xref: /qemu/hw/ppc/spapr.c (revision 9be38598)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/device_tree.h"
41 #include "kvm_ppc.h"
42 #include "migration/migration.h"
43 #include "mmu-hash64.h"
44 #include "qom/cpu.h"
45 
46 #include "hw/boards.h"
47 #include "hw/ppc/ppc.h"
48 #include "hw/loader.h"
49 
50 #include "hw/ppc/spapr.h"
51 #include "hw/ppc/spapr_vio.h"
52 #include "hw/pci-host/spapr.h"
53 #include "hw/ppc/xics.h"
54 #include "hw/pci/msi.h"
55 
56 #include "hw/pci/pci.h"
57 #include "hw/scsi/scsi.h"
58 #include "hw/virtio/virtio-scsi.h"
59 
60 #include "exec/address-spaces.h"
61 #include "hw/usb.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "trace.h"
65 #include "hw/nmi.h"
66 
67 #include "hw/compat.h"
68 #include "qemu/cutils.h"
69 #include "hw/ppc/spapr_cpu_core.h"
70 #include "qmp-commands.h"
71 
72 #include <libfdt.h>
73 
74 /* SLOF memory layout:
75  *
76  * SLOF raw image loaded at 0, copies its romfs right below the flat
77  * device-tree, then position SLOF itself 31M below that
78  *
79  * So we set FW_OVERHEAD to 40MB which should account for all of that
80  * and more
81  *
82  * We load our kernel at 4M, leaving space for SLOF initial image
83  */
84 #define FDT_MAX_SIZE            0x100000
85 #define RTAS_MAX_SIZE           0x10000
86 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
87 #define FW_MAX_SIZE             0x400000
88 #define FW_FILE_NAME            "slof.bin"
89 #define FW_OVERHEAD             0x2800000
90 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
91 
92 #define MIN_RMA_SLOF            128UL
93 
94 #define PHANDLE_XICP            0x00001111
95 
96 #define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
97 
98 static XICSState *try_create_xics(const char *type, int nr_servers,
99                                   int nr_irqs, Error **errp)
100 {
101     Error *err = NULL;
102     DeviceState *dev;
103 
104     dev = qdev_create(NULL, type);
105     qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
106     qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
107     object_property_set_bool(OBJECT(dev), true, "realized", &err);
108     if (err) {
109         error_propagate(errp, err);
110         object_unparent(OBJECT(dev));
111         return NULL;
112     }
113     return XICS_COMMON(dev);
114 }
115 
116 static XICSState *xics_system_init(MachineState *machine,
117                                    int nr_servers, int nr_irqs, Error **errp)
118 {
119     XICSState *icp = NULL;
120 
121     if (kvm_enabled()) {
122         Error *err = NULL;
123 
124         if (machine_kernel_irqchip_allowed(machine)) {
125             icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
126         }
127         if (machine_kernel_irqchip_required(machine) && !icp) {
128             error_reportf_err(err,
129                               "kernel_irqchip requested but unavailable: ");
130         } else {
131             error_free(err);
132         }
133     }
134 
135     if (!icp) {
136         icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, errp);
137     }
138 
139     return icp;
140 }
141 
142 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
143                                   int smt_threads)
144 {
145     int i, ret = 0;
146     uint32_t servers_prop[smt_threads];
147     uint32_t gservers_prop[smt_threads * 2];
148     int index = ppc_get_vcpu_dt_id(cpu);
149 
150     if (cpu->cpu_version) {
151         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
152         if (ret < 0) {
153             return ret;
154         }
155     }
156 
157     /* Build interrupt servers and gservers properties */
158     for (i = 0; i < smt_threads; i++) {
159         servers_prop[i] = cpu_to_be32(index + i);
160         /* Hack, direct the group queues back to cpu 0 */
161         gservers_prop[i*2] = cpu_to_be32(index + i);
162         gservers_prop[i*2 + 1] = 0;
163     }
164     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
165                       servers_prop, sizeof(servers_prop));
166     if (ret < 0) {
167         return ret;
168     }
169     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
170                       gservers_prop, sizeof(gservers_prop));
171 
172     return ret;
173 }
174 
175 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
176 {
177     int ret = 0;
178     PowerPCCPU *cpu = POWERPC_CPU(cs);
179     int index = ppc_get_vcpu_dt_id(cpu);
180     uint32_t associativity[] = {cpu_to_be32(0x5),
181                                 cpu_to_be32(0x0),
182                                 cpu_to_be32(0x0),
183                                 cpu_to_be32(0x0),
184                                 cpu_to_be32(cs->numa_node),
185                                 cpu_to_be32(index)};
186 
187     /* Advertise NUMA via ibm,associativity */
188     if (nb_numa_nodes > 1) {
189         ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
190                           sizeof(associativity));
191     }
192 
193     return ret;
194 }
195 
196 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
197 {
198     int ret = 0, offset, cpus_offset;
199     CPUState *cs;
200     char cpu_model[32];
201     int smt = kvmppc_smt_threads();
202     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
203 
204     CPU_FOREACH(cs) {
205         PowerPCCPU *cpu = POWERPC_CPU(cs);
206         DeviceClass *dc = DEVICE_GET_CLASS(cs);
207         int index = ppc_get_vcpu_dt_id(cpu);
208 
209         if ((index % smt) != 0) {
210             continue;
211         }
212 
213         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
214 
215         cpus_offset = fdt_path_offset(fdt, "/cpus");
216         if (cpus_offset < 0) {
217             cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
218                                           "cpus");
219             if (cpus_offset < 0) {
220                 return cpus_offset;
221             }
222         }
223         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
224         if (offset < 0) {
225             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
226             if (offset < 0) {
227                 return offset;
228             }
229         }
230 
231         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
232                           pft_size_prop, sizeof(pft_size_prop));
233         if (ret < 0) {
234             return ret;
235         }
236 
237         ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
238         if (ret < 0) {
239             return ret;
240         }
241 
242         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
243                                      ppc_get_compat_smt_threads(cpu));
244         if (ret < 0) {
245             return ret;
246         }
247     }
248     return ret;
249 }
250 
251 
252 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
253                                      size_t maxsize)
254 {
255     size_t maxcells = maxsize / sizeof(uint32_t);
256     int i, j, count;
257     uint32_t *p = prop;
258 
259     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
260         struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
261 
262         if (!sps->page_shift) {
263             break;
264         }
265         for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
266             if (sps->enc[count].page_shift == 0) {
267                 break;
268             }
269         }
270         if ((p - prop) >= (maxcells - 3 - count * 2)) {
271             break;
272         }
273         *(p++) = cpu_to_be32(sps->page_shift);
274         *(p++) = cpu_to_be32(sps->slb_enc);
275         *(p++) = cpu_to_be32(count);
276         for (j = 0; j < count; j++) {
277             *(p++) = cpu_to_be32(sps->enc[j].page_shift);
278             *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
279         }
280     }
281 
282     return (p - prop) * sizeof(uint32_t);
283 }
284 
285 static hwaddr spapr_node0_size(void)
286 {
287     MachineState *machine = MACHINE(qdev_get_machine());
288 
289     if (nb_numa_nodes) {
290         int i;
291         for (i = 0; i < nb_numa_nodes; ++i) {
292             if (numa_info[i].node_mem) {
293                 return MIN(pow2floor(numa_info[i].node_mem),
294                            machine->ram_size);
295             }
296         }
297     }
298     return machine->ram_size;
299 }
300 
301 #define _FDT(exp) \
302     do { \
303         int ret = (exp);                                           \
304         if (ret < 0) {                                             \
305             fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
306                     #exp, fdt_strerror(ret));                      \
307             exit(1);                                               \
308         }                                                          \
309     } while (0)
310 
311 static void add_str(GString *s, const gchar *s1)
312 {
313     g_string_append_len(s, s1, strlen(s1) + 1);
314 }
315 
316 static void *spapr_create_fdt_skel(hwaddr initrd_base,
317                                    hwaddr initrd_size,
318                                    hwaddr kernel_size,
319                                    bool little_endian,
320                                    const char *kernel_cmdline,
321                                    uint32_t epow_irq)
322 {
323     void *fdt;
324     uint32_t start_prop = cpu_to_be32(initrd_base);
325     uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
326     GString *hypertas = g_string_sized_new(256);
327     GString *qemu_hypertas = g_string_sized_new(256);
328     uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
329     uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
330     unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
331     char *buf;
332 
333     add_str(hypertas, "hcall-pft");
334     add_str(hypertas, "hcall-term");
335     add_str(hypertas, "hcall-dabr");
336     add_str(hypertas, "hcall-interrupt");
337     add_str(hypertas, "hcall-tce");
338     add_str(hypertas, "hcall-vio");
339     add_str(hypertas, "hcall-splpar");
340     add_str(hypertas, "hcall-bulk");
341     add_str(hypertas, "hcall-set-mode");
342     add_str(qemu_hypertas, "hcall-memop1");
343 
344     fdt = g_malloc0(FDT_MAX_SIZE);
345     _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
346 
347     if (kernel_size) {
348         _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
349     }
350     if (initrd_size) {
351         _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
352     }
353     _FDT((fdt_finish_reservemap(fdt)));
354 
355     /* Root node */
356     _FDT((fdt_begin_node(fdt, "")));
357     _FDT((fdt_property_string(fdt, "device_type", "chrp")));
358     _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
359     _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
360 
361     /*
362      * Add info to guest to indentify which host is it being run on
363      * and what is the uuid of the guest
364      */
365     if (kvmppc_get_host_model(&buf)) {
366         _FDT((fdt_property_string(fdt, "host-model", buf)));
367         g_free(buf);
368     }
369     if (kvmppc_get_host_serial(&buf)) {
370         _FDT((fdt_property_string(fdt, "host-serial", buf)));
371         g_free(buf);
372     }
373 
374     buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
375                           qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
376                           qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
377                           qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
378                           qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
379                           qemu_uuid[14], qemu_uuid[15]);
380 
381     _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
382     if (qemu_uuid_set) {
383         _FDT((fdt_property_string(fdt, "system-id", buf)));
384     }
385     g_free(buf);
386 
387     if (qemu_get_vm_name()) {
388         _FDT((fdt_property_string(fdt, "ibm,partition-name",
389                                   qemu_get_vm_name())));
390     }
391 
392     _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
393     _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
394 
395     /* /chosen */
396     _FDT((fdt_begin_node(fdt, "chosen")));
397 
398     /* Set Form1_affinity */
399     _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
400 
401     _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
402     _FDT((fdt_property(fdt, "linux,initrd-start",
403                        &start_prop, sizeof(start_prop))));
404     _FDT((fdt_property(fdt, "linux,initrd-end",
405                        &end_prop, sizeof(end_prop))));
406     if (kernel_size) {
407         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
408                               cpu_to_be64(kernel_size) };
409 
410         _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
411         if (little_endian) {
412             _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
413         }
414     }
415     if (boot_menu) {
416         _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
417     }
418     _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
419     _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
420     _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
421 
422     _FDT((fdt_end_node(fdt)));
423 
424     /* RTAS */
425     _FDT((fdt_begin_node(fdt, "rtas")));
426 
427     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
428         add_str(hypertas, "hcall-multi-tce");
429     }
430     _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
431                        hypertas->len)));
432     g_string_free(hypertas, TRUE);
433     _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
434                        qemu_hypertas->len)));
435     g_string_free(qemu_hypertas, TRUE);
436 
437     _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
438         refpoints, sizeof(refpoints))));
439 
440     _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
441     _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
442                             RTAS_EVENT_SCAN_RATE)));
443 
444     if (msi_nonbroken) {
445         _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
446     }
447 
448     /*
449      * According to PAPR, rtas ibm,os-term does not guarantee a return
450      * back to the guest cpu.
