xref: /qemu/hw/ppc/spapr.c (revision 86044b24)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "mmu-hash64.h"
50 #include "mmu-book3s-v3.h"
51 #include "cpu-models.h"
52 #include "hw/core/cpu.h"
53 
54 #include "hw/boards.h"
55 #include "hw/ppc/ppc.h"
56 #include "hw/loader.h"
57 
58 #include "hw/ppc/fdt.h"
59 #include "hw/ppc/spapr.h"
60 #include "hw/ppc/spapr_vio.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/pci-host/spapr.h"
63 #include "hw/pci/msi.h"
64 
65 #include "hw/pci/pci.h"
66 #include "hw/scsi/scsi.h"
67 #include "hw/virtio/virtio-scsi.h"
68 #include "hw/virtio/vhost-scsi-common.h"
69 
70 #include "exec/address-spaces.h"
71 #include "exec/ram_addr.h"
72 #include "hw/usb.h"
73 #include "qemu/config-file.h"
74 #include "qemu/error-report.h"
75 #include "trace.h"
76 #include "hw/nmi.h"
77 #include "hw/intc/intc.h"
78 
79 #include "qemu/cutils.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 
84 #include "monitor/monitor.h"
85 
86 #include <libfdt.h>
87 
88 /* SLOF memory layout:
89  *
90  * SLOF raw image loaded at 0, copies its romfs right below the flat
91  * device-tree, then position SLOF itself 31M below that
92  *
93  * So we set FW_OVERHEAD to 40MB which should account for all of that
94  * and more
95  *
96  * We load our kernel at 4M, leaving space for SLOF initial image
97  */
98 #define FDT_MAX_SIZE            0x100000
99 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
100 #define FW_MAX_SIZE             0x400000
101 #define FW_FILE_NAME            "slof.bin"
102 #define FW_OVERHEAD             0x2800000
103 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
104 
105 #define MIN_RMA_SLOF            128UL
106 
107 #define PHANDLE_INTC            0x00001111
108 
109 /* These two functions implement the VCPU id numbering: one to compute them
110  * all and one to identify thread 0 of a VCORE. Any change to the first one
111  * is likely to have an impact on the second one, so let's keep them close.
112  */
113 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
114 {
115     MachineState *ms = MACHINE(spapr);
116     unsigned int smp_threads = ms->smp.threads;
117 
118     assert(spapr->vsmt);
119     return
120         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
121 }
122 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
123                                       PowerPCCPU *cpu)
124 {
125     assert(spapr->vsmt);
126     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
127 }
128 
129 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
130 {
131     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
132      * and newer QEMUs don't even have them. In both cases, we don't want
133      * to send anything on the wire.
134      */
135     return false;
136 }
137 
138 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
139     .name = "icp/server",
140     .version_id = 1,
141     .minimum_version_id = 1,
142     .needed = pre_2_10_vmstate_dummy_icp_needed,
143     .fields = (VMStateField[]) {
144         VMSTATE_UNUSED(4), /* uint32_t xirr */
145         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
146         VMSTATE_UNUSED(1), /* uint8_t mfrr */
147         VMSTATE_END_OF_LIST()
148     },
149 };
150 
151 static void pre_2_10_vmstate_register_dummy_icp(int i)
152 {
153     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
154                      (void *)(uintptr_t) i);
155 }
156 
157 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
158 {
159     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
160                        (void *)(uintptr_t) i);
161 }
162 
163 int spapr_max_server_number(SpaprMachineState *spapr)
164 {
165     MachineState *ms = MACHINE(spapr);
166 
167     assert(spapr->vsmt);
168     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
169 }
170 
171 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
172                                   int smt_threads)
173 {
174     int i, ret = 0;
175     uint32_t servers_prop[smt_threads];
176     uint32_t gservers_prop[smt_threads * 2];
177     int index = spapr_get_vcpu_id(cpu);
178 
179     if (cpu->compat_pvr) {
180         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
181         if (ret < 0) {
182             return ret;
183         }
184     }
185 
186     /* Build interrupt servers and gservers properties */
187     for (i = 0; i < smt_threads; i++) {
188         servers_prop[i] = cpu_to_be32(index + i);
189         /* Hack, direct the group queues back to cpu 0 */
190         gservers_prop[i*2] = cpu_to_be32(index + i);
191         gservers_prop[i*2 + 1] = 0;
192     }
193     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
194                       servers_prop, sizeof(servers_prop));
195     if (ret < 0) {
196         return ret;
197     }
198     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
199                       gservers_prop, sizeof(gservers_prop));
200 
201     return ret;
202 }
203 
204 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
205 {
206     int index = spapr_get_vcpu_id(cpu);
207     uint32_t associativity[] = {cpu_to_be32(0x5),
208                                 cpu_to_be32(0x0),
209                                 cpu_to_be32(0x0),
210                                 cpu_to_be32(0x0),
211                                 cpu_to_be32(cpu->node_id),
212                                 cpu_to_be32(index)};
213 
214     /* Advertise NUMA via ibm,associativity */
215     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
216                           sizeof(associativity));
217 }
218 
219 /* Populate the "ibm,pa-features" property */
220 static void spapr_populate_pa_features(SpaprMachineState *spapr,
221                                        PowerPCCPU *cpu,
222                                        void *fdt, int offset)
223 {
224     uint8_t pa_features_206[] = { 6, 0,
225         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
226     uint8_t pa_features_207[] = { 24, 0,
227         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
228         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
229         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
230         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
231     uint8_t pa_features_300[] = { 66, 0,
232         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
233         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
234         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
235         /* 6: DS207 */
236         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
237         /* 16: Vector */
238         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
239         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
240         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
241         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
242         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
243         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
244         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
245         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
246         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
247         /* 42: PM, 44: PC RA, 46: SC vec'd */
248         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
249         /* 48: SIMD, 50: QP BFP, 52: String */
250         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
251         /* 54: DecFP, 56: DecI, 58: SHA */
252         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
253         /* 60: NM atomic, 62: RNG */
254         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
255     };
256     uint8_t *pa_features = NULL;
257     size_t pa_size;
258 
259     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
260         pa_features = pa_features_206;
261         pa_size = sizeof(pa_features_206);
262     }
263     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
264         pa_features = pa_features_207;
265         pa_size = sizeof(pa_features_207);
266     }
267     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
268         pa_features = pa_features_300;
269         pa_size = sizeof(pa_features_300);
270     }
271     if (!pa_features) {
272         return;
273     }
274 
275     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
276         /*
277          * Note: we keep CI large pages off by default because a 64K capable
278          * guest provisioned with large pages might otherwise try to map a qemu
279          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
280          * even if that qemu runs on a 4k host.
281          * We dd this bit back here if we are confident this is not an issue
282          */
283         pa_features[3] |= 0x20;
284     }
285     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
286         pa_features[24] |= 0x80;    /* Transactional memory support */
287     }
288     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
289         /* Workaround for broken kernels that attempt (guest) radix
290          * mode when they can't handle it, if they see the radix bit set
291          * in pa-features. So hide it from them. */
292         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
293     }
294 
295     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
296 }
297 
298 static hwaddr spapr_node0_size(MachineState *machine)
299 {
300     if (machine->numa_state->num_nodes) {
301         int i;
302         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
303             if (machine->numa_state->nodes[i].node_mem) {
304                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
305                            machine->ram_size);
306             }
307         }
308     }
309     return machine->ram_size;
310 }
311 
312 static void add_str(GString *s, const gchar *s1)
313 {
314     g_string_append_len(s, s1, strlen(s1) + 1);
315 }
316 
317 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
318                                        hwaddr size)
319 {
320     uint32_t associativity[] = {
321         cpu_to_be32(0x4), /* length */
322         cpu_to_be32(0x0), cpu_to_be32(0x0),
323         cpu_to_be32(0x0), cpu_to_be32(nodeid)
324     };
325     char mem_name[32];
326     uint64_t mem_reg_property[2];
327     int off;
328 
329     mem_reg_property[0] = cpu_to_be64(start);
330     mem_reg_property[1] = cpu_to_be64(size);
331 
332     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
333     off = fdt_add_subnode(fdt, 0, mem_name);
334     _FDT(off);
335     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
336     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
337                       sizeof(mem_reg_property))));
338     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
339                       sizeof(associativity))));
340     return off;
341 }
342 
343 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
344 {
345     MachineState *machine = MACHINE(spapr);
346     hwaddr mem_start, node_size;
347     int i, nb_nodes = machine->numa_state->num_nodes;
348     NodeInfo *nodes = machine->numa_state->nodes;
349 
350     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
351         if (!nodes[i].node_mem) {
352             continue;
353         }
354         if (mem_start >= machine->ram_size) {
355             node_size = 0;
356         } else {
357             node_size = nodes[i].node_mem;
358             if (node_size > machine->ram_size - mem_start) {
359                 node_size = machine->ram_size - mem_start;
360             }
361         }
362         if (!mem_start) {
363             /* spapr_machine_init() checks for rma_size <= node0_size
364              * already */
365             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
366             mem_start += spapr->rma_size;
367             node_size -= spapr->rma_size;
368         }
369         for ( ; node_size; ) {
370             hwaddr sizetmp = pow2floor(node_size);
371 
372             /* mem_start != 0 here */
373             if (ctzl(mem_start) < ctzl(sizetmp)) {
374                 sizetmp = 1ULL << ctzl(mem_start);
375             }
376 
377             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
378             node_size -= sizetmp;
379             mem_start += sizetmp;
380         }
381     }
382 
383     return 0;
384 }
385 
386 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
387                                   SpaprMachineState *spapr)
388 {
389     MachineState *ms = MACHINE(spapr);
390     PowerPCCPU *cpu = POWERPC_CPU(cs);
391     CPUPPCState *env = &cpu->env;
392     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
393     int index = spapr_get_vcpu_id(cpu);
394     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
395                        0xffffffff, 0xffffffff};
396     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
397         : SPAPR_TIMEBASE_FREQ;
398     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
399     uint32_t page_sizes_prop[64];
400     size_t page_sizes_prop_size;
401     unsigned int smp_threads = ms->smp.threads;
402     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
403     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
404     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
405     SpaprDrc *drc;
406     int drc_index;
407     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
408     int i;
409 
410     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
411     if (drc) {
412         drc_index = spapr_drc_index(drc);
413         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
414     }
415 
416     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
417     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
418 
419     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
420     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
421                            env->dcache_line_size)));
422     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
423                            env->dcache_line_size)));
424     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
425                            env->icache_line_size)));
426     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
427                            env->icache_line_size)));
428 
429     if (pcc->l1_dcache_size) {
430         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
431                                pcc->l1_dcache_size)));
432     } else {
433         warn_report("Unknown L1 dcache size for cpu");
434     }
435     if (pcc->l1_icache_size) {
436         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
437                                pcc->l1_icache_size)));
438     } else {
439         warn_report("Unknown L1 icache size for cpu");
440     }
441 
442     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
443     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
444     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
445     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
446     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
447     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
448 
449     if (env->spr_cb[SPR_PURR].oea_read) {
450         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
451     }
452     if (env->spr_cb[SPR_SPURR].oea_read) {
453         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
454     }
455 
456     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
457         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
458                           segs, sizeof(segs))));
459     }
460 
461     /* Advertise VSX (vector extensions) if available
462      *   1               == VMX / Altivec available
463      *   2               == VSX available
464      *
465      * Only CPUs for which we create core types in spapr_cpu_core.c
466      * are possible, and all of those have VMX */
467     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
468         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
469     } else {
470         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
471     }
472 
473     /* Advertise DFP (Decimal Floating Point) if available
474      *   0 / no property == no DFP
475      *   1               == DFP available */
476     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
477         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
478     }
479 
480     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
481                                                       sizeof(page_sizes_prop));
482     if (page_sizes_prop_size) {
483         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
484                           page_sizes_prop, page_sizes_prop_size)));
485     }
486 
487     spapr_populate_pa_features(spapr, cpu, fdt, offset);
488 
489     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
490                            cs->cpu_index / vcpus_per_socket)));
491 
492     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
493                       pft_size_prop, sizeof(pft_size_prop))));
494 
495     if (ms->numa_state->num_nodes > 1) {
496         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
497     }
498 
499     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
500 
501     if (pcc->radix_page_info) {
502         for (i = 0; i < pcc->radix_page_info->count; i++) {
503             radix_AP_encodings[i] =
504                 cpu_to_be32(pcc->radix_page_info->entries[i]);
505         }
506         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
507                           radix_AP_encodings,
508                           pcc->radix_page_info->count *
509                           sizeof(radix_AP_encodings[0]))));
510     }
511 
512     /*
513      * We set this property to let the guest know that it can use the large
514      * decrementer and its width in bits.
515      */
516     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
517         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
518                               pcc->lrg_decr_bits)));
519 }
520 
521 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
522 {
523     CPUState **rev;
524     CPUState *cs;
525     int n_cpus;
526     int cpus_offset;
527     char *nodename;
528     int i;
529 
530     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
531     _FDT(cpus_offset);
532     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
533     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
534 
535     /*
536      * We walk the CPUs in reverse order to ensure that CPU DT nodes
537      * created by fdt_add_subnode() end up in the right order in FDT
538      * for the guest kernel the enumerate the CPUs correctly.
539      *
540      * The CPU list cannot be traversed in reverse order, so we need
541      * to do extra work.
