xref: /qemu/hw/ppc/spapr.c (revision 8755b4af)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/migration.h"
42 #include "mmu-hash64.h"
43 #include "qom/cpu.h"
44 
45 #include "hw/boards.h"
46 #include "hw/ppc/ppc.h"
47 #include "hw/loader.h"
48 
49 #include "hw/ppc/fdt.h"
50 #include "hw/ppc/spapr.h"
51 #include "hw/ppc/spapr_vio.h"
52 #include "hw/pci-host/spapr.h"
53 #include "hw/ppc/xics.h"
54 #include "hw/pci/msi.h"
55 
56 #include "hw/pci/pci.h"
57 #include "hw/scsi/scsi.h"
58 #include "hw/virtio/virtio-scsi.h"
59 
60 #include "exec/address-spaces.h"
61 #include "hw/usb.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "trace.h"
65 #include "hw/nmi.h"
66 #include "hw/intc/intc.h"
67 
68 #include "hw/compat.h"
69 #include "qemu/cutils.h"
70 #include "hw/ppc/spapr_cpu_core.h"
71 #include "qmp-commands.h"
72 
73 #include <libfdt.h>
74 
75 /* SLOF memory layout:
76  *
77  * SLOF raw image loaded at 0, copies its romfs right below the flat
78  * device-tree, then position SLOF itself 31M below that
79  *
80  * So we set FW_OVERHEAD to 40MB which should account for all of that
81  * and more
82  *
83  * We load our kernel at 4M, leaving space for SLOF initial image
84  */
85 #define FDT_MAX_SIZE            0x100000
86 #define RTAS_MAX_SIZE           0x10000
87 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
88 #define FW_MAX_SIZE             0x400000
89 #define FW_FILE_NAME            "slof.bin"
90 #define FW_OVERHEAD             0x2800000
91 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
92 
93 #define MIN_RMA_SLOF            128UL
94 
95 #define PHANDLE_XICP            0x00001111
96 
97 #define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
98 
99 static int try_create_xics(sPAPRMachineState *spapr, const char *type_ics,
100                            const char *type_icp, int nr_servers,
101                            int nr_irqs, Error **errp)
102 {
103     XICSFabric *xi = XICS_FABRIC(spapr);
104     Error *err = NULL, *local_err = NULL;
105     ICSState *ics = NULL;
106     int i;
107 
108     ics = ICS_SIMPLE(object_new(type_ics));
109     object_property_add_child(OBJECT(spapr), "ics", OBJECT(ics), NULL);
110     object_property_set_int(OBJECT(ics), nr_irqs, "nr-irqs", &err);
111     object_property_add_const_link(OBJECT(ics), "xics", OBJECT(xi), NULL);
112     object_property_set_bool(OBJECT(ics), true, "realized", &local_err);
113     error_propagate(&err, local_err);
114     if (err) {
115         goto error;
116     }
117 
118     spapr->icps = g_malloc0(nr_servers * sizeof(ICPState));
119     spapr->nr_servers = nr_servers;
120 
121     for (i = 0; i < nr_servers; i++) {
122         ICPState *icp = &spapr->icps[i];
123 
124         object_initialize(icp, sizeof(*icp), type_icp);
125         object_property_add_child(OBJECT(spapr), "icp[*]", OBJECT(icp), NULL);
126         object_property_add_const_link(OBJECT(icp), "xics", OBJECT(xi), NULL);
127         object_property_set_bool(OBJECT(icp), true, "realized", &err);
128         if (err) {
129             goto error;
130         }
131         object_unref(OBJECT(icp));
132     }
133 
134     spapr->ics = ics;
135     return 0;
136 
137 error:
138     error_propagate(errp, err);
139     if (ics) {
140         object_unparent(OBJECT(ics));
141     }
142     return -1;
143 }
144 
145 static int xics_system_init(MachineState *machine,
146                             int nr_servers, int nr_irqs, Error **errp)
147 {
148     int rc = -1;
149 
150     if (kvm_enabled()) {
151         Error *err = NULL;
152 
153         if (machine_kernel_irqchip_allowed(machine) &&
154             !xics_kvm_init(SPAPR_MACHINE(machine), errp)) {
155             rc = try_create_xics(SPAPR_MACHINE(machine), TYPE_ICS_KVM,
156                                  TYPE_KVM_ICP, nr_servers, nr_irqs, &err);
157         }
158         if (machine_kernel_irqchip_required(machine) && rc < 0) {
159             error_reportf_err(err,
160                               "kernel_irqchip requested but unavailable: ");
161         } else {
162             error_free(err);
163         }
164     }
165 
166     if (rc < 0) {
167         xics_spapr_init(SPAPR_MACHINE(machine), errp);
168         rc = try_create_xics(SPAPR_MACHINE(machine), TYPE_ICS_SIMPLE,
169                                TYPE_ICP, nr_servers, nr_irqs, errp);
170     }
171 
172     return rc;
173 }
174 
175 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
176                                   int smt_threads)
177 {
178     int i, ret = 0;
179     uint32_t servers_prop[smt_threads];
180     uint32_t gservers_prop[smt_threads * 2];
181     int index = ppc_get_vcpu_dt_id(cpu);
182 
183     if (cpu->compat_pvr) {
184         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
185         if (ret < 0) {
186             return ret;
187         }
188     }
189 
190     /* Build interrupt servers and gservers properties */
191     for (i = 0; i < smt_threads; i++) {
192         servers_prop[i] = cpu_to_be32(index + i);
193         /* Hack, direct the group queues back to cpu 0 */
194         gservers_prop[i*2] = cpu_to_be32(index + i);
195         gservers_prop[i*2 + 1] = 0;
196     }
197     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
198                       servers_prop, sizeof(servers_prop));
199     if (ret < 0) {
200         return ret;
201     }
202     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
203                       gservers_prop, sizeof(gservers_prop));
204 
205     return ret;
206 }
207 
208 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
209 {
210     int ret = 0;
211     PowerPCCPU *cpu = POWERPC_CPU(cs);
212     int index = ppc_get_vcpu_dt_id(cpu);
213     uint32_t associativity[] = {cpu_to_be32(0x5),
214                                 cpu_to_be32(0x0),
215                                 cpu_to_be32(0x0),
216                                 cpu_to_be32(0x0),
217                                 cpu_to_be32(cs->numa_node),
218                                 cpu_to_be32(index)};
219 
220     /* Advertise NUMA via ibm,associativity */
221     if (nb_numa_nodes > 1) {
222         ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
223                           sizeof(associativity));
224     }
225 
226     return ret;
227 }
228 
229 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
230 {
231     int ret = 0, offset, cpus_offset;
232     CPUState *cs;
233     char cpu_model[32];
234     int smt = kvmppc_smt_threads();
235     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
236 
237     CPU_FOREACH(cs) {
238         PowerPCCPU *cpu = POWERPC_CPU(cs);
239         DeviceClass *dc = DEVICE_GET_CLASS(cs);
240         int index = ppc_get_vcpu_dt_id(cpu);
241         int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
242 
243         if ((index % smt) != 0) {
244             continue;
245         }
246 
247         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
248 
249         cpus_offset = fdt_path_offset(fdt, "/cpus");
250         if (cpus_offset < 0) {
251             cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
252                                           "cpus");
253             if (cpus_offset < 0) {
254                 return cpus_offset;
255             }
256         }
257         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
258         if (offset < 0) {
259             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
260             if (offset < 0) {
261                 return offset;
262             }
263         }
264 
265         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
266                           pft_size_prop, sizeof(pft_size_prop));
267         if (ret < 0) {
268             return ret;
269         }
270 
271         ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
272         if (ret < 0) {
273             return ret;
274         }
275 
276         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
277         if (ret < 0) {
278             return ret;
279         }
280     }
281     return ret;
282 }
283 
284 static hwaddr spapr_node0_size(void)
285 {
286     MachineState *machine = MACHINE(qdev_get_machine());
287 
288     if (nb_numa_nodes) {
289         int i;
290         for (i = 0; i < nb_numa_nodes; ++i) {
291             if (numa_info[i].node_mem) {
292                 return MIN(pow2floor(numa_info[i].node_mem),
293                            machine->ram_size);
294             }
295         }
296     }
297     return machine->ram_size;
298 }
299 
300 static void add_str(GString *s, const gchar *s1)
301 {
302     g_string_append_len(s, s1, strlen(s1) + 1);
303 }
304 
305 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
306                                        hwaddr size)
307 {
308     uint32_t associativity[] = {
309         cpu_to_be32(0x4), /* length */
310         cpu_to_be32(0x0), cpu_to_be32(0x0),
311         cpu_to_be32(0x0), cpu_to_be32(nodeid)
312     };
313     char mem_name[32];
314     uint64_t mem_reg_property[2];
315     int off;
316 
317     mem_reg_property[0] = cpu_to_be64(start);
318     mem_reg_property[1] = cpu_to_be64(size);
319 
320     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
321     off = fdt_add_subnode(fdt, 0, mem_name);
322     _FDT(off);
323     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
324     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
325                       sizeof(mem_reg_property))));
326     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
327                       sizeof(associativity))));
328     return off;
329 }
330 
331 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
332 {
333     MachineState *machine = MACHINE(spapr);
334     hwaddr mem_start, node_size;
335     int i, nb_nodes = nb_numa_nodes;
336     NodeInfo *nodes = numa_info;
337     NodeInfo ramnode;
338 
339     /* No NUMA nodes, assume there is just one node with whole RAM */
340     if (!nb_numa_nodes) {
341         nb_nodes = 1;
342         ramnode.node_mem = machine->ram_size;
343         nodes = &ramnode;
344     }
345 
346     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
347         if (!nodes[i].node_mem) {
348             continue;
349         }
350         if (mem_start >= machine->ram_size) {
351             node_size = 0;
352         } else {
353             node_size = nodes[i].node_mem;
354             if (node_size > machine->ram_size - mem_start) {
355                 node_size = machine->ram_size - mem_start;
356             }
357         }
358         if (!mem_start) {
359             /* ppc_spapr_init() checks for rma_size <= node0_size already */
360             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
361             mem_start += spapr->rma_size;
362             node_size -= spapr->rma_size;
363         }
364         for ( ; node_size; ) {
365             hwaddr sizetmp = pow2floor(node_size);
366 
367             /* mem_start != 0 here */
368             if (ctzl(mem_start) < ctzl(sizetmp)) {
369                 sizetmp = 1ULL << ctzl(mem_start);
370             }
371 
372             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
373             node_size -= sizetmp;
374             mem_start += sizetmp;
375         }
376     }
377 
378     return 0;
379 }
380 
381 /* Populate the "ibm,pa-features" property */
382 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset)
383 {
384     uint8_t pa_features_206[] = { 6, 0,
385         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
386     uint8_t pa_features_207[] = { 24, 0,
387         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
388         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
389         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
390         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
391     /* Currently we don't advertise any of the "new" ISAv3.00 functionality */
392     uint8_t pa_features_300[] = { 64, 0,
393         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /*  0 -  5 */
394         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /*  6 - 11 */
395         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
396         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
397         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 24 - 29 */
398         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 30 - 35 */
399         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 36 - 41 */
400         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 42 - 47 */
401         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 48 - 53 */
402         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 54 - 59 */
403         0x00, 0x00, 0x00, 0x00           }; /* 60 - 63 */
404 
405     uint8_t *pa_features;
406     size_t pa_size;
407 
408     switch (POWERPC_MMU_VER(env->mmu_model)) {
409     case POWERPC_MMU_VER_2_06:
410         pa_features = pa_features_206;
411         pa_size = sizeof(pa_features_206);
412         break;
413     case POWERPC_MMU_VER_2_07:
414         pa_features = pa_features_207;
415         pa_size = sizeof(pa_features_207);
416         break;
417     case POWERPC_MMU_VER_3_00:
418         pa_features = pa_features_300;
419         pa_size = sizeof(pa_features_300);
420         break;
421     default:
422         return;
423     }
424 
425     if (env->ci_large_pages) {
426         /*
427          * Note: we keep CI large pages off by default because a 64K capable
428          * guest provisioned with large pages might otherwise try to map a qemu
429          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
430          * even if that qemu runs on a 4k host.
