE,
4444     .abstract      = true,
4445     .instance_size = sizeof(SpaprMachineState),
4446     .instance_init = spapr_instance_init,
4447     .instance_finalize = spapr_machine_finalizefn,
4448     .class_size    = sizeof(SpaprMachineClass),
4449     .class_init    = spapr_machine_class_init,
4450     .interfaces = (InterfaceInfo[]) {
4451         { TYPE_FW_PATH_PROVIDER },
4452         { TYPE_NMI },
4453         { TYPE_HOTPLUG_HANDLER },
4454         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4455         { TYPE_XICS_FABRIC },
4456         { TYPE_INTERRUPT_STATS_PROVIDER },
4457         { }
4458     },
4459 };
4460 
4461 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4462     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4463                                                     void *data)      \
4464     {                                                                \
4465         MachineClass *mc = MACHINE_CLASS(oc);                        \
4466         spapr_machine_##suffix##_class_options(mc);                  \
4467         if (latest) {                                                \
4468             mc->alias = "pseries";                                   \
4469             mc->is_default = 1;                                      \
4470         }                                                            \
4471     }                                                                \
4472     static const TypeInfo spapr_machine_##suffix##_info = {          \
4473         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4474         .parent = TYPE_SPAPR_MACHINE,                                \
4475         .class_init = spapr_machine_##suffix##_class_init,           \
4476     };                                                               \
4477     static void spapr_machine_register_##suffix(void)                \
4478     {                                                                \
4479         type_register(&spapr_machine_##suffix##_info);               \
4480     }                                                                \
4481     type_init(spapr_machine_register_##suffix)
4482 
4483 /*
4484  * pseries-4.2
4485  */
4486 static void spapr_machine_4_2_class_options(MachineClass *mc)
4487 {
4488     /* Defaults for the latest behaviour inherited from the base class */
4489 }
4490 
4491 DEFINE_SPAPR_MACHINE(4_2, "4.2", true);
4492 
4493 /*
4494  * pseries-4.1
4495  */
4496 static void spapr_machine_4_1_class_options(MachineClass *mc)
4497 {
4498     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4499     static GlobalProperty compat[] = {
4500         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4501         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4502     };
4503 
4504     spapr_machine_4_2_class_options(mc);
4505     smc->linux_pci_probe = false;
4506     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4507     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4508 }
4509 
4510 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4511 
4512 /*
4513  * pseries-4.0
4514  */
4515 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4516                               uint64_t *buid, hwaddr *pio,
4517                               hwaddr *mmio32, hwaddr *mmio64,
4518                               unsigned n_dma, uint32_t *liobns,
4519                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4520 {
4521     spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4522                         nv2gpa, nv2atsd, errp);
4523     *nv2gpa = 0;
4524     *nv2atsd = 0;
4525 }
4526 
4527 static void spapr_machine_4_0_class_options(MachineClass *mc)
4528 {
4529     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4530 
4531     spapr_machine_4_1_class_options(mc);
4532     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4533     smc->phb_placement = phb_placement_4_0;
4534     smc->irq = &spapr_irq_xics;
4535     smc->pre_4_1_migration = true;
4536 }
4537 
4538 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4539 
4540 /*
4541  * pseries-3.1
4542  */
4543 static void spapr_machine_3_1_class_options(MachineClass *mc)
4544 {
4545     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4546 
4547     spapr_machine_4_0_class_options(mc);
4548     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4549 
4550     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4551     smc->update_dt_enabled = false;
4552     smc->dr_phb_enabled = false;
4553     smc->broken_host_serial_model = true;
4554     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4555     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4556     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4557     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4558 }
4559 
4560 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4561 
4562 /*
4563  * pseries-3.0
4564  */
4565 
4566 static void spapr_machine_3_0_class_options(MachineClass *mc)
4567 {
4568     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4569 
4570     spapr_machine_3_1_class_options(mc);
4571     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4572 
4573     smc->legacy_irq_allocation = true;
4574     smc->irq = &spapr_irq_xics_legacy;
4575 }
4576 
4577 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4578 
4579 /*
4580  * pseries-2.12
4581  */
4582 static void spapr_machine_2_12_class_options(MachineClass *mc)
4583 {
4584     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4585     static GlobalProperty compat[] = {
4586         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4587         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4588     };
4589 
4590     spapr_machine_3_0_class_options(mc);
4591     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4592     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4593 
4594     /* We depend on kvm_enabled() to choose a default value for the
4595      * hpt-max-page-size capability. Of course we can't do it here
4596      * because this is too early and the HW accelerator isn't initialzed
4597      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4598      */
4599     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4600 }
4601 
4602 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4603 
4604 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4605 {
4606     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4607 
4608     spapr_machine_2_12_class_options(mc);
4609     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4610     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4611     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4612 }
4613 
4614 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4615 
4616 /*
4617  * pseries-2.11
4618  */
4619 
4620 static void spapr_machine_2_11_class_options(MachineClass *mc)
4621 {
4622     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4623 
4624     spapr_machine_2_12_class_options(mc);
4625     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4626     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4627 }
4628 
4629 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4630 
4631 /*
4632  * pseries-2.10
4633  */
4634 
4635 static void spapr_machine_2_10_class_options(MachineClass *mc)
4636 {
4637     spapr_machine_2_11_class_options(mc);
4638     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4639 }
