xref: /qemu/hw/ppc/spapr.c (revision bdf9613b)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/numa.h"
33 #include "sysemu/qtest.h"
34 #include "hw/hw.h"
35 #include "qemu/log.h"
36 #include "hw/fw-path-provider.h"
37 #include "elf.h"
38 #include "net/net.h"
39 #include "sysemu/device_tree.h"
40 #include "sysemu/cpus.h"
41 #include "sysemu/hw_accel.h"
42 #include "kvm_ppc.h"
43 #include "migration/misc.h"
44 #include "migration/global_state.h"
45 #include "migration/register.h"
46 #include "mmu-hash64.h"
47 #include "mmu-book3s-v3.h"
48 #include "cpu-models.h"
49 #include "qom/cpu.h"
50 
51 #include "hw/boards.h"
52 #include "hw/ppc/ppc.h"
53 #include "hw/loader.h"
54 
55 #include "hw/ppc/fdt.h"
56 #include "hw/ppc/spapr.h"
57 #include "hw/ppc/spapr_vio.h"
58 #include "hw/pci-host/spapr.h"
59 #include "hw/pci/msi.h"
60 
61 #include "hw/pci/pci.h"
62 #include "hw/scsi/scsi.h"
63 #include "hw/virtio/virtio-scsi.h"
64 #include "hw/virtio/vhost-scsi-common.h"
65 
66 #include "exec/address-spaces.h"
67 #include "exec/ram_addr.h"
68 #include "hw/usb.h"
69 #include "qemu/config-file.h"
70 #include "qemu/error-report.h"
71 #include "trace.h"
72 #include "hw/nmi.h"
73 #include "hw/intc/intc.h"
74 
75 #include "qemu/cutils.h"
76 #include "hw/ppc/spapr_cpu_core.h"
77 #include "hw/mem/memory-device.h"
78 
79 #include <libfdt.h>
80 
81 /* SLOF memory layout:
82  *
83  * SLOF raw image loaded at 0, copies its romfs right below the flat
84  * device-tree, then position SLOF itself 31M below that
85  *
86  * So we set FW_OVERHEAD to 40MB which should account for all of that
87  * and more
88  *
89  * We load our kernel at 4M, leaving space for SLOF initial image
90  */
91 #define FDT_MAX_SIZE            0x100000
92 #define RTAS_MAX_SIZE           0x10000
93 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
94 #define FW_MAX_SIZE             0x400000
95 #define FW_FILE_NAME            "slof.bin"
96 #define FW_OVERHEAD             0x2800000
97 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
98 
99 #define MIN_RMA_SLOF            128UL
100 
101 #define PHANDLE_INTC            0x00001111
102 
103 /* These two functions implement the VCPU id numbering: one to compute them
104  * all and one to identify thread 0 of a VCORE. Any change to the first one
105  * is likely to have an impact on the second one, so let's keep them close.
106  */
107 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
108 {
109     MachineState *ms = MACHINE(spapr);
110     unsigned int smp_threads = ms->smp.threads;
111 
112     assert(spapr->vsmt);
113     return
114         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
115 }
116 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
117                                       PowerPCCPU *cpu)
118 {
119     assert(spapr->vsmt);
120     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
121 }
122 
123 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
124 {
125     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
126      * and newer QEMUs don't even have them. In both cases, we don't want
127      * to send anything on the wire.
128      */
129     return false;
130 }
131 
132 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
133     .name = "icp/server",
134     .version_id = 1,
135     .minimum_version_id = 1,
136     .needed = pre_2_10_vmstate_dummy_icp_needed,
137     .fields = (VMStateField[]) {
138         VMSTATE_UNUSED(4), /* uint32_t xirr */
139         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
140         VMSTATE_UNUSED(1), /* uint8_t mfrr */
141         VMSTATE_END_OF_LIST()
142     },
143 };
144 
145 static void pre_2_10_vmstate_register_dummy_icp(int i)
146 {
147     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
148                      (void *)(uintptr_t) i);
149 }
150 
151 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
152 {
153     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
154                        (void *)(uintptr_t) i);
155 }
156 
157 int spapr_max_server_number(SpaprMachineState *spapr)
158 {
159     MachineState *ms = MACHINE(spapr);
160 
161     assert(spapr->vsmt);
162     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
163 }
164 
165 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
166                                   int smt_threads)
167 {
168     int i, ret = 0;
169     uint32_t servers_prop[smt_threads];
170     uint32_t gservers_prop[smt_threads * 2];
171     int index = spapr_get_vcpu_id(cpu);
172 
173     if (cpu->compat_pvr) {
174         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
175         if (ret < 0) {
176             return ret;
177         }
178     }
179 
180     /* Build interrupt servers and gservers properties */
181     for (i = 0; i < smt_threads; i++) {
182         servers_prop[i] = cpu_to_be32(index + i);
183         /* Hack, direct the group queues back to cpu 0 */
184         gservers_prop[i*2] = cpu_to_be32(index + i);
185         gservers_prop[i*2 + 1] = 0;
186     }
187     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
188                       servers_prop, sizeof(servers_prop));
189     if (ret < 0) {
190         return ret;
191     }
192     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
193                       gservers_prop, sizeof(gservers_prop));
194 
195     return ret;
196 }
197 
198 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
199 {
200     int index = spapr_get_vcpu_id(cpu);
201     uint32_t associativity[] = {cpu_to_be32(0x5),
202                                 cpu_to_be32(0x0),
203                                 cpu_to_be32(0x0),
204                                 cpu_to_be32(0x0),
205                                 cpu_to_be32(cpu->node_id),
206                                 cpu_to_be32(index)};
207 
208     /* Advertise NUMA via ibm,associativity */
209     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
210                           sizeof(associativity));
211 }
212 
213 /* Populate the "ibm,pa-features" property */
214 static void spapr_populate_pa_features(SpaprMachineState *spapr,
215                                        PowerPCCPU *cpu,
216                                        void *fdt, int offset,
217                                        bool legacy_guest)
218 {
219     uint8_t pa_features_206[] = { 6, 0,
220         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
221     uint8_t pa_features_207[] = { 24, 0,
222         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
223         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
224         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
225         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
226     uint8_t pa_features_300[] = { 66, 0,
227         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
228         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
229         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
230         /* 6: DS207 */
231         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
232         /* 16: Vector */
233         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
234         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
235         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
236         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
237         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
238         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
239         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
240         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
241         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
242         /* 42: PM, 44: PC RA, 46: SC vec'd */
243         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
244         /* 48: SIMD, 50: QP BFP, 52: String */
245         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
246         /* 54: DecFP, 56: DecI, 58: SHA */
247         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
248         /* 60: NM atomic, 62: RNG */
249         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
250     };
251     uint8_t *pa_features = NULL;
252     size_t pa_size;
253 
254     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
255         pa_features = pa_features_206;
256         pa_size = sizeof(pa_features_206);
257     }
258     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
259         pa_features = pa_features_207;
260         pa_size = sizeof(pa_features_207);
261     }
262     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
263         pa_features = pa_features_300;
264         pa_size = sizeof(pa_features_300);
265     }
266     if (!pa_features) {
267         return;
268     }
269 
270     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
271         /*
272          * Note: we keep CI large pages off by default because a 64K capable
273          * guest provisioned with large pages might otherwise try to map a qemu
274          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
275          * even if that qemu runs on a 4k host.
276          * We dd this bit back here if we are confident this is not an issue
277          */
278         pa_features[3] |= 0x20;
279     }
280     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
281         pa_features[24] |= 0x80;    /* Transactional memory support */
282     }
283     if (legacy_guest && pa_size > 40) {
284         /* Workaround for broken kernels that attempt (guest) radix
285          * mode when they can't handle it, if they see the radix bit set
286          * in pa-features. So hide it from them. */
287         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
288     }
289 
290     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
291 }
292 
293 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr)
294 {
295     MachineState *ms = MACHINE(spapr);
296     int ret = 0, offset, cpus_offset;
297     CPUState *cs;
298     char cpu_model[32];
299     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
300 
301     CPU_FOREACH(cs) {
302         PowerPCCPU *cpu = POWERPC_CPU(cs);
303         DeviceClass *dc = DEVICE_GET_CLASS(cs);
304         int index = spapr_get_vcpu_id(cpu);
305         int compat_smt = MIN(ms->smp.threads, ppc_compat_max_vthreads(cpu));
306 
307         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
308             continue;
309         }
310 
311         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
312 
313         cpus_offset = fdt_path_offset(fdt, "/cpus");
314         if (cpus_offset < 0) {
315             cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
316             if (cpus_offset < 0) {
317                 return cpus_offset;
318             }
319         }
320         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
321         if (offset < 0) {
322             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
323             if (offset < 0) {
324                 return offset;
325             }
326         }
327 
328         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
329                           pft_size_prop, sizeof(pft_size_prop));
330         if (ret < 0) {
331             return ret;
332         }
333 
334         if (nb_numa_nodes > 1) {
335             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
336             if (ret < 0) {
337                 return ret;
338             }
339         }
340 
341         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
342         if (ret < 0) {
343             return ret;
344         }
345 
346         spapr_populate_pa_features(spapr, cpu, fdt, offset,
347                                    spapr->cas_legacy_guest_workaround);
348     }
349     return ret;
350 }
351 
352 static hwaddr spapr_node0_size(MachineState *machine)
353 {
354     if (nb_numa_nodes) {
355         int i;
356         for (i = 0; i < nb_numa_nodes; ++i) {
357             if (numa_info[i].node_mem) {
358                 return MIN(pow2floor(numa_info[i].node_mem),
359                            machine->ram_size);
360             }
361         }
362     }
363     return machine->ram_size;
364 }
365 
366 static void add_str(GString *s, const gchar *s1)
367 {
368     g_string_append_len(s, s1, strlen(s1) + 1);
369 }
370 
371 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
372                                        hwaddr size)
373 {
374     uint32_t associativity[] = {
375         cpu_to_be32(0x4), /* length */
376         cpu_to_be32(0x0), cpu_to_be32(0x0),
377         cpu_to_be32(0x0), cpu_to_be32(nodeid)
378     };
379     char mem_name[32];
380     uint64_t mem_reg_property[2];
381     int off;
382 
383     mem_reg_property[0] = cpu_to_be64(start);
384     mem_reg_property[1] = cpu_to_be64(size);
385 
386     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
387     off = fdt_add_subnode(fdt, 0, mem_name);
388     _FDT(off);
389     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
390     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
391                       sizeof(mem_reg_property))));
392     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
393                       sizeof(associativity))));
394     return off;
395 }
396 
397 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
398 {
399     MachineState *machine = MACHINE(spapr);
400     hwaddr mem_start, node_size;
401     int i, nb_nodes = nb_numa_nodes;
402     NodeInfo *nodes = numa_info;
403     NodeInfo ramnode;
404 
405     /* No NUMA nodes, assume there is just one node with whole RAM */
406     if (!nb_numa_nodes) {
407         nb_nodes = 1;
408         ramnode.node_mem = machine->ram_size;
409         nodes = &ramnode;
410     }
411 
412     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
413         if (!nodes[i].node_mem) {
414             continue;
415         }
416         if (mem_start >= machine->ram_size) {
417             node_size = 0;
418         } else {
419             node_size = nodes[i].node_mem;
420             if (node_size > machine->ram_size - mem_start) {
421                 node_size = machine->ram_size - mem_start;
422             }
423         }
424         if (!mem_start) {
425             /* spapr_machine_init() checks for rma_size <= node0_size
426              * already */
427             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
428             mem_start += spapr->rma_size;
429             node_size -= spapr->rma_size;
430         }
431         for ( ; node_size; ) {
432             hwaddr sizetmp = pow2floor(node_size);
433 
434             /* mem_start != 0 here */
435             if (ctzl(mem_start) < ctzl(sizetmp)) {
436                 sizetmp = 1ULL << ctzl(mem_start);
437             }
438 
439             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
440             node_size -= sizetmp;
441             mem_start += sizetmp;
442         }
443     }
444 
445     return 0;
446 }
447 
448 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
449                                   SpaprMachineState *spapr)
450 {
451     MachineState *ms = MACHINE(spapr);
452     PowerPCCPU *cpu = POWERPC_CPU(cs);
453     CPUPPCState *env = &cpu->env;
454     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
455     int index = spapr_get_vcpu_id(cpu);
456     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
457                        0xffffffff, 0xffffffff};
458     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
459         : SPAPR_TIMEBASE_FREQ;
460     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
461     uint32_t page_sizes_prop[64];
462     size_t page_sizes_prop_size;
463     unsigned int smp_threads = ms->smp.threads;
464     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
465     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
466     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
467     SpaprDrc *drc;
468     int drc_index;
469     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
470     int i;
471 
472     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
473     if (drc) {
474         drc_index = spapr_drc_index(drc);
475         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
476     }
477 
478     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
479     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
480 
481     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
482     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
483                            env->dcache_line_size)));
484     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
485                            env->dcache_line_size)));
486     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
487                            env->icache_line_size)));
488     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
489                            env->icache_line_size)));
490 
491     if (pcc->l1_dcache_size) {
492         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
493                                pcc->l1_dcache_size)));
494     } else {
495         warn_report("Unknown L1 dcache size for cpu");
496     }
497     if (pcc->l1_icache_size) {
498         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
499                                pcc->l1_icache_size)));
500     } else {
501         warn_report("Unknown L1 icache size for cpu");
502     }
503 
504     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
505     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
506     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
507     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
508     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
509     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
510 
511     if (env->spr_cb[SPR_PURR].oea_read) {
512         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
513     }
514     if (env->spr_cb[SPR_SPURR].oea_read) {
515         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
516     }
517 
518     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
519         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
520                           segs, sizeof(segs))));
521     }
522 
523     /* Advertise VSX (vector extensions) if available
524      *   1               == VMX / Altivec available
525      *   2               == VSX available
526      *
527      * Only CPUs for which we create core types in spapr_cpu_core.c
528      * are possible, and all of those have VMX */
529     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
530         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
531     } else {
532         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
533     }
534 
535     /* Advertise DFP (Decimal Floating Point) if available
536      *   0 / no property == no DFP
537      *   1               == DFP available */
538     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
539         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
540     }
541 
542     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
543                                                       sizeof(page_sizes_prop));
544     if (page_sizes_prop_size) {
545         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
546                           page_sizes_prop, page_sizes_prop_size)));
547     }
548 
549     spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
550 
551     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
552                            cs->cpu_index / vcpus_per_socket)));
553 
554     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
555                       pft_size_prop, sizeof(pft_size_prop))));
556 
557     if (nb_numa_nodes > 1) {
558         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
559     }
560 
561     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
562 
563     if (pcc->radix_page_info) {
564         for (i = 0; i < pcc->radix_page_info->count; i++) {
565             radix_AP_encodings[i] =
566                 cpu_to_be32(pcc->radix_page_info->entries[i]);
567         }
568         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
569                           radix_AP_encodings,
570                           pcc->radix_page_info->count *
571                           sizeof(radix_AP_encodings[0]))));
572     }
573 
574     /*
575      * We set this property to let the guest know that it can use the large
576      * decrementer and its width in bits.
577      */
578     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
579         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
580                               pcc->lrg_decr_bits)));
581 }
582 
583 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
584 {
585     CPUState **rev;
586     CPUState *cs;
587     int n_cpus;
588     int cpus_offset;
589     char *nodename;
590     int i;
591 
592     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
593     _FDT(cpus_offset);
594     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
595     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
596 
597     /*
598      * We walk the CPUs in reverse order to ensure that CPU DT nodes
599      * created by fdt_add_subnode() end up in the right order in FDT
600      * for the guest kernel the enumerate the CPUs correctly.
601      *
602      * The CPU list cannot be traversed in reverse order, so we need
603      * to do extra work.