431          * We dd this bit back here if we are confident this is not an issue
432          */
433         pa_features[3] |= 0x20;
434     }
435     if (kvmppc_has_cap_htm() && pa_size > 24) {
436         pa_features[24] |= 0x80;    /* Transactional memory support */
437     }
438 
439     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
440 }
441 
442 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
443                                   sPAPRMachineState *spapr)
444 {
445     PowerPCCPU *cpu = POWERPC_CPU(cs);
446     CPUPPCState *env = &cpu->env;
447     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
448     int index = ppc_get_vcpu_dt_id(cpu);
449     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
450                        0xffffffff, 0xffffffff};
451     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
452         : SPAPR_TIMEBASE_FREQ;
453     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
454     uint32_t page_sizes_prop[64];
455     size_t page_sizes_prop_size;
456     uint32_t vcpus_per_socket = smp_threads * smp_cores;
457     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
458     int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
459     sPAPRDRConnector *drc;
460     sPAPRDRConnectorClass *drck;
461     int drc_index;
462 
463     drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
464     if (drc) {
465         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
466         drc_index = drck->get_index(drc);
467         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
468     }
469 
470     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
471     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
472 
473     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
474     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
475                            env->dcache_line_size)));
476     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
477                            env->dcache_line_size)));
478     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
479                            env->icache_line_size)));
480     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
481                            env->icache_line_size)));
482 
483     if (pcc->l1_dcache_size) {
484         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
485                                pcc->l1_dcache_size)));
486     } else {
487         error_report("Warning: Unknown L1 dcache size for cpu");
488     }
489     if (pcc->l1_icache_size) {
490         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
491                                pcc->l1_icache_size)));
492     } else {
493         error_report("Warning: Unknown L1 icache size for cpu");
494     }
495 
496     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
497     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
498     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
499     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
500     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
501     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
502 
503     if (env->spr_cb[SPR_PURR].oea_read) {
504         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
505     }
506 
507     if (env->mmu_model & POWERPC_MMU_1TSEG) {
508         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
509                           segs, sizeof(segs))));
510     }
511 
512     /* Advertise VMX/VSX (vector extensions) if available
513      *   0 / no property == no vector extensions
514      *   1               == VMX / Altivec available
515      *   2               == VSX available */
516     if (env->insns_flags & PPC_ALTIVEC) {
517         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
518 
519         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
520     }
521 
522     /* Advertise DFP (Decimal Floating Point) if available
523      *   0 / no property == no DFP
524      *   1               == DFP available */
525     if (env->insns_flags2 & PPC2_DFP) {
526         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
527     }
528 
529     page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
530                                                   sizeof(page_sizes_prop));
531     if (page_sizes_prop_size) {
532         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
533                           page_sizes_prop, page_sizes_prop_size)));
534     }
535 
536     spapr_populate_pa_features(env, fdt, offset);
537 
538     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
539                            cs->cpu_index / vcpus_per_socket)));
540 
541     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
542                       pft_size_prop, sizeof(pft_size_prop))));
543 
544     _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
545 
546     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
547 }
548 
549 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
550 {
551     CPUState *cs;
552     int cpus_offset;
553     char *nodename;
554     int smt = kvmppc_smt_threads();
555 
556     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
557     _FDT(cpus_offset);
558     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
559     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
560 
561     /*
562      * We walk the CPUs in reverse order to ensure that CPU DT nodes
563      * created by fdt_add_subnode() end up in the right order in FDT
564      * for the guest kernel the enumerate the CPUs correctly.
565      */
566     CPU_FOREACH_REVERSE(cs) {
567         PowerPCCPU *cpu = POWERPC_CPU(cs);
568         int index = ppc_get_vcpu_dt_id(cpu);
569         DeviceClass *dc = DEVICE_GET_CLASS(cs);
570         int offset;
571 
572         if ((index % smt) != 0) {
573             continue;
574         }
575 
576         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
577         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
578         g_free(nodename);
579         _FDT(offset);
580         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
581     }
582 
583 }
584 
585 /*
586  * Adds ibm,dynamic-reconfiguration-memory node.
587  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
588  * of this device tree node.
589  */
590 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
591 {
592     MachineState *machine = MACHINE(spapr);
593     int ret, i, offset;
594     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
595     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
596     uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
597     uint32_t nr_lmbs = (spapr->hotplug_memory.base +
598                        memory_region_size(&spapr->hotplug_memory.mr)) /
599                        lmb_size;
600     uint32_t *int_buf, *cur_index, buf_len;
601     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
602 
603     /*
604      * Don't create the node if there is no hotpluggable memory
605      */
606     if (machine->ram_size == machine->maxram_size) {
607         return 0;
608     }
609 
610     /*
611      * Allocate enough buffer size to fit in ibm,dynamic-memory
612      * or ibm,associativity-lookup-arrays
613      */
614     buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
615               * sizeof(uint32_t);
616     cur_index = int_buf = g_malloc0(buf_len);
617 
618     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
619 
620     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
621                     sizeof(prop_lmb_size));
622     if (ret < 0) {
623         goto out;
624     }
625 
626     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
627     if (ret < 0) {
628         goto out;
629     }
630 
631     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
632     if (ret < 0) {
633         goto out;
634     }
635 
636     /* ibm,dynamic-memory */
637     int_buf[0] = cpu_to_be32(nr_lmbs);
638     cur_index++;
639     for (i = 0; i < nr_lmbs; i++) {
640         uint64_t addr = i * lmb_size;
641         uint32_t *dynamic_memory = cur_index;
642 
643         if (i >= hotplug_lmb_start) {
644             sPAPRDRConnector *drc;
645             sPAPRDRConnectorClass *drck;
646 
647             drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
648             g_assert(drc);
649             drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
650 
651             dynamic_memory[0] = cpu_to_be32(addr >> 32);
652             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
653             dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
654             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
655             dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
656             if (memory_region_present(get_system_memory(), addr)) {
657                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
658             } else {
659                 dynamic_memory[5] = cpu_to_be32(0);
660             }
661         } else {
662             /*
663              * LMB information for RMA, boot time RAM and gap b/n RAM and
664              * hotplug memory region -- all these are marked as reserved
665              * and as having no valid DRC.
666              */
667             dynamic_memory[0] = cpu_to_be32(addr >> 32);
668             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
669             dynamic_memory[2] = cpu_to_be32(0);
670             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
671             dynamic_memory[4] = cpu_to_be32(-1);
672             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
673                                             SPAPR_LMB_FLAGS_DRC_INVALID);
674         }
675 
676         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
677     }
678     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
679     if (ret < 0) {
680         goto out;
681     }
682 
683     /* ibm,associativity-lookup-arrays */
684     cur_index = int_buf;
685     int_buf[0] = cpu_to_be32(nr_nodes);
686     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
687     cur_index += 2;
688     for (i = 0; i < nr_nodes; i++) {
689         uint32_t associativity[] = {
690             cpu_to_be32(0x0),
691             cpu_to_be32(0x0),
692             cpu_to_be32(0x0),
693             cpu_to_be32(i)
694         };
695         memcpy(cur_index, associativity, sizeof(associativity));
696         cur_index += 4;
697     }
698     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
699             (cur_index - int_buf) * sizeof(uint32_t));
700 out:
701     g_free(int_buf);
702     return ret;
703 }
704 
705 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
706                                 sPAPROptionVector *ov5_updates)
707 {
708     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
709     int ret = 0, offset;
710 
711     /* Generate ibm,dynamic-reconfiguration-memory node if required */
712     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
713         g_assert(smc->dr_lmb_enabled);
714         ret = spapr_populate_drconf_memory(spapr, fdt);
715         if (ret) {
716             goto out;
717         }
718     }
719 
720     offset = fdt_path_offset(fdt, "/chosen");
721     if (offset < 0) {
722         offset = fdt_add_subnode(fdt, 0, "chosen");
723         if (offset < 0) {
724             return offset;
725         }
726     }
727     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
728                                  "ibm,architecture-vec-5");
729 
730 out:
731     return ret;
732 }
733 
734 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
735                                  target_ulong addr, target_ulong size,
736                                  sPAPROptionVector *ov5_updates)
737 {
738     void *fdt, *fdt_skel;
739     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
740 
741     size -= sizeof(hdr);
742 
743     /* Create sceleton */
744     fdt_skel = g_malloc0(size);
745     _FDT((fdt_create(fdt_skel, size)));
746     _FDT((fdt_begin_node(fdt_skel, "")));
747     _FDT((fdt_end_node(fdt_skel)));
748     _FDT((fdt_finish(fdt_skel)));
749     fdt = g_malloc0(size);
750     _FDT((fdt_open_into(fdt_skel, fdt, size)));
751     g_free(fdt_skel);
752 
753     /* Fixup cpu nodes */
754     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
755 
756     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
757         return -1;
758     }
759 
760     /* Pack resulting tree */
761     _FDT((fdt_pack(fdt)));
762 
763     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
764         trace_spapr_cas_failed(size);
765         return -1;
766     }
767 
768     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
769     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
770     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
771     g_free(fdt);
772 
773     return 0;
774 }
775 
776 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
777 {
778     int rtas;
779     GString *hypertas = g_string_sized_new(256);
780     GString *qemu_hypertas = g_string_sized_new(256);
781     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
782     uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
783         memory_region_size(&spapr->hotplug_memory.mr);
784     uint32_t lrdr_capacity[] = {
785         cpu_to_be32(max_hotplug_addr >> 32),
786         cpu_to_be32(max_hotplug_addr & 0xffffffff),
787         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
788         cpu_to_be32(max_cpus / smp_threads),
789     };
790 
791     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
792 
793     /* hypertas */
794     add_str(hypertas, "hcall-pft");
795     add_str(hypertas, "hcall-term");
796     add_str(hypertas, "hcall-dabr");
797     add_str(hypertas, "hcall-interrupt");
798     add_str(hypertas, "hcall-tce");
799     add_str(hypertas, "hcall-vio");
800     add_str(hypertas, "hcall-splpar");
801     add_str(hypertas, "hcall-bulk");
802     add_str(hypertas, "hcall-set-mode");
803     add_str(hypertas, "hcall-sprg0");
804     add_str(hypertas, "hcall-copy");
805     add_str(hypertas, "hcall-debug");
806     add_str(qemu_hypertas, "hcall-memop1");
807 
808     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
809         add_str(hypertas, "hcall-multi-tce");
810     }
811     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
812                      hypertas->str, hypertas->len));
813     g_string_free(hypertas, TRUE);
814     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
815                      qemu_hypertas->str, qemu_hypertas->len));
816     g_string_free(qemu_hypertas, TRUE);
817 
818     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
819                      refpoints, sizeof(refpoints)));
820 
821     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
822                           RTAS_ERROR_LOG_MAX));
823     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
824                           RTAS_EVENT_SCAN_RATE));
825 
826     if (msi_nonbroken) {
827         _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
828     }
829 
830     /*
831      * According to PAPR, rtas ibm,os-term does not guarantee a return
832      * back to the guest cpu.
833      *
834      * While an additional ibm,extended-os-term property indicates
835      * that rtas call return will always occur. Set this property.
836      */
837     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
838 
839     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
840                      lrdr_capacity, sizeof(lrdr_capacity)));
841 
842     spapr_dt_rtas_tokens(fdt, rtas);
843 }
844 
845 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
846 {
847     MachineState *machine = MACHINE(spapr);
848     int chosen;
849     const char *boot_device = machine->boot_order;
850     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
851     size_t cb = 0;
852     char *bootlist = get_boot_devices_list(&cb, true);
853 
854     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
855 
856     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
857     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
858                           spapr->initrd_base));
859     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
860                           spapr->initrd_base + spapr->initrd_size));
861 
862     if (spapr->kernel_size) {
863         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
864                               cpu_to_be64(spapr->kernel_size) };
865 
866         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
867                          &kprop, sizeof(kprop)));
868         if (spapr->kernel_le) {
869             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
870         }
871     }
872     if (boot_menu) {
873         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
874     }
875     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
876     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
877     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
878 
879     if (cb && bootlist) {
880         int i;
881 
882         for (i = 0; i < cb; i++) {
883             if (bootlist[i] == '\n') {
884                 bootlist[i] = ' ';
885             }
886         }
887         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
888     }
889 
890     if (boot_device && strlen(boot_device)) {
891         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
892     }
893 
894     if (!spapr->has_graphics && stdout_path) {
895         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
896     }
897 
898     g_free(stdout_path);
899     g_free(bootlist);
900 }
901 
902 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
903 {
904     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
905      * KVM to work under pHyp with some guest co-operation */
906     int hypervisor;
907     uint8_t hypercall[16];
908 
909     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
910     /* indicate KVM hypercall interface */
911     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
912     if (kvmppc_has_cap_fixup_hcalls()) {
913         /*
914          * Older KVM versions with older guest kernels were broken
915          * with the magic page, don't allow the guest to map it.