4640 
4641 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4642 
4643 /*
4644  * pseries-2.9
4645  */
4646 
4647 static void spapr_machine_2_9_class_options(MachineClass *mc)
4648 {
4649     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4650     static GlobalProperty compat[] = {
4651         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4652     };
4653 
4654     spapr_machine_2_10_class_options(mc);
4655     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4656     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4657     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4658     smc->pre_2_10_has_unused_icps = true;
4659     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4660 }
4661 
4662 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4663 
4664 /*
4665  * pseries-2.8
4666  */
4667 
4668 static void spapr_machine_2_8_class_options(MachineClass *mc)
4669 {
4670     static GlobalProperty compat[] = {
4671         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4672     };
4673 
4674     spapr_machine_2_9_class_options(mc);
4675     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4676     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4677     mc->numa_mem_align_shift = 23;
4678 }
4679 
4680 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4681 
4682 /*
4683  * pseries-2.7
4684  */
4685 
4686 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4687                               uint64_t *buid, hwaddr *pio,
4688                               hwaddr *mmio32, hwaddr *mmio64,
4689                               unsigned n_dma, uint32_t *liobns,
4690                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4691 {
4692     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4693     const uint64_t base_buid = 0x800000020000000ULL;
4694     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4695     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4696     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4697     const uint32_t max_index = 255;
4698     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4699 
4700     uint64_t ram_top = MACHINE(spapr)->ram_size;
4701     hwaddr phb0_base, phb_base;
4702     int i;
4703 
4704     /* Do we have device memory? */
4705     if (MACHINE(spapr)->maxram_size > ram_top) {
4706         /* Can't just use maxram_size, because there may be an
4707          * alignment gap between normal and device memory regions
4708          */
4709         ram_top = MACHINE(spapr)->device_memory->base +
4710             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4711     }
4712 
4713     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4714 
4715     if (index > max_index) {
4716         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4717                    max_index);
4718         return;
4719     }
4720 
4721     *buid = base_buid + index;
4722     for (i = 0; i < n_dma; ++i) {
4723         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4724     }
4725 
4726     phb_base = phb0_base + index * phb_spacing;
4727     *pio = phb_base + pio_offset;
4728     *mmio32 = phb_base + mmio_offset;
4729     /*
4730      * We don't set the 64-bit MMIO window, relying on the PHB's
4731      * fallback behaviour of automatically splitting a large "32-bit"
4732      * window into contiguous 32-bit and 64-bit windows
4733      */
4734 
4735     *nv2gpa = 0;
4736     *nv2atsd = 0;
4737 }
4738 
4739 static void spapr_machine_2_7_class_options(MachineClass *mc)
4740 {
4741     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4742     static GlobalProperty compat[] = {
4743         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4744         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4745         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4746         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4747     };
4748 
4749     spapr_machine_2_8_class_options(mc);
4750     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4751     mc->default_machine_opts = "modern-hotplug-events=off";
4752     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4753     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4754     smc->phb_placement = phb_placement_2_7;
4755 }
4756 
4757 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4758 
4759 /*
4760  * pseries-2.6
4761  */
4762 
4763 static void spapr_machine_2_6_class_options(MachineClass *mc)
4764 {
4765     static GlobalProperty compat[] = {
4766         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4767     };
4768 
4769     spapr_machine_2_7_class_options(mc);
4770     mc->has_hotpluggable_cpus = false;
4771     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4772     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4773 }
4774 
4775 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4776 
4777 /*
4778  * pseries-2.5
4779  */
4780 
4781 static void spapr_machine_2_5_class_options(MachineClass *mc)
4782 {
4783     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4784     static GlobalProperty compat[] = {
4785         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4786     };
4787 
4788     spapr_machine_2_6_class_options(mc);
4789     smc->use_ohci_by_default = true;
4790     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4791     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4792 }
4793 
4794 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4795 
4796 /*
4797  * pseries-2.4
4798  */
4799 
4800 static void spapr_machine_2_4_class_options(MachineClass *mc)
4801 {
4802     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4803 
4804     spapr_machine_2_5_class_options(mc);
4805     smc->dr_lmb_enabled = false;
4806     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4807 }
4808 
4809 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4810 
4811 /*
4812  * pseries-2.3
4813  */
4814 
4815 static void spapr_machine_2_3_class_options(MachineClass *mc)
4816 {
4817     static GlobalProperty compat[] = {
4818         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4819     };
4820     spapr_machine_2_4_class_options(mc);
4821     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4822     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4823 }
4824 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4825 
4826 /*
4827  * pseries-2.2
4828  */
4829 
4830 static void spapr_machine_2_2_class_options(MachineClass *mc)
4831 {
4832     static GlobalProperty compat[] = {
4833         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4834     };
4835 
4836     spapr_machine_2_3_class_options(mc);
4837     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4838     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4839     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4840 }
4841 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4842 
4843 /*
4844  * pseries-2.1
4845  */
4846 
4847 static void spapr_machine_2_1_class_options(MachineClass *mc)
4848 {
4849     spapr_machine_2_2_class_options(mc);
4850     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4851 }
4852 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4853 
4854 static void spapr_machine_register_types(void)
4855 {
4856     type_register_static(&spapr_machine_info);
4857 }
4858 
4859 type_init(spapr_machine_register_types)
4860