451      *
452      * While an additional ibm,extended-os-term property indicates that
453      * rtas call return will always occur. Set this property.
454      */
455     _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
456 
457     _FDT((fdt_end_node(fdt)));
458 
459     /* interrupt controller */
460     _FDT((fdt_begin_node(fdt, "interrupt-controller")));
461 
462     _FDT((fdt_property_string(fdt, "device_type",
463                               "PowerPC-External-Interrupt-Presentation")));
464     _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
465     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
466     _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
467                        interrupt_server_ranges_prop,
468                        sizeof(interrupt_server_ranges_prop))));
469     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
470     _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
471     _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
472 
473     _FDT((fdt_end_node(fdt)));
474 
475     /* vdevice */
476     _FDT((fdt_begin_node(fdt, "vdevice")));
477 
478     _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
479     _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
480     _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
481     _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
482     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
483     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
484 
485     _FDT((fdt_end_node(fdt)));
486 
487     /* event-sources */
488     spapr_events_fdt_skel(fdt, epow_irq);
489 
490     /* /hypervisor node */
491     if (kvm_enabled()) {
492         uint8_t hypercall[16];
493 
494         /* indicate KVM hypercall interface */
495         _FDT((fdt_begin_node(fdt, "hypervisor")));
496         _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
497         if (kvmppc_has_cap_fixup_hcalls()) {
498             /*
499              * Older KVM versions with older guest kernels were broken with the
500              * magic page, don't allow the guest to map it.
501              */
502             if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
503                                       sizeof(hypercall))) {
504                 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
505                                    sizeof(hypercall))));
506             }
507         }
508         _FDT((fdt_end_node(fdt)));
509     }
510 
511     _FDT((fdt_end_node(fdt))); /* close root node */
512     _FDT((fdt_finish(fdt)));
513 
514     return fdt;
515 }
516 
517 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
518                                        hwaddr size)
519 {
520     uint32_t associativity[] = {
521         cpu_to_be32(0x4), /* length */
522         cpu_to_be32(0x0), cpu_to_be32(0x0),
523         cpu_to_be32(0x0), cpu_to_be32(nodeid)
524     };
525     char mem_name[32];
526     uint64_t mem_reg_property[2];
527     int off;
528 
529     mem_reg_property[0] = cpu_to_be64(start);
530     mem_reg_property[1] = cpu_to_be64(size);
531 
532     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
533     off = fdt_add_subnode(fdt, 0, mem_name);
534     _FDT(off);
535     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
536     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
537                       sizeof(mem_reg_property))));
538     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
539                       sizeof(associativity))));
540     return off;
541 }
542 
543 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
544 {
545     MachineState *machine = MACHINE(spapr);
546     hwaddr mem_start, node_size;
547     int i, nb_nodes = nb_numa_nodes;
548     NodeInfo *nodes = numa_info;
549     NodeInfo ramnode;
550 
551     /* No NUMA nodes, assume there is just one node with whole RAM */
552     if (!nb_numa_nodes) {
553         nb_nodes = 1;
554         ramnode.node_mem = machine->ram_size;
555         nodes = &ramnode;
556     }
557 
558     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
559         if (!nodes[i].node_mem) {
560             continue;
561         }
562         if (mem_start >= machine->ram_size) {
563             node_size = 0;
564         } else {
565             node_size = nodes[i].node_mem;
566             if (node_size > machine->ram_size - mem_start) {
567                 node_size = machine->ram_size - mem_start;
568             }
569         }
570         if (!mem_start) {
571             /* ppc_spapr_init() checks for rma_size <= node0_size already */
572             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
573             mem_start += spapr->rma_size;
574             node_size -= spapr->rma_size;
575         }
576         for ( ; node_size; ) {
577             hwaddr sizetmp = pow2floor(node_size);
578 
579             /* mem_start != 0 here */
580             if (ctzl(mem_start) < ctzl(sizetmp)) {
581                 sizetmp = 1ULL << ctzl(mem_start);
582             }
583 
584             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
585             node_size -= sizetmp;
586             mem_start += sizetmp;
587         }
588     }
589 
590     return 0;
591 }
592 
593 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
594                                   sPAPRMachineState *spapr)
595 {
596     PowerPCCPU *cpu = POWERPC_CPU(cs);
597     CPUPPCState *env = &cpu->env;
598     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
599     int index = ppc_get_vcpu_dt_id(cpu);
600     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
601                        0xffffffff, 0xffffffff};
602     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
603         : SPAPR_TIMEBASE_FREQ;
604     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
605     uint32_t page_sizes_prop[64];
606     size_t page_sizes_prop_size;
607     uint32_t vcpus_per_socket = smp_threads * smp_cores;
608     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
609     sPAPRDRConnector *drc;
610     sPAPRDRConnectorClass *drck;
611     int drc_index;
612 
613     drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
614     if (drc) {
615         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
616         drc_index = drck->get_index(drc);
617         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
618     }
619 
620     /* Note: we keep CI large pages off for now because a 64K capable guest
621      * provisioned with large pages might otherwise try to map a qemu
622      * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
623      * even if that qemu runs on a 4k host.
624      *
625      * We can later add this bit back when we are confident this is not
626      * an issue (!HV KVM or 64K host)
627      */
628     uint8_t pa_features_206[] = { 6, 0,
629         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
630     uint8_t pa_features_207[] = { 24, 0,
631         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
632         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
633         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
634         0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
635     uint8_t *pa_features;
636     size_t pa_size;
637 
638     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
639     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
640 
641     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
642     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
643                            env->dcache_line_size)));
644     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
645                            env->dcache_line_size)));
646     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
647                            env->icache_line_size)));
648     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
649                            env->icache_line_size)));
650 
651     if (pcc->l1_dcache_size) {
652         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
653                                pcc->l1_dcache_size)));
654     } else {
655         fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
656     }
657     if (pcc->l1_icache_size) {
658         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
659                                pcc->l1_icache_size)));
660     } else {
661         fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
662     }
663 
664     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
665     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
666     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
667     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
668     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
669     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
670 
671     if (env->spr_cb[SPR_PURR].oea_read) {
672         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
673     }
674 
675     if (env->mmu_model & POWERPC_MMU_1TSEG) {
676         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
677                           segs, sizeof(segs))));
678     }
679 
680     /* Advertise VMX/VSX (vector extensions) if available
681      *   0 / no property == no vector extensions
682      *   1               == VMX / Altivec available
683      *   2               == VSX available */
684     if (env->insns_flags & PPC_ALTIVEC) {
685         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
686 
687         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
688     }
689 
690     /* Advertise DFP (Decimal Floating Point) if available
691      *   0 / no property == no DFP
692      *   1               == DFP available */
693     if (env->insns_flags2 & PPC2_DFP) {
694         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
695     }
696 
697     page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
698                                                   sizeof(page_sizes_prop));
699     if (page_sizes_prop_size) {
700         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
701                           page_sizes_prop, page_sizes_prop_size)));
702     }
703 
704     /* Do the ibm,pa-features property, adjust it for ci-large-pages */
705     if (env->mmu_model == POWERPC_MMU_2_06) {
706         pa_features = pa_features_206;
707         pa_size = sizeof(pa_features_206);
708     } else /* env->mmu_model == POWERPC_MMU_2_07 */ {
709         pa_features = pa_features_207;
710         pa_size = sizeof(pa_features_207);
711     }
712     if (env->ci_large_pages) {
713         pa_features[3] |= 0x20;
714     }
715     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
716 
717     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
718                            cs->cpu_index / vcpus_per_socket)));
719 
720     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
721                       pft_size_prop, sizeof(pft_size_prop))));
722 
723     _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
724 
725     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
726                                 ppc_get_compat_smt_threads(cpu)));
727 }
728 
729 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
730 {
731     CPUState *cs;
732     int cpus_offset;
733     char *nodename;
734     int smt = kvmppc_smt_threads();
735 
736     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
737     _FDT(cpus_offset);
738     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
739     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
740 
741     /*
742      * We walk the CPUs in reverse order to ensure that CPU DT nodes
743      * created by fdt_add_subnode() end up in the right order in FDT
744      * for the guest kernel the enumerate the CPUs correctly.