916          */
917         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
918                                   sizeof(hypercall))) {
919             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
920                              hypercall, sizeof(hypercall)));
921         }
922     }
923 }
924 
925 static void *spapr_build_fdt(sPAPRMachineState *spapr,
926                              hwaddr rtas_addr,
927                              hwaddr rtas_size)
928 {
929     MachineState *machine = MACHINE(qdev_get_machine());
930     MachineClass *mc = MACHINE_GET_CLASS(machine);
931     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
932     int ret;
933     void *fdt;
934     sPAPRPHBState *phb;
935     char *buf;
936 
937     fdt = g_malloc0(FDT_MAX_SIZE);
938     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
939 
940     /* Root node */
941     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
942     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
943     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
944 
945     /*
946      * Add info to guest to indentify which host is it being run on
947      * and what is the uuid of the guest
948      */
949     if (kvmppc_get_host_model(&buf)) {
950         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
951         g_free(buf);
952     }
953     if (kvmppc_get_host_serial(&buf)) {
954         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
955         g_free(buf);
956     }
957 
958     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
959 
960     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
961     if (qemu_uuid_set) {
962         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
963     }
964     g_free(buf);
965 
966     if (qemu_get_vm_name()) {
967         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
968                                 qemu_get_vm_name()));
969     }
970 
971     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
972     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
973 
974     /* /interrupt controller */
975     spapr_dt_xics(spapr->nr_servers, fdt, PHANDLE_XICP);
976 
977     ret = spapr_populate_memory(spapr, fdt);
978     if (ret < 0) {
979         error_report("couldn't setup memory nodes in fdt");
980         exit(1);
981     }
982 
983     /* /vdevice */
984     spapr_dt_vdevice(spapr->vio_bus, fdt);
985 
986     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
987         ret = spapr_rng_populate_dt(fdt);
988         if (ret < 0) {
989             error_report("could not set up rng device in the fdt");
990             exit(1);
991         }
992     }
993 
994     QLIST_FOREACH(phb, &spapr->phbs, list) {
995         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
996         if (ret < 0) {
997             error_report("couldn't setup PCI devices in fdt");
998             exit(1);
999         }
1000     }
1001 
1002     /* cpus */
1003     spapr_populate_cpus_dt_node(fdt, spapr);
1004 
1005     if (smc->dr_lmb_enabled) {
1006         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1007     }
1008 
1009     if (mc->has_hotpluggable_cpus) {
1010         int offset = fdt_path_offset(fdt, "/cpus");
1011         ret = spapr_drc_populate_dt(fdt, offset, NULL,
1012                                     SPAPR_DR_CONNECTOR_TYPE_CPU);
1013         if (ret < 0) {
1014             error_report("Couldn't set up CPU DR device tree properties");
1015             exit(1);
1016         }
1017     }
1018 
1019     /* /event-sources */
1020     spapr_dt_events(spapr, fdt);
1021 
1022     /* /rtas */
1023     spapr_dt_rtas(spapr, fdt);
1024 
1025     /* /chosen */
1026     spapr_dt_chosen(spapr, fdt);
1027 
1028     /* /hypervisor */
1029     if (kvm_enabled()) {
1030         spapr_dt_hypervisor(spapr, fdt);
1031     }
1032 
1033     /* Build memory reserve map */
1034     if (spapr->kernel_size) {
1035         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1036     }
1037     if (spapr->initrd_size) {
1038         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1039     }
1040 
1041     /* ibm,client-architecture-support updates */
1042     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1043     if (ret < 0) {
1044         error_report("couldn't setup CAS properties fdt");
1045         exit(1);
1046     }
1047 
1048     return fdt;
1049 }
1050 
1051 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1052 {
1053     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1054 }
1055 
1056 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1057                                     PowerPCCPU *cpu)
1058 {
1059     CPUPPCState *env = &cpu->env;
1060 
1061     /* The TCG path should also be holding the BQL at this point */
1062     g_assert(qemu_mutex_iothread_locked());
1063 
1064     if (msr_pr) {
1065         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1066         env->gpr[3] = H_PRIVILEGE;
1067     } else {
1068         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1069     }
1070 }
1071 
1072 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1073 {
1074     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1075 
1076     return spapr->patb_entry;
1077 }
1078 
1079 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1080 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1081 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1082 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1083 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1084 
1085 /*
1086  * Get the fd to access the kernel htab, re-opening it if necessary
1087  */
1088 static int get_htab_fd(sPAPRMachineState *spapr)
1089 {
1090     if (spapr->htab_fd >= 0) {
1091         return spapr->htab_fd;
1092     }
1093 
1094     spapr->htab_fd = kvmppc_get_htab_fd(false);
1095     if (spapr->htab_fd < 0) {
1096         error_report("Unable to open fd for reading hash table from KVM: %s",
1097                      strerror(errno));
1098     }
1099 
1100     return spapr->htab_fd;
1101 }
1102 
1103 static void close_htab_fd(sPAPRMachineState *spapr)
1104 {
1105     if (spapr->htab_fd >= 0) {
1106         close(spapr->htab_fd);
1107     }
1108     spapr->htab_fd = -1;
1109 }
1110 
1111 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1112 {
1113     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1114 
1115     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1116 }
1117 
1118 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1119                                                 hwaddr ptex, int n)
1120 {
1121     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1122     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1123 
1124     if (!spapr->htab) {
1125         /*
1126          * HTAB is controlled by KVM. Fetch into temporary buffer
1127          */
1128         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1129         kvmppc_read_hptes(hptes, ptex, n);
1130         return hptes;
1131     }
1132 
1133     /*
1134      * HTAB is controlled by QEMU. Just point to the internally
1135      * accessible PTEG.
1136      */
1137     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1138 }
1139 
1140 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1141                               const ppc_hash_pte64_t *hptes,
1142                               hwaddr ptex, int n)
1143 {
1144     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1145 
1146     if (!spapr->htab) {
1147         g_free((void *)hptes);
1148     }
1149 
1150     /* Nothing to do for qemu managed HPT */
1151 }
1152 
1153 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1154                              uint64_t pte0, uint64_t pte1)
1155 {
1156     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1157     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1158 
1159     if (!spapr->htab) {
1160         kvmppc_write_hpte(ptex, pte0, pte1);
1161     } else {
1162         stq_p(spapr->htab + offset, pte0);
1163         stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1164     }
1165 }
1166 
1167 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1168 {
1169     int shift;
1170 
1171     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1172      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1173      * that's much more than is needed for Linux guests */
1174     shift = ctz64(pow2ceil(ramsize)) - 7;
1175     shift = MAX(shift, 18); /* Minimum architected size */
1176     shift = MIN(shift, 46); /* Maximum architected size */
1177     return shift;
1178 }
1179 
1180 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1181                                  Error **errp)
1182 {
1183     long rc;
1184 
1185     /* Clean up any HPT info from a previous boot */
1186     g_free(spapr->htab);
1187     spapr->htab = NULL;
1188     spapr->htab_shift = 0;
1189     close_htab_fd(spapr);
1190 
1191     rc = kvmppc_reset_htab(shift);
1192     if (rc < 0) {
1193         /* kernel-side HPT needed, but couldn't allocate one */
1194         error_setg_errno(errp, errno,
1195                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1196                          shift);
1197         /* This is almost certainly fatal, but if the caller really
1198          * wants to carry on with shift == 0, it's welcome to try */
1199     } else if (rc > 0) {
1200         /* kernel-side HPT allocated */
1201         if (rc != shift) {
1202             error_setg(errp,
1203                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1204                        shift, rc);
1205         }
1206 
1207         spapr->htab_shift = shift;
1208         spapr->htab = NULL;
1209     } else {
1210         /* kernel-side HPT not needed, allocate in userspace instead */
1211         size_t size = 1ULL << shift;
1212         int i;
1213 
1214         spapr->htab = qemu_memalign(size, size);
1215         if (!spapr->htab) {
1216             error_setg_errno(errp, errno,
1217                              "Could not allocate HPT of order %d", shift);
1218             return;
1219         }
1220 
1221         memset(spapr->htab, 0, size);
1222         spapr->htab_shift = shift;
1223 
1224         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1225             DIRTY_HPTE(HPTE(spapr->htab, i));
1226         }
1227     }
1228 }
1229 
1230 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1231 {
1232     bool matched = false;
1233 
1234     if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1235         matched = true;
1236     }
1237 
1238     if (!matched) {
1239         error_report("Device %s is not supported by this machine yet.",
1240                      qdev_fw_name(DEVICE(sbdev)));
1241         exit(1);
1242     }
1243 }
1244 
1245 static void ppc_spapr_reset(void)
1246 {
1247     MachineState *machine = MACHINE(qdev_get_machine());
1248     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1249     PowerPCCPU *first_ppc_cpu;
1250     uint32_t rtas_limit;
1251     hwaddr rtas_addr, fdt_addr;
1252     void *fdt;
1253     int rc;
1254 
1255     /* Check for unknown sysbus devices */
1256     foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1257 
1258     spapr->patb_entry = 0;
1259 
1260     /* Allocate and/or reset the hash page table */
1261     spapr_reallocate_hpt(spapr,
1262                          spapr_hpt_shift_for_ramsize(machine->maxram_size),
1263                          &error_fatal);
1264 
1265     /* Update the RMA size if necessary */
1266     if (spapr->vrma_adjust) {
1267         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1268                                           spapr->htab_shift);
1269     }
1270 
1271     qemu_devices_reset();
1272 
1273     /*
1274      * We place the device tree and RTAS just below either the top of the RMA,
1275      * or just below 2GB, whichever is lowere, so that it can be
1276      * processed with 32-bit real mode code if necessary
1277      */
1278     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1279     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1280     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1281 
1282     /* if this reset wasn't generated by CAS, we should reset our
1283      * negotiated options and start from scratch */
1284     if (!spapr->cas_reboot) {
1285         spapr_ovec_cleanup(spapr->ov5_cas);
1286         spapr->ov5_cas = spapr_ovec_new();
1287     }
1288 
1289     fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1290 
1291     spapr_load_rtas(spapr, fdt, rtas_addr);
1292 
1293     rc = fdt_pack(fdt);
1294 
1295     /* Should only fail if we've built a corrupted tree */
1296     assert(rc == 0);
1297 
1298     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1299         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1300                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1301         exit(1);
1302     }
1303 
1304     /* Load the fdt */
1305     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1306     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1307     g_free(fdt);
1308 
1309     /* Set up the entry state */
1310     first_ppc_cpu = POWERPC_CPU(first_cpu);
1311     first_ppc_cpu->env.gpr[3] = fdt_addr;
1312     first_ppc_cpu->env.gpr[5] = 0;
1313     first_cpu->halted = 0;
1314     first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1315 
1316     spapr->cas_reboot = false;
1317 }
1318 
1319 static void spapr_create_nvram(sPAPRMachineState *spapr)
1320 {
1321     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1322     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1323 
1324     if (dinfo) {
1325         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1326                             &error_fatal);
1327     }
1328 
1329     qdev_init_nofail(dev);
1330 
1331     spapr->nvram = (struct sPAPRNVRAM *)dev;
1332 }
1333 
1334 static void spapr_rtc_create(sPAPRMachineState *spapr)
1335 {
1336     DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1337 
1338     qdev_init_nofail(dev);
1339     spapr->rtc = dev;
1340 
1341     object_property_add_alias(qdev_get_machine(), "rtc-time",
1342                               OBJECT(spapr->rtc), "date", NULL);
1343 }
1344 
1345 /* Returns whether we want to use VGA or not */
1346 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1347 {
1348     switch (vga_interface_type) {
1349     case VGA_NONE:
1350         return false;
1351     case VGA_DEVICE:
1352         return true;
1353     case VGA_STD:
1354     case VGA_VIRTIO:
1355         return pci_vga_init(pci_bus) != NULL;
1356     default:
1357         error_setg(errp,
1358                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1359         return false;
1360     }
1361 }
1362 
1363 static int spapr_post_load(void *opaque, int version_id)
1364 {
1365     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1366     int err = 0;
1367 
1368     if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1369         int i;
1370         for (i = 0; i < spapr->nr_servers; i++) {
1371             icp_resend(&spapr->icps[i]);
1372         }
1373     }
1374 
1375     /* In earlier versions, there was no separate qdev for the PAPR
1376      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1377      * So when migrating from those versions, poke the incoming offset
1378      * value into the RTC device */
1379     if (version_id < 3) {
1380         err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1381     }
1382 
1383     return err;
1384 }
1385 
1386 static bool version_before_3(void *opaque, int version_id)
1387 {
1388     return version_id < 3;
1389 }
1390 
1391 static bool spapr_ov5_cas_needed(void *opaque)
1392 {
1393     sPAPRMachineState *spapr = opaque;
1394     sPAPROptionVector *ov5_mask = spapr_ovec_new();
1395     sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1396     sPAPROptionVector *ov5_removed = spapr_ovec_new();
1397     bool cas_needed;
1398 
1399     /* Prior to the introduction of sPAPROptionVector, we had two option
1400      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1401      * Both of these options encode machine topology into the device-tree
1402      * in such a way that the now-booted OS should still be able to interact
1403      * appropriately with QEMU regardless of what options were actually
1404      * negotiatied on the source side.
