xref: /qemu/hw/ppc/spapr.c (revision 814bb12a)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/kvm.h"
40 #include "kvm_ppc.h"
41 #include "migration/migration.h"
42 #include "mmu-hash64.h"
43 #include "qom/cpu.h"
44 
45 #include "hw/boards.h"
46 #include "hw/ppc/ppc.h"
47 #include "hw/loader.h"
48 
49 #include "hw/ppc/fdt.h"
50 #include "hw/ppc/spapr.h"
51 #include "hw/ppc/spapr_vio.h"
52 #include "hw/pci-host/spapr.h"
53 #include "hw/ppc/xics.h"
54 #include "hw/pci/msi.h"
55 
56 #include "hw/pci/pci.h"
57 #include "hw/scsi/scsi.h"
58 #include "hw/virtio/virtio-scsi.h"
59 
60 #include "exec/address-spaces.h"
61 #include "hw/usb.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "trace.h"
65 #include "hw/nmi.h"
66 
67 #include "hw/compat.h"
68 #include "qemu/cutils.h"
69 #include "hw/ppc/spapr_cpu_core.h"
70 #include "qmp-commands.h"
71 
72 #include <libfdt.h>
73 
74 /* SLOF memory layout:
75  *
76  * SLOF raw image loaded at 0, copies its romfs right below the flat
77  * device-tree, then position SLOF itself 31M below that
78  *
79  * So we set FW_OVERHEAD to 40MB which should account for all of that
80  * and more
81  *
82  * We load our kernel at 4M, leaving space for SLOF initial image
83  */
84 #define FDT_MAX_SIZE            0x100000
85 #define RTAS_MAX_SIZE           0x10000
86 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
87 #define FW_MAX_SIZE             0x400000
88 #define FW_FILE_NAME            "slof.bin"
89 #define FW_OVERHEAD             0x2800000
90 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
91 
92 #define MIN_RMA_SLOF            128UL
93 
94 #define PHANDLE_XICP            0x00001111
95 
96 #define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
97 
98 static XICSState *try_create_xics(const char *type, int nr_servers,
99                                   int nr_irqs, Error **errp)
100 {
101     Error *err = NULL;
102     DeviceState *dev;
103 
104     dev = qdev_create(NULL, type);
105     qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
106     qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
107     object_property_set_bool(OBJECT(dev), true, "realized", &err);
108     if (err) {
109         error_propagate(errp, err);
110         object_unparent(OBJECT(dev));
111         return NULL;
112     }
113     return XICS_COMMON(dev);
114 }
115 
116 static XICSState *xics_system_init(MachineState *machine,
117                                    int nr_servers, int nr_irqs, Error **errp)
118 {
119     XICSState *xics = NULL;
120 
121     if (kvm_enabled()) {
122         Error *err = NULL;
123 
124         if (machine_kernel_irqchip_allowed(machine)) {
125             xics = try_create_xics(TYPE_XICS_SPAPR_KVM, nr_servers, nr_irqs,
126                                    &err);
127         }
128         if (machine_kernel_irqchip_required(machine) && !xics) {
129             error_reportf_err(err,
130                               "kernel_irqchip requested but unavailable: ");
131         } else {
132             error_free(err);
133         }
134     }
135 
136     if (!xics) {
137         xics = try_create_xics(TYPE_XICS_SPAPR, nr_servers, nr_irqs, errp);
138     }
139 
140     return xics;
141 }
142 
143 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
144                                   int smt_threads)
145 {
146     int i, ret = 0;
147     uint32_t servers_prop[smt_threads];
148     uint32_t gservers_prop[smt_threads * 2];
149     int index = ppc_get_vcpu_dt_id(cpu);
150 
151     if (cpu->cpu_version) {
152         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
153         if (ret < 0) {
154             return ret;
155         }
156     }
157 
158     /* Build interrupt servers and gservers properties */
159     for (i = 0; i < smt_threads; i++) {
160         servers_prop[i] = cpu_to_be32(index + i);
161         /* Hack, direct the group queues back to cpu 0 */
162         gservers_prop[i*2] = cpu_to_be32(index + i);
163         gservers_prop[i*2 + 1] = 0;
164     }
165     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
166                       servers_prop, sizeof(servers_prop));
167     if (ret < 0) {
168         return ret;
169     }
170     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
171                       gservers_prop, sizeof(gservers_prop));
172 
173     return ret;
174 }
175 
176 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
177 {
178     int ret = 0;
179     PowerPCCPU *cpu = POWERPC_CPU(cs);
180     int index = ppc_get_vcpu_dt_id(cpu);
181     uint32_t associativity[] = {cpu_to_be32(0x5),
182                                 cpu_to_be32(0x0),
183                                 cpu_to_be32(0x0),
184                                 cpu_to_be32(0x0),
185                                 cpu_to_be32(cs->numa_node),
186                                 cpu_to_be32(index)};
187 
188     /* Advertise NUMA via ibm,associativity */
189     if (nb_numa_nodes > 1) {
190         ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
191                           sizeof(associativity));
192     }
193 
194     return ret;
195 }
196 
197 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
198 {
199     int ret = 0, offset, cpus_offset;
200     CPUState *cs;
201     char cpu_model[32];
202     int smt = kvmppc_smt_threads();
203     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
204 
205     CPU_FOREACH(cs) {
206         PowerPCCPU *cpu = POWERPC_CPU(cs);
207         DeviceClass *dc = DEVICE_GET_CLASS(cs);
208         int index = ppc_get_vcpu_dt_id(cpu);
209 
210         if ((index % smt) != 0) {
211             continue;
212         }
213 
214         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
215 
216         cpus_offset = fdt_path_offset(fdt, "/cpus");
217         if (cpus_offset < 0) {
218             cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
219                                           "cpus");
220             if (cpus_offset < 0) {
221                 return cpus_offset;
222             }
223         }
224         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
225         if (offset < 0) {
226             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
227             if (offset < 0) {
228                 return offset;
229             }
230         }
231 
232         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
233                           pft_size_prop, sizeof(pft_size_prop));
234         if (ret < 0) {
235             return ret;
236         }
237 
238         ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
239         if (ret < 0) {
240             return ret;
241         }
242 
243         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
244                                      ppc_get_compat_smt_threads(cpu));
245         if (ret < 0) {
246             return ret;
247         }
248     }
249     return ret;
250 }
251 
252 static hwaddr spapr_node0_size(void)
253 {
254     MachineState *machine = MACHINE(qdev_get_machine());
255 
256     if (nb_numa_nodes) {
257         int i;
258         for (i = 0; i < nb_numa_nodes; ++i) {
259             if (numa_info[i].node_mem) {
260                 return MIN(pow2floor(numa_info[i].node_mem),
261                            machine->ram_size);
262             }
263         }
264     }
265     return machine->ram_size;
266 }
267 
268 static void add_str(GString *s, const gchar *s1)
269 {
270     g_string_append_len(s, s1, strlen(s1) + 1);
271 }
272 
273 static void *spapr_create_fdt_skel(hwaddr initrd_base,
274                                    hwaddr initrd_size,
275                                    hwaddr kernel_size,
276                                    bool little_endian,
277                                    const char *kernel_cmdline,
278                                    uint32_t epow_irq)
279 {
280     void *fdt;
281     uint32_t start_prop = cpu_to_be32(initrd_base);
282     uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
283     GString *hypertas = g_string_sized_new(256);
284     GString *qemu_hypertas = g_string_sized_new(256);
285     uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
286     uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
287     unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
288     char *buf;
289 
290     add_str(hypertas, "hcall-pft");
291     add_str(hypertas, "hcall-term");
292     add_str(hypertas, "hcall-dabr");
293     add_str(hypertas, "hcall-interrupt");
294     add_str(hypertas, "hcall-tce");
295     add_str(hypertas, "hcall-vio");
296     add_str(hypertas, "hcall-splpar");
297     add_str(hypertas, "hcall-bulk");
298     add_str(hypertas, "hcall-set-mode");
299     add_str(hypertas, "hcall-sprg0");
300     add_str(hypertas, "hcall-copy");
301     add_str(hypertas, "hcall-debug");
302     add_str(qemu_hypertas, "hcall-memop1");
303 
304     fdt = g_malloc0(FDT_MAX_SIZE);
305     _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
306 
307     if (kernel_size) {
308         _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
309     }
310     if (initrd_size) {
311         _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
312     }
313     _FDT((fdt_finish_reservemap(fdt)));
314 
315     /* Root node */
316     _FDT((fdt_begin_node(fdt, "")));
317     _FDT((fdt_property_string(fdt, "device_type", "chrp")));
318     _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
319     _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
320 
321     /*
322      * Add info to guest to indentify which host is it being run on
323      * and what is the uuid of the guest
324      */
325     if (kvmppc_get_host_model(&buf)) {
326         _FDT((fdt_property_string(fdt, "host-model", buf)));
327         g_free(buf);
328     }
329     if (kvmppc_get_host_serial(&buf)) {
330         _FDT((fdt_property_string(fdt, "host-serial", buf)));
331         g_free(buf);
332     }
333 
334     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
335 
336     _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
337     if (qemu_uuid_set) {
338         _FDT((fdt_property_string(fdt, "system-id", buf)));
339     }
340     g_free(buf);
341 
342     if (qemu_get_vm_name()) {
343         _FDT((fdt_property_string(fdt, "ibm,partition-name",
344                                   qemu_get_vm_name())));
345     }
346 
347     _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
348     _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
349 
350     /* /chosen */
351     _FDT((fdt_begin_node(fdt, "chosen")));
352 
353     /* Set Form1_affinity */
354     _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
355 
356     _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
357     _FDT((fdt_property(fdt, "linux,initrd-start",
358                        &start_prop, sizeof(start_prop))));
359     _FDT((fdt_property(fdt, "linux,initrd-end",
360                        &end_prop, sizeof(end_prop))));
361     if (kernel_size) {
362         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
363                               cpu_to_be64(kernel_size) };
364 
365         _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
366         if (little_endian) {
367             _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
368         }
369     }
370     if (boot_menu) {
371         _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
372     }
373     _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
374     _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
375     _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
376 
377     _FDT((fdt_end_node(fdt)));
378 
379     /* RTAS */
380     _FDT((fdt_begin_node(fdt, "rtas")));
381 
382     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
383         add_str(hypertas, "hcall-multi-tce");
384     }
385     _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
386                        hypertas->len)));
387     g_string_free(hypertas, TRUE);
388     _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
389                        qemu_hypertas->len)));
390     g_string_free(qemu_hypertas, TRUE);
391 
392     _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
393         refpoints, sizeof(refpoints))));
394 
395     _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
396     _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
397                             RTAS_EVENT_SCAN_RATE)));
398 
399     if (msi_nonbroken) {
400         _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
401     }
402 
403     /*
404      * According to PAPR, rtas ibm,os-term does not guarantee a return
405      * back to the guest cpu.
