xref: /qemu/hw/ppc/spapr.c (revision 81b205ce)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu/datadir.h"
29 #include "qemu/memalign.h"
30 #include "qapi/error.h"
31 #include "qapi/qapi-events-machine.h"
32 #include "qapi/qapi-events-qdev.h"
33 #include "qapi/visitor.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hostmem.h"
36 #include "sysemu/numa.h"
37 #include "sysemu/qtest.h"
38 #include "sysemu/reset.h"
39 #include "sysemu/runstate.h"
40 #include "qemu/log.h"
41 #include "hw/fw-path-provider.h"
42 #include "elf.h"
43 #include "net/net.h"
44 #include "sysemu/device_tree.h"
45 #include "sysemu/cpus.h"
46 #include "sysemu/hw_accel.h"
47 #include "kvm_ppc.h"
48 #include "migration/misc.h"
49 #include "migration/qemu-file-types.h"
50 #include "migration/global_state.h"
51 #include "migration/register.h"
52 #include "migration/blocker.h"
53 #include "mmu-hash64.h"
54 #include "mmu-book3s-v3.h"
55 #include "cpu-models.h"
56 #include "hw/core/cpu.h"
57 
58 #include "hw/ppc/ppc.h"
59 #include "hw/loader.h"
60 
61 #include "hw/ppc/fdt.h"
62 #include "hw/ppc/spapr.h"
63 #include "hw/ppc/spapr_vio.h"
64 #include "hw/qdev-properties.h"
65 #include "hw/pci-host/spapr.h"
66 #include "hw/pci/msi.h"
67 
68 #include "hw/pci/pci.h"
69 #include "hw/scsi/scsi.h"
70 #include "hw/virtio/virtio-scsi.h"
71 #include "hw/virtio/vhost-scsi-common.h"
72 
73 #include "exec/ram_addr.h"
74 #include "hw/usb.h"
75 #include "qemu/config-file.h"
76 #include "qemu/error-report.h"
77 #include "trace.h"
78 #include "hw/nmi.h"
79 #include "hw/intc/intc.h"
80 
81 #include "hw/ppc/spapr_cpu_core.h"
82 #include "hw/mem/memory-device.h"
83 #include "hw/ppc/spapr_tpm_proxy.h"
84 #include "hw/ppc/spapr_nvdimm.h"
85 #include "hw/ppc/spapr_numa.h"
86 #include "hw/ppc/pef.h"
87 
88 #include "monitor/monitor.h"
89 
90 #include <libfdt.h>
91 
92 /* SLOF memory layout:
93  *
94  * SLOF raw image loaded at 0, copies its romfs right below the flat
95  * device-tree, then position SLOF itself 31M below that
96  *
97  * So we set FW_OVERHEAD to 40MB which should account for all of that
98  * and more
99  *
100  * We load our kernel at 4M, leaving space for SLOF initial image
101  */
102 #define FDT_MAX_ADDR            0x80000000 /* FDT must stay below that */
103 #define FW_MAX_SIZE             0x400000
104 #define FW_FILE_NAME            "slof.bin"
105 #define FW_FILE_NAME_VOF        "vof.bin"
106 #define FW_OVERHEAD             0x2800000
107 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
108 
109 #define MIN_RMA_SLOF            (128 * MiB)
110 
111 #define PHANDLE_INTC            0x00001111
112 
113 /* These two functions implement the VCPU id numbering: one to compute them
114  * all and one to identify thread 0 of a VCORE. Any change to the first one
115  * is likely to have an impact on the second one, so let's keep them close.
116  */
117 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
118 {
119     MachineState *ms = MACHINE(spapr);
120     unsigned int smp_threads = ms->smp.threads;
121 
122     assert(spapr->vsmt);
123     return
124         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
125 }
126 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
127                                       PowerPCCPU *cpu)
128 {
129     assert(spapr->vsmt);
130     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
131 }
132 
133 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
134 {
135     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
136      * and newer QEMUs don't even have them. In both cases, we don't want
137      * to send anything on the wire.
138      */
139     return false;
140 }
141 
142 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
143     .name = "icp/server",
144     .version_id = 1,
145     .minimum_version_id = 1,
146     .needed = pre_2_10_vmstate_dummy_icp_needed,
147     .fields = (VMStateField[]) {
148         VMSTATE_UNUSED(4), /* uint32_t xirr */
149         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
150         VMSTATE_UNUSED(1), /* uint8_t mfrr */
151         VMSTATE_END_OF_LIST()
152     },
153 };
154 
155 static void pre_2_10_vmstate_register_dummy_icp(int i)
156 {
157     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
158                      (void *)(uintptr_t) i);
159 }
160 
161 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
162 {
163     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
164                        (void *)(uintptr_t) i);
165 }
166 
167 int spapr_max_server_number(SpaprMachineState *spapr)
168 {
169     MachineState *ms = MACHINE(spapr);
170 
171     assert(spapr->vsmt);
172     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
173 }
174 
175 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
176                                   int smt_threads)
177 {
178     int i, ret = 0;
179     uint32_t servers_prop[smt_threads];
180     uint32_t gservers_prop[smt_threads * 2];
181     int index = spapr_get_vcpu_id(cpu);
182 
183     if (cpu->compat_pvr) {
184         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
185         if (ret < 0) {
186             return ret;
187         }
188     }
189 
190     /* Build interrupt servers and gservers properties */
191     for (i = 0; i < smt_threads; i++) {
192         servers_prop[i] = cpu_to_be32(index + i);
193         /* Hack, direct the group queues back to cpu 0 */
194         gservers_prop[i*2] = cpu_to_be32(index + i);
195         gservers_prop[i*2 + 1] = 0;
196     }
197     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
198                       servers_prop, sizeof(servers_prop));
199     if (ret < 0) {
200         return ret;
201     }
202     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
203                       gservers_prop, sizeof(gservers_prop));
204 
205     return ret;
206 }
207 
208 static void spapr_dt_pa_features(SpaprMachineState *spapr,
209                                  PowerPCCPU *cpu,
210                                  void *fdt, int offset)
211 {
212     uint8_t pa_features_206[] = { 6, 0,
213         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
214     uint8_t pa_features_207[] = { 24, 0,
215         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
216         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
217         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
218         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
219     uint8_t pa_features_300[] = { 66, 0,
220         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
221         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
222         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
223         /* 6: DS207 */
224         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
225         /* 16: Vector */
226         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
227         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
228         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
229         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
230         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
231         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
232         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
233         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
234         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
235         /* 42: PM, 44: PC RA, 46: SC vec'd */
236         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
237         /* 48: SIMD, 50: QP BFP, 52: String */
238         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
239         /* 54: DecFP, 56: DecI, 58: SHA */
240         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
241         /* 60: NM atomic, 62: RNG */
242         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
243     };
244     uint8_t *pa_features = NULL;
245     size_t pa_size;
246 
247     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
248         pa_features = pa_features_206;
249         pa_size = sizeof(pa_features_206);
250     }
251     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
252         pa_features = pa_features_207;
253         pa_size = sizeof(pa_features_207);
254     }
255     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
256         pa_features = pa_features_300;
257         pa_size = sizeof(pa_features_300);
258     }
259     if (!pa_features) {
260         return;
261     }
262 
263     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
264         /*
265          * Note: we keep CI large pages off by default because a 64K capable
266          * guest provisioned with large pages might otherwise try to map a qemu
267          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
268          * even if that qemu runs on a 4k host.
269          * We dd this bit back here if we are confident this is not an issue
270          */
271         pa_features[3] |= 0x20;
272     }
273     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
274         pa_features[24] |= 0x80;    /* Transactional memory support */
275     }
276     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
277         /* Workaround for broken kernels that attempt (guest) radix
278          * mode when they can't handle it, if they see the radix bit set
279          * in pa-features. So hide it from them. */
280         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
281     }
282 
283     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
284 }
285 
286 static hwaddr spapr_node0_size(MachineState *machine)
287 {
288     if (machine->numa_state->num_nodes) {
289         int i;
290         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
291             if (machine->numa_state->nodes[i].node_mem) {
292                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
293                            machine->ram_size);
294             }
295         }
296     }
297     return machine->ram_size;
298 }
299 
300 static void add_str(GString *s, const gchar *s1)
301 {
302     g_string_append_len(s, s1, strlen(s1) + 1);
303 }
304 
305 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
306                                 hwaddr start, hwaddr size)
307 {
308     char mem_name[32];
309     uint64_t mem_reg_property[2];
310     int off;
311 
312     mem_reg_property[0] = cpu_to_be64(start);
313     mem_reg_property[1] = cpu_to_be64(size);
314 
315     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
316     off = fdt_add_subnode(fdt, 0, mem_name);
317     _FDT(off);
318     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
319     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
320                       sizeof(mem_reg_property))));
321     spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
322     return off;
323 }
324 
325 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
326 {
327     MemoryDeviceInfoList *info;
328 
329     for (info = list; info; info = info->next) {
330         MemoryDeviceInfo *value = info->value;
331 
332         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
333             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
334 
335             if (addr >= pcdimm_info->addr &&
336                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
337                 return pcdimm_info->node;
338             }
339         }
340     }
341 
342     return -1;
343 }
344 
345 struct sPAPRDrconfCellV2 {
346      uint32_t seq_lmbs;
347      uint64_t base_addr;
348      uint32_t drc_index;
349      uint32_t aa_index;
350      uint32_t flags;
351 } QEMU_PACKED;
352 
353 typedef struct DrconfCellQueue {
354     struct sPAPRDrconfCellV2 cell;
355     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
356 } DrconfCellQueue;
357 
358 static DrconfCellQueue *
359 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
360                       uint32_t drc_index, uint32_t aa_index,
361                       uint32_t flags)
362 {
363     DrconfCellQueue *elem;
364 
365     elem = g_malloc0(sizeof(*elem));
366     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
367     elem->cell.base_addr = cpu_to_be64(base_addr);
368     elem->cell.drc_index = cpu_to_be32(drc_index);
369     elem->cell.aa_index = cpu_to_be32(aa_index);
370     elem->cell.flags = cpu_to_be32(flags);
371 
372     return elem;
373 }
374 
375 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
376                                       int offset, MemoryDeviceInfoList *dimms)
377 {
378     MachineState *machine = MACHINE(spapr);
379     uint8_t *int_buf, *cur_index;
380     int ret;
381     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
382     uint64_t addr, cur_addr, size;
383     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
384     uint64_t mem_end = machine->device_memory->base +
385                        memory_region_size(&machine->device_memory->mr);
386     uint32_t node, buf_len, nr_entries = 0;
387     SpaprDrc *drc;
388     DrconfCellQueue *elem, *next;
389     MemoryDeviceInfoList *info;
390     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
391         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
392 
393     /* Entry to cover RAM and the gap area */
394     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
395                                  SPAPR_LMB_FLAGS_RESERVED |
396                                  SPAPR_LMB_FLAGS_DRC_INVALID);
397     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
398     nr_entries++;
399 
400     cur_addr = machine->device_memory->base;
401     for (info = dimms; info; info = info->next) {
402         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
403 
404         addr = di->addr;
405         size = di->size;
406         node = di->node;
407 
408         /*
409          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
410          * area is marked hotpluggable in the next iteration for the bigger
411          * chunk including the NVDIMM occupied area.
412          */
413         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
414             continue;
415 
416         /* Entry for hot-pluggable area */
417         if (cur_addr < addr) {
418             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
419             g_assert(drc);
420             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
421                                          cur_addr, spapr_drc_index(drc), -1, 0);
422             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
423             nr_entries++;
424         }
425 
426         /* Entry for DIMM */
427         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
428         g_assert(drc);
429         elem = spapr_get_drconf_cell(size / lmb_size, addr,
430                                      spapr_drc_index(drc), node,
431                                      (SPAPR_LMB_FLAGS_ASSIGNED |
432                                       SPAPR_LMB_FLAGS_HOTREMOVABLE));
433         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
434         nr_entries++;
435         cur_addr = addr + size;
436     }
437 
438     /* Entry for remaining hotpluggable area */
439     if (cur_addr < mem_end) {
440         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
441         g_assert(drc);
442         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
443                                      cur_addr, spapr_drc_index(drc), -1, 0);
444         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
445         nr_entries++;
446     }
447 
448     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
449     int_buf = cur_index = g_malloc0(buf_len);
450     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
451     cur_index += sizeof(nr_entries);
452 
453     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
454         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
455         cur_index += sizeof(elem->cell);
456         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
457         g_free(elem);
458     }
459 
460     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
461     g_free(int_buf);
462     if (ret < 0) {
463         return -1;
464     }
465     return 0;
466 }
467 
468 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
469                                    int offset, MemoryDeviceInfoList *dimms)
470 {
471     MachineState *machine = MACHINE(spapr);
472     int i, ret;
473     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
474     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
475     uint32_t nr_lmbs = (machine->device_memory->base +
476                        memory_region_size(&machine->device_memory->mr)) /
477                        lmb_size;
478     uint32_t *int_buf, *cur_index, buf_len;
479 
480     /*
481      * Allocate enough buffer size to fit in ibm,dynamic-memory
482      */
483     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
484     cur_index = int_buf = g_malloc0(buf_len);
485     int_buf[0] = cpu_to_be32(nr_lmbs);
486     cur_index++;
487     for (i = 0; i < nr_lmbs; i++) {
488         uint64_t addr = i * lmb_size;
489         uint32_t *dynamic_memory = cur_index;
490 
491         if (i >= device_lmb_start) {
492             SpaprDrc *drc;
493 
494             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
495             g_assert(drc);
496 
497             dynamic_memory[0] = cpu_to_be32(addr >> 32);
498             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
499             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
500             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
501             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
502             if (memory_region_present(get_system_memory(), addr)) {
503                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
504             } else {
505                 dynamic_memory[5] = cpu_to_be32(0);
506             }
507         } else {
508             /*
509              * LMB information for RMA, boot time RAM and gap b/n RAM and
510              * device memory region -- all these are marked as reserved
511              * and as having no valid DRC.
512              */
513             dynamic_memory[0] = cpu_to_be32(addr >> 32);
514             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
515             dynamic_memory[2] = cpu_to_be32(0);
516             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
517             dynamic_memory[4] = cpu_to_be32(-1);
518             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
519                                             SPAPR_LMB_FLAGS_DRC_INVALID);
520         }
521 
522         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
523     }
524     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
525     g_free(int_buf);
526     if (ret < 0) {
527         return -1;
528     }
529     return 0;
530 }
531 
532 /*
533  * Adds ibm,dynamic-reconfiguration-memory node.
534  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
535  * of this device tree node.
536  */
537 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
538                                                    void *fdt)
539 {
540     MachineState *machine = MACHINE(spapr);
541     int ret, offset;
542     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
543     uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
544                                 cpu_to_be32(lmb_size & 0xffffffff)};
545     MemoryDeviceInfoList *dimms = NULL;
546 
547     /*
548      * Don't create the node if there is no device memory
549      */
550     if (machine->ram_size == machine->maxram_size) {
551         return 0;
552     }
553 
554     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
555 
556     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
557                     sizeof(prop_lmb_size));
558     if (ret < 0) {
559         return ret;
560     }
561 
562     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
563     if (ret < 0) {
564         return ret;
565     }
566 
567     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
568     if (ret < 0) {
569         return ret;
570     }
571 
572     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
573     dimms = qmp_memory_device_list();
574     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
575         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
576     } else {
577         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
578     }
579     qapi_free_MemoryDeviceInfoList(dimms);
580 
581     if (ret < 0) {
582         return ret;
583     }
584 
585     ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
586 
587     return ret;
588 }
589 
590 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
591 {
592     MachineState *machine = MACHINE(spapr);
593     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
594     hwaddr mem_start, node_size;
595     int i, nb_nodes = machine->numa_state->num_nodes;
596     NodeInfo *nodes = machine->numa_state->nodes;
597 
598     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
599         if (!nodes[i].node_mem) {
600             continue;
601         }
602         if (mem_start >= machine->ram_size) {
603             node_size = 0;
604         } else {
605             node_size = nodes[i].node_mem;
606             if (node_size > machine->ram_size - mem_start) {
607                 node_size = machine->ram_size - mem_start;
608             }
609         }
610         if (!mem_start) {
611             /* spapr_machine_init() checks for rma_size <= node0_size
612              * already */
613             spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
614             mem_start += spapr->rma_size;
615             node_size -= spapr->rma_size;
616         }
617         for ( ; node_size; ) {
618             hwaddr sizetmp = pow2floor(node_size);
619 
620             /* mem_start != 0 here */
621             if (ctzl(mem_start) < ctzl(sizetmp)) {
622                 sizetmp = 1ULL << ctzl(mem_start);
623             }
624 
625             spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
626             node_size -= sizetmp;
627             mem_start += sizetmp;
628         }
629     }
630 
631     /* Generate ibm,dynamic-reconfiguration-memory node if required */
632     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
633         int ret;
634 
635         g_assert(smc->dr_lmb_enabled);
636         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
637         if (ret) {
638             return ret;
639         }
640     }
641 
642     return 0;
643 }
644 
645 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
646                          SpaprMachineState *spapr)
647 {
648     MachineState *ms = MACHINE(spapr);
649     PowerPCCPU *cpu = POWERPC_CPU(cs);
650     CPUPPCState *env = &cpu->env;
651     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
652     int index = spapr_get_vcpu_id(cpu);
653     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
654                        0xffffffff, 0xffffffff};
655     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
656         : SPAPR_TIMEBASE_FREQ;
657     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
658     uint32_t page_sizes_prop[64];
659     size_t page_sizes_prop_size;
660     unsigned int smp_threads = ms->smp.threads;
661     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
662     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
663     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
664     SpaprDrc *drc;
665     int drc_index;
666     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
667     int i;
668 
669     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
670     if (drc) {
671         drc_index = spapr_drc_index(drc);
672         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
673     }
674 
675     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
676     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
677 
678     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
679     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
680                            env->dcache_line_size)));
681     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
682                            env->dcache_line_size)));
683     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
684                            env->icache_line_size)));
685     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
686                            env->icache_line_size)));
687 
688     if (pcc->l1_dcache_size) {
689         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
690                                pcc->l1_dcache_size)));
691     } else {
692         warn_report("Unknown L1 dcache size for cpu");
693     }
694     if (pcc->l1_icache_size) {
695         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
696                                pcc->l1_icache_size)));
697     } else {
698         warn_report("Unknown L1 icache size for cpu");
699     }
700 
701     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
702     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
703     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
704     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
705     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
706     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
707 
708     if (ppc_has_spr(cpu, SPR_PURR)) {
709         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
710     }
711     if (ppc_has_spr(cpu, SPR_PURR)) {
712         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
713     }
714 
715     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
716         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
717                           segs, sizeof(segs))));
718     }
719 
720     /* Advertise VSX (vector extensions) if available
721      *   1               == VMX / Altivec available
722      *   2               == VSX available
723      *
724      * Only CPUs for which we create core types in spapr_cpu_core.c
725      * are possible, and all of those have VMX */
726     if (env->insns_flags & PPC_ALTIVEC) {
727         if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
728             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
729         } else {
730             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
731         }
732     }
733 
734     /* Advertise DFP (Decimal Floating Point) if available
735      *   0 / no property == no DFP
736      *   1               == DFP available */
737     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
738         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
739     }
740 
741     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
742                                                       sizeof(page_sizes_prop));
743     if (page_sizes_prop_size) {
744         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
745                           page_sizes_prop, page_sizes_prop_size)));
746     }
747 
748     spapr_dt_pa_features(spapr, cpu, fdt, offset);
749 
750     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
751                            cs->cpu_index / vcpus_per_socket)));
752 
753     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
754                       pft_size_prop, sizeof(pft_size_prop))));
755 
756     if (ms->numa_state->num_nodes > 1) {
757         _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
758     }
759 
760     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
761 
762     if (pcc->radix_page_info) {
763         for (i = 0; i < pcc->radix_page_info->count; i++) {
764             radix_AP_encodings[i] =
765                 cpu_to_be32(pcc->radix_page_info->entries[i]);
766         }
767         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
768                           radix_AP_encodings,
769                           pcc->radix_page_info->count *
770                           sizeof(radix_AP_encodings[0]))));
771     }
772 
773     /*
774      * We set this property to let the guest know that it can use the large
775      * decrementer and its width in bits.