1405      *
1406      * As such, we can avoid migrating the CAS-negotiated options if these
1407      * are the only options available on the current machine/platform.
1408      * Since these are the only options available for pseries-2.7 and
1409      * earlier, this allows us to maintain old->new/new->old migration
1410      * compatibility.
1411      *
1412      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1413      * via default pseries-2.8 machines and explicit command-line parameters.
1414      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1415      * of the actual CAS-negotiated values to continue working properly. For
1416      * example, availability of memory unplug depends on knowing whether
1417      * OV5_HP_EVT was negotiated via CAS.
1418      *
1419      * Thus, for any cases where the set of available CAS-negotiatable
1420      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1421      * include the CAS-negotiated options in the migration stream.
1422      */
1423     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1424     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1425 
1426     /* spapr_ovec_diff returns true if bits were removed. we avoid using
1427      * the mask itself since in the future it's possible "legacy" bits may be
1428      * removed via machine options, which could generate a false positive
1429      * that breaks migration.
1430      */
1431     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1432     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1433 
1434     spapr_ovec_cleanup(ov5_mask);
1435     spapr_ovec_cleanup(ov5_legacy);
1436     spapr_ovec_cleanup(ov5_removed);
1437 
1438     return cas_needed;
1439 }
1440 
1441 static const VMStateDescription vmstate_spapr_ov5_cas = {
1442     .name = "spapr_option_vector_ov5_cas",
1443     .version_id = 1,
1444     .minimum_version_id = 1,
1445     .needed = spapr_ov5_cas_needed,
1446     .fields = (VMStateField[]) {
1447         VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1448                                  vmstate_spapr_ovec, sPAPROptionVector),
1449         VMSTATE_END_OF_LIST()
1450     },
1451 };
1452 
1453 static bool spapr_patb_entry_needed(void *opaque)
1454 {
1455     sPAPRMachineState *spapr = opaque;
1456 
1457     return !!spapr->patb_entry;
1458 }
1459 
1460 static const VMStateDescription vmstate_spapr_patb_entry = {
1461     .name = "spapr_patb_entry",
1462     .version_id = 1,
1463     .minimum_version_id = 1,
1464     .needed = spapr_patb_entry_needed,
1465     .fields = (VMStateField[]) {
1466         VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1467         VMSTATE_END_OF_LIST()
1468     },
1469 };
1470 
1471 static const VMStateDescription vmstate_spapr = {
1472     .name = "spapr",
1473     .version_id = 3,
1474     .minimum_version_id = 1,
1475     .post_load = spapr_post_load,
1476     .fields = (VMStateField[]) {
1477         /* used to be @next_irq */
1478         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1479 
1480         /* RTC offset */
1481         VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1482 
1483         VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1484         VMSTATE_END_OF_LIST()
1485     },
1486     .subsections = (const VMStateDescription*[]) {
1487         &vmstate_spapr_ov5_cas,
1488         &vmstate_spapr_patb_entry,
1489         NULL
1490     }
1491 };
1492 
1493 static int htab_save_setup(QEMUFile *f, void *opaque)
1494 {
1495     sPAPRMachineState *spapr = opaque;
1496 
1497     /* "Iteration" header */
1498     qemu_put_be32(f, spapr->htab_shift);
1499 
1500     if (spapr->htab) {
1501         spapr->htab_save_index = 0;
1502         spapr->htab_first_pass = true;
1503     } else {
1504         assert(kvm_enabled());
1505     }
1506 
1507 
1508     return 0;
1509 }
1510 
1511 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1512                                  int64_t max_ns)
1513 {
1514     bool has_timeout = max_ns != -1;
1515     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1516     int index = spapr->htab_save_index;
1517     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1518 
1519     assert(spapr->htab_first_pass);
1520 
1521     do {
1522         int chunkstart;
1523 
1524         /* Consume invalid HPTEs */
1525         while ((index < htabslots)
1526                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1527             index++;
1528             CLEAN_HPTE(HPTE(spapr->htab, index));
1529         }
1530 
1531         /* Consume valid HPTEs */
1532         chunkstart = index;
1533         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1534                && HPTE_VALID(HPTE(spapr->htab, index))) {
1535             index++;
1536             CLEAN_HPTE(HPTE(spapr->htab, index));
1537         }
1538 
1539         if (index > chunkstart) {
1540             int n_valid = index - chunkstart;
1541 
1542             qemu_put_be32(f, chunkstart);
1543             qemu_put_be16(f, n_valid);
1544             qemu_put_be16(f, 0);
1545             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1546                             HASH_PTE_SIZE_64 * n_valid);
1547 
1548             if (has_timeout &&
1549                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1550                 break;
1551             }
1552         }
1553     } while ((index < htabslots) && !qemu_file_rate_limit(f));
1554 
1555     if (index >= htabslots) {
1556         assert(index == htabslots);
1557         index = 0;
1558         spapr->htab_first_pass = false;
1559     }
1560     spapr->htab_save_index = index;
1561 }
1562 
1563 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1564                                 int64_t max_ns)
1565 {
1566     bool final = max_ns < 0;
1567     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1568     int examined = 0, sent = 0;
1569     int index = spapr->htab_save_index;
1570     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1571 
1572     assert(!spapr->htab_first_pass);
1573 
1574     do {
1575         int chunkstart, invalidstart;
1576 
1577         /* Consume non-dirty HPTEs */
1578         while ((index < htabslots)
1579                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1580             index++;
1581             examined++;
1582         }
1583 
1584         chunkstart = index;
1585         /* Consume valid dirty HPTEs */
1586         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1587                && HPTE_DIRTY(HPTE(spapr->htab, index))
1588                && HPTE_VALID(HPTE(spapr->htab, index))) {
1589             CLEAN_HPTE(HPTE(spapr->htab, index));
1590             index++;
1591             examined++;
1592         }
1593 
1594         invalidstart = index;
1595         /* Consume invalid dirty HPTEs */
1596         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1597                && HPTE_DIRTY(HPTE(spapr->htab, index))
1598                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1599             CLEAN_HPTE(HPTE(spapr->htab, index));
1600             index++;
1601             examined++;
1602         }
1603 
1604         if (index > chunkstart) {
1605             int n_valid = invalidstart - chunkstart;
1606             int n_invalid = index - invalidstart;
1607 
1608             qemu_put_be32(f, chunkstart);
1609             qemu_put_be16(f, n_valid);
1610             qemu_put_be16(f, n_invalid);
1611             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1612                             HASH_PTE_SIZE_64 * n_valid);
1613             sent += index - chunkstart;
1614 
1615             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1616                 break;
1617             }
1618         }
1619 
1620         if (examined >= htabslots) {
1621             break;
1622         }
1623 
1624         if (index >= htabslots) {
1625             assert(index == htabslots);
1626             index = 0;
1627         }
1628     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1629 
1630     if (index >= htabslots) {
1631         assert(index == htabslots);
1632         index = 0;
1633     }
1634 
1635     spapr->htab_save_index = index;
1636 
1637     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1638 }
1639 
1640 #define MAX_ITERATION_NS    5000000 /* 5 ms */
1641 #define MAX_KVM_BUF_SIZE    2048
1642 
1643 static int htab_save_iterate(QEMUFile *f, void *opaque)
1644 {
1645     sPAPRMachineState *spapr = opaque;
1646     int fd;
1647     int rc = 0;
1648 
1649     /* Iteration header */
1650     qemu_put_be32(f, 0);
1651 
1652     if (!spapr->htab) {
1653         assert(kvm_enabled());
1654 
1655         fd = get_htab_fd(spapr);
1656         if (fd < 0) {
1657             return fd;
1658         }
1659 
1660         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1661         if (rc < 0) {
1662             return rc;
1663         }
1664     } else  if (spapr->htab_first_pass) {
1665         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1666     } else {
1667         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1668     }
1669 
1670     /* End marker */
1671     qemu_put_be32(f, 0);
1672     qemu_put_be16(f, 0);
1673     qemu_put_be16(f, 0);
1674 
1675     return rc;
1676 }
1677 
1678 static int htab_save_complete(QEMUFile *f, void *opaque)
1679 {
1680     sPAPRMachineState *spapr = opaque;
1681     int fd;
1682 
1683     /* Iteration header */
1684     qemu_put_be32(f, 0);
1685 
1686     if (!spapr->htab) {
1687         int rc;
1688 
1689         assert(kvm_enabled());
1690 
1691         fd = get_htab_fd(spapr);
1692         if (fd < 0) {
1693             return fd;
1694         }
1695 
1696         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1697         if (rc < 0) {
1698             return rc;
1699         }
1700     } else {
1701         if (spapr->htab_first_pass) {
1702             htab_save_first_pass(f, spapr, -1);
1703         }
1704         htab_save_later_pass(f, spapr, -1);
1705     }
1706 
1707     /* End marker */
1708     qemu_put_be32(f, 0);
1709     qemu_put_be16(f, 0);
1710     qemu_put_be16(f, 0);
1711 
1712     return 0;
1713 }
1714 
1715 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1716 {
1717     sPAPRMachineState *spapr = opaque;
1718     uint32_t section_hdr;
1719     int fd = -1;
1720 
1721     if (version_id < 1 || version_id > 1) {
1722         error_report("htab_load() bad version");
1723         return -EINVAL;
1724     }
1725 
1726     section_hdr = qemu_get_be32(f);
1727 
1728     if (section_hdr) {
1729         Error *local_err = NULL;
1730 
1731         /* First section gives the htab size */
1732         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1733         if (local_err) {
1734             error_report_err(local_err);
1735             return -EINVAL;
1736         }
1737         return 0;
1738     }
1739 
1740     if (!spapr->htab) {
1741         assert(kvm_enabled());
1742 
1743         fd = kvmppc_get_htab_fd(true);
1744         if (fd < 0) {
1745             error_report("Unable to open fd to restore KVM hash table: %s",
1746                          strerror(errno));
1747         }
1748     }
1749 
1750     while (true) {
1751         uint32_t index;
1752         uint16_t n_valid, n_invalid;
1753 
1754         index = qemu_get_be32(f);
1755         n_valid = qemu_get_be16(f);
1756         n_invalid = qemu_get_be16(f);
1757 
1758         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1759             /* End of Stream */
1760             break;
1761         }
1762 
1763         if ((index + n_valid + n_invalid) >
1764             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1765             /* Bad index in stream */
1766             error_report(
1767                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1768                 index, n_valid, n_invalid, spapr->htab_shift);
1769             return -EINVAL;
1770         }
1771 
1772         if (spapr->htab) {
1773             if (n_valid) {
1774                 qemu_get_buffer(f, HPTE(spapr->htab, index),
1775                                 HASH_PTE_SIZE_64 * n_valid);
1776             }
1777             if (n_invalid) {
1778                 memset(HPTE(spapr->htab, index + n_valid), 0,
1779                        HASH_PTE_SIZE_64 * n_invalid);
1780             }
1781         } else {
1782             int rc;
1783 
1784             assert(fd >= 0);
1785 
1786             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1787             if (rc < 0) {
1788                 return rc;
1789             }
1790         }
1791     }
1792 
1793     if (!spapr->htab) {
1794         assert(fd >= 0);
1795         close(fd);
1796     }
1797 
1798     return 0;
1799 }
1800 
1801 static void htab_cleanup(void *opaque)
1802 {
1803     sPAPRMachineState *spapr = opaque;
1804 
1805     close_htab_fd(spapr);
1806 }
1807 
1808 static SaveVMHandlers savevm_htab_handlers = {
1809     .save_live_setup = htab_save_setup,
1810     .save_live_iterate = htab_save_iterate,
1811     .save_live_complete_precopy = htab_save_complete,
1812     .cleanup = htab_cleanup,
1813     .load_state = htab_load,
1814 };
1815 
1816 static void spapr_boot_set(void *opaque, const char *boot_device,
1817                            Error **errp)
1818 {
1819     MachineState *machine = MACHINE(qdev_get_machine());
1820     machine->boot_order = g_strdup(boot_device);
1821 }
1822 
1823 /*
1824  * Reset routine for LMB DR devices.