406      *
407      * While an additional ibm,extended-os-term property indicates that
408      * rtas call return will always occur. Set this property.
409      */
410     _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
411 
412     _FDT((fdt_end_node(fdt)));
413 
414     /* interrupt controller */
415     _FDT((fdt_begin_node(fdt, "interrupt-controller")));
416 
417     _FDT((fdt_property_string(fdt, "device_type",
418                               "PowerPC-External-Interrupt-Presentation")));
419     _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
420     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
421     _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
422                        interrupt_server_ranges_prop,
423                        sizeof(interrupt_server_ranges_prop))));
424     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
425     _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
426     _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
427 
428     _FDT((fdt_end_node(fdt)));
429 
430     /* vdevice */
431     _FDT((fdt_begin_node(fdt, "vdevice")));
432 
433     _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
434     _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
435     _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
436     _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
437     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
438     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
439 
440     _FDT((fdt_end_node(fdt)));
441 
442     /* event-sources */
443     spapr_events_fdt_skel(fdt, epow_irq);
444 
445     /* /hypervisor node */
446     if (kvm_enabled()) {
447         uint8_t hypercall[16];
448 
449         /* indicate KVM hypercall interface */
450         _FDT((fdt_begin_node(fdt, "hypervisor")));
451         _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
452         if (kvmppc_has_cap_fixup_hcalls()) {
453             /*
454              * Older KVM versions with older guest kernels were broken with the
455              * magic page, don't allow the guest to map it.
456              */
457             if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
458                                       sizeof(hypercall))) {
459                 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
460                                    sizeof(hypercall))));
461             }
462         }
463         _FDT((fdt_end_node(fdt)));
464     }
465 
466     _FDT((fdt_end_node(fdt))); /* close root node */
467     _FDT((fdt_finish(fdt)));
468 
469     return fdt;
470 }
471 
472 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
473                                        hwaddr size)
474 {
475     uint32_t associativity[] = {
476         cpu_to_be32(0x4), /* length */
477         cpu_to_be32(0x0), cpu_to_be32(0x0),
478         cpu_to_be32(0x0), cpu_to_be32(nodeid)
479     };
480     char mem_name[32];
481     uint64_t mem_reg_property[2];
482     int off;
483 
484     mem_reg_property[0] = cpu_to_be64(start);
485     mem_reg_property[1] = cpu_to_be64(size);
486 
487     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
488     off = fdt_add_subnode(fdt, 0, mem_name);
489     _FDT(off);
490     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
491     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
492                       sizeof(mem_reg_property))));
493     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
494                       sizeof(associativity))));
495     return off;
496 }
497 
498 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
499 {
500     MachineState *machine = MACHINE(spapr);
501     hwaddr mem_start, node_size;
502     int i, nb_nodes = nb_numa_nodes;
503     NodeInfo *nodes = numa_info;
504     NodeInfo ramnode;
505 
506     /* No NUMA nodes, assume there is just one node with whole RAM */
507     if (!nb_numa_nodes) {
508         nb_nodes = 1;
509         ramnode.node_mem = machine->ram_size;
510         nodes = &ramnode;
511     }
512 
513     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
514         if (!nodes[i].node_mem) {
515             continue;
516         }
517         if (mem_start >= machine->ram_size) {
518             node_size = 0;
519         } else {
520             node_size = nodes[i].node_mem;
521             if (node_size > machine->ram_size - mem_start) {
522                 node_size = machine->ram_size - mem_start;
523             }
524         }
525         if (!mem_start) {
526             /* ppc_spapr_init() checks for rma_size <= node0_size already */
527             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
528             mem_start += spapr->rma_size;
529             node_size -= spapr->rma_size;
530         }
531         for ( ; node_size; ) {
532             hwaddr sizetmp = pow2floor(node_size);
533 
534             /* mem_start != 0 here */
535             if (ctzl(mem_start) < ctzl(sizetmp)) {
536                 sizetmp = 1ULL << ctzl(mem_start);
537             }
538 
539             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
540             node_size -= sizetmp;
541             mem_start += sizetmp;
542         }
543     }
544 
545     return 0;
546 }
547 
548 /* Populate the "ibm,pa-features" property */
549 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset)
550 {
551     uint8_t pa_features_206[] = { 6, 0,
552         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
553     uint8_t pa_features_207[] = { 24, 0,
554         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
555         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
556         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
557         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
558     uint8_t *pa_features;
559     size_t pa_size;
560 
561     switch (env->mmu_model) {
562     case POWERPC_MMU_2_06:
563     case POWERPC_MMU_2_06a:
564         pa_features = pa_features_206;
565         pa_size = sizeof(pa_features_206);
566         break;
567     case POWERPC_MMU_2_07:
568     case POWERPC_MMU_2_07a:
569         pa_features = pa_features_207;
570         pa_size = sizeof(pa_features_207);
571         break;
572     default:
573         return;
574     }
575 
576     if (env->ci_large_pages) {
577         /*
578          * Note: we keep CI large pages off by default because a 64K capable
579          * guest provisioned with large pages might otherwise try to map a qemu
580          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
581          * even if that qemu runs on a 4k host.
582          * We dd this bit back here if we are confident this is not an issue
583          */
584         pa_features[3] |= 0x20;
585     }
586     if (kvmppc_has_cap_htm() && pa_size > 24) {
587         pa_features[24] |= 0x80;    /* Transactional memory support */
588     }
589 
590     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
591 }
592 
593 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
594                                   sPAPRMachineState *spapr)
595 {
596     PowerPCCPU *cpu = POWERPC_CPU(cs);
597     CPUPPCState *env = &cpu->env;
598     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
599     int index = ppc_get_vcpu_dt_id(cpu);
600     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
601                        0xffffffff, 0xffffffff};
602     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
603         : SPAPR_TIMEBASE_FREQ;
604     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
605     uint32_t page_sizes_prop[64];
606     size_t page_sizes_prop_size;
607     uint32_t vcpus_per_socket = smp_threads * smp_cores;
608     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
609     sPAPRDRConnector *drc;
610     sPAPRDRConnectorClass *drck;
611     int drc_index;
612 
613     drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
614     if (drc) {
615         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
616         drc_index = drck->get_index(drc);
617         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
618     }
619 
620     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
621     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
622 
623     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
624     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
625                            env->dcache_line_size)));
626     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
627                            env->dcache_line_size)));
628     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
629                            env->icache_line_size)));
630     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
631                            env->icache_line_size)));
632 
633     if (pcc->l1_dcache_size) {
634         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
635                                pcc->l1_dcache_size)));
636     } else {
637         error_report("Warning: Unknown L1 dcache size for cpu");
638     }
639     if (pcc->l1_icache_size) {
640         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
641                                pcc->l1_icache_size)));
642     } else {
643         error_report("Warning: Unknown L1 icache size for cpu");
644     }
645 
646     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
647     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
648     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
649     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
650     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
651     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
652 
653     if (env->spr_cb[SPR_PURR].oea_read) {
654         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
655     }
656 
657     if (env->mmu_model & POWERPC_MMU_1TSEG) {
658         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
659                           segs, sizeof(segs))));
660     }
661 
662     /* Advertise VMX/VSX (vector extensions) if available
663      *   0 / no property == no vector extensions
664      *   1               == VMX / Altivec available
665      *   2               == VSX available */
666     if (env->insns_flags & PPC_ALTIVEC) {
667         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
668 
669         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
670     }
671 
672     /* Advertise DFP (Decimal Floating Point) if available
673      *   0 / no property == no DFP
674      *   1               == DFP available */
675     if (env->insns_flags2 & PPC2_DFP) {
676         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
677     }
678 
679     page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
680                                                   sizeof(page_sizes_prop));
681     if (page_sizes_prop_size) {
682         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
683                           page_sizes_prop, page_sizes_prop_size)));
684     }
685 
686     spapr_populate_pa_features(env, fdt, offset);
687 
688     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
689                            cs->cpu_index / vcpus_per_socket)));
690 
691     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
692                       pft_size_prop, sizeof(pft_size_prop))));
693 
694     _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
695 
696     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
697                                 ppc_get_compat_smt_threads(cpu)));
698 }
699 
700 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
701 {
702     CPUState *cs;
703     int cpus_offset;
704     char *nodename;
705     int smt = kvmppc_smt_threads();
706 
707     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
708     _FDT(cpus_offset);
709     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
710     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
711 
712     /*
713      * We walk the CPUs in reverse order to ensure that CPU DT nodes
714      * created by fdt_add_subnode() end up in the right order in FDT
715      * for the guest kernel the enumerate the CPUs correctly.
716      */
717     CPU_FOREACH_REVERSE(cs) {
718         PowerPCCPU *cpu = POWERPC_CPU(cs);
719         int index = ppc_get_vcpu_dt_id(cpu);
720         DeviceClass *dc = DEVICE_GET_CLASS(cs);
721         int offset;
722 
723         if ((index % smt) != 0) {
724             continue;
725         }
726 
727         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
728         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
729         g_free(nodename);
730         _FDT(offset);
731         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
732     }
733 
734 }
735 
736 /*
737  * Adds ibm,dynamic-reconfiguration-memory node.