776      */
777     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
778         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
779                               pcc->lrg_decr_bits)));
780 }
781 
782 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
783 {
784     CPUState **rev;
785     CPUState *cs;
786     int n_cpus;
787     int cpus_offset;
788     int i;
789 
790     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
791     _FDT(cpus_offset);
792     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
793     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
794 
795     /*
796      * We walk the CPUs in reverse order to ensure that CPU DT nodes
797      * created by fdt_add_subnode() end up in the right order in FDT
798      * for the guest kernel the enumerate the CPUs correctly.
799      *
800      * The CPU list cannot be traversed in reverse order, so we need
801      * to do extra work.
802      */
803     n_cpus = 0;
804     rev = NULL;
805     CPU_FOREACH(cs) {
806         rev = g_renew(CPUState *, rev, n_cpus + 1);
807         rev[n_cpus++] = cs;
808     }
809 
810     for (i = n_cpus - 1; i >= 0; i--) {
811         CPUState *cs = rev[i];
812         PowerPCCPU *cpu = POWERPC_CPU(cs);
813         int index = spapr_get_vcpu_id(cpu);
814         DeviceClass *dc = DEVICE_GET_CLASS(cs);
815         g_autofree char *nodename = NULL;
816         int offset;
817 
818         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
819             continue;
820         }
821 
822         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
823         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
824         _FDT(offset);
825         spapr_dt_cpu(cs, fdt, offset, spapr);
826     }
827 
828     g_free(rev);
829 }
830 
831 static int spapr_dt_rng(void *fdt)
832 {
833     int node;
834     int ret;
835 
836     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
837     if (node <= 0) {
838         return -1;
839     }
840     ret = fdt_setprop_string(fdt, node, "device_type",
841                              "ibm,platform-facilities");
842     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
843     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
844 
845     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
846     if (node <= 0) {
847         return -1;
848     }
849     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
850 
851     return ret ? -1 : 0;
852 }
853 
854 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
855 {
856     MachineState *ms = MACHINE(spapr);
857     int rtas;
858     GString *hypertas = g_string_sized_new(256);
859     GString *qemu_hypertas = g_string_sized_new(256);
860     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
861         memory_region_size(&MACHINE(spapr)->device_memory->mr);
862     uint32_t lrdr_capacity[] = {
863         cpu_to_be32(max_device_addr >> 32),
864         cpu_to_be32(max_device_addr & 0xffffffff),
865         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
866         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
867         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
868     };
869 
870     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
871 
872     /* hypertas */
873     add_str(hypertas, "hcall-pft");
874     add_str(hypertas, "hcall-term");
875     add_str(hypertas, "hcall-dabr");
876     add_str(hypertas, "hcall-interrupt");
877     add_str(hypertas, "hcall-tce");
878     add_str(hypertas, "hcall-vio");
879     add_str(hypertas, "hcall-splpar");
880     add_str(hypertas, "hcall-join");
881     add_str(hypertas, "hcall-bulk");
882     add_str(hypertas, "hcall-set-mode");
883     add_str(hypertas, "hcall-sprg0");
884     add_str(hypertas, "hcall-copy");
885     add_str(hypertas, "hcall-debug");
886     add_str(hypertas, "hcall-vphn");
887     if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
888         add_str(hypertas, "hcall-rpt-invalidate");
889     }
890 
891     add_str(qemu_hypertas, "hcall-memop1");
892 
893     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
894         add_str(hypertas, "hcall-multi-tce");
895     }
896 
897     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
898         add_str(hypertas, "hcall-hpt-resize");
899     }
900 
901     add_str(hypertas, "hcall-watchdog");
902 
903     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
904                      hypertas->str, hypertas->len));
905     g_string_free(hypertas, TRUE);
906     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
907                      qemu_hypertas->str, qemu_hypertas->len));
908     g_string_free(qemu_hypertas, TRUE);
909 
910     spapr_numa_write_rtas_dt(spapr, fdt, rtas);
911 
912     /*
913      * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
914      * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
915      *
916      * The system reset requirements are driven by existing Linux and PowerVM
917      * implementation which (contrary to PAPR) saves r3 in the error log
918      * structure like machine check, so Linux expects to find the saved r3
919      * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
920      * does not look at the error value).
921      *
922      * System reset interrupts are not subject to interlock like machine
923      * check, so this memory area could be corrupted if the sreset is
924      * interrupted by a machine check (or vice versa) if it was shared. To
925      * prevent this, system reset uses per-CPU areas for the sreset save
926      * area. A system reset that interrupts a system reset handler could
927      * still overwrite this area, but Linux doesn't try to recover in that
928      * case anyway.
929      *
930      * The extra 8 bytes is required because Linux's FWNMI error log check
931      * is off-by-one.
932      *
933      * RTAS_MIN_SIZE is required for the RTAS blob itself.
934      */
935     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
936                           RTAS_ERROR_LOG_MAX +
937                           ms->smp.max_cpus * sizeof(uint64_t) * 2 +
938                           sizeof(uint64_t)));
939     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
940                           RTAS_ERROR_LOG_MAX));
941     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
942                           RTAS_EVENT_SCAN_RATE));
943 
944     g_assert(msi_nonbroken);
945     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
946 
947     /*
948      * According to PAPR, rtas ibm,os-term does not guarantee a return
949      * back to the guest cpu.
950      *
951      * While an additional ibm,extended-os-term property indicates
952      * that rtas call return will always occur. Set this property.
953      */
954     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
955 
956     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
957                      lrdr_capacity, sizeof(lrdr_capacity)));
958 
959     spapr_dt_rtas_tokens(fdt, rtas);
960 }
961 
962 /*
963  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
964  * and the XIVE features that the guest may request and thus the valid
965  * values for bytes 23..26 of option vector 5:
966  */
967 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
968                                           int chosen)
969 {
970     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
971 
972     char val[2 * 4] = {
973         23, 0x00, /* XICS / XIVE mode */
974         24, 0x00, /* Hash/Radix, filled in below. */
975         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
976         26, 0x40, /* Radix options: GTSE == yes. */
977     };
978 
979     if (spapr->irq->xics && spapr->irq->xive) {
980         val[1] = SPAPR_OV5_XIVE_BOTH;
981     } else if (spapr->irq->xive) {
982         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
983     } else {
984         assert(spapr->irq->xics);
985         val[1] = SPAPR_OV5_XIVE_LEGACY;
986     }
987 
988     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
989                           first_ppc_cpu->compat_pvr)) {
990         /*
991          * If we're in a pre POWER9 compat mode then the guest should
992          * do hash and use the legacy interrupt mode
993          */
994         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
995         val[3] = 0x00; /* Hash */
996         spapr_check_mmu_mode(false);
997     } else if (kvm_enabled()) {
998         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
999             val[3] = 0x80; /* OV5_MMU_BOTH */
1000         } else if (kvmppc_has_cap_mmu_radix()) {
1001             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1002         } else {
1003             val[3] = 0x00; /* Hash */
1004         }
1005     } else {
1006         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1007         val[3] = 0xC0;
1008     }
1009     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1010                      val, sizeof(val)));
1011 }
1012 
1013 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1014 {
1015     MachineState *machine = MACHINE(spapr);
1016     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1017     int chosen;
1018 
1019     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1020 
1021     if (reset) {
1022         const char *boot_device = spapr->boot_device;
1023         g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1024         size_t cb = 0;
1025         g_autofree char *bootlist = get_boot_devices_list(&cb);
1026 
1027         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1028             _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1029                                     machine->kernel_cmdline));
1030         }
1031 
1032         if (spapr->initrd_size) {
1033             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1034                                   spapr->initrd_base));
1035             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1036                                   spapr->initrd_base + spapr->initrd_size));
1037         }
1038 
1039         if (spapr->kernel_size) {
1040             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1041                                   cpu_to_be64(spapr->kernel_size) };
1042 
1043             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1044                          &kprop, sizeof(kprop)));
1045             if (spapr->kernel_le) {
1046                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1047             }
1048         }
1049         if (machine->boot_config.has_menu && machine->boot_config.menu) {
1050             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
1051         }
1052         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1053         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1054         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1055 
1056         if (cb && bootlist) {
1057             int i;
1058 
1059             for (i = 0; i < cb; i++) {
1060                 if (bootlist[i] == '\n') {
1061                     bootlist[i] = ' ';
1062                 }
1063             }
1064             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1065         }
1066 
1067         if (boot_device && strlen(boot_device)) {
1068             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1069         }
1070 
1071         if (spapr->want_stdout_path && stdout_path) {
1072             /*
1073              * "linux,stdout-path" and "stdout" properties are
1074              * deprecated by linux kernel. New platforms should only
1075              * use the "stdout-path" property. Set the new property
1076              * and continue using older property to remain compatible
1077              * with the existing firmware.
1078              */
1079             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1080             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1081         }
1082 
1083         /*
1084          * We can deal with BAR reallocation just fine, advertise it
1085          * to the guest
1086          */
1087         if (smc->linux_pci_probe) {
1088             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1089         }
1090 
1091         spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1092     }
1093 
1094     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1095 }
1096 
1097 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1098 {
1099     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1100      * KVM to work under pHyp with some guest co-operation */
1101     int hypervisor;
1102     uint8_t hypercall[16];
1103 
1104     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1105     /* indicate KVM hypercall interface */
1106     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1107     if (kvmppc_has_cap_fixup_hcalls()) {
1108         /*
1109          * Older KVM versions with older guest kernels were broken
1110          * with the magic page, don't allow the guest to map it.
1111          */
1112         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1113                                   sizeof(hypercall))) {
1114             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1115                              hypercall, sizeof(hypercall)));
1116         }
1117     }
1118 }
1119 
1120 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1121 {
1122     MachineState *machine = MACHINE(spapr);
1123     MachineClass *mc = MACHINE_GET_CLASS(machine);
1124     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1125     uint32_t root_drc_type_mask = 0;
1126     int ret;
1127     void *fdt;
1128     SpaprPhbState *phb;
1129     char *buf;
1130 
1131     fdt = g_malloc0(space);
1132     _FDT((fdt_create_empty_tree(fdt, space)));
1133 
1134     /* Root node */
1135     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1136     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1137     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1138 
1139     /* Guest UUID & Name*/
1140     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1141     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1142     if (qemu_uuid_set) {
1143         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1144     }
1145     g_free(buf);
1146 
1147     if (qemu_get_vm_name()) {
1148         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1149                                 qemu_get_vm_name()));
1150     }
1151 
1152     /* Host Model & Serial Number */
1153     if (spapr->host_model) {
1154         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1155     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1156         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1157         g_free(buf);
1158     }
1159 
1160     if (spapr->host_serial) {
1161         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1162     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1163         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1164         g_free(buf);
1165     }
1166 
1167     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1168     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1169 
1170     /* /interrupt controller */
1171     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1172 
1173     ret = spapr_dt_memory(spapr, fdt);
1174     if (ret < 0) {
1175         error_report("couldn't setup memory nodes in fdt");
1176         exit(1);
1177     }
1178 
1179     /* /vdevice */
1180     spapr_dt_vdevice(spapr->vio_bus, fdt);
1181 
1182     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1183         ret = spapr_dt_rng(fdt);
1184         if (ret < 0) {
1185             error_report("could not set up rng device in the fdt");
1186             exit(1);
1187         }
1188     }
1189 
1190     QLIST_FOREACH(phb, &spapr->phbs, list) {
1191         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1192         if (ret < 0) {
1193             error_report("couldn't setup PCI devices in fdt");
1194             exit(1);
1195         }
1196     }
1197 
1198     spapr_dt_cpus(fdt, spapr);
1199 
1200     /* ibm,drc-indexes and friends */
1201     if (smc->dr_lmb_enabled) {
1202         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1203     }
1204     if (smc->dr_phb_enabled) {
1205         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1206     }
1207     if (mc->nvdimm_supported) {
1208         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1209     }
1210     if (root_drc_type_mask) {
1211         _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1212     }
1213 
1214     if (mc->has_hotpluggable_cpus) {
1215         int offset = fdt_path_offset(fdt, "/cpus");
1216         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1217         if (ret < 0) {
1218             error_report("Couldn't set up CPU DR device tree properties");
1219             exit(1);
1220         }
1221     }
1222 
1223     /* /event-sources */
1224     spapr_dt_events(spapr, fdt);
1225 
1226     /* /rtas */
1227     spapr_dt_rtas(spapr, fdt);
1228 
1229     /* /chosen */
1230     spapr_dt_chosen(spapr, fdt, reset);
1231 
1232     /* /hypervisor */
1233     if (kvm_enabled()) {
1234         spapr_dt_hypervisor(spapr, fdt);
1235     }
1236 
1237     /* Build memory reserve map */
1238     if (reset) {
1239         if (spapr->kernel_size) {
1240             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1241                                   spapr->kernel_size)));
1242         }
1243         if (spapr->initrd_size) {
1244             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1245                                   spapr->initrd_size)));
1246         }
1247     }
1248 
1249     /* NVDIMM devices */
1250     if (mc->nvdimm_supported) {
1251         spapr_dt_persistent_memory(spapr, fdt);
1252     }
1253 
1254     return fdt;
1255 }
1256 
1257 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1258 {
1259     SpaprMachineState *spapr = opaque;
1260 
1261     return (addr & 0x0fffffff) + spapr->kernel_addr;
1262 }
1263 
1264 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1265                                     PowerPCCPU *cpu)
1266 {
1267     CPUPPCState *env = &cpu->env;
1268 
1269     /* The TCG path should also be holding the BQL at this point */
1270     g_assert(qemu_mutex_iothread_locked());
1271 
1272     g_assert(!vhyp_cpu_in_nested(cpu));
1273 
1274     if (FIELD_EX64(env->msr, MSR, PR)) {
1275         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1276         env->gpr[3] = H_PRIVILEGE;
1277     } else {
1278         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1279     }
1280 }
1281 
1282 struct LPCRSyncState {
1283     target_ulong value;
1284     target_ulong mask;
1285 };
1286 
1287 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1288 {
1289     struct LPCRSyncState *s = arg.host_ptr;
1290     PowerPCCPU *cpu = POWERPC_CPU(cs);
1291     CPUPPCState *env = &cpu->env;
1292     target_ulong lpcr;
1293 
1294     cpu_synchronize_state(cs);
1295     lpcr = env->spr[SPR_LPCR];
1296     lpcr &= ~s->mask;
1297     lpcr |= s->value;
1298     ppc_store_lpcr(cpu, lpcr);
1299 }
1300 
1301 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1302 {
1303     CPUState *cs;
1304     struct LPCRSyncState s = {
1305         .value = value,
1306         .mask = mask
1307     };
1308     CPU_FOREACH(cs) {
1309         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1310     }
1311 }
1312 
1313 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1314                            target_ulong lpid, ppc_v3_pate_t *entry)
1315 {
1316     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1317     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1318 
1319     if (!spapr_cpu->in_nested) {
1320         assert(lpid == 0);
1321 
1322         /* Copy PATE1:GR into PATE0:HR */
1323         entry->dw0 = spapr->patb_entry & PATE0_HR;
1324         entry->dw1 = spapr->patb_entry;
1325 
1326     } else {
1327         uint64_t patb, pats;
1328 
1329         assert(lpid != 0);
1330 
1331         patb = spapr->nested_ptcr & PTCR_PATB;
1332         pats = spapr->nested_ptcr & PTCR_PATS;
1333 
1334         /* Calculate number of entries */
1335         pats = 1ull << (pats + 12 - 4);
1336         if (pats <= lpid) {
1337             return false;
1338         }
1339 
1340         /* Grab entry */
1341         patb += 16 * lpid;
1342         entry->dw0 = ldq_phys(CPU(cpu)->as, patb);
1343         entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8);
1344     }
1345 
1346     return true;
1347 }
1348 
1349 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1350 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1351 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1352 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1353 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1354 
1355 /*
1356  * Get the fd to access the kernel htab, re-opening it if necessary
1357  */
1358 static int get_htab_fd(SpaprMachineState *spapr)
1359 {
1360     Error *local_err = NULL;
1361 
1362     if (spapr->htab_fd >= 0) {
1363         return spapr->htab_fd;
1364     }
1365 
1366     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1367     if (spapr->htab_fd < 0) {
1368         error_report_err(local_err);
1369     }
1370 
1371     return spapr->htab_fd;
1372 }
1373 
1374 void close_htab_fd(SpaprMachineState *spapr)
1375 {
1376     if (spapr->htab_fd >= 0) {
1377         close(spapr->htab_fd);
1378     }
1379     spapr->htab_fd = -1;
1380 }
1381 
1382 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1383 {
1384     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1385 
1386     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1387 }
1388 
1389 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1390 {
1391     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1392 
1393     assert(kvm_enabled());
1394 
1395     if (!spapr->htab) {
1396         return 0;
1397     }
1398 
1399     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1400 }
1401 
1402 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1403                                                 hwaddr ptex, int n)
1404 {
1405     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1406     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1407 
1408     if (!spapr->htab) {
1409         /*
1410          * HTAB is controlled by KVM. Fetch into temporary buffer
1411          */
1412         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1413         kvmppc_read_hptes(hptes, ptex, n);
1414         return hptes;
1415     }
1416 
1417     /*
1418      * HTAB is controlled by QEMU. Just point to the internally
1419      * accessible PTEG.