604      */
605     n_cpus = 0;
606     rev = NULL;
607     CPU_FOREACH(cs) {
608         rev = g_renew(CPUState *, rev, n_cpus + 1);
609         rev[n_cpus++] = cs;
610     }
611 
612     for (i = n_cpus - 1; i >= 0; i--) {
613         CPUState *cs = rev[i];
614         PowerPCCPU *cpu = POWERPC_CPU(cs);
615         int index = spapr_get_vcpu_id(cpu);
616         DeviceClass *dc = DEVICE_GET_CLASS(cs);
617         int offset;
618 
619         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
620             continue;
621         }
622 
623         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
624         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
625         g_free(nodename);
626         _FDT(offset);
627         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
628     }
629 
630     g_free(rev);
631 }
632 
633 static int spapr_rng_populate_dt(void *fdt)
634 {
635     int node;
636     int ret;
637 
638     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
639     if (node <= 0) {
640         return -1;
641     }
642     ret = fdt_setprop_string(fdt, node, "device_type",
643                              "ibm,platform-facilities");
644     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
645     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
646 
647     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
648     if (node <= 0) {
649         return -1;
650     }
651     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
652 
653     return ret ? -1 : 0;
654 }
655 
656 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
657 {
658     MemoryDeviceInfoList *info;
659 
660     for (info = list; info; info = info->next) {
661         MemoryDeviceInfo *value = info->value;
662 
663         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
664             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
665 
666             if (addr >= pcdimm_info->addr &&
667                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
668                 return pcdimm_info->node;
669             }
670         }
671     }
672 
673     return -1;
674 }
675 
676 struct sPAPRDrconfCellV2 {
677      uint32_t seq_lmbs;
678      uint64_t base_addr;
679      uint32_t drc_index;
680      uint32_t aa_index;
681      uint32_t flags;
682 } QEMU_PACKED;
683 
684 typedef struct DrconfCellQueue {
685     struct sPAPRDrconfCellV2 cell;
686     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
687 } DrconfCellQueue;
688 
689 static DrconfCellQueue *
690 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
691                       uint32_t drc_index, uint32_t aa_index,
692                       uint32_t flags)
693 {
694     DrconfCellQueue *elem;
695 
696     elem = g_malloc0(sizeof(*elem));
697     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
698     elem->cell.base_addr = cpu_to_be64(base_addr);
699     elem->cell.drc_index = cpu_to_be32(drc_index);
700     elem->cell.aa_index = cpu_to_be32(aa_index);
701     elem->cell.flags = cpu_to_be32(flags);
702 
703     return elem;
704 }
705 
706 /* ibm,dynamic-memory-v2 */
707 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
708                                    int offset, MemoryDeviceInfoList *dimms)
709 {
710     MachineState *machine = MACHINE(spapr);
711     uint8_t *int_buf, *cur_index;
712     int ret;
713     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
714     uint64_t addr, cur_addr, size;
715     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
716     uint64_t mem_end = machine->device_memory->base +
717                        memory_region_size(&machine->device_memory->mr);
718     uint32_t node, buf_len, nr_entries = 0;
719     SpaprDrc *drc;
720     DrconfCellQueue *elem, *next;
721     MemoryDeviceInfoList *info;
722     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
723         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
724 
725     /* Entry to cover RAM and the gap area */
726     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
727                                  SPAPR_LMB_FLAGS_RESERVED |
728                                  SPAPR_LMB_FLAGS_DRC_INVALID);
729     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
730     nr_entries++;
731 
732     cur_addr = machine->device_memory->base;
733     for (info = dimms; info; info = info->next) {
734         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
735 
736         addr = di->addr;
737         size = di->size;
738         node = di->node;
739 
740         /* Entry for hot-pluggable area */
741         if (cur_addr < addr) {
742             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
743             g_assert(drc);
744             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
745                                          cur_addr, spapr_drc_index(drc), -1, 0);
746             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
747             nr_entries++;
748         }
749 
750         /* Entry for DIMM */
751         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
752         g_assert(drc);
753         elem = spapr_get_drconf_cell(size / lmb_size, addr,
754                                      spapr_drc_index(drc), node,
755                                      SPAPR_LMB_FLAGS_ASSIGNED);
756         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
757         nr_entries++;
758         cur_addr = addr + size;
759     }
760 
761     /* Entry for remaining hotpluggable area */
762     if (cur_addr < mem_end) {
763         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
764         g_assert(drc);
765         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
766                                      cur_addr, spapr_drc_index(drc), -1, 0);
767         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
768         nr_entries++;
769     }
770 
771     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
772     int_buf = cur_index = g_malloc0(buf_len);
773     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
774     cur_index += sizeof(nr_entries);
775 
776     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
777         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
778         cur_index += sizeof(elem->cell);
779         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
780         g_free(elem);
781     }
782 
783     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
784     g_free(int_buf);
785     if (ret < 0) {
786         return -1;
787     }
788     return 0;
789 }
790 
791 /* ibm,dynamic-memory */
792 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
793                                    int offset, MemoryDeviceInfoList *dimms)
794 {
795     MachineState *machine = MACHINE(spapr);
796     int i, ret;
797     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
798     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
799     uint32_t nr_lmbs = (machine->device_memory->base +
800                        memory_region_size(&machine->device_memory->mr)) /
801                        lmb_size;
802     uint32_t *int_buf, *cur_index, buf_len;
803 
804     /*
805      * Allocate enough buffer size to fit in ibm,dynamic-memory
806      */
807     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
808     cur_index = int_buf = g_malloc0(buf_len);
809     int_buf[0] = cpu_to_be32(nr_lmbs);
810     cur_index++;
811     for (i = 0; i < nr_lmbs; i++) {
812         uint64_t addr = i * lmb_size;
813         uint32_t *dynamic_memory = cur_index;
814 
815         if (i >= device_lmb_start) {
816             SpaprDrc *drc;
817 
818             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
819             g_assert(drc);
820 
821             dynamic_memory[0] = cpu_to_be32(addr >> 32);
822             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
823             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
824             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
825             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
826             if (memory_region_present(get_system_memory(), addr)) {
827                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
828             } else {
829                 dynamic_memory[5] = cpu_to_be32(0);
830             }
831         } else {
832             /*
833              * LMB information for RMA, boot time RAM and gap b/n RAM and
834              * device memory region -- all these are marked as reserved
835              * and as having no valid DRC.
836              */
837             dynamic_memory[0] = cpu_to_be32(addr >> 32);
838             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
839             dynamic_memory[2] = cpu_to_be32(0);
840             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
841             dynamic_memory[4] = cpu_to_be32(-1);
842             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
843                                             SPAPR_LMB_FLAGS_DRC_INVALID);
844         }
845 
846         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
847     }
848     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
849     g_free(int_buf);
850     if (ret < 0) {
851         return -1;
852     }
853     return 0;
854 }
855 
856 /*
857  * Adds ibm,dynamic-reconfiguration-memory node.
858  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
859  * of this device tree node.
860  */
861 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
862 {
863     MachineState *machine = MACHINE(spapr);
864     int ret, i, offset;
865     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
866     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
867     uint32_t *int_buf, *cur_index, buf_len;
868     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
869     MemoryDeviceInfoList *dimms = NULL;
870 
871     /*
872      * Don't create the node if there is no device memory
873      */
874     if (machine->ram_size == machine->maxram_size) {
875         return 0;
876     }
877 
878     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
879 
880     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
881                     sizeof(prop_lmb_size));
882     if (ret < 0) {
883         return ret;
884     }
885 
886     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
887     if (ret < 0) {
888         return ret;
889     }
890 
891     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
892     if (ret < 0) {
893         return ret;
894     }
895 
896     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
897     dimms = qmp_memory_device_list();
898     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
899         ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
900     } else {
901         ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
902     }
903     qapi_free_MemoryDeviceInfoList(dimms);
904 
905     if (ret < 0) {
906         return ret;
907     }
908 
909     /* ibm,associativity-lookup-arrays */
910     buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
911     cur_index = int_buf = g_malloc0(buf_len);
912     int_buf[0] = cpu_to_be32(nr_nodes);
913     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
914     cur_index += 2;
915     for (i = 0; i < nr_nodes; i++) {
916         uint32_t associativity[] = {
917             cpu_to_be32(0x0),
918             cpu_to_be32(0x0),
919             cpu_to_be32(0x0),
920             cpu_to_be32(i)
921         };
922         memcpy(cur_index, associativity, sizeof(associativity));
923         cur_index += 4;
924     }
925     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
926             (cur_index - int_buf) * sizeof(uint32_t));
927     g_free(int_buf);
928 
929     return ret;
930 }
931 
932 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
933                                 SpaprOptionVector *ov5_updates)
934 {
935     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
936     int ret = 0, offset;
937 
938     /* Generate ibm,dynamic-reconfiguration-memory node if required */
939     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
940         g_assert(smc->dr_lmb_enabled);
941         ret = spapr_populate_drconf_memory(spapr, fdt);
942         if (ret) {
943             goto out;
944         }
945     }
946 
947     offset = fdt_path_offset(fdt, "/chosen");
948     if (offset < 0) {
949         offset = fdt_add_subnode(fdt, 0, "chosen");
950         if (offset < 0) {
951             return offset;
952         }
953     }
954     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
955                                  "ibm,architecture-vec-5");
956 
957 out:
958     return ret;
959 }
960 
961 static bool spapr_hotplugged_dev_before_cas(void)
962 {
963     Object *drc_container, *obj;
964     ObjectProperty *prop;
965     ObjectPropertyIterator iter;
966 
967     drc_container = container_get(object_get_root(), "/dr-connector");
968     object_property_iter_init(&iter, drc_container);
969     while ((prop = object_property_iter_next(&iter))) {
970         if (!strstart(prop->type, "link<", NULL)) {
971             continue;
972         }
973         obj = object_property_get_link(drc_container, prop->name, NULL);
974         if (spapr_drc_needed(obj)) {
975             return true;
976         }
977     }
978     return false;
979 }
980 
981 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
982                                  target_ulong addr, target_ulong size,
983                                  SpaprOptionVector *ov5_updates)
984 {
985     void *fdt, *fdt_skel;
986     SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
987 
988     if (spapr_hotplugged_dev_before_cas()) {
989         return 1;
990     }
991 
992     if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
993         error_report("SLOF provided an unexpected CAS buffer size "
994                      TARGET_FMT_lu " (min: %zu, max: %u)",
995                      size, sizeof(hdr), FW_MAX_SIZE);
996         exit(EXIT_FAILURE);
997     }
998 
999     size -= sizeof(hdr);
1000 
1001     /* Create skeleton */
1002     fdt_skel = g_malloc0(size);
1003     _FDT((fdt_create(fdt_skel, size)));
1004     _FDT((fdt_finish_reservemap(fdt_skel)));
1005     _FDT((fdt_begin_node(fdt_skel, "")));
1006     _FDT((fdt_end_node(fdt_skel)));
1007     _FDT((fdt_finish(fdt_skel)));
1008     fdt = g_malloc0(size);
1009     _FDT((fdt_open_into(fdt_skel, fdt, size)));
1010     g_free(fdt_skel);
1011 
1012     /* Fixup cpu nodes */
1013     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1014 
1015     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1016         return -1;
1017     }
1018 
1019     /* Pack resulting tree */
1020     _FDT((fdt_pack(fdt)));
1021 
1022     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1023         trace_spapr_cas_failed(size);
1024         return -1;
1025     }
1026 
1027     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1028     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1029     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1030     g_free(fdt);
1031 
1032     return 0;
1033 }
1034 
1035 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
1036 {
1037     MachineState *ms = MACHINE(spapr);
1038     int rtas;
1039     GString *hypertas = g_string_sized_new(256);
1040     GString *qemu_hypertas = g_string_sized_new(256);
1041     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1042     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1043         memory_region_size(&MACHINE(spapr)->device_memory->mr);
1044     uint32_t lrdr_capacity[] = {
1045         cpu_to_be32(max_device_addr >> 32),
1046         cpu_to_be32(max_device_addr & 0xffffffff),
1047         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1048         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
1049     };
1050     uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
1051     uint32_t maxdomains[] = {
1052         cpu_to_be32(4),
1053         maxdomain,
1054         maxdomain,
1055         maxdomain,
1056         cpu_to_be32(spapr->gpu_numa_id),
1057     };
1058 
1059     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1060 
1061     /* hypertas */
1062     add_str(hypertas, "hcall-pft");
1063     add_str(hypertas, "hcall-term");
1064     add_str(hypertas, "hcall-dabr");
1065     add_str(hypertas, "hcall-interrupt");
1066     add_str(hypertas, "hcall-tce");
1067     add_str(hypertas, "hcall-vio");
1068     add_str(hypertas, "hcall-splpar");
1069     add_str(hypertas, "hcall-bulk");
1070     add_str(hypertas, "hcall-set-mode");
1071     add_str(hypertas, "hcall-sprg0");
1072     add_str(hypertas, "hcall-copy");
1073     add_str(hypertas, "hcall-debug");
1074     add_str(hypertas, "hcall-vphn");
1075     add_str(qemu_hypertas, "hcall-memop1");
1076 
1077     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1078         add_str(hypertas, "hcall-multi-tce");
1079     }
1080 
1081     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1082         add_str(hypertas, "hcall-hpt-resize");
1083     }
1084 
1085     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1086                      hypertas->str, hypertas->len));
1087     g_string_free(hypertas, TRUE);
1088     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1089                      qemu_hypertas->str, qemu_hypertas->len));
1090     g_string_free(qemu_hypertas, TRUE);
1091 
1092     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1093                      refpoints, sizeof(refpoints)));
1094 
1095     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1096                      maxdomains, sizeof(maxdomains)));
1097 
1098     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1099                           RTAS_ERROR_LOG_MAX));
1100     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1101                           RTAS_EVENT_SCAN_RATE));
1102 
1103     g_assert(msi_nonbroken);
1104     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1105 
1106     /*
1107      * According to PAPR, rtas ibm,os-term does not guarantee a return
1108      * back to the guest cpu.
1109      *
1110      * While an additional ibm,extended-os-term property indicates
1111      * that rtas call return will always occur. Set this property.
1112      */
1113     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1114 
1115     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1116                      lrdr_capacity, sizeof(lrdr_capacity)));
1117 
1118     spapr_dt_rtas_tokens(fdt, rtas);
1119 }
1120 
1121 /*
1122  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1123  * and the XIVE features that the guest may request and thus the valid
1124  * values for bytes 23..26 of option vector 5:
1125  */
1126 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1127                                           int chosen)
1128 {
1129     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1130 
1131     char val[2 * 4] = {
1132         23, spapr->irq->ov5, /* Xive mode. */
1133         24, 0x00, /* Hash/Radix, filled in below. */
1134         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1135         26, 0x40, /* Radix options: GTSE == yes. */
1136     };
1137 
1138     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1139                           first_ppc_cpu->compat_pvr)) {
1140         /*
1141          * If we're in a pre POWER9 compat mode then the guest should
1142          * do hash and use the legacy interrupt mode
1143          */
1144         val[1] = 0x00; /* XICS */
1145         val[3] = 0x00; /* Hash */
1146     } else if (kvm_enabled()) {
1147         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1148             val[3] = 0x80; /* OV5_MMU_BOTH */
1149         } else if (kvmppc_has_cap_mmu_radix()) {
1150             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1151         } else {
1152             val[3] = 0x00; /* Hash */
1153         }
1154     } else {
1155         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1156         val[3] = 0xC0;
1157     }
1158     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1159                      val, sizeof(val)));
1160 }
1161 
1162 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1163 {
1164     MachineState *machine = MACHINE(spapr);
1165     int chosen;
1166     const char *boot_device = machine->boot_order;
1167     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1168     size_t cb = 0;
1169     char *bootlist = get_boot_devices_list(&cb);
1170 
1171     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1172 
1173     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1174     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1175                           spapr->initrd_base));
1176     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1177                           spapr->initrd_base + spapr->initrd_size));
1178 
1179     if (spapr->kernel_size) {
1180         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1181                               cpu_to_be64(spapr->kernel_size) };
1182 
1183         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1184                          &kprop, sizeof(kprop)));
1185         if (spapr->kernel_le) {
1186             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1187         }
1188     }
1189     if (boot_menu) {
1190         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1191     }
1192     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1193     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1194     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1195 
1196     if (cb && bootlist) {
1197         int i;
1198 
1199         for (i = 0; i < cb; i++) {
1200             if (bootlist[i] == '\n') {
1201                 bootlist[i] = ' ';
1202             }
1203         }
1204         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1205     }
1206 
1207     if (boot_device && strlen(boot_device)) {
1208         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1209     }
1210 
1211     if (!spapr->has_graphics && stdout_path) {
1212         /*
1213          * "linux,stdout-path" and "stdout" properties are deprecated by linux
1214          * kernel. New platforms should only use the "stdout-path" property. Set
1215          * the new property and continue using older property to remain
1216          * compatible with the existing firmware.