1825  *
1826  * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1827  * routine. Reset for PCI DR devices will be handled by PHB reset routine
1828  * when it walks all its children devices. LMB devices reset occurs
1829  * as part of spapr_ppc_reset().
1830  */
1831 static void spapr_drc_reset(void *opaque)
1832 {
1833     sPAPRDRConnector *drc = opaque;
1834     DeviceState *d = DEVICE(drc);
1835 
1836     if (d) {
1837         device_reset(d);
1838     }
1839 }
1840 
1841 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1842 {
1843     MachineState *machine = MACHINE(spapr);
1844     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1845     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1846     int i;
1847 
1848     for (i = 0; i < nr_lmbs; i++) {
1849         sPAPRDRConnector *drc;
1850         uint64_t addr;
1851 
1852         addr = i * lmb_size + spapr->hotplug_memory.base;
1853         drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1854                                      addr/lmb_size);
1855         qemu_register_reset(spapr_drc_reset, drc);
1856     }
1857 }
1858 
1859 /*
1860  * If RAM size, maxmem size and individual node mem sizes aren't aligned
1861  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1862  * since we can't support such unaligned sizes with DRCONF_MEMORY.
1863  */
1864 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1865 {
1866     int i;
1867 
1868     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1869         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1870                    " is not aligned to %llu MiB",
1871                    machine->ram_size,
1872                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1873         return;
1874     }
1875 
1876     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1877         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1878                    " is not aligned to %llu MiB",
1879                    machine->ram_size,
1880                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1881         return;
1882     }
1883 
1884     for (i = 0; i < nb_numa_nodes; i++) {
1885         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1886             error_setg(errp,
1887                        "Node %d memory size 0x%" PRIx64
1888                        " is not aligned to %llu MiB",
1889                        i, numa_info[i].node_mem,
1890                        SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1891             return;
1892         }
1893     }
1894 }
1895 
1896 /* find cpu slot in machine->possible_cpus by core_id */
1897 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1898 {
1899     int index = id / smp_threads;
1900 
1901     if (index >= ms->possible_cpus->len) {
1902         return NULL;
1903     }
1904     if (idx) {
1905         *idx = index;
1906     }
1907     return &ms->possible_cpus->cpus[index];
1908 }
1909 
1910 static void spapr_init_cpus(sPAPRMachineState *spapr)
1911 {
1912     MachineState *machine = MACHINE(spapr);
1913     MachineClass *mc = MACHINE_GET_CLASS(machine);
1914     char *type = spapr_get_cpu_core_type(machine->cpu_model);
1915     int smt = kvmppc_smt_threads();
1916     const CPUArchIdList *possible_cpus;
1917     int boot_cores_nr = smp_cpus / smp_threads;
1918     int i;
1919 
1920     if (!type) {
1921         error_report("Unable to find sPAPR CPU Core definition");
1922         exit(1);
1923     }
1924 
1925     possible_cpus = mc->possible_cpu_arch_ids(machine);
1926     if (mc->has_hotpluggable_cpus) {
1927         if (smp_cpus % smp_threads) {
1928             error_report("smp_cpus (%u) must be multiple of threads (%u)",
1929                          smp_cpus, smp_threads);
1930             exit(1);
1931         }
1932         if (max_cpus % smp_threads) {
1933             error_report("max_cpus (%u) must be multiple of threads (%u)",
1934                          max_cpus, smp_threads);
1935             exit(1);
1936         }
1937     } else {
1938         if (max_cpus != smp_cpus) {
1939             error_report("This machine version does not support CPU hotplug");
1940             exit(1);
1941         }
1942         boot_cores_nr = possible_cpus->len;
1943     }
1944 
1945     for (i = 0; i < possible_cpus->len; i++) {
1946         int core_id = i * smp_threads;
1947 
1948         if (mc->has_hotpluggable_cpus) {
1949             sPAPRDRConnector *drc =
1950                 spapr_dr_connector_new(OBJECT(spapr),
1951                                        SPAPR_DR_CONNECTOR_TYPE_CPU,
1952                                        (core_id / smp_threads) * smt);
1953 
1954             qemu_register_reset(spapr_drc_reset, drc);
1955         }
1956 
1957         if (i < boot_cores_nr) {
1958             Object *core  = object_new(type);
1959             int nr_threads = smp_threads;
1960 
1961             /* Handle the partially filled core for older machine types */
1962             if ((i + 1) * smp_threads >= smp_cpus) {
1963                 nr_threads = smp_cpus - i * smp_threads;
1964             }
1965 
1966             object_property_set_int(core, nr_threads, "nr-threads",
1967                                     &error_fatal);
1968             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
1969                                     &error_fatal);
1970             object_property_set_bool(core, true, "realized", &error_fatal);
1971         }
1972     }
1973     g_free(type);
1974 }
1975 
1976 /* pSeries LPAR / sPAPR hardware init */
1977 static void ppc_spapr_init(MachineState *machine)
1978 {
1979     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1980     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1981     const char *kernel_filename = machine->kernel_filename;
1982     const char *initrd_filename = machine->initrd_filename;
1983     PCIHostState *phb;
1984     int i;
1985     MemoryRegion *sysmem = get_system_memory();
1986     MemoryRegion *ram = g_new(MemoryRegion, 1);
1987     MemoryRegion *rma_region;
1988     void *rma = NULL;
1989     hwaddr rma_alloc_size;
1990     hwaddr node0_size = spapr_node0_size();
1991     long load_limit, fw_size;
1992     char *filename;
1993     int smt = kvmppc_smt_threads();
1994 
1995     msi_nonbroken = true;
1996 
1997     QLIST_INIT(&spapr->phbs);
1998 
1999     /* Allocate RMA if necessary */
2000     rma_alloc_size = kvmppc_alloc_rma(&rma);
2001 
2002     if (rma_alloc_size == -1) {
2003         error_report("Unable to create RMA");
2004         exit(1);
2005     }
2006 
2007     if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2008         spapr->rma_size = rma_alloc_size;
2009     } else {
2010         spapr->rma_size = node0_size;
2011 
2012         /* With KVM, we don't actually know whether KVM supports an
2013          * unbounded RMA (PR KVM) or is limited by the hash table size
2014          * (HV KVM using VRMA), so we always assume the latter
2015          *
2016          * In that case, we also limit the initial allocations for RTAS
2017          * etc... to 256M since we have no way to know what the VRMA size
2018          * is going to be as it depends on the size of the hash table
2019          * isn't determined yet.
2020          */
2021         if (kvm_enabled()) {
2022             spapr->vrma_adjust = 1;
2023             spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2024         }
2025 
2026         /* Actually we don't support unbounded RMA anymore since we
2027          * added proper emulation of HV mode. The max we can get is
2028          * 16G which also happens to be what we configure for PAPR
2029          * mode so make sure we don't do anything bigger than that
2030          */
2031         spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2032     }
2033 
2034     if (spapr->rma_size > node0_size) {
2035         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2036                      spapr->rma_size);
2037         exit(1);
2038     }
2039 
2040     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2041     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2042 
2043     /* Set up Interrupt Controller before we create the VCPUs */
2044     xics_system_init(machine, DIV_ROUND_UP(max_cpus * smt, smp_threads),
2045                      XICS_IRQS_SPAPR, &error_fatal);
2046 
2047     /* Set up containers for ibm,client-set-architecture negotiated options */
2048     spapr->ov5 = spapr_ovec_new();
2049     spapr->ov5_cas = spapr_ovec_new();
2050 
2051     if (smc->dr_lmb_enabled) {
2052         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2053         spapr_validate_node_memory(machine, &error_fatal);
2054     }
2055 
2056     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2057 
2058     /* advertise support for dedicated HP event source to guests */
2059     if (spapr->use_hotplug_event_source) {
2060         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2061     }
2062 
2063     /* init CPUs */
2064     if (machine->cpu_model == NULL) {
2065         machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
2066     }
2067 
2068     ppc_cpu_parse_features(machine->cpu_model);
2069 
2070     spapr_init_cpus(spapr);
2071 
2072     if (kvm_enabled()) {
2073         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2074         kvmppc_enable_logical_ci_hcalls();
2075         kvmppc_enable_set_mode_hcall();
2076 
2077         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2078         kvmppc_enable_clear_ref_mod_hcalls();
2079     }
2080 
2081     /* allocate RAM */
2082     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2083                                          machine->ram_size);
2084     memory_region_add_subregion(sysmem, 0, ram);
2085 
2086     if (rma_alloc_size && rma) {
2087         rma_region = g_new(MemoryRegion, 1);
2088         memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2089                                    rma_alloc_size, rma);
2090         vmstate_register_ram_global(rma_region);
2091         memory_region_add_subregion(sysmem, 0, rma_region);
2092     }
2093 
2094     /* initialize hotplug memory address space */
2095     if (machine->ram_size < machine->maxram_size) {
2096         ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2097         /*
2098          * Limit the number of hotpluggable memory slots to half the number
2099          * slots that KVM supports, leaving the other half for PCI and other
2100          * devices. However ensure that number of slots doesn't drop below 32.