542      */
543     n_cpus = 0;
544     rev = NULL;
545     CPU_FOREACH(cs) {
546         rev = g_renew(CPUState *, rev, n_cpus + 1);
547         rev[n_cpus++] = cs;
548     }
549 
550     for (i = n_cpus - 1; i >= 0; i--) {
551         CPUState *cs = rev[i];
552         PowerPCCPU *cpu = POWERPC_CPU(cs);
553         int index = spapr_get_vcpu_id(cpu);
554         DeviceClass *dc = DEVICE_GET_CLASS(cs);
555         int offset;
556 
557         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
558             continue;
559         }
560 
561         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
562         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
563         g_free(nodename);
564         _FDT(offset);
565         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
566     }
567 
568     g_free(rev);
569 }
570 
571 static int spapr_rng_populate_dt(void *fdt)
572 {
573     int node;
574     int ret;
575 
576     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
577     if (node <= 0) {
578         return -1;
579     }
580     ret = fdt_setprop_string(fdt, node, "device_type",
581                              "ibm,platform-facilities");
582     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
583     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
584 
585     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
586     if (node <= 0) {
587         return -1;
588     }
589     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
590 
591     return ret ? -1 : 0;
592 }
593 
594 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
595 {
596     MemoryDeviceInfoList *info;
597 
598     for (info = list; info; info = info->next) {
599         MemoryDeviceInfo *value = info->value;
600 
601         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
602             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
603 
604             if (addr >= pcdimm_info->addr &&
605                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
606                 return pcdimm_info->node;
607             }
608         }
609     }
610 
611     return -1;
612 }
613 
614 struct sPAPRDrconfCellV2 {
615      uint32_t seq_lmbs;
616      uint64_t base_addr;
617      uint32_t drc_index;
618      uint32_t aa_index;
619      uint32_t flags;
620 } QEMU_PACKED;
621 
622 typedef struct DrconfCellQueue {
623     struct sPAPRDrconfCellV2 cell;
624     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
625 } DrconfCellQueue;
626 
627 static DrconfCellQueue *
628 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
629                       uint32_t drc_index, uint32_t aa_index,
630                       uint32_t flags)
631 {
632     DrconfCellQueue *elem;
633 
634     elem = g_malloc0(sizeof(*elem));
635     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
636     elem->cell.base_addr = cpu_to_be64(base_addr);
637     elem->cell.drc_index = cpu_to_be32(drc_index);
638     elem->cell.aa_index = cpu_to_be32(aa_index);
639     elem->cell.flags = cpu_to_be32(flags);
640 
641     return elem;
642 }
643 
644 /* ibm,dynamic-memory-v2 */
645 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
646                                    int offset, MemoryDeviceInfoList *dimms)
647 {
648     MachineState *machine = MACHINE(spapr);
649     uint8_t *int_buf, *cur_index;
650     int ret;
651     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
652     uint64_t addr, cur_addr, size;
653     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
654     uint64_t mem_end = machine->device_memory->base +
655                        memory_region_size(&machine->device_memory->mr);
656     uint32_t node, buf_len, nr_entries = 0;
657     SpaprDrc *drc;
658     DrconfCellQueue *elem, *next;
659     MemoryDeviceInfoList *info;
660     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
661         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
662 
663     /* Entry to cover RAM and the gap area */
664     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
665                                  SPAPR_LMB_FLAGS_RESERVED |
666                                  SPAPR_LMB_FLAGS_DRC_INVALID);
667     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
668     nr_entries++;
669 
670     cur_addr = machine->device_memory->base;
671     for (info = dimms; info; info = info->next) {
672         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
673 
674         addr = di->addr;
675         size = di->size;
676         node = di->node;
677 
678         /* Entry for hot-pluggable area */
679         if (cur_addr < addr) {
680             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
681             g_assert(drc);
682             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
683                                          cur_addr, spapr_drc_index(drc), -1, 0);
684             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
685             nr_entries++;
686         }
687 
688         /* Entry for DIMM */
689         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
690         g_assert(drc);
691         elem = spapr_get_drconf_cell(size / lmb_size, addr,
692                                      spapr_drc_index(drc), node,
693                                      SPAPR_LMB_FLAGS_ASSIGNED);
694         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
695         nr_entries++;
696         cur_addr = addr + size;
697     }
698 
699     /* Entry for remaining hotpluggable area */
700     if (cur_addr < mem_end) {
701         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
702         g_assert(drc);
703         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
704                                      cur_addr, spapr_drc_index(drc), -1, 0);
705         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
706         nr_entries++;
707     }
708 
709     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
710     int_buf = cur_index = g_malloc0(buf_len);
711     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
712     cur_index += sizeof(nr_entries);
713 
714     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
715         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
716         cur_index += sizeof(elem->cell);
717         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
718         g_free(elem);
719     }
720 
721     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
722     g_free(int_buf);
723     if (ret < 0) {
724         return -1;
725     }
726     return 0;
727 }
728 
729 /* ibm,dynamic-memory */
730 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
731                                    int offset, MemoryDeviceInfoList *dimms)
732 {
733     MachineState *machine = MACHINE(spapr);
734     int i, ret;
735     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
736     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
737     uint32_t nr_lmbs = (machine->device_memory->base +
738                        memory_region_size(&machine->device_memory->mr)) /
739                        lmb_size;
740     uint32_t *int_buf, *cur_index, buf_len;
741 
742     /*
743      * Allocate enough buffer size to fit in ibm,dynamic-memory
744      */
745     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
746     cur_index = int_buf = g_malloc0(buf_len);
747     int_buf[0] = cpu_to_be32(nr_lmbs);
748     cur_index++;
749     for (i = 0; i < nr_lmbs; i++) {
750         uint64_t addr = i * lmb_size;
751         uint32_t *dynamic_memory = cur_index;
752 
753         if (i >= device_lmb_start) {
754             SpaprDrc *drc;
755 
756             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
757             g_assert(drc);
758 
759             dynamic_memory[0] = cpu_to_be32(addr >> 32);
760             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
761             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
762             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
763             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
764             if (memory_region_present(get_system_memory(), addr)) {
765                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
766             } else {
767                 dynamic_memory[5] = cpu_to_be32(0);
768             }
769         } else {
770             /*
771              * LMB information for RMA, boot time RAM and gap b/n RAM and
772              * device memory region -- all these are marked as reserved
773              * and as having no valid DRC.
774              */
775             dynamic_memory[0] = cpu_to_be32(addr >> 32);
776             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
777             dynamic_memory[2] = cpu_to_be32(0);
778             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
779             dynamic_memory[4] = cpu_to_be32(-1);
780             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
781                                             SPAPR_LMB_FLAGS_DRC_INVALID);
782         }
783 
784         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
785     }
786     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
787     g_free(int_buf);
788     if (ret < 0) {
789         return -1;
790     }
791     return 0;
792 }
793 
794 /*
795  * Adds ibm,dynamic-reconfiguration-memory node.
796  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
797  * of this device tree node.
798  */
799 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
800 {
801     MachineState *machine = MACHINE(spapr);
802     int nb_numa_nodes = machine->numa_state->num_nodes;
803     int ret, i, offset;
804     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
805     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
806     uint32_t *int_buf, *cur_index, buf_len;
807     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
808     MemoryDeviceInfoList *dimms = NULL;
809 
810     /*
811      * Don't create the node if there is no device memory
812      */
813     if (machine->ram_size == machine->maxram_size) {
814         return 0;
815     }
816 
817     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
818 
819     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
820                     sizeof(prop_lmb_size));
821     if (ret < 0) {
822         return ret;
823     }
824 
825     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
826     if (ret < 0) {
827         return ret;
828     }
829 
830     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
831     if (ret < 0) {
832         return ret;
833     }
834 
835     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
836     dimms = qmp_memory_device_list();
837     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
838         ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
839     } else {
840         ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
841     }
842     qapi_free_MemoryDeviceInfoList(dimms);
843 
844     if (ret < 0) {
845         return ret;
846     }
847 
848     /* ibm,associativity-lookup-arrays */
849     buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
850     cur_index = int_buf = g_malloc0(buf_len);
851     int_buf[0] = cpu_to_be32(nr_nodes);
852     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
853     cur_index += 2;
854     for (i = 0; i < nr_nodes; i++) {
855         uint32_t associativity[] = {
856             cpu_to_be32(0x0),
857             cpu_to_be32(0x0),
858             cpu_to_be32(0x0),
859             cpu_to_be32(i)
860         };
861         memcpy(cur_index, associativity, sizeof(associativity));
862         cur_index += 4;
863     }
864     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
865             (cur_index - int_buf) * sizeof(uint32_t));
866     g_free(int_buf);
867 
868     return ret;
869 }
870 
871 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
872                                 SpaprOptionVector *ov5_updates)
873 {
874     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
875     int ret = 0, offset;
876 
877     /* Generate ibm,dynamic-reconfiguration-memory node if required */
878     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
879         g_assert(smc->dr_lmb_enabled);
880         ret = spapr_populate_drconf_memory(spapr, fdt);
881         if (ret) {
882             goto out;
883         }
884     }
885 
886     offset = fdt_path_offset(fdt, "/chosen");
887     if (offset < 0) {
888         offset = fdt_add_subnode(fdt, 0, "chosen");
889         if (offset < 0) {
890             return offset;
891         }
892     }
893     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
894                                  "ibm,architecture-vec-5");
895 
896 out:
897     return ret;
898 }
899 
900 static bool spapr_hotplugged_dev_before_cas(void)
901 {
902     Object *drc_container, *obj;
903     ObjectProperty *prop;
904     ObjectPropertyIterator iter;
905 
906     drc_container = container_get(object_get_root(), "/dr-connector");
907     object_property_iter_init(&iter, drc_container);
908     while ((prop = object_property_iter_next(&iter))) {
909         if (!strstart(prop->type, "link<", NULL)) {
910             continue;
911         }
912         obj = object_property_get_link(drc_container, prop->name, NULL);
913         if (spapr_drc_needed(obj)) {
914             return true;
915         }
916     }
917     return false;
918 }
919 
920 static void *spapr_build_fdt(SpaprMachineState *spapr);
921 
922 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
923                                  target_ulong addr, target_ulong size,
924                                  SpaprOptionVector *ov5_updates)
925 {
926     void *fdt;
927     SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
928 
929     if (spapr_hotplugged_dev_before_cas()) {
930         return 1;
931     }
932 
933     if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
934         error_report("SLOF provided an unexpected CAS buffer size "
935                      TARGET_FMT_lu " (min: %zu, max: %u)",
936                      size, sizeof(hdr), FW_MAX_SIZE);
937         exit(EXIT_FAILURE);
938     }
939 
940     size -= sizeof(hdr);
941 
942     fdt = spapr_build_fdt(spapr);
943     _FDT((fdt_pack(fdt)));
944 
945     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
946         g_free(fdt);
947         trace_spapr_cas_failed(size);
948         return -1;
949     }
950 
951     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
952     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
953     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
954 
955     g_free(spapr->fdt_blob);
956     spapr->fdt_size = fdt_totalsize(fdt);
957     spapr->fdt_initial_size = spapr->fdt_size;
958     spapr->fdt_blob = fdt;
959 
960     return 0;
961 }
962 
963 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
964 {
965     MachineState *ms = MACHINE(spapr);
966     int rtas;
967     GString *hypertas = g_string_sized_new(256);
968     GString *qemu_hypertas = g_string_sized_new(256);
969     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
970     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
971         memory_region_size(&MACHINE(spapr)->device_memory->mr);
972     uint32_t lrdr_capacity[] = {
973         cpu_to_be32(max_device_addr >> 32),
974         cpu_to_be32(max_device_addr & 0xffffffff),
975         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
976         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
977     };
978     uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
979     uint32_t maxdomains[] = {
980         cpu_to_be32(4),
981         maxdomain,
982         maxdomain,
983         maxdomain,
984         cpu_to_be32(spapr->gpu_numa_id),
985     };
986 
987     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
988 
989     /* hypertas */
990     add_str(hypertas, "hcall-pft");
991     add_str(hypertas, "hcall-term");
992     add_str(hypertas, "hcall-dabr");
993     add_str(hypertas, "hcall-interrupt");
994     add_str(hypertas, "hcall-tce");
995     add_str(hypertas, "hcall-vio");
996     add_str(hypertas, "hcall-splpar");
997     add_str(hypertas, "hcall-join");
998     add_str(hypertas, "hcall-bulk");
999     add_str(hypertas, "hcall-set-mode");
1000     add_str(hypertas, "hcall-sprg0");
1001     add_str(hypertas, "hcall-copy");
1002     add_str(hypertas, "hcall-debug");
1003     add_str(hypertas, "hcall-vphn");
1004     add_str(qemu_hypertas, "hcall-memop1");
1005 
1006     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1007         add_str(hypertas, "hcall-multi-tce");
1008     }
1009 
1010     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1011         add_str(hypertas, "hcall-hpt-resize");
1012     }
1013 
1014     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1015                      hypertas->str, hypertas->len));
1016     g_string_free(hypertas, TRUE);
1017     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1018                      qemu_hypertas->str, qemu_hypertas->len));
1019     g_string_free(qemu_hypertas, TRUE);
1020 
1021     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1022                      refpoints, sizeof(refpoints)));
1023 
1024     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1025                      maxdomains, sizeof(maxdomains)));
1026 
1027     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1028                           RTAS_ERROR_LOG_MAX));
1029     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1030                           RTAS_EVENT_SCAN_RATE));
1031 
1032     g_assert(msi_nonbroken);
1033     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1034 
1035     /*
1036      * According to PAPR, rtas ibm,os-term does not guarantee a return
1037      * back to the guest cpu.
1038      *
1039      * While an additional ibm,extended-os-term property indicates
1040      * that rtas call return will always occur. Set this property.
1041      */
1042     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1043 
1044     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1045                      lrdr_capacity, sizeof(lrdr_capacity)));
1046 
1047     spapr_dt_rtas_tokens(fdt, rtas);
1048 }
1049 
1050 /*
1051  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1052  * and the XIVE features that the guest may request and thus the valid
1053  * values for bytes 23..26 of option vector 5:
1054  */
1055 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1056                                           int chosen)
1057 {
1058     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1059 
1060     char val[2 * 4] = {
1061         23, 0x00, /* XICS / XIVE mode */
1062         24, 0x00, /* Hash/Radix, filled in below. */
1063         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1064         26, 0x40, /* Radix options: GTSE == yes. */
1065     };
1066 
1067     if (spapr->irq->xics && spapr->irq->xive) {
1068         val[1] = SPAPR_OV5_XIVE_BOTH;
1069     } else if (spapr->irq->xive) {
1070         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1071     } else {
1072         assert(spapr->irq->xics);
1073         val[1] = SPAPR_OV5_XIVE_LEGACY;
1074     }
1075 
1076     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1077                           first_ppc_cpu->compat_pvr)) {
1078         /*
1079          * If we're in a pre POWER9 compat mode then the guest should
1080          * do hash and use the legacy interrupt mode
1081          */
1082         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1083         val[3] = 0x00; /* Hash */
1084     } else if (kvm_enabled()) {
1085         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1086             val[3] = 0x80; /* OV5_MMU_BOTH */
1087         } else if (kvmppc_has_cap_mmu_radix()) {
1088             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1089         } else {
1090             val[3] = 0x00; /* Hash */
1091         }
1092     } else {
1093         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1094         val[3] = 0xC0;
1095     }
1096     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1097                      val, sizeof(val)));
1098 }
1099 
1100 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1101 {
1102     MachineState *machine = MACHINE(spapr);
1103     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1104     int chosen;
1105     const char *boot_device = machine->boot_order;
1106     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1107     size_t cb = 0;
1108     char *bootlist = get_boot_devices_list(&cb);
1109 
1110     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1111 
1112     if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1113         _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1114                                 machine->kernel_cmdline));
1115     }
1116     if (spapr->initrd_size) {
1117         _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1118                               spapr->initrd_base));
1119         _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1120                               spapr->initrd_base + spapr->initrd_size));
1121     }
1122 
1123     if (spapr->kernel_size) {
1124         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1125                               cpu_to_be64(spapr->kernel_size) };
1126 
1127         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1128                          &kprop, sizeof(kprop)));
1129         if (spapr->kernel_le) {
1130             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1131         }
1132     }
1133     if (boot_menu) {
1134         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1135     }
1136     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1137     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1138     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1139 
1140     if (cb && bootlist) {
1141         int i;
1142 
1143         for (i = 0; i < cb; i++) {
1144             if (bootlist[i] == '\n') {
1145                 bootlist[i] = ' ';
1146             }
1147         }
1148         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1149     }
1150 
1151     if (boot_device && strlen(boot_device)) {
1152         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1153     }
1154 
1155     if (!spapr->has_graphics && stdout_path) {
1156         /*
1157          * "linux,stdout-path" and "stdout" properties are deprecated by linux
1158          * kernel. New platforms should only use the "stdout-path" property. Set
1159          * the new property and continue using older property to remain
1160          * compatible with the existing firmware.
1161          */
1162         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1163         _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1164     }
1165 
1166     /* We can deal with BAR reallocation just fine, advertise it to the guest */
1167     if (smc->linux_pci_probe) {
1168         _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1169     }
1170 
1171     spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1172 
1173     g_free(stdout_path);
1174     g_free(bootlist);
1175 }
1176 
1177 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1178 {
1179     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1180      * KVM to work under pHyp with some guest co-operation */
1181     int hypervisor;
1182     uint8_t hypercall[16];
1183 
1184     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1185     /* indicate KVM hypercall interface */
1186     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1187     if (kvmppc_has_cap_fixup_hcalls()) {
1188         /*
1189          * Older KVM versions with older guest kernels were broken
1190          * with the magic page, don't allow the guest to map it.