738  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
739  * of this device tree node.
740  */
741 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
742 {
743     MachineState *machine = MACHINE(spapr);
744     int ret, i, offset;
745     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
746     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
747     uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
748     uint32_t nr_lmbs = (spapr->hotplug_memory.base +
749                        memory_region_size(&spapr->hotplug_memory.mr)) /
750                        lmb_size;
751     uint32_t *int_buf, *cur_index, buf_len;
752     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
753 
754     /*
755      * Don't create the node if there is no hotpluggable memory
756      */
757     if (machine->ram_size == machine->maxram_size) {
758         return 0;
759     }
760 
761     /*
762      * Allocate enough buffer size to fit in ibm,dynamic-memory
763      * or ibm,associativity-lookup-arrays
764      */
765     buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
766               * sizeof(uint32_t);
767     cur_index = int_buf = g_malloc0(buf_len);
768 
769     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
770 
771     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
772                     sizeof(prop_lmb_size));
773     if (ret < 0) {
774         goto out;
775     }
776 
777     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
778     if (ret < 0) {
779         goto out;
780     }
781 
782     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
783     if (ret < 0) {
784         goto out;
785     }
786 
787     /* ibm,dynamic-memory */
788     int_buf[0] = cpu_to_be32(nr_lmbs);
789     cur_index++;
790     for (i = 0; i < nr_lmbs; i++) {
791         uint64_t addr = i * lmb_size;
792         uint32_t *dynamic_memory = cur_index;
793 
794         if (i >= hotplug_lmb_start) {
795             sPAPRDRConnector *drc;
796             sPAPRDRConnectorClass *drck;
797 
798             drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
799             g_assert(drc);
800             drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
801 
802             dynamic_memory[0] = cpu_to_be32(addr >> 32);
803             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
804             dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
805             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
806             dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
807             if (memory_region_present(get_system_memory(), addr)) {
808                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
809             } else {
810                 dynamic_memory[5] = cpu_to_be32(0);
811             }
812         } else {
813             /*
814              * LMB information for RMA, boot time RAM and gap b/n RAM and
815              * hotplug memory region -- all these are marked as reserved
816              * and as having no valid DRC.
817              */
818             dynamic_memory[0] = cpu_to_be32(addr >> 32);
819             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
820             dynamic_memory[2] = cpu_to_be32(0);
821             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
822             dynamic_memory[4] = cpu_to_be32(-1);
823             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
824                                             SPAPR_LMB_FLAGS_DRC_INVALID);
825         }
826 
827         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
828     }
829     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
830     if (ret < 0) {
831         goto out;
832     }
833 
834     /* ibm,associativity-lookup-arrays */
835     cur_index = int_buf;
836     int_buf[0] = cpu_to_be32(nr_nodes);
837     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
838     cur_index += 2;
839     for (i = 0; i < nr_nodes; i++) {
840         uint32_t associativity[] = {
841             cpu_to_be32(0x0),
842             cpu_to_be32(0x0),
843             cpu_to_be32(0x0),
844             cpu_to_be32(i)
845         };
846         memcpy(cur_index, associativity, sizeof(associativity));
847         cur_index += 4;
848     }
849     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
850             (cur_index - int_buf) * sizeof(uint32_t));
851 out:
852     g_free(int_buf);
853     return ret;
854 }
855 
856 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
857                                  target_ulong addr, target_ulong size,
858                                  bool cpu_update, bool memory_update)
859 {
860     void *fdt, *fdt_skel;
861     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
862     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
863 
864     size -= sizeof(hdr);
865 
866     /* Create sceleton */
867     fdt_skel = g_malloc0(size);
868     _FDT((fdt_create(fdt_skel, size)));
869     _FDT((fdt_begin_node(fdt_skel, "")));
870     _FDT((fdt_end_node(fdt_skel)));
871     _FDT((fdt_finish(fdt_skel)));
872     fdt = g_malloc0(size);
873     _FDT((fdt_open_into(fdt_skel, fdt, size)));
874     g_free(fdt_skel);
875 
876     /* Fixup cpu nodes */
877     if (cpu_update) {
878         _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
879     }
880 
881     /* Generate ibm,dynamic-reconfiguration-memory node if required */
882     if (memory_update && smc->dr_lmb_enabled) {
883         _FDT((spapr_populate_drconf_memory(spapr, fdt)));
884     }
885 
886     /* Pack resulting tree */
887     _FDT((fdt_pack(fdt)));
888 
889     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
890         trace_spapr_cas_failed(size);
891         return -1;
892     }
893 
894     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
895     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
896     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
897     g_free(fdt);
898 
899     return 0;
900 }
901 
902 static void spapr_finalize_fdt(sPAPRMachineState *spapr,
903                                hwaddr fdt_addr,
904                                hwaddr rtas_addr,
905                                hwaddr rtas_size)
906 {
907     MachineState *machine = MACHINE(qdev_get_machine());
908     MachineClass *mc = MACHINE_GET_CLASS(machine);
909     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
910     const char *boot_device = machine->boot_order;
911     int ret, i;
912     size_t cb = 0;
913     char *bootlist;
914     void *fdt;
915     sPAPRPHBState *phb;
916 
917     fdt = g_malloc(FDT_MAX_SIZE);
918 
919     /* open out the base tree into a temp buffer for the final tweaks */
920     _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
921 
922     ret = spapr_populate_memory(spapr, fdt);
923     if (ret < 0) {
924         error_report("couldn't setup memory nodes in fdt");
925         exit(1);
926     }
927 
928     ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
929     if (ret < 0) {
930         error_report("couldn't setup vio devices in fdt");
931         exit(1);
932     }
933 
934     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
935         ret = spapr_rng_populate_dt(fdt);
936         if (ret < 0) {
937             error_report("could not set up rng device in the fdt");
938             exit(1);
939         }
940     }
941 
942     QLIST_FOREACH(phb, &spapr->phbs, list) {
943         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
944         if (ret < 0) {
945             error_report("couldn't setup PCI devices in fdt");
946             exit(1);
947         }
948     }
949 
950     /* RTAS */
951     ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
952     if (ret < 0) {
953         error_report("Couldn't set up RTAS device tree properties");
954     }
955 
956     /* cpus */
957     spapr_populate_cpus_dt_node(fdt, spapr);
958 
959     bootlist = get_boot_devices_list(&cb, true);
960     if (cb && bootlist) {
961         int offset = fdt_path_offset(fdt, "/chosen");
962         if (offset < 0) {
963             exit(1);
964         }
965         for (i = 0; i < cb; i++) {
966             if (bootlist[i] == '\n') {
967                 bootlist[i] = ' ';
968             }
969 
970         }
971         ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
972     }
973 
974     if (boot_device && strlen(boot_device)) {
975         int offset = fdt_path_offset(fdt, "/chosen");
976 
977         if (offset < 0) {
978             exit(1);
979         }
980         fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
981     }
982 
983     if (!spapr->has_graphics) {
984         spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
985     }
986 
987     if (smc->dr_lmb_enabled) {
988         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
989     }
990 
991     if (mc->query_hotpluggable_cpus) {
992         int offset = fdt_path_offset(fdt, "/cpus");
993         ret = spapr_drc_populate_dt(fdt, offset, NULL,
994                                     SPAPR_DR_CONNECTOR_TYPE_CPU);
995         if (ret < 0) {
996             error_report("Couldn't set up CPU DR device tree properties");
997             exit(1);
998         }
999     }
1000 
1001     _FDT((fdt_pack(fdt)));
1002 
1003     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1004         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1005                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1006         exit(1);
1007     }
1008 
1009     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1010     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1011 
1012     g_free(bootlist);
1013     g_free(fdt);
1014 }
1015 
1016 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1017 {
1018     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1019 }
1020 
1021 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
1022 {
1023     CPUPPCState *env = &cpu->env;
1024 
1025     if (msr_pr) {
1026         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1027         env->gpr[3] = H_PRIVILEGE;
1028     } else {
1029         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1030     }
1031 }
1032 
1033 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1034 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1035 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1036 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1037 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1038 
1039 /*
1040  * Get the fd to access the kernel htab, re-opening it if necessary
1041  */
1042 static int get_htab_fd(sPAPRMachineState *spapr)
1043 {
1044     if (spapr->htab_fd >= 0) {
1045         return spapr->htab_fd;
1046     }
1047 
1048     spapr->htab_fd = kvmppc_get_htab_fd(false);
1049     if (spapr->htab_fd < 0) {
1050         error_report("Unable to open fd for reading hash table from KVM: %s",
1051                      strerror(errno));
1052     }
1053 
1054     return spapr->htab_fd;
1055 }
1056 
1057 static void close_htab_fd(sPAPRMachineState *spapr)
1058 {
1059     if (spapr->htab_fd >= 0) {
1060         close(spapr->htab_fd);
1061     }
1062     spapr->htab_fd = -1;
1063 }
1064 