2101          */
2102         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2103                            SPAPR_MAX_RAM_SLOTS;
2104 
2105         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2106             max_memslots = SPAPR_MAX_RAM_SLOTS;
2107         }
2108         if (machine->ram_slots > max_memslots) {
2109             error_report("Specified number of memory slots %"
2110                          PRIu64" exceeds max supported %d",
2111                          machine->ram_slots, max_memslots);
2112             exit(1);
2113         }
2114 
2115         spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2116                                               SPAPR_HOTPLUG_MEM_ALIGN);
2117         memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2118                            "hotplug-memory", hotplug_mem_size);
2119         memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2120                                     &spapr->hotplug_memory.mr);
2121     }
2122 
2123     if (smc->dr_lmb_enabled) {
2124         spapr_create_lmb_dr_connectors(spapr);
2125     }
2126 
2127     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2128     if (!filename) {
2129         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2130         exit(1);
2131     }
2132     spapr->rtas_size = get_image_size(filename);
2133     if (spapr->rtas_size < 0) {
2134         error_report("Could not get size of LPAR rtas '%s'", filename);
2135         exit(1);
2136     }
2137     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2138     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2139         error_report("Could not load LPAR rtas '%s'", filename);
2140         exit(1);
2141     }
2142     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2143         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2144                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2145         exit(1);
2146     }
2147     g_free(filename);
2148 
2149     /* Set up RTAS event infrastructure */
2150     spapr_events_init(spapr);
2151 
2152     /* Set up the RTC RTAS interfaces */
2153     spapr_rtc_create(spapr);
2154 
2155     /* Set up VIO bus */
2156     spapr->vio_bus = spapr_vio_bus_init();
2157 
2158     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2159         if (serial_hds[i]) {
2160             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2161         }
2162     }
2163 
2164     /* We always have at least the nvram device on VIO */
2165     spapr_create_nvram(spapr);
2166 
2167     /* Set up PCI */
2168     spapr_pci_rtas_init();
2169 
2170     phb = spapr_create_phb(spapr, 0);
2171 
2172     for (i = 0; i < nb_nics; i++) {
2173         NICInfo *nd = &nd_table[i];
2174 
2175         if (!nd->model) {
2176             nd->model = g_strdup("ibmveth");
2177         }
2178 
2179         if (strcmp(nd->model, "ibmveth") == 0) {
2180             spapr_vlan_create(spapr->vio_bus, nd);
2181         } else {
2182             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2183         }
2184     }
2185 
2186     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2187         spapr_vscsi_create(spapr->vio_bus);
2188     }
2189 
2190     /* Graphics */
2191     if (spapr_vga_init(phb->bus, &error_fatal)) {
2192         spapr->has_graphics = true;
2193         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2194     }
2195 
2196     if (machine->usb) {
2197         if (smc->use_ohci_by_default) {
2198             pci_create_simple(phb->bus, -1, "pci-ohci");
2199         } else {
2200             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2201         }
2202 
2203         if (spapr->has_graphics) {
2204             USBBus *usb_bus = usb_bus_find(-1);
2205 
2206             usb_create_simple(usb_bus, "usb-kbd");
2207             usb_create_simple(usb_bus, "usb-mouse");
2208         }
2209     }
2210 
2211     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2212         error_report(
2213             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2214             MIN_RMA_SLOF);
2215         exit(1);
2216     }
2217 
2218     if (kernel_filename) {
2219         uint64_t lowaddr = 0;
2220 
2221         spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2222                                       NULL, NULL, &lowaddr, NULL, 1,
2223                                       PPC_ELF_MACHINE, 0, 0);
2224         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2225             spapr->kernel_size = load_elf(kernel_filename,
2226                                           translate_kernel_address, NULL, NULL,
2227                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2228                                           0, 0);
2229             spapr->kernel_le = spapr->kernel_size > 0;
2230         }
2231         if (spapr->kernel_size < 0) {
2232             error_report("error loading %s: %s", kernel_filename,
2233                          load_elf_strerror(spapr->kernel_size));
2234             exit(1);
2235         }
2236 
2237         /* load initrd */
2238         if (initrd_filename) {
2239             /* Try to locate the initrd in the gap between the kernel
2240              * and the firmware. Add a bit of space just in case
2241              */
2242             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2243                                   + 0x1ffff) & ~0xffff;
2244             spapr->initrd_size = load_image_targphys(initrd_filename,
2245                                                      spapr->initrd_base,
2246                                                      load_limit
2247                                                      - spapr->initrd_base);
2248             if (spapr->initrd_size < 0) {
2249                 error_report("could not load initial ram disk '%s'",
2250                              initrd_filename);
2251                 exit(1);
2252             }
2253         }
2254     }
2255 
2256     if (bios_name == NULL) {
2257         bios_name = FW_FILE_NAME;
2258     }
2259     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2260     if (!filename) {
2261         error_report("Could not find LPAR firmware '%s'", bios_name);
2262         exit(1);
2263     }
2264     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2265     if (fw_size <= 0) {
2266         error_report("Could not load LPAR firmware '%s'", filename);
2267         exit(1);
2268     }
2269     g_free(filename);
2270 
2271     /* FIXME: Should register things through the MachineState's qdev
2272      * interface, this is a legacy from the sPAPREnvironment structure
2273      * which predated MachineState but had a similar function */
2274     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2275     register_savevm_live(NULL, "spapr/htab", -1, 1,
2276                          &savevm_htab_handlers, spapr);
2277 
2278     /* used by RTAS */
2279     QTAILQ_INIT(&spapr->ccs_list);
2280     qemu_register_reset(spapr_ccs_reset_hook, spapr);
2281 
2282     qemu_register_boot_set(spapr_boot_set, spapr);
2283 
2284     /* to stop and start vmclock */
2285     if (kvm_enabled()) {
2286         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2287                                          &spapr->tb);
2288     }
2289 }
2290 
2291 static int spapr_kvm_type(const char *vm_type)
2292 {
2293     if (!vm_type) {
2294         return 0;
2295     }
2296 
2297     if (!strcmp(vm_type, "HV")) {
2298         return 1;
2299     }
2300 
2301     if (!strcmp(vm_type, "PR")) {
2302         return 2;
2303     }
2304 
2305     error_report("Unknown kvm-type specified '%s'", vm_type);
2306     exit(1);
2307 }
2308 
2309 /*
2310  * Implementation of an interface to adjust firmware path
2311  * for the bootindex property handling.
2312  */
2313 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2314                                    DeviceState *dev)
2315 {
2316 #define CAST(type, obj, name) \
2317     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2318     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2319     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2320 
2321     if (d) {
2322         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2323         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2324         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2325 
2326         if (spapr) {
2327             /*
2328              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2329              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2330              * in the top 16 bits of the 64-bit LUN
2331              */
2332             unsigned id = 0x8000 | (d->id << 8) | d->lun;
2333             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2334                                    (uint64_t)id << 48);
2335         } else if (virtio) {
2336             /*
2337              * We use SRP luns of the form 01000000 | (target << 8) | lun
2338              * in the top 32 bits of the 64-bit LUN
2339              * Note: the quote above is from SLOF and it is wrong,
2340              * the actual binding is:
2341              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2342              */
2343             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2344             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2345                                    (uint64_t)id << 32);
2346         } else if (usb) {
2347             /*
2348              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2349              * in the top 32 bits of the 64-bit LUN
2350              */
2351             unsigned usb_port = atoi(usb->port->path);
2352             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2353             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2354                                    (uint64_t)id << 32);
2355         }
2356     }
2357 
2358     /*
2359      * SLOF probes the USB devices, and if it recognizes that the device is a
2360      * storage device, it changes its name to "storage" instead of "usb-host",
2361      * and additionally adds a child node for the SCSI LUN, so the correct
2362      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2363      */
2364     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2365         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2366         if (usb_host_dev_is_scsi_storage(usbdev)) {
2367             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2368         }
2369     }
2370 
2371     if (phb) {
2372         /* Replace "pci" with "pci@800000020000000" */
2373         return g_strdup_printf("pci@%"PRIX64, phb->buid);
2374     }
2375 
2376     return NULL;
2377 }
2378 
2379 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2380 {
2381     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2382 
2383     return g_strdup(spapr->kvm_type);
2384 }
2385 
2386 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2387 {
2388     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2389 
2390     g_free(spapr->kvm_type);
2391     spapr->kvm_type = g_strdup(value);
2392 }
2393 
2394 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2395 {
2396     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2397 
2398     return spapr->use_hotplug_event_source;
2399 }
2400 
2401 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2402                                             Error **errp)
2403 {
2404     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2405 
2406     spapr->use_hotplug_event_source = value;
2407 }
2408 
2409 static void spapr_machine_initfn(Object *obj)
2410 {
2411     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2412 
2413     spapr->htab_fd = -1;
2414     spapr->use_hotplug_event_source = true;
2415     object_property_add_str(obj, "kvm-type",
2416                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2417     object_property_set_description(obj, "kvm-type",
2418                                     "Specifies the KVM virtualization mode (HV, PR)",
2419                                     NULL);
2420     object_property_add_bool(obj, "modern-hotplug-events",
2421                             spapr_get_modern_hotplug_events,
2422                             spapr_set_modern_hotplug_events,
2423                             NULL);
2424     object_property_set_description(obj, "modern-hotplug-events",
2425                                     "Use dedicated hotplug event mechanism in"
2426                                     " place of standard EPOW events when possible"
2427                                     " (required for memory hot-unplug support)",
2428                                     NULL);
2429 }
2430 
2431 static void spapr_machine_finalizefn(Object *obj)
2432 {
2433     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2434 
2435     g_free(spapr->kvm_type);
2436 }
2437 
2438 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2439 {
2440     cpu_synchronize_state(cs);
2441     ppc_cpu_do_system_reset(cs);
2442 }
2443 
2444 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2445 {
2446     CPUState *cs;
2447 
2448     CPU_FOREACH(cs) {
2449         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2450     }
2451 }
2452 
2453 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2454                            uint32_t node, bool dedicated_hp_event_source,
2455                            Error **errp)
2456 {
2457     sPAPRDRConnector *drc;
2458     sPAPRDRConnectorClass *drck;
2459     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2460     int i, fdt_offset, fdt_size;
2461     void *fdt;
2462     uint64_t addr = addr_start;
2463 
2464     for (i = 0; i < nr_lmbs; i++) {
2465         drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2466                 addr/SPAPR_MEMORY_BLOCK_SIZE);
2467         g_assert(drc);
2468 
2469         fdt = create_device_tree(&fdt_size);
2470         fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2471                                                 SPAPR_MEMORY_BLOCK_SIZE);
2472 
2473         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2474         drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2475         addr += SPAPR_MEMORY_BLOCK_SIZE;
2476         if (!dev->hotplugged) {
2477             /* guests expect coldplugged LMBs to be pre-allocated */
2478             drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2479             drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2480         }
2481     }
2482     /* send hotplug notification to the
2483      * guest only in case of hotplugged memory
2484      */
2485     if (dev->hotplugged) {
2486         if (dedicated_hp_event_source) {
2487             drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2488                     addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2489             drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2490             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2491                                                    nr_lmbs,
2492                                                    drck->get_index(drc));
2493         } else {
2494             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2495                                            nr_lmbs);
2496         }
2497     }
2498 }
2499 
2500 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2501                               uint32_t node, Error **errp)
2502 {
2503     Error *local_err = NULL;
2504     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2505     PCDIMMDevice *dimm = PC_DIMM(dev);
2506     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2507     MemoryRegion *mr = ddc->get_memory_region(dimm);
2508     uint64_t align = memory_region_get_alignment(mr);
2509     uint64_t size = memory_region_size(mr);
2510     uint64_t addr;
2511     char *mem_dev;
2512 
2513     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2514         error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2515                       "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2516         goto out;
2517     }
2518 
2519     mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2520     if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2521         error_setg(&local_err, "Memory backend has bad page size. "
2522                    "Use 'memory-backend-file' with correct mem-path.");
2523         goto out;
2524     }
2525 
2526     pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2527     if (local_err) {
2528         goto out;
2529     }
2530 
2531     addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2532     if (local_err) {
2533         pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2534         goto out;
2535     }
2536 
2537     spapr_add_lmbs(dev, addr, size, node,
2538                    spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2539                    &error_abort);
2540 
2541 out:
2542     error_propagate(errp, local_err);
2543 }
2544 
2545 typedef struct sPAPRDIMMState {
2546     uint32_t nr_lmbs;
2547 } sPAPRDIMMState;
2548 
2549 static void spapr_lmb_release(DeviceState *dev, void *opaque)
2550 {
2551     sPAPRDIMMState *ds = (sPAPRDIMMState *)opaque;
2552     HotplugHandler *hotplug_ctrl;
2553 
2554     if (--ds->nr_lmbs) {
2555         return;
2556     }
2557 
2558     g_free(ds);
2559 
2560     /*
2561      * Now that all the LMBs have been removed by the guest, call the
2562      * pc-dimm unplug handler to cleanup up the pc-dimm device.