745      */
746     CPU_FOREACH_REVERSE(cs) {
747         PowerPCCPU *cpu = POWERPC_CPU(cs);
748         int index = ppc_get_vcpu_dt_id(cpu);
749         DeviceClass *dc = DEVICE_GET_CLASS(cs);
750         int offset;
751 
752         if ((index % smt) != 0) {
753             continue;
754         }
755 
756         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
757         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
758         g_free(nodename);
759         _FDT(offset);
760         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
761     }
762 
763 }
764 
765 /*
766  * Adds ibm,dynamic-reconfiguration-memory node.
767  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
768  * of this device tree node.
769  */
770 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
771 {
772     MachineState *machine = MACHINE(spapr);
773     int ret, i, offset;
774     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
775     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
776     uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
777     uint32_t nr_lmbs = (spapr->hotplug_memory.base +
778                        memory_region_size(&spapr->hotplug_memory.mr)) /
779                        lmb_size;
780     uint32_t *int_buf, *cur_index, buf_len;
781     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
782 
783     /*
784      * Don't create the node if there is no hotpluggable memory
785      */
786     if (machine->ram_size == machine->maxram_size) {
787         return 0;
788     }
789 
790     /*
791      * Allocate enough buffer size to fit in ibm,dynamic-memory
792      * or ibm,associativity-lookup-arrays
793      */
794     buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
795               * sizeof(uint32_t);
796     cur_index = int_buf = g_malloc0(buf_len);
797 
798     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
799 
800     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
801                     sizeof(prop_lmb_size));
802     if (ret < 0) {
803         goto out;
804     }
805 
806     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
807     if (ret < 0) {
808         goto out;
809     }
810 
811     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
812     if (ret < 0) {
813         goto out;
814     }
815 
816     /* ibm,dynamic-memory */
817     int_buf[0] = cpu_to_be32(nr_lmbs);
818     cur_index++;
819     for (i = 0; i < nr_lmbs; i++) {
820         uint64_t addr = i * lmb_size;
821         uint32_t *dynamic_memory = cur_index;
822 
823         if (i >= hotplug_lmb_start) {
824             sPAPRDRConnector *drc;
825             sPAPRDRConnectorClass *drck;
826 
827             drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
828             g_assert(drc);
829             drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
830 
831             dynamic_memory[0] = cpu_to_be32(addr >> 32);
832             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
833             dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
834             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
835             dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
836             if (memory_region_present(get_system_memory(), addr)) {
837                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
838             } else {
839                 dynamic_memory[5] = cpu_to_be32(0);
840             }
841         } else {
842             /*
843              * LMB information for RMA, boot time RAM and gap b/n RAM and
844              * hotplug memory region -- all these are marked as reserved
845              * and as having no valid DRC.
846              */
847             dynamic_memory[0] = cpu_to_be32(addr >> 32);
848             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
849             dynamic_memory[2] = cpu_to_be32(0);
850             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
851             dynamic_memory[4] = cpu_to_be32(-1);
852             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
853                                             SPAPR_LMB_FLAGS_DRC_INVALID);
854         }
855 
856         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
857     }
858     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
859     if (ret < 0) {
860         goto out;
861     }
862 
863     /* ibm,associativity-lookup-arrays */
864     cur_index = int_buf;
865     int_buf[0] = cpu_to_be32(nr_nodes);
866     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
867     cur_index += 2;
868     for (i = 0; i < nr_nodes; i++) {
869         uint32_t associativity[] = {
870             cpu_to_be32(0x0),
871             cpu_to_be32(0x0),
872             cpu_to_be32(0x0),
873             cpu_to_be32(i)
874         };
875         memcpy(cur_index, associativity, sizeof(associativity));
876         cur_index += 4;
877     }
878     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
879             (cur_index - int_buf) * sizeof(uint32_t));
880 out:
881     g_free(int_buf);
882     return ret;
883 }
884 
885 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
886                                  target_ulong addr, target_ulong size,
887                                  bool cpu_update, bool memory_update)
888 {
889     void *fdt, *fdt_skel;
890     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
891     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
892 
893     size -= sizeof(hdr);
894 
895     /* Create sceleton */
896     fdt_skel = g_malloc0(size);
897     _FDT((fdt_create(fdt_skel, size)));
898     _FDT((fdt_begin_node(fdt_skel, "")));
899     _FDT((fdt_end_node(fdt_skel)));
900     _FDT((fdt_finish(fdt_skel)));
901     fdt = g_malloc0(size);
902     _FDT((fdt_open_into(fdt_skel, fdt, size)));
903     g_free(fdt_skel);
904 
905     /* Fixup cpu nodes */
906     if (cpu_update) {
907         _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
908     }
909 
910     /* Generate ibm,dynamic-reconfiguration-memory node if required */
911     if (memory_update && smc->dr_lmb_enabled) {
912         _FDT((spapr_populate_drconf_memory(spapr, fdt)));
913     }
914 
915     /* Pack resulting tree */
916     _FDT((fdt_pack(fdt)));
917 
918     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
919         trace_spapr_cas_failed(size);
920         return -1;
921     }
922 
923     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
924     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
925     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
926     g_free(fdt);
927 
928     return 0;
929 }
930 
931 static void spapr_finalize_fdt(sPAPRMachineState *spapr,
932                                hwaddr fdt_addr,
933                                hwaddr rtas_addr,
934                                hwaddr rtas_size)
935 {
936     MachineState *machine = MACHINE(qdev_get_machine());
937     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
938     const char *boot_device = machine->boot_order;
939     int ret, i;
940     size_t cb = 0;
941     char *bootlist;
942     void *fdt;
943     sPAPRPHBState *phb;
944 
945     fdt = g_malloc(FDT_MAX_SIZE);
946 
947     /* open out the base tree into a temp buffer for the final tweaks */
948     _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
949 
950     ret = spapr_populate_memory(spapr, fdt);
951     if (ret < 0) {
952         fprintf(stderr, "couldn't setup memory nodes in fdt\n");
953         exit(1);
954     }
955 
956     ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
957     if (ret < 0) {
958         fprintf(stderr, "couldn't setup vio devices in fdt\n");
959         exit(1);
960     }
961 
962     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
963         ret = spapr_rng_populate_dt(fdt);
964         if (ret < 0) {
965             fprintf(stderr, "could not set up rng device in the fdt\n");
966             exit(1);
967         }
968     }
969 
970     QLIST_FOREACH(phb, &spapr->phbs, list) {
971         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
972         if (ret < 0) {
973             error_report("couldn't setup PCI devices in fdt");
974             exit(1);
975         }
976     }
977 
978     /* RTAS */
979     ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
980     if (ret < 0) {
981         fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
982     }
983 
984     /* cpus */
985     spapr_populate_cpus_dt_node(fdt, spapr);
986 
987     bootlist = get_boot_devices_list(&cb, true);
988     if (cb && bootlist) {
989         int offset = fdt_path_offset(fdt, "/chosen");
990         if (offset < 0) {
991             exit(1);
992         }
993         for (i = 0; i < cb; i++) {
994             if (bootlist[i] == '\n') {
995                 bootlist[i] = ' ';
996             }
997 
998         }
999         ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
1000     }
1001 
1002     if (boot_device && strlen(boot_device)) {
1003         int offset = fdt_path_offset(fdt, "/chosen");
1004 
1005         if (offset < 0) {
1006             exit(1);
1007         }
1008         fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
1009     }
1010 
1011     if (!spapr->has_graphics) {
1012         spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
1013     }
1014 
1015     if (smc->dr_lmb_enabled) {
1016         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1017     }
1018 
1019     if (smc->dr_cpu_enabled) {
1020         int offset = fdt_path_offset(fdt, "/cpus");
1021         ret = spapr_drc_populate_dt(fdt, offset, NULL,
1022                                     SPAPR_DR_CONNECTOR_TYPE_CPU);
1023         if (ret < 0) {
1024             error_report("Couldn't set up CPU DR device tree properties");
1025             exit(1);
1026         }
1027     }
1028 
1029     _FDT((fdt_pack(fdt)));
1030 
1031     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1032         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1033                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1034         exit(1);
1035     }
1036 
1037     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1038     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1039 
1040     g_free(bootlist);
1041     g_free(fdt);
1042 }
1043 
1044 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1045 {
1046     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1047 }
1048 
1049 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
1050 {
1051     CPUPPCState *env = &cpu->env;
1052 
1053     if (msr_pr) {
1054         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1055         env->gpr[3] = H_PRIVILEGE;
1056     } else {
1057         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1058     }
1059 }
1060 
1061 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1062 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1063 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1064 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1065 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1066 
1067 /*
1068  * Get the fd to access the kernel htab, re-opening it if necessary
1069  */
1070 static int get_htab_fd(sPAPRMachineState *spapr)
1071 {
1072     if (spapr->htab_fd >= 0) {
1073         return spapr->htab_fd;
1074     }
1075 