1065 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1066 {
1067     int shift;
1068 
1069     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1070      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1071      * that's much more than is needed for Linux guests */
1072     shift = ctz64(pow2ceil(ramsize)) - 7;
1073     shift = MAX(shift, 18); /* Minimum architected size */
1074     shift = MIN(shift, 46); /* Maximum architected size */
1075     return shift;
1076 }
1077 
1078 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1079                                  Error **errp)
1080 {
1081     long rc;
1082 
1083     /* Clean up any HPT info from a previous boot */
1084     g_free(spapr->htab);
1085     spapr->htab = NULL;
1086     spapr->htab_shift = 0;
1087     close_htab_fd(spapr);
1088 
1089     rc = kvmppc_reset_htab(shift);
1090     if (rc < 0) {
1091         /* kernel-side HPT needed, but couldn't allocate one */
1092         error_setg_errno(errp, errno,
1093                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1094                          shift);
1095         /* This is almost certainly fatal, but if the caller really
1096          * wants to carry on with shift == 0, it's welcome to try */
1097     } else if (rc > 0) {
1098         /* kernel-side HPT allocated */
1099         if (rc != shift) {
1100             error_setg(errp,
1101                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1102                        shift, rc);
1103         }
1104 
1105         spapr->htab_shift = shift;
1106         spapr->htab = NULL;
1107     } else {
1108         /* kernel-side HPT not needed, allocate in userspace instead */
1109         size_t size = 1ULL << shift;
1110         int i;
1111 
1112         spapr->htab = qemu_memalign(size, size);
1113         if (!spapr->htab) {
1114             error_setg_errno(errp, errno,
1115                              "Could not allocate HPT of order %d", shift);
1116             return;
1117         }
1118 
1119         memset(spapr->htab, 0, size);
1120         spapr->htab_shift = shift;
1121 
1122         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1123             DIRTY_HPTE(HPTE(spapr->htab, i));
1124         }
1125     }
1126 }
1127 
1128 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1129 {
1130     bool matched = false;
1131 
1132     if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1133         matched = true;
1134     }
1135 
1136     if (!matched) {
1137         error_report("Device %s is not supported by this machine yet.",
1138                      qdev_fw_name(DEVICE(sbdev)));
1139         exit(1);
1140     }
1141 }
1142 
1143 static void ppc_spapr_reset(void)
1144 {
1145     MachineState *machine = MACHINE(qdev_get_machine());
1146     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1147     PowerPCCPU *first_ppc_cpu;
1148     uint32_t rtas_limit;
1149 
1150     /* Check for unknown sysbus devices */
1151     foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1152 
1153     /* Allocate and/or reset the hash page table */
1154     spapr_reallocate_hpt(spapr,
1155                          spapr_hpt_shift_for_ramsize(machine->maxram_size),
1156                          &error_fatal);
1157 
1158     /* Update the RMA size if necessary */
1159     if (spapr->vrma_adjust) {
1160         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1161                                           spapr->htab_shift);
1162     }
1163 
1164     qemu_devices_reset();
1165 
1166     /*
1167      * We place the device tree and RTAS just below either the top of the RMA,
1168      * or just below 2GB, whichever is lowere, so that it can be
1169      * processed with 32-bit real mode code if necessary
1170      */
1171     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1172     spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1173     spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1174 
1175     /* Load the fdt */
1176     spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
1177                        spapr->rtas_size);
1178 
1179     /* Copy RTAS over */
1180     cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
1181                               spapr->rtas_size);
1182 
1183     /* Set up the entry state */
1184     first_ppc_cpu = POWERPC_CPU(first_cpu);
1185     first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
1186     first_ppc_cpu->env.gpr[5] = 0;
1187     first_cpu->halted = 0;
1188     first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1189 
1190 }
1191 
1192 static void spapr_create_nvram(sPAPRMachineState *spapr)
1193 {
1194     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1195     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1196 
1197     if (dinfo) {
1198         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1199                             &error_fatal);
1200     }
1201 
1202     qdev_init_nofail(dev);
1203 
1204     spapr->nvram = (struct sPAPRNVRAM *)dev;
1205 }
1206 
1207 static void spapr_rtc_create(sPAPRMachineState *spapr)
1208 {
1209     DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1210 
1211     qdev_init_nofail(dev);
1212     spapr->rtc = dev;
1213 
1214     object_property_add_alias(qdev_get_machine(), "rtc-time",
1215                               OBJECT(spapr->rtc), "date", NULL);
1216 }
1217 
1218 /* Returns whether we want to use VGA or not */
1219 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1220 {
1221     switch (vga_interface_type) {
1222     case VGA_NONE:
1223         return false;
1224     case VGA_DEVICE:
1225         return true;
1226     case VGA_STD:
1227     case VGA_VIRTIO:
1228         return pci_vga_init(pci_bus) != NULL;
1229     default:
1230         error_setg(errp,
1231                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1232         return false;
1233     }
1234 }
1235 
1236 static int spapr_post_load(void *opaque, int version_id)
1237 {
1238     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1239     int err = 0;
1240 
1241     /* In earlier versions, there was no separate qdev for the PAPR
1242      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1243      * So when migrating from those versions, poke the incoming offset
1244      * value into the RTC device */
1245     if (version_id < 3) {
1246         err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1247     }
1248 
1249     return err;
1250 }
1251 
1252 static bool version_before_3(void *opaque, int version_id)
1253 {
1254     return version_id < 3;
1255 }
1256 
1257 static const VMStateDescription vmstate_spapr = {
1258     .name = "spapr",
1259     .version_id = 3,
1260     .minimum_version_id = 1,
1261     .post_load = spapr_post_load,
1262     .fields = (VMStateField[]) {
1263         /* used to be @next_irq */
1264         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1265 
1266         /* RTC offset */
1267         VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1268 
1269         VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1270         VMSTATE_END_OF_LIST()
1271     },
1272 };
1273 
1274 static int htab_save_setup(QEMUFile *f, void *opaque)
1275 {
1276     sPAPRMachineState *spapr = opaque;
1277 
1278     /* "Iteration" header */
1279     qemu_put_be32(f, spapr->htab_shift);
1280 
1281     if (spapr->htab) {
1282         spapr->htab_save_index = 0;
1283         spapr->htab_first_pass = true;
1284     } else {
1285         assert(kvm_enabled());
1286     }
1287 
1288 
1289     return 0;
1290 }
1291 
1292 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1293                                  int64_t max_ns)
1294 {
1295     bool has_timeout = max_ns != -1;
1296     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1297     int index = spapr->htab_save_index;
1298     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1299 
1300     assert(spapr->htab_first_pass);
1301 
1302     do {
1303         int chunkstart;
1304 
1305         /* Consume invalid HPTEs */
1306         while ((index < htabslots)
1307                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1308             index++;
1309             CLEAN_HPTE(HPTE(spapr->htab, index));
1310         }
1311 
1312         /* Consume valid HPTEs */
1313         chunkstart = index;
1314         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1315                && HPTE_VALID(HPTE(spapr->htab, index))) {
1316             index++;
1317             CLEAN_HPTE(HPTE(spapr->htab, index));
1318         }
1319 
1320         if (index > chunkstart) {
1321             int n_valid = index - chunkstart;
1322 
1323             qemu_put_be32(f, chunkstart);
1324             qemu_put_be16(f, n_valid);
1325             qemu_put_be16(f, 0);
1326             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1327                             HASH_PTE_SIZE_64 * n_valid);
1328 
1329             if (has_timeout &&
1330                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1331                 break;
1332             }
1333         }
1334     } while ((index < htabslots) && !qemu_file_rate_limit(f));
1335 
1336     if (index >= htabslots) {
1337         assert(index == htabslots);
1338         index = 0;
1339         spapr->htab_first_pass = false;
1340     }
1341     spapr->htab_save_index = index;
1342 }
1343 
1344 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1345                                 int64_t max_ns)
1346 {
1347     bool final = max_ns < 0;
1348     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1349     int examined = 0, sent = 0;
1350     int index = spapr->htab_save_index;
1351     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1352 
1353     assert(!spapr->htab_first_pass);
1354 
1355     do {
1356         int chunkstart, invalidstart;
1357 
1358         /* Consume non-dirty HPTEs */
1359         while ((index < htabslots)
1360                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1361             index++;
1362             examined++;
1363         }
1364 
1365         chunkstart = index;
1366         /* Consume valid dirty HPTEs */
1367         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1368                && HPTE_DIRTY(HPTE(spapr->htab, index))
1369                && HPTE_VALID(HPTE(spapr->htab, index))) {
1370             CLEAN_HPTE(HPTE(spapr->htab, index));
1371             index++;
1372             examined++;
1373         }
1374 
1375         invalidstart = index;
1376         /* Consume invalid dirty HPTEs */
1377         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1378                && HPTE_DIRTY(HPTE(spapr->htab, index))
1379                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1380             CLEAN_HPTE(HPTE(spapr->htab, index));
1381             index++;
1382             examined++;
1383         }
1384 
1385         if (index > chunkstart) {
1386             int n_valid = invalidstart - chunkstart;
1387             int n_invalid = index - invalidstart;
1388 
1389             qemu_put_be32(f, chunkstart);
1390             qemu_put_be16(f, n_valid);
1391             qemu_put_be16(f, n_invalid);