2563      */
2564     hotplug_ctrl = qdev_get_hotplug_handler(dev);
2565     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2566 }
2567 
2568 static void spapr_del_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2569                            Error **errp)
2570 {
2571     sPAPRDRConnector *drc;
2572     sPAPRDRConnectorClass *drck;
2573     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2574     int i;
2575     sPAPRDIMMState *ds = g_malloc0(sizeof(sPAPRDIMMState));
2576     uint64_t addr = addr_start;
2577 
2578     ds->nr_lmbs = nr_lmbs;
2579     for (i = 0; i < nr_lmbs; i++) {
2580         drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2581                 addr / SPAPR_MEMORY_BLOCK_SIZE);
2582         g_assert(drc);
2583 
2584         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2585         drck->detach(drc, dev, spapr_lmb_release, ds, errp);
2586         addr += SPAPR_MEMORY_BLOCK_SIZE;
2587     }
2588 
2589     drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2590                                    addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2591     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2592     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2593                                               nr_lmbs,
2594                                               drck->get_index(drc));
2595 }
2596 
2597 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2598                                 Error **errp)
2599 {
2600     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2601     PCDIMMDevice *dimm = PC_DIMM(dev);
2602     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2603     MemoryRegion *mr = ddc->get_memory_region(dimm);
2604 
2605     pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2606     object_unparent(OBJECT(dev));
2607 }
2608 
2609 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2610                                         DeviceState *dev, Error **errp)
2611 {
2612     Error *local_err = NULL;
2613     PCDIMMDevice *dimm = PC_DIMM(dev);
2614     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2615     MemoryRegion *mr = ddc->get_memory_region(dimm);
2616     uint64_t size = memory_region_size(mr);
2617     uint64_t addr;
2618 
2619     addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2620     if (local_err) {
2621         goto out;
2622     }
2623 
2624     spapr_del_lmbs(dev, addr, size, &error_abort);
2625 out:
2626     error_propagate(errp, local_err);
2627 }
2628 
2629 void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2630                                     sPAPRMachineState *spapr)
2631 {
2632     PowerPCCPU *cpu = POWERPC_CPU(cs);
2633     DeviceClass *dc = DEVICE_GET_CLASS(cs);
2634     int id = ppc_get_vcpu_dt_id(cpu);
2635     void *fdt;
2636     int offset, fdt_size;
2637     char *nodename;
2638 
2639     fdt = create_device_tree(&fdt_size);
2640     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2641     offset = fdt_add_subnode(fdt, 0, nodename);
2642 
2643     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2644     g_free(nodename);
2645 
2646     *fdt_offset = offset;
2647     return fdt;
2648 }
2649 
2650 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2651                               Error **errp)
2652 {
2653     MachineState *ms = MACHINE(qdev_get_machine());
2654     CPUCore *cc = CPU_CORE(dev);
2655     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
2656 
2657     core_slot->cpu = NULL;
2658     object_unparent(OBJECT(dev));
2659 }
2660 
2661 static void spapr_core_release(DeviceState *dev, void *opaque)
2662 {
2663     HotplugHandler *hotplug_ctrl;
2664 
2665     hotplug_ctrl = qdev_get_hotplug_handler(dev);
2666     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2667 }
2668 
2669 static
2670 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
2671                                Error **errp)
2672 {
2673     int index;
2674     sPAPRDRConnector *drc;
2675     sPAPRDRConnectorClass *drck;
2676     Error *local_err = NULL;
2677     CPUCore *cc = CPU_CORE(dev);
2678     int smt = kvmppc_smt_threads();
2679 
2680     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
2681         error_setg(errp, "Unable to find CPU core with core-id: %d",
2682                    cc->core_id);
2683         return;
2684     }
2685     if (index == 0) {
2686         error_setg(errp, "Boot CPU core may not be unplugged");
2687         return;
2688     }
2689 
2690     drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
2691     g_assert(drc);
2692 
2693     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2694     drck->detach(drc, dev, spapr_core_release, NULL, &local_err);
2695     if (local_err) {
2696         error_propagate(errp, local_err);
2697         return;
2698     }
2699 
2700     spapr_hotplug_req_remove_by_index(drc);
2701 }
2702 
2703 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2704                             Error **errp)
2705 {
2706     sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
2707     MachineClass *mc = MACHINE_GET_CLASS(spapr);
2708     sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
2709     CPUCore *cc = CPU_CORE(dev);
2710     CPUState *cs = CPU(core->threads);
2711     sPAPRDRConnector *drc;
2712     Error *local_err = NULL;
2713     void *fdt = NULL;
2714     int fdt_offset = 0;
2715     int smt = kvmppc_smt_threads();
2716     CPUArchId *core_slot;
2717     int index;
2718 
2719     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2720     if (!core_slot) {
2721         error_setg(errp, "Unable to find CPU core with core-id: %d",
2722                    cc->core_id);
2723         return;
2724     }
2725     drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
2726 
2727     g_assert(drc || !mc->has_hotpluggable_cpus);
2728 
2729     /*
2730      * Setup CPU DT entries only for hotplugged CPUs. For boot time or
2731      * coldplugged CPUs DT entries are setup in spapr_build_fdt().
2732      */
2733     if (dev->hotplugged) {
2734         fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
2735     }
2736 
2737     if (drc) {
2738         sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2739         drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, &local_err);
2740         if (local_err) {
2741             g_free(fdt);
2742             error_propagate(errp, local_err);
2743             return;
2744         }
2745     }
2746 
2747     if (dev->hotplugged) {
2748         /*
2749          * Send hotplug notification interrupt to the guest only in case
2750          * of hotplugged CPUs.
2751          */
2752         spapr_hotplug_req_add_by_index(drc);
2753     } else {
2754         /*
2755          * Set the right DRC states for cold plugged CPU.
2756          */
2757         if (drc) {
2758             sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2759             drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2760             drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2761         }
2762     }
2763     core_slot->cpu = OBJECT(dev);
2764 }
2765 
2766 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2767                                 Error **errp)
2768 {
2769     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
2770     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
2771     Error *local_err = NULL;
2772     CPUCore *cc = CPU_CORE(dev);
2773     char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
2774     const char *type = object_get_typename(OBJECT(dev));
2775     CPUArchId *core_slot;
2776     int index;
2777 
2778     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
2779         error_setg(&local_err, "CPU hotplug not supported for this machine");
2780         goto out;
2781     }
2782 
2783     if (strcmp(base_core_type, type)) {
2784         error_setg(&local_err, "CPU core type should be %s", base_core_type);
2785         goto out;
2786     }
2787 
2788     if (cc->core_id % smp_threads) {
2789         error_setg(&local_err, "invalid core id %d", cc->core_id);
2790         goto out;
2791     }
2792 
2793     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2794     if (!core_slot) {
2795         error_setg(&local_err, "core id %d out of range", cc->core_id);
2796         goto out;
2797     }
2798 
2799     if (core_slot->cpu) {
2800         error_setg(&local_err, "core %d already populated", cc->core_id);
2801         goto out;
2802     }
2803 
2804 out:
2805     g_free(base_core_type);
2806     error_propagate(errp, local_err);
2807 }
2808 
2809 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2810                                       DeviceState *dev, Error **errp)
2811 {
2812     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2813 
2814     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2815         int node;
2816 
2817         if (!smc->dr_lmb_enabled) {
2818             error_setg(errp, "Memory hotplug not supported for this machine");
2819             return;
2820         }
2821         node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2822         if (*errp) {
2823             return;
2824         }
2825         if (node < 0 || node >= MAX_NODES) {
2826             error_setg(errp, "Invaild node %d", node);
2827             return;
2828         }
2829 
2830         /*
2831          * Currently PowerPC kernel doesn't allow hot-adding memory to
2832          * memory-less node, but instead will silently add the memory
2833          * to the first node that has some memory. This causes two
2834          * unexpected behaviours for the user.
2835          *
2836          * - Memory gets hotplugged to a different node than what the user
2837          *   specified.
2838          * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2839          *   to memory-less node, a reboot will set things accordingly
2840          *   and the previously hotplugged memory now ends in the right node.
2841          *   This appears as if some memory moved from one node to another.
2842          *
2843          * So until kernel starts supporting memory hotplug to memory-less
2844          * nodes, just prevent such attempts upfront in QEMU.
2845          */
2846         if (nb_numa_nodes && !numa_info[node].node_mem) {
2847             error_setg(errp, "Can't hotplug memory to memory-less node %d",
2848                        node);
2849             return;
2850         }
2851 
2852         spapr_memory_plug(hotplug_dev, dev, node, errp);
2853     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2854         spapr_core_plug(hotplug_dev, dev, errp);
2855     }
2856 }
2857 
2858 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2859                                       DeviceState *dev, Error **errp)
2860 {
2861     sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2862     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2863 
2864     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2865         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2866             spapr_memory_unplug(hotplug_dev, dev, errp);
2867         } else {
2868             error_setg(errp, "Memory hot unplug not supported for this guest");
2869         }
2870     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2871         if (!mc->has_hotpluggable_cpus) {
2872             error_setg(errp, "CPU hot unplug not supported on this machine");
2873             return;
2874         }
2875         spapr_core_unplug(hotplug_dev, dev, errp);
2876     }
2877 }
2878 
2879 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
2880                                                 DeviceState *dev, Error **errp)
2881 {
2882     sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2883     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2884 
2885     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2886         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2887             spapr_memory_unplug_request(hotplug_dev, dev, errp);
2888         } else {
2889             /* NOTE: this means there is a window after guest reset, prior to
2890              * CAS negotiation, where unplug requests will fail due to the
2891              * capability not being detected yet. This is a bit different than
2892              * the case with PCI unplug, where the events will be queued and
2893              * eventually handled by the guest after boot
2894              */
2895             error_setg(errp, "Memory hot unplug not supported for this guest");
2896         }
2897     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2898         if (!mc->has_hotpluggable_cpus) {
2899             error_setg(errp, "CPU hot unplug not supported on this machine");
2900             return;
2901         }
2902         spapr_core_unplug_request(hotplug_dev, dev, errp);
2903     }
2904 }
2905 
2906 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
2907                                           DeviceState *dev, Error **errp)
2908 {
2909     if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2910         spapr_core_pre_plug(hotplug_dev, dev, errp);
2911     }
2912 }
2913 
2914 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
2915                                                  DeviceState *dev)
2916 {
2917     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2918         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2919         return HOTPLUG_HANDLER(machine);
2920     }
2921     return NULL;
2922 }
2923 
2924 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2925 {
2926     /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2927      * socket means much for the paravirtualized PAPR platform) */
2928     return cpu_index / smp_threads / smp_cores;
2929 }
2930 
2931 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
2932 {
2933     int i;
2934     int spapr_max_cores = max_cpus / smp_threads;
2935     MachineClass *mc = MACHINE_GET_CLASS(machine);
2936 
2937     if (!mc->has_hotpluggable_cpus) {
2938         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
2939     }
2940     if (machine->possible_cpus) {
2941         assert(machine->possible_cpus->len == spapr_max_cores);
2942         return machine->possible_cpus;
2943     }
2944 
2945     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2946                              sizeof(CPUArchId) * spapr_max_cores);
2947     machine->possible_cpus->len = spapr_max_cores;
2948     for (i = 0; i < machine->possible_cpus->len; i++) {
2949         int core_id = i * smp_threads;
2950 
2951         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
2952         machine->possible_cpus->cpus[i].arch_id = core_id;
2953         machine->possible_cpus->cpus[i].props.has_core_id = true;
2954         machine->possible_cpus->cpus[i].props.core_id = core_id;
2955         /* TODO: add 'has_node/node' here to describe
2956            to which node core belongs */
2957     }
2958     return machine->possible_cpus;
2959 }
2960 
2961 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
2962                                 uint64_t *buid, hwaddr *pio,
2963                                 hwaddr *mmio32, hwaddr *mmio64,
2964                                 unsigned n_dma, uint32_t *liobns, Error **errp)
2965 {
2966     /*
2967      * New-style PHB window placement.
2968      *
2969      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
2970      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
2971      * windows.
2972      *
2973      * Some guest kernels can't work with MMIO windows above 1<<46
2974      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
2975      *
2976      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
2977      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
2978      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
2979      * 1TiB 64-bit MMIO windows for each PHB.