1217          */
1218         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1219         _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1220     }
1221 
1222     spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1223 
1224     g_free(stdout_path);
1225     g_free(bootlist);
1226 }
1227 
1228 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1229 {
1230     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1231      * KVM to work under pHyp with some guest co-operation */
1232     int hypervisor;
1233     uint8_t hypercall[16];
1234 
1235     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1236     /* indicate KVM hypercall interface */
1237     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1238     if (kvmppc_has_cap_fixup_hcalls()) {
1239         /*
1240          * Older KVM versions with older guest kernels were broken
1241          * with the magic page, don't allow the guest to map it.
1242          */
1243         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1244                                   sizeof(hypercall))) {
1245             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1246                              hypercall, sizeof(hypercall)));
1247         }
1248     }
1249 }
1250 
1251 static void *spapr_build_fdt(SpaprMachineState *spapr)
1252 {
1253     MachineState *machine = MACHINE(spapr);
1254     MachineClass *mc = MACHINE_GET_CLASS(machine);
1255     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1256     int ret;
1257     void *fdt;
1258     SpaprPhbState *phb;
1259     char *buf;
1260 
1261     fdt = g_malloc0(FDT_MAX_SIZE);
1262     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1263 
1264     /* Root node */
1265     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1266     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1267     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1268 
1269     /* Guest UUID & Name*/
1270     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1271     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1272     if (qemu_uuid_set) {
1273         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1274     }
1275     g_free(buf);
1276 
1277     if (qemu_get_vm_name()) {
1278         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1279                                 qemu_get_vm_name()));
1280     }
1281 
1282     /* Host Model & Serial Number */
1283     if (spapr->host_model) {
1284         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1285     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1286         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1287         g_free(buf);
1288     }
1289 
1290     if (spapr->host_serial) {
1291         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1292     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1293         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1294         g_free(buf);
1295     }
1296 
1297     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1298     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1299 
1300     /* /interrupt controller */
1301     spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1302                           PHANDLE_INTC);
1303 
1304     ret = spapr_populate_memory(spapr, fdt);
1305     if (ret < 0) {
1306         error_report("couldn't setup memory nodes in fdt");
1307         exit(1);
1308     }
1309 
1310     /* /vdevice */
1311     spapr_dt_vdevice(spapr->vio_bus, fdt);
1312 
1313     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1314         ret = spapr_rng_populate_dt(fdt);
1315         if (ret < 0) {
1316             error_report("could not set up rng device in the fdt");
1317             exit(1);
1318         }
1319     }
1320 
1321     QLIST_FOREACH(phb, &spapr->phbs, list) {
1322         ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL);
1323         if (ret < 0) {
1324             error_report("couldn't setup PCI devices in fdt");
1325             exit(1);
1326         }
1327     }
1328 
1329     /* cpus */
1330     spapr_populate_cpus_dt_node(fdt, spapr);
1331 
1332     if (smc->dr_lmb_enabled) {
1333         _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1334     }
1335 
1336     if (mc->has_hotpluggable_cpus) {
1337         int offset = fdt_path_offset(fdt, "/cpus");
1338         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1339         if (ret < 0) {
1340             error_report("Couldn't set up CPU DR device tree properties");
1341             exit(1);
1342         }
1343     }
1344 
1345     /* /event-sources */
1346     spapr_dt_events(spapr, fdt);
1347 
1348     /* /rtas */
1349     spapr_dt_rtas(spapr, fdt);
1350 
1351     /* /chosen */
1352     spapr_dt_chosen(spapr, fdt);
1353 
1354     /* /hypervisor */
1355     if (kvm_enabled()) {
1356         spapr_dt_hypervisor(spapr, fdt);
1357     }
1358 
1359     /* Build memory reserve map */
1360     if (spapr->kernel_size) {
1361         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1362     }
1363     if (spapr->initrd_size) {
1364         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1365     }
1366 
1367     /* ibm,client-architecture-support updates */
1368     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1369     if (ret < 0) {
1370         error_report("couldn't setup CAS properties fdt");
1371         exit(1);
1372     }
1373 
1374     if (smc->dr_phb_enabled) {
1375         ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1376         if (ret < 0) {
1377             error_report("Couldn't set up PHB DR device tree properties");
1378             exit(1);
1379         }
1380     }
1381 
1382     return fdt;
1383 }
1384 
1385 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1386 {
1387     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1388 }
1389 
1390 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1391                                     PowerPCCPU *cpu)
1392 {
1393     CPUPPCState *env = &cpu->env;
1394 
1395     /* The TCG path should also be holding the BQL at this point */
1396     g_assert(qemu_mutex_iothread_locked());
1397 
1398     if (msr_pr) {
1399         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1400         env->gpr[3] = H_PRIVILEGE;
1401     } else {
1402         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1403     }
1404 }
1405 
1406 struct LPCRSyncState {
1407     target_ulong value;
1408     target_ulong mask;
1409 };
1410 
1411 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1412 {
1413     struct LPCRSyncState *s = arg.host_ptr;
1414     PowerPCCPU *cpu = POWERPC_CPU(cs);
1415     CPUPPCState *env = &cpu->env;
1416     target_ulong lpcr;
1417 
1418     cpu_synchronize_state(cs);
1419     lpcr = env->spr[SPR_LPCR];
1420     lpcr &= ~s->mask;
1421     lpcr |= s->value;
1422     ppc_store_lpcr(cpu, lpcr);
1423 }
1424 
1425 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1426 {
1427     CPUState *cs;
1428     struct LPCRSyncState s = {
1429         .value = value,
1430         .mask = mask
1431     };
1432     CPU_FOREACH(cs) {
1433         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1434     }
1435 }
1436 
1437 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1438 {
1439     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1440 
1441     /* Copy PATE1:GR into PATE0:HR */
1442     entry->dw0 = spapr->patb_entry & PATE0_HR;
1443     entry->dw1 = spapr->patb_entry;
1444 }
1445 
1446 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1447 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1448 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1449 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1450 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1451 
1452 /*
1453  * Get the fd to access the kernel htab, re-opening it if necessary
1454  */
1455 static int get_htab_fd(SpaprMachineState *spapr)
1456 {
1457     Error *local_err = NULL;
1458 
1459     if (spapr->htab_fd >= 0) {
1460         return spapr->htab_fd;
1461     }
1462 
1463     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1464     if (spapr->htab_fd < 0) {
1465         error_report_err(local_err);
1466     }
1467 
1468     return spapr->htab_fd;
1469 }
1470 
1471 void close_htab_fd(SpaprMachineState *spapr)
1472 {
1473     if (spapr->htab_fd >= 0) {
1474         close(spapr->htab_fd);
1475     }
1476     spapr->htab_fd = -1;
1477 }
1478 
1479 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1480 {
1481     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1482 
1483     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1484 }
1485 
1486 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1487 {
1488     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1489 
1490     assert(kvm_enabled());
1491 
1492     if (!spapr->htab) {
1493         return 0;
1494     }
1495 
1496     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1497 }
1498 
1499 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1500                                                 hwaddr ptex, int n)
1501 {
1502     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1503     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1504 
1505     if (!spapr->htab) {
1506         /*
1507          * HTAB is controlled by KVM. Fetch into temporary buffer
1508          */
1509         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1510         kvmppc_read_hptes(hptes, ptex, n);
1511         return hptes;
1512     }
1513 
1514     /*
1515      * HTAB is controlled by QEMU. Just point to the internally
1516      * accessible PTEG.
1517      */
1518     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1519 }
1520 
1521 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1522                               const ppc_hash_pte64_t *hptes,
1523                               hwaddr ptex, int n)
1524 {
1525     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1526 
1527     if (!spapr->htab) {
1528         g_free((void *)hptes);
1529     }
1530 
1531     /* Nothing to do for qemu managed HPT */
1532 }
1533 
1534 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1535                       uint64_t pte0, uint64_t pte1)
1536 {
1537     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1538     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1539 
1540     if (!spapr->htab) {
1541         kvmppc_write_hpte(ptex, pte0, pte1);
1542     } else {
1543         if (pte0 & HPTE64_V_VALID) {
1544             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1545             /*
1546              * When setting valid, we write PTE1 first. This ensures
1547              * proper synchronization with the reading code in
1548              * ppc_hash64_pteg_search()
1549              */
1550             smp_wmb();
1551             stq_p(spapr->htab + offset, pte0);
1552         } else {
1553             stq_p(spapr->htab + offset, pte0);
1554             /*
1555              * When clearing it we set PTE0 first. This ensures proper
1556              * synchronization with the reading code in
1557              * ppc_hash64_pteg_search()
1558              */
1559             smp_wmb();
1560             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1561         }
1562     }
1563 }
1564 
1565 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1566                              uint64_t pte1)
1567 {
1568     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1569     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1570 
1571     if (!spapr->htab) {
1572         /* There should always be a hash table when this is called */
1573         error_report("spapr_hpte_set_c called with no hash table !");
1574         return;
1575     }
1576 
1577     /* The HW performs a non-atomic byte update */
1578     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1579 }
1580 
1581 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1582                              uint64_t pte1)
1583 {
1584     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1585     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1586 
1587     if (!spapr->htab) {
1588         /* There should always be a hash table when this is called */
1589         error_report("spapr_hpte_set_r called with no hash table !");
1590         return;
1591     }
1592 
1593     /* The HW performs a non-atomic byte update */
1594     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1595 }
1596 
1597 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1598 {
1599     int shift;
1600 
1601     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1602      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1603      * that's much more than is needed for Linux guests */
1604     shift = ctz64(pow2ceil(ramsize)) - 7;
1605     shift = MAX(shift, 18); /* Minimum architected size */
1606     shift = MIN(shift, 46); /* Maximum architected size */
1607     return shift;
1608 }
1609 
1610 void spapr_free_hpt(SpaprMachineState *spapr)
1611 {
1612     g_free(spapr->htab);
1613     spapr->htab = NULL;
1614     spapr->htab_shift = 0;
1615     close_htab_fd(spapr);
1616 }
1617 
1618 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1619                           Error **errp)
1620 {
1621     long rc;
1622 
1623     /* Clean up any HPT info from a previous boot */
1624     spapr_free_hpt(spapr);
1625 
1626     rc = kvmppc_reset_htab(shift);
1627     if (rc < 0) {
1628         /* kernel-side HPT needed, but couldn't allocate one */
1629         error_setg_errno(errp, errno,
1630                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1631                          shift);
1632         /* This is almost certainly fatal, but if the caller really
1633          * wants to carry on with shift == 0, it's welcome to try */
1634     } else if (rc > 0) {
1635         /* kernel-side HPT allocated */
1636         if (rc != shift) {
1637             error_setg(errp,
1638                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1639                        shift, rc);
1640         }
1641 
1642         spapr->htab_shift = shift;
1643         spapr->htab = NULL;
1644     } else {
1645         /* kernel-side HPT not needed, allocate in userspace instead */
1646         size_t size = 1ULL << shift;
1647         int i;
1648 
1649         spapr->htab = qemu_memalign(size, size);
1650         if (!spapr->htab) {
1651             error_setg_errno(errp, errno,
1652                              "Could not allocate HPT of order %d", shift);
1653             return;
1654         }
1655 
1656         memset(spapr->htab, 0, size);
1657         spapr->htab_shift = shift;
1658 
1659         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1660             DIRTY_HPTE(HPTE(spapr->htab, i));
1661         }
1662     }
1663     /* We're setting up a hash table, so that means we're not radix */
1664     spapr->patb_entry = 0;
1665     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1666 }
1667 
1668 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1669 {
1670     int hpt_shift;
1671 
1672     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1673         || (spapr->cas_reboot
1674             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1675         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1676     } else {
1677         uint64_t current_ram_size;
1678 
1679         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1680         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1681     }
1682     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1683 
1684     if (spapr->vrma_adjust) {
1685         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1686                                           spapr->htab_shift);
1687     }
1688 }
1689 
1690 static int spapr_reset_drcs(Object *child, void *opaque)
1691 {
1692     SpaprDrc *drc =
1693         (SpaprDrc *) object_dynamic_cast(child,
1694                                                  TYPE_SPAPR_DR_CONNECTOR);
1695 
1696     if (drc) {
1697         spapr_drc_reset(drc);
1698     }
1699 
1700     return 0;
1701 }
1702 
1703 static void spapr_machine_reset(MachineState *machine)
1704 {
1705     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1706     PowerPCCPU *first_ppc_cpu;
1707     uint32_t rtas_limit;
1708     hwaddr rtas_addr, fdt_addr;
1709     void *fdt;
1710     int rc;
1711 
1712     spapr_caps_apply(spapr);
1713 
1714     first_ppc_cpu = POWERPC_CPU(first_cpu);
1715     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1716         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1717                               spapr->max_compat_pvr)) {
1718         /*
1719          * If using KVM with radix mode available, VCPUs can be started
1720          * without a HPT because KVM will start them in radix mode.
1721          * Set the GR bit in PATE so that we know there is no HPT.
1722          */
1723         spapr->patb_entry = PATE1_GR;
1724         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1725     } else {
1726         spapr_setup_hpt_and_vrma(spapr);
1727     }
1728 
1729     /*
1730      * If this reset wasn't generated by CAS, we should reset our
1731      * negotiated options and start from scratch
1732      */
1733     if (!spapr->cas_reboot) {
1734         spapr_ovec_cleanup(spapr->ov5_cas);
1735         spapr->ov5_cas = spapr_ovec_new();
1736 
1737         ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1738     }
1739 
1740     if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1741         spapr_irq_msi_reset(spapr);
1742     }
1743 
1744     /*
1745      * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
1746      * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
1747      * called from vPHB reset handler so we initialize the counter here.
1748      * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
1749      * must be equally distant from any other node.
1750      * The final value of spapr->gpu_numa_id is going to be written to
1751      * max-associativity-domains in spapr_build_fdt().
1752      */
1753     spapr->gpu_numa_id = MAX(1, nb_numa_nodes);
1754     qemu_devices_reset();
1755 
1756     /*
1757      * This is fixing some of the default configuration of the XIVE
1758      * devices. To be called after the reset of the machine devices.
1759      */
1760     spapr_irq_reset(spapr, &error_fatal);
1761 
1762     /*
1763      * There is no CAS under qtest. Simulate one to please the code that
1764      * depends on spapr->ov5_cas. This is especially needed to test device
1765      * unplug, so we do that before resetting the DRCs.
1766      */
1767     if (qtest_enabled()) {
1768         spapr_ovec_cleanup(spapr->ov5_cas);
1769         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1770     }
1771 
1772     /* DRC reset may cause a device to be unplugged. This will cause troubles
1773      * if this device is used by another device (eg, a running vhost backend
1774      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1775      * situations, we reset DRCs after all devices have been reset.