1392             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1393                             HASH_PTE_SIZE_64 * n_valid);
1394             sent += index - chunkstart;
1395 
1396             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1397                 break;
1398             }
1399         }
1400 
1401         if (examined >= htabslots) {
1402             break;
1403         }
1404 
1405         if (index >= htabslots) {
1406             assert(index == htabslots);
1407             index = 0;
1408         }
1409     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1410 
1411     if (index >= htabslots) {
1412         assert(index == htabslots);
1413         index = 0;
1414     }
1415 
1416     spapr->htab_save_index = index;
1417 
1418     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1419 }
1420 
1421 #define MAX_ITERATION_NS    5000000 /* 5 ms */
1422 #define MAX_KVM_BUF_SIZE    2048
1423 
1424 static int htab_save_iterate(QEMUFile *f, void *opaque)
1425 {
1426     sPAPRMachineState *spapr = opaque;
1427     int fd;
1428     int rc = 0;
1429 
1430     /* Iteration header */
1431     qemu_put_be32(f, 0);
1432 
1433     if (!spapr->htab) {
1434         assert(kvm_enabled());
1435 
1436         fd = get_htab_fd(spapr);
1437         if (fd < 0) {
1438             return fd;
1439         }
1440 
1441         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1442         if (rc < 0) {
1443             return rc;
1444         }
1445     } else  if (spapr->htab_first_pass) {
1446         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1447     } else {
1448         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1449     }
1450 
1451     /* End marker */
1452     qemu_put_be32(f, 0);
1453     qemu_put_be16(f, 0);
1454     qemu_put_be16(f, 0);
1455 
1456     return rc;
1457 }
1458 
1459 static int htab_save_complete(QEMUFile *f, void *opaque)
1460 {
1461     sPAPRMachineState *spapr = opaque;
1462     int fd;
1463 
1464     /* Iteration header */
1465     qemu_put_be32(f, 0);
1466 
1467     if (!spapr->htab) {
1468         int rc;
1469 
1470         assert(kvm_enabled());
1471 
1472         fd = get_htab_fd(spapr);
1473         if (fd < 0) {
1474             return fd;
1475         }
1476 
1477         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1478         if (rc < 0) {
1479             return rc;
1480         }
1481     } else {
1482         if (spapr->htab_first_pass) {
1483             htab_save_first_pass(f, spapr, -1);
1484         }
1485         htab_save_later_pass(f, spapr, -1);
1486     }
1487 
1488     /* End marker */
1489     qemu_put_be32(f, 0);
1490     qemu_put_be16(f, 0);
1491     qemu_put_be16(f, 0);
1492 
1493     return 0;
1494 }
1495 
1496 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1497 {
1498     sPAPRMachineState *spapr = opaque;
1499     uint32_t section_hdr;
1500     int fd = -1;
1501 
1502     if (version_id < 1 || version_id > 1) {
1503         error_report("htab_load() bad version");
1504         return -EINVAL;
1505     }
1506 
1507     section_hdr = qemu_get_be32(f);
1508 
1509     if (section_hdr) {
1510         Error *local_err = NULL;
1511 
1512         /* First section gives the htab size */
1513         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1514         if (local_err) {
1515             error_report_err(local_err);
1516             return -EINVAL;
1517         }
1518         return 0;
1519     }
1520 
1521     if (!spapr->htab) {
1522         assert(kvm_enabled());
1523 
1524         fd = kvmppc_get_htab_fd(true);
1525         if (fd < 0) {
1526             error_report("Unable to open fd to restore KVM hash table: %s",
1527                          strerror(errno));
1528         }
1529     }
1530 
1531     while (true) {
1532         uint32_t index;
1533         uint16_t n_valid, n_invalid;
1534 
1535         index = qemu_get_be32(f);
1536         n_valid = qemu_get_be16(f);
1537         n_invalid = qemu_get_be16(f);
1538 
1539         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1540             /* End of Stream */
1541             break;
1542         }
1543 
1544         if ((index + n_valid + n_invalid) >
1545             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1546             /* Bad index in stream */
1547             error_report(
1548                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1549                 index, n_valid, n_invalid, spapr->htab_shift);
1550             return -EINVAL;
1551         }
1552 
1553         if (spapr->htab) {
1554             if (n_valid) {
1555                 qemu_get_buffer(f, HPTE(spapr->htab, index),
1556                                 HASH_PTE_SIZE_64 * n_valid);
1557             }
1558             if (n_invalid) {
1559                 memset(HPTE(spapr->htab, index + n_valid), 0,
1560                        HASH_PTE_SIZE_64 * n_invalid);
1561             }
1562         } else {
1563             int rc;
1564 
1565             assert(fd >= 0);
1566 
1567             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1568             if (rc < 0) {
1569                 return rc;
1570             }
1571         }
1572     }
1573 
1574     if (!spapr->htab) {
1575         assert(fd >= 0);
1576         close(fd);
1577     }
1578 
1579     return 0;
1580 }
1581 
1582 static void htab_cleanup(void *opaque)
1583 {
1584     sPAPRMachineState *spapr = opaque;
1585 
1586     close_htab_fd(spapr);
1587 }
1588 
1589 static SaveVMHandlers savevm_htab_handlers = {
1590     .save_live_setup = htab_save_setup,
1591     .save_live_iterate = htab_save_iterate,
1592     .save_live_complete_precopy = htab_save_complete,
1593     .cleanup = htab_cleanup,
1594     .load_state = htab_load,
1595 };
1596 
1597 static void spapr_boot_set(void *opaque, const char *boot_device,
1598                            Error **errp)
1599 {
1600     MachineState *machine = MACHINE(qdev_get_machine());
1601     machine->boot_order = g_strdup(boot_device);
1602 }
1603 
1604 /*
1605  * Reset routine for LMB DR devices.
1606  *
1607  * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1608  * routine. Reset for PCI DR devices will be handled by PHB reset routine
1609  * when it walks all its children devices. LMB devices reset occurs
1610  * as part of spapr_ppc_reset().
1611  */
1612 static void spapr_drc_reset(void *opaque)
1613 {
1614     sPAPRDRConnector *drc = opaque;
1615     DeviceState *d = DEVICE(drc);
1616 
1617     if (d) {
1618         device_reset(d);
1619     }
1620 }
1621 
1622 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1623 {
1624     MachineState *machine = MACHINE(spapr);
1625     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1626     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1627     int i;
1628 
1629     for (i = 0; i < nr_lmbs; i++) {
1630         sPAPRDRConnector *drc;
1631         uint64_t addr;
1632 
1633         addr = i * lmb_size + spapr->hotplug_memory.base;
1634         drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1635                                      addr/lmb_size);
1636         qemu_register_reset(spapr_drc_reset, drc);
1637     }
1638 }
1639 
1640 /*
1641  * If RAM size, maxmem size and individual node mem sizes aren't aligned
1642  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1643  * since we can't support such unaligned sizes with DRCONF_MEMORY.
1644  */
1645 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1646 {
1647     int i;
1648 
1649     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1650         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1651                    " is not aligned to %llu MiB",
1652                    machine->ram_size,
1653                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1654         return;
1655     }
1656 
1657     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1658         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1659                    " is not aligned to %llu MiB",
1660                    machine->ram_size,
1661                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1662         return;
1663     }
1664 
1665     for (i = 0; i < nb_numa_nodes; i++) {
1666         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1667             error_setg(errp,
1668                        "Node %d memory size 0x%" PRIx64
1669                        " is not aligned to %llu MiB",
1670                        i, numa_info[i].node_mem,
1671                        SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1672             return;
1673         }
1674     }
1675 }
1676 
1677 /* pSeries LPAR / sPAPR hardware init */
1678 static void ppc_spapr_init(MachineState *machine)
1679 {
1680     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1681     MachineClass *mc = MACHINE_GET_CLASS(machine);
1682     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1683     const char *kernel_filename = machine->kernel_filename;
1684     const char *kernel_cmdline = machine->kernel_cmdline;
1685     const char *initrd_filename = machine->initrd_filename;
1686     PCIHostState *phb;
1687     int i;
1688     MemoryRegion *sysmem = get_system_memory();
1689     MemoryRegion *ram = g_new(MemoryRegion, 1);
1690     MemoryRegion *rma_region;
1691     void *rma = NULL;
1692     hwaddr rma_alloc_size;
1693     hwaddr node0_size = spapr_node0_size();
1694     uint32_t initrd_base = 0;
1695     long kernel_size = 0, initrd_size = 0;
1696     long load_limit, fw_size;
1697     bool kernel_le = false;
1698     char *filename;
1699     int smt = kvmppc_smt_threads();
1700     int spapr_cores = smp_cpus / smp_threads;
1701     int spapr_max_cores = max_cpus / smp_threads;
1702 
1703     if (mc->query_hotpluggable_cpus) {
1704         if (smp_cpus % smp_threads) {
1705             error_report("smp_cpus (%u) must be multiple of threads (%u)",
1706                          smp_cpus, smp_threads);
1707             exit(1);
1708         }
1709         if (max_cpus % smp_threads) {
1710             error_report("max_cpus (%u) must be multiple of threads (%u)",
1711                          max_cpus, smp_threads);
1712             exit(1);
1713         }
1714     }
1715 
1716     msi_nonbroken = true;
1717 
1718     QLIST_INIT(&spapr->phbs);
1719 
1720     cpu_ppc_hypercall = emulate_spapr_hypercall;
1721 
1722     /* Allocate RMA if necessary */
1723     rma_alloc_size = kvmppc_alloc_rma(&rma);
1724 
1725     if (rma_alloc_size == -1) {
1726         error_report("Unable to create RMA");
1727         exit(1);
1728     }
1729 
1730     if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1731         spapr->rma_size = rma_alloc_size;
1732     } else {
1733         spapr->rma_size = node0_size;
1734 
1735         /* With KVM, we don't actually know whether KVM supports an
1736          * unbounded RMA (PR KVM) or is limited by the hash table size
1737          * (HV KVM using VRMA), so we always assume the latter
1738          *
1739          * In that case, we also limit the initial allocations for RTAS
1740          * etc... to 256M since we have no way to know what the VRMA size
1741          * is going to be as it depends on the size of the hash table
1742          * isn't determined yet.