1076     spapr->htab_fd = kvmppc_get_htab_fd(false);
1077     if (spapr->htab_fd < 0) {
1078         error_report("Unable to open fd for reading hash table from KVM: %s",
1079                      strerror(errno));
1080     }
1081 
1082     return spapr->htab_fd;
1083 }
1084 
1085 static void close_htab_fd(sPAPRMachineState *spapr)
1086 {
1087     if (spapr->htab_fd >= 0) {
1088         close(spapr->htab_fd);
1089     }
1090     spapr->htab_fd = -1;
1091 }
1092 
1093 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1094 {
1095     int shift;
1096 
1097     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1098      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1099      * that's much more than is needed for Linux guests */
1100     shift = ctz64(pow2ceil(ramsize)) - 7;
1101     shift = MAX(shift, 18); /* Minimum architected size */
1102     shift = MIN(shift, 46); /* Maximum architected size */
1103     return shift;
1104 }
1105 
1106 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1107                                  Error **errp)
1108 {
1109     long rc;
1110 
1111     /* Clean up any HPT info from a previous boot */
1112     g_free(spapr->htab);
1113     spapr->htab = NULL;
1114     spapr->htab_shift = 0;
1115     close_htab_fd(spapr);
1116 
1117     rc = kvmppc_reset_htab(shift);
1118     if (rc < 0) {
1119         /* kernel-side HPT needed, but couldn't allocate one */
1120         error_setg_errno(errp, errno,
1121                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1122                          shift);
1123         /* This is almost certainly fatal, but if the caller really
1124          * wants to carry on with shift == 0, it's welcome to try */
1125     } else if (rc > 0) {
1126         /* kernel-side HPT allocated */
1127         if (rc != shift) {
1128             error_setg(errp,
1129                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1130                        shift, rc);
1131         }
1132 
1133         spapr->htab_shift = shift;
1134         spapr->htab = NULL;
1135     } else {
1136         /* kernel-side HPT not needed, allocate in userspace instead */
1137         size_t size = 1ULL << shift;
1138         int i;
1139 
1140         spapr->htab = qemu_memalign(size, size);
1141         if (!spapr->htab) {
1142             error_setg_errno(errp, errno,
1143                              "Could not allocate HPT of order %d", shift);
1144             return;
1145         }
1146 
1147         memset(spapr->htab, 0, size);
1148         spapr->htab_shift = shift;
1149 
1150         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1151             DIRTY_HPTE(HPTE(spapr->htab, i));
1152         }
1153     }
1154 }
1155 
1156 static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1157 {
1158     bool matched = false;
1159 
1160     if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1161         matched = true;
1162     }
1163 
1164     if (!matched) {
1165         error_report("Device %s is not supported by this machine yet.",
1166                      qdev_fw_name(DEVICE(sbdev)));
1167         exit(1);
1168     }
1169 
1170     return 0;
1171 }
1172 
1173 static void ppc_spapr_reset(void)
1174 {
1175     MachineState *machine = MACHINE(qdev_get_machine());
1176     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1177     PowerPCCPU *first_ppc_cpu;
1178     uint32_t rtas_limit;
1179 
1180     /* Check for unknown sysbus devices */
1181     foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1182 
1183     /* Allocate and/or reset the hash page table */
1184     spapr_reallocate_hpt(spapr,
1185                          spapr_hpt_shift_for_ramsize(machine->maxram_size),
1186                          &error_fatal);
1187 
1188     /* Update the RMA size if necessary */
1189     if (spapr->vrma_adjust) {
1190         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1191                                           spapr->htab_shift);
1192     }
1193 
1194     qemu_devices_reset();
1195 
1196     /*
1197      * We place the device tree and RTAS just below either the top of the RMA,
1198      * or just below 2GB, whichever is lowere, so that it can be
1199      * processed with 32-bit real mode code if necessary
1200      */
1201     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1202     spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1203     spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1204 
1205     /* Load the fdt */
1206     spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
1207                        spapr->rtas_size);
1208 
1209     /* Copy RTAS over */
1210     cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
1211                               spapr->rtas_size);
1212 
1213     /* Set up the entry state */
1214     first_ppc_cpu = POWERPC_CPU(first_cpu);
1215     first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
1216     first_ppc_cpu->env.gpr[5] = 0;
1217     first_cpu->halted = 0;
1218     first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1219 
1220 }
1221 
1222 static void spapr_create_nvram(sPAPRMachineState *spapr)
1223 {
1224     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1225     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1226 
1227     if (dinfo) {
1228         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1229                             &error_fatal);
1230     }
1231 
1232     qdev_init_nofail(dev);
1233 
1234     spapr->nvram = (struct sPAPRNVRAM *)dev;
1235 }
1236 
1237 static void spapr_rtc_create(sPAPRMachineState *spapr)
1238 {
1239     DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1240 
1241     qdev_init_nofail(dev);
1242     spapr->rtc = dev;
1243 
1244     object_property_add_alias(qdev_get_machine(), "rtc-time",
1245                               OBJECT(spapr->rtc), "date", NULL);
1246 }
1247 
1248 /* Returns whether we want to use VGA or not */
1249 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1250 {
1251     switch (vga_interface_type) {
1252     case VGA_NONE:
1253         return false;
1254     case VGA_DEVICE:
1255         return true;
1256     case VGA_STD:
1257     case VGA_VIRTIO:
1258         return pci_vga_init(pci_bus) != NULL;
1259     default:
1260         error_setg(errp,
1261                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1262         return false;
1263     }
1264 }
1265 
1266 static int spapr_post_load(void *opaque, int version_id)
1267 {
1268     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1269     int err = 0;
1270 
1271     /* In earlier versions, there was no separate qdev for the PAPR
1272      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1273      * So when migrating from those versions, poke the incoming offset
1274      * value into the RTC device */
1275     if (version_id < 3) {
1276         err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1277     }
1278 
1279     return err;
1280 }
1281 
1282 static bool version_before_3(void *opaque, int version_id)
1283 {
1284     return version_id < 3;
1285 }
1286 
1287 static const VMStateDescription vmstate_spapr = {
1288     .name = "spapr",
1289     .version_id = 3,
1290     .minimum_version_id = 1,
1291     .post_load = spapr_post_load,
1292     .fields = (VMStateField[]) {
1293         /* used to be @next_irq */
1294         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1295 
1296         /* RTC offset */
1297         VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1298 
1299         VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1300         VMSTATE_END_OF_LIST()
1301     },
1302 };
1303 
1304 static int htab_save_setup(QEMUFile *f, void *opaque)
1305 {
1306     sPAPRMachineState *spapr = opaque;
1307 
1308     /* "Iteration" header */
1309     qemu_put_be32(f, spapr->htab_shift);
1310 
1311     if (spapr->htab) {
1312         spapr->htab_save_index = 0;
1313         spapr->htab_first_pass = true;
1314     } else {
1315         assert(kvm_enabled());
1316     }
1317 
1318 
1319     return 0;
1320 }
1321 
1322 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1323                                  int64_t max_ns)
1324 {
1325     bool has_timeout = max_ns != -1;
1326     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1327     int index = spapr->htab_save_index;
1328     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1329 
1330     assert(spapr->htab_first_pass);
1331 
1332     do {
1333         int chunkstart;
1334 
1335         /* Consume invalid HPTEs */
1336         while ((index < htabslots)
1337                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1338             index++;
1339             CLEAN_HPTE(HPTE(spapr->htab, index));
1340         }
1341 
1342         /* Consume valid HPTEs */
1343         chunkstart = index;
1344         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1345                && HPTE_VALID(HPTE(spapr->htab, index))) {
1346             index++;
1347             CLEAN_HPTE(HPTE(spapr->htab, index));
1348         }
1349 
1350         if (index > chunkstart) {
1351             int n_valid = index - chunkstart;
1352 
1353             qemu_put_be32(f, chunkstart);
1354             qemu_put_be16(f, n_valid);
1355             qemu_put_be16(f, 0);
1356             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1357                             HASH_PTE_SIZE_64 * n_valid);
1358 
1359             if (has_timeout &&
1360                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1361                 break;
1362             }
1363         }
1364     } while ((index < htabslots) && !qemu_file_rate_limit(f));
1365 
1366     if (index >= htabslots) {
1367         assert(index == htabslots);
1368         index = 0;
1369         spapr->htab_first_pass = false;
1370     }
1371     spapr->htab_save_index = index;
1372 }
1373 
1374 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1375                                 int64_t max_ns)
1376 {
1377     bool final = max_ns < 0;
1378     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1379     int examined = 0, sent = 0;
1380     int index = spapr->htab_save_index;
1381     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1382 
1383     assert(!spapr->htab_first_pass);
1384 
1385     do {
1386         int chunkstart, invalidstart;
1387 
1388         /* Consume non-dirty HPTEs */
1389         while ((index < htabslots)
1390                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1391             index++;
1392             examined++;
1393         }
1394 
1395         chunkstart = index;
1396         /* Consume valid dirty HPTEs */
1397         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1398                && HPTE_DIRTY(HPTE(spapr->htab, index))
1399                && HPTE_VALID(HPTE(spapr->htab, index))) {
1400             CLEAN_HPTE(HPTE(spapr->htab, index));
1401             index++;
1402             examined++;
1403         }
1404 
1405         invalidstart = index;
1406         /* Consume invalid dirty HPTEs */
1407         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1408                && HPTE_DIRTY(HPTE(spapr->htab, index))
1409                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1410             CLEAN_HPTE(HPTE(spapr->htab, index));
1411             index++;
1412             examined++;
1413         }