1191          */
1192         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1193                                   sizeof(hypercall))) {
1194             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1195                              hypercall, sizeof(hypercall)));
1196         }
1197     }
1198 }
1199 
1200 static void *spapr_build_fdt(SpaprMachineState *spapr)
1201 {
1202     MachineState *machine = MACHINE(spapr);
1203     MachineClass *mc = MACHINE_GET_CLASS(machine);
1204     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1205     int ret;
1206     void *fdt;
1207     SpaprPhbState *phb;
1208     char *buf;
1209 
1210     fdt = g_malloc0(FDT_MAX_SIZE);
1211     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1212 
1213     /* Root node */
1214     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1215     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1216     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1217 
1218     /* Guest UUID & Name*/
1219     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1220     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1221     if (qemu_uuid_set) {
1222         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1223     }
1224     g_free(buf);
1225 
1226     if (qemu_get_vm_name()) {
1227         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1228                                 qemu_get_vm_name()));
1229     }
1230 
1231     /* Host Model & Serial Number */
1232     if (spapr->host_model) {
1233         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1234     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1235         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1236         g_free(buf);
1237     }
1238 
1239     if (spapr->host_serial) {
1240         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1241     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1242         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1243         g_free(buf);
1244     }
1245 
1246     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1247     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1248 
1249     /* /interrupt controller */
1250     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1251 
1252     ret = spapr_populate_memory(spapr, fdt);
1253     if (ret < 0) {
1254         error_report("couldn't setup memory nodes in fdt");
1255         exit(1);
1256     }
1257 
1258     /* /vdevice */
1259     spapr_dt_vdevice(spapr->vio_bus, fdt);
1260 
1261     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1262         ret = spapr_rng_populate_dt(fdt);
1263         if (ret < 0) {
1264             error_report("could not set up rng device in the fdt");
1265             exit(1);
1266         }
1267     }
1268 
1269     QLIST_FOREACH(phb, &spapr->phbs, list) {
1270         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1271         if (ret < 0) {
1272             error_report("couldn't setup PCI devices in fdt");
1273             exit(1);
1274         }
1275     }
1276 
1277     /* cpus */
1278     spapr_populate_cpus_dt_node(fdt, spapr);
1279 
1280     if (smc->dr_lmb_enabled) {
1281         _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1282     }
1283 
1284     if (mc->has_hotpluggable_cpus) {
1285         int offset = fdt_path_offset(fdt, "/cpus");
1286         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1287         if (ret < 0) {
1288             error_report("Couldn't set up CPU DR device tree properties");
1289             exit(1);
1290         }
1291     }
1292 
1293     /* /event-sources */
1294     spapr_dt_events(spapr, fdt);
1295 
1296     /* /rtas */
1297     spapr_dt_rtas(spapr, fdt);
1298 
1299     /* /chosen */
1300     spapr_dt_chosen(spapr, fdt);
1301 
1302     /* /hypervisor */
1303     if (kvm_enabled()) {
1304         spapr_dt_hypervisor(spapr, fdt);
1305     }
1306 
1307     /* Build memory reserve map */
1308     if (spapr->kernel_size) {
1309         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1310     }
1311     if (spapr->initrd_size) {
1312         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1313     }
1314 
1315     /* ibm,client-architecture-support updates */
1316     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1317     if (ret < 0) {
1318         error_report("couldn't setup CAS properties fdt");
1319         exit(1);
1320     }
1321 
1322     if (smc->dr_phb_enabled) {
1323         ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1324         if (ret < 0) {
1325             error_report("Couldn't set up PHB DR device tree properties");
1326             exit(1);
1327         }
1328     }
1329 
1330     return fdt;
1331 }
1332 
1333 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1334 {
1335     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1336 }
1337 
1338 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1339                                     PowerPCCPU *cpu)
1340 {
1341     CPUPPCState *env = &cpu->env;
1342 
1343     /* The TCG path should also be holding the BQL at this point */
1344     g_assert(qemu_mutex_iothread_locked());
1345 
1346     if (msr_pr) {
1347         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1348         env->gpr[3] = H_PRIVILEGE;
1349     } else {
1350         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1351     }
1352 }
1353 
1354 struct LPCRSyncState {
1355     target_ulong value;
1356     target_ulong mask;
1357 };
1358 
1359 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1360 {
1361     struct LPCRSyncState *s = arg.host_ptr;
1362     PowerPCCPU *cpu = POWERPC_CPU(cs);
1363     CPUPPCState *env = &cpu->env;
1364     target_ulong lpcr;
1365 
1366     cpu_synchronize_state(cs);
1367     lpcr = env->spr[SPR_LPCR];
1368     lpcr &= ~s->mask;
1369     lpcr |= s->value;
1370     ppc_store_lpcr(cpu, lpcr);
1371 }
1372 
1373 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1374 {
1375     CPUState *cs;
1376     struct LPCRSyncState s = {
1377         .value = value,
1378         .mask = mask
1379     };
1380     CPU_FOREACH(cs) {
1381         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1382     }
1383 }
1384 
1385 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1386 {
1387     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1388 
1389     /* Copy PATE1:GR into PATE0:HR */
1390     entry->dw0 = spapr->patb_entry & PATE0_HR;
1391     entry->dw1 = spapr->patb_entry;
1392 }
1393 
1394 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1395 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1396 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1397 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1398 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1399 
1400 /*
1401  * Get the fd to access the kernel htab, re-opening it if necessary
1402  */
1403 static int get_htab_fd(SpaprMachineState *spapr)
1404 {
1405     Error *local_err = NULL;
1406 
1407     if (spapr->htab_fd >= 0) {
1408         return spapr->htab_fd;
1409     }
1410 
1411     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1412     if (spapr->htab_fd < 0) {
1413         error_report_err(local_err);
1414     }
1415 
1416     return spapr->htab_fd;
1417 }
1418 
1419 void close_htab_fd(SpaprMachineState *spapr)
1420 {
1421     if (spapr->htab_fd >= 0) {
1422         close(spapr->htab_fd);
1423     }
1424     spapr->htab_fd = -1;
1425 }
1426 
1427 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1428 {
1429     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1430 
1431     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1432 }
1433 
1434 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1435 {
1436     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1437 
1438     assert(kvm_enabled());
1439 
1440     if (!spapr->htab) {
1441         return 0;
1442     }
1443 
1444     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1445 }
1446 
1447 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1448                                                 hwaddr ptex, int n)
1449 {
1450     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1451     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1452 
1453     if (!spapr->htab) {
1454         /*
1455          * HTAB is controlled by KVM. Fetch into temporary buffer
1456          */
1457         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1458         kvmppc_read_hptes(hptes, ptex, n);
1459         return hptes;
1460     }
1461 
1462     /*
1463      * HTAB is controlled by QEMU. Just point to the internally
1464      * accessible PTEG.
1465      */
1466     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1467 }
1468 
1469 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1470                               const ppc_hash_pte64_t *hptes,
1471                               hwaddr ptex, int n)
1472 {
1473     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1474 
1475     if (!spapr->htab) {
1476         g_free((void *)hptes);
1477     }
1478 
1479     /* Nothing to do for qemu managed HPT */
1480 }
1481 
1482 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1483                       uint64_t pte0, uint64_t pte1)
1484 {
1485     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1486     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1487 
1488     if (!spapr->htab) {
1489         kvmppc_write_hpte(ptex, pte0, pte1);
1490     } else {
1491         if (pte0 & HPTE64_V_VALID) {
1492             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1493             /*
1494              * When setting valid, we write PTE1 first. This ensures
1495              * proper synchronization with the reading code in
1496              * ppc_hash64_pteg_search()
1497              */
1498             smp_wmb();
1499             stq_p(spapr->htab + offset, pte0);
1500         } else {
1501             stq_p(spapr->htab + offset, pte0);
1502             /*
1503              * When clearing it we set PTE0 first. This ensures proper
1504              * synchronization with the reading code in
1505              * ppc_hash64_pteg_search()
1506              */
1507             smp_wmb();
1508             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1509         }
1510     }
1511 }
1512 
1513 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1514                              uint64_t pte1)
1515 {
1516     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1517     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1518 
1519     if (!spapr->htab) {
1520         /* There should always be a hash table when this is called */
1521         error_report("spapr_hpte_set_c called with no hash table !");
1522         return;
1523     }
1524 
1525     /* The HW performs a non-atomic byte update */
1526     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1527 }
1528 
1529 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1530                              uint64_t pte1)
1531 {
1532     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1533     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1534 
1535     if (!spapr->htab) {
1536         /* There should always be a hash table when this is called */
1537         error_report("spapr_hpte_set_r called with no hash table !");
1538         return;
1539     }
1540 
1541     /* The HW performs a non-atomic byte update */
1542     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1543 }
1544 
1545 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1546 {
1547     int shift;
1548 
1549     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1550      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1551      * that's much more than is needed for Linux guests */
1552     shift = ctz64(pow2ceil(ramsize)) - 7;
1553     shift = MAX(shift, 18); /* Minimum architected size */
1554     shift = MIN(shift, 46); /* Maximum architected size */
1555     return shift;
1556 }
1557 
1558 void spapr_free_hpt(SpaprMachineState *spapr)
1559 {
1560     g_free(spapr->htab);
1561     spapr->htab = NULL;
1562     spapr->htab_shift = 0;
1563     close_htab_fd(spapr);
1564 }
1565 
1566 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1567                           Error **errp)
1568 {
1569     long rc;
1570 
1571     /* Clean up any HPT info from a previous boot */
1572     spapr_free_hpt(spapr);
1573 
1574     rc = kvmppc_reset_htab(shift);
1575     if (rc < 0) {
1576         /* kernel-side HPT needed, but couldn't allocate one */
1577         error_setg_errno(errp, errno,
1578                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1579                          shift);
1580         /* This is almost certainly fatal, but if the caller really
1581          * wants to carry on with shift == 0, it's welcome to try */
1582     } else if (rc > 0) {
1583         /* kernel-side HPT allocated */
1584         if (rc != shift) {
1585             error_setg(errp,
1586                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1587                        shift, rc);
1588         }
1589 
1590         spapr->htab_shift = shift;
1591         spapr->htab = NULL;
1592     } else {
1593         /* kernel-side HPT not needed, allocate in userspace instead */
1594         size_t size = 1ULL << shift;
1595         int i;
1596 
1597         spapr->htab = qemu_memalign(size, size);
1598         if (!spapr->htab) {
1599             error_setg_errno(errp, errno,
1600                              "Could not allocate HPT of order %d", shift);
1601             return;
1602         }
1603 
1604         memset(spapr->htab, 0, size);
1605         spapr->htab_shift = shift;
1606 
1607         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1608             DIRTY_HPTE(HPTE(spapr->htab, i));
1609         }
1610     }
1611     /* We're setting up a hash table, so that means we're not radix */
1612     spapr->patb_entry = 0;
1613     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1614 }
1615 
1616 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1617 {
1618     int hpt_shift;
1619 
1620     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1621         || (spapr->cas_reboot
1622             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1623         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1624     } else {
1625         uint64_t current_ram_size;
1626 
1627         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1628         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1629     }
1630     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1631 
1632     if (spapr->vrma_adjust) {
1633         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1634                                           spapr->htab_shift);
1635     }
1636 }
1637 
1638 static int spapr_reset_drcs(Object *child, void *opaque)
1639 {
1640     SpaprDrc *drc =
1641         (SpaprDrc *) object_dynamic_cast(child,
1642                                                  TYPE_SPAPR_DR_CONNECTOR);
1643 
1644     if (drc) {
1645         spapr_drc_reset(drc);
1646     }
1647 
1648     return 0;
1649 }
1650 
1651 static void spapr_machine_reset(MachineState *machine)
1652 {
1653     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1654     PowerPCCPU *first_ppc_cpu;
1655     hwaddr fdt_addr;
1656     void *fdt;
1657     int rc;
1658 
1659     spapr_caps_apply(spapr);
1660 
1661     first_ppc_cpu = POWERPC_CPU(first_cpu);
1662     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1663         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1664                               spapr->max_compat_pvr)) {
1665         /*
1666          * If using KVM with radix mode available, VCPUs can be started
1667          * without a HPT because KVM will start them in radix mode.
1668          * Set the GR bit in PATE so that we know there is no HPT.
1669          */
1670         spapr->patb_entry = PATE1_GR;
1671         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1672     } else {
1673         spapr_setup_hpt_and_vrma(spapr);
1674     }
1675 
1676     qemu_devices_reset();
1677 
1678     /*
1679      * If this reset wasn't generated by CAS, we should reset our
1680      * negotiated options and start from scratch
1681      */
1682     if (!spapr->cas_reboot) {
1683         spapr_ovec_cleanup(spapr->ov5_cas);
1684         spapr->ov5_cas = spapr_ovec_new();
1685 
1686         ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1687     }
1688 
1689     /*
1690      * This is fixing some of the default configuration of the XIVE
1691      * devices. To be called after the reset of the machine devices.
1692      */
1693     spapr_irq_reset(spapr, &error_fatal);
1694 
1695     /*
1696      * There is no CAS under qtest. Simulate one to please the code that
1697      * depends on spapr->ov5_cas. This is especially needed to test device
1698      * unplug, so we do that before resetting the DRCs.
1699      */
1700     if (qtest_enabled()) {
1701         spapr_ovec_cleanup(spapr->ov5_cas);
1702         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1703     }
1704 
1705     /* DRC reset may cause a device to be unplugged. This will cause troubles
1706      * if this device is used by another device (eg, a running vhost backend
1707      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1708      * situations, we reset DRCs after all devices have been reset.
1709      */
1710     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1711 
1712     spapr_clear_pending_events(spapr);
1713 
1714     /*
1715      * We place the device tree and RTAS just below either the top of the RMA,
1716      * or just below 2GB, whichever is lower, so that it can be
1717      * processed with 32-bit real mode code if necessary
1718      */
1719     fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1720 
1721     fdt = spapr_build_fdt(spapr);
1722 
1723     rc = fdt_pack(fdt);
1724 
1725     /* Should only fail if we've built a corrupted tree */
1726     assert(rc == 0);
1727 
1728     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1729         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1730                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1731         exit(1);
1732     }
1733 
1734     /* Load the fdt */
1735     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1736     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1737     g_free(spapr->fdt_blob);
1738     spapr->fdt_size = fdt_totalsize(fdt);
1739     spapr->fdt_initial_size = spapr->fdt_size;
1740     spapr->fdt_blob = fdt;
1741 
1742     /* Set up the entry state */
1743     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1744     first_ppc_cpu->env.gpr[5] = 0;
1745 
1746     spapr->cas_reboot = false;
1747 }
1748 
1749 static void spapr_create_nvram(SpaprMachineState *spapr)
1750 {
1751     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1752     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1753 
1754     if (dinfo) {
1755         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1756                             &error_fatal);
1757     }
1758 
1759     qdev_init_nofail(dev);
1760 
1761     spapr->nvram = (struct SpaprNvram *)dev;
1762 }
1763 
1764 static void spapr_rtc_create(SpaprMachineState *spapr)
1765 {
1766     object_initialize_child(OBJECT(spapr), "rtc",
1767                             &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1768                             &error_fatal, NULL);
1769     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1770                               &error_fatal);
1771     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1772                               "date", &error_fatal);
1773 }
1774 
1775 /* Returns whether we want to use VGA or not */
1776 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1777 {
1778     switch (vga_interface_type) {
1779     case VGA_NONE:
1780         return false;
1781     case VGA_DEVICE:
1782         return true;
1783     case VGA_STD:
1784     case VGA_VIRTIO:
1785     case VGA_CIRRUS:
1786         return pci_vga_init(pci_bus) != NULL;
1787     default:
1788         error_setg(errp,
1789                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1790         return false;
1791     }
1792 }
1793 
1794 static int spapr_pre_load(void *opaque)
1795 {
1796     int rc;
1797 
1798     rc = spapr_caps_pre_load(opaque);
1799     if (rc) {
1800         return rc;
1801     }
1802 
1803     return 0;
1804 }
1805 
1806 static int spapr_post_load(void *opaque, int version_id)
1807 {
1808     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1809     int err = 0;
1810 
1811     err = spapr_caps_post_migration(spapr);
1812     if (err) {
1813         return err;
1814     }
1815 
1816     /*
1817      * In earlier versions, there was no separate qdev for the PAPR
1818      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1819      * So when migrating from those versions, poke the incoming offset
1820      * value into the RTC device
1821      */
1822     if (version_id < 3) {
1823         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1824         if (err) {
1825             return err;
1826         }
1827     }
1828 
1829     if (kvm_enabled() && spapr->patb_entry) {
1830         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1831         bool radix = !!(spapr->patb_entry & PATE1_GR);
1832         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1833 
1834         /*
1835          * Update LPCR:HR and UPRT as they may not be set properly in
1836          * the stream
1837          */
1838         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1839                             LPCR_HR | LPCR_UPRT);
1840 
1841         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1842         if (err) {
1843             error_report("Process table config unsupported by the host");
1844             return -EINVAL;
1845         }
1846     }
1847 
1848     err = spapr_irq_post_load(spapr, version_id);
1849     if (err) {
1850         return err;
1851     }
1852 
1853     return err;
1854 }
1855 
1856 static int spapr_pre_save(void *opaque)
1857 {
1858     int rc;
1859 
1860     rc = spapr_caps_pre_save(opaque);
1861     if (rc) {
1862         return rc;
1863     }
1864 
1865     return 0;
1866 }
1867 
1868 static bool version_before_3(void *opaque, int version_id)
1869 {
1870     return version_id < 3;
1871 }
1872 
1873 static bool spapr_pending_events_needed(void *opaque)
1874 {
1875     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1876     return !QTAILQ_EMPTY(&spapr->pending_events);
1877 }
1878 
1879 static const VMStateDescription vmstate_spapr_event_entry = {
1880     .name = "spapr_event_log_entry",
1881     .version_id = 1,
1882     .minimum_version_id = 1,
1883     .fields = (VMStateField[]) {
1884         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1885         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1886         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1887                                      NULL, extended_length),
1888         VMSTATE_END_OF_LIST()
1889     },
1890 };
1891 
1892 static const VMStateDescription vmstate_spapr_pending_events = {
1893     .name = "spapr_pending_events",
1894     .version_id = 1,
1895     .minimum_version_id = 1,
1896     .needed = spapr_pending_events_needed,
1897     .fields = (VMStateField[]) {
1898         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1899                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1900         VMSTATE_END_OF_LIST()
1901     },
1902 };
1903 
1904 static bool spapr_ov5_cas_needed(void *opaque)
1905 {
1906     SpaprMachineState *spapr = opaque;
1907     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1908     SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1909     SpaprOptionVector *ov5_removed = spapr_ovec_new();
1910     bool cas_needed;
1911 
1912     /* Prior to the introduction of SpaprOptionVector, we had two option
1913      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1914      * Both of these options encode machine topology into the device-tree
1915      * in such a way that the now-booted OS should still be able to interact
1916      * appropriately with QEMU regardless of what options were actually
1917      * negotiatied on the source side.