1420      */
1421     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1422 }
1423 
1424 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1425                               const ppc_hash_pte64_t *hptes,
1426                               hwaddr ptex, int n)
1427 {
1428     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1429 
1430     if (!spapr->htab) {
1431         g_free((void *)hptes);
1432     }
1433 
1434     /* Nothing to do for qemu managed HPT */
1435 }
1436 
1437 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1438                       uint64_t pte0, uint64_t pte1)
1439 {
1440     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1441     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1442 
1443     if (!spapr->htab) {
1444         kvmppc_write_hpte(ptex, pte0, pte1);
1445     } else {
1446         if (pte0 & HPTE64_V_VALID) {
1447             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1448             /*
1449              * When setting valid, we write PTE1 first. This ensures
1450              * proper synchronization with the reading code in
1451              * ppc_hash64_pteg_search()
1452              */
1453             smp_wmb();
1454             stq_p(spapr->htab + offset, pte0);
1455         } else {
1456             stq_p(spapr->htab + offset, pte0);
1457             /*
1458              * When clearing it we set PTE0 first. This ensures proper
1459              * synchronization with the reading code in
1460              * ppc_hash64_pteg_search()
1461              */
1462             smp_wmb();
1463             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1464         }
1465     }
1466 }
1467 
1468 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1469                              uint64_t pte1)
1470 {
1471     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1472     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1473 
1474     if (!spapr->htab) {
1475         /* There should always be a hash table when this is called */
1476         error_report("spapr_hpte_set_c called with no hash table !");
1477         return;
1478     }
1479 
1480     /* The HW performs a non-atomic byte update */
1481     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1482 }
1483 
1484 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1485                              uint64_t pte1)
1486 {
1487     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1488     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1489 
1490     if (!spapr->htab) {
1491         /* There should always be a hash table when this is called */
1492         error_report("spapr_hpte_set_r called with no hash table !");
1493         return;
1494     }
1495 
1496     /* The HW performs a non-atomic byte update */
1497     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1498 }
1499 
1500 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1501 {
1502     int shift;
1503 
1504     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1505      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1506      * that's much more than is needed for Linux guests */
1507     shift = ctz64(pow2ceil(ramsize)) - 7;
1508     shift = MAX(shift, 18); /* Minimum architected size */
1509     shift = MIN(shift, 46); /* Maximum architected size */
1510     return shift;
1511 }
1512 
1513 void spapr_free_hpt(SpaprMachineState *spapr)
1514 {
1515     g_free(spapr->htab);
1516     spapr->htab = NULL;
1517     spapr->htab_shift = 0;
1518     close_htab_fd(spapr);
1519 }
1520 
1521 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1522 {
1523     ERRP_GUARD();
1524     long rc;
1525 
1526     /* Clean up any HPT info from a previous boot */
1527     spapr_free_hpt(spapr);
1528 
1529     rc = kvmppc_reset_htab(shift);
1530 
1531     if (rc == -EOPNOTSUPP) {
1532         error_setg(errp, "HPT not supported in nested guests");
1533         return -EOPNOTSUPP;
1534     }
1535 
1536     if (rc < 0) {
1537         /* kernel-side HPT needed, but couldn't allocate one */
1538         error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1539                          shift);
1540         error_append_hint(errp, "Try smaller maxmem?\n");
1541         return -errno;
1542     } else if (rc > 0) {
1543         /* kernel-side HPT allocated */
1544         if (rc != shift) {
1545             error_setg(errp,
1546                        "Requested order %d HPT, but kernel allocated order %ld",
1547                        shift, rc);
1548             error_append_hint(errp, "Try smaller maxmem?\n");
1549             return -ENOSPC;
1550         }
1551 
1552         spapr->htab_shift = shift;
1553         spapr->htab = NULL;
1554     } else {
1555         /* kernel-side HPT not needed, allocate in userspace instead */
1556         size_t size = 1ULL << shift;
1557         int i;
1558 
1559         spapr->htab = qemu_memalign(size, size);
1560         memset(spapr->htab, 0, size);
1561         spapr->htab_shift = shift;
1562 
1563         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1564             DIRTY_HPTE(HPTE(spapr->htab, i));
1565         }
1566     }
1567     /* We're setting up a hash table, so that means we're not radix */
1568     spapr->patb_entry = 0;
1569     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1570     return 0;
1571 }
1572 
1573 void spapr_setup_hpt(SpaprMachineState *spapr)
1574 {
1575     int hpt_shift;
1576 
1577     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1578         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1579     } else {
1580         uint64_t current_ram_size;
1581 
1582         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1583         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1584     }
1585     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1586 
1587     if (kvm_enabled()) {
1588         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1589 
1590         /* Check our RMA fits in the possible VRMA */
1591         if (vrma_limit < spapr->rma_size) {
1592             error_report("Unable to create %" HWADDR_PRIu
1593                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1594                          spapr->rma_size / MiB, vrma_limit / MiB);
1595             exit(EXIT_FAILURE);
1596         }
1597     }
1598 }
1599 
1600 void spapr_check_mmu_mode(bool guest_radix)
1601 {
1602     if (guest_radix) {
1603         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1604             error_report("Guest requested unavailable MMU mode (radix).");
1605             exit(EXIT_FAILURE);
1606         }
1607     } else {
1608         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1609             && !kvmppc_has_cap_mmu_hash_v3()) {
1610             error_report("Guest requested unavailable MMU mode (hash).");
1611             exit(EXIT_FAILURE);
1612         }
1613     }
1614 }
1615 
1616 static void spapr_machine_reset(MachineState *machine)
1617 {
1618     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1619     PowerPCCPU *first_ppc_cpu;
1620     hwaddr fdt_addr;
1621     void *fdt;
1622     int rc;
1623 
1624     pef_kvm_reset(machine->cgs, &error_fatal);
1625     spapr_caps_apply(spapr);
1626 
1627     first_ppc_cpu = POWERPC_CPU(first_cpu);
1628     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1629         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1630                               spapr->max_compat_pvr)) {
1631         /*
1632          * If using KVM with radix mode available, VCPUs can be started
1633          * without a HPT because KVM will start them in radix mode.
1634          * Set the GR bit in PATE so that we know there is no HPT.
1635          */
1636         spapr->patb_entry = PATE1_GR;
1637         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1638     } else {
1639         spapr_setup_hpt(spapr);
1640     }
1641 
1642     qemu_devices_reset();
1643 
1644     spapr_ovec_cleanup(spapr->ov5_cas);
1645     spapr->ov5_cas = spapr_ovec_new();
1646 
1647     ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1648 
1649     /*
1650      * This is fixing some of the default configuration of the XIVE
1651      * devices. To be called after the reset of the machine devices.
1652      */
1653     spapr_irq_reset(spapr, &error_fatal);
1654 
1655     /*
1656      * There is no CAS under qtest. Simulate one to please the code that
1657      * depends on spapr->ov5_cas. This is especially needed to test device
1658      * unplug, so we do that before resetting the DRCs.
1659      */
1660     if (qtest_enabled()) {
1661         spapr_ovec_cleanup(spapr->ov5_cas);
1662         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1663     }
1664 
1665     spapr_nvdimm_finish_flushes();
1666 
1667     /* DRC reset may cause a device to be unplugged. This will cause troubles
1668      * if this device is used by another device (eg, a running vhost backend
1669      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1670      * situations, we reset DRCs after all devices have been reset.
1671      */
1672     spapr_drc_reset_all(spapr);
1673 
1674     spapr_clear_pending_events(spapr);
1675 
1676     /*
1677      * We place the device tree just below either the top of the RMA,
1678      * or just below 2GB, whichever is lower, so that it can be
1679      * processed with 32-bit real mode code if necessary
1680      */
1681     fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1682 
1683     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1684     if (spapr->vof) {
1685         spapr_vof_reset(spapr, fdt, &error_fatal);
1686         /*
1687          * Do not pack the FDT as the client may change properties.
1688          * VOF client does not expect the FDT so we do not load it to the VM.
1689          */
1690     } else {
1691         rc = fdt_pack(fdt);
1692         /* Should only fail if we've built a corrupted tree */
1693         assert(rc == 0);
1694 
1695         spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1696                                   0, fdt_addr, 0);
1697         cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1698     }
1699     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1700 
1701     g_free(spapr->fdt_blob);
1702     spapr->fdt_size = fdt_totalsize(fdt);
1703     spapr->fdt_initial_size = spapr->fdt_size;
1704     spapr->fdt_blob = fdt;
1705 
1706     /* Set up the entry state */
1707     first_ppc_cpu->env.gpr[5] = 0;
1708 
1709     spapr->fwnmi_system_reset_addr = -1;
1710     spapr->fwnmi_machine_check_addr = -1;
1711     spapr->fwnmi_machine_check_interlock = -1;
1712 
1713     /* Signal all vCPUs waiting on this condition */
1714     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1715 
1716     migrate_del_blocker(spapr->fwnmi_migration_blocker);
1717 }
1718 
1719 static void spapr_create_nvram(SpaprMachineState *spapr)
1720 {
1721     DeviceState *dev = qdev_new("spapr-nvram");
1722     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1723 
1724     if (dinfo) {
1725         qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1726                                 &error_fatal);
1727     }
1728 
1729     qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1730 
1731     spapr->nvram = (struct SpaprNvram *)dev;
1732 }
1733 
1734 static void spapr_rtc_create(SpaprMachineState *spapr)
1735 {
1736     object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1737                                        sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1738                                        &error_fatal, NULL);
1739     qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1740     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1741                               "date");
1742 }
1743 
1744 /* Returns whether we want to use VGA or not */
1745 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1746 {
1747     vga_interface_created = true;
1748     switch (vga_interface_type) {
1749     case VGA_NONE:
1750         return false;
1751     case VGA_DEVICE:
1752         return true;
1753     case VGA_STD:
1754     case VGA_VIRTIO:
1755     case VGA_CIRRUS:
1756         return pci_vga_init(pci_bus) != NULL;
1757     default:
1758         error_setg(errp,
1759                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1760         return false;
1761     }
1762 }
1763 
1764 static int spapr_pre_load(void *opaque)
1765 {
1766     int rc;
1767 
1768     rc = spapr_caps_pre_load(opaque);
1769     if (rc) {
1770         return rc;
1771     }
1772 
1773     return 0;
1774 }
1775 
1776 static int spapr_post_load(void *opaque, int version_id)
1777 {
1778     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1779     int err = 0;
1780 
1781     err = spapr_caps_post_migration(spapr);
1782     if (err) {
1783         return err;
1784     }
1785 
1786     /*
1787      * In earlier versions, there was no separate qdev for the PAPR
1788      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1789      * So when migrating from those versions, poke the incoming offset
1790      * value into the RTC device
1791      */
1792     if (version_id < 3) {
1793         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1794         if (err) {
1795             return err;
1796         }
1797     }
1798 
1799     if (kvm_enabled() && spapr->patb_entry) {
1800         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1801         bool radix = !!(spapr->patb_entry & PATE1_GR);
1802         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1803 
1804         /*
1805          * Update LPCR:HR and UPRT as they may not be set properly in
1806          * the stream
1807          */
1808         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1809                             LPCR_HR | LPCR_UPRT);
1810 
1811         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1812         if (err) {
1813             error_report("Process table config unsupported by the host");
1814             return -EINVAL;
1815         }
1816     }
1817 
1818     err = spapr_irq_post_load(spapr, version_id);
1819     if (err) {
1820         return err;
1821     }
1822 
1823     return err;
1824 }
1825 
1826 static int spapr_pre_save(void *opaque)
1827 {
1828     int rc;
1829 
1830     rc = spapr_caps_pre_save(opaque);
1831     if (rc) {
1832         return rc;
1833     }
1834 
1835     return 0;
1836 }
1837 
1838 static bool version_before_3(void *opaque, int version_id)
1839 {
1840     return version_id < 3;
1841 }
1842 
1843 static bool spapr_pending_events_needed(void *opaque)
1844 {
1845     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1846     return !QTAILQ_EMPTY(&spapr->pending_events);
1847 }
1848 
1849 static const VMStateDescription vmstate_spapr_event_entry = {
1850     .name = "spapr_event_log_entry",
1851     .version_id = 1,
1852     .minimum_version_id = 1,
1853     .fields = (VMStateField[]) {
1854         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1855         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1856         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1857                                      NULL, extended_length),
1858         VMSTATE_END_OF_LIST()
1859     },
1860 };
1861 
1862 static const VMStateDescription vmstate_spapr_pending_events = {
1863     .name = "spapr_pending_events",
1864     .version_id = 1,
1865     .minimum_version_id = 1,
1866     .needed = spapr_pending_events_needed,
1867     .fields = (VMStateField[]) {
1868         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1869                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1870         VMSTATE_END_OF_LIST()
1871     },
1872 };
1873 
1874 static bool spapr_ov5_cas_needed(void *opaque)
1875 {
1876     SpaprMachineState *spapr = opaque;
1877     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1878     bool cas_needed;
1879 
1880     /* Prior to the introduction of SpaprOptionVector, we had two option
1881      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1882      * Both of these options encode machine topology into the device-tree
1883      * in such a way that the now-booted OS should still be able to interact
1884      * appropriately with QEMU regardless of what options were actually
1885      * negotiatied on the source side.
1886      *
1887      * As such, we can avoid migrating the CAS-negotiated options if these
1888      * are the only options available on the current machine/platform.
1889      * Since these are the only options available for pseries-2.7 and
1890      * earlier, this allows us to maintain old->new/new->old migration
1891      * compatibility.
1892      *
1893      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1894      * via default pseries-2.8 machines and explicit command-line parameters.
1895      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1896      * of the actual CAS-negotiated values to continue working properly. For
1897      * example, availability of memory unplug depends on knowing whether
1898      * OV5_HP_EVT was negotiated via CAS.
1899      *
1900      * Thus, for any cases where the set of available CAS-negotiatable
1901      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1902      * include the CAS-negotiated options in the migration stream, unless
1903      * if they affect boot time behaviour only.
1904      */
1905     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1906     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1907     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1908 
1909     /* We need extra information if we have any bits outside the mask
1910      * defined above */
1911     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1912 
1913     spapr_ovec_cleanup(ov5_mask);
1914 
1915     return cas_needed;
1916 }
1917 
1918 static const VMStateDescription vmstate_spapr_ov5_cas = {
1919     .name = "spapr_option_vector_ov5_cas",
1920     .version_id = 1,
1921     .minimum_version_id = 1,
1922     .needed = spapr_ov5_cas_needed,
1923     .fields = (VMStateField[]) {
1924         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1925                                  vmstate_spapr_ovec, SpaprOptionVector),
1926         VMSTATE_END_OF_LIST()
1927     },
1928 };
1929 
1930 static bool spapr_patb_entry_needed(void *opaque)
1931 {
1932     SpaprMachineState *spapr = opaque;
1933 
1934     return !!spapr->patb_entry;
1935 }
1936 
1937 static const VMStateDescription vmstate_spapr_patb_entry = {
1938     .name = "spapr_patb_entry",
1939     .version_id = 1,
1940     .minimum_version_id = 1,
1941     .needed = spapr_patb_entry_needed,
1942     .fields = (VMStateField[]) {
1943         VMSTATE_UINT64(patb_entry, SpaprMachineState),
1944         VMSTATE_END_OF_LIST()
1945     },
1946 };
1947 
1948 static bool spapr_irq_map_needed(void *opaque)
1949 {
1950     SpaprMachineState *spapr = opaque;
1951 
1952     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1953 }
1954 
1955 static const VMStateDescription vmstate_spapr_irq_map = {
1956     .name = "spapr_irq_map",
1957     .version_id = 1,
1958     .minimum_version_id = 1,
1959     .needed = spapr_irq_map_needed,
1960     .fields = (VMStateField[]) {
1961         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1962         VMSTATE_END_OF_LIST()
1963     },
1964 };
1965 
1966 static bool spapr_dtb_needed(void *opaque)
1967 {
1968     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1969 
1970     return smc->update_dt_enabled;
1971 }
1972 
1973 static int spapr_dtb_pre_load(void *opaque)
1974 {
1975     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1976 
1977     g_free(spapr->fdt_blob);
1978     spapr->fdt_blob = NULL;
1979     spapr->fdt_size = 0;
1980 
1981     return 0;
1982 }
1983 
1984 static const VMStateDescription vmstate_spapr_dtb = {
1985     .name = "spapr_dtb",
1986     .version_id = 1,
1987     .minimum_version_id = 1,
1988     .needed = spapr_dtb_needed,
1989     .pre_load = spapr_dtb_pre_load,
1990     .fields = (VMStateField[]) {
1991         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1992         VMSTATE_UINT32(fdt_size, SpaprMachineState),
1993         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1994                                      fdt_size),
1995         VMSTATE_END_OF_LIST()
1996     },
1997 };
1998 
1999 static bool spapr_fwnmi_needed(void *opaque)
2000 {
2001     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2002 
2003     return spapr->fwnmi_machine_check_addr != -1;
2004 }
2005 
2006 static int spapr_fwnmi_pre_save(void *opaque)
2007 {
2008     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2009 
2010     /*
2011      * Check if machine check handling is in progress and print a
2012      * warning message.