1414 
1415         if (index > chunkstart) {
1416             int n_valid = invalidstart - chunkstart;
1417             int n_invalid = index - invalidstart;
1418 
1419             qemu_put_be32(f, chunkstart);
1420             qemu_put_be16(f, n_valid);
1421             qemu_put_be16(f, n_invalid);
1422             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1423                             HASH_PTE_SIZE_64 * n_valid);
1424             sent += index - chunkstart;
1425 
1426             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1427                 break;
1428             }
1429         }
1430 
1431         if (examined >= htabslots) {
1432             break;
1433         }
1434 
1435         if (index >= htabslots) {
1436             assert(index == htabslots);
1437             index = 0;
1438         }
1439     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1440 
1441     if (index >= htabslots) {
1442         assert(index == htabslots);
1443         index = 0;
1444     }
1445 
1446     spapr->htab_save_index = index;
1447 
1448     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1449 }
1450 
1451 #define MAX_ITERATION_NS    5000000 /* 5 ms */
1452 #define MAX_KVM_BUF_SIZE    2048
1453 
1454 static int htab_save_iterate(QEMUFile *f, void *opaque)
1455 {
1456     sPAPRMachineState *spapr = opaque;
1457     int fd;
1458     int rc = 0;
1459 
1460     /* Iteration header */
1461     qemu_put_be32(f, 0);
1462 
1463     if (!spapr->htab) {
1464         assert(kvm_enabled());
1465 
1466         fd = get_htab_fd(spapr);
1467         if (fd < 0) {
1468             return fd;
1469         }
1470 
1471         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1472         if (rc < 0) {
1473             return rc;
1474         }
1475     } else  if (spapr->htab_first_pass) {
1476         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1477     } else {
1478         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1479     }
1480 
1481     /* End marker */
1482     qemu_put_be32(f, 0);
1483     qemu_put_be16(f, 0);
1484     qemu_put_be16(f, 0);
1485 
1486     return rc;
1487 }
1488 
1489 static int htab_save_complete(QEMUFile *f, void *opaque)
1490 {
1491     sPAPRMachineState *spapr = opaque;
1492     int fd;
1493 
1494     /* Iteration header */
1495     qemu_put_be32(f, 0);
1496 
1497     if (!spapr->htab) {
1498         int rc;
1499 
1500         assert(kvm_enabled());
1501 
1502         fd = get_htab_fd(spapr);
1503         if (fd < 0) {
1504             return fd;
1505         }
1506 
1507         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1508         if (rc < 0) {
1509             return rc;
1510         }
1511         close_htab_fd(spapr);
1512     } else {
1513         if (spapr->htab_first_pass) {
1514             htab_save_first_pass(f, spapr, -1);
1515         }
1516         htab_save_later_pass(f, spapr, -1);
1517     }
1518 
1519     /* End marker */
1520     qemu_put_be32(f, 0);
1521     qemu_put_be16(f, 0);
1522     qemu_put_be16(f, 0);
1523 
1524     return 0;
1525 }
1526 
1527 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1528 {
1529     sPAPRMachineState *spapr = opaque;
1530     uint32_t section_hdr;
1531     int fd = -1;
1532 
1533     if (version_id < 1 || version_id > 1) {
1534         error_report("htab_load() bad version");
1535         return -EINVAL;
1536     }
1537 
1538     section_hdr = qemu_get_be32(f);
1539 
1540     if (section_hdr) {
1541         Error *local_err = NULL;
1542 
1543         /* First section gives the htab size */
1544         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1545         if (local_err) {
1546             error_report_err(local_err);
1547             return -EINVAL;
1548         }
1549         return 0;
1550     }
1551 
1552     if (!spapr->htab) {
1553         assert(kvm_enabled());
1554 
1555         fd = kvmppc_get_htab_fd(true);
1556         if (fd < 0) {
1557             error_report("Unable to open fd to restore KVM hash table: %s",
1558                          strerror(errno));
1559         }
1560     }
1561 
1562     while (true) {
1563         uint32_t index;
1564         uint16_t n_valid, n_invalid;
1565 
1566         index = qemu_get_be32(f);
1567         n_valid = qemu_get_be16(f);
1568         n_invalid = qemu_get_be16(f);
1569 
1570         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1571             /* End of Stream */
1572             break;
1573         }
1574 
1575         if ((index + n_valid + n_invalid) >
1576             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1577             /* Bad index in stream */
1578             error_report(
1579                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1580                 index, n_valid, n_invalid, spapr->htab_shift);
1581             return -EINVAL;
1582         }
1583 
1584         if (spapr->htab) {
1585             if (n_valid) {
1586                 qemu_get_buffer(f, HPTE(spapr->htab, index),
1587                                 HASH_PTE_SIZE_64 * n_valid);
1588             }
1589             if (n_invalid) {
1590                 memset(HPTE(spapr->htab, index + n_valid), 0,
1591                        HASH_PTE_SIZE_64 * n_invalid);
1592             }
1593         } else {
1594             int rc;
1595 
1596             assert(fd >= 0);
1597 
1598             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1599             if (rc < 0) {
1600                 return rc;
1601             }
1602         }
1603     }
1604 
1605     if (!spapr->htab) {
1606         assert(fd >= 0);
1607         close(fd);
1608     }
1609 
1610     return 0;
1611 }
1612 
1613 static SaveVMHandlers savevm_htab_handlers = {
1614     .save_live_setup = htab_save_setup,
1615     .save_live_iterate = htab_save_iterate,
1616     .save_live_complete_precopy = htab_save_complete,
1617     .load_state = htab_load,
1618 };
1619 
1620 static void spapr_boot_set(void *opaque, const char *boot_device,
1621                            Error **errp)
1622 {
1623     MachineState *machine = MACHINE(qdev_get_machine());
1624     machine->boot_order = g_strdup(boot_device);
1625 }
1626 
1627 /*
1628  * Reset routine for LMB DR devices.
1629  *
1630  * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1631  * routine. Reset for PCI DR devices will be handled by PHB reset routine
1632  * when it walks all its children devices. LMB devices reset occurs
1633  * as part of spapr_ppc_reset().
1634  */
1635 static void spapr_drc_reset(void *opaque)
1636 {
1637     sPAPRDRConnector *drc = opaque;
1638     DeviceState *d = DEVICE(drc);
1639 
1640     if (d) {
1641         device_reset(d);
1642     }
1643 }
1644 
1645 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1646 {
1647     MachineState *machine = MACHINE(spapr);
1648     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1649     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1650     int i;
1651 
1652     for (i = 0; i < nr_lmbs; i++) {
1653         sPAPRDRConnector *drc;
1654         uint64_t addr;
1655 
1656         addr = i * lmb_size + spapr->hotplug_memory.base;
1657         drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1658                                      addr/lmb_size);
1659         qemu_register_reset(spapr_drc_reset, drc);
1660     }
1661 }
1662 
1663 /*
1664  * If RAM size, maxmem size and individual node mem sizes aren't aligned
1665  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1666  * since we can't support such unaligned sizes with DRCONF_MEMORY.
1667  */
1668 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1669 {
1670     int i;
1671 
1672     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1673         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1674                    " is not aligned to %llu MiB",
1675                    machine->ram_size,
1676                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1677         return;
1678     }
1679 
1680     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1681         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1682                    " is not aligned to %llu MiB",
1683                    machine->ram_size,
1684                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1685         return;
1686     }
1687 
1688     for (i = 0; i < nb_numa_nodes; i++) {
1689         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1690             error_setg(errp,
1691                        "Node %d memory size 0x%" PRIx64
1692                        " is not aligned to %llu MiB",
1693                        i, numa_info[i].node_mem,
1694                        SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1695             return;
1696         }
1697     }
1698 }
1699 
1700 /* pSeries LPAR / sPAPR hardware init */
1701 static void ppc_spapr_init(MachineState *machine)
1702 {
1703     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1704     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1705     const char *kernel_filename = machine->kernel_filename;
1706     const char *kernel_cmdline = machine->kernel_cmdline;
1707     const char *initrd_filename = machine->initrd_filename;
1708     PCIHostState *phb;
1709     int i;
1710     MemoryRegion *sysmem = get_system_memory();
1711     MemoryRegion *ram = g_new(MemoryRegion, 1);
1712     MemoryRegion *rma_region;
1713     void *rma = NULL;
1714     hwaddr rma_alloc_size;
1715     hwaddr node0_size = spapr_node0_size();
1716     uint32_t initrd_base = 0;
1717     long kernel_size = 0, initrd_size = 0;
1718     long load_limit, fw_size;
1719     bool kernel_le = false;
1720     char *filename;
1721     int smt = kvmppc_smt_threads();
1722     int spapr_cores = smp_cpus / smp_threads;
1723     int spapr_max_cores = max_cpus / smp_threads;
1724 
1725     if (smc->dr_cpu_enabled) {
1726         if (smp_cpus % smp_threads) {
1727             error_report("smp_cpus (%u) must be multiple of threads (%u)",
1728                          smp_cpus, smp_threads);
1729             exit(1);
1730         }
1731         if (max_cpus % smp_threads) {
1732             error_report("max_cpus (%u) must be multiple of threads (%u)",
1733                          max_cpus, smp_threads);
1734             exit(1);
1735         }
1736     }
1737 
1738     msi_nonbroken = true;
1739 
1740     QLIST_INIT(&spapr->phbs);
1741 
1742     cpu_ppc_hypercall = emulate_spapr_hypercall;
1743 
1744     /* Allocate RMA if necessary */
1745     rma_alloc_size = kvmppc_alloc_rma(&rma);
1746 
1747     if (rma_alloc_size == -1) {
1748         error_report("Unable to create RMA");
1749         exit(1);
1750     }
1751 
1752     if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1753         spapr->rma_size = rma_alloc_size;
1754     } else {
1755         spapr->rma_size = node0_size;
1756 
1757         /* With KVM, we don't actually know whether KVM supports an
1758          * unbounded RMA (PR KVM) or is limited by the hash table size
1759          * (HV KVM using VRMA), so we always assume the latter
1760          *
1761          * In that case, we also limit the initial allocations for RTAS
1762          * etc... to 256M since we have no way to know what the VRMA size
1763          * is going to be as it depends on the size of the hash table
1764          * isn't determined yet.