1918      *
1919      * As such, we can avoid migrating the CAS-negotiated options if these
1920      * are the only options available on the current machine/platform.
1921      * Since these are the only options available for pseries-2.7 and
1922      * earlier, this allows us to maintain old->new/new->old migration
1923      * compatibility.
1924      *
1925      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1926      * via default pseries-2.8 machines and explicit command-line parameters.
1927      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1928      * of the actual CAS-negotiated values to continue working properly. For
1929      * example, availability of memory unplug depends on knowing whether
1930      * OV5_HP_EVT was negotiated via CAS.
1931      *
1932      * Thus, for any cases where the set of available CAS-negotiatable
1933      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1934      * include the CAS-negotiated options in the migration stream, unless
1935      * if they affect boot time behaviour only.
1936      */
1937     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1938     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1939     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1940 
1941     /* spapr_ovec_diff returns true if bits were removed. we avoid using
1942      * the mask itself since in the future it's possible "legacy" bits may be
1943      * removed via machine options, which could generate a false positive
1944      * that breaks migration.
1945      */
1946     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1947     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1948 
1949     spapr_ovec_cleanup(ov5_mask);
1950     spapr_ovec_cleanup(ov5_legacy);
1951     spapr_ovec_cleanup(ov5_removed);
1952 
1953     return cas_needed;
1954 }
1955 
1956 static const VMStateDescription vmstate_spapr_ov5_cas = {
1957     .name = "spapr_option_vector_ov5_cas",
1958     .version_id = 1,
1959     .minimum_version_id = 1,
1960     .needed = spapr_ov5_cas_needed,
1961     .fields = (VMStateField[]) {
1962         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1963                                  vmstate_spapr_ovec, SpaprOptionVector),
1964         VMSTATE_END_OF_LIST()
1965     },
1966 };
1967 
1968 static bool spapr_patb_entry_needed(void *opaque)
1969 {
1970     SpaprMachineState *spapr = opaque;
1971 
1972     return !!spapr->patb_entry;
1973 }
1974 
1975 static const VMStateDescription vmstate_spapr_patb_entry = {
1976     .name = "spapr_patb_entry",
1977     .version_id = 1,
1978     .minimum_version_id = 1,
1979     .needed = spapr_patb_entry_needed,
1980     .fields = (VMStateField[]) {
1981         VMSTATE_UINT64(patb_entry, SpaprMachineState),
1982         VMSTATE_END_OF_LIST()
1983     },
1984 };
1985 
1986 static bool spapr_irq_map_needed(void *opaque)
1987 {
1988     SpaprMachineState *spapr = opaque;
1989 
1990     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1991 }
1992 
1993 static const VMStateDescription vmstate_spapr_irq_map = {
1994     .name = "spapr_irq_map",
1995     .version_id = 1,
1996     .minimum_version_id = 1,
1997     .needed = spapr_irq_map_needed,
1998     .fields = (VMStateField[]) {
1999         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2000         VMSTATE_END_OF_LIST()
2001     },
2002 };
2003 
2004 static bool spapr_dtb_needed(void *opaque)
2005 {
2006     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2007 
2008     return smc->update_dt_enabled;
2009 }
2010 
2011 static int spapr_dtb_pre_load(void *opaque)
2012 {
2013     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2014 
2015     g_free(spapr->fdt_blob);
2016     spapr->fdt_blob = NULL;
2017     spapr->fdt_size = 0;
2018 
2019     return 0;
2020 }
2021 
2022 static const VMStateDescription vmstate_spapr_dtb = {
2023     .name = "spapr_dtb",
2024     .version_id = 1,
2025     .minimum_version_id = 1,
2026     .needed = spapr_dtb_needed,
2027     .pre_load = spapr_dtb_pre_load,
2028     .fields = (VMStateField[]) {
2029         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2030         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2031         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2032                                      fdt_size),
2033         VMSTATE_END_OF_LIST()
2034     },
2035 };
2036 
2037 static const VMStateDescription vmstate_spapr = {
2038     .name = "spapr",
2039     .version_id = 3,
2040     .minimum_version_id = 1,
2041     .pre_load = spapr_pre_load,
2042     .post_load = spapr_post_load,
2043     .pre_save = spapr_pre_save,
2044     .fields = (VMStateField[]) {
2045         /* used to be @next_irq */
2046         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2047 
2048         /* RTC offset */
2049         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2050 
2051         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2052         VMSTATE_END_OF_LIST()
2053     },
2054     .subsections = (const VMStateDescription*[]) {
2055         &vmstate_spapr_ov5_cas,
2056         &vmstate_spapr_patb_entry,
2057         &vmstate_spapr_pending_events,
2058         &vmstate_spapr_cap_htm,
2059         &vmstate_spapr_cap_vsx,
2060         &vmstate_spapr_cap_dfp,
2061         &vmstate_spapr_cap_cfpc,
2062         &vmstate_spapr_cap_sbbc,
2063         &vmstate_spapr_cap_ibs,
2064         &vmstate_spapr_cap_hpt_maxpagesize,
2065         &vmstate_spapr_irq_map,
2066         &vmstate_spapr_cap_nested_kvm_hv,
2067         &vmstate_spapr_dtb,
2068         &vmstate_spapr_cap_large_decr,
2069         &vmstate_spapr_cap_ccf_assist,
2070         NULL
2071     }
2072 };
2073 
2074 static int htab_save_setup(QEMUFile *f, void *opaque)
2075 {
2076     SpaprMachineState *spapr = opaque;
2077 
2078     /* "Iteration" header */
2079     if (!spapr->htab_shift) {
2080         qemu_put_be32(f, -1);
2081     } else {
2082         qemu_put_be32(f, spapr->htab_shift);
2083     }
2084 
2085     if (spapr->htab) {
2086         spapr->htab_save_index = 0;
2087         spapr->htab_first_pass = true;
2088     } else {
2089         if (spapr->htab_shift) {
2090             assert(kvm_enabled());
2091         }
2092     }
2093 
2094 
2095     return 0;
2096 }
2097 
2098 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2099                             int chunkstart, int n_valid, int n_invalid)
2100 {
2101     qemu_put_be32(f, chunkstart);
2102     qemu_put_be16(f, n_valid);
2103     qemu_put_be16(f, n_invalid);
2104     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2105                     HASH_PTE_SIZE_64 * n_valid);
2106 }
2107 
2108 static void htab_save_end_marker(QEMUFile *f)
2109 {
2110     qemu_put_be32(f, 0);
2111     qemu_put_be16(f, 0);
2112     qemu_put_be16(f, 0);
2113 }
2114 
2115 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2116                                  int64_t max_ns)
2117 {
2118     bool has_timeout = max_ns != -1;
2119     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2120     int index = spapr->htab_save_index;
2121     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2122 
2123     assert(spapr->htab_first_pass);
2124 
2125     do {
2126         int chunkstart;
2127 
2128         /* Consume invalid HPTEs */
2129         while ((index < htabslots)
2130                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2131             CLEAN_HPTE(HPTE(spapr->htab, index));
2132             index++;
2133         }
2134 
2135         /* Consume valid HPTEs */
2136         chunkstart = index;
2137         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2138                && HPTE_VALID(HPTE(spapr->htab, index))) {
2139             CLEAN_HPTE(HPTE(spapr->htab, index));
2140             index++;
2141         }
2142 
2143         if (index > chunkstart) {
2144             int n_valid = index - chunkstart;
2145 
2146             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2147 
2148             if (has_timeout &&
2149                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2150                 break;
2151             }
2152         }
2153     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2154 
2155     if (index >= htabslots) {
2156         assert(index == htabslots);
2157         index = 0;
2158         spapr->htab_first_pass = false;
2159     }
2160     spapr->htab_save_index = index;
2161 }
2162 
2163 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2164                                 int64_t max_ns)
2165 {
2166     bool final = max_ns < 0;
2167     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2168     int examined = 0, sent = 0;
2169     int index = spapr->htab_save_index;
2170     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2171 
2172     assert(!spapr->htab_first_pass);
2173 
2174     do {
2175         int chunkstart, invalidstart;
2176 
2177         /* Consume non-dirty HPTEs */
2178         while ((index < htabslots)
2179                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2180             index++;
2181             examined++;
2182         }
2183 
2184         chunkstart = index;
2185         /* Consume valid dirty HPTEs */
2186         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2187                && HPTE_DIRTY(HPTE(spapr->htab, index))
2188                && HPTE_VALID(HPTE(spapr->htab, index))) {
2189             CLEAN_HPTE(HPTE(spapr->htab, index));
2190             index++;
2191             examined++;
2192         }
2193 
2194         invalidstart = index;
2195         /* Consume invalid dirty HPTEs */
2196         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2197                && HPTE_DIRTY(HPTE(spapr->htab, index))
2198                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2199             CLEAN_HPTE(HPTE(spapr->htab, index));
2200             index++;
2201             examined++;
2202         }
2203 
2204         if (index > chunkstart) {
2205             int n_valid = invalidstart - chunkstart;
2206             int n_invalid = index - invalidstart;
2207 
2208             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2209             sent += index - chunkstart;
2210 
2211             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2212                 break;
2213             }
2214         }
2215 
2216         if (examined >= htabslots) {
2217             break;
2218         }
2219 
2220         if (index >= htabslots) {
2221             assert(index == htabslots);
2222             index = 0;
2223         }
2224     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2225 
2226     if (index >= htabslots) {
2227         assert(index == htabslots);
2228         index = 0;
2229     }
2230 
2231     spapr->htab_save_index = index;
2232 
2233     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2234 }
2235 
2236 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2237 #define MAX_KVM_BUF_SIZE    2048
2238 
2239 static int htab_save_iterate(QEMUFile *f, void *opaque)
2240 {
2241     SpaprMachineState *spapr = opaque;
2242     int fd;
2243     int rc = 0;
2244 
2245     /* Iteration header */
2246     if (!spapr->htab_shift) {
2247         qemu_put_be32(f, -1);
2248         return 1;
2249     } else {
2250         qemu_put_be32(f, 0);
2251     }
2252 
2253     if (!spapr->htab) {
2254         assert(kvm_enabled());
2255 
2256         fd = get_htab_fd(spapr);
2257         if (fd < 0) {
2258             return fd;
2259         }
2260 
2261         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2262         if (rc < 0) {
2263             return rc;
2264         }
2265     } else  if (spapr->htab_first_pass) {
2266         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2267     } else {
2268         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2269     }
2270 
2271     htab_save_end_marker(f);
2272 
2273     return rc;
2274 }
2275 
2276 static int htab_save_complete(QEMUFile *f, void *opaque)
2277 {
2278     SpaprMachineState *spapr = opaque;
2279     int fd;
2280 
2281     /* Iteration header */
2282     if (!spapr->htab_shift) {
2283         qemu_put_be32(f, -1);
2284         return 0;
2285     } else {
2286         qemu_put_be32(f, 0);
2287     }
2288 
2289     if (!spapr->htab) {
2290         int rc;
2291 
2292         assert(kvm_enabled());
2293 
2294         fd = get_htab_fd(spapr);
2295         if (fd < 0) {
2296             return fd;
2297         }
2298 
2299         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2300         if (rc < 0) {
2301             return rc;
2302         }
2303     } else {
2304         if (spapr->htab_first_pass) {
2305             htab_save_first_pass(f, spapr, -1);
2306         }
2307         htab_save_later_pass(f, spapr, -1);
2308     }
2309 
2310     /* End marker */
2311     htab_save_end_marker(f);
2312 
2313     return 0;
2314 }
2315 
2316 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2317 {
2318     SpaprMachineState *spapr = opaque;
2319     uint32_t section_hdr;
2320     int fd = -1;
2321     Error *local_err = NULL;
2322 
2323     if (version_id < 1 || version_id > 1) {
2324         error_report("htab_load() bad version");
2325         return -EINVAL;
2326     }
2327 
2328     section_hdr = qemu_get_be32(f);
2329 
2330     if (section_hdr == -1) {
2331         spapr_free_hpt(spapr);
2332         return 0;
2333     }
2334 
2335     if (section_hdr) {
2336         /* First section gives the htab size */
2337         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2338         if (local_err) {
2339             error_report_err(local_err);
2340             return -EINVAL;
2341         }
2342         return 0;
2343     }
2344 
2345     if (!spapr->htab) {
2346         assert(kvm_enabled());
2347 
2348         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2349         if (fd < 0) {
2350             error_report_err(local_err);
2351             return fd;
2352         }
2353     }
2354 
2355     while (true) {
2356         uint32_t index;
2357         uint16_t n_valid, n_invalid;
2358 
2359         index = qemu_get_be32(f);
2360         n_valid = qemu_get_be16(f);
2361         n_invalid = qemu_get_be16(f);
2362 
2363         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2364             /* End of Stream */
2365             break;
2366         }
2367 
2368         if ((index + n_valid + n_invalid) >
2369             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2370             /* Bad index in stream */
2371             error_report(
2372                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2373                 index, n_valid, n_invalid, spapr->htab_shift);
2374             return -EINVAL;
2375         }
2376 
2377         if (spapr->htab) {
2378             if (n_valid) {
2379                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2380                                 HASH_PTE_SIZE_64 * n_valid);
2381             }
2382             if (n_invalid) {
2383                 memset(HPTE(spapr->htab, index + n_valid), 0,
2384                        HASH_PTE_SIZE_64 * n_invalid);
2385             }
2386         } else {
2387             int rc;
2388 
2389             assert(fd >= 0);
2390 
2391             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2392             if (rc < 0) {
2393                 return rc;
2394             }
2395         }
2396     }
2397 
2398     if (!spapr->htab) {
2399         assert(fd >= 0);
2400         close(fd);
2401     }
2402 
2403     return 0;
2404 }
2405 
2406 static void htab_save_cleanup(void *opaque)
2407 {
2408     SpaprMachineState *spapr = opaque;
2409 
2410     close_htab_fd(spapr);
2411 }
2412 
2413 static SaveVMHandlers savevm_htab_handlers = {
2414     .save_setup = htab_save_setup,
2415     .save_live_iterate = htab_save_iterate,
2416     .save_live_complete_precopy = htab_save_complete,
2417     .save_cleanup = htab_save_cleanup,
2418     .load_state = htab_load,
2419 };
2420 
2421 static void spapr_boot_set(void *opaque, const char *boot_device,
2422                            Error **errp)
2423 {
2424     MachineState *machine = MACHINE(opaque);
2425     machine->boot_order = g_strdup(boot_device);
2426 }
2427 
2428 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2429 {
2430     MachineState *machine = MACHINE(spapr);
2431     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2432     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2433     int i;
2434 
2435     for (i = 0; i < nr_lmbs; i++) {
2436         uint64_t addr;
2437 
2438         addr = i * lmb_size + machine->device_memory->base;
2439         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2440                                addr / lmb_size);
2441     }
2442 }
2443 
2444 /*
2445  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2446  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2447  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2448  */
2449 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2450 {
2451     int i;
2452 
2453     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2454         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2455                    " is not aligned to %" PRIu64 " MiB",
2456                    machine->ram_size,
2457                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2458         return;
2459     }
2460 
2461     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2462         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2463                    " is not aligned to %" PRIu64 " MiB",
2464                    machine->ram_size,
2465                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2466         return;
2467     }
2468 
2469     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2470         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2471             error_setg(errp,
2472                        "Node %d memory size 0x%" PRIx64
2473                        " is not aligned to %" PRIu64 " MiB",
2474                        i, machine->numa_state->nodes[i].node_mem,
2475                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2476             return;
2477         }
2478     }
2479 }
2480 
2481 /* find cpu slot in machine->possible_cpus by core_id */
2482 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2483 {
2484     int index = id / ms->smp.threads;
2485 
2486     if (index >= ms->possible_cpus->len) {
2487         return NULL;
2488     }
2489     if (idx) {
2490         *idx = index;
2491     }
2492     return &ms->possible_cpus->cpus[index];
2493 }
2494 
2495 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2496 {
2497     MachineState *ms = MACHINE(spapr);
2498     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2499     Error *local_err = NULL;
2500     bool vsmt_user = !!spapr->vsmt;
2501     int kvm_smt = kvmppc_smt_threads();
2502     int ret;
2503     unsigned int smp_threads = ms->smp.threads;
2504 
2505     if (!kvm_enabled() && (smp_threads > 1)) {
2506         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2507                      "on a pseries machine");
2508         goto out;
2509     }
2510     if (!is_power_of_2(smp_threads)) {
2511         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2512                      "machine because it must be a power of 2", smp_threads);
2513         goto out;
2514     }
2515 
2516     /* Detemine the VSMT mode to use: */
2517     if (vsmt_user) {
2518         if (spapr->vsmt < smp_threads) {
2519             error_setg(&local_err, "Cannot support VSMT mode %d"
2520                          " because it must be >= threads/core (%d)",
2521                          spapr->vsmt, smp_threads);
2522             goto out;
2523         }
2524         /* In this case, spapr->vsmt has been set by the command line */
2525     } else if (!smc->smp_threads_vsmt) {
2526         /*
2527          * Default VSMT value is tricky, because we need it to be as
2528          * consistent as possible (for migration), but this requires
2529          * changing it for at least some existing cases.  We pick 8 as
2530          * the value that we'd get with KVM on POWER8, the
2531          * overwhelmingly common case in production systems.