2013      */
2014     if (spapr->fwnmi_machine_check_interlock != -1) {
2015         warn_report("A machine check is being handled during migration. The"
2016                 "handler may run and log hardware error on the destination");
2017     }
2018 
2019     return 0;
2020 }
2021 
2022 static const VMStateDescription vmstate_spapr_fwnmi = {
2023     .name = "spapr_fwnmi",
2024     .version_id = 1,
2025     .minimum_version_id = 1,
2026     .needed = spapr_fwnmi_needed,
2027     .pre_save = spapr_fwnmi_pre_save,
2028     .fields = (VMStateField[]) {
2029         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2030         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2031         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2032         VMSTATE_END_OF_LIST()
2033     },
2034 };
2035 
2036 static const VMStateDescription vmstate_spapr = {
2037     .name = "spapr",
2038     .version_id = 3,
2039     .minimum_version_id = 1,
2040     .pre_load = spapr_pre_load,
2041     .post_load = spapr_post_load,
2042     .pre_save = spapr_pre_save,
2043     .fields = (VMStateField[]) {
2044         /* used to be @next_irq */
2045         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2046 
2047         /* RTC offset */
2048         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2049 
2050         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2051         VMSTATE_END_OF_LIST()
2052     },
2053     .subsections = (const VMStateDescription*[]) {
2054         &vmstate_spapr_ov5_cas,
2055         &vmstate_spapr_patb_entry,
2056         &vmstate_spapr_pending_events,
2057         &vmstate_spapr_cap_htm,
2058         &vmstate_spapr_cap_vsx,
2059         &vmstate_spapr_cap_dfp,
2060         &vmstate_spapr_cap_cfpc,
2061         &vmstate_spapr_cap_sbbc,
2062         &vmstate_spapr_cap_ibs,
2063         &vmstate_spapr_cap_hpt_maxpagesize,
2064         &vmstate_spapr_irq_map,
2065         &vmstate_spapr_cap_nested_kvm_hv,
2066         &vmstate_spapr_dtb,
2067         &vmstate_spapr_cap_large_decr,
2068         &vmstate_spapr_cap_ccf_assist,
2069         &vmstate_spapr_cap_fwnmi,
2070         &vmstate_spapr_fwnmi,
2071         &vmstate_spapr_cap_rpt_invalidate,
2072         NULL
2073     }
2074 };
2075 
2076 static int htab_save_setup(QEMUFile *f, void *opaque)
2077 {
2078     SpaprMachineState *spapr = opaque;
2079 
2080     /* "Iteration" header */
2081     if (!spapr->htab_shift) {
2082         qemu_put_be32(f, -1);
2083     } else {
2084         qemu_put_be32(f, spapr->htab_shift);
2085     }
2086 
2087     if (spapr->htab) {
2088         spapr->htab_save_index = 0;
2089         spapr->htab_first_pass = true;
2090     } else {
2091         if (spapr->htab_shift) {
2092             assert(kvm_enabled());
2093         }
2094     }
2095 
2096 
2097     return 0;
2098 }
2099 
2100 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2101                             int chunkstart, int n_valid, int n_invalid)
2102 {
2103     qemu_put_be32(f, chunkstart);
2104     qemu_put_be16(f, n_valid);
2105     qemu_put_be16(f, n_invalid);
2106     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2107                     HASH_PTE_SIZE_64 * n_valid);
2108 }
2109 
2110 static void htab_save_end_marker(QEMUFile *f)
2111 {
2112     qemu_put_be32(f, 0);
2113     qemu_put_be16(f, 0);
2114     qemu_put_be16(f, 0);
2115 }
2116 
2117 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2118                                  int64_t max_ns)
2119 {
2120     bool has_timeout = max_ns != -1;
2121     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2122     int index = spapr->htab_save_index;
2123     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2124 
2125     assert(spapr->htab_first_pass);
2126 
2127     do {
2128         int chunkstart;
2129 
2130         /* Consume invalid HPTEs */
2131         while ((index < htabslots)
2132                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2133             CLEAN_HPTE(HPTE(spapr->htab, index));
2134             index++;
2135         }
2136 
2137         /* Consume valid HPTEs */
2138         chunkstart = index;
2139         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2140                && HPTE_VALID(HPTE(spapr->htab, index))) {
2141             CLEAN_HPTE(HPTE(spapr->htab, index));
2142             index++;
2143         }
2144 
2145         if (index > chunkstart) {
2146             int n_valid = index - chunkstart;
2147 
2148             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2149 
2150             if (has_timeout &&
2151                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2152                 break;
2153             }
2154         }
2155     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2156 
2157     if (index >= htabslots) {
2158         assert(index == htabslots);
2159         index = 0;
2160         spapr->htab_first_pass = false;
2161     }
2162     spapr->htab_save_index = index;
2163 }
2164 
2165 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2166                                 int64_t max_ns)
2167 {
2168     bool final = max_ns < 0;
2169     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2170     int examined = 0, sent = 0;
2171     int index = spapr->htab_save_index;
2172     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2173 
2174     assert(!spapr->htab_first_pass);
2175 
2176     do {
2177         int chunkstart, invalidstart;
2178 
2179         /* Consume non-dirty HPTEs */
2180         while ((index < htabslots)
2181                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2182             index++;
2183             examined++;
2184         }
2185 
2186         chunkstart = index;
2187         /* Consume valid dirty HPTEs */
2188         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2189                && HPTE_DIRTY(HPTE(spapr->htab, index))
2190                && HPTE_VALID(HPTE(spapr->htab, index))) {
2191             CLEAN_HPTE(HPTE(spapr->htab, index));
2192             index++;
2193             examined++;
2194         }
2195 
2196         invalidstart = index;
2197         /* Consume invalid dirty HPTEs */
2198         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2199                && HPTE_DIRTY(HPTE(spapr->htab, index))
2200                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2201             CLEAN_HPTE(HPTE(spapr->htab, index));
2202             index++;
2203             examined++;
2204         }
2205 
2206         if (index > chunkstart) {
2207             int n_valid = invalidstart - chunkstart;
2208             int n_invalid = index - invalidstart;
2209 
2210             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2211             sent += index - chunkstart;
2212 
2213             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2214                 break;
2215             }
2216         }
2217 
2218         if (examined >= htabslots) {
2219             break;
2220         }
2221 
2222         if (index >= htabslots) {
2223             assert(index == htabslots);
2224             index = 0;
2225         }
2226     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2227 
2228     if (index >= htabslots) {
2229         assert(index == htabslots);
2230         index = 0;
2231     }
2232 
2233     spapr->htab_save_index = index;
2234 
2235     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2236 }
2237 
2238 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2239 #define MAX_KVM_BUF_SIZE    2048
2240 
2241 static int htab_save_iterate(QEMUFile *f, void *opaque)
2242 {
2243     SpaprMachineState *spapr = opaque;
2244     int fd;
2245     int rc = 0;
2246 
2247     /* Iteration header */
2248     if (!spapr->htab_shift) {
2249         qemu_put_be32(f, -1);
2250         return 1;
2251     } else {
2252         qemu_put_be32(f, 0);
2253     }
2254 
2255     if (!spapr->htab) {
2256         assert(kvm_enabled());
2257 
2258         fd = get_htab_fd(spapr);
2259         if (fd < 0) {
2260             return fd;
2261         }
2262 
2263         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2264         if (rc < 0) {
2265             return rc;
2266         }
2267     } else  if (spapr->htab_first_pass) {
2268         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2269     } else {
2270         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2271     }
2272 
2273     htab_save_end_marker(f);
2274 
2275     return rc;
2276 }
2277 
2278 static int htab_save_complete(QEMUFile *f, void *opaque)
2279 {
2280     SpaprMachineState *spapr = opaque;
2281     int fd;
2282 
2283     /* Iteration header */
2284     if (!spapr->htab_shift) {
2285         qemu_put_be32(f, -1);
2286         return 0;
2287     } else {
2288         qemu_put_be32(f, 0);
2289     }
2290 
2291     if (!spapr->htab) {
2292         int rc;
2293 
2294         assert(kvm_enabled());
2295 
2296         fd = get_htab_fd(spapr);
2297         if (fd < 0) {
2298             return fd;
2299         }
2300 
2301         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2302         if (rc < 0) {
2303             return rc;
2304         }
2305     } else {
2306         if (spapr->htab_first_pass) {
2307             htab_save_first_pass(f, spapr, -1);
2308         }
2309         htab_save_later_pass(f, spapr, -1);
2310     }
2311 
2312     /* End marker */
2313     htab_save_end_marker(f);
2314 
2315     return 0;
2316 }
2317 
2318 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2319 {
2320     SpaprMachineState *spapr = opaque;
2321     uint32_t section_hdr;
2322     int fd = -1;
2323     Error *local_err = NULL;
2324 
2325     if (version_id < 1 || version_id > 1) {
2326         error_report("htab_load() bad version");
2327         return -EINVAL;
2328     }
2329 
2330     section_hdr = qemu_get_be32(f);
2331 
2332     if (section_hdr == -1) {
2333         spapr_free_hpt(spapr);
2334         return 0;
2335     }
2336 
2337     if (section_hdr) {
2338         int ret;
2339 
2340         /* First section gives the htab size */
2341         ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2342         if (ret < 0) {
2343             error_report_err(local_err);
2344             return ret;
2345         }
2346         return 0;
2347     }
2348 
2349     if (!spapr->htab) {
2350         assert(kvm_enabled());
2351 
2352         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2353         if (fd < 0) {
2354             error_report_err(local_err);
2355             return fd;
2356         }
2357     }
2358 
2359     while (true) {
2360         uint32_t index;
2361         uint16_t n_valid, n_invalid;
2362 
2363         index = qemu_get_be32(f);
2364         n_valid = qemu_get_be16(f);
2365         n_invalid = qemu_get_be16(f);
2366 
2367         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2368             /* End of Stream */
2369             break;
2370         }
2371 
2372         if ((index + n_valid + n_invalid) >
2373             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2374             /* Bad index in stream */
2375             error_report(
2376                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2377                 index, n_valid, n_invalid, spapr->htab_shift);
2378             return -EINVAL;
2379         }
2380 
2381         if (spapr->htab) {
2382             if (n_valid) {
2383                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2384                                 HASH_PTE_SIZE_64 * n_valid);
2385             }
2386             if (n_invalid) {
2387                 memset(HPTE(spapr->htab, index + n_valid), 0,
2388                        HASH_PTE_SIZE_64 * n_invalid);
2389             }
2390         } else {
2391             int rc;
2392 
2393             assert(fd >= 0);
2394 
2395             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2396                                         &local_err);
2397             if (rc < 0) {
2398                 error_report_err(local_err);
2399                 return rc;
2400             }
2401         }
2402     }
2403 
2404     if (!spapr->htab) {
2405         assert(fd >= 0);
2406         close(fd);
2407     }
2408 
2409     return 0;
2410 }
2411 
2412 static void htab_save_cleanup(void *opaque)
2413 {
2414     SpaprMachineState *spapr = opaque;
2415 
2416     close_htab_fd(spapr);
2417 }
2418 
2419 static SaveVMHandlers savevm_htab_handlers = {
2420     .save_setup = htab_save_setup,
2421     .save_live_iterate = htab_save_iterate,
2422     .save_live_complete_precopy = htab_save_complete,
2423     .save_cleanup = htab_save_cleanup,
2424     .load_state = htab_load,
2425 };
2426 
2427 static void spapr_boot_set(void *opaque, const char *boot_device,
2428                            Error **errp)
2429 {
2430     SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2431 
2432     g_free(spapr->boot_device);
2433     spapr->boot_device = g_strdup(boot_device);
2434 }
2435 
2436 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2437 {
2438     MachineState *machine = MACHINE(spapr);
2439     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2440     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2441     int i;
2442 
2443     for (i = 0; i < nr_lmbs; i++) {
2444         uint64_t addr;
2445 
2446         addr = i * lmb_size + machine->device_memory->base;
2447         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2448                                addr / lmb_size);
2449     }
2450 }
2451 
2452 /*
2453  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2454  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2455  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2456  */
2457 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2458 {
2459     int i;
2460 
2461     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2462         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2463                    " is not aligned to %" PRIu64 " MiB",
2464                    machine->ram_size,
2465                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2466         return;
2467     }
2468 
2469     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2470         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2471                    " is not aligned to %" PRIu64 " MiB",
2472                    machine->ram_size,
2473                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2474         return;
2475     }
2476 
2477     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2478         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2479             error_setg(errp,
2480                        "Node %d memory size 0x%" PRIx64
2481                        " is not aligned to %" PRIu64 " MiB",
2482                        i, machine->numa_state->nodes[i].node_mem,
2483                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2484             return;
2485         }
2486     }
2487 }
2488 
2489 /* find cpu slot in machine->possible_cpus by core_id */
2490 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2491 {
2492     int index = id / ms->smp.threads;
2493 
2494     if (index >= ms->possible_cpus->len) {
2495         return NULL;
2496     }
2497     if (idx) {
2498         *idx = index;
2499     }
2500     return &ms->possible_cpus->cpus[index];
2501 }
2502 
2503 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2504 {
2505     MachineState *ms = MACHINE(spapr);
2506     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2507     Error *local_err = NULL;
2508     bool vsmt_user = !!spapr->vsmt;
2509     int kvm_smt = kvmppc_smt_threads();
2510     int ret;
2511     unsigned int smp_threads = ms->smp.threads;
2512 
2513     if (!kvm_enabled() && (smp_threads > 1)) {
2514         error_setg(errp, "TCG cannot support more than 1 thread/core "
2515                    "on a pseries machine");
2516         return;
2517     }
2518     if (!is_power_of_2(smp_threads)) {
2519         error_setg(errp, "Cannot support %d threads/core on a pseries "
2520                    "machine because it must be a power of 2", smp_threads);
2521         return;
2522     }
2523 
2524     /* Detemine the VSMT mode to use: */
2525     if (vsmt_user) {
2526         if (spapr->vsmt < smp_threads) {
2527             error_setg(errp, "Cannot support VSMT mode %d"
2528                        " because it must be >= threads/core (%d)",
2529                        spapr->vsmt, smp_threads);
2530             return;
2531         }
2532         /* In this case, spapr->vsmt has been set by the command line */
2533     } else if (!smc->smp_threads_vsmt) {
2534         /*
2535          * Default VSMT value is tricky, because we need it to be as
2536          * consistent as possible (for migration), but this requires
2537          * changing it for at least some existing cases.  We pick 8 as
2538          * the value that we'd get with KVM on POWER8, the
2539          * overwhelmingly common case in production systems.
2540          */
2541         spapr->vsmt = MAX(8, smp_threads);
2542     } else {
2543         spapr->vsmt = smp_threads;
2544     }
2545 
2546     /* KVM: If necessary, set the SMT mode: */
2547     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2548         ret = kvmppc_set_smt_threads(spapr->vsmt);
2549         if (ret) {
2550             /* Looks like KVM isn't able to change VSMT mode */
2551             error_setg(&local_err,
2552                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2553                        spapr->vsmt, ret);
2554             /* We can live with that if the default one is big enough
2555              * for the number of threads, and a submultiple of the one
2556              * we want.  In this case we'll waste some vcpu ids, but
2557              * behaviour will be correct */
2558             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2559                 warn_report_err(local_err);
2560             } else {
2561                 if (!vsmt_user) {
2562                     error_append_hint(&local_err,
2563                                       "On PPC, a VM with %d threads/core"
2564                                       " on a host with %d threads/core"
2565                                       " requires the use of VSMT mode %d.\n",
2566                                       smp_threads, kvm_smt, spapr->vsmt);
2567                 }
2568                 kvmppc_error_append_smt_possible_hint(&local_err);
2569                 error_propagate(errp, local_err);
2570             }
2571         }
2572     }
2573     /* else TCG: nothing to do currently */
2574 }
2575 
2576 static void spapr_init_cpus(SpaprMachineState *spapr)
2577 {
2578     MachineState *machine = MACHINE(spapr);
2579     MachineClass *mc = MACHINE_GET_CLASS(machine);
2580     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2581     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2582     const CPUArchIdList *possible_cpus;
2583     unsigned int smp_cpus = machine->smp.cpus;
2584     unsigned int smp_threads = machine->smp.threads;
2585     unsigned int max_cpus = machine->smp.max_cpus;
2586     int boot_cores_nr = smp_cpus / smp_threads;
2587     int i;
2588 
2589     possible_cpus = mc->possible_cpu_arch_ids(machine);
2590     if (mc->has_hotpluggable_cpus) {
2591         if (smp_cpus % smp_threads) {
2592             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2593                          smp_cpus, smp_threads);
2594             exit(1);
2595         }
2596         if (max_cpus % smp_threads) {
2597             error_report("max_cpus (%u) must be multiple of threads (%u)",
2598                          max_cpus, smp_threads);
2599             exit(1);
2600         }
2601     } else {
2602         if (max_cpus != smp_cpus) {
2603             error_report("This machine version does not support CPU hotplug");
2604             exit(1);
2605         }
2606         boot_cores_nr = possible_cpus->len;
2607     }
2608 
2609     if (smc->pre_2_10_has_unused_icps) {
2610         int i;
2611 
2612         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2613             /* Dummy entries get deregistered when real ICPState objects
2614              * are registered during CPU core hotplug.