1765          */
1766         if (kvm_enabled()) {
1767             spapr->vrma_adjust = 1;
1768             spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1769         }
1770     }
1771 
1772     if (spapr->rma_size > node0_size) {
1773         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
1774                      spapr->rma_size);
1775         exit(1);
1776     }
1777 
1778     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1779     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1780 
1781     /* Set up Interrupt Controller before we create the VCPUs */
1782     spapr->icp = xics_system_init(machine,
1783                                   DIV_ROUND_UP(max_cpus * smt, smp_threads),
1784                                   XICS_IRQS, &error_fatal);
1785 
1786     if (smc->dr_lmb_enabled) {
1787         spapr_validate_node_memory(machine, &error_fatal);
1788     }
1789 
1790     /* init CPUs */
1791     if (machine->cpu_model == NULL) {
1792         machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
1793     }
1794 
1795     if (smc->dr_cpu_enabled) {
1796         char *type = spapr_get_cpu_core_type(machine->cpu_model);
1797 
1798         spapr->cores = g_new0(Object *, spapr_max_cores);
1799         for (i = 0; i < spapr_max_cores; i++) {
1800             int core_dt_id = i * smt;
1801             sPAPRDRConnector *drc =
1802                 spapr_dr_connector_new(OBJECT(spapr),
1803                                        SPAPR_DR_CONNECTOR_TYPE_CPU, core_dt_id);
1804 
1805             qemu_register_reset(spapr_drc_reset, drc);
1806 
1807             if (i < spapr_cores) {
1808                 char *type = spapr_get_cpu_core_type(machine->cpu_model);
1809                 Object *core;
1810 
1811                 if (!object_class_by_name(type)) {
1812                     error_report("Unable to find sPAPR CPU Core definition");
1813                     exit(1);
1814                 }
1815 
1816                 core  = object_new(type);
1817                 object_property_set_int(core, smp_threads, "nr-threads",
1818                                         &error_fatal);
1819                 object_property_set_int(core, core_dt_id, CPU_CORE_PROP_CORE_ID,
1820                                         &error_fatal);
1821                 object_property_set_bool(core, true, "realized", &error_fatal);
1822             }
1823         }
1824         g_free(type);
1825     } else {
1826         for (i = 0; i < smp_cpus; i++) {
1827             PowerPCCPU *cpu = cpu_ppc_init(machine->cpu_model);
1828             if (cpu == NULL) {
1829                 error_report("Unable to find PowerPC CPU definition");
1830                 exit(1);
1831             }
1832             spapr_cpu_init(spapr, cpu, &error_fatal);
1833        }
1834     }
1835 
1836     if (kvm_enabled()) {
1837         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1838         kvmppc_enable_logical_ci_hcalls();
1839         kvmppc_enable_set_mode_hcall();
1840     }
1841 
1842     /* allocate RAM */
1843     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1844                                          machine->ram_size);
1845     memory_region_add_subregion(sysmem, 0, ram);
1846 
1847     if (rma_alloc_size && rma) {
1848         rma_region = g_new(MemoryRegion, 1);
1849         memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1850                                    rma_alloc_size, rma);
1851         vmstate_register_ram_global(rma_region);
1852         memory_region_add_subregion(sysmem, 0, rma_region);
1853     }
1854 
1855     /* initialize hotplug memory address space */
1856     if (machine->ram_size < machine->maxram_size) {
1857         ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1858         /*
1859          * Limit the number of hotpluggable memory slots to half the number
1860          * slots that KVM supports, leaving the other half for PCI and other
1861          * devices. However ensure that number of slots doesn't drop below 32.
1862          */
1863         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
1864                            SPAPR_MAX_RAM_SLOTS;
1865 
1866         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
1867             max_memslots = SPAPR_MAX_RAM_SLOTS;
1868         }
1869         if (machine->ram_slots > max_memslots) {
1870             error_report("Specified number of memory slots %"
1871                          PRIu64" exceeds max supported %d",
1872                          machine->ram_slots, max_memslots);
1873             exit(1);
1874         }
1875 
1876         spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1877                                               SPAPR_HOTPLUG_MEM_ALIGN);
1878         memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1879                            "hotplug-memory", hotplug_mem_size);
1880         memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1881                                     &spapr->hotplug_memory.mr);
1882     }
1883 
1884     if (smc->dr_lmb_enabled) {
1885         spapr_create_lmb_dr_connectors(spapr);
1886     }
1887 
1888     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1889     if (!filename) {
1890         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1891         exit(1);
1892     }
1893     spapr->rtas_size = get_image_size(filename);
1894     if (spapr->rtas_size < 0) {
1895         error_report("Could not get size of LPAR rtas '%s'", filename);
1896         exit(1);
1897     }
1898     spapr->rtas_blob = g_malloc(spapr->rtas_size);
1899     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1900         error_report("Could not load LPAR rtas '%s'", filename);
1901         exit(1);
1902     }
1903     if (spapr->rtas_size > RTAS_MAX_SIZE) {
1904         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1905                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1906         exit(1);
1907     }
1908     g_free(filename);
1909 
1910     /* Set up EPOW events infrastructure */
1911     spapr_events_init(spapr);
1912 
1913     /* Set up the RTC RTAS interfaces */
1914     spapr_rtc_create(spapr);
1915 
1916     /* Set up VIO bus */
1917     spapr->vio_bus = spapr_vio_bus_init();
1918 
1919     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1920         if (serial_hds[i]) {
1921             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1922         }
1923     }
1924 
1925     /* We always have at least the nvram device on VIO */
1926     spapr_create_nvram(spapr);
1927 
1928     /* Set up PCI */
1929     spapr_pci_rtas_init();
1930 
1931     phb = spapr_create_phb(spapr, 0);
1932 
1933     for (i = 0; i < nb_nics; i++) {
1934         NICInfo *nd = &nd_table[i];
1935 
1936         if (!nd->model) {
1937             nd->model = g_strdup("ibmveth");
1938         }
1939 
1940         if (strcmp(nd->model, "ibmveth") == 0) {
1941             spapr_vlan_create(spapr->vio_bus, nd);
1942         } else {
1943             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1944         }
1945     }
1946 
1947     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1948         spapr_vscsi_create(spapr->vio_bus);
1949     }
1950 
1951     /* Graphics */
1952     if (spapr_vga_init(phb->bus, &error_fatal)) {
1953         spapr->has_graphics = true;
1954         machine->usb |= defaults_enabled() && !machine->usb_disabled;
1955     }
1956 
1957     if (machine->usb) {
1958         if (smc->use_ohci_by_default) {
1959             pci_create_simple(phb->bus, -1, "pci-ohci");
1960         } else {
1961             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
1962         }
1963 
1964         if (spapr->has_graphics) {
1965             USBBus *usb_bus = usb_bus_find(-1);
1966 
1967             usb_create_simple(usb_bus, "usb-kbd");
1968             usb_create_simple(usb_bus, "usb-mouse");
1969         }
1970     }
1971 
1972     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1973         error_report(
1974             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
1975             MIN_RMA_SLOF);
1976         exit(1);
1977     }
1978 
1979     if (kernel_filename) {
1980         uint64_t lowaddr = 0;
1981 
1982         kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1983                                NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE,
1984                                0, 0);
1985         if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1986             kernel_size = load_elf(kernel_filename,
1987                                    translate_kernel_address, NULL,
1988                                    NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE,
1989                                    0, 0);
1990             kernel_le = kernel_size > 0;
1991         }
1992         if (kernel_size < 0) {
1993             error_report("error loading %s: %s",
1994                          kernel_filename, load_elf_strerror(kernel_size));
1995             exit(1);
1996         }
1997 
1998         /* load initrd */
1999         if (initrd_filename) {
2000             /* Try to locate the initrd in the gap between the kernel
2001              * and the firmware. Add a bit of space just in case
2002              */
2003             initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
2004             initrd_size = load_image_targphys(initrd_filename, initrd_base,
2005                                               load_limit - initrd_base);
2006             if (initrd_size < 0) {
2007                 error_report("could not load initial ram disk '%s'",
2008                              initrd_filename);
2009                 exit(1);
2010             }
2011         } else {
2012             initrd_base = 0;
2013             initrd_size = 0;
2014         }
2015     }
2016 
2017     if (bios_name == NULL) {
2018         bios_name = FW_FILE_NAME;
2019     }
2020     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2021     if (!filename) {
2022         error_report("Could not find LPAR firmware '%s'", bios_name);
2023         exit(1);
2024     }
2025     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2026     if (fw_size <= 0) {
2027         error_report("Could not load LPAR firmware '%s'", filename);
2028         exit(1);
2029     }
2030     g_free(filename);
2031 
2032     /* FIXME: Should register things through the MachineState's qdev
2033      * interface, this is a legacy from the sPAPREnvironment structure
2034      * which predated MachineState but had a similar function */
2035     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2036     register_savevm_live(NULL, "spapr/htab", -1, 1,
2037                          &savevm_htab_handlers, spapr);
2038 
2039     /* Prepare the device tree */
2040     spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
2041                                             kernel_size, kernel_le,
2042                                             kernel_cmdline,
2043                                             spapr->check_exception_irq);
2044     assert(spapr->fdt_skel != NULL);
2045 
2046     /* used by RTAS */
2047     QTAILQ_INIT(&spapr->ccs_list);
2048     qemu_register_reset(spapr_ccs_reset_hook, spapr);
2049 
2050     qemu_register_boot_set(spapr_boot_set, spapr);
2051 }
2052 
2053 static int spapr_kvm_type(const char *vm_type)
2054 {
2055     if (!vm_type) {
2056         return 0;
2057     }
2058 
2059     if (!strcmp(vm_type, "HV")) {
2060         return 1;
2061     }
2062 
2063     if (!strcmp(vm_type, "PR")) {
2064         return 2;
2065     }
2066 
2067     error_report("Unknown kvm-type specified '%s'", vm_type);
2068     exit(1);
2069 }
2070 
2071 /*
2072  * Implementation of an interface to adjust firmware path
2073  * for the bootindex property handling.