2532          */
2533         spapr->vsmt = MAX(8, smp_threads);
2534     } else {
2535         spapr->vsmt = smp_threads;
2536     }
2537 
2538     /* KVM: If necessary, set the SMT mode: */
2539     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2540         ret = kvmppc_set_smt_threads(spapr->vsmt);
2541         if (ret) {
2542             /* Looks like KVM isn't able to change VSMT mode */
2543             error_setg(&local_err,
2544                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2545                        spapr->vsmt, ret);
2546             /* We can live with that if the default one is big enough
2547              * for the number of threads, and a submultiple of the one
2548              * we want.  In this case we'll waste some vcpu ids, but
2549              * behaviour will be correct */
2550             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2551                 warn_report_err(local_err);
2552                 local_err = NULL;
2553                 goto out;
2554             } else {
2555                 if (!vsmt_user) {
2556                     error_append_hint(&local_err,
2557                                       "On PPC, a VM with %d threads/core"
2558                                       " on a host with %d threads/core"
2559                                       " requires the use of VSMT mode %d.\n",
2560                                       smp_threads, kvm_smt, spapr->vsmt);
2561                 }
2562                 kvmppc_hint_smt_possible(&local_err);
2563                 goto out;
2564             }
2565         }
2566     }
2567     /* else TCG: nothing to do currently */
2568 out:
2569     error_propagate(errp, local_err);
2570 }
2571 
2572 static void spapr_init_cpus(SpaprMachineState *spapr)
2573 {
2574     MachineState *machine = MACHINE(spapr);
2575     MachineClass *mc = MACHINE_GET_CLASS(machine);
2576     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2577     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2578     const CPUArchIdList *possible_cpus;
2579     unsigned int smp_cpus = machine->smp.cpus;
2580     unsigned int smp_threads = machine->smp.threads;
2581     unsigned int max_cpus = machine->smp.max_cpus;
2582     int boot_cores_nr = smp_cpus / smp_threads;
2583     int i;
2584 
2585     possible_cpus = mc->possible_cpu_arch_ids(machine);
2586     if (mc->has_hotpluggable_cpus) {
2587         if (smp_cpus % smp_threads) {
2588             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2589                          smp_cpus, smp_threads);
2590             exit(1);
2591         }
2592         if (max_cpus % smp_threads) {
2593             error_report("max_cpus (%u) must be multiple of threads (%u)",
2594                          max_cpus, smp_threads);
2595             exit(1);
2596         }
2597     } else {
2598         if (max_cpus != smp_cpus) {
2599             error_report("This machine version does not support CPU hotplug");
2600             exit(1);
2601         }
2602         boot_cores_nr = possible_cpus->len;
2603     }
2604 
2605     if (smc->pre_2_10_has_unused_icps) {
2606         int i;
2607 
2608         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2609             /* Dummy entries get deregistered when real ICPState objects
2610              * are registered during CPU core hotplug.
2611              */
2612             pre_2_10_vmstate_register_dummy_icp(i);
2613         }
2614     }
2615 
2616     for (i = 0; i < possible_cpus->len; i++) {
2617         int core_id = i * smp_threads;
2618 
2619         if (mc->has_hotpluggable_cpus) {
2620             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2621                                    spapr_vcpu_id(spapr, core_id));
2622         }
2623 
2624         if (i < boot_cores_nr) {
2625             Object *core  = object_new(type);
2626             int nr_threads = smp_threads;
2627 
2628             /* Handle the partially filled core for older machine types */
2629             if ((i + 1) * smp_threads >= smp_cpus) {
2630                 nr_threads = smp_cpus - i * smp_threads;
2631             }
2632 
2633             object_property_set_int(core, nr_threads, "nr-threads",
2634                                     &error_fatal);
2635             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2636                                     &error_fatal);
2637             object_property_set_bool(core, true, "realized", &error_fatal);
2638 
2639             object_unref(core);
2640         }
2641     }
2642 }
2643 
2644 static PCIHostState *spapr_create_default_phb(void)
2645 {
2646     DeviceState *dev;
2647 
2648     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2649     qdev_prop_set_uint32(dev, "index", 0);
2650     qdev_init_nofail(dev);
2651 
2652     return PCI_HOST_BRIDGE(dev);
2653 }
2654 
2655 /* pSeries LPAR / sPAPR hardware init */
2656 static void spapr_machine_init(MachineState *machine)
2657 {
2658     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2659     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2660     const char *kernel_filename = machine->kernel_filename;
2661     const char *initrd_filename = machine->initrd_filename;
2662     PCIHostState *phb;
2663     int i;
2664     MemoryRegion *sysmem = get_system_memory();
2665     MemoryRegion *ram = g_new(MemoryRegion, 1);
2666     hwaddr node0_size = spapr_node0_size(machine);
2667     long load_limit, fw_size;
2668     char *filename;
2669     Error *resize_hpt_err = NULL;
2670 
2671     msi_nonbroken = true;
2672 
2673     QLIST_INIT(&spapr->phbs);
2674     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2675 
2676     /* Determine capabilities to run with */
2677     spapr_caps_init(spapr);
2678 
2679     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2680     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2681         /*
2682          * If the user explicitly requested a mode we should either
2683          * supply it, or fail completely (which we do below).  But if
2684          * it's not set explicitly, we reset our mode to something
2685          * that works
2686          */
2687         if (resize_hpt_err) {
2688             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2689             error_free(resize_hpt_err);
2690             resize_hpt_err = NULL;
2691         } else {
2692             spapr->resize_hpt = smc->resize_hpt_default;
2693         }
2694     }
2695 
2696     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2697 
2698     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2699         /*
2700          * User requested HPT resize, but this host can't supply it.  Bail out
2701          */
2702         error_report_err(resize_hpt_err);
2703         exit(1);
2704     }
2705 
2706     spapr->rma_size = node0_size;
2707 
2708     /* With KVM, we don't actually know whether KVM supports an
2709      * unbounded RMA (PR KVM) or is limited by the hash table size
2710      * (HV KVM using VRMA), so we always assume the latter
2711      *
2712      * In that case, we also limit the initial allocations for RTAS
2713      * etc... to 256M since we have no way to know what the VRMA size
2714      * is going to be as it depends on the size of the hash table
2715      * which isn't determined yet.
2716      */
2717     if (kvm_enabled()) {
2718         spapr->vrma_adjust = 1;
2719         spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2720     }
2721 
2722     /* Actually we don't support unbounded RMA anymore since we added
2723      * proper emulation of HV mode. The max we can get is 16G which
2724      * also happens to be what we configure for PAPR mode so make sure
2725      * we don't do anything bigger than that
2726      */
2727     spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2728 
2729     if (spapr->rma_size > node0_size) {
2730         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2731                      spapr->rma_size);
2732         exit(1);
2733     }
2734 
2735     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2736     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2737 
2738     /*
2739      * VSMT must be set in order to be able to compute VCPU ids, ie to
2740      * call spapr_max_server_number() or spapr_vcpu_id().
2741      */
2742     spapr_set_vsmt_mode(spapr, &error_fatal);
2743 
2744     /* Set up Interrupt Controller before we create the VCPUs */
2745     spapr_irq_init(spapr, &error_fatal);
2746 
2747     /* Set up containers for ibm,client-architecture-support negotiated options
2748      */
2749     spapr->ov5 = spapr_ovec_new();
2750     spapr->ov5_cas = spapr_ovec_new();
2751 
2752     if (smc->dr_lmb_enabled) {
2753         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2754         spapr_validate_node_memory(machine, &error_fatal);
2755     }
2756 
2757     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2758 
2759     /* advertise support for dedicated HP event source to guests */
2760     if (spapr->use_hotplug_event_source) {
2761         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2762     }
2763 
2764     /* advertise support for HPT resizing */
2765     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2766         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2767     }
2768 
2769     /* advertise support for ibm,dyamic-memory-v2 */
2770     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2771 
2772     /* advertise XIVE on POWER9 machines */
2773     if (spapr->irq->xive) {
2774         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2775     }
2776 
2777     /* init CPUs */
2778     spapr_init_cpus(spapr);
2779 
2780     /*
2781      * check we don't have a memory-less/cpu-less NUMA node
2782      * Firmware relies on the existing memory/cpu topology to provide the
2783      * NUMA topology to the kernel.
2784      * And the linux kernel needs to know the NUMA topology at start
2785      * to be able to hotplug CPUs later.
2786      */
2787     if (machine->numa_state->num_nodes) {
2788         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2789             /* check for memory-less node */
2790             if (machine->numa_state->nodes[i].node_mem == 0) {
2791                 CPUState *cs;
2792                 int found = 0;
2793                 /* check for cpu-less node */
2794                 CPU_FOREACH(cs) {
2795                     PowerPCCPU *cpu = POWERPC_CPU(cs);
2796                     if (cpu->node_id == i) {
2797                         found = 1;
2798                         break;
2799                     }
2800                 }
2801                 /* memory-less and cpu-less node */
2802                 if (!found) {
2803                     error_report(
2804                        "Memory-less/cpu-less nodes are not supported (node %d)",
2805                                  i);
2806                     exit(1);
2807                 }
2808             }
2809         }
2810 
2811     }
2812 
2813     /*
2814      * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2815      * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2816      * called from vPHB reset handler so we initialize the counter here.
2817      * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2818      * must be equally distant from any other node.
2819      * The final value of spapr->gpu_numa_id is going to be written to
2820      * max-associativity-domains in spapr_build_fdt().
2821      */
2822     spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2823 
2824     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2825         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2826                               spapr->max_compat_pvr)) {
2827         /* KVM and TCG always allow GTSE with radix... */
2828         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2829     }
2830     /* ... but not with hash (currently). */
2831 
2832     if (kvm_enabled()) {
2833         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2834         kvmppc_enable_logical_ci_hcalls();
2835         kvmppc_enable_set_mode_hcall();
2836 
2837         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2838         kvmppc_enable_clear_ref_mod_hcalls();
2839 
2840         /* Enable H_PAGE_INIT */
2841         kvmppc_enable_h_page_init();
2842     }
2843 
2844     /* allocate RAM */
2845     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2846                                          machine->ram_size);
2847     memory_region_add_subregion(sysmem, 0, ram);
2848 
2849     /* always allocate the device memory information */
2850     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2851 
2852     /* initialize hotplug memory address space */
2853     if (machine->ram_size < machine->maxram_size) {
2854         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2855         /*
2856          * Limit the number of hotpluggable memory slots to half the number
2857          * slots that KVM supports, leaving the other half for PCI and other
2858          * devices. However ensure that number of slots doesn't drop below 32.
2859          */
2860         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2861                            SPAPR_MAX_RAM_SLOTS;
2862 
2863         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2864             max_memslots = SPAPR_MAX_RAM_SLOTS;
2865         }
2866         if (machine->ram_slots > max_memslots) {
2867             error_report("Specified number of memory slots %"
2868                          PRIu64" exceeds max supported %d",
2869                          machine->ram_slots, max_memslots);
2870             exit(1);
2871         }
2872 
2873         machine->device_memory->base = ROUND_UP(machine->ram_size,
2874                                                 SPAPR_DEVICE_MEM_ALIGN);
2875         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2876                            "device-memory", device_mem_size);
2877         memory_region_add_subregion(sysmem, machine->device_memory->base,
2878                                     &machine->device_memory->mr);
2879     }
2880 
2881     if (smc->dr_lmb_enabled) {
2882         spapr_create_lmb_dr_connectors(spapr);
2883     }
2884 
2885     /* Set up RTAS event infrastructure */
2886     spapr_events_init(spapr);
2887 
2888     /* Set up the RTC RTAS interfaces */
2889     spapr_rtc_create(spapr);
2890 
2891     /* Set up VIO bus */
2892     spapr->vio_bus = spapr_vio_bus_init();
2893 
2894     for (i = 0; i < serial_max_hds(); i++) {
2895         if (serial_hd(i)) {
2896             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2897         }
2898     }
2899 
2900     /* We always have at least the nvram device on VIO */
2901     spapr_create_nvram(spapr);
2902 
2903     /*
2904      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2905      * connectors (described in root DT node's "ibm,drc-types" property)
2906      * are pre-initialized here. additional child connectors (such as
2907      * connectors for a PHBs PCI slots) are added as needed during their
2908      * parent's realization.
2909      */
2910     if (smc->dr_phb_enabled) {
2911         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2912             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2913         }
2914     }
2915 
2916     /* Set up PCI */
2917     spapr_pci_rtas_init();
2918 
2919     phb = spapr_create_default_phb();
2920 
2921     for (i = 0; i < nb_nics; i++) {
2922         NICInfo *nd = &nd_table[i];
2923 
2924         if (!nd->model) {
2925             nd->model = g_strdup("spapr-vlan");
2926         }
2927 
2928         if (g_str_equal(nd->model, "spapr-vlan") ||
2929             g_str_equal(nd->model, "ibmveth")) {
2930             spapr_vlan_create(spapr->vio_bus, nd);
2931         } else {
2932             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2933         }
2934     }
2935 
2936     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2937         spapr_vscsi_create(spapr->vio_bus);
2938     }
2939 
2940     /* Graphics */
2941     if (spapr_vga_init(phb->bus, &error_fatal)) {
2942         spapr->has_graphics = true;
2943         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2944     }
2945 
2946     if (machine->usb) {
2947         if (smc->use_ohci_by_default) {
2948             pci_create_simple(phb->bus, -1, "pci-ohci");
2949         } else {
2950             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2951         }
2952 
2953         if (spapr->has_graphics) {
2954             USBBus *usb_bus = usb_bus_find(-1);
2955 
2956             usb_create_simple(usb_bus, "usb-kbd");
2957             usb_create_simple(usb_bus, "usb-mouse");
2958         }
2959     }
2960 
2961     if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2962         error_report(
2963             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2964             MIN_RMA_SLOF);
2965         exit(1);
2966     }
2967 
2968     if (kernel_filename) {
2969         uint64_t lowaddr = 0;
2970 
2971         spapr->kernel_size = load_elf(kernel_filename, NULL,
2972                                       translate_kernel_address, NULL,
2973                                       NULL, &lowaddr, NULL, 1,
2974                                       PPC_ELF_MACHINE, 0, 0);
2975         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2976             spapr->kernel_size = load_elf(kernel_filename, NULL,
2977                                           translate_kernel_address, NULL, NULL,
2978                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2979                                           0, 0);
2980             spapr->kernel_le = spapr->kernel_size > 0;
2981         }
2982         if (spapr->kernel_size < 0) {
2983             error_report("error loading %s: %s", kernel_filename,
2984                          load_elf_strerror(spapr->kernel_size));
2985             exit(1);
2986         }
2987 
2988         /* load initrd */
2989         if (initrd_filename) {
2990             /* Try to locate the initrd in the gap between the kernel
2991              * and the firmware. Add a bit of space just in case
2992              */
2993             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2994                                   + 0x1ffff) & ~0xffff;
2995             spapr->initrd_size = load_image_targphys(initrd_filename,
2996                                                      spapr->initrd_base,
2997                                                      load_limit
2998                                                      - spapr->initrd_base);
2999             if (spapr->initrd_size < 0) {
3000                 error_report("could not load initial ram disk '%s'",
3001                              initrd_filename);
3002                 exit(1);
3003             }
3004         }
3005     }
3006 
3007     if (bios_name == NULL) {
3008         bios_name = FW_FILE_NAME;
3009     }
3010     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3011     if (!filename) {
3012         error_report("Could not find LPAR firmware '%s'", bios_name);
3013         exit(1);
3014     }
3015     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3016     if (fw_size <= 0) {
3017         error_report("Could not load LPAR firmware '%s'", filename);
3018         exit(1);
3019     }
3020     g_free(filename);
3021 
3022     /* FIXME: Should register things through the MachineState's qdev
3023      * interface, this is a legacy from the sPAPREnvironment structure
3024      * which predated MachineState but had a similar function */
3025     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3026     register_savevm_live("spapr/htab", -1, 1,
3027                          &savevm_htab_handlers, spapr);
3028 
3029     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3030                              &error_fatal);
3031 
3032     qemu_register_boot_set(spapr_boot_set, spapr);
3033 
3034     /*
3035      * Nothing needs to be done to resume a suspended guest because
3036      * suspending does not change the machine state, so no need for
3037      * a ->wakeup method.