1743          */
1744         if (kvm_enabled()) {
1745             spapr->vrma_adjust = 1;
1746             spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1747         }
1748 
1749         /* Actually we don't support unbounded RMA anymore since we
1750          * added proper emulation of HV mode. The max we can get is
1751          * 16G which also happens to be what we configure for PAPR
1752          * mode so make sure we don't do anything bigger than that
1753          */
1754         spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
1755     }
1756 
1757     if (spapr->rma_size > node0_size) {
1758         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
1759                      spapr->rma_size);
1760         exit(1);
1761     }
1762 
1763     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1764     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1765 
1766     /* Set up Interrupt Controller before we create the VCPUs */
1767     spapr->xics = xics_system_init(machine,
1768                                    DIV_ROUND_UP(max_cpus * smt, smp_threads),
1769                                    XICS_IRQS_SPAPR, &error_fatal);
1770 
1771     if (smc->dr_lmb_enabled) {
1772         spapr_validate_node_memory(machine, &error_fatal);
1773     }
1774 
1775     /* init CPUs */
1776     if (machine->cpu_model == NULL) {
1777         machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
1778     }
1779 
1780     ppc_cpu_parse_features(machine->cpu_model);
1781 
1782     if (mc->query_hotpluggable_cpus) {
1783         char *type = spapr_get_cpu_core_type(machine->cpu_model);
1784 
1785         if (type == NULL) {
1786             error_report("Unable to find sPAPR CPU Core definition");
1787             exit(1);
1788         }
1789 
1790         spapr->cores = g_new0(Object *, spapr_max_cores);
1791         for (i = 0; i < spapr_max_cores; i++) {
1792             int core_id = i * smp_threads;
1793             sPAPRDRConnector *drc =
1794                 spapr_dr_connector_new(OBJECT(spapr),
1795                                        SPAPR_DR_CONNECTOR_TYPE_CPU,
1796                                        (core_id / smp_threads) * smt);
1797 
1798             qemu_register_reset(spapr_drc_reset, drc);
1799 
1800             if (i < spapr_cores) {
1801                 Object *core  = object_new(type);
1802                 object_property_set_int(core, smp_threads, "nr-threads",
1803                                         &error_fatal);
1804                 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
1805                                         &error_fatal);
1806                 object_property_set_bool(core, true, "realized", &error_fatal);
1807             }
1808         }
1809         g_free(type);
1810     } else {
1811         for (i = 0; i < smp_cpus; i++) {
1812             PowerPCCPU *cpu = cpu_ppc_init(machine->cpu_model);
1813             if (cpu == NULL) {
1814                 error_report("Unable to find PowerPC CPU definition");
1815                 exit(1);
1816             }
1817             spapr_cpu_init(spapr, cpu, &error_fatal);
1818        }
1819     }
1820 
1821     if (kvm_enabled()) {
1822         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1823         kvmppc_enable_logical_ci_hcalls();
1824         kvmppc_enable_set_mode_hcall();
1825 
1826         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
1827         kvmppc_enable_clear_ref_mod_hcalls();
1828     }
1829 
1830     /* allocate RAM */
1831     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1832                                          machine->ram_size);
1833     memory_region_add_subregion(sysmem, 0, ram);
1834 
1835     if (rma_alloc_size && rma) {
1836         rma_region = g_new(MemoryRegion, 1);
1837         memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1838                                    rma_alloc_size, rma);
1839         vmstate_register_ram_global(rma_region);
1840         memory_region_add_subregion(sysmem, 0, rma_region);
1841     }
1842 
1843     /* initialize hotplug memory address space */
1844     if (machine->ram_size < machine->maxram_size) {
1845         ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1846         /*
1847          * Limit the number of hotpluggable memory slots to half the number
1848          * slots that KVM supports, leaving the other half for PCI and other
1849          * devices. However ensure that number of slots doesn't drop below 32.
1850          */
1851         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
1852                            SPAPR_MAX_RAM_SLOTS;
1853 
1854         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
1855             max_memslots = SPAPR_MAX_RAM_SLOTS;
1856         }
1857         if (machine->ram_slots > max_memslots) {
1858             error_report("Specified number of memory slots %"
1859                          PRIu64" exceeds max supported %d",
1860                          machine->ram_slots, max_memslots);
1861             exit(1);
1862         }
1863 
1864         spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1865                                               SPAPR_HOTPLUG_MEM_ALIGN);
1866         memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1867                            "hotplug-memory", hotplug_mem_size);
1868         memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1869                                     &spapr->hotplug_memory.mr);
1870     }
1871 
1872     if (smc->dr_lmb_enabled) {
1873         spapr_create_lmb_dr_connectors(spapr);
1874     }
1875 
1876     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1877     if (!filename) {
1878         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1879         exit(1);
1880     }
1881     spapr->rtas_size = get_image_size(filename);
1882     if (spapr->rtas_size < 0) {
1883         error_report("Could not get size of LPAR rtas '%s'", filename);
1884         exit(1);
1885     }
1886     spapr->rtas_blob = g_malloc(spapr->rtas_size);
1887     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1888         error_report("Could not load LPAR rtas '%s'", filename);
1889         exit(1);
1890     }
1891     if (spapr->rtas_size > RTAS_MAX_SIZE) {
1892         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1893                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1894         exit(1);
1895     }
1896     g_free(filename);
1897 
1898     /* Set up EPOW events infrastructure */
1899     spapr_events_init(spapr);
1900 
1901     /* Set up the RTC RTAS interfaces */
1902     spapr_rtc_create(spapr);
1903 
1904     /* Set up VIO bus */
1905     spapr->vio_bus = spapr_vio_bus_init();
1906 
1907     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1908         if (serial_hds[i]) {
1909             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1910         }
1911     }
1912 
1913     /* We always have at least the nvram device on VIO */
1914     spapr_create_nvram(spapr);
1915 
1916     /* Set up PCI */
1917     spapr_pci_rtas_init();
1918 
1919     phb = spapr_create_phb(spapr, 0);
1920 
1921     for (i = 0; i < nb_nics; i++) {
1922         NICInfo *nd = &nd_table[i];
1923 
1924         if (!nd->model) {
1925             nd->model = g_strdup("ibmveth");
1926         }
1927 
1928         if (strcmp(nd->model, "ibmveth") == 0) {
1929             spapr_vlan_create(spapr->vio_bus, nd);
1930         } else {
1931             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1932         }
1933     }
1934 
1935     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1936         spapr_vscsi_create(spapr->vio_bus);
1937     }
1938 
1939     /* Graphics */
1940     if (spapr_vga_init(phb->bus, &error_fatal)) {
1941         spapr->has_graphics = true;
1942         machine->usb |= defaults_enabled() && !machine->usb_disabled;
1943     }
1944 
1945     if (machine->usb) {
1946         if (smc->use_ohci_by_default) {
1947             pci_create_simple(phb->bus, -1, "pci-ohci");
1948         } else {
1949             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
1950         }
1951 
1952         if (spapr->has_graphics) {
1953             USBBus *usb_bus = usb_bus_find(-1);
1954 
1955             usb_create_simple(usb_bus, "usb-kbd");
1956             usb_create_simple(usb_bus, "usb-mouse");
1957         }
1958     }
1959 
1960     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1961         error_report(
1962             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
1963             MIN_RMA_SLOF);
1964         exit(1);
1965     }
1966 
1967     if (kernel_filename) {
1968         uint64_t lowaddr = 0;
1969 
1970         kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1971                                NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE,
1972                                0, 0);
1973         if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1974             kernel_size = load_elf(kernel_filename,
1975                                    translate_kernel_address, NULL,
1976                                    NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE,
1977                                    0, 0);
1978             kernel_le = kernel_size > 0;
1979         }
1980         if (kernel_size < 0) {
1981             error_report("error loading %s: %s",
1982                          kernel_filename, load_elf_strerror(kernel_size));
1983             exit(1);
1984         }
1985 
1986         /* load initrd */
1987         if (initrd_filename) {
1988             /* Try to locate the initrd in the gap between the kernel
1989              * and the firmware. Add a bit of space just in case
1990              */
1991             initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1992             initrd_size = load_image_targphys(initrd_filename, initrd_base,
1993                                               load_limit - initrd_base);
1994             if (initrd_size < 0) {
1995                 error_report("could not load initial ram disk '%s'",
1996                              initrd_filename);
1997                 exit(1);
1998             }
1999         } else {
2000             initrd_base = 0;
2001             initrd_size = 0;
2002         }
2003     }
2004 
2005     if (bios_name == NULL) {
2006         bios_name = FW_FILE_NAME;
2007     }
2008     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2009     if (!filename) {
2010         error_report("Could not find LPAR firmware '%s'", bios_name);
2011         exit(1);
2012     }
2013     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2014     if (fw_size <= 0) {
2015         error_report("Could not load LPAR firmware '%s'", filename);
2016         exit(1);
2017     }
2018     g_free(filename);
2019 
2020     /* FIXME: Should register things through the MachineState's qdev
2021      * interface, this is a legacy from the sPAPREnvironment structure
2022      * which predated MachineState but had a similar function */
2023     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2024     register_savevm_live(NULL, "spapr/htab", -1, 1,
2025                          &savevm_htab_handlers, spapr);
2026 
2027     /* Prepare the device tree */
2028     spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
2029                                             kernel_size, kernel_le,
2030                                             kernel_cmdline,
2031                                             spapr->check_exception_irq);
2032     assert(spapr->fdt_skel != NULL);
2033 
2034     /* used by RTAS */
2035     QTAILQ_INIT(&spapr->ccs_list);
2036     qemu_register_reset(spapr_ccs_reset_hook, spapr);
2037 
2038     qemu_register_boot_set(spapr_boot_set, spapr);
2039 }
2040 
2041 static int spapr_kvm_type(const char *vm_type)
2042 {
2043     if (!vm_type) {
2044         return 0;
2045     }
2046 
2047     if (!strcmp(vm_type, "HV")) {
2048         return 1;
2049     }
2050 
2051     if (!strcmp(vm_type, "PR")) {
2052         return 2;
2053     }
2054 
2055     error_report("Unknown kvm-type specified '%s'", vm_type);
2056     exit(1);
2057 }
2058 
2059 /*
2060  * Implementation of an interface to adjust firmware path
2061  * for the bootindex property handling.