2074  */
2075 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2076                                    DeviceState *dev)
2077 {
2078 #define CAST(type, obj, name) \
2079     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2080     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2081     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2082 
2083     if (d) {
2084         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2085         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2086         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2087 
2088         if (spapr) {
2089             /*
2090              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2091              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2092              * in the top 16 bits of the 64-bit LUN
2093              */
2094             unsigned id = 0x8000 | (d->id << 8) | d->lun;
2095             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2096                                    (uint64_t)id << 48);
2097         } else if (virtio) {
2098             /*
2099              * We use SRP luns of the form 01000000 | (target << 8) | lun
2100              * in the top 32 bits of the 64-bit LUN
2101              * Note: the quote above is from SLOF and it is wrong,
2102              * the actual binding is:
2103              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2104              */
2105             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2106             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2107                                    (uint64_t)id << 32);
2108         } else if (usb) {
2109             /*
2110              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2111              * in the top 32 bits of the 64-bit LUN
2112              */
2113             unsigned usb_port = atoi(usb->port->path);
2114             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2115             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2116                                    (uint64_t)id << 32);
2117         }
2118     }
2119 
2120     if (phb) {
2121         /* Replace "pci" with "pci@800000020000000" */
2122         return g_strdup_printf("pci@%"PRIX64, phb->buid);
2123     }
2124 
2125     return NULL;
2126 }
2127 
2128 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2129 {
2130     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2131 
2132     return g_strdup(spapr->kvm_type);
2133 }
2134 
2135 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2136 {
2137     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2138 
2139     g_free(spapr->kvm_type);
2140     spapr->kvm_type = g_strdup(value);
2141 }
2142 
2143 static void spapr_machine_initfn(Object *obj)
2144 {
2145     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2146 
2147     spapr->htab_fd = -1;
2148     object_property_add_str(obj, "kvm-type",
2149                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2150     object_property_set_description(obj, "kvm-type",
2151                                     "Specifies the KVM virtualization mode (HV, PR)",
2152                                     NULL);
2153 }
2154 
2155 static void spapr_machine_finalizefn(Object *obj)
2156 {
2157     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2158 
2159     g_free(spapr->kvm_type);
2160 }
2161 
2162 static void ppc_cpu_do_nmi_on_cpu(void *arg)
2163 {
2164     CPUState *cs = arg;
2165 
2166     cpu_synchronize_state(cs);
2167     ppc_cpu_do_system_reset(cs);
2168 }
2169 
2170 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2171 {
2172     CPUState *cs;
2173 
2174     CPU_FOREACH(cs) {
2175         async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
2176     }
2177 }
2178 
2179 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
2180                            uint32_t node, Error **errp)
2181 {
2182     sPAPRDRConnector *drc;
2183     sPAPRDRConnectorClass *drck;
2184     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2185     int i, fdt_offset, fdt_size;
2186     void *fdt;
2187 
2188     for (i = 0; i < nr_lmbs; i++) {
2189         drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2190                 addr/SPAPR_MEMORY_BLOCK_SIZE);
2191         g_assert(drc);
2192 
2193         fdt = create_device_tree(&fdt_size);
2194         fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2195                                                 SPAPR_MEMORY_BLOCK_SIZE);
2196 
2197         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2198         drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2199         addr += SPAPR_MEMORY_BLOCK_SIZE;
2200     }
2201     /* send hotplug notification to the
2202      * guest only in case of hotplugged memory
2203      */
2204     if (dev->hotplugged) {
2205        spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
2206     }
2207 }
2208 
2209 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2210                               uint32_t node, Error **errp)
2211 {
2212     Error *local_err = NULL;
2213     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2214     PCDIMMDevice *dimm = PC_DIMM(dev);
2215     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2216     MemoryRegion *mr = ddc->get_memory_region(dimm);
2217     uint64_t align = memory_region_get_alignment(mr);
2218     uint64_t size = memory_region_size(mr);
2219     uint64_t addr;
2220 
2221     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2222         error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2223                       "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2224         goto out;
2225     }
2226 
2227     pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2228     if (local_err) {
2229         goto out;
2230     }
2231 
2232     addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2233     if (local_err) {
2234         pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2235         goto out;
2236     }
2237 
2238     spapr_add_lmbs(dev, addr, size, node, &error_abort);
2239 
2240 out:
2241     error_propagate(errp, local_err);
2242 }
2243 
2244 void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2245                                     sPAPRMachineState *spapr)
2246 {
2247     PowerPCCPU *cpu = POWERPC_CPU(cs);
2248     DeviceClass *dc = DEVICE_GET_CLASS(cs);
2249     int id = ppc_get_vcpu_dt_id(cpu);
2250     void *fdt;
2251     int offset, fdt_size;
2252     char *nodename;
2253 
2254     fdt = create_device_tree(&fdt_size);
2255     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2256     offset = fdt_add_subnode(fdt, 0, nodename);
2257 
2258     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2259     g_free(nodename);
2260 
2261     *fdt_offset = offset;
2262     return fdt;
2263 }
2264 
2265 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2266                                       DeviceState *dev, Error **errp)
2267 {
2268     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2269 
2270     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2271         int node;
2272 
2273         if (!smc->dr_lmb_enabled) {
2274             error_setg(errp, "Memory hotplug not supported for this machine");
2275             return;
2276         }
2277         node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2278         if (*errp) {
2279             return;
2280         }
2281         if (node < 0 || node >= MAX_NODES) {
2282             error_setg(errp, "Invaild node %d", node);
2283             return;
2284         }
2285 
2286         /*
2287          * Currently PowerPC kernel doesn't allow hot-adding memory to
2288          * memory-less node, but instead will silently add the memory
2289          * to the first node that has some memory. This causes two
2290          * unexpected behaviours for the user.
2291          *
2292          * - Memory gets hotplugged to a different node than what the user
2293          *   specified.
2294          * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2295          *   to memory-less node, a reboot will set things accordingly
2296          *   and the previously hotplugged memory now ends in the right node.
2297          *   This appears as if some memory moved from one node to another.
2298          *
2299          * So until kernel starts supporting memory hotplug to memory-less
2300          * nodes, just prevent such attempts upfront in QEMU.