3038      */
3039     qemu_register_wakeup_support();
3040 
3041     if (kvm_enabled()) {
3042         /* to stop and start vmclock */
3043         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3044                                          &spapr->tb);
3045 
3046         kvmppc_spapr_enable_inkernel_multitce();
3047     }
3048 }
3049 
3050 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3051 {
3052     if (!vm_type) {
3053         return 0;
3054     }
3055 
3056     if (!strcmp(vm_type, "HV")) {
3057         return 1;
3058     }
3059 
3060     if (!strcmp(vm_type, "PR")) {
3061         return 2;
3062     }
3063 
3064     error_report("Unknown kvm-type specified '%s'", vm_type);
3065     exit(1);
3066 }
3067 
3068 /*
3069  * Implementation of an interface to adjust firmware path
3070  * for the bootindex property handling.
3071  */
3072 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3073                                    DeviceState *dev)
3074 {
3075 #define CAST(type, obj, name) \
3076     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3077     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3078     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3079     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3080 
3081     if (d) {
3082         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3083         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3084         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3085 
3086         if (spapr) {
3087             /*
3088              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3089              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3090              * 0x8000 | (target << 8) | (bus << 5) | lun
3091              * (see the "Logical unit addressing format" table in SAM5)
3092              */
3093             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3094             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3095                                    (uint64_t)id << 48);
3096         } else if (virtio) {
3097             /*
3098              * We use SRP luns of the form 01000000 | (target << 8) | lun
3099              * in the top 32 bits of the 64-bit LUN
3100              * Note: the quote above is from SLOF and it is wrong,
3101              * the actual binding is:
3102              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3103              */
3104             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3105             if (d->lun >= 256) {
3106                 /* Use the LUN "flat space addressing method" */
3107                 id |= 0x4000;
3108             }
3109             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3110                                    (uint64_t)id << 32);
3111         } else if (usb) {
3112             /*
3113              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3114              * in the top 32 bits of the 64-bit LUN
3115              */
3116             unsigned usb_port = atoi(usb->port->path);
3117             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3118             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3119                                    (uint64_t)id << 32);
3120         }
3121     }
3122 
3123     /*
3124      * SLOF probes the USB devices, and if it recognizes that the device is a
3125      * storage device, it changes its name to "storage" instead of "usb-host",
3126      * and additionally adds a child node for the SCSI LUN, so the correct
3127      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3128      */
3129     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3130         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3131         if (usb_host_dev_is_scsi_storage(usbdev)) {
3132             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3133         }
3134     }
3135 
3136     if (phb) {
3137         /* Replace "pci" with "pci@800000020000000" */
3138         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3139     }
3140 
3141     if (vsc) {
3142         /* Same logic as virtio above */
3143         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3144         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3145     }
3146 
3147     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3148         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3149         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3150         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3151     }
3152 
3153     return NULL;
3154 }
3155 
3156 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3157 {
3158     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3159 
3160     return g_strdup(spapr->kvm_type);
3161 }
3162 
3163 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3164 {
3165     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3166 
3167     g_free(spapr->kvm_type);
3168     spapr->kvm_type = g_strdup(value);
3169 }
3170 
3171 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3172 {
3173     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3174 
3175     return spapr->use_hotplug_event_source;
3176 }
3177 
3178 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3179                                             Error **errp)
3180 {
3181     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3182 
3183     spapr->use_hotplug_event_source = value;
3184 }
3185 
3186 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3187 {
3188     return true;
3189 }
3190 
3191 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3192 {
3193     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3194 
3195     switch (spapr->resize_hpt) {
3196     case SPAPR_RESIZE_HPT_DEFAULT:
3197         return g_strdup("default");
3198     case SPAPR_RESIZE_HPT_DISABLED:
3199         return g_strdup("disabled");
3200     case SPAPR_RESIZE_HPT_ENABLED:
3201         return g_strdup("enabled");
3202     case SPAPR_RESIZE_HPT_REQUIRED:
3203         return g_strdup("required");
3204     }
3205     g_assert_not_reached();
3206 }
3207 
3208 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3209 {
3210     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3211 
3212     if (strcmp(value, "default") == 0) {
3213         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3214     } else if (strcmp(value, "disabled") == 0) {
3215         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3216     } else if (strcmp(value, "enabled") == 0) {
3217         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3218     } else if (strcmp(value, "required") == 0) {
3219         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3220     } else {
3221         error_setg(errp, "Bad value for \"resize-hpt\" property");
3222     }
3223 }
3224 
3225 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3226                                    void *opaque, Error **errp)
3227 {
3228     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3229 }
3230 
3231 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3232                                    void *opaque, Error **errp)
3233 {
3234     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3235 }
3236 
3237 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3238 {
3239     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3240 
3241     if (spapr->irq == &spapr_irq_xics_legacy) {
3242         return g_strdup("legacy");
3243     } else if (spapr->irq == &spapr_irq_xics) {
3244         return g_strdup("xics");
3245     } else if (spapr->irq == &spapr_irq_xive) {
3246         return g_strdup("xive");
3247     } else if (spapr->irq == &spapr_irq_dual) {
3248         return g_strdup("dual");
3249     }
3250     g_assert_not_reached();
3251 }
3252 
3253 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3254 {
3255     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3256 
3257     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3258         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3259         return;
3260     }
3261 
3262     /* The legacy IRQ backend can not be set */
3263     if (strcmp(value, "xics") == 0) {
3264         spapr->irq = &spapr_irq_xics;
3265     } else if (strcmp(value, "xive") == 0) {
3266         spapr->irq = &spapr_irq_xive;
3267     } else if (strcmp(value, "dual") == 0) {
3268         spapr->irq = &spapr_irq_dual;
3269     } else {
3270         error_setg(errp, "Bad value for \"ic-mode\" property");
3271     }
3272 }
3273 
3274 static char *spapr_get_host_model(Object *obj, Error **errp)
3275 {
3276     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3277 
3278     return g_strdup(spapr->host_model);
3279 }
3280 
3281 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3282 {
3283     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3284 
3285     g_free(spapr->host_model);
3286     spapr->host_model = g_strdup(value);
3287 }
3288 
3289 static char *spapr_get_host_serial(Object *obj, Error **errp)
3290 {
3291     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3292 
3293     return g_strdup(spapr->host_serial);
3294 }
3295 
3296 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3297 {
3298     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3299 
3300     g_free(spapr->host_serial);
3301     spapr->host_serial = g_strdup(value);
3302 }
3303 
3304 static void spapr_instance_init(Object *obj)
3305 {
3306     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3307     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3308 
3309     spapr->htab_fd = -1;
3310     spapr->use_hotplug_event_source = true;
3311     object_property_add_str(obj, "kvm-type",
3312                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3313     object_property_set_description(obj, "kvm-type",
3314                                     "Specifies the KVM virtualization mode (HV, PR)",
3315                                     NULL);
3316     object_property_add_bool(obj, "modern-hotplug-events",
3317                             spapr_get_modern_hotplug_events,
3318                             spapr_set_modern_hotplug_events,
3319                             NULL);
3320     object_property_set_description(obj, "modern-hotplug-events",
3321                                     "Use dedicated hotplug event mechanism in"
3322                                     " place of standard EPOW events when possible"
3323                                     " (required for memory hot-unplug support)",
3324                                     NULL);
3325     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3326                             "Maximum permitted CPU compatibility mode",
3327                             &error_fatal);
3328 
3329     object_property_add_str(obj, "resize-hpt",
3330                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3331     object_property_set_description(obj, "resize-hpt",
3332                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
3333                                     NULL);
3334     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3335                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3336     object_property_set_description(obj, "vsmt",
3337                                     "Virtual SMT: KVM behaves as if this were"
3338                                     " the host's SMT mode", &error_abort);
3339     object_property_add_bool(obj, "vfio-no-msix-emulation",
3340                              spapr_get_msix_emulation, NULL, NULL);
3341 
3342     /* The machine class defines the default interrupt controller mode */
3343     spapr->irq = smc->irq;
3344     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3345                             spapr_set_ic_mode, NULL);
3346     object_property_set_description(obj, "ic-mode",
3347                  "Specifies the interrupt controller mode (xics, xive, dual)",
3348                  NULL);
3349 
3350     object_property_add_str(obj, "host-model",
3351         spapr_get_host_model, spapr_set_host_model,
3352         &error_abort);
3353     object_property_set_description(obj, "host-model",
3354         "Host model to advertise in guest device tree", &error_abort);
3355     object_property_add_str(obj, "host-serial",
3356         spapr_get_host_serial, spapr_set_host_serial,
3357         &error_abort);
3358     object_property_set_description(obj, "host-serial",
3359         "Host serial number to advertise in guest device tree", &error_abort);
3360 }
3361 
3362 static void spapr_machine_finalizefn(Object *obj)
3363 {
3364     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3365 
3366     g_free(spapr->kvm_type);
3367 }
3368 
3369 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3370 {
3371     cpu_synchronize_state(cs);
3372     ppc_cpu_do_system_reset(cs);
3373 }
3374 
3375 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3376 {
3377     CPUState *cs;
3378 
3379     CPU_FOREACH(cs) {
3380         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3381     }
3382 }
3383 
3384 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3385                           void *fdt, int *fdt_start_offset, Error **errp)
3386 {
3387     uint64_t addr;
3388     uint32_t node;
3389 
3390     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3391     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3392                                     &error_abort);
3393     *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3394                                                    SPAPR_MEMORY_BLOCK_SIZE);
3395     return 0;
3396 }
3397 
3398 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3399                            bool dedicated_hp_event_source, Error **errp)
3400 {
3401     SpaprDrc *drc;
3402     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3403     int i;
3404     uint64_t addr = addr_start;
3405     bool hotplugged = spapr_drc_hotplugged(dev);
3406     Error *local_err = NULL;
3407 
3408     for (i = 0; i < nr_lmbs; i++) {
3409         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3410                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3411         g_assert(drc);
3412 
3413         spapr_drc_attach(drc, dev, &local_err);
3414         if (local_err) {
3415             while (addr > addr_start) {
3416                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3417                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3418                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3419                 spapr_drc_detach(drc);
3420             }
3421             error_propagate(errp, local_err);
3422             return;
3423         }
3424         if (!hotplugged) {
3425             spapr_drc_reset(drc);
3426         }
3427         addr += SPAPR_MEMORY_BLOCK_SIZE;
3428     }
3429     /* send hotplug notification to the
3430      * guest only in case of hotplugged memory
3431      */
3432     if (hotplugged) {
3433         if (dedicated_hp_event_source) {
3434             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3435                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3436             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3437                                                    nr_lmbs,
3438                                                    spapr_drc_index(drc));
3439         } else {
3440             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3441                                            nr_lmbs);
3442         }
3443     }
3444 }
3445 
3446 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3447                               Error **errp)
3448 {
3449     Error *local_err = NULL;
3450     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3451     PCDIMMDevice *dimm = PC_DIMM(dev);
3452     uint64_t size, addr;
3453 
3454     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3455 
3456     pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3457     if (local_err) {
3458         goto out;
3459     }
3460 
3461     addr = object_property_get_uint(OBJECT(dimm),
3462                                     PC_DIMM_ADDR_PROP, &local_err);
3463     if (local_err) {
3464         goto out_unplug;
3465     }
3466 
3467     spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3468                    &local_err);
3469     if (local_err) {
3470         goto out_unplug;
3471     }
3472 
3473     return;
3474 
3475 out_unplug:
3476     pc_dimm_unplug(dimm, MACHINE(ms));
3477 out:
3478     error_propagate(errp, local_err);
3479 }
3480 
3481 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3482                                   Error **errp)
3483 {
3484     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3485     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3486     PCDIMMDevice *dimm = PC_DIMM(dev);
3487     Error *local_err = NULL;
3488     uint64_t size;
3489     Object *memdev;
3490     hwaddr pagesize;
3491 
3492     if (!smc->dr_lmb_enabled) {
3493         error_setg(errp, "Memory hotplug not supported for this machine");
3494         return;
3495     }
3496 
3497     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3498     if (local_err) {
3499         error_propagate(errp, local_err);
3500         return;
3501     }
3502 
3503     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3504         error_setg(errp, "Hotplugged memory size must be a multiple of "
3505                       "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3506         return;
3507     }
3508 
3509     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3510                                       &error_abort);
3511     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3512     spapr_check_pagesize(spapr, pagesize, &local_err);
3513     if (local_err) {
3514         error_propagate(errp, local_err);
3515         return;
3516     }
3517 
3518     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3519 }
3520 
3521 struct SpaprDimmState {
3522     PCDIMMDevice *dimm;
3523     uint32_t nr_lmbs;
3524     QTAILQ_ENTRY(SpaprDimmState) next;
3525 };
3526 
3527 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3528                                                        PCDIMMDevice *dimm)
3529 {
3530     SpaprDimmState *dimm_state = NULL;
3531 
3532     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3533         if (dimm_state->dimm == dimm) {
3534             break;
3535         }
3536     }
3537     return dimm_state;
3538 }
3539 
3540 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3541                                                       uint32_t nr_lmbs,
3542                                                       PCDIMMDevice *dimm)
3543 {
3544     SpaprDimmState *ds = NULL;
3545 
3546     /*
3547      * If this request is for a DIMM whose removal had failed earlier
3548      * (due to guest's refusal to remove the LMBs), we would have this
3549      * dimm already in the pending_dimm_unplugs list. In that
3550      * case don't add again.
3551      */
3552     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3553     if (!ds) {
3554         ds = g_malloc0(sizeof(SpaprDimmState));
3555         ds->nr_lmbs = nr_lmbs;
3556         ds->dimm = dimm;
3557         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3558     }
3559     return ds;
3560 }
3561 
3562 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3563                                               SpaprDimmState *dimm_state)
3564 {
3565     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3566     g_free(dimm_state);
3567 }
3568 
3569 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3570                                                         PCDIMMDevice *dimm)
3571 {
3572     SpaprDrc *drc;
3573     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3574                                                   &error_abort);
3575     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3576     uint32_t avail_lmbs = 0;
3577     uint64_t addr_start, addr;
3578     int i;
3579 
3580     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3581                                          &error_abort);
3582 
3583     addr = addr_start;
3584     for (i = 0; i < nr_lmbs; i++) {
3585         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3586                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3587         g_assert(drc);
3588         if (drc->dev) {
3589             avail_lmbs++;
3590         }
3591         addr += SPAPR_MEMORY_BLOCK_SIZE;
3592     }
3593 
3594     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3595 }
3596 
3597 /* Callback to be called during DRC release. */
3598 void spapr_lmb_release(DeviceState *dev)
3599 {
3600     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3601     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3602     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3603 
3604     /* This information will get lost if a migration occurs
3605      * during the unplug process. In this case recover it. */
3606     if (ds == NULL) {
3607         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3608         g_assert(ds);
3609         /* The DRC being examined by the caller at least must be counted */
3610         g_assert(ds->nr_lmbs);
3611     }
3612 
3613     if (--ds->nr_lmbs) {
3614         return;
3615     }
3616 
3617     /*
3618      * Now that all the LMBs have been removed by the guest, call the
3619      * unplug handler chain. This can never fail.