1776      */
1777     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1778 
1779     spapr_clear_pending_events(spapr);
1780 
1781     /*
1782      * We place the device tree and RTAS just below either the top of the RMA,
1783      * or just below 2GB, whichever is lower, so that it can be
1784      * processed with 32-bit real mode code if necessary
1785      */
1786     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1787     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1788     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1789 
1790     fdt = spapr_build_fdt(spapr);
1791 
1792     spapr_load_rtas(spapr, fdt, rtas_addr);
1793 
1794     rc = fdt_pack(fdt);
1795 
1796     /* Should only fail if we've built a corrupted tree */
1797     assert(rc == 0);
1798 
1799     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1800         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1801                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1802         exit(1);
1803     }
1804 
1805     /* Load the fdt */
1806     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1807     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1808     g_free(spapr->fdt_blob);
1809     spapr->fdt_size = fdt_totalsize(fdt);
1810     spapr->fdt_initial_size = spapr->fdt_size;
1811     spapr->fdt_blob = fdt;
1812 
1813     /* Set up the entry state */
1814     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1815     first_ppc_cpu->env.gpr[5] = 0;
1816 
1817     spapr->cas_reboot = false;
1818 }
1819 
1820 static void spapr_create_nvram(SpaprMachineState *spapr)
1821 {
1822     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1823     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1824 
1825     if (dinfo) {
1826         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1827                             &error_fatal);
1828     }
1829 
1830     qdev_init_nofail(dev);
1831 
1832     spapr->nvram = (struct SpaprNvram *)dev;
1833 }
1834 
1835 static void spapr_rtc_create(SpaprMachineState *spapr)
1836 {
1837     object_initialize_child(OBJECT(spapr), "rtc",
1838                             &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1839                             &error_fatal, NULL);
1840     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1841                               &error_fatal);
1842     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1843                               "date", &error_fatal);
1844 }
1845 
1846 /* Returns whether we want to use VGA or not */
1847 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1848 {
1849     switch (vga_interface_type) {
1850     case VGA_NONE:
1851         return false;
1852     case VGA_DEVICE:
1853         return true;
1854     case VGA_STD:
1855     case VGA_VIRTIO:
1856     case VGA_CIRRUS:
1857         return pci_vga_init(pci_bus) != NULL;
1858     default:
1859         error_setg(errp,
1860                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1861         return false;
1862     }
1863 }
1864 
1865 static int spapr_pre_load(void *opaque)
1866 {
1867     int rc;
1868 
1869     rc = spapr_caps_pre_load(opaque);
1870     if (rc) {
1871         return rc;
1872     }
1873 
1874     return 0;
1875 }
1876 
1877 static int spapr_post_load(void *opaque, int version_id)
1878 {
1879     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1880     int err = 0;
1881 
1882     err = spapr_caps_post_migration(spapr);
1883     if (err) {
1884         return err;
1885     }
1886 
1887     /*
1888      * In earlier versions, there was no separate qdev for the PAPR
1889      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1890      * So when migrating from those versions, poke the incoming offset
1891      * value into the RTC device
1892      */
1893     if (version_id < 3) {
1894         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1895         if (err) {
1896             return err;
1897         }
1898     }
1899 
1900     if (kvm_enabled() && spapr->patb_entry) {
1901         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1902         bool radix = !!(spapr->patb_entry & PATE1_GR);
1903         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1904 
1905         /*
1906          * Update LPCR:HR and UPRT as they may not be set properly in
1907          * the stream
1908          */
1909         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1910                             LPCR_HR | LPCR_UPRT);
1911 
1912         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1913         if (err) {
1914             error_report("Process table config unsupported by the host");
1915             return -EINVAL;
1916         }
1917     }
1918 
1919     err = spapr_irq_post_load(spapr, version_id);
1920     if (err) {
1921         return err;
1922     }
1923 
1924     return err;
1925 }
1926 
1927 static int spapr_pre_save(void *opaque)
1928 {
1929     int rc;
1930 
1931     rc = spapr_caps_pre_save(opaque);
1932     if (rc) {
1933         return rc;
1934     }
1935 
1936     return 0;
1937 }
1938 
1939 static bool version_before_3(void *opaque, int version_id)
1940 {
1941     return version_id < 3;
1942 }
1943 
1944 static bool spapr_pending_events_needed(void *opaque)
1945 {
1946     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1947     return !QTAILQ_EMPTY(&spapr->pending_events);
1948 }
1949 
1950 static const VMStateDescription vmstate_spapr_event_entry = {
1951     .name = "spapr_event_log_entry",
1952     .version_id = 1,
1953     .minimum_version_id = 1,
1954     .fields = (VMStateField[]) {
1955         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1956         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1957         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1958                                      NULL, extended_length),
1959         VMSTATE_END_OF_LIST()
1960     },
1961 };
1962 
1963 static const VMStateDescription vmstate_spapr_pending_events = {
1964     .name = "spapr_pending_events",
1965     .version_id = 1,
1966     .minimum_version_id = 1,
1967     .needed = spapr_pending_events_needed,
1968     .fields = (VMStateField[]) {
1969         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1970                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1971         VMSTATE_END_OF_LIST()
1972     },
1973 };
1974 
1975 static bool spapr_ov5_cas_needed(void *opaque)
1976 {
1977     SpaprMachineState *spapr = opaque;
1978     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1979     SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1980     SpaprOptionVector *ov5_removed = spapr_ovec_new();
1981     bool cas_needed;
1982 
1983     /* Prior to the introduction of SpaprOptionVector, we had two option
1984      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1985      * Both of these options encode machine topology into the device-tree
1986      * in such a way that the now-booted OS should still be able to interact
1987      * appropriately with QEMU regardless of what options were actually
1988      * negotiatied on the source side.
1989      *
1990      * As such, we can avoid migrating the CAS-negotiated options if these
1991      * are the only options available on the current machine/platform.
1992      * Since these are the only options available for pseries-2.7 and
1993      * earlier, this allows us to maintain old->new/new->old migration
1994      * compatibility.
1995      *
1996      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1997      * via default pseries-2.8 machines and explicit command-line parameters.
1998      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1999      * of the actual CAS-negotiated values to continue working properly. For
2000      * example, availability of memory unplug depends on knowing whether
2001      * OV5_HP_EVT was negotiated via CAS.
2002      *
2003      * Thus, for any cases where the set of available CAS-negotiatable
2004      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
2005      * include the CAS-negotiated options in the migration stream, unless
2006      * if they affect boot time behaviour only.
2007      */
2008     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
2009     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2010     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2011 
2012     /* spapr_ovec_diff returns true if bits were removed. we avoid using
2013      * the mask itself since in the future it's possible "legacy" bits may be
2014      * removed via machine options, which could generate a false positive
2015      * that breaks migration.
2016      */
2017     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
2018     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
2019 
2020     spapr_ovec_cleanup(ov5_mask);
2021     spapr_ovec_cleanup(ov5_legacy);
2022     spapr_ovec_cleanup(ov5_removed);
2023 
2024     return cas_needed;
2025 }
2026 
2027 static const VMStateDescription vmstate_spapr_ov5_cas = {
2028     .name = "spapr_option_vector_ov5_cas",
2029     .version_id = 1,
2030     .minimum_version_id = 1,
2031     .needed = spapr_ov5_cas_needed,
2032     .fields = (VMStateField[]) {
2033         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2034                                  vmstate_spapr_ovec, SpaprOptionVector),
2035         VMSTATE_END_OF_LIST()
2036     },
2037 };
2038 
2039 static bool spapr_patb_entry_needed(void *opaque)
2040 {
2041     SpaprMachineState *spapr = opaque;
2042 
2043     return !!spapr->patb_entry;
2044 }
2045 
2046 static const VMStateDescription vmstate_spapr_patb_entry = {
2047     .name = "spapr_patb_entry",
2048     .version_id = 1,
2049     .minimum_version_id = 1,
2050     .needed = spapr_patb_entry_needed,
2051     .fields = (VMStateField[]) {
2052         VMSTATE_UINT64(patb_entry, SpaprMachineState),
2053         VMSTATE_END_OF_LIST()
2054     },
2055 };
2056 
2057 static bool spapr_irq_map_needed(void *opaque)
2058 {
2059     SpaprMachineState *spapr = opaque;
2060 
2061     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2062 }
2063 
2064 static const VMStateDescription vmstate_spapr_irq_map = {
2065     .name = "spapr_irq_map",
2066     .version_id = 1,
2067     .minimum_version_id = 1,
2068     .needed = spapr_irq_map_needed,
2069     .fields = (VMStateField[]) {
2070         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2071         VMSTATE_END_OF_LIST()
2072     },
2073 };
2074 
2075 static bool spapr_dtb_needed(void *opaque)
2076 {
2077     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2078 
2079     return smc->update_dt_enabled;
2080 }
2081 
2082 static int spapr_dtb_pre_load(void *opaque)
2083 {
2084     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2085 
2086     g_free(spapr->fdt_blob);
2087     spapr->fdt_blob = NULL;
2088     spapr->fdt_size = 0;
2089 
2090     return 0;
2091 }
2092 
2093 static const VMStateDescription vmstate_spapr_dtb = {
2094     .name = "spapr_dtb",
2095     .version_id = 1,
2096     .minimum_version_id = 1,
2097     .needed = spapr_dtb_needed,
2098     .pre_load = spapr_dtb_pre_load,
2099     .fields = (VMStateField[]) {
2100         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2101         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2102         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2103                                      fdt_size),
2104         VMSTATE_END_OF_LIST()
2105     },
2106 };
2107 
2108 static const VMStateDescription vmstate_spapr = {
2109     .name = "spapr",
2110     .version_id = 3,
2111     .minimum_version_id = 1,
2112     .pre_load = spapr_pre_load,
2113     .post_load = spapr_post_load,
2114     .pre_save = spapr_pre_save,
2115     .fields = (VMStateField[]) {
2116         /* used to be @next_irq */
2117         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2118 
2119         /* RTC offset */
2120         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2121 
2122         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2123         VMSTATE_END_OF_LIST()
2124     },
2125     .subsections = (const VMStateDescription*[]) {
2126         &vmstate_spapr_ov5_cas,
2127         &vmstate_spapr_patb_entry,
2128         &vmstate_spapr_pending_events,
2129         &vmstate_spapr_cap_htm,
2130         &vmstate_spapr_cap_vsx,
2131         &vmstate_spapr_cap_dfp,
2132         &vmstate_spapr_cap_cfpc,
2133         &vmstate_spapr_cap_sbbc,
2134         &vmstate_spapr_cap_ibs,
2135         &vmstate_spapr_cap_hpt_maxpagesize,
2136         &vmstate_spapr_irq_map,
2137         &vmstate_spapr_cap_nested_kvm_hv,
2138         &vmstate_spapr_dtb,
2139         &vmstate_spapr_cap_large_decr,
2140         &vmstate_spapr_cap_ccf_assist,
2141         NULL
2142     }
2143 };
2144 
2145 static int htab_save_setup(QEMUFile *f, void *opaque)
2146 {
2147     SpaprMachineState *spapr = opaque;
2148 
2149     /* "Iteration" header */
2150     if (!spapr->htab_shift) {
2151         qemu_put_be32(f, -1);
2152     } else {
2153         qemu_put_be32(f, spapr->htab_shift);
2154     }
2155 
2156     if (spapr->htab) {
2157         spapr->htab_save_index = 0;
2158         spapr->htab_first_pass = true;
2159     } else {
2160         if (spapr->htab_shift) {
2161             assert(kvm_enabled());
2162         }
2163     }
2164 
2165 
2166     return 0;
2167 }
2168 
2169 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2170                             int chunkstart, int n_valid, int n_invalid)
2171 {
2172     qemu_put_be32(f, chunkstart);
2173     qemu_put_be16(f, n_valid);
2174     qemu_put_be16(f, n_invalid);
2175     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2176                     HASH_PTE_SIZE_64 * n_valid);
2177 }
2178 
2179 static void htab_save_end_marker(QEMUFile *f)
2180 {
2181     qemu_put_be32(f, 0);
2182     qemu_put_be16(f, 0);
2183     qemu_put_be16(f, 0);
2184 }
2185 
2186 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2187                                  int64_t max_ns)
2188 {
2189     bool has_timeout = max_ns != -1;
2190     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2191     int index = spapr->htab_save_index;
2192     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2193 
2194     assert(spapr->htab_first_pass);
2195 
2196     do {
2197         int chunkstart;
2198 
2199         /* Consume invalid HPTEs */
2200         while ((index < htabslots)
2201                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2202             CLEAN_HPTE(HPTE(spapr->htab, index));
2203             index++;
2204         }
2205 
2206         /* Consume valid HPTEs */
2207         chunkstart = index;
2208         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2209                && HPTE_VALID(HPTE(spapr->htab, index))) {
2210             CLEAN_HPTE(HPTE(spapr->htab, index));
2211             index++;
2212         }
2213 
2214         if (index > chunkstart) {
2215             int n_valid = index - chunkstart;
2216 
2217             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2218 
2219             if (has_timeout &&
2220                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2221                 break;
2222             }
2223         }
2224     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2225 
2226     if (index >= htabslots) {
2227         assert(index == htabslots);
2228         index = 0;
2229         spapr->htab_first_pass = false;
2230     }
2231     spapr->htab_save_index = index;
2232 }
2233 
2234 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2235                                 int64_t max_ns)
2236 {
2237     bool final = max_ns < 0;
2238     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2239     int examined = 0, sent = 0;
2240     int index = spapr->htab_save_index;
2241     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2242 
2243     assert(!spapr->htab_first_pass);
2244 
2245     do {
2246         int chunkstart, invalidstart;
2247 
2248         /* Consume non-dirty HPTEs */
2249         while ((index < htabslots)
2250                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2251             index++;
2252             examined++;
2253         }
2254 
2255         chunkstart = index;
2256         /* Consume valid dirty HPTEs */
2257         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2258                && HPTE_DIRTY(HPTE(spapr->htab, index))
2259                && HPTE_VALID(HPTE(spapr->htab, index))) {
2260             CLEAN_HPTE(HPTE(spapr->htab, index));
2261             index++;
2262             examined++;
2263         }
2264 
2265         invalidstart = index;
2266         /* Consume invalid dirty HPTEs */
2267         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2268                && HPTE_DIRTY(HPTE(spapr->htab, index))
2269                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2270             CLEAN_HPTE(HPTE(spapr->htab, index));
2271             index++;
2272             examined++;
2273         }
2274 
2275         if (index > chunkstart) {
2276             int n_valid = invalidstart - chunkstart;
2277             int n_invalid = index - invalidstart;
2278 
2279             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2280             sent += index - chunkstart;
2281 
2282             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2283                 break;
2284             }
2285         }
2286 
2287         if (examined >= htabslots) {
2288             break;
2289         }
2290 
2291         if (index >= htabslots) {
2292             assert(index == htabslots);
2293             index = 0;
2294         }
2295     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2296 
2297     if (index >= htabslots) {
2298         assert(index == htabslots);
2299         index = 0;
2300     }
2301 
2302     spapr->htab_save_index = index;
2303 
2304     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2305 }
2306 
2307 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2308 #define MAX_KVM_BUF_SIZE    2048
2309 
2310 static int htab_save_iterate(QEMUFile *f, void *opaque)
2311 {
2312     SpaprMachineState *spapr = opaque;
2313     int fd;
2314     int rc = 0;
2315 
2316     /* Iteration header */
2317     if (!spapr->htab_shift) {
2318         qemu_put_be32(f, -1);
2319         return 1;
2320     } else {
2321         qemu_put_be32(f, 0);
2322     }
2323 
2324     if (!spapr->htab) {
2325         assert(kvm_enabled());
2326 
2327         fd = get_htab_fd(spapr);
2328         if (fd < 0) {
2329             return fd;
2330         }
2331 
2332         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2333         if (rc < 0) {
2334             return rc;
2335         }
2336     } else  if (spapr->htab_first_pass) {
2337         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2338     } else {
2339         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2340     }
2341 
2342     htab_save_end_marker(f);
2343 
2344     return rc;
2345 }
2346 
2347 static int htab_save_complete(QEMUFile *f, void *opaque)
2348 {
2349     SpaprMachineState *spapr = opaque;
2350     int fd;
2351 
2352     /* Iteration header */
2353     if (!spapr->htab_shift) {
2354         qemu_put_be32(f, -1);
2355         return 0;
2356     } else {
2357         qemu_put_be32(f, 0);
2358     }
2359 
2360     if (!spapr->htab) {
2361         int rc;
2362 
2363         assert(kvm_enabled());
2364 
2365         fd = get_htab_fd(spapr);
2366         if (fd < 0) {
2367             return fd;
2368         }
2369 
2370         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2371         if (rc < 0) {
2372             return rc;
2373         }
2374     } else {
2375         if (spapr->htab_first_pass) {
2376             htab_save_first_pass(f, spapr, -1);
2377         }
2378         htab_save_later_pass(f, spapr, -1);
2379     }
2380 
2381     /* End marker */
2382     htab_save_end_marker(f);
2383 
2384     return 0;
2385 }
2386 
2387 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2388 {
2389     SpaprMachineState *spapr = opaque;
2390     uint32_t section_hdr;
2391     int fd = -1;
2392     Error *local_err = NULL;
2393 
2394     if (version_id < 1 || version_id > 1) {
2395         error_report("htab_load() bad version");
2396         return -EINVAL;
2397     }
2398 
2399     section_hdr = qemu_get_be32(f);
2400 
2401     if (section_hdr == -1) {
2402         spapr_free_hpt(spapr);
2403         return 0;
2404     }
2405 
2406     if (section_hdr) {
2407         /* First section gives the htab size */
2408         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2409         if (local_err) {
