xref: /qemu/hw/ppc/spapr.c (revision c5955f4f)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu/datadir.h"
29 #include "qemu/memalign.h"
30 #include "qapi/error.h"
31 #include "qapi/qapi-events-machine.h"
32 #include "qapi/qapi-events-qdev.h"
33 #include "qapi/visitor.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hostmem.h"
36 #include "sysemu/numa.h"
37 #include "sysemu/qtest.h"
38 #include "sysemu/reset.h"
39 #include "sysemu/runstate.h"
40 #include "qemu/log.h"
41 #include "hw/fw-path-provider.h"
42 #include "elf.h"
43 #include "net/net.h"
44 #include "sysemu/device_tree.h"
45 #include "sysemu/cpus.h"
46 #include "sysemu/hw_accel.h"
47 #include "kvm_ppc.h"
48 #include "migration/misc.h"
49 #include "migration/qemu-file-types.h"
50 #include "migration/global_state.h"
51 #include "migration/register.h"
52 #include "migration/blocker.h"
53 #include "mmu-hash64.h"
54 #include "mmu-book3s-v3.h"
55 #include "cpu-models.h"
56 #include "hw/core/cpu.h"
57 
58 #include "hw/ppc/ppc.h"
59 #include "hw/loader.h"
60 
61 #include "hw/ppc/fdt.h"
62 #include "hw/ppc/spapr.h"
63 #include "hw/ppc/spapr_vio.h"
64 #include "hw/qdev-properties.h"
65 #include "hw/pci-host/spapr.h"
66 #include "hw/pci/msi.h"
67 
68 #include "hw/pci/pci.h"
69 #include "hw/scsi/scsi.h"
70 #include "hw/virtio/virtio-scsi.h"
71 #include "hw/virtio/vhost-scsi-common.h"
72 
73 #include "exec/ram_addr.h"
74 #include "hw/usb.h"
75 #include "qemu/config-file.h"
76 #include "qemu/error-report.h"
77 #include "trace.h"
78 #include "hw/nmi.h"
79 #include "hw/intc/intc.h"
80 
81 #include "hw/ppc/spapr_cpu_core.h"
82 #include "hw/mem/memory-device.h"
83 #include "hw/ppc/spapr_tpm_proxy.h"
84 #include "hw/ppc/spapr_nvdimm.h"
85 #include "hw/ppc/spapr_numa.h"
86 #include "hw/ppc/pef.h"
87 
88 #include "monitor/monitor.h"
89 
90 #include <libfdt.h>
91 
92 /* SLOF memory layout:
93  *
94  * SLOF raw image loaded at 0, copies its romfs right below the flat
95  * device-tree, then position SLOF itself 31M below that
96  *
97  * So we set FW_OVERHEAD to 40MB which should account for all of that
98  * and more
99  *
100  * We load our kernel at 4M, leaving space for SLOF initial image
101  */
102 #define FDT_MAX_ADDR            0x80000000 /* FDT must stay below that */
103 #define FW_MAX_SIZE             0x400000
104 #define FW_FILE_NAME            "slof.bin"
105 #define FW_FILE_NAME_VOF        "vof.bin"
106 #define FW_OVERHEAD             0x2800000
107 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
108 
109 #define MIN_RMA_SLOF            (128 * MiB)
110 
111 #define PHANDLE_INTC            0x00001111
112 
113 /* These two functions implement the VCPU id numbering: one to compute them
114  * all and one to identify thread 0 of a VCORE. Any change to the first one
115  * is likely to have an impact on the second one, so let's keep them close.
116  */
117 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
118 {
119     MachineState *ms = MACHINE(spapr);
120     unsigned int smp_threads = ms->smp.threads;
121 
122     assert(spapr->vsmt);
123     return
124         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
125 }
126 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
127                                       PowerPCCPU *cpu)
128 {
129     assert(spapr->vsmt);
130     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
131 }
132 
133 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
134 {
135     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
136      * and newer QEMUs don't even have them. In both cases, we don't want
137      * to send anything on the wire.