3620      */
3621     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3622     object_unparent(OBJECT(dev));
3623 }
3624 
3625 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3626 {
3627     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3628     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3629 
3630     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3631     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3632     spapr_pending_dimm_unplugs_remove(spapr, ds);
3633 }
3634 
3635 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3636                                         DeviceState *dev, Error **errp)
3637 {
3638     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3639     Error *local_err = NULL;
3640     PCDIMMDevice *dimm = PC_DIMM(dev);
3641     uint32_t nr_lmbs;
3642     uint64_t size, addr_start, addr;
3643     int i;
3644     SpaprDrc *drc;
3645 
3646     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3647     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3648 
3649     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3650                                          &local_err);
3651     if (local_err) {
3652         goto out;
3653     }
3654 
3655     /*
3656      * An existing pending dimm state for this DIMM means that there is an
3657      * unplug operation in progress, waiting for the spapr_lmb_release
3658      * callback to complete the job (BQL can't cover that far). In this case,
3659      * bail out to avoid detaching DRCs that were already released.
3660      */
3661     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3662         error_setg(&local_err,
3663                    "Memory unplug already in progress for device %s",
3664                    dev->id);
3665         goto out;
3666     }
3667 
3668     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3669 
3670     addr = addr_start;
3671     for (i = 0; i < nr_lmbs; i++) {
3672         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3673                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3674         g_assert(drc);
3675 
3676         spapr_drc_detach(drc);
3677         addr += SPAPR_MEMORY_BLOCK_SIZE;
3678     }
3679 
3680     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3681                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3682     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3683                                               nr_lmbs, spapr_drc_index(drc));
3684 out:
3685     error_propagate(errp, local_err);
3686 }
3687 
3688 /* Callback to be called during DRC release. */
3689 void spapr_core_release(DeviceState *dev)
3690 {
3691     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3692 
3693     /* Call the unplug handler chain. This can never fail. */
3694     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3695     object_unparent(OBJECT(dev));
3696 }
3697 
3698 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3699 {
3700     MachineState *ms = MACHINE(hotplug_dev);
3701     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3702     CPUCore *cc = CPU_CORE(dev);
3703     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3704 
3705     if (smc->pre_2_10_has_unused_icps) {
3706         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3707         int i;
3708 
3709         for (i = 0; i < cc->nr_threads; i++) {
3710             CPUState *cs = CPU(sc->threads[i]);
3711 
3712             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3713         }
3714     }
3715 
3716     assert(core_slot);
3717     core_slot->cpu = NULL;
3718     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3719 }
3720 
3721 static
3722 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3723                                Error **errp)
3724 {
3725     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3726     int index;
3727     SpaprDrc *drc;
3728     CPUCore *cc = CPU_CORE(dev);
3729 
3730     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3731         error_setg(errp, "Unable to find CPU core with core-id: %d",
3732                    cc->core_id);
3733         return;
3734     }
3735     if (index == 0) {
3736         error_setg(errp, "Boot CPU core may not be unplugged");
3737         return;
3738     }
3739 
3740     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3741                           spapr_vcpu_id(spapr, cc->core_id));
3742     g_assert(drc);
3743 
3744     if (!spapr_drc_unplug_requested(drc)) {
3745         spapr_drc_detach(drc);
3746         spapr_hotplug_req_remove_by_index(drc);
3747     }
3748 }
3749 
3750 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3751                            void *fdt, int *fdt_start_offset, Error **errp)
3752 {
3753     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3754     CPUState *cs = CPU(core->threads[0]);
3755     PowerPCCPU *cpu = POWERPC_CPU(cs);
3756     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3757     int id = spapr_get_vcpu_id(cpu);
3758     char *nodename;
3759     int offset;
3760 
3761     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3762     offset = fdt_add_subnode(fdt, 0, nodename);
3763     g_free(nodename);
3764 
3765     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3766 
3767     *fdt_start_offset = offset;
3768     return 0;
3769 }
3770 
3771 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3772                             Error **errp)
3773 {
3774     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3775     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3776     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3777     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3778     CPUCore *cc = CPU_CORE(dev);
3779     CPUState *cs;
3780     SpaprDrc *drc;
3781     Error *local_err = NULL;
3782     CPUArchId *core_slot;
3783     int index;
3784     bool hotplugged = spapr_drc_hotplugged(dev);
3785     int i;
3786 
3787     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3788     if (!core_slot) {
3789         error_setg(errp, "Unable to find CPU core with core-id: %d",
3790                    cc->core_id);
3791         return;
3792     }
3793     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3794                           spapr_vcpu_id(spapr, cc->core_id));
3795 
3796     g_assert(drc || !mc->has_hotpluggable_cpus);
3797 
3798     if (drc) {
3799         spapr_drc_attach(drc, dev, &local_err);
3800         if (local_err) {
3801             error_propagate(errp, local_err);
3802             return;
3803         }
3804 
3805         if (hotplugged) {
3806             /*
3807              * Send hotplug notification interrupt to the guest only
3808              * in case of hotplugged CPUs.
3809              */
3810             spapr_hotplug_req_add_by_index(drc);
3811         } else {
3812             spapr_drc_reset(drc);
3813         }
3814     }
3815 
3816     core_slot->cpu = OBJECT(dev);
3817 
3818     if (smc->pre_2_10_has_unused_icps) {
3819         for (i = 0; i < cc->nr_threads; i++) {
3820             cs = CPU(core->threads[i]);
3821             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3822         }
3823     }
3824 
3825     /*
3826      * Set compatibility mode to match the boot CPU, which was either set
3827      * by the machine reset code or by CAS.
3828      */
3829     if (hotplugged) {
3830         for (i = 0; i < cc->nr_threads; i++) {
3831             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3832                            &local_err);
3833             if (local_err) {
3834                 error_propagate(errp, local_err);
3835                 return;
3836             }
3837         }
3838     }
3839 }
3840 
3841 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3842                                 Error **errp)
3843 {
3844     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3845     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3846     Error *local_err = NULL;
3847     CPUCore *cc = CPU_CORE(dev);
3848     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3849     const char *type = object_get_typename(OBJECT(dev));
3850     CPUArchId *core_slot;
3851     int index;
3852     unsigned int smp_threads = machine->smp.threads;
3853 
3854     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3855         error_setg(&local_err, "CPU hotplug not supported for this machine");
3856         goto out;
3857     }
3858 
3859     if (strcmp(base_core_type, type)) {
3860         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3861         goto out;
3862     }
3863 
3864     if (cc->core_id % smp_threads) {
3865         error_setg(&local_err, "invalid core id %d", cc->core_id);
3866         goto out;
3867     }
3868 
3869     /*
3870      * In general we should have homogeneous threads-per-core, but old
3871      * (pre hotplug support) machine types allow the last core to have
3872      * reduced threads as a compatibility hack for when we allowed
3873      * total vcpus not a multiple of threads-per-core.
3874      */
3875     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3876         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3877                    cc->nr_threads, smp_threads);
3878         goto out;
3879     }
3880 
3881     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3882     if (!core_slot) {
3883         error_setg(&local_err, "core id %d out of range", cc->core_id);
3884         goto out;
3885     }
3886 
3887     if (core_slot->cpu) {
3888         error_setg(&local_err, "core %d already populated", cc->core_id);
3889         goto out;
3890     }
3891 
3892     numa_cpu_pre_plug(core_slot, dev, &local_err);
3893 
3894 out:
3895     error_propagate(errp, local_err);
3896 }
3897 
3898 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3899                           void *fdt, int *fdt_start_offset, Error **errp)
3900 {
3901     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3902     int intc_phandle;
3903 
3904     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3905     if (intc_phandle <= 0) {
3906         return -1;
3907     }
3908 
3909     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3910         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3911         return -1;
3912     }
3913 
3914     /* generally SLOF creates these, for hotplug it's up to QEMU */
3915     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3916 
3917     return 0;
3918 }
3919 
3920 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3921                                Error **errp)
3922 {
3923     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3924     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3925     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3926     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3927 
3928     if (dev->hotplugged && !smc->dr_phb_enabled) {
3929         error_setg(errp, "PHB hotplug not supported for this machine");
3930         return;
3931     }
3932 
3933     if (sphb->index == (uint32_t)-1) {
3934         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3935         return;
3936     }
3937 
3938     /*
3939      * This will check that sphb->index doesn't exceed the maximum number of
3940      * PHBs for the current machine type.
3941      */
3942     smc->phb_placement(spapr, sphb->index,
3943                        &sphb->buid, &sphb->io_win_addr,
3944                        &sphb->mem_win_addr, &sphb->mem64_win_addr,
3945                        windows_supported, sphb->dma_liobn,
3946                        &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3947                        errp);
3948 }
3949 
3950 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3951                            Error **errp)
3952 {
3953     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3954     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3955     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3956     SpaprDrc *drc;
3957     bool hotplugged = spapr_drc_hotplugged(dev);
3958     Error *local_err = NULL;
3959 
3960     if (!smc->dr_phb_enabled) {
3961         return;
3962     }
3963 
3964     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3965     /* hotplug hooks should check it's enabled before getting this far */
3966     assert(drc);
3967 
3968     spapr_drc_attach(drc, DEVICE(dev), &local_err);
3969     if (local_err) {
3970         error_propagate(errp, local_err);
3971         return;
3972     }
3973 
3974     if (hotplugged) {
3975         spapr_hotplug_req_add_by_index(drc);
3976     } else {
3977         spapr_drc_reset(drc);
3978     }
3979 }
3980 
3981 void spapr_phb_release(DeviceState *dev)
3982 {
3983     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3984 
3985     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3986     object_unparent(OBJECT(dev));
3987 }
3988 
3989 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3990 {
3991     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3992 }
3993 
3994 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
3995                                      DeviceState *dev, Error **errp)
3996 {
3997     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3998     SpaprDrc *drc;
3999 
4000     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4001     assert(drc);
4002 
4003     if (!spapr_drc_unplug_requested(drc)) {
4004         spapr_drc_detach(drc);
4005         spapr_hotplug_req_remove_by_index(drc);
4006     }
4007 }
4008 
4009 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4010                                  Error **errp)
4011 {
4012     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4013     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4014 
4015     if (spapr->tpm_proxy != NULL) {
4016         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4017         return;
4018     }
4019 
4020     spapr->tpm_proxy = tpm_proxy;
4021 }
4022 
4023 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4024 {
4025     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4026 
4027     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4028     object_unparent(OBJECT(dev));
4029     spapr->tpm_proxy = NULL;
4030 }
4031 
4032 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4033                                       DeviceState *dev, Error **errp)
4034 {
4035     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4036         spapr_memory_plug(hotplug_dev, dev, errp);
4037     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4038         spapr_core_plug(hotplug_dev, dev, errp);
4039     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4040         spapr_phb_plug(hotplug_dev, dev, errp);
4041     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4042         spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4043     }
4044 }
4045 
4046 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4047                                         DeviceState *dev, Error **errp)
4048 {
4049     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4050         spapr_memory_unplug(hotplug_dev, dev);
4051     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4052         spapr_core_unplug(hotplug_dev, dev);
4053     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4054         spapr_phb_unplug(hotplug_dev, dev);
4055     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4056         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4057     }
4058 }
4059 
4060 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4061                                                 DeviceState *dev, Error **errp)
4062 {
4063     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4064     MachineClass *mc = MACHINE_GET_CLASS(sms);
4065     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4066 
4067     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4068         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4069             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4070         } else {
4071             /* NOTE: this means there is a window after guest reset, prior to
4072              * CAS negotiation, where unplug requests will fail due to the
4073              * capability not being detected yet. This is a bit different than
4074              * the case with PCI unplug, where the events will be queued and
4075              * eventually handled by the guest after boot
4076              */
4077             error_setg(errp, "Memory hot unplug not supported for this guest");
4078         }
4079     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4080         if (!mc->has_hotpluggable_cpus) {
4081             error_setg(errp, "CPU hot unplug not supported on this machine");
4082             return;
4083         }
4084         spapr_core_unplug_request(hotplug_dev, dev, errp);
4085     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4086         if (!smc->dr_phb_enabled) {
4087             error_setg(errp, "PHB hot unplug not supported on this machine");
4088             return;
4089         }
4090         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4091     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4092         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4093     }
4094 }
4095 
4096 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4097                                           DeviceState *dev, Error **errp)
4098 {
4099     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4100         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4101     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4102         spapr_core_pre_plug(hotplug_dev, dev, errp);
4103     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4104         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4105     }
4106 }
4107 
4108 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4109                                                  DeviceState *dev)
4110 {
4111     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4112         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4113         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4114         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4115         return HOTPLUG_HANDLER(machine);
4116     }
4117     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4118         PCIDevice *pcidev = PCI_DEVICE(dev);
4119         PCIBus *root = pci_device_root_bus(pcidev);
4120         SpaprPhbState *phb =
4121             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4122                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4123 
4124         if (phb) {
4125             return HOTPLUG_HANDLER(phb);
4126         }
4127     }
4128     return NULL;
4129 }
4130 
4131 static CpuInstanceProperties
4132 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4133 {
4134     CPUArchId *core_slot;
4135     MachineClass *mc = MACHINE_GET_CLASS(machine);
4136 
4137     /* make sure possible_cpu are intialized */
4138     mc->possible_cpu_arch_ids(machine);
4139     /* get CPU core slot containing thread that matches cpu_index */
4140     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4141     assert(core_slot);
4142     return core_slot->props;
4143 }
4144 
4145 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4146 {
4147     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4148 }
4149 
4150 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4151 {
4152     int i;
4153     unsigned int smp_threads = machine->smp.threads;
4154     unsigned int smp_cpus = machine->smp.cpus;
4155     const char *core_type;
4156     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4157     MachineClass *mc = MACHINE_GET_CLASS(machine);
4158 
4159     if (!mc->has_hotpluggable_cpus) {
4160         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4161     }
4162     if (machine->possible_cpus) {
4163         assert(machine->possible_cpus->len == spapr_max_cores);
4164         return machine->possible_cpus;
4165     }
4166 
4167     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4168     if (!core_type) {
4169         error_report("Unable to find sPAPR CPU Core definition");
4170         exit(1);
4171     }
4172 
4173     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4174                              sizeof(CPUArchId) * spapr_max_cores);
4175     machine->possible_cpus->len = spapr_max_cores;
4176     for (i = 0; i < machine->possible_cpus->len; i++) {
4177         int core_id = i * smp_threads;
4178 
4179         machine->possible_cpus->cpus[i].type = core_type;
4180         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4181         machine->possible_cpus->cpus[i].arch_id = core_id;
4182         machine->possible_cpus->cpus[i].props.has_core_id = true;
4183         machine->possible_cpus->cpus[i].props.core_id = core_id;
4184     }
4185     return machine->possible_cpus;
4186 }
4187 
4188 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4189                                 uint64_t *buid, hwaddr *pio,
4190                                 hwaddr *mmio32, hwaddr *mmio64,
4191                                 unsigned n_dma, uint32_t *liobns,
4192                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4193 {
4194     /*
4195      * New-style PHB window placement.
4196      *
4197      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4198      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4199      * windows.
4200      *
4201      * Some guest kernels can't work with MMIO windows above 1<<46
4202      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4203      *
4204      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4205      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4206      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4207      * 1TiB 64-bit MMIO windows for each PHB.