2410             error_report_err(local_err);
2411             return -EINVAL;
2412         }
2413         return 0;
2414     }
2415 
2416     if (!spapr->htab) {
2417         assert(kvm_enabled());
2418 
2419         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2420         if (fd < 0) {
2421             error_report_err(local_err);
2422             return fd;
2423         }
2424     }
2425 
2426     while (true) {
2427         uint32_t index;
2428         uint16_t n_valid, n_invalid;
2429 
2430         index = qemu_get_be32(f);
2431         n_valid = qemu_get_be16(f);
2432         n_invalid = qemu_get_be16(f);
2433 
2434         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2435             /* End of Stream */
2436             break;
2437         }
2438 
2439         if ((index + n_valid + n_invalid) >
2440             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2441             /* Bad index in stream */
2442             error_report(
2443                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2444                 index, n_valid, n_invalid, spapr->htab_shift);
2445             return -EINVAL;
2446         }
2447 
2448         if (spapr->htab) {
2449             if (n_valid) {
2450                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2451                                 HASH_PTE_SIZE_64 * n_valid);
2452             }
2453             if (n_invalid) {
2454                 memset(HPTE(spapr->htab, index + n_valid), 0,
2455                        HASH_PTE_SIZE_64 * n_invalid);
2456             }
2457         } else {
2458             int rc;
2459 
2460             assert(fd >= 0);
2461 
2462             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2463             if (rc < 0) {
2464                 return rc;
2465             }
2466         }
2467     }
2468 
2469     if (!spapr->htab) {
2470         assert(fd >= 0);
2471         close(fd);
2472     }
2473 
2474     return 0;
2475 }
2476 
2477 static void htab_save_cleanup(void *opaque)
2478 {
2479     SpaprMachineState *spapr = opaque;
2480 
2481     close_htab_fd(spapr);
2482 }
2483 
2484 static SaveVMHandlers savevm_htab_handlers = {
2485     .save_setup = htab_save_setup,
2486     .save_live_iterate = htab_save_iterate,
2487     .save_live_complete_precopy = htab_save_complete,
2488     .save_cleanup = htab_save_cleanup,
2489     .load_state = htab_load,
2490 };
2491 
2492 static void spapr_boot_set(void *opaque, const char *boot_device,
2493                            Error **errp)
2494 {
2495     MachineState *machine = MACHINE(opaque);
2496     machine->boot_order = g_strdup(boot_device);
2497 }
2498 
2499 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2500 {
2501     MachineState *machine = MACHINE(spapr);
2502     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2503     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2504     int i;
2505 
2506     for (i = 0; i < nr_lmbs; i++) {
2507         uint64_t addr;
2508 
2509         addr = i * lmb_size + machine->device_memory->base;
2510         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2511                                addr / lmb_size);
2512     }
2513 }
2514 
2515 /*
2516  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2517  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2518  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2519  */
2520 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2521 {
2522     int i;
2523 
2524     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2525         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2526                    " is not aligned to %" PRIu64 " MiB",
2527                    machine->ram_size,
2528                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2529         return;
2530     }
2531 
2532     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2533         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2534                    " is not aligned to %" PRIu64 " MiB",
2535                    machine->ram_size,
2536                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2537         return;
2538     }
2539 
2540     for (i = 0; i < nb_numa_nodes; i++) {
2541         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2542             error_setg(errp,
2543                        "Node %d memory size 0x%" PRIx64
2544                        " is not aligned to %" PRIu64 " MiB",
2545                        i, numa_info[i].node_mem,
2546                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2547             return;
2548         }
2549     }
2550 }
2551 
2552 /* find cpu slot in machine->possible_cpus by core_id */
2553 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2554 {
2555     int index = id / ms->smp.threads;
2556 
2557     if (index >= ms->possible_cpus->len) {
2558         return NULL;
2559     }
2560     if (idx) {
2561         *idx = index;
2562     }
2563     return &ms->possible_cpus->cpus[index];
2564 }
2565 
2566 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2567 {
2568     MachineState *ms = MACHINE(spapr);
2569     Error *local_err = NULL;
2570     bool vsmt_user = !!spapr->vsmt;
2571     int kvm_smt = kvmppc_smt_threads();
2572     int ret;
2573     unsigned int smp_threads = ms->smp.threads;
2574 
2575     if (!kvm_enabled() && (smp_threads > 1)) {
2576         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2577                      "on a pseries machine");
2578         goto out;
2579     }
2580     if (!is_power_of_2(smp_threads)) {
2581         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2582                      "machine because it must be a power of 2", smp_threads);
2583         goto out;
2584     }
2585 
2586     /* Detemine the VSMT mode to use: */
2587     if (vsmt_user) {
2588         if (spapr->vsmt < smp_threads) {
2589             error_setg(&local_err, "Cannot support VSMT mode %d"
2590                          " because it must be >= threads/core (%d)",
2591                          spapr->vsmt, smp_threads);
2592             goto out;
2593         }
2594         /* In this case, spapr->vsmt has been set by the command line */
2595     } else {
2596         /*
2597          * Default VSMT value is tricky, because we need it to be as
2598          * consistent as possible (for migration), but this requires
2599          * changing it for at least some existing cases.  We pick 8 as
2600          * the value that we'd get with KVM on POWER8, the
2601          * overwhelmingly common case in production systems.
2602          */
2603         spapr->vsmt = MAX(8, smp_threads);
2604     }
2605 
2606     /* KVM: If necessary, set the SMT mode: */
2607     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2608         ret = kvmppc_set_smt_threads(spapr->vsmt);
2609         if (ret) {
2610             /* Looks like KVM isn't able to change VSMT mode */
2611             error_setg(&local_err,
2612                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2613                        spapr->vsmt, ret);
2614             /* We can live with that if the default one is big enough
2615              * for the number of threads, and a submultiple of the one
2616              * we want.  In this case we'll waste some vcpu ids, but
2617              * behaviour will be correct */
2618             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2619                 warn_report_err(local_err);
2620                 local_err = NULL;
2621                 goto out;
2622             } else {
2623                 if (!vsmt_user) {
2624                     error_append_hint(&local_err,
2625                                       "On PPC, a VM with %d threads/core"
2626                                       " on a host with %d threads/core"
2627                                       " requires the use of VSMT mode %d.\n",
2628                                       smp_threads, kvm_smt, spapr->vsmt);
2629                 }
2630                 kvmppc_hint_smt_possible(&local_err);
2631                 goto out;
2632             }
2633         }
2634     }
2635     /* else TCG: nothing to do currently */
2636 out:
2637     error_propagate(errp, local_err);
2638 }
2639 
2640 static void spapr_init_cpus(SpaprMachineState *spapr)
2641 {
2642     MachineState *machine = MACHINE(spapr);
2643     MachineClass *mc = MACHINE_GET_CLASS(machine);
2644     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2645     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2646     const CPUArchIdList *possible_cpus;
2647     unsigned int smp_cpus = machine->smp.cpus;
2648     unsigned int smp_threads = machine->smp.threads;
2649     unsigned int max_cpus = machine->smp.max_cpus;
2650     int boot_cores_nr = smp_cpus / smp_threads;
2651     int i;
2652 
2653     possible_cpus = mc->possible_cpu_arch_ids(machine);
2654     if (mc->has_hotpluggable_cpus) {
2655         if (smp_cpus % smp_threads) {
2656             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2657                          smp_cpus, smp_threads);
2658             exit(1);
2659         }
2660         if (max_cpus % smp_threads) {
2661             error_report("max_cpus (%u) must be multiple of threads (%u)",
2662                          max_cpus, smp_threads);
2663             exit(1);
2664         }
2665     } else {
2666         if (max_cpus != smp_cpus) {
2667             error_report("This machine version does not support CPU hotplug");
2668             exit(1);
2669         }
2670         boot_cores_nr = possible_cpus->len;
2671     }
2672 
2673     if (smc->pre_2_10_has_unused_icps) {
2674         int i;
2675 
2676         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2677             /* Dummy entries get deregistered when real ICPState objects
2678              * are registered during CPU core hotplug.
2679              */
2680             pre_2_10_vmstate_register_dummy_icp(i);
2681         }
2682     }
2683 
2684     for (i = 0; i < possible_cpus->len; i++) {
2685         int core_id = i * smp_threads;
2686 
2687         if (mc->has_hotpluggable_cpus) {
2688             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2689                                    spapr_vcpu_id(spapr, core_id));
2690         }
2691 
2692         if (i < boot_cores_nr) {
2693             Object *core  = object_new(type);
2694             int nr_threads = smp_threads;
2695 
2696             /* Handle the partially filled core for older machine types */
2697             if ((i + 1) * smp_threads >= smp_cpus) {
2698                 nr_threads = smp_cpus - i * smp_threads;
2699             }
2700 
2701             object_property_set_int(core, nr_threads, "nr-threads",
2702                                     &error_fatal);
2703             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2704                                     &error_fatal);
2705             object_property_set_bool(core, true, "realized", &error_fatal);
2706 
2707             object_unref(core);
2708         }
2709     }
2710 }
2711 
2712 static PCIHostState *spapr_create_default_phb(void)
2713 {
2714     DeviceState *dev;
2715 
2716     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2717     qdev_prop_set_uint32(dev, "index", 0);
2718     qdev_init_nofail(dev);
2719 
2720     return PCI_HOST_BRIDGE(dev);
2721 }
2722 
2723 /* pSeries LPAR / sPAPR hardware init */
2724 static void spapr_machine_init(MachineState *machine)
2725 {
2726     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2727     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2728     const char *kernel_filename = machine->kernel_filename;
2729     const char *initrd_filename = machine->initrd_filename;
2730     PCIHostState *phb;
2731     int i;
2732     MemoryRegion *sysmem = get_system_memory();
2733     MemoryRegion *ram = g_new(MemoryRegion, 1);
2734     hwaddr node0_size = spapr_node0_size(machine);
2735     long load_limit, fw_size;
2736     char *filename;
2737     Error *resize_hpt_err = NULL;
2738 
2739     msi_nonbroken = true;
2740 
2741     QLIST_INIT(&spapr->phbs);
2742     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2743 
2744     /* Determine capabilities to run with */
2745     spapr_caps_init(spapr);
2746 
2747     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2748     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2749         /*
2750          * If the user explicitly requested a mode we should either
2751          * supply it, or fail completely (which we do below).  But if
2752          * it's not set explicitly, we reset our mode to something
2753          * that works
2754          */
2755         if (resize_hpt_err) {
2756             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2757             error_free(resize_hpt_err);
2758             resize_hpt_err = NULL;
2759         } else {
2760             spapr->resize_hpt = smc->resize_hpt_default;
2761         }
2762     }
2763 
2764     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2765 
2766     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2767         /*
2768          * User requested HPT resize, but this host can't supply it.  Bail out
2769          */
2770         error_report_err(resize_hpt_err);
2771         exit(1);
2772     }
2773 
2774     spapr->rma_size = node0_size;
2775 
2776     /* With KVM, we don't actually know whether KVM supports an
2777      * unbounded RMA (PR KVM) or is limited by the hash table size
2778      * (HV KVM using VRMA), so we always assume the latter
2779      *
2780      * In that case, we also limit the initial allocations for RTAS
2781      * etc... to 256M since we have no way to know what the VRMA size
2782      * is going to be as it depends on the size of the hash table
2783      * which isn't determined yet.
2784      */
2785     if (kvm_enabled()) {
2786         spapr->vrma_adjust = 1;
2787         spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2788     }
2789 
2790     /* Actually we don't support unbounded RMA anymore since we added
2791      * proper emulation of HV mode. The max we can get is 16G which
2792      * also happens to be what we configure for PAPR mode so make sure
2793      * we don't do anything bigger than that
2794      */
2795     spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2796 
2797     if (spapr->rma_size > node0_size) {
2798         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2799                      spapr->rma_size);
2800         exit(1);
2801     }
2802 
2803     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2804     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2805 
2806     /*
2807      * VSMT must be set in order to be able to compute VCPU ids, ie to
2808      * call spapr_max_server_number() or spapr_vcpu_id().
2809      */
2810     spapr_set_vsmt_mode(spapr, &error_fatal);
2811 
2812     /* Set up Interrupt Controller before we create the VCPUs */
2813     spapr_irq_init(spapr, &error_fatal);
2814 
2815     /* Set up containers for ibm,client-architecture-support negotiated options
2816      */
2817     spapr->ov5 = spapr_ovec_new();
2818     spapr->ov5_cas = spapr_ovec_new();
2819 
2820     if (smc->dr_lmb_enabled) {
2821         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2822         spapr_validate_node_memory(machine, &error_fatal);
2823     }
2824 
2825     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2826 
2827     /* advertise support for dedicated HP event source to guests */
2828     if (spapr->use_hotplug_event_source) {
2829         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2830     }
2831 
2832     /* advertise support for HPT resizing */
2833     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2834         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2835     }
2836 
2837     /* advertise support for ibm,dyamic-memory-v2 */
2838     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2839 
2840     /* advertise XIVE on POWER9 machines */
2841     if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2842         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2843     }
2844 
2845     /* init CPUs */
2846     spapr_init_cpus(spapr);
2847 
2848     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2849         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2850                               spapr->max_compat_pvr)) {
2851         /* KVM and TCG always allow GTSE with radix... */
2852         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2853     }
2854     /* ... but not with hash (currently). */
2855 
2856     if (kvm_enabled()) {
2857         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2858         kvmppc_enable_logical_ci_hcalls();
2859         kvmppc_enable_set_mode_hcall();
2860 
2861         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2862         kvmppc_enable_clear_ref_mod_hcalls();
2863 
2864         /* Enable H_PAGE_INIT */
2865         kvmppc_enable_h_page_init();
2866     }
2867 
2868     /* allocate RAM */
2869     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2870                                          machine->ram_size);
2871     memory_region_add_subregion(sysmem, 0, ram);
2872 
2873     /* always allocate the device memory information */
2874     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2875 
2876     /* initialize hotplug memory address space */
2877     if (machine->ram_size < machine->maxram_size) {
2878         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2879         /*
2880          * Limit the number of hotpluggable memory slots to half the number
2881          * slots that KVM supports, leaving the other half for PCI and other
2882          * devices. However ensure that number of slots doesn't drop below 32.
2883          */
2884         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2885                            SPAPR_MAX_RAM_SLOTS;
2886 
2887         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2888             max_memslots = SPAPR_MAX_RAM_SLOTS;
2889         }
2890         if (machine->ram_slots > max_memslots) {
2891             error_report("Specified number of memory slots %"
2892                          PRIu64" exceeds max supported %d",
2893                          machine->ram_slots, max_memslots);
2894             exit(1);
2895         }
2896 
2897         machine->device_memory->base = ROUND_UP(machine->ram_size,
2898                                                 SPAPR_DEVICE_MEM_ALIGN);
2899         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2900                            "device-memory", device_mem_size);
2901         memory_region_add_subregion(sysmem, machine->device_memory->base,
2902                                     &machine->device_memory->mr);
2903     }
2904 
2905     if (smc->dr_lmb_enabled) {
2906         spapr_create_lmb_dr_connectors(spapr);
2907     }
2908 
2909     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2910     if (!filename) {
2911         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2912         exit(1);
2913     }
2914     spapr->rtas_size = get_image_size(filename);
2915     if (spapr->rtas_size < 0) {
2916         error_report("Could not get size of LPAR rtas '%s'", filename);
2917         exit(1);
2918     }
2919     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2920     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2921         error_report("Could not load LPAR rtas '%s'", filename);
2922         exit(1);
2923     }
2924     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2925         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2926                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2927         exit(1);
2928     }
2929     g_free(filename);
2930 
2931     /* Set up RTAS event infrastructure */
2932     spapr_events_init(spapr);
2933 
2934     /* Set up the RTC RTAS interfaces */
2935     spapr_rtc_create(spapr);
2936 
2937     /* Set up VIO bus */
2938     spapr->vio_bus = spapr_vio_bus_init();
2939 
2940     for (i = 0; i < serial_max_hds(); i++) {
2941         if (serial_hd(i)) {
2942             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2943         }
2944     }
2945 
2946     /* We always have at least the nvram device on VIO */
2947     spapr_create_nvram(spapr);
2948 
2949     /*
2950      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2951      * connectors (described in root DT node's "ibm,drc-types" property)
2952      * are pre-initialized here. additional child connectors (such as
2953      * connectors for a PHBs PCI slots) are added as needed during their
2954      * parent's realization.