138      */
139     return false;
140 }
141 
142 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
143     .name = "icp/server",
144     .version_id = 1,
145     .minimum_version_id = 1,
146     .needed = pre_2_10_vmstate_dummy_icp_needed,
147     .fields = (VMStateField[]) {
148         VMSTATE_UNUSED(4), /* uint32_t xirr */
149         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
150         VMSTATE_UNUSED(1), /* uint8_t mfrr */
151         VMSTATE_END_OF_LIST()
152     },
153 };
154 
155 static void pre_2_10_vmstate_register_dummy_icp(int i)
156 {
157     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
158                      (void *)(uintptr_t) i);
159 }
160 
161 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
162 {
163     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
164                        (void *)(uintptr_t) i);
165 }
166 
167 int spapr_max_server_number(SpaprMachineState *spapr)
168 {
169     MachineState *ms = MACHINE(spapr);
170 
171     assert(spapr->vsmt);
172     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
173 }
174 
175 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
176                                   int smt_threads)
177 {
178     int i, ret = 0;
179     uint32_t servers_prop[smt_threads];
180     uint32_t gservers_prop[smt_threads * 2];
181     int index = spapr_get_vcpu_id(cpu);
182 
183     if (cpu->compat_pvr) {
184         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
185         if (ret < 0) {
186             return ret;
187         }
188     }
189 
190     /* Build interrupt servers and gservers properties */
191     for (i = 0; i < smt_threads; i++) {
192         servers_prop[i] = cpu_to_be32(index + i);
193         /* Hack, direct the group queues back to cpu 0 */
194         gservers_prop[i*2] = cpu_to_be32(index + i);
195         gservers_prop[i*2 + 1] = 0;
196     }
197     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
198                       servers_prop, sizeof(servers_prop));
199     if (ret < 0) {
200         return ret;
201     }
202     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
203                       gservers_prop, sizeof(gservers_prop));
204 
205     return ret;
206 }
207 
208 static void spapr_dt_pa_features(SpaprMachineState *spapr,
209                                  PowerPCCPU *cpu,
210                                  void *fdt, int offset)
211 {
212     uint8_t pa_features_206[] = { 6, 0,
213         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
214     uint8_t pa_features_207[] = { 24, 0,
215         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
216         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
217         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
218         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
219     uint8_t pa_features_300[] = { 66, 0,
220         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
221         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
222         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
223         /* 6: DS207 */
224         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
225         /* 16: Vector */
226         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
227         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
228         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
229         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
230         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
231         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
232         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
233         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
234         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
235         /* 42: PM, 44: PC RA, 46: SC vec'd */
236         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
237         /* 48: SIMD, 50: QP BFP, 52: String */
238         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
239         /* 54: DecFP, 56: DecI, 58: SHA */
240         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
241         /* 60: NM atomic, 62: RNG */
242         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
243     };
244     uint8_t *pa_features = NULL;
245     size_t pa_size;
246 
247     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
248         pa_features = pa_features_206;
249         pa_size = sizeof(pa_features_206);
250     }
251     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
252         pa_features = pa_features_207;
253         pa_size = sizeof(pa_features_207);
254     }
255     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
256         pa_features = pa_features_300;
257         pa_size = sizeof(pa_features_300);
258     }
259     if (!pa_features) {
260         return;
261     }
262 
263     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
264         /*
265          * Note: we keep CI large pages off by default because a 64K capable
266          * guest provisioned with large pages might otherwise try to map a qemu
267          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
268          * even if that qemu runs on a 4k host.