4208      */
4209     const uint64_t base_buid = 0x800000020000000ULL;
4210     int i;
4211 
4212     /* Sanity check natural alignments */
4213     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4214     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4215     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4216     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4217     /* Sanity check bounds */
4218     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4219                       SPAPR_PCI_MEM32_WIN_SIZE);
4220     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4221                       SPAPR_PCI_MEM64_WIN_SIZE);
4222 
4223     if (index >= SPAPR_MAX_PHBS) {
4224         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4225                    SPAPR_MAX_PHBS - 1);
4226         return;
4227     }
4228 
4229     *buid = base_buid + index;
4230     for (i = 0; i < n_dma; ++i) {
4231         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4232     }
4233 
4234     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4235     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4236     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4237 
4238     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4239     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4240 }
4241 
4242 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4243 {
4244     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4245 
4246     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4247 }
4248 
4249 static void spapr_ics_resend(XICSFabric *dev)
4250 {
4251     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4252 
4253     ics_resend(spapr->ics);
4254 }
4255 
4256 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4257 {
4258     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4259 
4260     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4261 }
4262 
4263 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4264                                  Monitor *mon)
4265 {
4266     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4267 
4268     spapr_irq_print_info(spapr, mon);
4269     monitor_printf(mon, "irqchip: %s\n",
4270                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4271 }
4272 
4273 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4274 {
4275     return cpu->vcpu_id;
4276 }
4277 
4278 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4279 {
4280     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4281     MachineState *ms = MACHINE(spapr);
4282     int vcpu_id;
4283 
4284     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4285 
4286     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4287         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4288         error_append_hint(errp, "Adjust the number of cpus to %d "
4289                           "or try to raise the number of threads per core\n",
4290                           vcpu_id * ms->smp.threads / spapr->vsmt);
4291         return;
4292     }
4293 
4294     cpu->vcpu_id = vcpu_id;
4295 }
4296 
4297 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4298 {
4299     CPUState *cs;
4300 
4301     CPU_FOREACH(cs) {
4302         PowerPCCPU *cpu = POWERPC_CPU(cs);
4303 
4304         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4305             return cpu;
4306         }
4307     }
4308 
4309     return NULL;
4310 }
4311 
4312 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4313 {
4314     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4315 
4316     /* These are only called by TCG, KVM maintains dispatch state */
4317 
4318     spapr_cpu->prod = false;
4319     if (spapr_cpu->vpa_addr) {
4320         CPUState *cs = CPU(cpu);
4321         uint32_t dispatch;
4322 
4323         dispatch = ldl_be_phys(cs->as,
4324                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4325         dispatch++;
4326         if ((dispatch & 1) != 0) {
4327             qemu_log_mask(LOG_GUEST_ERROR,
4328                           "VPA: incorrect dispatch counter value for "
4329                           "dispatched partition %u, correcting.\n", dispatch);
4330             dispatch++;
4331         }
4332         stl_be_phys(cs->as,
4333                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4334     }
4335 }
4336 
4337 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4338 {
4339     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4340 
4341     if (spapr_cpu->vpa_addr) {
4342         CPUState *cs = CPU(cpu);
4343         uint32_t dispatch;
4344 
4345         dispatch = ldl_be_phys(cs->as,
4346                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4347         dispatch++;
4348         if ((dispatch & 1) != 1) {
4349             qemu_log_mask(LOG_GUEST_ERROR,
4350                           "VPA: incorrect dispatch counter value for "
4351                           "preempted partition %u, correcting.\n", dispatch);
4352             dispatch++;
4353         }
4354         stl_be_phys(cs->as,
4355                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4356     }
4357 }
4358 
4359 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4360 {
4361     MachineClass *mc = MACHINE_CLASS(oc);
4362     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4363     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4364     NMIClass *nc = NMI_CLASS(oc);
4365     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4366     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4367     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4368     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4369 
4370     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4371     mc->ignore_boot_device_suffixes = true;
4372 
4373     /*
4374      * We set up the default / latest behaviour here.  The class_init
4375      * functions for the specific versioned machine types can override
4376      * these details for backwards compatibility
4377      */
4378     mc->init = spapr_machine_init;
4379     mc->reset = spapr_machine_reset;
4380     mc->block_default_type = IF_SCSI;
4381     mc->max_cpus = 1024;
4382     mc->no_parallel = 1;
4383     mc->default_boot_order = "";
4384     mc->default_ram_size = 512 * MiB;
4385     mc->default_display = "std";
4386     mc->kvm_type = spapr_kvm_type;
4387     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4388     mc->pci_allow_0_address = true;
4389     assert(!mc->get_hotplug_handler);
4390     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4391     hc->pre_plug = spapr_machine_device_pre_plug;
4392     hc->plug = spapr_machine_device_plug;
4393     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4394     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4395     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4396     hc->unplug_request = spapr_machine_device_unplug_request;
4397     hc->unplug = spapr_machine_device_unplug;
4398 
4399     smc->dr_lmb_enabled = true;
4400     smc->update_dt_enabled = true;
4401     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4402     mc->has_hotpluggable_cpus = true;
4403     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4404     fwc->get_dev_path = spapr_get_fw_dev_path;
4405     nc->nmi_monitor_handler = spapr_nmi;
4406     smc->phb_placement = spapr_phb_placement;
4407     vhc->hypercall = emulate_spapr_hypercall;
4408     vhc->hpt_mask = spapr_hpt_mask;
4409     vhc->map_hptes = spapr_map_hptes;
4410     vhc->unmap_hptes = spapr_unmap_hptes;
4411     vhc->hpte_set_c = spapr_hpte_set_c;
4412     vhc->hpte_set_r = spapr_hpte_set_r;
4413     vhc->get_pate = spapr_get_pate;
4414     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4415     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4416     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4417     xic->ics_get = spapr_ics_get;
4418     xic->ics_resend = spapr_ics_resend;
4419     xic->icp_get = spapr_icp_get;
4420     ispc->print_info = spapr_pic_print_info;
4421     /* Force NUMA node memory size to be a multiple of
4422      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4423      * in which LMBs are represented and hot-added
4424      */
4425     mc->numa_mem_align_shift = 28;
4426     mc->numa_mem_supported = true;
4427     mc->auto_enable_numa = true;
4428 
4429     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4430     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4431     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4432     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4433     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4434     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4435     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4436     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4437     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4438     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4439     spapr_caps_add_properties(smc, &error_abort);
4440     smc->irq = &spapr_irq_dual;
4441     smc->dr_phb_enabled = true;
4442     smc->linux_pci_probe = true;
4443     smc->smp_threads_vsmt = true;
4444     smc->nr_xirqs = SPAPR_NR_XIRQS;
4445 }
4446 
4447 static const TypeInfo spapr_machine_info = {
4448     .name          = TYPE_SPAPR_MACHINE,
4449     .parent        = TYPE_MACHINE,
4450     .abstract      = true,
4451     .instance_size = sizeof(SpaprMachineState),
4452     .instance_init = spapr_instance_init,
4453     .instance_finalize = spapr_machine_finalizefn,
4454     .class_size    = sizeof(SpaprMachineClass),
4455     .class_init    = spapr_machine_class_init,
4456     .interfaces = (InterfaceInfo[]) {
4457         { TYPE_FW_PATH_PROVIDER },
4458         { TYPE_NMI },
4459         { TYPE_HOTPLUG_HANDLER },
4460         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4461         { TYPE_XICS_FABRIC },
4462         { TYPE_INTERRUPT_STATS_PROVIDER },
4463         { }
4464     },
4465 };
4466 
4467 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4468     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4469                                                     void *data)      \
4470     {                                                                \
4471         MachineClass *mc = MACHINE_CLASS(oc);                        \
4472         spapr_machine_##suffix##_class_options(mc);                  \
4473         if (latest) {                                                \
4474             mc->alias = "pseries";                                   \
4475             mc->is_default = 1;                                      \
4476         }                                                            \
4477     }                                                                \
4478     static const TypeInfo spapr_machine_##suffix##_info = {          \
4479         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4480         .parent = TYPE_SPAPR_MACHINE,                                \
4481         .class_init = spapr_machine_##suffix##_class_init,           \
4482     };                                                               \
4483     static void spapr_machine_register_##suffix(void)                \
4484     {                                                                \
4485         type_register(&spapr_machine_##suffix##_info);               \
4486     }                                                                \
4487     type_init(spapr_machine_register_##suffix)
4488 
4489 /*
4490  * pseries-4.2
4491  */
4492 static void spapr_machine_4_2_class_options(MachineClass *mc)
4493 {
4494     /* Defaults for the latest behaviour inherited from the base class */
4495 }
4496 
4497 DEFINE_SPAPR_MACHINE(4_2, "4.2", true);
4498 
4499 /*
4500  * pseries-4.1
4501  */
4502 static void spapr_machine_4_1_class_options(MachineClass *mc)
4503 {
4504     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4505     static GlobalProperty compat[] = {
4506         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4507         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4508     };
4509 
4510     spapr_machine_4_2_class_options(mc);
4511     smc->linux_pci_probe = false;
4512     smc->smp_threads_vsmt = false;
4513     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4514     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4515 }
4516 
4517 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4518 
4519 /*
4520  * pseries-4.0
4521  */
4522 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4523                               uint64_t *buid, hwaddr *pio,
4524                               hwaddr *mmio32, hwaddr *mmio64,
4525                               unsigned n_dma, uint32_t *liobns,
4526                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4527 {
4528     spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4529                         nv2gpa, nv2atsd, errp);
4530     *nv2gpa = 0;
4531     *nv2atsd = 0;
4532 }
4533 
4534 static void spapr_machine_4_0_class_options(MachineClass *mc)
4535 {
4536     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4537 
4538     spapr_machine_4_1_class_options(mc);
4539     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4540     smc->phb_placement = phb_placement_4_0;
4541     smc->irq = &spapr_irq_xics;
4542     smc->pre_4_1_migration = true;
4543 }
4544 
4545 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4546 
4547 /*
4548  * pseries-3.1
4549  */
4550 static void spapr_machine_3_1_class_options(MachineClass *mc)
4551 {
4552     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4553 
4554     spapr_machine_4_0_class_options(mc);
4555     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4556 
4557     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4558     smc->update_dt_enabled = false;
4559     smc->dr_phb_enabled = false;
4560     smc->broken_host_serial_model = true;
4561     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4562     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4563     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4564     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4565 }
4566 
4567 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4568 
4569 /*
4570  * pseries-3.0
4571  */
4572 
4573 static void spapr_machine_3_0_class_options(MachineClass *mc)
4574 {
4575     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4576 
4577     spapr_machine_3_1_class_options(mc);
4578     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4579 
4580     smc->legacy_irq_allocation = true;
4581     smc->nr_xirqs = 0x400;
4582     smc->irq = &spapr_irq_xics_legacy;
4583 }
4584 
4585 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4586 
4587 /*
4588  * pseries-2.12
4589  */
4590 static void spapr_machine_2_12_class_options(MachineClass *mc)
4591 {
4592     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4593     static GlobalProperty compat[] = {
4594         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4595         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4596     };
4597 
4598     spapr_machine_3_0_class_options(mc);
4599     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4600     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4601 
4602     /* We depend on kvm_enabled() to choose a default value for the
4603      * hpt-max-page-size capability. Of course we can't do it here
4604      * because this is too early and the HW accelerator isn't initialzed
4605      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4606      */
4607     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4608 }
4609 
4610 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4611 
4612 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4613 {
4614     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4615 
4616     spapr_machine_2_12_class_options(mc);
4617     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4618     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4619     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4620 }
4621 
4622 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4623 
4624 /*
4625  * pseries-2.11
4626  */
4627 
4628 static void spapr_machine_2_11_class_options(MachineClass *mc)
4629 {
4630     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4631 
4632     spapr_machine_2_12_class_options(mc);
4633     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4634     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4635 }
4636 
4637 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4638 
4639 /*
4640  * pseries-2.10
4641  */
4642 
4643 static void spapr_machine_2_10_class_options(MachineClass *mc)
4644 {
4645     spapr_machine_2_11_class_options(mc);
4646     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4647 }
4648 
4649 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4650 
4651 /*
4652  * pseries-2.9
4653  */
4654 
4655 static void spapr_machine_2_9_class_options(MachineClass *mc)
4656 {
4657     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4658     static GlobalProperty compat[] = {
4659         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4660     };
4661 
4662     spapr_machine_2_10_class_options(mc);
4663     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4664     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4665     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4666     smc->pre_2_10_has_unused_icps = true;
4667     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4668 }
4669 
4670 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4671 
4672 /*
4673  * pseries-2.8
4674  */
4675 
4676 static void spapr_machine_2_8_class_options(MachineClass *mc)
4677 {
4678     static GlobalProperty compat[] = {
4679         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4680     };
4681 
4682     spapr_machine_2_9_class_options(mc);
4683     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4684     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4685     mc->numa_mem_align_shift = 23;
4686 }
4687 
4688 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4689 
4690 /*
4691  * pseries-2.7
4692  */
4693 
4694 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4695                               uint64_t *buid, hwaddr *pio,
4696                               hwaddr *mmio32, hwaddr *mmio64,
4697                               unsigned n_dma, uint32_t *liobns,
4698                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4699 {
4700     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4701     const uint64_t base_buid = 0x800000020000000ULL;
4702     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4703     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4704     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4705     const uint32_t max_index = 255;
4706     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4707 
4708     uint64_t ram_top = MACHINE(spapr)->ram_size;
4709     hwaddr phb0_base, phb_base;
4710     int i;
4711 
4712     /* Do we have device memory? */
4713     if (MACHINE(spapr)->maxram_size > ram_top) {
4714         /* Can't just use maxram_size, because there may be an
4715          * alignment gap between normal and device memory regions
4716          */
4717         ram_top = MACHINE(spapr)->device_memory->base +
4718             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4719     }
4720 
4721     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4722 
4723     if (index > max_index) {
4724         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4725                    max_index);
4726         return;
4727     }
4728 
4729     *buid = base_buid + index;
4730     for (i = 0; i < n_dma; ++i) {
4731         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4732     }
4733 
4734     phb_base = phb0_base + index * phb_spacing;
4735     *pio = phb_base + pio_offset;
4736     *mmio32 = phb_base + mmio_offset;
4737     /*
4738      * We don't set the 64-bit MMIO window, relying on the PHB's
4739      * fallback behaviour of automatically splitting a large "32-bit"
4740      * window into contiguous 32-bit and 64-bit windows
4741      */
4742 
4743     *nv2gpa = 0;
4744     *nv2atsd = 0;
4745 }
4746 
4747 static void spapr_machine_2_7_class_options(MachineClass *mc)
4748 {
4749     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4750     static GlobalProperty compat[] = {
4751         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4752         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4753         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4754         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4755     };
4756 
4757     spapr_machine_2_8_class_options(mc);
4758     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4759     mc->default_machine_opts = "modern-hotplug-events=off";
4760     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4761     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4762     smc->phb_placement = phb_placement_2_7;
4763 }
4764 
4765 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4766 
4767 /*
4768  * pseries-2.6
4769  */
4770 
4771 static void spapr_machine_2_6_class_options(MachineClass *mc)
4772 {
4773     static GlobalProperty compat[] = {
4774         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4775     };
4776 
4777     spapr_machine_2_7_class_options(mc);
4778     mc->has_hotpluggable_cpus = false;
4779     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4780     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4781 }
4782 
4783 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4784 
4785 /*
4786  * pseries-2.5
4787  */
4788 
4789 static void spapr_machine_2_5_class_options(MachineClass *mc)
4790 {
4791     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4792     static GlobalProperty compat[] = {
4793         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4794     };
4795 
4796     spapr_machine_2_6_class_options(mc);
4797     smc->use_ohci_by_default = true;
4798     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4799     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4800 }
4801 
4802 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4803 
4804 /*
4805  * pseries-2.4
4806  */
4807 
4808 static void spapr_machine_2_4_class_options(MachineClass *mc)
4809 {
4810     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4811 
4812     spapr_machine_2_5_class_options(mc);
4813     smc->dr_lmb_enabled = false;
4814     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4815 }
4816 
4817 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4818 
4819 /*
4820  * pseries-2.3
4821  */
4822 
4823 static void spapr_machine_2_3_class_options(MachineClass *mc)
4824 {
4825     static GlobalProperty compat[] = {
4826         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4827     };
4828     spapr_machine_2_4_class_options(mc);
4829     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4830     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4831 }
4832 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4833 
4834 /*
4835  * pseries-2.2
4836  */
4837 
4838 static void spapr_machine_2_2_class_options(MachineClass *mc)
4839 {
4840     static GlobalProperty compat[] = {
4841         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4842     };
4843 
4844     spapr_machine_2_3_class_options(mc);
4845     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4846     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4847     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4848 }
4849 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4850 
4851 /*
4852  * pseries-2.1
4853  */
4854 
4855 static void spapr_machine_2_1_class_options(MachineClass *mc)
4856 {
4857     spapr_machine_2_2_class_options(mc);
4858     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4859 }
4860 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4861 
4862 static void spapr_machine_register_types(void)
4863 {
4864     type_register_static(&spapr_machine_info);
4865 }
4866 
4867 type_init(spapr_machine_register_types)
4868