2955      */
2956     if (smc->dr_phb_enabled) {
2957         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2958             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2959         }
2960     }
2961 
2962     /* Set up PCI */
2963     spapr_pci_rtas_init();
2964 
2965     phb = spapr_create_default_phb();
2966 
2967     for (i = 0; i < nb_nics; i++) {
2968         NICInfo *nd = &nd_table[i];
2969 
2970         if (!nd->model) {
2971             nd->model = g_strdup("spapr-vlan");
2972         }
2973 
2974         if (g_str_equal(nd->model, "spapr-vlan") ||
2975             g_str_equal(nd->model, "ibmveth")) {
2976             spapr_vlan_create(spapr->vio_bus, nd);
2977         } else {
2978             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2979         }
2980     }
2981 
2982     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2983         spapr_vscsi_create(spapr->vio_bus);
2984     }
2985 
2986     /* Graphics */
2987     if (spapr_vga_init(phb->bus, &error_fatal)) {
2988         spapr->has_graphics = true;
2989         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2990     }
2991 
2992     if (machine->usb) {
2993         if (smc->use_ohci_by_default) {
2994             pci_create_simple(phb->bus, -1, "pci-ohci");
2995         } else {
2996             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2997         }
2998 
2999         if (spapr->has_graphics) {
3000             USBBus *usb_bus = usb_bus_find(-1);
3001 
3002             usb_create_simple(usb_bus, "usb-kbd");
3003             usb_create_simple(usb_bus, "usb-mouse");
3004         }
3005     }
3006 
3007     if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
3008         error_report(
3009             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
3010             MIN_RMA_SLOF);
3011         exit(1);
3012     }
3013 
3014     if (kernel_filename) {
3015         uint64_t lowaddr = 0;
3016 
3017         spapr->kernel_size = load_elf(kernel_filename, NULL,
3018                                       translate_kernel_address, NULL,
3019                                       NULL, &lowaddr, NULL, 1,
3020                                       PPC_ELF_MACHINE, 0, 0);
3021         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3022             spapr->kernel_size = load_elf(kernel_filename, NULL,
3023                                           translate_kernel_address, NULL, NULL,
3024                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
3025                                           0, 0);
3026             spapr->kernel_le = spapr->kernel_size > 0;
3027         }
3028         if (spapr->kernel_size < 0) {
3029             error_report("error loading %s: %s", kernel_filename,
3030                          load_elf_strerror(spapr->kernel_size));
3031             exit(1);
3032         }
3033 
3034         /* load initrd */
3035         if (initrd_filename) {
3036             /* Try to locate the initrd in the gap between the kernel
3037              * and the firmware. Add a bit of space just in case
3038              */
3039             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
3040                                   + 0x1ffff) & ~0xffff;
3041             spapr->initrd_size = load_image_targphys(initrd_filename,
3042                                                      spapr->initrd_base,
3043                                                      load_limit
3044                                                      - spapr->initrd_base);
3045             if (spapr->initrd_size < 0) {
3046                 error_report("could not load initial ram disk '%s'",
3047                              initrd_filename);
3048                 exit(1);
3049             }
3050         }
3051     }
3052 
3053     if (bios_name == NULL) {
3054         bios_name = FW_FILE_NAME;
3055     }
3056     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3057     if (!filename) {
3058         error_report("Could not find LPAR firmware '%s'", bios_name);
3059         exit(1);
3060     }
3061     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3062     if (fw_size <= 0) {
3063         error_report("Could not load LPAR firmware '%s'", filename);
3064         exit(1);
3065     }
3066     g_free(filename);
3067 
3068     /* FIXME: Should register things through the MachineState's qdev
3069      * interface, this is a legacy from the sPAPREnvironment structure
3070      * which predated MachineState but had a similar function */
3071     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3072     register_savevm_live(NULL, "spapr/htab", -1, 1,
3073                          &savevm_htab_handlers, spapr);
3074 
3075     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3076                              &error_fatal);
3077 
3078     qemu_register_boot_set(spapr_boot_set, spapr);
3079 
3080     if (kvm_enabled()) {
3081         /* to stop and start vmclock */
3082         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3083                                          &spapr->tb);
3084 
3085         kvmppc_spapr_enable_inkernel_multitce();
3086     }
3087 }
3088 
3089 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3090 {
3091     if (!vm_type) {
3092         return 0;
3093     }
3094 
3095     if (!strcmp(vm_type, "HV")) {
3096         return 1;
3097     }
3098 
3099     if (!strcmp(vm_type, "PR")) {
3100         return 2;
3101     }
3102 
3103     error_report("Unknown kvm-type specified '%s'", vm_type);
3104     exit(1);
3105 }
3106 
3107 /*
3108  * Implementation of an interface to adjust firmware path
3109  * for the bootindex property handling.
3110  */
3111 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3112                                    DeviceState *dev)
3113 {
3114 #define CAST(type, obj, name) \
3115     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3116     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3117     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3118     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3119 
3120     if (d) {
3121         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3122         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3123         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3124 
3125         if (spapr) {
3126             /*
3127              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3128              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3129              * 0x8000 | (target << 8) | (bus << 5) | lun
3130              * (see the "Logical unit addressing format" table in SAM5)
3131              */
3132             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3133             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3134                                    (uint64_t)id << 48);
3135         } else if (virtio) {
3136             /*
3137              * We use SRP luns of the form 01000000 | (target << 8) | lun
3138              * in the top 32 bits of the 64-bit LUN
3139              * Note: the quote above is from SLOF and it is wrong,
3140              * the actual binding is:
3141              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3142              */
3143             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3144             if (d->lun >= 256) {
3145                 /* Use the LUN "flat space addressing method" */
3146                 id |= 0x4000;
3147             }
3148             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3149                                    (uint64_t)id << 32);
3150         } else if (usb) {
3151             /*
3152              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3153              * in the top 32 bits of the 64-bit LUN
3154              */
3155             unsigned usb_port = atoi(usb->port->path);
3156             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3157             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3158                                    (uint64_t)id << 32);
3159         }
3160     }
3161 
3162     /*
3163      * SLOF probes the USB devices, and if it recognizes that the device is a
3164      * storage device, it changes its name to "storage" instead of "usb-host",
3165      * and additionally adds a child node for the SCSI LUN, so the correct
3166      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3167      */
3168     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3169         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3170         if (usb_host_dev_is_scsi_storage(usbdev)) {
3171             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3172         }
3173     }
3174 
3175     if (phb) {
3176         /* Replace "pci" with "pci@800000020000000" */
3177         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3178     }
3179 
3180     if (vsc) {
3181         /* Same logic as virtio above */
3182         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3183         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3184     }
3185 
3186     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3187         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3188         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3189         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3190     }
3191 
3192     return NULL;
3193 }
3194 
3195 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3196 {
3197     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3198 
3199     return g_strdup(spapr->kvm_type);
3200 }
3201 
3202 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3203 {
3204     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3205 
3206     g_free(spapr->kvm_type);
3207     spapr->kvm_type = g_strdup(value);
3208 }
3209 
3210 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3211 {
3212     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3213 
3214     return spapr->use_hotplug_event_source;
3215 }
3216 
3217 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3218                                             Error **errp)
3219 {
3220     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3221 
3222     spapr->use_hotplug_event_source = value;
3223 }
3224 
3225 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3226 {
3227     return true;
3228 }
3229 
3230 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3231 {
3232     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3233 
3234     switch (spapr->resize_hpt) {
3235     case SPAPR_RESIZE_HPT_DEFAULT:
3236         return g_strdup("default");
3237     case SPAPR_RESIZE_HPT_DISABLED:
3238         return g_strdup("disabled");
3239     case SPAPR_RESIZE_HPT_ENABLED:
3240         return g_strdup("enabled");
3241     case SPAPR_RESIZE_HPT_REQUIRED:
3242         return g_strdup("required");
3243     }
3244     g_assert_not_reached();
3245 }
3246 
3247 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3248 {
3249     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3250 
3251     if (strcmp(value, "default") == 0) {
3252         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3253     } else if (strcmp(value, "disabled") == 0) {
3254         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3255     } else if (strcmp(value, "enabled") == 0) {
3256         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3257     } else if (strcmp(value, "required") == 0) {
3258         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3259     } else {
3260         error_setg(errp, "Bad value for \"resize-hpt\" property");
3261     }
3262 }
3263 
3264 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3265                                    void *opaque, Error **errp)
3266 {
3267     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3268 }
3269 
3270 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3271                                    void *opaque, Error **errp)
3272 {
3273     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3274 }
3275 
3276 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3277 {
3278     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3279 
3280     if (spapr->irq == &spapr_irq_xics_legacy) {
3281         return g_strdup("legacy");
3282     } else if (spapr->irq == &spapr_irq_xics) {
3283         return g_strdup("xics");
3284     } else if (spapr->irq == &spapr_irq_xive) {
3285         return g_strdup("xive");
3286     } else if (spapr->irq == &spapr_irq_dual) {
3287         return g_strdup("dual");
3288     }
3289     g_assert_not_reached();
3290 }
3291 
3292 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3293 {
3294     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3295 
3296     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3297         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3298         return;
3299     }
3300 
3301     /* The legacy IRQ backend can not be set */
3302     if (strcmp(value, "xics") == 0) {
3303         spapr->irq = &spapr_irq_xics;
3304     } else if (strcmp(value, "xive") == 0) {
3305         spapr->irq = &spapr_irq_xive;
3306     } else if (strcmp(value, "dual") == 0) {
3307         spapr->irq = &spapr_irq_dual;
3308     } else {
3309         error_setg(errp, "Bad value for \"ic-mode\" property");
3310     }
3311 }
3312 
3313 static char *spapr_get_host_model(Object *obj, Error **errp)
3314 {
3315     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3316 
3317     return g_strdup(spapr->host_model);
3318 }
3319 
3320 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3321 {
3322     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3323 
3324     g_free(spapr->host_model);
3325     spapr->host_model = g_strdup(value);
3326 }
3327 
3328 static char *spapr_get_host_serial(Object *obj, Error **errp)
3329 {
3330     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3331 
3332     return g_strdup(spapr->host_serial);
3333 }
3334 
3335 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3336 {
3337     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3338 
3339     g_free(spapr->host_serial);
3340     spapr->host_serial = g_strdup(value);
3341 }
3342 
3343 static void spapr_instance_init(Object *obj)
3344 {
3345     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3346     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3347 
3348     spapr->htab_fd = -1;
3349     spapr->use_hotplug_event_source = true;
3350     object_property_add_str(obj, "kvm-type",
3351                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3352     object_property_set_description(obj, "kvm-type",
3353                                     "Specifies the KVM virtualization mode (HV, PR)",
3354                                     NULL);
3355     object_property_add_bool(obj, "modern-hotplug-events",
3356                             spapr_get_modern_hotplug_events,
3357                             spapr_set_modern_hotplug_events,
3358                             NULL);
3359     object_property_set_description(obj, "modern-hotplug-events",
3360                                     "Use dedicated hotplug event mechanism in"
3361                                     " place of standard EPOW events when possible"
3362                                     " (required for memory hot-unplug support)",
3363                                     NULL);
3364     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3365                             "Maximum permitted CPU compatibility mode",
3366                             &error_fatal);
3367 
3368     object_property_add_str(obj, "resize-hpt",
3369                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3370     object_property_set_description(obj, "resize-hpt",
3371                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
3372                                     NULL);
3373     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3374                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3375     object_property_set_description(obj, "vsmt",
3376                                     "Virtual SMT: KVM behaves as if this were"
3377                                     " the host's SMT mode", &error_abort);
3378     object_property_add_bool(obj, "vfio-no-msix-emulation",
3379                              spapr_get_msix_emulation, NULL, NULL);
3380 
3381     /* The machine class defines the default interrupt controller mode */
3382     spapr->irq = smc->irq;
3383     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3384                             spapr_set_ic_mode, NULL);
3385     object_property_set_description(obj, "ic-mode",
3386                  "Specifies the interrupt controller mode (xics, xive, dual)",
3387                  NULL);
3388 
3389     object_property_add_str(obj, "host-model",
3390         spapr_get_host_model, spapr_set_host_model,
3391         &error_abort);
3392     object_property_set_description(obj, "host-model",
3393         "Host model to advertise in guest device tree", &error_abort);
3394     object_property_add_str(obj, "host-serial",
3395         spapr_get_host_serial, spapr_set_host_serial,
3396         &error_abort);
3397     object_property_set_description(obj, "host-serial",
3398         "Host serial number to advertise in guest device tree", &error_abort);
3399 }
3400 
3401 static void spapr_machine_finalizefn(Object *obj)
3402 {
3403     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3404 
3405     g_free(spapr->kvm_type);
3406 }
3407 
3408 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3409 {
3410     cpu_synchronize_state(cs);
3411     ppc_cpu_do_system_reset(cs);
3412 }
3413 
3414 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3415 {
3416     CPUState *cs;
3417 
3418     CPU_FOREACH(cs) {
3419         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3420     }
3421 }
3422 
3423 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3424                           void *fdt, int *fdt_start_offset, Error **errp)
3425 {
3426     uint64_t addr;
3427     uint32_t node;
3428 
3429     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3430     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3431                                     &error_abort);
3432     *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3433                                                    SPAPR_MEMORY_BLOCK_SIZE);
3434     return 0;
3435 }
3436 
3437 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3438                            bool dedicated_hp_event_source, Error **errp)
3439 {
3440     SpaprDrc *drc;
3441     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3442     int i;
3443     uint64_t addr = addr_start;
3444     bool hotplugged = spapr_drc_hotplugged(dev);
3445     Error *local_err = NULL;
3446 
3447     for (i = 0; i < nr_lmbs; i++) {
3448         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3449                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3450         g_assert(drc);
3451 
3452         spapr_drc_attach(drc, dev, &local_err);
3453         if (local_err) {
3454             while (addr > addr_start) {
3455                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3456                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3457                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3458                 spapr_drc_detach(drc);
3459             }
3460             error_propagate(errp, local_err);
3461             return;
3462         }
3463         if (!hotplugged) {
3464             spapr_drc_reset(drc);
3465         }
3466         addr += SPAPR_MEMORY_BLOCK_SIZE;
3467     }
3468     /* send hotplug notification to the
3469      * guest only in case of hotplugged memory
3470      */
3471     if (hotplugged) {
3472         if (dedicated_hp_event_source) {
3473             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3474                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3475             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3476                                                    nr_lmbs,
3477                                                    spapr_drc_index(drc));
3478         } else {
3479             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3480                                            nr_lmbs);
3481         }
3482     }
3483 }
3484 
3485 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3486                               Error **errp)
3487 {
3488     Error *local_err = NULL;
3489     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3490     PCDIMMDevice *dimm = PC_DIMM(dev);
3491     uint64_t size, addr;
3492 
3493     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3494 
3495     pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3496     if (local_err) {
3497         goto out;
3498     }
3499 
3500     addr = object_property_get_uint(OBJECT(dimm),
3501                                     PC_DIMM_ADDR_PROP, &local_err);
3502     if (local_err) {
3503         goto out_unplug;
3504     }
3505 
3506     spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3507                    &local_err);
3508     if (local_err) {
3509         goto out_unplug;
3510     }
3511 
3512     return;
3513 
3514 out_unplug:
3515     pc_dimm_unplug(dimm, MACHINE(ms));
3516 out:
3517     error_propagate(errp, local_err);
3518 }
3519 
3520 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3521                                   Error **errp)
3522 {
3523     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3524     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3525     PCDIMMDevice *dimm = PC_DIMM(dev);
3526     Error *local_err = NULL;
3527     uint64_t size;
3528     Object *memdev;
3529     hwaddr pagesize;
3530 
3531     if (!smc->dr_lmb_enabled) {
3532         error_setg(errp, "Memory hotplug not supported for this machine");
3533         return;
3534     }
3535 
3536     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3537     if (local_err) {
3538         error_propagate(errp, local_err);
3539         return;
3540     }
3541 
3542     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3543         error_setg(errp, "Hotplugged memory size must be a multiple of "
3544                       "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3545         return;
3546     }
3547 
3548     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3549                                       &error_abort);
3550     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3551     spapr_check_pagesize(spapr, pagesize, &local_err);
3552     if (local_err) {
3553         error_propagate(errp, local_err);
3554         return;
3555     }
3556 
3557     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3558 }
3559 
3560 struct SpaprDimmState {
3561     PCDIMMDevice *dimm;
3562     uint32_t nr_lmbs;
3563     QTAILQ_ENTRY(SpaprDimmState) next;
3564 };
3565 
3566 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3567                                                        PCDIMMDevice *dimm)
3568 {
3569     SpaprDimmState *dimm_state = NULL;
3570 
3571     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3572         if (dimm_state->dimm == dimm) {
3573             break;
3574         }
3575     }
3576     return dimm_state;
3577 }
3578 
3579 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3580                                                       uint32_t nr_lmbs,
3581                                                       PCDIMMDevice *dimm)
3582 {
3583     SpaprDimmState *ds = NULL;
3584 
3585     /*
3586      * If this request is for a DIMM whose removal had failed earlier
3587      * (due to guest's refusal to remove the LMBs), we would have this
3588      * dimm already in the pending_dimm_unplugs list. In that
3589      * case don't add again.