269          * We dd this bit back here if we are confident this is not an issue
270          */
271         pa_features[3] |= 0x20;
272     }
273     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
274         pa_features[24] |= 0x80;    /* Transactional memory support */
275     }
276     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
277         /* Workaround for broken kernels that attempt (guest) radix
278          * mode when they can't handle it, if they see the radix bit set
279          * in pa-features. So hide it from them. */
280         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
281     }
282 
283     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
284 }
285 
286 static hwaddr spapr_node0_size(MachineState *machine)
287 {
288     if (machine->numa_state->num_nodes) {
289         int i;
290         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
291             if (machine->numa_state->nodes[i].node_mem) {
292                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
293                            machine->ram_size);
294             }
295         }
296     }
297     return machine->ram_size;
298 }
299 
300 static void add_str(GString *s, const gchar *s1)
301 {
302     g_string_append_len(s, s1, strlen(s1) + 1);
303 }
304 
305 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
306                                 hwaddr start, hwaddr size)
307 {
308     char mem_name[32];
309     uint64_t mem_reg_property[2];
310     int off;
311 
312     mem_reg_property[0] = cpu_to_be64(start);
313     mem_reg_property[1] = cpu_to_be64(size);
314 
315     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
316     off = fdt_add_subnode(fdt, 0, mem_name);
317     _FDT(off);
318     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
319     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
320                       sizeof(mem_reg_property))));
321     spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
322     return off;
323 }
324 
325 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
326 {
327     MemoryDeviceInfoList *info;
328 
329     for (info = list; info; info = info->next) {
330         MemoryDeviceInfo *value = info->value;
331 
332         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
333             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
334 
335             if (addr >= pcdimm_info->addr &&
336                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
337                 return pcdimm_info->node;
338             }
339         }
340     }
341 
342     return -1;
343 }
344 
345 struct sPAPRDrconfCellV2 {
346      uint32_t seq_lmbs;
347      uint64_t base_addr;
348      uint32_t drc_index;
349      uint32_t aa_index;
350      uint32_t flags;
351 } QEMU_PACKED;
352 
353 typedef struct DrconfCellQueue {
354     struct sPAPRDrconfCellV2 cell;
355     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
356 } DrconfCellQueue;
357 
358 static DrconfCellQueue *
359 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
360                       uint32_t drc_index, uint32_t aa_index,
361                       uint32_t flags)
362 {
363     DrconfCellQueue *elem;
364 
365     elem = g_malloc0(sizeof(*elem));
366     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
367     elem->cell.base_addr = cpu_to_be64(base_addr);
368     elem->cell.drc_index = cpu_to_be32(drc_index);
369     elem->cell.aa_index = cpu_to_be32(aa_index);
370     elem->cell.flags = cpu_to_be32(flags);
371 
372     return elem;
373 }
374 
375 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
376                                       int offset, MemoryDeviceInfoList *dimms)
377 {
378     MachineState *machine = MACHINE(spapr);
379     uint8_t *int_buf, *cur_index;
380     int ret;
381     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
382     uint64_t addr, cur_addr, size;
383     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
384     uint64_t mem_end = machine->device_memory->base +
385                        memory_region_size(&machine->device_memory->mr);
386     uint32_t node, buf_len, nr_entries = 0;
387     SpaprDrc *drc;
388     DrconfCellQueue *elem, *next;
389     MemoryDeviceInfoList *info;
390     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
391         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
392 
393     /* Entry to cover RAM and the gap area */
394     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
395                                  SPAPR_LMB_FLAGS_RESERVED |
396                                  SPAPR_LMB_FLAGS_DRC_INVALID);
397     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
398     nr_entries++;
399 
400     cur_addr = machine->device_memory->base;
401     for (info = dimms; info; info = info->next) {
402         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
403 
404         addr = di->addr;
405         size = di->size;
406         node = di->node;
407 
408         /*
409          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
410          * area is marked hotpluggable in the next iteration for the bigger
411          * chunk including the NVDIMM occupied area.