2615              */
2616             pre_2_10_vmstate_register_dummy_icp(i);
2617         }
2618     }
2619 
2620     for (i = 0; i < possible_cpus->len; i++) {
2621         int core_id = i * smp_threads;
2622 
2623         if (mc->has_hotpluggable_cpus) {
2624             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2625                                    spapr_vcpu_id(spapr, core_id));
2626         }
2627 
2628         if (i < boot_cores_nr) {
2629             Object *core  = object_new(type);
2630             int nr_threads = smp_threads;
2631 
2632             /* Handle the partially filled core for older machine types */
2633             if ((i + 1) * smp_threads >= smp_cpus) {
2634                 nr_threads = smp_cpus - i * smp_threads;
2635             }
2636 
2637             object_property_set_int(core, "nr-threads", nr_threads,
2638                                     &error_fatal);
2639             object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2640                                     &error_fatal);
2641             qdev_realize(DEVICE(core), NULL, &error_fatal);
2642 
2643             object_unref(core);
2644         }
2645     }
2646 }
2647 
2648 static PCIHostState *spapr_create_default_phb(void)
2649 {
2650     DeviceState *dev;
2651 
2652     dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2653     qdev_prop_set_uint32(dev, "index", 0);
2654     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2655 
2656     return PCI_HOST_BRIDGE(dev);
2657 }
2658 
2659 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2660 {
2661     MachineState *machine = MACHINE(spapr);
2662     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2663     hwaddr rma_size = machine->ram_size;
2664     hwaddr node0_size = spapr_node0_size(machine);
2665 
2666     /* RMA has to fit in the first NUMA node */
2667     rma_size = MIN(rma_size, node0_size);
2668 
2669     /*
2670      * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2671      * never exceed that
2672      */
2673     rma_size = MIN(rma_size, 1 * TiB);
2674 
2675     /*
2676      * Clamp the RMA size based on machine type.  This is for
2677      * migration compatibility with older qemu versions, which limited
2678      * the RMA size for complicated and mostly bad reasons.
2679      */
2680     if (smc->rma_limit) {
2681         rma_size = MIN(rma_size, smc->rma_limit);
2682     }
2683 
2684     if (rma_size < MIN_RMA_SLOF) {
2685         error_setg(errp,
2686                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2687                    "ldMiB guest RMA (Real Mode Area memory)",
2688                    MIN_RMA_SLOF / MiB);
2689         return 0;
2690     }
2691 
2692     return rma_size;
2693 }
2694 
2695 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2696 {
2697     MachineState *machine = MACHINE(spapr);
2698     int i;
2699 
2700     for (i = 0; i < machine->ram_slots; i++) {
2701         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2702     }
2703 }
2704 
2705 /* pSeries LPAR / sPAPR hardware init */
2706 static void spapr_machine_init(MachineState *machine)
2707 {
2708     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2709     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2710     MachineClass *mc = MACHINE_GET_CLASS(machine);
2711     const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2712     const char *bios_name = machine->firmware ?: bios_default;
2713     g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2714     const char *kernel_filename = machine->kernel_filename;
2715     const char *initrd_filename = machine->initrd_filename;
2716     PCIHostState *phb;
2717     bool has_vga;
2718     int i;
2719     MemoryRegion *sysmem = get_system_memory();
2720     long load_limit, fw_size;
2721     Error *resize_hpt_err = NULL;
2722 
2723     if (!filename) {
2724         error_report("Could not find LPAR firmware '%s'", bios_name);
2725         exit(1);
2726     }
2727     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2728     if (fw_size <= 0) {
2729         error_report("Could not load LPAR firmware '%s'", filename);
2730         exit(1);
2731     }
2732 
2733     /*
2734      * if Secure VM (PEF) support is configured, then initialize it
2735      */
2736     pef_kvm_init(machine->cgs, &error_fatal);
2737 
2738     msi_nonbroken = true;
2739 
2740     QLIST_INIT(&spapr->phbs);
2741     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2742 
2743     /* Determine capabilities to run with */
2744     spapr_caps_init(spapr);
2745 
2746     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2747     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2748         /*
2749          * If the user explicitly requested a mode we should either
2750          * supply it, or fail completely (which we do below).  But if
2751          * it's not set explicitly, we reset our mode to something
2752          * that works
2753          */
2754         if (resize_hpt_err) {
2755             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2756             error_free(resize_hpt_err);
2757             resize_hpt_err = NULL;
2758         } else {
2759             spapr->resize_hpt = smc->resize_hpt_default;
2760         }
2761     }
2762 
2763     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2764 
2765     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2766         /*
2767          * User requested HPT resize, but this host can't supply it.  Bail out
2768          */
2769         error_report_err(resize_hpt_err);
2770         exit(1);
2771     }
2772     error_free(resize_hpt_err);
2773 
2774     spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2775 
2776     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2777     load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2778 
2779     /*
2780      * VSMT must be set in order to be able to compute VCPU ids, ie to
2781      * call spapr_max_server_number() or spapr_vcpu_id().
2782      */
2783     spapr_set_vsmt_mode(spapr, &error_fatal);
2784 
2785     /* Set up Interrupt Controller before we create the VCPUs */
2786     spapr_irq_init(spapr, &error_fatal);
2787 
2788     /* Set up containers for ibm,client-architecture-support negotiated options
2789      */
2790     spapr->ov5 = spapr_ovec_new();
2791     spapr->ov5_cas = spapr_ovec_new();
2792 
2793     if (smc->dr_lmb_enabled) {
2794         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2795         spapr_validate_node_memory(machine, &error_fatal);
2796     }
2797 
2798     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2799 
2800     /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2801     if (!smc->pre_6_2_numa_affinity) {
2802         spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2803     }
2804 
2805     /* advertise support for dedicated HP event source to guests */
2806     if (spapr->use_hotplug_event_source) {
2807         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2808     }
2809 
2810     /* advertise support for HPT resizing */
2811     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2812         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2813     }
2814 
2815     /* advertise support for ibm,dyamic-memory-v2 */
2816     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2817 
2818     /* advertise XIVE on POWER9 machines */
2819     if (spapr->irq->xive) {
2820         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2821     }
2822 
2823     /* init CPUs */
2824     spapr_init_cpus(spapr);
2825 
2826     spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2827 
2828     /* Init numa_assoc_array */
2829     spapr_numa_associativity_init(spapr, machine);
2830 
2831     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2832         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2833                               spapr->max_compat_pvr)) {
2834         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2835         /* KVM and TCG always allow GTSE with radix... */
2836         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2837     }
2838     /* ... but not with hash (currently). */
2839 
2840     if (kvm_enabled()) {
2841         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2842         kvmppc_enable_logical_ci_hcalls();
2843         kvmppc_enable_set_mode_hcall();
2844 
2845         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2846         kvmppc_enable_clear_ref_mod_hcalls();
2847 
2848         /* Enable H_PAGE_INIT */
2849         kvmppc_enable_h_page_init();
2850     }
2851 
2852     /* map RAM */
2853     memory_region_add_subregion(sysmem, 0, machine->ram);
2854 
2855     /* always allocate the device memory information */
2856     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2857 
2858     /* initialize hotplug memory address space */
2859     if (machine->ram_size < machine->maxram_size) {
2860         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2861         /*
2862          * Limit the number of hotpluggable memory slots to half the number
2863          * slots that KVM supports, leaving the other half for PCI and other
2864          * devices. However ensure that number of slots doesn't drop below 32.
2865          */
2866         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2867                            SPAPR_MAX_RAM_SLOTS;
2868 
2869         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2870             max_memslots = SPAPR_MAX_RAM_SLOTS;
2871         }
2872         if (machine->ram_slots > max_memslots) {
2873             error_report("Specified number of memory slots %"
2874                          PRIu64" exceeds max supported %d",
2875                          machine->ram_slots, max_memslots);
2876             exit(1);
2877         }
2878 
2879         machine->device_memory->base = ROUND_UP(machine->ram_size,
2880                                                 SPAPR_DEVICE_MEM_ALIGN);
2881         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2882                            "device-memory", device_mem_size);
2883         memory_region_add_subregion(sysmem, machine->device_memory->base,
2884                                     &machine->device_memory->mr);
2885     }
2886 
2887     if (smc->dr_lmb_enabled) {
2888         spapr_create_lmb_dr_connectors(spapr);
2889     }
2890 
2891     if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2892         /* Create the error string for live migration blocker */
2893         error_setg(&spapr->fwnmi_migration_blocker,
2894             "A machine check is being handled during migration. The handler"
2895             "may run and log hardware error on the destination");
2896     }
2897 
2898     if (mc->nvdimm_supported) {
2899         spapr_create_nvdimm_dr_connectors(spapr);
2900     }
2901 
2902     /* Set up RTAS event infrastructure */
2903     spapr_events_init(spapr);
2904 
2905     /* Set up the RTC RTAS interfaces */
2906     spapr_rtc_create(spapr);
2907 
2908     /* Set up VIO bus */
2909     spapr->vio_bus = spapr_vio_bus_init();
2910 
2911     for (i = 0; serial_hd(i); i++) {
2912         spapr_vty_create(spapr->vio_bus, serial_hd(i));
2913     }
2914 
2915     /* We always have at least the nvram device on VIO */
2916     spapr_create_nvram(spapr);
2917 
2918     /*
2919      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2920      * connectors (described in root DT node's "ibm,drc-types" property)
2921      * are pre-initialized here. additional child connectors (such as
2922      * connectors for a PHBs PCI slots) are added as needed during their
2923      * parent's realization.
2924      */
2925     if (smc->dr_phb_enabled) {
2926         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2927             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2928         }
2929     }
2930 
2931     /* Set up PCI */
2932     spapr_pci_rtas_init();
2933 
2934     phb = spapr_create_default_phb();
2935 
2936     for (i = 0; i < nb_nics; i++) {
2937         NICInfo *nd = &nd_table[i];
2938 
2939         if (!nd->model) {
2940             nd->model = g_strdup("spapr-vlan");
2941         }
2942 
2943         if (g_str_equal(nd->model, "spapr-vlan") ||
2944             g_str_equal(nd->model, "ibmveth")) {
2945             spapr_vlan_create(spapr->vio_bus, nd);
2946         } else {
2947             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2948         }
2949     }
2950 
2951     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2952         spapr_vscsi_create(spapr->vio_bus);
2953     }
2954 
2955     /* Graphics */
2956     has_vga = spapr_vga_init(phb->bus, &error_fatal);
2957     if (has_vga) {
2958         spapr->want_stdout_path = !machine->enable_graphics;
2959         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2960     } else {
2961         spapr->want_stdout_path = true;
2962     }
2963 
2964     if (machine->usb) {
2965         if (smc->use_ohci_by_default) {
2966             pci_create_simple(phb->bus, -1, "pci-ohci");
2967         } else {
2968             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2969         }
2970 
2971         if (has_vga) {
2972             USBBus *usb_bus = usb_bus_find(-1);
2973 
2974             usb_create_simple(usb_bus, "usb-kbd");
2975             usb_create_simple(usb_bus, "usb-mouse");
2976         }
2977     }
2978 
2979     if (kernel_filename) {
2980         uint64_t loaded_addr = 0;
2981 
2982         spapr->kernel_size = load_elf(kernel_filename, NULL,
2983                                       translate_kernel_address, spapr,
2984                                       NULL, &loaded_addr, NULL, NULL, 1,
2985                                       PPC_ELF_MACHINE, 0, 0);
2986         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2987             spapr->kernel_size = load_elf(kernel_filename, NULL,
2988                                           translate_kernel_address, spapr,
2989                                           NULL, &loaded_addr, NULL, NULL, 0,
2990                                           PPC_ELF_MACHINE, 0, 0);
2991             spapr->kernel_le = spapr->kernel_size > 0;
2992         }
2993         if (spapr->kernel_size < 0) {
2994             error_report("error loading %s: %s", kernel_filename,
2995                          load_elf_strerror(spapr->kernel_size));
2996             exit(1);
2997         }
2998 
2999         if (spapr->kernel_addr != loaded_addr) {
3000             warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3001                         " to 0x%"PRIx64,
3002                         spapr->kernel_addr, loaded_addr);
3003             spapr->kernel_addr = loaded_addr;
3004         }
3005 
3006         /* load initrd */
3007         if (initrd_filename) {
3008             /* Try to locate the initrd in the gap between the kernel
3009              * and the firmware. Add a bit of space just in case
3010              */
3011             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3012                                   + 0x1ffff) & ~0xffff;
3013             spapr->initrd_size = load_image_targphys(initrd_filename,
3014                                                      spapr->initrd_base,
3015                                                      load_limit
3016                                                      - spapr->initrd_base);
3017             if (spapr->initrd_size < 0) {
3018                 error_report("could not load initial ram disk '%s'",
3019                              initrd_filename);
3020                 exit(1);
3021             }
3022         }
3023     }
3024 
3025     /* FIXME: Should register things through the MachineState's qdev
3026      * interface, this is a legacy from the sPAPREnvironment structure
3027      * which predated MachineState but had a similar function */
3028     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3029     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3030                          &savevm_htab_handlers, spapr);
3031 
3032     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3033 
3034     qemu_register_boot_set(spapr_boot_set, spapr);
3035 
3036     /*
3037      * Nothing needs to be done to resume a suspended guest because
3038      * suspending does not change the machine state, so no need for
3039      * a ->wakeup method.
3040      */
3041     qemu_register_wakeup_support();
3042 
3043     if (kvm_enabled()) {
3044         /* to stop and start vmclock */
3045         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3046                                          &spapr->tb);
3047 
3048         kvmppc_spapr_enable_inkernel_multitce();
3049     }
3050 
3051     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3052     if (spapr->vof) {
3053         spapr->vof->fw_size = fw_size; /* for claim() on itself */
3054         spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3055     }
3056 
3057     spapr_watchdog_init(spapr);
3058 }
3059 
3060 #define DEFAULT_KVM_TYPE "auto"
3061 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3062 {
3063     /*
3064      * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3065      * accomodate the 'HV' and 'PV' formats that exists in the
3066      * wild. The 'auto' mode is being introduced already as
3067      * lower-case, thus we don't need to bother checking for
3068      * "AUTO".
3069      */
3070     if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3071         return 0;
3072     }
3073 
3074     if (!g_ascii_strcasecmp(vm_type, "hv")) {
3075         return 1;
3076     }
3077 
3078     if (!g_ascii_strcasecmp(vm_type, "pr")) {
3079         return 2;
3080     }
3081 
3082     error_report("Unknown kvm-type specified '%s'", vm_type);
3083     exit(1);
3084 }
3085 
3086 /*
3087  * Implementation of an interface to adjust firmware path
3088  * for the bootindex property handling.