2301          */
2302         if (nb_numa_nodes && !numa_info[node].node_mem) {
2303             error_setg(errp, "Can't hotplug memory to memory-less node %d",
2304                        node);
2305             return;
2306         }
2307 
2308         spapr_memory_plug(hotplug_dev, dev, node, errp);
2309     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2310         spapr_core_plug(hotplug_dev, dev, errp);
2311     }
2312 }
2313 
2314 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2315                                       DeviceState *dev, Error **errp)
2316 {
2317     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2318 
2319     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2320         error_setg(errp, "Memory hot unplug not supported by sPAPR");
2321     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2322         if (!smc->dr_cpu_enabled) {
2323             error_setg(errp, "CPU hot unplug not supported on this machine");
2324             return;
2325         }
2326         spapr_core_unplug(hotplug_dev, dev, errp);
2327     }
2328 }
2329 
2330 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
2331                                           DeviceState *dev, Error **errp)
2332 {
2333     if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2334         spapr_core_pre_plug(hotplug_dev, dev, errp);
2335     }
2336 }
2337 
2338 static HotplugHandler *spapr_get_hotpug_handler(MachineState *machine,
2339                                              DeviceState *dev)
2340 {
2341     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2342         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2343         return HOTPLUG_HANDLER(machine);
2344     }
2345     return NULL;
2346 }
2347 
2348 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2349 {
2350     /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2351      * socket means much for the paravirtualized PAPR platform) */
2352     return cpu_index / smp_threads / smp_cores;
2353 }
2354 
2355 static HotpluggableCPUList *spapr_query_hotpluggable_cpus(MachineState *machine)
2356 {
2357     int i;
2358     HotpluggableCPUList *head = NULL;
2359     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2360     int spapr_max_cores = max_cpus / smp_threads;
2361     int smt = kvmppc_smt_threads();
2362 
2363     for (i = 0; i < spapr_max_cores; i++) {
2364         HotpluggableCPUList *list_item = g_new0(typeof(*list_item), 1);
2365         HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1);
2366         CpuInstanceProperties *cpu_props = g_new0(typeof(*cpu_props), 1);
2367 
2368         cpu_item->type = spapr_get_cpu_core_type(machine->cpu_model);
2369         cpu_item->vcpus_count = smp_threads;
2370         cpu_props->has_core = true;
2371         cpu_props->core = i * smt;
2372         /* TODO: add 'has_node/node' here to describe
2373            to which node core belongs */
2374 
2375         cpu_item->props = cpu_props;
2376         if (spapr->cores[i]) {
2377             cpu_item->has_qom_path = true;
2378             cpu_item->qom_path = object_get_canonical_path(spapr->cores[i]);
2379         }
2380         list_item->value = cpu_item;
2381         list_item->next = head;
2382         head = list_item;
2383     }
2384     return head;
2385 }
2386 
2387 static void spapr_machine_class_init(ObjectClass *oc, void *data)
2388 {
2389     MachineClass *mc = MACHINE_CLASS(oc);
2390     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2391     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2392     NMIClass *nc = NMI_CLASS(oc);
2393     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2394 
2395     mc->desc = "pSeries Logical Partition (PAPR compliant)";
2396 
2397     /*
2398      * We set up the default / latest behaviour here.  The class_init
2399      * functions for the specific versioned machine types can override
2400      * these details for backwards compatibility
2401      */
2402     mc->init = ppc_spapr_init;
2403     mc->reset = ppc_spapr_reset;
2404     mc->block_default_type = IF_SCSI;
2405     mc->max_cpus = MAX_CPUMASK_BITS;
2406     mc->no_parallel = 1;
2407     mc->default_boot_order = "";
2408     mc->default_ram_size = 512 * M_BYTE;
2409     mc->kvm_type = spapr_kvm_type;
2410     mc->has_dynamic_sysbus = true;
2411     mc->pci_allow_0_address = true;
2412     mc->get_hotplug_handler = spapr_get_hotpug_handler;
2413     hc->pre_plug = spapr_machine_device_pre_plug;
2414     hc->plug = spapr_machine_device_plug;
2415     hc->unplug = spapr_machine_device_unplug;
2416     mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
2417     mc->query_hotpluggable_cpus = spapr_query_hotpluggable_cpus;
2418 
2419     smc->dr_lmb_enabled = true;
2420     smc->dr_cpu_enabled = true;
2421     fwc->get_dev_path = spapr_get_fw_dev_path;
2422     nc->nmi_monitor_handler = spapr_nmi;
2423 }
2424 
2425 static const TypeInfo spapr_machine_info = {
2426     .name          = TYPE_SPAPR_MACHINE,
2427     .parent        = TYPE_MACHINE,
2428     .abstract      = true,
2429     .instance_size = sizeof(sPAPRMachineState),
2430     .instance_init = spapr_machine_initfn,
2431     .instance_finalize = spapr_machine_finalizefn,
2432     .class_size    = sizeof(sPAPRMachineClass),
2433     .class_init    = spapr_machine_class_init,
2434     .interfaces = (InterfaceInfo[]) {
2435         { TYPE_FW_PATH_PROVIDER },
2436         { TYPE_NMI },
2437         { TYPE_HOTPLUG_HANDLER },
2438         { }
2439     },
2440 };
2441 
2442 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
2443     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
2444                                                     void *data)      \
2445     {                                                                \
2446         MachineClass *mc = MACHINE_CLASS(oc);                        \
2447         spapr_machine_##suffix##_class_options(mc);                  \
2448         if (latest) {                                                \
2449             mc->alias = "pseries";                                   \
2450             mc->is_default = 1;                                      \
2451         }                                                            \
2452     }                                                                \
2453     static void spapr_machine_##suffix##_instance_init(Object *obj)  \
2454     {                                                                \
2455         MachineState *machine = MACHINE(obj);                        \
2456         spapr_machine_##suffix##_instance_options(machine);          \
2457     }                                                                \
2458     static const TypeInfo spapr_machine_##suffix##_info = {          \
2459         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
2460         .parent = TYPE_SPAPR_MACHINE,                                \
2461         .class_init = spapr_machine_##suffix##_class_init,           \
2462         .instance_init = spapr_machine_##suffix##_instance_init,     \
2463     };                                                               \
2464     static void spapr_machine_register_##suffix(void)                \
2465     {                                                                \
2466         type_register(&spapr_machine_##suffix##_info);               \
2467     }                                                                \
2468     type_init(spapr_machine_register_##suffix)
2469 
2470 /*
2471  * pseries-2.7
2472  */
2473 static void spapr_machine_2_7_instance_options(MachineState *machine)
2474 {
2475 }
2476 
2477 static void spapr_machine_2_7_class_options(MachineClass *mc)
2478 {
2479     /* Defaults for the latest behaviour inherited from the base class */
2480 }
2481 
2482 DEFINE_SPAPR_MACHINE(2_7, "2.7", true);
2483 
2484 /*
2485  * pseries-2.6
2486  */
2487 #define SPAPR_COMPAT_2_6 \
2488     HW_COMPAT_2_6
2489 
2490 static void spapr_machine_2_6_instance_options(MachineState *machine)
2491 {
2492 }
2493 
2494 static void spapr_machine_2_6_class_options(MachineClass *mc)
2495 {
2496     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2497 
2498     spapr_machine_2_7_class_options(mc);
2499     smc->dr_cpu_enabled = false;
2500     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
2501 }
2502 
2503 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
2504 
2505 /*
2506  * pseries-2.5
2507  */
2508 #define SPAPR_COMPAT_2_5 \
2509     HW_COMPAT_2_5 \
2510     { \
2511         .driver   = "spapr-vlan", \
2512         .property = "use-rx-buffer-pools", \
2513         .value    = "off", \
2514     },
2515 
2516 static void spapr_machine_2_5_instance_options(MachineState *machine)
2517 {
2518 }
2519 
2520 static void spapr_machine_2_5_class_options(MachineClass *mc)
2521 {
2522     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2523 
2524     spapr_machine_2_6_class_options(mc);
2525     smc->use_ohci_by_default = true;
2526     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
2527 }
2528 
2529 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
2530 
2531 /*
2532  * pseries-2.4
2533  */
2534 #define SPAPR_COMPAT_2_4 \
2535         HW_COMPAT_2_4
2536 
2537 static void spapr_machine_2_4_instance_options(MachineState *machine)
2538 {
2539     spapr_machine_2_5_instance_options(machine);
2540 }
2541 
2542 static void spapr_machine_2_4_class_options(MachineClass *mc)
2543 {
2544     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2545 
2546     spapr_machine_2_5_class_options(mc);
2547     smc->dr_lmb_enabled = false;
2548     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
2549 }
2550 
2551 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
2552 
2553 /*
2554  * pseries-2.3
2555  */
2556 #define SPAPR_COMPAT_2_3 \
2557         HW_COMPAT_2_3 \
2558         {\
2559             .driver   = "spapr-pci-host-bridge",\
2560             .property = "dynamic-reconfiguration",\
2561             .value    = "off",\
2562         },
2563 
2564 static void spapr_machine_2_3_instance_options(MachineState *machine)
2565 {
2566     spapr_machine_2_4_instance_options(machine);
2567     savevm_skip_section_footers();
2568     global_state_set_optional();
2569     savevm_skip_configuration();
2570 }
2571 
2572 static void spapr_machine_2_3_class_options(MachineClass *mc)
2573 {
2574     spapr_machine_2_4_class_options(mc);
2575     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
2576 }
2577 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
2578 
2579 /*
2580  * pseries-2.2
2581  */
2582 
2583 #define SPAPR_COMPAT_2_2 \
2584         HW_COMPAT_2_2 \
2585         {\
2586             .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2587             .property = "mem_win_size",\
2588             .value    = "0x20000000",\
2589         },
2590 
2591 static void spapr_machine_2_2_instance_options(MachineState *machine)
2592 {
2593     spapr_machine_2_3_instance_options(machine);
2594     machine->suppress_vmdesc = true;
2595 }
2596 
2597 static void spapr_machine_2_2_class_options(MachineClass *mc)
2598 {
2599     spapr_machine_2_3_class_options(mc);
2600     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
2601 }
2602 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
2603 
2604 /*
2605  * pseries-2.1
2606  */
2607 #define SPAPR_COMPAT_2_1 \
2608         HW_COMPAT_2_1
2609 
2610 static void spapr_machine_2_1_instance_options(MachineState *machine)
2611 {
2612     spapr_machine_2_2_instance_options(machine);
2613 }
2614 
2615 static void spapr_machine_2_1_class_options(MachineClass *mc)
2616 {
2617     spapr_machine_2_2_class_options(mc);
2618     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
2619 }
2620 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
2621 
2622 static void spapr_machine_register_types(void)
2623 {
2624     type_register_static(&spapr_machine_info);
2625 }
2626 
2627 type_init(spapr_machine_register_types)
2628