412          */
413         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
414             continue;
415 
416         /* Entry for hot-pluggable area */
417         if (cur_addr < addr) {
418             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
419             g_assert(drc);
420             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
421                                          cur_addr, spapr_drc_index(drc), -1, 0);
422             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
423             nr_entries++;
424         }
425 
426         /* Entry for DIMM */
427         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
428         g_assert(drc);
429         elem = spapr_get_drconf_cell(size / lmb_size, addr,
430                                      spapr_drc_index(drc), node,
431                                      (SPAPR_LMB_FLAGS_ASSIGNED |
432                                       SPAPR_LMB_FLAGS_HOTREMOVABLE));
433         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
434         nr_entries++;
435         cur_addr = addr + size;
436     }
437 
438     /* Entry for remaining hotpluggable area */
439     if (cur_addr < mem_end) {
440         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
441         g_assert(drc);
442         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
443                                      cur_addr, spapr_drc_index(drc), -1, 0);
444         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
445         nr_entries++;
446     }
447 
448     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
449     int_buf = cur_index = g_malloc0(buf_len);
450     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
451     cur_index += sizeof(nr_entries);
452 
453     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
454         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
455         cur_index += sizeof(elem->cell);
456         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
457         g_free(elem);
458     }
459 
460     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
461     g_free(int_buf);
462     if (ret < 0) {
463         return -1;
464     }
465     return 0;
466 }
467 
468 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
469                                    int offset, MemoryDeviceInfoList *dimms)
470 {
471     MachineState *machine = MACHINE(spapr);
472     int i, ret;
473     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
474     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
475     uint32_t nr_lmbs = (machine->device_memory->base +
476                        memory_region_size(&machine->device_memory->mr)) /
477                        lmb_size;
478     uint32_t *int_buf, *cur_index, buf_len;
479 
480     /*
481      * Allocate enough buffer size to fit in ibm,dynamic-memory
482      */
483     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
484     cur_index = int_buf = g_malloc0(buf_len);
485     int_buf[0] = cpu_to_be32(nr_lmbs);
486     cur_index++;
487     for (i = 0; i < nr_lmbs; i++) {
488         uint64_t addr = i * lmb_size;
489         uint32_t *dynamic_memory = cur_index;
490 
491         if (i >= device_lmb_start) {
492             SpaprDrc *drc;
493 
494             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
495             g_assert(drc);
496 
497             dynamic_memory[0] = cpu_to_be32(addr >> 32);
498             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
499             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
500             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
501             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
502             if (memory_region_present(get_system_memory(), addr)) {
503                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
504             } else {
505                 dynamic_memory[5] = cpu_to_be32(0);
506             }
507         } else {
508             /*
509              * LMB information for RMA, boot time RAM and gap b/n RAM and
510              * device memory region -- all these are marked as reserved
511              * and as having no valid DRC.
512              */
513             dynamic_memory[0] = cpu_to_be32(addr >> 32);
514             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
515             dynamic_memory[2] = cpu_to_be32(0);
516             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
517             dynamic_memory[4] = cpu_to_be32(-1);
518             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
519                                             SPAPR_LMB_FLAGS_DRC_INVALID);
520         }
521 
522         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
523     }
524     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
525     g_free(int_buf);
526     if (ret < 0) {
527         return -1;
528     }
529     return 0;
530 }
531 
532 /*
533  * Adds ibm,dynamic-reconfiguration-memory node.
534  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
535  * of this device tree node.
536  */
537 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
538                                                    void *fdt)
539 {
540     MachineState *machine = MACHINE(spapr);
541     int ret, offset;
542     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
543     uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
544                                 cpu_to_be32(lmb_size & 0xffffffff)};
545     MemoryDeviceInfoList *dimms = NULL;
546 
547     /*
548      * Don't create the node if there is no device memory
549      */
550     if (machine->ram_size == machine->maxram_size) {
551         return 0;
552     }
553 
554     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
555 
556     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
557                     sizeof(prop_lmb_size));
558     if (ret < 0) {
559         return ret;
560     }
561 
562     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
563     if (ret < 0) {
564         return ret;
565     }
566 
567     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
568     if (ret < 0) {
569         return ret;
570     }
571 
572     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
573     dimms = qmp_memory_device_list();
574     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
575         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
576     } else {
577         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
578     }
579     qapi_free_MemoryDeviceInfoList(dimms);
580 
581     if (ret < 0) {
582         return ret;
583     }
584 
585     ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
586 
587     return ret;
588 }
589 
590 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
591 {
592     MachineState *machine = MACHINE(spapr);
593     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
594     hwaddr mem_start, node_size;
595     int i, nb_nodes = machine->numa_state->num_nodes;
596     NodeInfo *nodes = machine->numa_state->nodes;
597 
598     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