3590      */
3591     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3592     if (!ds) {
3593         ds = g_malloc0(sizeof(SpaprDimmState));
3594         ds->nr_lmbs = nr_lmbs;
3595         ds->dimm = dimm;
3596         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3597     }
3598     return ds;
3599 }
3600 
3601 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3602                                               SpaprDimmState *dimm_state)
3603 {
3604     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3605     g_free(dimm_state);
3606 }
3607 
3608 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3609                                                         PCDIMMDevice *dimm)
3610 {
3611     SpaprDrc *drc;
3612     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3613                                                   &error_abort);
3614     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3615     uint32_t avail_lmbs = 0;
3616     uint64_t addr_start, addr;
3617     int i;
3618 
3619     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3620                                          &error_abort);
3621 
3622     addr = addr_start;
3623     for (i = 0; i < nr_lmbs; i++) {
3624         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3625                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3626         g_assert(drc);
3627         if (drc->dev) {
3628             avail_lmbs++;
3629         }
3630         addr += SPAPR_MEMORY_BLOCK_SIZE;
3631     }
3632 
3633     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3634 }
3635 
3636 /* Callback to be called during DRC release. */
3637 void spapr_lmb_release(DeviceState *dev)
3638 {
3639     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3640     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3641     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3642 
3643     /* This information will get lost if a migration occurs
3644      * during the unplug process. In this case recover it. */
3645     if (ds == NULL) {
3646         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3647         g_assert(ds);
3648         /* The DRC being examined by the caller at least must be counted */
3649         g_assert(ds->nr_lmbs);
3650     }
3651 
3652     if (--ds->nr_lmbs) {
3653         return;
3654     }
3655 
3656     /*
3657      * Now that all the LMBs have been removed by the guest, call the
3658      * unplug handler chain. This can never fail.
3659      */
3660     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3661     object_unparent(OBJECT(dev));
3662 }
3663 
3664 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3665 {
3666     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3667     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3668 
3669     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3670     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3671     spapr_pending_dimm_unplugs_remove(spapr, ds);
3672 }
3673 
3674 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3675                                         DeviceState *dev, Error **errp)
3676 {
3677     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3678     Error *local_err = NULL;
3679     PCDIMMDevice *dimm = PC_DIMM(dev);
3680     uint32_t nr_lmbs;
3681     uint64_t size, addr_start, addr;
3682     int i;
3683     SpaprDrc *drc;
3684 
3685     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3686     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3687 
3688     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3689                                          &local_err);
3690     if (local_err) {
3691         goto out;
3692     }
3693 
3694     /*
3695      * An existing pending dimm state for this DIMM means that there is an
3696      * unplug operation in progress, waiting for the spapr_lmb_release
3697      * callback to complete the job (BQL can't cover that far). In this case,
3698      * bail out to avoid detaching DRCs that were already released.
3699      */
3700     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3701         error_setg(&local_err,
3702                    "Memory unplug already in progress for device %s",
3703                    dev->id);
3704         goto out;
3705     }
3706 
3707     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3708 
3709     addr = addr_start;
3710     for (i = 0; i < nr_lmbs; i++) {
3711         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3712                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3713         g_assert(drc);
3714 
3715         spapr_drc_detach(drc);
3716         addr += SPAPR_MEMORY_BLOCK_SIZE;
3717     }
3718 
3719     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3720                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3721     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3722                                               nr_lmbs, spapr_drc_index(drc));
3723 out:
3724     error_propagate(errp, local_err);
3725 }
3726 
3727 /* Callback to be called during DRC release. */
3728 void spapr_core_release(DeviceState *dev)
3729 {
3730     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3731 
3732     /* Call the unplug handler chain. This can never fail. */
3733     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3734     object_unparent(OBJECT(dev));
3735 }
3736 
3737 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3738 {
3739     MachineState *ms = MACHINE(hotplug_dev);
3740     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3741     CPUCore *cc = CPU_CORE(dev);
3742     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3743 
3744     if (smc->pre_2_10_has_unused_icps) {
3745         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3746         int i;
3747 
3748         for (i = 0; i < cc->nr_threads; i++) {
3749             CPUState *cs = CPU(sc->threads[i]);
3750 
3751             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3752         }
3753     }
3754 
3755     assert(core_slot);
3756     core_slot->cpu = NULL;
3757     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3758 }
3759 
3760 static
3761 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3762                                Error **errp)
3763 {
3764     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3765     int index;
3766     SpaprDrc *drc;
3767     CPUCore *cc = CPU_CORE(dev);
3768 
3769     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3770         error_setg(errp, "Unable to find CPU core with core-id: %d",
3771                    cc->core_id);
3772         return;
3773     }
3774     if (index == 0) {
3775         error_setg(errp, "Boot CPU core may not be unplugged");
3776         return;
3777     }
3778 
3779     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3780                           spapr_vcpu_id(spapr, cc->core_id));
3781     g_assert(drc);
3782 
3783     spapr_drc_detach(drc);
3784 
3785     spapr_hotplug_req_remove_by_index(drc);
3786 }
3787 
3788 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3789                            void *fdt, int *fdt_start_offset, Error **errp)
3790 {
3791     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3792     CPUState *cs = CPU(core->threads[0]);
3793     PowerPCCPU *cpu = POWERPC_CPU(cs);
3794     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3795     int id = spapr_get_vcpu_id(cpu);
3796     char *nodename;
3797     int offset;
3798 
3799     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3800     offset = fdt_add_subnode(fdt, 0, nodename);
3801     g_free(nodename);
3802 
3803     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3804 
3805     *fdt_start_offset = offset;
3806     return 0;
3807 }
3808 
3809 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3810                             Error **errp)
3811 {
3812     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3813     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3814     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3815     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3816     CPUCore *cc = CPU_CORE(dev);
3817     CPUState *cs;
3818     SpaprDrc *drc;
3819     Error *local_err = NULL;
3820     CPUArchId *core_slot;
3821     int index;
3822     bool hotplugged = spapr_drc_hotplugged(dev);
3823 
3824     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3825     if (!core_slot) {
3826         error_setg(errp, "Unable to find CPU core with core-id: %d",
3827                    cc->core_id);
3828         return;
3829     }
3830     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3831                           spapr_vcpu_id(spapr, cc->core_id));
3832 
3833     g_assert(drc || !mc->has_hotpluggable_cpus);
3834 
3835     if (drc) {
3836         spapr_drc_attach(drc, dev, &local_err);
3837         if (local_err) {
3838             error_propagate(errp, local_err);
3839             return;
3840         }
3841 
3842         if (hotplugged) {
3843             /*
3844              * Send hotplug notification interrupt to the guest only
3845              * in case of hotplugged CPUs.
3846              */
3847             spapr_hotplug_req_add_by_index(drc);
3848         } else {
3849             spapr_drc_reset(drc);
3850         }
3851     }
3852 
3853     core_slot->cpu = OBJECT(dev);
3854 
3855     if (smc->pre_2_10_has_unused_icps) {
3856         int i;
3857 
3858         for (i = 0; i < cc->nr_threads; i++) {
3859             cs = CPU(core->threads[i]);
3860             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3861         }
3862     }
3863 }
3864 
3865 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3866                                 Error **errp)
3867 {
3868     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3869     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3870     Error *local_err = NULL;
3871     CPUCore *cc = CPU_CORE(dev);
3872     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3873     const char *type = object_get_typename(OBJECT(dev));
3874     CPUArchId *core_slot;
3875     int index;
3876     unsigned int smp_threads = machine->smp.threads;
3877 
3878     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3879         error_setg(&local_err, "CPU hotplug not supported for this machine");
3880         goto out;
3881     }
3882 
3883     if (strcmp(base_core_type, type)) {
3884         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3885         goto out;
3886     }
3887 
3888     if (cc->core_id % smp_threads) {
3889         error_setg(&local_err, "invalid core id %d", cc->core_id);
3890         goto out;
3891     }
3892 
3893     /*
3894      * In general we should have homogeneous threads-per-core, but old
3895      * (pre hotplug support) machine types allow the last core to have
3896      * reduced threads as a compatibility hack for when we allowed
3897      * total vcpus not a multiple of threads-per-core.
3898      */
3899     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3900         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3901                    cc->nr_threads, smp_threads);
3902         goto out;
3903     }
3904 
3905     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3906     if (!core_slot) {
3907         error_setg(&local_err, "core id %d out of range", cc->core_id);
3908         goto out;
3909     }
3910 
3911     if (core_slot->cpu) {
3912         error_setg(&local_err, "core %d already populated", cc->core_id);
3913         goto out;
3914     }
3915 
3916     numa_cpu_pre_plug(core_slot, dev, &local_err);
3917 
3918 out:
3919     error_propagate(errp, local_err);
3920 }
3921 
3922 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3923                           void *fdt, int *fdt_start_offset, Error **errp)
3924 {
3925     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3926     int intc_phandle;
3927 
3928     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3929     if (intc_phandle <= 0) {
3930         return -1;
3931     }
3932 
3933     if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3934                      fdt_start_offset)) {
3935         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3936         return -1;
3937     }
3938 
3939     /* generally SLOF creates these, for hotplug it's up to QEMU */
3940     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3941 
3942     return 0;
3943 }
3944 
3945 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3946                                Error **errp)
3947 {
3948     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3949     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3950     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3951     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3952 
3953     if (dev->hotplugged && !smc->dr_phb_enabled) {
3954         error_setg(errp, "PHB hotplug not supported for this machine");
3955         return;
3956     }
3957 
3958     if (sphb->index == (uint32_t)-1) {
3959         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3960         return;
3961     }
3962 
3963     /*
3964      * This will check that sphb->index doesn't exceed the maximum number of
3965      * PHBs for the current machine type.
3966      */
3967     smc->phb_placement(spapr, sphb->index,
3968                        &sphb->buid, &sphb->io_win_addr,
3969                        &sphb->mem_win_addr, &sphb->mem64_win_addr,
3970                        windows_supported, sphb->dma_liobn,
3971                        &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3972                        errp);
3973 }
3974 
3975 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3976                            Error **errp)
3977 {
3978     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3979     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3980     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3981     SpaprDrc *drc;
3982     bool hotplugged = spapr_drc_hotplugged(dev);
3983     Error *local_err = NULL;
3984 
3985     if (!smc->dr_phb_enabled) {
3986         return;
3987     }
3988 
3989     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3990     /* hotplug hooks should check it's enabled before getting this far */
3991     assert(drc);
3992 
3993     spapr_drc_attach(drc, DEVICE(dev), &local_err);
3994     if (local_err) {
3995         error_propagate(errp, local_err);
3996         return;
3997     }
3998 
3999     if (hotplugged) {
4000         spapr_hotplug_req_add_by_index(drc);
4001     } else {
4002         spapr_drc_reset(drc);
4003     }
4004 }
4005 
4006 void spapr_phb_release(DeviceState *dev)
4007 {
4008     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4009 
4010     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4011     object_unparent(OBJECT(dev));
4012 }
4013 
4014 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4015 {
4016     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4017 }
4018 
4019 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4020                                      DeviceState *dev, Error **errp)
4021 {
4022     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4023     SpaprDrc *drc;
4024 
4025     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4026     assert(drc);
4027 
4028     if (!spapr_drc_unplug_requested(drc)) {
4029         spapr_drc_detach(drc);
4030         spapr_hotplug_req_remove_by_index(drc);
4031     }
4032 }
4033 
4034 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4035                                       DeviceState *dev, Error **errp)
4036 {
4037     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4038         spapr_memory_plug(hotplug_dev, dev, errp);
4039     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4040         spapr_core_plug(hotplug_dev, dev, errp);
4041     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4042         spapr_phb_plug(hotplug_dev, dev, errp);
4043     }
4044 }
4045 
4046 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4047                                         DeviceState *dev, Error **errp)
4048 {
4049     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4050         spapr_memory_unplug(hotplug_dev, dev);
4051     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4052         spapr_core_unplug(hotplug_dev, dev);
4053     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4054         spapr_phb_unplug(hotplug_dev, dev);
4055     }
4056 }
4057 
4058 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4059                                                 DeviceState *dev, Error **errp)
4060 {
4061     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4062     MachineClass *mc = MACHINE_GET_CLASS(sms);
4063     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4064 
4065     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4066         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4067             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4068         } else {
4069             /* NOTE: this means there is a window after guest reset, prior to
4070              * CAS negotiation, where unplug requests will fail due to the
4071              * capability not being detected yet. This is a bit different than
4072              * the case with PCI unplug, where the events will be queued and
4073              * eventually handled by the guest after boot
4074              */
4075             error_setg(errp, "Memory hot unplug not supported for this guest");
4076         }
4077     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4078         if (!mc->has_hotpluggable_cpus) {
4079             error_setg(errp, "CPU hot unplug not supported on this machine");
4080             return;
4081         }
4082         spapr_core_unplug_request(hotplug_dev, dev, errp);
4083     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4084         if (!smc->dr_phb_enabled) {
4085             error_setg(errp, "PHB hot unplug not supported on this machine");
4086             return;
4087         }
4088         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4089     }
4090 }
4091 
4092 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4093                                           DeviceState *dev, Error **errp)
4094 {
4095     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4096         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4097     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4098         spapr_core_pre_plug(hotplug_dev, dev, errp);
4099     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4100         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4101     }
4102 }
4103 
4104 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4105                                                  DeviceState *dev)
4106 {
4107     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4108         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4109         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4110         return HOTPLUG_HANDLER(machine);
4111     }
4112     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4113         PCIDevice *pcidev = PCI_DEVICE(dev);
4114         PCIBus *root = pci_device_root_bus(pcidev);
4115         SpaprPhbState *phb =
4116             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4117                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4118 
4119         if (phb) {
4120             return HOTPLUG_HANDLER(phb);
4121         }
4122     }
4123     return NULL;
4124 }
4125 
4126 static CpuInstanceProperties
4127 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4128 {
4129     CPUArchId *core_slot;
4130     MachineClass *mc = MACHINE_GET_CLASS(machine);
4131 
4132     /* make sure possible_cpu are intialized */
4133     mc->possible_cpu_arch_ids(machine);
4134     /* get CPU core slot containing thread that matches cpu_index */
4135     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4136     assert(core_slot);
4137     return core_slot->props;
4138 }
4139 
4140 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4141 {
4142     return idx / ms->smp.cores % nb_numa_nodes;
4143 }
4144 
4145 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4146 {
4147     int i;
4148     unsigned int smp_threads = machine->smp.threads;
4149     unsigned int smp_cpus = machine->smp.cpus;
4150     const char *core_type;
4151     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4152     MachineClass *mc = MACHINE_GET_CLASS(machine);
4153 
4154     if (!mc->has_hotpluggable_cpus) {
4155         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4156     }
4157     if (machine->possible_cpus) {
4158         assert(machine->possible_cpus->len == spapr_max_cores);
4159         return machine->possible_cpus;
4160     }
4161 
4162     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4163     if (!core_type) {
4164         error_report("Unable to find sPAPR CPU Core definition");
4165         exit(1);
4166     }
4167 
4168     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4169                              sizeof(CPUArchId) * spapr_max_cores);
4170     machine->possible_cpus->len = spapr_max_cores;
4171     for (i = 0; i < machine->possible_cpus->len; i++) {
4172         int core_id = i * smp_threads;
4173 
4174         machine->possible_cpus->cpus[i].type = core_type;
4175         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4176         machine->possible_cpus->cpus[i].arch_id = core_id;
4177         machine->possible_cpus->cpus[i].props.has_core_id = true;
4178         machine->possible_cpus->cpus[i].props.core_id = core_id;
4179     }
4180     return machine->possible_cpus;
4181 }
4182 
4183 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4184                                 uint64_t *buid, hwaddr *pio,
4185                                 hwaddr *mmio32, hwaddr *mmio64,
4186                                 unsigned n_dma, uint32_t *liobns,
4187                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4188 {
4189     /*
4190      * New-style PHB window placement.