3089  */
3090 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3091                                    DeviceState *dev)
3092 {
3093 #define CAST(type, obj, name) \
3094     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3095     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3096     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3097     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3098     PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3099 
3100     if (d && bus) {
3101         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3102         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3103         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3104 
3105         if (spapr) {
3106             /*
3107              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3108              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3109              * 0x8000 | (target << 8) | (bus << 5) | lun
3110              * (see the "Logical unit addressing format" table in SAM5)
3111              */
3112             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3113             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3114                                    (uint64_t)id << 48);
3115         } else if (virtio) {
3116             /*
3117              * We use SRP luns of the form 01000000 | (target << 8) | lun
3118              * in the top 32 bits of the 64-bit LUN
3119              * Note: the quote above is from SLOF and it is wrong,
3120              * the actual binding is:
3121              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3122              */
3123             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3124             if (d->lun >= 256) {
3125                 /* Use the LUN "flat space addressing method" */
3126                 id |= 0x4000;
3127             }
3128             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3129                                    (uint64_t)id << 32);
3130         } else if (usb) {
3131             /*
3132              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3133              * in the top 32 bits of the 64-bit LUN
3134              */
3135             unsigned usb_port = atoi(usb->port->path);
3136             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3137             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3138                                    (uint64_t)id << 32);
3139         }
3140     }
3141 
3142     /*
3143      * SLOF probes the USB devices, and if it recognizes that the device is a
3144      * storage device, it changes its name to "storage" instead of "usb-host",
3145      * and additionally adds a child node for the SCSI LUN, so the correct
3146      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3147      */
3148     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3149         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3150         if (usb_device_is_scsi_storage(usbdev)) {
3151             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3152         }
3153     }
3154 
3155     if (phb) {
3156         /* Replace "pci" with "pci@800000020000000" */
3157         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3158     }
3159 
3160     if (vsc) {
3161         /* Same logic as virtio above */
3162         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3163         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3164     }
3165 
3166     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3167         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3168         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3169         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3170     }
3171 
3172     if (pcidev) {
3173         return spapr_pci_fw_dev_name(pcidev);
3174     }
3175 
3176     return NULL;
3177 }
3178 
3179 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3180 {
3181     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3182 
3183     return g_strdup(spapr->kvm_type);
3184 }
3185 
3186 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3187 {
3188     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3189 
3190     g_free(spapr->kvm_type);
3191     spapr->kvm_type = g_strdup(value);
3192 }
3193 
3194 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3195 {
3196     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3197 
3198     return spapr->use_hotplug_event_source;
3199 }
3200 
3201 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3202                                             Error **errp)
3203 {
3204     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3205 
3206     spapr->use_hotplug_event_source = value;
3207 }
3208 
3209 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3210 {
3211     return true;
3212 }
3213 
3214 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3215 {
3216     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3217 
3218     switch (spapr->resize_hpt) {
3219     case SPAPR_RESIZE_HPT_DEFAULT:
3220         return g_strdup("default");
3221     case SPAPR_RESIZE_HPT_DISABLED:
3222         return g_strdup("disabled");
3223     case SPAPR_RESIZE_HPT_ENABLED:
3224         return g_strdup("enabled");
3225     case SPAPR_RESIZE_HPT_REQUIRED:
3226         return g_strdup("required");
3227     }
3228     g_assert_not_reached();
3229 }
3230 
3231 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3232 {
3233     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3234 
3235     if (strcmp(value, "default") == 0) {
3236         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3237     } else if (strcmp(value, "disabled") == 0) {
3238         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3239     } else if (strcmp(value, "enabled") == 0) {
3240         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3241     } else if (strcmp(value, "required") == 0) {
3242         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3243     } else {
3244         error_setg(errp, "Bad value for \"resize-hpt\" property");
3245     }
3246 }
3247 
3248 static bool spapr_get_vof(Object *obj, Error **errp)
3249 {
3250     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3251 
3252     return spapr->vof != NULL;
3253 }
3254 
3255 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3256 {
3257     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3258 
3259     if (spapr->vof) {
3260         vof_cleanup(spapr->vof);
3261         g_free(spapr->vof);
3262         spapr->vof = NULL;
3263     }
3264     if (!value) {
3265         return;
3266     }
3267     spapr->vof = g_malloc0(sizeof(*spapr->vof));
3268 }
3269 
3270 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3271 {
3272     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3273 
3274     if (spapr->irq == &spapr_irq_xics_legacy) {
3275         return g_strdup("legacy");
3276     } else if (spapr->irq == &spapr_irq_xics) {
3277         return g_strdup("xics");
3278     } else if (spapr->irq == &spapr_irq_xive) {
3279         return g_strdup("xive");
3280     } else if (spapr->irq == &spapr_irq_dual) {
3281         return g_strdup("dual");
3282     }
3283     g_assert_not_reached();
3284 }
3285 
3286 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3287 {
3288     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3289 
3290     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3291         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3292         return;
3293     }
3294 
3295     /* The legacy IRQ backend can not be set */
3296     if (strcmp(value, "xics") == 0) {
3297         spapr->irq = &spapr_irq_xics;
3298     } else if (strcmp(value, "xive") == 0) {
3299         spapr->irq = &spapr_irq_xive;
3300     } else if (strcmp(value, "dual") == 0) {
3301         spapr->irq = &spapr_irq_dual;
3302     } else {
3303         error_setg(errp, "Bad value for \"ic-mode\" property");
3304     }
3305 }
3306 
3307 static char *spapr_get_host_model(Object *obj, Error **errp)
3308 {
3309     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3310 
3311     return g_strdup(spapr->host_model);
3312 }
3313 
3314 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3315 {
3316     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3317 
3318     g_free(spapr->host_model);
3319     spapr->host_model = g_strdup(value);
3320 }
3321 
3322 static char *spapr_get_host_serial(Object *obj, Error **errp)
3323 {
3324     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3325 
3326     return g_strdup(spapr->host_serial);
3327 }
3328 
3329 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3330 {
3331     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3332 
3333     g_free(spapr->host_serial);
3334     spapr->host_serial = g_strdup(value);
3335 }
3336 
3337 static void spapr_instance_init(Object *obj)
3338 {
3339     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3340     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3341     MachineState *ms = MACHINE(spapr);
3342     MachineClass *mc = MACHINE_GET_CLASS(ms);
3343 
3344     /*
3345      * NVDIMM support went live in 5.1 without considering that, in
3346      * other archs, the user needs to enable NVDIMM support with the
3347      * 'nvdimm' machine option and the default behavior is NVDIMM
3348      * support disabled. It is too late to roll back to the standard
3349      * behavior without breaking 5.1 guests.
3350      */
3351     if (mc->nvdimm_supported) {
3352         ms->nvdimms_state->is_enabled = true;
3353     }
3354 
3355     spapr->htab_fd = -1;
3356     spapr->use_hotplug_event_source = true;
3357     spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3358     object_property_add_str(obj, "kvm-type",
3359                             spapr_get_kvm_type, spapr_set_kvm_type);
3360     object_property_set_description(obj, "kvm-type",
3361                                     "Specifies the KVM virtualization mode (auto,"
3362                                     " hv, pr). Defaults to 'auto'. This mode will use"
3363                                     " any available KVM module loaded in the host,"
3364                                     " where kvm_hv takes precedence if both kvm_hv and"
3365                                     " kvm_pr are loaded.");
3366     object_property_add_bool(obj, "modern-hotplug-events",
3367                             spapr_get_modern_hotplug_events,
3368                             spapr_set_modern_hotplug_events);
3369     object_property_set_description(obj, "modern-hotplug-events",
3370                                     "Use dedicated hotplug event mechanism in"
3371                                     " place of standard EPOW events when possible"
3372                                     " (required for memory hot-unplug support)");
3373     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3374                             "Maximum permitted CPU compatibility mode");
3375 
3376     object_property_add_str(obj, "resize-hpt",
3377                             spapr_get_resize_hpt, spapr_set_resize_hpt);
3378     object_property_set_description(obj, "resize-hpt",
3379                                     "Resizing of the Hash Page Table (enabled, disabled, required)");
3380     object_property_add_uint32_ptr(obj, "vsmt",
3381                                    &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3382     object_property_set_description(obj, "vsmt",
3383                                     "Virtual SMT: KVM behaves as if this were"
3384                                     " the host's SMT mode");
3385 
3386     object_property_add_bool(obj, "vfio-no-msix-emulation",
3387                              spapr_get_msix_emulation, NULL);
3388 
3389     object_property_add_uint64_ptr(obj, "kernel-addr",
3390                                    &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3391     object_property_set_description(obj, "kernel-addr",
3392                                     stringify(KERNEL_LOAD_ADDR)
3393                                     " for -kernel is the default");
3394     spapr->kernel_addr = KERNEL_LOAD_ADDR;
3395 
3396     object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3397     object_property_set_description(obj, "x-vof",
3398                                     "Enable Virtual Open Firmware (experimental)");
3399 
3400     /* The machine class defines the default interrupt controller mode */
3401     spapr->irq = smc->irq;
3402     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3403                             spapr_set_ic_mode);
3404     object_property_set_description(obj, "ic-mode",
3405                  "Specifies the interrupt controller mode (xics, xive, dual)");
3406 
3407     object_property_add_str(obj, "host-model",
3408         spapr_get_host_model, spapr_set_host_model);
3409     object_property_set_description(obj, "host-model",
3410         "Host model to advertise in guest device tree");
3411     object_property_add_str(obj, "host-serial",
3412         spapr_get_host_serial, spapr_set_host_serial);
3413     object_property_set_description(obj, "host-serial",
3414         "Host serial number to advertise in guest device tree");
3415 }
3416 
3417 static void spapr_machine_finalizefn(Object *obj)
3418 {
3419     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3420 
3421     g_free(spapr->kvm_type);
3422 }
3423 
3424 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3425 {
3426     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3427     PowerPCCPU *cpu = POWERPC_CPU(cs);
3428     CPUPPCState *env = &cpu->env;
3429 
3430     cpu_synchronize_state(cs);
3431     /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3432     if (spapr->fwnmi_system_reset_addr != -1) {
3433         uint64_t rtas_addr, addr;
3434 
3435         /* get rtas addr from fdt */
3436         rtas_addr = spapr_get_rtas_addr();
3437         if (!rtas_addr) {
3438             qemu_system_guest_panicked(NULL);
3439             return;
3440         }
3441 
3442         addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3443         stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3444         stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3445         env->gpr[3] = addr;
3446     }
3447     ppc_cpu_do_system_reset(cs);
3448     if (spapr->fwnmi_system_reset_addr != -1) {
3449         env->nip = spapr->fwnmi_system_reset_addr;
3450     }
3451 }
3452 
3453 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3454 {
3455     CPUState *cs;
3456 
3457     CPU_FOREACH(cs) {
3458         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3459     }
3460 }
3461 
3462 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3463                           void *fdt, int *fdt_start_offset, Error **errp)
3464 {
3465     uint64_t addr;
3466     uint32_t node;
3467 
3468     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3469     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3470                                     &error_abort);
3471     *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3472                                              SPAPR_MEMORY_BLOCK_SIZE);
3473     return 0;
3474 }
3475 
3476 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3477                            bool dedicated_hp_event_source)
3478 {
3479     SpaprDrc *drc;
3480     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3481     int i;
3482     uint64_t addr = addr_start;
3483     bool hotplugged = spapr_drc_hotplugged(dev);
3484 
3485     for (i = 0; i < nr_lmbs; i++) {
3486         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3487                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3488         g_assert(drc);
3489 
3490         /*
3491          * memory_device_get_free_addr() provided a range of free addresses
3492          * that doesn't overlap with any existing mapping at pre-plug. The
3493          * corresponding LMB DRCs are thus assumed to be all attachable.
3494          */
3495         spapr_drc_attach(drc, dev);
3496         if (!hotplugged) {
3497             spapr_drc_reset(drc);
3498         }
3499         addr += SPAPR_MEMORY_BLOCK_SIZE;
3500     }
3501     /* send hotplug notification to the
3502      * guest only in case of hotplugged memory
3503      */
3504     if (hotplugged) {
3505         if (dedicated_hp_event_source) {
3506             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3507                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3508             g_assert(drc);
3509             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3510                                                    nr_lmbs,
3511                                                    spapr_drc_index(drc));
3512         } else {
3513             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3514                                            nr_lmbs);
3515         }
3516     }
3517 }
3518 
3519 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3520 {
3521     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3522     PCDIMMDevice *dimm = PC_DIMM(dev);
3523     uint64_t size, addr;
3524     int64_t slot;
3525     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3526 
3527     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3528 
3529     pc_dimm_plug(dimm, MACHINE(ms));
3530 
3531     if (!is_nvdimm) {
3532         addr = object_property_get_uint(OBJECT(dimm),
3533                                         PC_DIMM_ADDR_PROP, &error_abort);
3534         spapr_add_lmbs(dev, addr, size,
3535                        spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3536     } else {
3537         slot = object_property_get_int(OBJECT(dimm),
3538                                        PC_DIMM_SLOT_PROP, &error_abort);
3539         /* We should have valid slot number at this point */
3540         g_assert(slot >= 0);
3541         spapr_add_nvdimm(dev, slot);
3542     }
3543 }
3544 
3545 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3546                                   Error **errp)
3547 {
3548     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3549     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3550     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3551     PCDIMMDevice *dimm = PC_DIMM(dev);
3552     Error *local_err = NULL;
3553     uint64_t size;
3554     Object *memdev;
3555     hwaddr pagesize;
3556 
3557     if (!smc->dr_lmb_enabled) {
3558         error_setg(errp, "Memory hotplug not supported for this machine");
3559         return;
3560     }
3561 
3562     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3563     if (local_err) {
3564         error_propagate(errp, local_err);
3565         return;
3566     }
3567 
3568     if (is_nvdimm) {
3569         if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3570             return;
3571         }
3572     } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3573         error_setg(errp, "Hotplugged memory size must be a multiple of "
3574                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3575         return;
3576     }
3577 
3578     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3579                                       &error_abort);
3580     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3581     if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3582         return;
3583     }
3584 
3585     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3586 }
3587 
3588 struct SpaprDimmState {
3589     PCDIMMDevice *dimm;
3590     uint32_t nr_lmbs;
3591     QTAILQ_ENTRY(SpaprDimmState) next;
3592 };
3593 
3594 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3595                                                        PCDIMMDevice *dimm)
3596 {
3597     SpaprDimmState *dimm_state = NULL;
3598 
3599     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3600         if (dimm_state->dimm == dimm) {
3601             break;
3602         }
3603     }
3604     return dimm_state;
3605 }
3606 
3607 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3608                                                       uint32_t nr_lmbs,
3609                                                       PCDIMMDevice *dimm)
3610 {
3611     SpaprDimmState *ds = NULL;
3612 
3613     /*
3614      * If this request is for a DIMM whose removal had failed earlier
3615      * (due to guest's refusal to remove the LMBs), we would have this
3616      * dimm already in the pending_dimm_unplugs list. In that
3617      * case don't add again.
3618      */
3619     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3620     if (!ds) {
3621         ds = g_new0(SpaprDimmState, 1);
3622         ds->nr_lmbs = nr_lmbs;
3623         ds->dimm = dimm;
3624         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3625     }
3626     return ds;
3627 }
3628 
3629 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3630                                               SpaprDimmState *dimm_state)
3631 {
3632     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3633     g_free(dimm_state);
3634 }
3635 
3636 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3637                                                         PCDIMMDevice *dimm)
3638 {
3639     SpaprDrc *drc;
3640     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3641                                                   &error_abort);
3642     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3643     uint32_t avail_lmbs = 0;
3644     uint64_t addr_start, addr;
3645     int i;
3646 
3647     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3648                                           &error_abort);
3649 
3650     addr = addr_start;
3651     for (i = 0; i < nr_lmbs; i++) {
3652         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3653                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3654         g_assert(drc);
3655         if (drc->dev) {
3656             avail_lmbs++;
3657         }
3658         addr += SPAPR_MEMORY_BLOCK_SIZE;
3659     }
3660 
3661     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3662 }
3663 
3664 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3665 {
3666     SpaprDimmState *ds;
3667     PCDIMMDevice *dimm;
3668     SpaprDrc *drc;
3669     uint32_t nr_lmbs;
3670     uint64_t size, addr_start, addr;
3671     g_autofree char *qapi_error = NULL;
3672     int i;
3673 
3674     if (!dev) {
3675         return;
3676     }
3677 
3678     dimm = PC_DIMM(dev);
3679     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3680 
3681     /*
3682      * 'ds == NULL' would mean that the DIMM doesn't have a pending
3683      * unplug state, but one of its DRC is marked as unplug_requested.
3684      * This is bad and weird enough to g_assert() out.
3685      */
3686     g_assert(ds);
3687 
3688     spapr_pending_dimm_unplugs_remove(spapr, ds);
3689 
3690     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3691     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3692 
3693     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3694                                           &error_abort);
3695 
3696     addr = addr_start;
3697     for (i = 0; i < nr_lmbs; i++) {
3698         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3699                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3700         g_assert(drc);
3701 
3702         drc->unplug_requested = false;
3703         addr += SPAPR_MEMORY_BLOCK_SIZE;
3704     }
3705 
3706     /*
3707      * Tell QAPI that something happened and the memory
3708      * hotunplug wasn't successful. Keep sending
3709      * MEM_UNPLUG_ERROR even while sending
3710      * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3711      * MEM_UNPLUG_ERROR is due.
3712      */
3713     qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3714                                  "for device %s", dev->id);
3715 
3716     qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
3717 
3718     qapi_event_send_device_unplug_guest_error(!!dev->id, dev->id,
3719                                               dev->canonical_path);
3720 }
3721 
3722 /* Callback to be called during DRC release. */
3723 void spapr_lmb_release(DeviceState *dev)
3724 {
3725     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3726     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3727     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3728 
3729     /* This information will get lost if a migration occurs
3730      * during the unplug process. In this case recover it. */
3731     if (ds == NULL) {
3732         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3733         g_assert(ds);
3734         /* The DRC being examined by the caller at least must be counted */
3735         g_assert(ds->nr_lmbs);
3736     }
3737 
3738     if (--ds->nr_lmbs) {
3739         return;
3740     }
3741 
3742     /*
3743      * Now that all the LMBs have been removed by the guest, call the
3744      * unplug handler chain. This can never fail.
3745      */
3746     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3747     object_unparent(OBJECT(dev));
3748 }
3749 
3750 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3751 {
3752     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3753     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3754 
3755     /* We really shouldn't get this far without anything to unplug */
3756     g_assert(ds);
3757 
3758     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3759     qdev_unrealize(dev);
3760     spapr_pending_dimm_unplugs_remove(spapr, ds);
3761 }
3762 
3763 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3764                                         DeviceState *dev, Error **errp)
3765 {
3766     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3767     PCDIMMDevice *dimm = PC_DIMM(dev);
3768     uint32_t nr_lmbs;
3769     uint64_t size, addr_start, addr;
3770     int i;
3771     SpaprDrc *drc;
3772 
3773     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3774         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3775         return;
3776     }
3777 
3778     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3779     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3780 
3781     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3782                                           &error_abort);
3783 
3784     /*
3785      * An existing pending dimm state for this DIMM means that there is an
3786      * unplug operation in progress, waiting for the spapr_lmb_release
3787      * callback to complete the job (BQL can't cover that far). In this case,
3788      * bail out to avoid detaching DRCs that were already released.
3789      */
3790     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3791         error_setg(errp, "Memory unplug already in progress for device %s",
3792                    dev->id);
3793         return;
3794     }
3795 
3796     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3797 
3798     addr = addr_start;
3799     for (i = 0; i < nr_lmbs; i++) {
3800         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3801                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3802         g_assert(drc);
3803 
3804         spapr_drc_unplug_request(drc);
3805         addr += SPAPR_MEMORY_BLOCK_SIZE;
3806     }
3807 
3808     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3809                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3810     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3811                                               nr_lmbs, spapr_drc_index(drc));
3812 }
3813 
3814 /* Callback to be called during DRC release. */
3815 void spapr_core_release(DeviceState *dev)
3816 {
3817     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3818 
3819     /* Call the unplug handler chain. This can never fail. */
3820     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3821     object_unparent(OBJECT(dev));
3822 }
3823 
3824 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3825 {
3826     MachineState *ms = MACHINE(hotplug_dev);
3827     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3828     CPUCore *cc = CPU_CORE(dev);
3829     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3830 
3831     if (smc->pre_2_10_has_unused_icps) {
3832         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3833         int i;
3834 
3835         for (i = 0; i < cc->nr_threads; i++) {
3836             CPUState *cs = CPU(sc->threads[i]);
3837 
3838             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3839         }
3840     }
3841 
3842     assert(core_slot);
3843     core_slot->cpu = NULL;
3844     qdev_unrealize(dev);
3845 }
3846 
3847 static
3848 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3849                                Error **errp)
3850 {
3851     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3852     int index;
3853     SpaprDrc *drc;
3854     CPUCore *cc = CPU_CORE(dev);
3855 
3856     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3857         error_setg(errp, "Unable to find CPU core with core-id: %d",
3858                    cc->core_id);
3859         return;
3860     }
3861     if (index == 0) {
3862         error_setg(errp, "Boot CPU core may not be unplugged");
3863         return;
3864     }
3865 
3866     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3867                           spapr_vcpu_id(spapr, cc->core_id));
3868     g_assert(drc);
3869 
3870     if (!spapr_drc_unplug_requested(drc)) {
3871         spapr_drc_unplug_request(drc);
3872     }
3873 
3874     /*
3875      * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3876      * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3877      * pulses removing the same CPU. Otherwise, in an failed hotunplug
3878      * attempt (e.g. the kernel will refuse to remove the last online
3879      * CPU), we will never attempt it again because unplug_requested
3880      * will still be 'true' in that case.