599         if (!nodes[i].node_mem) {
600             continue;
601         }
602         if (mem_start >= machine->ram_size) {
603             node_size = 0;
604         } else {
605             node_size = nodes[i].node_mem;
606             if (node_size > machine->ram_size - mem_start) {
607                 node_size = machine->ram_size - mem_start;
608             }
609         }
610         if (!mem_start) {
611             /* spapr_machine_init() checks for rma_size <= node0_size
612              * already */
613             spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
614             mem_start += spapr->rma_size;
615             node_size -= spapr->rma_size;
616         }
617         for ( ; node_size; ) {
618             hwaddr sizetmp = pow2floor(node_size);
619 
620             /* mem_start != 0 here */
621             if (ctzl(mem_start) < ctzl(sizetmp)) {
622                 sizetmp = 1ULL << ctzl(mem_start);
623             }
624 
625             spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
626             node_size -= sizetmp;
627             mem_start += sizetmp;
628         }
629     }
630 
631     /* Generate ibm,dynamic-reconfiguration-memory node if required */
632     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
633         int ret;
634 
635         g_assert(smc->dr_lmb_enabled);
636         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
637         if (ret) {
638             return ret;
639         }
640     }
641 
642     return 0;
643 }
644 
645 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
646                          SpaprMachineState *spapr)
647 {
648     MachineState *ms = MACHINE(spapr);
649     PowerPCCPU *cpu = POWERPC_CPU(cs);
650     CPUPPCState *env = &cpu->env;
651     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
652     int index = spapr_get_vcpu_id(cpu);
653     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
654                        0xffffffff, 0xffffffff};
655     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
656         : SPAPR_TIMEBASE_FREQ;
657     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
658     uint32_t page_sizes_prop[64];
659     size_t page_sizes_prop_size;
660     unsigned int smp_threads = ms->smp.threads;
661     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
662     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
663     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
664     SpaprDrc *drc;
665     int drc_index;
666     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
667     int i;
668 
669     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
670     if (drc) {
671         drc_index = spapr_drc_index(drc);
672         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
673     }
674 
675     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
676     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
677 
678     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
679     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
680                            env->dcache_line_size)));
681     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
682                            env->dcache_line_size)));
683     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
684                            env->icache_line_size)));
685     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
686                            env->icache_line_size)));
687 
688     if (pcc->l1_dcache_size) {
689         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
690                                pcc->l1_dcache_size)));
691     } else {
692         warn_report("Unknown L1 dcache size for cpu");
693     }
694     if (pcc->l1_icache_size) {
695         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
696                                pcc->l1_icache_size)));
697     } else {
698         warn_report("Unknown L1 icache size for cpu");
699     }
700 
701     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
702     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
703     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
704     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
705     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
706     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
707 
708     if (ppc_has_spr(cpu, SPR_PURR)) {
709         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
710     }
711     if (ppc_has_spr(cpu, SPR_PURR)) {
712         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
713     }
714 
715     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
716         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
717                           segs, sizeof(segs))));
718     }
719 
720     /* Advertise VSX (vector extensions) if available
721      *   1               == VMX / Altivec available
722      *   2               == VSX available
723      *
724      * Only CPUs for which we create core types in spapr_cpu_core.c
725      * are possible, and all of those have VMX */
726     if (env->insns_flags & PPC_ALTIVEC) {
727         if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
728             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
729         } else {
730             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
731         }
732     }
733 
734     /* Advertise DFP (Decimal Floating Point) if available
735      *   0 / no property == no DFP
736      *   1               == DFP available */
737     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
738         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
739     }
740 
741     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
742                                                       sizeof(page_sizes_prop));
743     if (page_sizes_prop_size) {
744         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
745                           page_sizes_prop, page_sizes_prop_size)));
746     }
747 
748     spapr_dt_pa_features(spapr, cpu, fdt, offset);
749 
750     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
751                            cs->cpu_index / vcpus_per_socket)));
752 
753     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
754                       pft_size_prop, sizeof(pft_size_prop))));
755 
756     if (ms->numa_state->num_nodes > 1) {
757         _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
758     }
759 
760     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
761 
762     if (pcc->radix_page_info) {
763         for (i = 0; i < pcc->radix_page_info->count; i++) {
764             radix_AP_encodings[i] =
765                 cpu_to_be32(pcc->radix_page_info->entries[i]);
766         }
767         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
768                           radix_AP_encodings,
769                           pcc->radix_page_info->count *
770                           sizeof(radix_AP_encodings[0]))));
771     }
772 
773     /*
774      * We set this property to let the guest know that it can use the large
775      * decrementer and its width in bits.