2980      */
2981     const uint64_t base_buid = 0x800000020000000ULL;
2982 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
2983                         SPAPR_PCI_MEM64_WIN_SIZE - 1)
2984     int i;
2985 
2986     /* Sanity check natural alignments */
2987     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
2988     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
2989     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
2990     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
2991     /* Sanity check bounds */
2992     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
2993                       SPAPR_PCI_MEM32_WIN_SIZE);
2994     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
2995                       SPAPR_PCI_MEM64_WIN_SIZE);
2996 
2997     if (index >= SPAPR_MAX_PHBS) {
2998         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
2999                    SPAPR_MAX_PHBS - 1);
3000         return;
3001     }
3002 
3003     *buid = base_buid + index;
3004     for (i = 0; i < n_dma; ++i) {
3005         liobns[i] = SPAPR_PCI_LIOBN(index, i);
3006     }
3007 
3008     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3009     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3010     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3011 }
3012 
3013 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3014 {
3015     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3016 
3017     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3018 }
3019 
3020 static void spapr_ics_resend(XICSFabric *dev)
3021 {
3022     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3023 
3024     ics_resend(spapr->ics);
3025 }
3026 
3027 static ICPState *spapr_icp_get(XICSFabric *xi, int server)
3028 {
3029     sPAPRMachineState *spapr = SPAPR_MACHINE(xi);
3030 
3031     return (server < spapr->nr_servers) ? &spapr->icps[server] : NULL;
3032 }
3033 
3034 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3035                                  Monitor *mon)
3036 {
3037     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3038     int i;
3039 
3040     for (i = 0; i < spapr->nr_servers; i++) {
3041         icp_pic_print_info(&spapr->icps[i], mon);
3042     }
3043 
3044     ics_pic_print_info(spapr->ics, mon);
3045 }
3046 
3047 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3048 {
3049     MachineClass *mc = MACHINE_CLASS(oc);
3050     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3051     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3052     NMIClass *nc = NMI_CLASS(oc);
3053     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3054     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3055     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3056     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3057 
3058     mc->desc = "pSeries Logical Partition (PAPR compliant)";
3059 
3060     /*
3061      * We set up the default / latest behaviour here.  The class_init
3062      * functions for the specific versioned machine types can override
3063      * these details for backwards compatibility
3064      */
3065     mc->init = ppc_spapr_init;
3066     mc->reset = ppc_spapr_reset;
3067     mc->block_default_type = IF_SCSI;
3068     mc->max_cpus = 1024;
3069     mc->no_parallel = 1;
3070     mc->default_boot_order = "";
3071     mc->default_ram_size = 512 * M_BYTE;
3072     mc->kvm_type = spapr_kvm_type;
3073     mc->has_dynamic_sysbus = true;
3074     mc->pci_allow_0_address = true;
3075     mc->get_hotplug_handler = spapr_get_hotplug_handler;
3076     hc->pre_plug = spapr_machine_device_pre_plug;
3077     hc->plug = spapr_machine_device_plug;
3078     hc->unplug = spapr_machine_device_unplug;
3079     mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
3080     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3081     hc->unplug_request = spapr_machine_device_unplug_request;
3082 
3083     smc->dr_lmb_enabled = true;
3084     smc->tcg_default_cpu = "POWER8";
3085     mc->has_hotpluggable_cpus = true;
3086     fwc->get_dev_path = spapr_get_fw_dev_path;
3087     nc->nmi_monitor_handler = spapr_nmi;
3088     smc->phb_placement = spapr_phb_placement;
3089     vhc->hypercall = emulate_spapr_hypercall;
3090     vhc->hpt_mask = spapr_hpt_mask;
3091     vhc->map_hptes = spapr_map_hptes;
3092     vhc->unmap_hptes = spapr_unmap_hptes;
3093     vhc->store_hpte = spapr_store_hpte;
3094     vhc->get_patbe = spapr_get_patbe;
3095     xic->ics_get = spapr_ics_get;
3096     xic->ics_resend = spapr_ics_resend;
3097     xic->icp_get = spapr_icp_get;
3098     ispc->print_info = spapr_pic_print_info;
3099 }
3100 
3101 static const TypeInfo spapr_machine_info = {
3102     .name          = TYPE_SPAPR_MACHINE,
3103     .parent        = TYPE_MACHINE,
3104     .abstract      = true,
3105     .instance_size = sizeof(sPAPRMachineState),
3106     .instance_init = spapr_machine_initfn,
3107     .instance_finalize = spapr_machine_finalizefn,
3108     .class_size    = sizeof(sPAPRMachineClass),
3109     .class_init    = spapr_machine_class_init,
3110     .interfaces = (InterfaceInfo[]) {
3111         { TYPE_FW_PATH_PROVIDER },
3112         { TYPE_NMI },
3113         { TYPE_HOTPLUG_HANDLER },
3114         { TYPE_PPC_VIRTUAL_HYPERVISOR },
3115         { TYPE_XICS_FABRIC },
3116         { TYPE_INTERRUPT_STATS_PROVIDER },
3117         { }
3118     },
3119 };
3120 
3121 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
3122     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3123                                                     void *data)      \
3124     {                                                                \
3125         MachineClass *mc = MACHINE_CLASS(oc);                        \
3126         spapr_machine_##suffix##_class_options(mc);                  \
3127         if (latest) {                                                \
3128             mc->alias = "pseries";                                   \
3129             mc->is_default = 1;                                      \
3130         }                                                            \
3131     }                                                                \
3132     static void spapr_machine_##suffix##_instance_init(Object *obj)  \
3133     {                                                                \
3134         MachineState *machine = MACHINE(obj);                        \
3135         spapr_machine_##suffix##_instance_options(machine);          \
3136     }                                                                \
3137     static const TypeInfo spapr_machine_##suffix##_info = {          \
3138         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
3139         .parent = TYPE_SPAPR_MACHINE,                                \
3140         .class_init = spapr_machine_##suffix##_class_init,           \
3141         .instance_init = spapr_machine_##suffix##_instance_init,     \
3142     };                                                               \
3143     static void spapr_machine_register_##suffix(void)                \
3144     {                                                                \
3145         type_register(&spapr_machine_##suffix##_info);               \
3146     }                                                                \
3147     type_init(spapr_machine_register_##suffix)
3148 
3149 /*
3150  * pseries-2.9
3151  */
3152 static void spapr_machine_2_9_instance_options(MachineState *machine)
3153 {
3154 }
3155 
3156 static void spapr_machine_2_9_class_options(MachineClass *mc)
3157 {
3158     /* Defaults for the latest behaviour inherited from the base class */
3159 }
3160 
3161 DEFINE_SPAPR_MACHINE(2_9, "2.9", true);
3162 
3163 /*
3164  * pseries-2.8
3165  */
3166 #define SPAPR_COMPAT_2_8                                        \
3167     HW_COMPAT_2_8                                               \
3168     {                                                           \
3169         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,                 \
3170         .property = "pcie-extended-configuration-space",        \
3171         .value    = "off",                                      \
3172     },
3173 
3174 static void spapr_machine_2_8_instance_options(MachineState *machine)
3175 {
3176     spapr_machine_2_9_instance_options(machine);
3177 }
3178 
3179 static void spapr_machine_2_8_class_options(MachineClass *mc)
3180 {
3181     spapr_machine_2_9_class_options(mc);
3182     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3183 }
3184 
3185 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3186 
3187 /*
3188  * pseries-2.7
3189  */
3190 #define SPAPR_COMPAT_2_7                            \
3191     HW_COMPAT_2_7                                   \
3192     {                                               \
3193         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
3194         .property = "mem_win_size",                 \
3195         .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3196     },                                              \
3197     {                                               \
3198         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
3199         .property = "mem64_win_size",               \
3200         .value    = "0",                            \
3201     },                                              \
3202     {                                               \
3203         .driver = TYPE_POWERPC_CPU,                 \
3204         .property = "pre-2.8-migration",            \
3205         .value    = "on",                           \
3206     },                                              \
3207     {                                               \
3208         .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
3209         .property = "pre-2.8-migration",            \
3210         .value    = "on",                           \
3211     },
3212 
3213 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3214                               uint64_t *buid, hwaddr *pio,
3215                               hwaddr *mmio32, hwaddr *mmio64,
3216                               unsigned n_dma, uint32_t *liobns, Error **errp)
3217 {
3218     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3219     const uint64_t base_buid = 0x800000020000000ULL;
3220     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3221     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3222     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3223     const uint32_t max_index = 255;
3224     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3225 
3226     uint64_t ram_top = MACHINE(spapr)->ram_size;
3227     hwaddr phb0_base, phb_base;
3228     int i;
3229 
3230     /* Do we have hotpluggable memory? */
3231     if (MACHINE(spapr)->maxram_size > ram_top) {
3232         /* Can't just use maxram_size, because there may be an
3233          * alignment gap between normal and hotpluggable memory
3234          * regions */
3235         ram_top = spapr->hotplug_memory.base +
3236             memory_region_size(&spapr->hotplug_memory.mr);
3237     }
3238 
3239     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3240 
3241     if (index > max_index) {
3242         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3243                    max_index);
3244         return;
3245     }
3246 
3247     *buid = base_buid + index;
3248     for (i = 0; i < n_dma; ++i) {
3249         liobns[i] = SPAPR_PCI_LIOBN(index, i);
3250     }
3251 
3252     phb_base = phb0_base + index * phb_spacing;
3253     *pio = phb_base + pio_offset;
3254     *mmio32 = phb_base + mmio_offset;
3255     /*
3256      * We don't set the 64-bit MMIO window, relying on the PHB's
3257      * fallback behaviour of automatically splitting a large "32-bit"
3258      * window into contiguous 32-bit and 64-bit windows
3259      */
3260 }
3261 
3262 static void spapr_machine_2_7_instance_options(MachineState *machine)
3263 {
3264     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3265 
3266     spapr_machine_2_8_instance_options(machine);
3267     spapr->use_hotplug_event_source = false;
3268 }
3269 
3270 static void spapr_machine_2_7_class_options(MachineClass *mc)
3271 {
3272     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3273 
3274     spapr_machine_2_8_class_options(mc);
3275     smc->tcg_default_cpu = "POWER7";
3276     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3277     smc->phb_placement = phb_placement_2_7;
3278 }
3279 
3280 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3281 
3282 /*
3283  * pseries-2.6
3284  */
3285 #define SPAPR_COMPAT_2_6 \
3286     HW_COMPAT_2_6 \
3287     { \
3288         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3289         .property = "ddw",\
3290         .value    = stringify(off),\
3291     },
3292 
3293 static void spapr_machine_2_6_instance_options(MachineState *machine)
3294 {
3295     spapr_machine_2_7_instance_options(machine);
3296 }
3297 
3298 static void spapr_machine_2_6_class_options(MachineClass *mc)
3299 {
3300     spapr_machine_2_7_class_options(mc);
3301     mc->has_hotpluggable_cpus = false;
3302     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3303 }
3304 
3305 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3306 
3307 /*
3308  * pseries-2.5
3309  */
3310 #define SPAPR_COMPAT_2_5 \
3311     HW_COMPAT_2_5 \
3312     { \
3313         .driver   = "spapr-vlan", \
3314         .property = "use-rx-buffer-pools", \
3315         .value    = "off", \
3316     },
3317 
3318 static void spapr_machine_2_5_instance_options(MachineState *machine)
3319 {
3320     spapr_machine_2_6_instance_options(machine);
3321 }
3322 
3323 static void spapr_machine_2_5_class_options(MachineClass *mc)
3324 {
3325     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3326 
3327     spapr_machine_2_6_class_options(mc);
3328     smc->use_ohci_by_default = true;
3329     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3330 }
3331 
3332 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3333 
3334 /*
3335  * pseries-2.4
3336  */
3337 #define SPAPR_COMPAT_2_4 \
3338         HW_COMPAT_2_4
3339 
3340 static void spapr_machine_2_4_instance_options(MachineState *machine)
3341 {
3342     spapr_machine_2_5_instance_options(machine);
3343 }
3344 
3345 static void spapr_machine_2_4_class_options(MachineClass *mc)
3346 {
3347     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3348 
3349     spapr_machine_2_5_class_options(mc);
3350     smc->dr_lmb_enabled = false;
3351     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3352 }
3353 
3354 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3355 
3356 /*
3357  * pseries-2.3
3358  */
3359 #define SPAPR_COMPAT_2_3 \
3360         HW_COMPAT_2_3 \
3361         {\
3362             .driver   = "spapr-pci-host-bridge",\
3363             .property = "dynamic-reconfiguration",\
3364             .value    = "off",\
3365         },
3366 
3367 static void spapr_machine_2_3_instance_options(MachineState *machine)
3368 {
3369     spapr_machine_2_4_instance_options(machine);
3370     savevm_skip_section_footers();
3371     global_state_set_optional();
3372     savevm_skip_configuration();
3373 }
3374 
3375 static void spapr_machine_2_3_class_options(MachineClass *mc)
3376 {
3377     spapr_machine_2_4_class_options(mc);
3378     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3379 }
3380 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3381 
3382 /*
3383  * pseries-2.2
3384  */
3385 
3386 #define SPAPR_COMPAT_2_2 \
3387         HW_COMPAT_2_2 \
3388         {\
3389             .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3390             .property = "mem_win_size",\
3391             .value    = "0x20000000",\
3392         },
3393 
3394 static void spapr_machine_2_2_instance_options(MachineState *machine)
3395 {
3396     spapr_machine_2_3_instance_options(machine);
3397     machine->suppress_vmdesc = true;
3398 }
3399 
3400 static void spapr_machine_2_2_class_options(MachineClass *mc)
3401 {
3402     spapr_machine_2_3_class_options(mc);
3403     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3404 }
3405 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3406 
3407 /*
3408  * pseries-2.1
3409  */
3410 #define SPAPR_COMPAT_2_1 \
3411         HW_COMPAT_2_1
3412 
3413 static void spapr_machine_2_1_instance_options(MachineState *machine)
3414 {
3415     spapr_machine_2_2_instance_options(machine);
3416 }
3417 
3418 static void spapr_machine_2_1_class_options(MachineClass *mc)
3419 {
3420     spapr_machine_2_2_class_options(mc);
3421     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
3422 }
3423 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
3424 
3425 static void spapr_machine_register_types(void)
3426 {
3427     type_register_static(&spapr_machine_info);
3428 }
3429 
3430 type_init(spapr_machine_register_types)
3431