3881      */
3882     spapr_hotplug_req_remove_by_index(drc);
3883 }
3884 
3885 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3886                            void *fdt, int *fdt_start_offset, Error **errp)
3887 {
3888     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3889     CPUState *cs = CPU(core->threads[0]);
3890     PowerPCCPU *cpu = POWERPC_CPU(cs);
3891     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3892     int id = spapr_get_vcpu_id(cpu);
3893     g_autofree char *nodename = NULL;
3894     int offset;
3895 
3896     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3897     offset = fdt_add_subnode(fdt, 0, nodename);
3898 
3899     spapr_dt_cpu(cs, fdt, offset, spapr);
3900 
3901     /*
3902      * spapr_dt_cpu() does not fill the 'name' property in the
3903      * CPU node. The function is called during boot process, before
3904      * and after CAS, and overwriting the 'name' property written
3905      * by SLOF is not allowed.
3906      *
3907      * Write it manually after spapr_dt_cpu(). This makes the hotplug
3908      * CPUs more compatible with the coldplugged ones, which have
3909      * the 'name' property. Linux Kernel also relies on this
3910      * property to identify CPU nodes.
3911      */
3912     _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3913 
3914     *fdt_start_offset = offset;
3915     return 0;
3916 }
3917 
3918 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3919 {
3920     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3921     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3922     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3923     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3924     CPUCore *cc = CPU_CORE(dev);
3925     CPUState *cs;
3926     SpaprDrc *drc;
3927     CPUArchId *core_slot;
3928     int index;
3929     bool hotplugged = spapr_drc_hotplugged(dev);
3930     int i;
3931 
3932     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3933     g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3934 
3935     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3936                           spapr_vcpu_id(spapr, cc->core_id));
3937 
3938     g_assert(drc || !mc->has_hotpluggable_cpus);
3939 
3940     if (drc) {
3941         /*
3942          * spapr_core_pre_plug() already buys us this is a brand new
3943          * core being plugged into a free slot. Nothing should already
3944          * be attached to the corresponding DRC.
3945          */
3946         spapr_drc_attach(drc, dev);
3947 
3948         if (hotplugged) {
3949             /*
3950              * Send hotplug notification interrupt to the guest only
3951              * in case of hotplugged CPUs.
3952              */
3953             spapr_hotplug_req_add_by_index(drc);
3954         } else {
3955             spapr_drc_reset(drc);
3956         }
3957     }
3958 
3959     core_slot->cpu = OBJECT(dev);
3960 
3961     /*
3962      * Set compatibility mode to match the boot CPU, which was either set
3963      * by the machine reset code or by CAS. This really shouldn't fail at
3964      * this point.
3965      */
3966     if (hotplugged) {
3967         for (i = 0; i < cc->nr_threads; i++) {
3968             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3969                            &error_abort);
3970         }
3971     }
3972 
3973     if (smc->pre_2_10_has_unused_icps) {
3974         for (i = 0; i < cc->nr_threads; i++) {
3975             cs = CPU(core->threads[i]);
3976             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3977         }
3978     }
3979 }
3980 
3981 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3982                                 Error **errp)
3983 {
3984     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3985     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3986     CPUCore *cc = CPU_CORE(dev);
3987     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3988     const char *type = object_get_typename(OBJECT(dev));
3989     CPUArchId *core_slot;
3990     int index;
3991     unsigned int smp_threads = machine->smp.threads;
3992 
3993     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3994         error_setg(errp, "CPU hotplug not supported for this machine");
3995         return;
3996     }
3997 
3998     if (strcmp(base_core_type, type)) {
3999         error_setg(errp, "CPU core type should be %s", base_core_type);
4000         return;
4001     }
4002 
4003     if (cc->core_id % smp_threads) {
4004         error_setg(errp, "invalid core id %d", cc->core_id);
4005         return;
4006     }
4007 
4008     /*
4009      * In general we should have homogeneous threads-per-core, but old
4010      * (pre hotplug support) machine types allow the last core to have
4011      * reduced threads as a compatibility hack for when we allowed
4012      * total vcpus not a multiple of threads-per-core.
4013      */
4014     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
4015         error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4016                    smp_threads);
4017         return;
4018     }
4019 
4020     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4021     if (!core_slot) {
4022         error_setg(errp, "core id %d out of range", cc->core_id);
4023         return;
4024     }
4025 
4026     if (core_slot->cpu) {
4027         error_setg(errp, "core %d already populated", cc->core_id);
4028         return;
4029     }
4030 
4031     numa_cpu_pre_plug(core_slot, dev, errp);
4032 }
4033 
4034 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4035                           void *fdt, int *fdt_start_offset, Error **errp)
4036 {
4037     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4038     int intc_phandle;
4039 
4040     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4041     if (intc_phandle <= 0) {
4042         return -1;
4043     }
4044 
4045     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4046         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4047         return -1;
4048     }
4049 
4050     /* generally SLOF creates these, for hotplug it's up to QEMU */
4051     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4052 
4053     return 0;
4054 }
4055 
4056 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4057                                Error **errp)
4058 {
4059     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4060     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4061     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4062     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4063     SpaprDrc *drc;
4064 
4065     if (dev->hotplugged && !smc->dr_phb_enabled) {
4066         error_setg(errp, "PHB hotplug not supported for this machine");
4067         return false;
4068     }
4069 
4070     if (sphb->index == (uint32_t)-1) {
4071         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4072         return false;
4073     }
4074 
4075     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4076     if (drc && drc->dev) {
4077         error_setg(errp, "PHB %d already attached", sphb->index);
4078         return false;
4079     }
4080 
4081     /*
4082      * This will check that sphb->index doesn't exceed the maximum number of
4083      * PHBs for the current machine type.
4084      */
4085     return
4086         smc->phb_placement(spapr, sphb->index,
4087                            &sphb->buid, &sphb->io_win_addr,
4088                            &sphb->mem_win_addr, &sphb->mem64_win_addr,
4089                            windows_supported, sphb->dma_liobn,
4090                            &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4091                            errp);
4092 }
4093 
4094 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4095 {
4096     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4097     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4098     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4099     SpaprDrc *drc;
4100     bool hotplugged = spapr_drc_hotplugged(dev);
4101 
4102     if (!smc->dr_phb_enabled) {
4103         return;
4104     }
4105 
4106     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4107     /* hotplug hooks should check it's enabled before getting this far */
4108     assert(drc);
4109 
4110     /* spapr_phb_pre_plug() already checked the DRC is attachable */
4111     spapr_drc_attach(drc, dev);
4112 
4113     if (hotplugged) {
4114         spapr_hotplug_req_add_by_index(drc);
4115     } else {
4116         spapr_drc_reset(drc);
4117     }
4118 }
4119 
4120 void spapr_phb_release(DeviceState *dev)
4121 {
4122     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4123 
4124     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4125     object_unparent(OBJECT(dev));
4126 }
4127 
4128 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4129 {
4130     qdev_unrealize(dev);
4131 }
4132 
4133 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4134                                      DeviceState *dev, Error **errp)
4135 {
4136     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4137     SpaprDrc *drc;
4138 
4139     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4140     assert(drc);
4141 
4142     if (!spapr_drc_unplug_requested(drc)) {
4143         spapr_drc_unplug_request(drc);
4144         spapr_hotplug_req_remove_by_index(drc);
4145     } else {
4146         error_setg(errp,
4147                    "PCI Host Bridge unplug already in progress for device %s",
4148                    dev->id);
4149     }
4150 }
4151 
4152 static
4153 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4154                               Error **errp)
4155 {
4156     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4157 
4158     if (spapr->tpm_proxy != NULL) {
4159         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4160         return false;
4161     }
4162 
4163     return true;
4164 }
4165 
4166 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4167 {
4168     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4169     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4170 
4171     /* Already checked in spapr_tpm_proxy_pre_plug() */
4172     g_assert(spapr->tpm_proxy == NULL);
4173 
4174     spapr->tpm_proxy = tpm_proxy;
4175 }
4176 
4177 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4178 {
4179     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4180 
4181     qdev_unrealize(dev);
4182     object_unparent(OBJECT(dev));
4183     spapr->tpm_proxy = NULL;
4184 }
4185 
4186 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4187                                       DeviceState *dev, Error **errp)
4188 {
4189     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4190         spapr_memory_plug(hotplug_dev, dev);
4191     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4192         spapr_core_plug(hotplug_dev, dev);
4193     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4194         spapr_phb_plug(hotplug_dev, dev);
4195     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4196         spapr_tpm_proxy_plug(hotplug_dev, dev);
4197     }
4198 }
4199 
4200 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4201                                         DeviceState *dev, Error **errp)
4202 {
4203     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4204         spapr_memory_unplug(hotplug_dev, dev);
4205     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4206         spapr_core_unplug(hotplug_dev, dev);
4207     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4208         spapr_phb_unplug(hotplug_dev, dev);
4209     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4210         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4211     }
4212 }
4213 
4214 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4215 {
4216     return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4217         /*
4218          * CAS will process all pending unplug requests.
4219          *
4220          * HACK: a guest could theoretically have cleared all bits in OV5,
4221          * but none of the guests we care for do.
4222          */
4223         spapr_ovec_empty(spapr->ov5_cas);
4224 }
4225 
4226 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4227                                                 DeviceState *dev, Error **errp)
4228 {
4229     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4230     MachineClass *mc = MACHINE_GET_CLASS(sms);
4231     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4232 
4233     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4234         if (spapr_memory_hot_unplug_supported(sms)) {
4235             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4236         } else {
4237             error_setg(errp, "Memory hot unplug not supported for this guest");
4238         }
4239     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4240         if (!mc->has_hotpluggable_cpus) {
4241             error_setg(errp, "CPU hot unplug not supported on this machine");
4242             return;
4243         }
4244         spapr_core_unplug_request(hotplug_dev, dev, errp);
4245     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4246         if (!smc->dr_phb_enabled) {
4247             error_setg(errp, "PHB hot unplug not supported on this machine");
4248             return;
4249         }
4250         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4251     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4252         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4253     }
4254 }
4255 
4256 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4257                                           DeviceState *dev, Error **errp)
4258 {
4259     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4260         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4261     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4262         spapr_core_pre_plug(hotplug_dev, dev, errp);
4263     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4264         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4265     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4266         spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4267     }
4268 }
4269 
4270 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4271                                                  DeviceState *dev)
4272 {
4273     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4274         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4275         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4276         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4277         return HOTPLUG_HANDLER(machine);
4278     }
4279     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4280         PCIDevice *pcidev = PCI_DEVICE(dev);
4281         PCIBus *root = pci_device_root_bus(pcidev);
4282         SpaprPhbState *phb =
4283             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4284                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4285 
4286         if (phb) {
4287             return HOTPLUG_HANDLER(phb);
4288         }
4289     }
4290     return NULL;
4291 }
4292 
4293 static CpuInstanceProperties
4294 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4295 {
4296     CPUArchId *core_slot;
4297     MachineClass *mc = MACHINE_GET_CLASS(machine);
4298 
4299     /* make sure possible_cpu are intialized */
4300     mc->possible_cpu_arch_ids(machine);
4301     /* get CPU core slot containing thread that matches cpu_index */
4302     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4303     assert(core_slot);
4304     return core_slot->props;
4305 }
4306 
4307 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4308 {
4309     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4310 }
4311 
4312 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4313 {
4314     int i;
4315     unsigned int smp_threads = machine->smp.threads;
4316     unsigned int smp_cpus = machine->smp.cpus;
4317     const char *core_type;
4318     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4319     MachineClass *mc = MACHINE_GET_CLASS(machine);
4320 
4321     if (!mc->has_hotpluggable_cpus) {
4322         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4323     }
4324     if (machine->possible_cpus) {
4325         assert(machine->possible_cpus->len == spapr_max_cores);
4326         return machine->possible_cpus;
4327     }
4328 
4329     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4330     if (!core_type) {
4331         error_report("Unable to find sPAPR CPU Core definition");
4332         exit(1);
4333     }
4334 
4335     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4336                              sizeof(CPUArchId) * spapr_max_cores);
4337     machine->possible_cpus->len = spapr_max_cores;
4338     for (i = 0; i < machine->possible_cpus->len; i++) {
4339         int core_id = i * smp_threads;
4340 
4341         machine->possible_cpus->cpus[i].type = core_type;
4342         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4343         machine->possible_cpus->cpus[i].arch_id = core_id;
4344         machine->possible_cpus->cpus[i].props.has_core_id = true;
4345         machine->possible_cpus->cpus[i].props.core_id = core_id;
4346     }
4347     return machine->possible_cpus;
4348 }
4349 
4350 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4351                                 uint64_t *buid, hwaddr *pio,
4352                                 hwaddr *mmio32, hwaddr *mmio64,
4353                                 unsigned n_dma, uint32_t *liobns,
4354                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4355 {
4356     /*
4357      * New-style PHB window placement.
4358      *
4359      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4360      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4361      * windows.
4362      *
4363      * Some guest kernels can't work with MMIO windows above 1<<46
4364      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4365      *
4366      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4367      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4368      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4369      * 1TiB 64-bit MMIO windows for each PHB.
4370      */
4371     const uint64_t base_buid = 0x800000020000000ULL;
4372     int i;
4373 
4374     /* Sanity check natural alignments */
4375     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4376     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4377     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4378     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4379     /* Sanity check bounds */
4380     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4381                       SPAPR_PCI_MEM32_WIN_SIZE);
4382     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4383                       SPAPR_PCI_MEM64_WIN_SIZE);
4384 
4385     if (index >= SPAPR_MAX_PHBS) {
4386         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4387                    SPAPR_MAX_PHBS - 1);
4388         return false;
4389     }
4390 
4391     *buid = base_buid + index;
4392     for (i = 0; i < n_dma; ++i) {
4393         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4394     }
4395 
4396     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4397     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4398     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4399 
4400     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4401     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4402     return true;
4403 }
4404 
4405 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4406 {
4407     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4408 
4409     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4410 }
4411 
4412 static void spapr_ics_resend(XICSFabric *dev)
4413 {
4414     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4415 
4416     ics_resend(spapr->ics);
4417 }
4418 
4419 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4420 {
4421     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4422 
4423     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4424 }
4425 
4426 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4427                                  Monitor *mon)
4428 {
4429     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4430 
4431     spapr_irq_print_info(spapr, mon);
4432     monitor_printf(mon, "irqchip: %s\n",
4433                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4434 }
4435 
4436 /*
4437  * This is a XIVE only operation
4438  */
4439 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4440                            uint8_t nvt_blk, uint32_t nvt_idx,
4441                            bool cam_ignore, uint8_t priority,
4442                            uint32_t logic_serv, XiveTCTXMatch *match)
4443 {
4444     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4445     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4446     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4447     int count;
4448 
4449     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4450                            priority, logic_serv, match);
4451     if (count < 0) {
4452         return count;
4453     }
4454 
4455     /*
4456      * When we implement the save and restore of the thread interrupt
4457      * contexts in the enter/exit CPU handlers of the machine and the
4458      * escalations in QEMU, we should be able to handle non dispatched
4459      * vCPUs.
4460      *
4461      * Until this is done, the sPAPR machine should find at least one
4462      * matching context always.
4463      */
4464     if (count == 0) {
4465         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4466                       nvt_blk, nvt_idx);
4467     }
4468 
4469     return count;
4470 }
4471 
4472 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4473 {
4474     return cpu->vcpu_id;
4475 }
4476 
4477 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4478 {
4479     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4480     MachineState *ms = MACHINE(spapr);
4481     int vcpu_id;
4482 
4483     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4484 
4485     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4486         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4487         error_append_hint(errp, "Adjust the number of cpus to %d "
4488                           "or try to raise the number of threads per core\n",
4489                           vcpu_id * ms->smp.threads / spapr->vsmt);
4490         return false;
4491     }
4492 
4493     cpu->vcpu_id = vcpu_id;
4494     return true;
4495 }
4496 
4497 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4498 {
4499     CPUState *cs;
4500 
4501     CPU_FOREACH(cs) {
4502         PowerPCCPU *cpu = POWERPC_CPU(cs);
4503 
4504         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4505             return cpu;
4506         }
4507     }
4508 
4509     return NULL;
4510 }
4511 
4512 static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4513 {
4514     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4515 
4516     return spapr_cpu->in_nested;
4517 }
4518 
4519 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4520 {
4521     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4522 
4523     /* These are only called by TCG, KVM maintains dispatch state */
4524 
4525     spapr_cpu->prod = false;
4526     if (spapr_cpu->vpa_addr) {
4527         CPUState *cs = CPU(cpu);
4528         uint32_t dispatch;
4529 
4530         dispatch = ldl_be_phys(cs->as,
4531                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4532         dispatch++;
4533         if ((dispatch & 1) != 0) {
4534             qemu_log_mask(LOG_GUEST_ERROR,
4535                           "VPA: incorrect dispatch counter value for "
4536                           "dispatched partition %u, correcting.\n", dispatch);
4537             dispatch++;
4538         }
4539         stl_be_phys(cs->as,
4540                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4541     }
4542 }
4543 
4544 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4545 {
4546     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4547 
4548     if (spapr_cpu->vpa_addr) {
4549         CPUState *cs = CPU(cpu);
4550         uint32_t dispatch;
4551 
4552         dispatch = ldl_be_phys(cs->as,
4553                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4554         dispatch++;
4555         if ((dispatch & 1) != 1) {
4556             qemu_log_mask(LOG_GUEST_ERROR,
4557                           "VPA: incorrect dispatch counter value for "
4558                           "preempted partition %u, correcting.\n", dispatch);
4559             dispatch++;
4560         }
4561         stl_be_phys(cs->as,
4562                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4563     }
4564 }
4565 
4566 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4567 {
4568     MachineClass *mc = MACHINE_CLASS(oc);
4569     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4570     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4571     NMIClass *nc = NMI_CLASS(oc);
4572     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4573     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4574     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4575     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4576     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4577     VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4578 
4579     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4580     mc->ignore_boot_device_suffixes = true;
4581 
4582     /*
4583      * We set up the default / latest behaviour here.  The class_init
4584      * functions for the specific versioned machine types can override
4585      * these details for backwards compatibility
4586      */
4587     mc->init = spapr_machine_init;
4588     mc->reset = spapr_machine_reset;
4589     mc->block_default_type = IF_SCSI;
4590 
4591     /*
4592      * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4593      * should be limited by the host capability instead of hardcoded.