2062  */
2063 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2064                                    DeviceState *dev)
2065 {
2066 #define CAST(type, obj, name) \
2067     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2068     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2069     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2070 
2071     if (d) {
2072         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2073         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2074         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2075 
2076         if (spapr) {
2077             /*
2078              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2079              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2080              * in the top 16 bits of the 64-bit LUN
2081              */
2082             unsigned id = 0x8000 | (d->id << 8) | d->lun;
2083             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2084                                    (uint64_t)id << 48);
2085         } else if (virtio) {
2086             /*
2087              * We use SRP luns of the form 01000000 | (target << 8) | lun
2088              * in the top 32 bits of the 64-bit LUN
2089              * Note: the quote above is from SLOF and it is wrong,
2090              * the actual binding is:
2091              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2092              */
2093             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2094             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2095                                    (uint64_t)id << 32);
2096         } else if (usb) {
2097             /*
2098              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2099              * in the top 32 bits of the 64-bit LUN
2100              */
2101             unsigned usb_port = atoi(usb->port->path);
2102             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2103             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2104                                    (uint64_t)id << 32);
2105         }
2106     }
2107 
2108     if (phb) {
2109         /* Replace "pci" with "pci@800000020000000" */
2110         return g_strdup_printf("pci@%"PRIX64, phb->buid);
2111     }
2112 
2113     return NULL;
2114 }
2115 
2116 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2117 {
2118     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2119 
2120     return g_strdup(spapr->kvm_type);
2121 }
2122 
2123 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2124 {
2125     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2126 
2127     g_free(spapr->kvm_type);
2128     spapr->kvm_type = g_strdup(value);
2129 }
2130 
2131 static void spapr_machine_initfn(Object *obj)
2132 {
2133     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2134 
2135     spapr->htab_fd = -1;
2136     object_property_add_str(obj, "kvm-type",
2137                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2138     object_property_set_description(obj, "kvm-type",
2139                                     "Specifies the KVM virtualization mode (HV, PR)",
2140                                     NULL);
2141 }
2142 
2143 static void spapr_machine_finalizefn(Object *obj)
2144 {
2145     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2146 
2147     g_free(spapr->kvm_type);
2148 }
2149 
2150 static void ppc_cpu_do_nmi_on_cpu(CPUState *cs, void *arg)
2151 {
2152     cpu_synchronize_state(cs);
2153     ppc_cpu_do_system_reset(cs);
2154 }
2155 
2156 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2157 {
2158     CPUState *cs;
2159 
2160     CPU_FOREACH(cs) {
2161         async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, NULL);
2162     }
2163 }
2164 
2165 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
2166                            uint32_t node, Error **errp)
2167 {
2168     sPAPRDRConnector *drc;
2169     sPAPRDRConnectorClass *drck;
2170     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2171     int i, fdt_offset, fdt_size;
2172     void *fdt;
2173 
2174     for (i = 0; i < nr_lmbs; i++) {
2175         drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2176                 addr/SPAPR_MEMORY_BLOCK_SIZE);
2177         g_assert(drc);
2178 
2179         fdt = create_device_tree(&fdt_size);
2180         fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2181                                                 SPAPR_MEMORY_BLOCK_SIZE);
2182 
2183         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2184         drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2185         addr += SPAPR_MEMORY_BLOCK_SIZE;
2186     }
2187     /* send hotplug notification to the
2188      * guest only in case of hotplugged memory
2189      */
2190     if (dev->hotplugged) {
2191        spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
2192     }
2193 }
2194 
2195 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2196                               uint32_t node, Error **errp)
2197 {
2198     Error *local_err = NULL;
2199     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2200     PCDIMMDevice *dimm = PC_DIMM(dev);
2201     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2202     MemoryRegion *mr = ddc->get_memory_region(dimm);
2203     uint64_t align = memory_region_get_alignment(mr);
2204     uint64_t size = memory_region_size(mr);
2205     uint64_t addr;
2206 
2207     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2208         error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2209                       "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2210         goto out;
2211     }
2212 
2213     pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2214     if (local_err) {
2215         goto out;
2216     }
2217 
2218     addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2219     if (local_err) {
2220         pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2221         goto out;
2222     }
2223 
2224     spapr_add_lmbs(dev, addr, size, node, &error_abort);
2225 
2226 out:
2227     error_propagate(errp, local_err);
2228 }
2229 
2230 void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2231                                     sPAPRMachineState *spapr)
2232 {
2233     PowerPCCPU *cpu = POWERPC_CPU(cs);
2234     DeviceClass *dc = DEVICE_GET_CLASS(cs);
2235     int id = ppc_get_vcpu_dt_id(cpu);
2236     void *fdt;
2237     int offset, fdt_size;
2238     char *nodename;
2239 
2240     fdt = create_device_tree(&fdt_size);
2241     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2242     offset = fdt_add_subnode(fdt, 0, nodename);
2243 
2244     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2245     g_free(nodename);
2246 
2247     *fdt_offset = offset;
2248     return fdt;
2249 }
2250 
2251 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2252                                       DeviceState *dev, Error **errp)
2253 {
2254     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2255 
2256     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2257         int node;
2258 
2259         if (!smc->dr_lmb_enabled) {
2260             error_setg(errp, "Memory hotplug not supported for this machine");
2261             return;
2262         }
2263         node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2264         if (*errp) {
2265             return;
2266         }
2267         if (node < 0 || node >= MAX_NODES) {
2268             error_setg(errp, "Invaild node %d", node);
2269             return;
2270         }
2271 
2272         /*
2273          * Currently PowerPC kernel doesn't allow hot-adding memory to
2274          * memory-less node, but instead will silently add the memory
2275          * to the first node that has some memory. This causes two
2276          * unexpected behaviours for the user.
2277          *
2278          * - Memory gets hotplugged to a different node than what the user
2279          *   specified.
2280          * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2281          *   to memory-less node, a reboot will set things accordingly
2282          *   and the previously hotplugged memory now ends in the right node.
2283          *   This appears as if some memory moved from one node to another.
2284          *
2285          * So until kernel starts supporting memory hotplug to memory-less
2286          * nodes, just prevent such attempts upfront in QEMU.
2287          */
2288         if (nb_numa_nodes && !numa_info[node].node_mem) {
2289             error_setg(errp, "Can't hotplug memory to memory-less node %d",
2290                        node);
2291             return;
2292         }
2293 
2294         spapr_memory_plug(hotplug_dev, dev, node, errp);
2295     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2296         spapr_core_plug(hotplug_dev, dev, errp);
2297     }
2298 }
2299 
2300 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2301                                       DeviceState *dev, Error **errp)
2302 {
2303     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2304 
2305     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2306         error_setg(errp, "Memory hot unplug not supported by sPAPR");
2307     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2308         if (!mc->query_hotpluggable_cpus) {
2309             error_setg(errp, "CPU hot unplug not supported on this machine");
2310             return;
2311         }
2312         spapr_core_unplug(hotplug_dev, dev, errp);
2313     }
2314 }
2315 
2316 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
2317                                           DeviceState *dev, Error **errp)
2318 {
2319     if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2320         spapr_core_pre_plug(hotplug_dev, dev, errp);
2321     }
2322 }
2323 
2324 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
2325                                                  DeviceState *dev)
2326 {
2327     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2328         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2329         return HOTPLUG_HANDLER(machine);
2330     }
2331     return NULL;
2332 }
2333 
2334 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2335 {
2336     /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2337      * socket means much for the paravirtualized PAPR platform) */
2338     return cpu_index / smp_threads / smp_cores;
2339 }
2340 
2341 static HotpluggableCPUList *spapr_query_hotpluggable_cpus(MachineState *machine)
2342 {
2343     int i;
2344     HotpluggableCPUList *head = NULL;
2345     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2346     int spapr_max_cores = max_cpus / smp_threads;
2347 
2348     for (i = 0; i < spapr_max_cores; i++) {
2349         HotpluggableCPUList *list_item = g_new0(typeof(*list_item), 1);
2350         HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1);
2351         CpuInstanceProperties *cpu_props = g_new0(typeof(*cpu_props), 1);
2352 
2353         cpu_item->type = spapr_get_cpu_core_type(machine->cpu_model);
2354         cpu_item->vcpus_count = smp_threads;
2355         cpu_props->has_core_id = true;
2356         cpu_props->core_id = i * smp_threads;
2357         /* TODO: add 'has_node/node' here to describe
2358            to which node core belongs */
2359 
2360         cpu_item->props = cpu_props;
2361         if (spapr->cores[i]) {
2362             cpu_item->has_qom_path = true;
2363             cpu_item->qom_path = object_get_canonical_path(spapr->cores[i]);
2364         }
2365         list_item->value = cpu_item;
2366         list_item->next = head;
2367         head = list_item;
2368     }
2369     return head;
2370 }
2371 
2372 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
2373                                 uint64_t *buid, hwaddr *pio,
2374                                 hwaddr *mmio32, hwaddr *mmio64,
2375                                 unsigned n_dma, uint32_t *liobns, Error **errp)
2376 {
2377     /*
2378      * New-style PHB window placement.
2379      *
2380      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
2381      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
2382      * windows.
2383      *
2384      * Some guest kernels can't work with MMIO windows above 1<<46
2385      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
2386      *
2387      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
2388      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
2389      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
2390      * 1TiB 64-bit MMIO windows for each PHB.