4191      *
4192      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4193      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4194      * windows.
4195      *
4196      * Some guest kernels can't work with MMIO windows above 1<<46
4197      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4198      *
4199      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4200      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4201      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4202      * 1TiB 64-bit MMIO windows for each PHB.
4203      */
4204     const uint64_t base_buid = 0x800000020000000ULL;
4205     int i;
4206 
4207     /* Sanity check natural alignments */
4208     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4209     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4210     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4211     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4212     /* Sanity check bounds */
4213     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4214                       SPAPR_PCI_MEM32_WIN_SIZE);
4215     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4216                       SPAPR_PCI_MEM64_WIN_SIZE);
4217 
4218     if (index >= SPAPR_MAX_PHBS) {
4219         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4220                    SPAPR_MAX_PHBS - 1);
4221         return;
4222     }
4223 
4224     *buid = base_buid + index;
4225     for (i = 0; i < n_dma; ++i) {
4226         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4227     }
4228 
4229     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4230     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4231     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4232 
4233     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4234     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4235 }
4236 
4237 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4238 {
4239     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4240 
4241     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4242 }
4243 
4244 static void spapr_ics_resend(XICSFabric *dev)
4245 {
4246     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4247 
4248     ics_resend(spapr->ics);
4249 }
4250 
4251 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4252 {
4253     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4254 
4255     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4256 }
4257 
4258 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4259                                  Monitor *mon)
4260 {
4261     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4262 
4263     spapr->irq->print_info(spapr, mon);
4264 }
4265 
4266 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4267 {
4268     return cpu->vcpu_id;
4269 }
4270 
4271 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4272 {
4273     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4274     MachineState *ms = MACHINE(spapr);
4275     int vcpu_id;
4276 
4277     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4278 
4279     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4280         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4281         error_append_hint(errp, "Adjust the number of cpus to %d "
4282                           "or try to raise the number of threads per core\n",
4283                           vcpu_id * ms->smp.threads / spapr->vsmt);
4284         return;
4285     }
4286 
4287     cpu->vcpu_id = vcpu_id;
4288 }
4289 
4290 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4291 {
4292     CPUState *cs;
4293 
4294     CPU_FOREACH(cs) {
4295         PowerPCCPU *cpu = POWERPC_CPU(cs);
4296 
4297         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4298             return cpu;
4299         }
4300     }
4301 
4302     return NULL;
4303 }
4304 
4305 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4306 {
4307     MachineClass *mc = MACHINE_CLASS(oc);
4308     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4309     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4310     NMIClass *nc = NMI_CLASS(oc);
4311     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4312     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4313     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4314     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4315 
4316     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4317     mc->ignore_boot_device_suffixes = true;
4318 
4319     /*
4320      * We set up the default / latest behaviour here.  The class_init
4321      * functions for the specific versioned machine types can override
4322      * these details for backwards compatibility
4323      */
4324     mc->init = spapr_machine_init;
4325     mc->reset = spapr_machine_reset;
4326     mc->block_default_type = IF_SCSI;
4327     mc->max_cpus = 1024;
4328     mc->no_parallel = 1;
4329     mc->default_boot_order = "";
4330     mc->default_ram_size = 512 * MiB;
4331     mc->default_display = "std";
4332     mc->kvm_type = spapr_kvm_type;
4333     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4334     mc->pci_allow_0_address = true;
4335     assert(!mc->get_hotplug_handler);
4336     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4337     hc->pre_plug = spapr_machine_device_pre_plug;
4338     hc->plug = spapr_machine_device_plug;
4339     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4340     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4341     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4342     hc->unplug_request = spapr_machine_device_unplug_request;
4343     hc->unplug = spapr_machine_device_unplug;
4344 
4345     smc->dr_lmb_enabled = true;
4346     smc->update_dt_enabled = true;
4347     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4348     mc->has_hotpluggable_cpus = true;
4349     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4350     fwc->get_dev_path = spapr_get_fw_dev_path;
4351     nc->nmi_monitor_handler = spapr_nmi;
4352     smc->phb_placement = spapr_phb_placement;
4353     vhc->hypercall = emulate_spapr_hypercall;
4354     vhc->hpt_mask = spapr_hpt_mask;
4355     vhc->map_hptes = spapr_map_hptes;
4356     vhc->unmap_hptes = spapr_unmap_hptes;
4357     vhc->hpte_set_c = spapr_hpte_set_c;
4358     vhc->hpte_set_r = spapr_hpte_set_r;
4359     vhc->get_pate = spapr_get_pate;
4360     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4361     xic->ics_get = spapr_ics_get;
4362     xic->ics_resend = spapr_ics_resend;
4363     xic->icp_get = spapr_icp_get;
4364     ispc->print_info = spapr_pic_print_info;
4365     /* Force NUMA node memory size to be a multiple of
4366      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4367      * in which LMBs are represented and hot-added
4368      */
4369     mc->numa_mem_align_shift = 28;
4370     mc->numa_mem_supported = true;
4371 
4372     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4373     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4374     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4375     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4376     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4377     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4378     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4379     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4380     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4381     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4382     spapr_caps_add_properties(smc, &error_abort);
4383     smc->irq = &spapr_irq_dual;
4384     smc->dr_phb_enabled = true;
4385 }
4386 
4387 static const TypeInfo spapr_machine_info = {
4388     .name          = TYPE_SPAPR_MACHINE,
4389     .parent        = TYPE_MACHINE,
4390     .abstract      = true,
4391     .instance_size = sizeof(SpaprMachineState),
4392     .instance_init = spapr_instance_init,
4393     .instance_finalize = spapr_machine_finalizefn,
4394     .class_size    = sizeof(SpaprMachineClass),
4395     .class_init    = spapr_machine_class_init,
4396     .interfaces = (InterfaceInfo[]) {
4397         { TYPE_FW_PATH_PROVIDER },
4398         { TYPE_NMI },
4399         { TYPE_HOTPLUG_HANDLER },
4400         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4401         { TYPE_XICS_FABRIC },
4402         { TYPE_INTERRUPT_STATS_PROVIDER },
4403         { }
4404     },
4405 };
4406 
4407 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4408     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4409                                                     void *data)      \
4410     {                                                                \
4411         MachineClass *mc = MACHINE_CLASS(oc);                        \
4412         spapr_machine_##suffix##_class_options(mc);                  \
4413         if (latest) {                                                \
4414             mc->alias = "pseries";                                   \
4415             mc->is_default = 1;                                      \
4416         }                                                            \
4417     }                                                                \
4418     static const TypeInfo spapr_machine_##suffix##_info = {          \
4419         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4420         .parent = TYPE_SPAPR_MACHINE,                                \
4421         .class_init = spapr_machine_##suffix##_class_init,           \
4422     };                                                               \
4423     static void spapr_machine_register_##suffix(void)                \
4424     {                                                                \
4425         type_register(&spapr_machine_##suffix##_info);               \
4426     }                                                                \
4427     type_init(spapr_machine_register_##suffix)
4428 
4429 /*
4430  * pseries-4.1
4431  */
4432 static void spapr_machine_4_1_class_options(MachineClass *mc)
4433 {
4434     /* Defaults for the latest behaviour inherited from the base class */
4435 }
4436 
4437 DEFINE_SPAPR_MACHINE(4_1, "4.1", true);
4438 
4439 /*
4440  * pseries-4.0
4441  */
4442 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4443                               uint64_t *buid, hwaddr *pio,
4444                               hwaddr *mmio32, hwaddr *mmio64,
4445                               unsigned n_dma, uint32_t *liobns,
4446                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4447 {
4448     spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4449                         nv2gpa, nv2atsd, errp);
4450     *nv2gpa = 0;
4451     *nv2atsd = 0;
4452 }
4453 
4454 static void spapr_machine_4_0_class_options(MachineClass *mc)
4455 {
4456     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4457 
4458     spapr_machine_4_1_class_options(mc);
4459     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4460     smc->phb_placement = phb_placement_4_0;
4461     smc->irq = &spapr_irq_xics;
4462     smc->pre_4_1_migration = true;
4463 }
4464 
4465 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4466 
4467 /*
4468  * pseries-3.1
4469  */
4470 static void spapr_machine_3_1_class_options(MachineClass *mc)
4471 {
4472     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4473 
4474     spapr_machine_4_0_class_options(mc);
4475     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4476 
4477     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4478     smc->update_dt_enabled = false;
4479     smc->dr_phb_enabled = false;
4480     smc->broken_host_serial_model = true;
4481     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4482     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4483     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4484     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4485 }
4486 
4487 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4488 
4489 /*
4490  * pseries-3.0
4491  */
4492 
4493 static void spapr_machine_3_0_class_options(MachineClass *mc)
4494 {
4495     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4496 
4497     spapr_machine_3_1_class_options(mc);
4498     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4499 
4500     smc->legacy_irq_allocation = true;
4501     smc->irq = &spapr_irq_xics_legacy;
4502 }
4503 
4504 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4505 
4506 /*
4507  * pseries-2.12
4508  */
4509 static void spapr_machine_2_12_class_options(MachineClass *mc)
4510 {
4511     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4512     static GlobalProperty compat[] = {
4513         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4514         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4515     };
4516 
4517     spapr_machine_3_0_class_options(mc);
4518     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4519     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4520 
4521     /* We depend on kvm_enabled() to choose a default value for the
4522      * hpt-max-page-size capability. Of course we can't do it here
4523      * because this is too early and the HW accelerator isn't initialzed
4524      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4525      */
4526     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4527 }
4528 
4529 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4530 
4531 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4532 {
4533     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4534 
4535     spapr_machine_2_12_class_options(mc);
4536     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4537     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4538     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4539 }
4540 
4541 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4542 
4543 /*
4544  * pseries-2.11
4545  */
4546 
4547 static void spapr_machine_2_11_class_options(MachineClass *mc)
4548 {
4549     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4550 
4551     spapr_machine_2_12_class_options(mc);
4552     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4553     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4554 }
4555 
4556 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4557 
4558 /*
4559  * pseries-2.10
4560  */
4561 
4562 static void spapr_machine_2_10_class_options(MachineClass *mc)
4563 {
4564     spapr_machine_2_11_class_options(mc);
4565     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4566 }
4567 
4568 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4569 
4570 /*
4571  * pseries-2.9
4572  */
4573 
4574 static void spapr_machine_2_9_class_options(MachineClass *mc)
4575 {
4576     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4577     static GlobalProperty compat[] = {
4578         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4579     };
4580 
4581     spapr_machine_2_10_class_options(mc);
4582     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4583     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4584     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4585     smc->pre_2_10_has_unused_icps = true;
4586     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4587 }
4588 
4589 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4590 
4591 /*
4592  * pseries-2.8
4593  */
4594 
4595 static void spapr_machine_2_8_class_options(MachineClass *mc)
4596 {
4597     static GlobalProperty compat[] = {
4598         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4599     };
4600 
4601     spapr_machine_2_9_class_options(mc);
4602     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4603     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4604     mc->numa_mem_align_shift = 23;
4605 }
4606 
4607 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4608 
4609 /*
4610  * pseries-2.7
4611  */
4612 
4613 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4614                               uint64_t *buid, hwaddr *pio,
4615                               hwaddr *mmio32, hwaddr *mmio64,
4616                               unsigned n_dma, uint32_t *liobns,
4617                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4618 {
4619     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4620     const uint64_t base_buid = 0x800000020000000ULL;
4621     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4622     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4623     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4624     const uint32_t max_index = 255;
4625     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4626 
4627     uint64_t ram_top = MACHINE(spapr)->ram_size;
4628     hwaddr phb0_base, phb_base;
4629     int i;
4630 
4631     /* Do we have device memory? */
4632     if (MACHINE(spapr)->maxram_size > ram_top) {
4633         /* Can't just use maxram_size, because there may be an
4634          * alignment gap between normal and device memory regions
4635          */
4636         ram_top = MACHINE(spapr)->device_memory->base +
4637             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4638     }
4639 
4640     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4641 
4642     if (index > max_index) {
4643         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4644                    max_index);
4645         return;
4646     }
4647 
4648     *buid = base_buid + index;
4649     for (i = 0; i < n_dma; ++i) {
4650         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4651     }
4652 
4653     phb_base = phb0_base + index * phb_spacing;
4654     *pio = phb_base + pio_offset;
4655     *mmio32 = phb_base + mmio_offset;
4656     /*
4657      * We don't set the 64-bit MMIO window, relying on the PHB's
4658      * fallback behaviour of automatically splitting a large "32-bit"
4659      * window into contiguous 32-bit and 64-bit windows
4660      */
4661 
4662     *nv2gpa = 0;
4663     *nv2atsd = 0;
4664 }
4665 
4666 static void spapr_machine_2_7_class_options(MachineClass *mc)
4667 {
4668     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4669     static GlobalProperty compat[] = {
4670         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4671         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4672         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4673         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4674     };
4675 
4676     spapr_machine_2_8_class_options(mc);
4677     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4678     mc->default_machine_opts = "modern-hotplug-events=off";
4679     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4680     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4681     smc->phb_placement = phb_placement_2_7;
4682 }
4683 
4684 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4685 
4686 /*
4687  * pseries-2.6
4688  */
4689 
4690 static void spapr_machine_2_6_class_options(MachineClass *mc)
4691 {
4692     static GlobalProperty compat[] = {
4693         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4694     };
4695 
4696     spapr_machine_2_7_class_options(mc);
4697     mc->has_hotpluggable_cpus = false;
4698     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4699     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4700 }
4701 
4702 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4703 
4704 /*
4705  * pseries-2.5
4706  */
4707 
4708 static void spapr_machine_2_5_class_options(MachineClass *mc)
4709 {
4710     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4711     static GlobalProperty compat[] = {
4712         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4713     };
4714 
4715     spapr_machine_2_6_class_options(mc);
4716     smc->use_ohci_by_default = true;
4717     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4718     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4719 }
4720 
4721 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4722 
4723 /*
4724  * pseries-2.4
4725  */
4726 
4727 static void spapr_machine_2_4_class_options(MachineClass *mc)
4728 {
4729     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4730 
4731     spapr_machine_2_5_class_options(mc);
4732     smc->dr_lmb_enabled = false;
4733     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4734 }
4735 
4736 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4737 
4738 /*
4739  * pseries-2.3
4740  */
4741 
4742 static void spapr_machine_2_3_class_options(MachineClass *mc)
4743 {
4744     static GlobalProperty compat[] = {
4745         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4746     };
4747     spapr_machine_2_4_class_options(mc);
4748     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4749     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4750 }
4751 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4752 
4753 /*
4754  * pseries-2.2
4755  */
4756 
4757 static void spapr_machine_2_2_class_options(MachineClass *mc)
4758 {
4759     static GlobalProperty compat[] = {
4760         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4761     };
4762 
4763     spapr_machine_2_3_class_options(mc);
4764     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4765     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4766     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4767 }
4768 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4769 
4770 /*
4771  * pseries-2.1
4772  */
4773 
4774 static void spapr_machine_2_1_class_options(MachineClass *mc)
4775 {
4776     spapr_machine_2_2_class_options(mc);
4777     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4778 }
4779 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4780 
4781 static void spapr_machine_register_types(void)
4782 {
4783     type_register_static(&spapr_machine_info);
4784 }
4785 
4786 type_init(spapr_machine_register_types)
4787