4594      * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4595      * guests are welcome to have as many CPUs as the host are capable
4596      * of emulate.
4597      */
4598     mc->max_cpus = INT32_MAX;
4599 
4600     mc->no_parallel = 1;
4601     mc->default_boot_order = "";
4602     mc->default_ram_size = 512 * MiB;
4603     mc->default_ram_id = "ppc_spapr.ram";
4604     mc->default_display = "std";
4605     mc->kvm_type = spapr_kvm_type;
4606     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4607     mc->pci_allow_0_address = true;
4608     assert(!mc->get_hotplug_handler);
4609     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4610     hc->pre_plug = spapr_machine_device_pre_plug;
4611     hc->plug = spapr_machine_device_plug;
4612     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4613     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4614     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4615     hc->unplug_request = spapr_machine_device_unplug_request;
4616     hc->unplug = spapr_machine_device_unplug;
4617 
4618     smc->dr_lmb_enabled = true;
4619     smc->update_dt_enabled = true;
4620     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4621     mc->has_hotpluggable_cpus = true;
4622     mc->nvdimm_supported = true;
4623     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4624     fwc->get_dev_path = spapr_get_fw_dev_path;
4625     nc->nmi_monitor_handler = spapr_nmi;
4626     smc->phb_placement = spapr_phb_placement;
4627     vhc->cpu_in_nested = spapr_cpu_in_nested;
4628     vhc->deliver_hv_excp = spapr_exit_nested;
4629     vhc->hypercall = emulate_spapr_hypercall;
4630     vhc->hpt_mask = spapr_hpt_mask;
4631     vhc->map_hptes = spapr_map_hptes;
4632     vhc->unmap_hptes = spapr_unmap_hptes;
4633     vhc->hpte_set_c = spapr_hpte_set_c;
4634     vhc->hpte_set_r = spapr_hpte_set_r;
4635     vhc->get_pate = spapr_get_pate;
4636     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4637     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4638     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4639     xic->ics_get = spapr_ics_get;
4640     xic->ics_resend = spapr_ics_resend;
4641     xic->icp_get = spapr_icp_get;
4642     ispc->print_info = spapr_pic_print_info;
4643     /* Force NUMA node memory size to be a multiple of
4644      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4645      * in which LMBs are represented and hot-added
4646      */
4647     mc->numa_mem_align_shift = 28;
4648     mc->auto_enable_numa = true;
4649 
4650     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4651     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4652     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4653     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4654     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4655     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4656     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4657     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4658     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4659     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4660     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4661     smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4662     spapr_caps_add_properties(smc);
4663     smc->irq = &spapr_irq_dual;
4664     smc->dr_phb_enabled = true;
4665     smc->linux_pci_probe = true;
4666     smc->smp_threads_vsmt = true;
4667     smc->nr_xirqs = SPAPR_NR_XIRQS;
4668     xfc->match_nvt = spapr_match_nvt;
4669     vmc->client_architecture_support = spapr_vof_client_architecture_support;
4670     vmc->quiesce = spapr_vof_quiesce;
4671     vmc->setprop = spapr_vof_setprop;
4672 }
4673 
4674 static const TypeInfo spapr_machine_info = {
4675     .name          = TYPE_SPAPR_MACHINE,
4676     .parent        = TYPE_MACHINE,
4677     .abstract      = true,
4678     .instance_size = sizeof(SpaprMachineState),
4679     .instance_init = spapr_instance_init,
4680     .instance_finalize = spapr_machine_finalizefn,
4681     .class_size    = sizeof(SpaprMachineClass),
4682     .class_init    = spapr_machine_class_init,
4683     .interfaces = (InterfaceInfo[]) {
4684         { TYPE_FW_PATH_PROVIDER },
4685         { TYPE_NMI },
4686         { TYPE_HOTPLUG_HANDLER },
4687         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4688         { TYPE_XICS_FABRIC },
4689         { TYPE_INTERRUPT_STATS_PROVIDER },
4690         { TYPE_XIVE_FABRIC },
4691         { TYPE_VOF_MACHINE_IF },
4692         { }
4693     },
4694 };
4695 
4696 static void spapr_machine_latest_class_options(MachineClass *mc)
4697 {
4698     mc->alias = "pseries";
4699     mc->is_default = true;
4700 }
4701 
4702 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4703     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4704                                                     void *data)      \
4705     {                                                                \
4706         MachineClass *mc = MACHINE_CLASS(oc);                        \
4707         spapr_machine_##suffix##_class_options(mc);                  \
4708         if (latest) {                                                \
4709             spapr_machine_latest_class_options(mc);                  \
4710         }                                                            \
4711     }                                                                \
4712     static const TypeInfo spapr_machine_##suffix##_info = {          \
4713         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4714         .parent = TYPE_SPAPR_MACHINE,                                \
4715         .class_init = spapr_machine_##suffix##_class_init,           \
4716     };                                                               \
4717     static void spapr_machine_register_##suffix(void)                \
4718     {                                                                \
4719         type_register(&spapr_machine_##suffix##_info);               \
4720     }                                                                \
4721     type_init(spapr_machine_register_##suffix)
4722 
4723 /*
4724  * pseries-7.1
4725  */
4726 static void spapr_machine_7_1_class_options(MachineClass *mc)
4727 {
4728     /* Defaults for the latest behaviour inherited from the base class */
4729 }
4730 
4731 DEFINE_SPAPR_MACHINE(7_1, "7.1", true);
4732 
4733 /*
4734  * pseries-7.0
4735  */
4736 static void spapr_machine_7_0_class_options(MachineClass *mc)
4737 {
4738     spapr_machine_7_1_class_options(mc);
4739     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
4740 }
4741 
4742 DEFINE_SPAPR_MACHINE(7_0, "7.0", false);
4743 
4744 /*
4745  * pseries-6.2
4746  */
4747 static void spapr_machine_6_2_class_options(MachineClass *mc)
4748 {
4749     spapr_machine_7_0_class_options(mc);
4750     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4751 }
4752 
4753 DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
4754 
4755 /*
4756  * pseries-6.1
4757  */
4758 static void spapr_machine_6_1_class_options(MachineClass *mc)
4759 {
4760     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4761 
4762     spapr_machine_6_2_class_options(mc);
4763     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4764     smc->pre_6_2_numa_affinity = true;
4765     mc->smp_props.prefer_sockets = true;
4766 }
4767 
4768 DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4769 
4770 /*
4771  * pseries-6.0
4772  */
4773 static void spapr_machine_6_0_class_options(MachineClass *mc)
4774 {
4775     spapr_machine_6_1_class_options(mc);
4776     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4777 }
4778 
4779 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4780 
4781 /*
4782  * pseries-5.2
4783  */
4784 static void spapr_machine_5_2_class_options(MachineClass *mc)
4785 {
4786     spapr_machine_6_0_class_options(mc);
4787     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4788 }
4789 
4790 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4791 
4792 /*
4793  * pseries-5.1
4794  */
4795 static void spapr_machine_5_1_class_options(MachineClass *mc)
4796 {
4797     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4798 
4799     spapr_machine_5_2_class_options(mc);
4800     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4801     smc->pre_5_2_numa_associativity = true;
4802 }
4803 
4804 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4805 
4806 /*
4807  * pseries-5.0
4808  */
4809 static void spapr_machine_5_0_class_options(MachineClass *mc)
4810 {
4811     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4812     static GlobalProperty compat[] = {
4813         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4814     };
4815 
4816     spapr_machine_5_1_class_options(mc);
4817     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4818     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4819     mc->numa_mem_supported = true;
4820     smc->pre_5_1_assoc_refpoints = true;
4821 }
4822 
4823 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4824 
4825 /*
4826  * pseries-4.2
4827  */
4828 static void spapr_machine_4_2_class_options(MachineClass *mc)
4829 {
4830     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4831 
4832     spapr_machine_5_0_class_options(mc);
4833     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4834     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4835     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4836     smc->rma_limit = 16 * GiB;
4837     mc->nvdimm_supported = false;
4838 }
4839 
4840 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4841 
4842 /*
4843  * pseries-4.1
4844  */
4845 static void spapr_machine_4_1_class_options(MachineClass *mc)
4846 {
4847     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4848     static GlobalProperty compat[] = {
4849         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4850         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4851     };
4852 
4853     spapr_machine_4_2_class_options(mc);
4854     smc->linux_pci_probe = false;
4855     smc->smp_threads_vsmt = false;
4856     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4857     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4858 }
4859 
4860 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4861 
4862 /*
4863  * pseries-4.0
4864  */
4865 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4866                               uint64_t *buid, hwaddr *pio,
4867                               hwaddr *mmio32, hwaddr *mmio64,
4868                               unsigned n_dma, uint32_t *liobns,
4869                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4870 {
4871     if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4872                              liobns, nv2gpa, nv2atsd, errp)) {
4873         return false;
4874     }
4875 
4876     *nv2gpa = 0;
4877     *nv2atsd = 0;
4878     return true;
4879 }
4880 static void spapr_machine_4_0_class_options(MachineClass *mc)
4881 {
4882     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4883 
4884     spapr_machine_4_1_class_options(mc);
4885     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4886     smc->phb_placement = phb_placement_4_0;
4887     smc->irq = &spapr_irq_xics;
4888     smc->pre_4_1_migration = true;
4889 }
4890 
4891 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4892 
4893 /*
4894  * pseries-3.1
4895  */
4896 static void spapr_machine_3_1_class_options(MachineClass *mc)
4897 {
4898     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4899 
4900     spapr_machine_4_0_class_options(mc);
4901     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4902 
4903     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4904     smc->update_dt_enabled = false;
4905     smc->dr_phb_enabled = false;
4906     smc->broken_host_serial_model = true;
4907     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4908     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4909     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4910     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4911 }
4912 
4913 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4914 
4915 /*
4916  * pseries-3.0
4917  */
4918 
4919 static void spapr_machine_3_0_class_options(MachineClass *mc)
4920 {
4921     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4922 
4923     spapr_machine_3_1_class_options(mc);
4924     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4925 
4926     smc->legacy_irq_allocation = true;
4927     smc->nr_xirqs = 0x400;
4928     smc->irq = &spapr_irq_xics_legacy;
4929 }
4930 
4931 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4932 
4933 /*
4934  * pseries-2.12
4935  */
4936 static void spapr_machine_2_12_class_options(MachineClass *mc)
4937 {
4938     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4939     static GlobalProperty compat[] = {
4940         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4941         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4942     };
4943 
4944     spapr_machine_3_0_class_options(mc);
4945     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4946     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4947 
4948     /* We depend on kvm_enabled() to choose a default value for the
4949      * hpt-max-page-size capability. Of course we can't do it here
4950      * because this is too early and the HW accelerator isn't initialzed
4951      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4952      */
4953     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4954 }
4955 
4956 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4957 
4958 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4959 {
4960     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4961 
4962     spapr_machine_2_12_class_options(mc);
4963     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4964     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4965     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4966 }
4967 
4968 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4969 
4970 /*
4971  * pseries-2.11
4972  */
4973 
4974 static void spapr_machine_2_11_class_options(MachineClass *mc)
4975 {
4976     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4977 
4978     spapr_machine_2_12_class_options(mc);
4979     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4980     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4981 }
4982 
4983 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4984 
4985 /*
4986  * pseries-2.10
4987  */
4988 
4989 static void spapr_machine_2_10_class_options(MachineClass *mc)
4990 {
4991     spapr_machine_2_11_class_options(mc);
4992     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4993 }
4994 
4995 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4996 
4997 /*
4998  * pseries-2.9
4999  */
5000 
5001 static void spapr_machine_2_9_class_options(MachineClass *mc)
5002 {
5003     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5004     static GlobalProperty compat[] = {
5005         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
5006     };
5007 
5008     spapr_machine_2_10_class_options(mc);
5009     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
5010     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5011     smc->pre_2_10_has_unused_icps = true;
5012     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
5013 }
5014 
5015 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
5016 
5017 /*
5018  * pseries-2.8
5019  */
5020 
5021 static void spapr_machine_2_8_class_options(MachineClass *mc)
5022 {
5023     static GlobalProperty compat[] = {
5024         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
5025     };
5026 
5027     spapr_machine_2_9_class_options(mc);
5028     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
5029     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5030     mc->numa_mem_align_shift = 23;
5031 }
5032 
5033 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
5034 
5035 /*
5036  * pseries-2.7
5037  */
5038 
5039 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
5040                               uint64_t *buid, hwaddr *pio,
5041                               hwaddr *mmio32, hwaddr *mmio64,
5042                               unsigned n_dma, uint32_t *liobns,
5043                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
5044 {
5045     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5046     const uint64_t base_buid = 0x800000020000000ULL;
5047     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
5048     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
5049     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
5050     const uint32_t max_index = 255;
5051     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
5052 
5053     uint64_t ram_top = MACHINE(spapr)->ram_size;
5054     hwaddr phb0_base, phb_base;
5055     int i;
5056 
5057     /* Do we have device memory? */
5058     if (MACHINE(spapr)->maxram_size > ram_top) {
5059         /* Can't just use maxram_size, because there may be an
5060          * alignment gap between normal and device memory regions
5061          */
5062         ram_top = MACHINE(spapr)->device_memory->base +
5063             memory_region_size(&MACHINE(spapr)->device_memory->mr);
5064     }
5065 
5066     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5067 
5068     if (index > max_index) {
5069         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5070                    max_index);
5071         return false;
5072     }
5073 
5074     *buid = base_buid + index;
5075     for (i = 0; i < n_dma; ++i) {
5076         liobns[i] = SPAPR_PCI_LIOBN(index, i);
5077     }
5078 
5079     phb_base = phb0_base + index * phb_spacing;
5080     *pio = phb_base + pio_offset;
5081     *mmio32 = phb_base + mmio_offset;
5082     /*
5083      * We don't set the 64-bit MMIO window, relying on the PHB's
5084      * fallback behaviour of automatically splitting a large "32-bit"
5085      * window into contiguous 32-bit and 64-bit windows
5086      */
5087 
5088     *nv2gpa = 0;
5089     *nv2atsd = 0;
5090     return true;
5091 }
5092 
5093 static void spapr_machine_2_7_class_options(MachineClass *mc)
5094 {
5095     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5096     static GlobalProperty compat[] = {
5097         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5098         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5099         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5100         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5101     };
5102 
5103     spapr_machine_2_8_class_options(mc);
5104     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5105     mc->default_machine_opts = "modern-hotplug-events=off";
5106     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5107     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5108     smc->phb_placement = phb_placement_2_7;
5109 }
5110 
5111 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5112 
5113 /*
5114  * pseries-2.6
5115  */
5116 
5117 static void spapr_machine_2_6_class_options(MachineClass *mc)
5118 {
5119     static GlobalProperty compat[] = {
5120         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5121     };
5122 
5123     spapr_machine_2_7_class_options(mc);
5124     mc->has_hotpluggable_cpus = false;
5125     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5126     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5127 }
5128 
5129 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5130 
5131 /*
5132  * pseries-2.5
5133  */
5134 
5135 static void spapr_machine_2_5_class_options(MachineClass *mc)
5136 {
5137     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5138     static GlobalProperty compat[] = {
5139         { "spapr-vlan", "use-rx-buffer-pools", "off" },
5140     };
5141 
5142     spapr_machine_2_6_class_options(mc);
5143     smc->use_ohci_by_default = true;
5144     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5145     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5146 }
5147 
5148 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5149 
5150 /*
5151  * pseries-2.4
5152  */
5153 
5154 static void spapr_machine_2_4_class_options(MachineClass *mc)
5155 {
5156     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5157 
5158     spapr_machine_2_5_class_options(mc);
5159     smc->dr_lmb_enabled = false;
5160     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5161 }
5162 
5163 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5164 
5165 /*
5166  * pseries-2.3
5167  */
5168 
5169 static void spapr_machine_2_3_class_options(MachineClass *mc)
5170 {
5171     static GlobalProperty compat[] = {
5172         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5173     };
5174     spapr_machine_2_4_class_options(mc);
5175     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5176     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5177 }
5178 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5179 
5180 /*
5181  * pseries-2.2
5182  */
5183 
5184 static void spapr_machine_2_2_class_options(MachineClass *mc)
5185 {
5186     static GlobalProperty compat[] = {
5187         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5188     };
5189 
5190     spapr_machine_2_3_class_options(mc);
5191     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5192     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5193     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5194 }
5195 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5196 
5197 /*
5198  * pseries-2.1
5199  */
5200 
5201 static void spapr_machine_2_1_class_options(MachineClass *mc)
5202 {
5203     spapr_machine_2_2_class_options(mc);
5204     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5205 }
5206 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5207 
5208 static void spapr_machine_register_types(void)
5209 {
5210     type_register_static(&spapr_machine_info);
5211 }
5212 
5213 type_init(spapr_machine_register_types)
5214