2391      */
2392     const uint64_t base_buid = 0x800000020000000ULL;
2393     const int max_phbs =
2394         (SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / SPAPR_PCI_MEM64_WIN_SIZE - 1;
2395     int i;
2396 
2397     /* Sanity check natural alignments */
2398     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
2399     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
2400     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
2401     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
2402     /* Sanity check bounds */
2403     QEMU_BUILD_BUG_ON((max_phbs * SPAPR_PCI_IO_WIN_SIZE) > SPAPR_PCI_MEM32_WIN_SIZE);
2404     QEMU_BUILD_BUG_ON((max_phbs * SPAPR_PCI_MEM32_WIN_SIZE) > SPAPR_PCI_MEM64_WIN_SIZE);
2405 
2406     if (index >= max_phbs) {
2407         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
2408                    max_phbs - 1);
2409         return;
2410     }
2411 
2412     *buid = base_buid + index;
2413     for (i = 0; i < n_dma; ++i) {
2414         liobns[i] = SPAPR_PCI_LIOBN(index, i);
2415     }
2416 
2417     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
2418     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
2419     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
2420 }
2421 
2422 static void spapr_machine_class_init(ObjectClass *oc, void *data)
2423 {
2424     MachineClass *mc = MACHINE_CLASS(oc);
2425     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2426     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2427     NMIClass *nc = NMI_CLASS(oc);
2428     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2429 
2430     mc->desc = "pSeries Logical Partition (PAPR compliant)";
2431 
2432     /*
2433      * We set up the default / latest behaviour here.  The class_init
2434      * functions for the specific versioned machine types can override
2435      * these details for backwards compatibility
2436      */
2437     mc->init = ppc_spapr_init;
2438     mc->reset = ppc_spapr_reset;
2439     mc->block_default_type = IF_SCSI;
2440     mc->max_cpus = 255;
2441     mc->no_parallel = 1;
2442     mc->default_boot_order = "";
2443     mc->default_ram_size = 512 * M_BYTE;
2444     mc->kvm_type = spapr_kvm_type;
2445     mc->has_dynamic_sysbus = true;
2446     mc->pci_allow_0_address = true;
2447     mc->get_hotplug_handler = spapr_get_hotplug_handler;
2448     hc->pre_plug = spapr_machine_device_pre_plug;
2449     hc->plug = spapr_machine_device_plug;
2450     hc->unplug = spapr_machine_device_unplug;
2451     mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
2452 
2453     smc->dr_lmb_enabled = true;
2454     smc->tcg_default_cpu = "POWER8";
2455     mc->query_hotpluggable_cpus = spapr_query_hotpluggable_cpus;
2456     fwc->get_dev_path = spapr_get_fw_dev_path;
2457     nc->nmi_monitor_handler = spapr_nmi;
2458     smc->phb_placement = spapr_phb_placement;
2459 }
2460 
2461 static const TypeInfo spapr_machine_info = {
2462     .name          = TYPE_SPAPR_MACHINE,
2463     .parent        = TYPE_MACHINE,
2464     .abstract      = true,
2465     .instance_size = sizeof(sPAPRMachineState),
2466     .instance_init = spapr_machine_initfn,
2467     .instance_finalize = spapr_machine_finalizefn,
2468     .class_size    = sizeof(sPAPRMachineClass),
2469     .class_init    = spapr_machine_class_init,
2470     .interfaces = (InterfaceInfo[]) {
2471         { TYPE_FW_PATH_PROVIDER },
2472         { TYPE_NMI },
2473         { TYPE_HOTPLUG_HANDLER },
2474         { }
2475     },
2476 };
2477 
2478 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
2479     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
2480                                                     void *data)      \
2481     {                                                                \
2482         MachineClass *mc = MACHINE_CLASS(oc);                        \
2483         spapr_machine_##suffix##_class_options(mc);                  \
2484         if (latest) {                                                \
2485             mc->alias = "pseries";                                   \
2486             mc->is_default = 1;                                      \
2487         }                                                            \
2488     }                                                                \
2489     static void spapr_machine_##suffix##_instance_init(Object *obj)  \
2490     {                                                                \
2491         MachineState *machine = MACHINE(obj);                        \
2492         spapr_machine_##suffix##_instance_options(machine);          \
2493     }                                                                \
2494     static const TypeInfo spapr_machine_##suffix##_info = {          \
2495         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
2496         .parent = TYPE_SPAPR_MACHINE,                                \
2497         .class_init = spapr_machine_##suffix##_class_init,           \
2498         .instance_init = spapr_machine_##suffix##_instance_init,     \
2499     };                                                               \
2500     static void spapr_machine_register_##suffix(void)                \
2501     {                                                                \
2502         type_register(&spapr_machine_##suffix##_info);               \
2503     }                                                                \
2504     type_init(spapr_machine_register_##suffix)
2505 
2506 /*
2507  * pseries-2.8
2508  */
2509 static void spapr_machine_2_8_instance_options(MachineState *machine)
2510 {
2511 }
2512 
2513 static void spapr_machine_2_8_class_options(MachineClass *mc)
2514 {
2515     /* Defaults for the latest behaviour inherited from the base class */
2516 }
2517 
2518 DEFINE_SPAPR_MACHINE(2_8, "2.8", true);
2519 
2520 /*
2521  * pseries-2.7
2522  */
2523 #define SPAPR_COMPAT_2_7                            \
2524     HW_COMPAT_2_7                                   \
2525     {                                               \
2526         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
2527         .property = "mem_win_size",                 \
2528         .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
2529     },                                              \
2530     {                                               \
2531         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
2532         .property = "mem64_win_size",               \
2533         .value    = "0",                            \
2534     },
2535 
2536 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
2537                               uint64_t *buid, hwaddr *pio,
2538                               hwaddr *mmio32, hwaddr *mmio64,
2539                               unsigned n_dma, uint32_t *liobns, Error **errp)
2540 {
2541     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
2542     const uint64_t base_buid = 0x800000020000000ULL;
2543     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
2544     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
2545     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
2546     const uint32_t max_index = 255;
2547     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
2548 
2549     uint64_t ram_top = MACHINE(spapr)->ram_size;
2550     hwaddr phb0_base, phb_base;
2551     int i;
2552 
2553     /* Do we have hotpluggable memory? */
2554     if (MACHINE(spapr)->maxram_size > ram_top) {
2555         /* Can't just use maxram_size, because there may be an
2556          * alignment gap between normal and hotpluggable memory
2557          * regions */
2558         ram_top = spapr->hotplug_memory.base +
2559             memory_region_size(&spapr->hotplug_memory.mr);
2560     }
2561 
2562     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
2563 
2564     if (index > max_index) {
2565         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
2566                    max_index);
2567         return;
2568     }
2569 
2570     *buid = base_buid + index;
2571     for (i = 0; i < n_dma; ++i) {
2572         liobns[i] = SPAPR_PCI_LIOBN(index, i);
2573     }
2574 
2575     phb_base = phb0_base + index * phb_spacing;
2576     *pio = phb_base + pio_offset;
2577     *mmio32 = phb_base + mmio_offset;
2578     /*
2579      * We don't set the 64-bit MMIO window, relying on the PHB's
2580      * fallback behaviour of automatically splitting a large "32-bit"
2581      * window into contiguous 32-bit and 64-bit windows
2582      */
2583 }
2584 
2585 static void spapr_machine_2_7_instance_options(MachineState *machine)
2586 {
2587     spapr_machine_2_8_instance_options(machine);
2588 }
2589 
2590 static void spapr_machine_2_7_class_options(MachineClass *mc)
2591 {
2592     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2593 
2594     spapr_machine_2_8_class_options(mc);
2595     smc->tcg_default_cpu = "POWER7";
2596     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
2597     smc->phb_placement = phb_placement_2_7;
2598 }
2599 
2600 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
2601 
2602 /*
2603  * pseries-2.6
2604  */
2605 #define SPAPR_COMPAT_2_6 \
2606     HW_COMPAT_2_6 \
2607     { \
2608         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2609         .property = "ddw",\
2610         .value    = stringify(off),\
2611     },
2612 
2613 static void spapr_machine_2_6_instance_options(MachineState *machine)
2614 {
2615     spapr_machine_2_7_instance_options(machine);
2616 }
2617 
2618 static void spapr_machine_2_6_class_options(MachineClass *mc)
2619 {
2620     spapr_machine_2_7_class_options(mc);
2621     mc->query_hotpluggable_cpus = NULL;
2622     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
2623 }
2624 
2625 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
2626 
2627 /*
2628  * pseries-2.5
2629  */
2630 #define SPAPR_COMPAT_2_5 \
2631     HW_COMPAT_2_5 \
2632     { \
2633         .driver   = "spapr-vlan", \
2634         .property = "use-rx-buffer-pools", \
2635         .value    = "off", \
2636     },
2637 
2638 static void spapr_machine_2_5_instance_options(MachineState *machine)
2639 {
2640     spapr_machine_2_6_instance_options(machine);
2641 }
2642 
2643 static void spapr_machine_2_5_class_options(MachineClass *mc)
2644 {
2645     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2646 
2647     spapr_machine_2_6_class_options(mc);
2648     smc->use_ohci_by_default = true;
2649     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
2650 }
2651 
2652 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
2653 
2654 /*
2655  * pseries-2.4
2656  */
2657 #define SPAPR_COMPAT_2_4 \
2658         HW_COMPAT_2_4
2659 
2660 static void spapr_machine_2_4_instance_options(MachineState *machine)
2661 {
2662     spapr_machine_2_5_instance_options(machine);
2663 }
2664 
2665 static void spapr_machine_2_4_class_options(MachineClass *mc)
2666 {
2667     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2668 
2669     spapr_machine_2_5_class_options(mc);
2670     smc->dr_lmb_enabled = false;
2671     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
2672 }
2673 
2674 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
2675 
2676 /*
2677  * pseries-2.3
2678  */
2679 #define SPAPR_COMPAT_2_3 \
2680         HW_COMPAT_2_3 \
2681         {\
2682             .driver   = "spapr-pci-host-bridge",\
2683             .property = "dynamic-reconfiguration",\
2684             .value    = "off",\
2685         },
2686 
2687 static void spapr_machine_2_3_instance_options(MachineState *machine)
2688 {
2689     spapr_machine_2_4_instance_options(machine);
2690     savevm_skip_section_footers();
2691     global_state_set_optional();
2692     savevm_skip_configuration();
2693 }
2694 
2695 static void spapr_machine_2_3_class_options(MachineClass *mc)
2696 {
2697     spapr_machine_2_4_class_options(mc);
2698     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
2699 }
2700 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
2701 
2702 /*
2703  * pseries-2.2
2704  */
2705 
2706 #define SPAPR_COMPAT_2_2 \
2707         HW_COMPAT_2_2 \
2708         {\
2709             .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2710             .property = "mem_win_size",\
2711             .value    = "0x20000000",\
2712         },
2713 
2714 static void spapr_machine_2_2_instance_options(MachineState *machine)
2715 {
2716     spapr_machine_2_3_instance_options(machine);
2717     machine->suppress_vmdesc = true;
2718 }
2719 
2720 static void spapr_machine_2_2_class_options(MachineClass *mc)
2721 {
2722     spapr_machine_2_3_class_options(mc);
2723     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
2724 }
2725 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
2726 
2727 /*
2728  * pseries-2.1
2729  */
2730 #define SPAPR_COMPAT_2_1 \
2731         HW_COMPAT_2_1
2732 
2733 static void spapr_machine_2_1_instance_options(MachineState *machine)
2734 {
2735     spapr_machine_2_2_instance_options(machine);
2736 }
2737 
2738 static void spapr_machine_2_1_class_options(MachineClass *mc)
2739 {
2740     spapr_machine_2_2_class_options(mc);
2741     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
2742 }
2743 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
2744 
2745 static void spapr_machine_register_types(void)
2746 {
2747     type_register_static(&spapr_machine_info);
2748 }
2749 
2750 type_init(spapr_machine_register_types)
2751