776      */
777     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
778         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
779                               pcc->lrg_decr_bits)));
780 }
781 
782 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
783 {
784     CPUState **rev;
785     CPUState *cs;
786     int n_cpus;
787     int cpus_offset;
788     int i;
789 
790     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
791     _FDT(cpus_offset);
792     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
793     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
794 
795     /*
796      * We walk the CPUs in reverse order to ensure that CPU DT nodes
797      * created by fdt_add_subnode() end up in the right order in FDT
798      * for the guest kernel the enumerate the CPUs correctly.
799      *
800      * The CPU list cannot be traversed in reverse order, so we need
801      * to do extra work.
802      */
803     n_cpus = 0;
804     rev = NULL;
805     CPU_FOREACH(cs) {
806         rev = g_renew(CPUState *, rev, n_cpus + 1);
807         rev[n_cpus++] = cs;
808     }
809 
810     for (i = n_cpus - 1; i >= 0; i--) {
811         CPUState *cs = rev[i];
812         PowerPCCPU *cpu = POWERPC_CPU(cs);
813         int index = spapr_get_vcpu_id(cpu);
814         DeviceClass *dc = DEVICE_GET_CLASS(cs);
815         g_autofree char *nodename = NULL;
816         int offset;
817 
818         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
819             continue;
820         }
821 
822         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
823         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
824         _FDT(offset);
825         spapr_dt_cpu(cs, fdt, offset, spapr);
826     }
827 
828     g_free(rev);
829 }
830 
831 static int spapr_dt_rng(void *fdt)
832 {
833     int node;
834     int ret;
835 
836     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
837     if (node <= 0) {
838         return -1;
839     }
840     ret = fdt_setprop_string(fdt, node, "device_type",
841                              "ibm,platform-facilities");
842     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
843     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
844 
845     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
846     if (node <= 0) {
847         return -1;
848     }
849     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
850 
851     return ret ? -1 : 0;
852 }
853 
854 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
855 {
856     MachineState *ms = MACHINE(spapr);
857     int rtas;
858     GString *hypertas = g_string_sized_new(256);
859     GString *qemu_hypertas = g_string_sized_new(256);
860     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
861         memory_region_size(&MACHINE(spapr)->device_memory->mr);
862     uint32_t lrdr_capacity[] = {
863         cpu_to_be32(max_device_addr >> 32),
864         cpu_to_be32(max_device_addr & 0xffffffff),
865         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
866         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
867         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
868     };
869 
870     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
871 
872     /* hypertas */
873     add_str(hypertas, "hcall-pft");
874     add_str(hypertas, "hcall-term");
875     add_str(hypertas, "hcall-dabr");
876     add_str(hypertas, "hcall-interrupt");
877     add_str(hypertas, "hcall-tce");
878     add_str(hypertas, "hcall-vio");
879     add_str(hypertas, "hcall-splpar");
880     add_str(hypertas, "hcall-join");
881     add_str(hypertas, "hcall-bulk");
882     add_str(hypertas, "hcall-set-mode");
883     add_str(hypertas, "hcall-sprg0");
884     add_str(hypertas, "hcall-copy");
885     add_str(hypertas, "hcall-debug");
886     add_str(hypertas, "hcall-vphn");
887     if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
888         add_str(hypertas, "hcall-rpt-invalidate");
889     }
890 
891     add_str(qemu_hypertas, "hcall-memop1");
892 
893     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
894         add_str(hypertas, "hcall-multi-tce");
895     }
896 
897     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
898         add_str(hypertas, "hcall-hpt-resize");
899     }
900 
901     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
902                      hypertas->str, hypertas->len));
903     g_string_free(hypertas, TRUE);
904     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
905                      qemu_hypertas->str, qemu_hypertas->len));
906     g_string_free(qemu_hypertas, TRUE);
907 
908     spapr_numa_write_rtas_dt(spapr, fdt, rtas);
909 
910     /*
911      * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
912      * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
913      *
914      * The system reset requirements are driven by existing Linux and PowerVM
915      * implementation which (contrary to PAPR) saves r3 in the error log
916      * structure like machine check, so Linux expects to find the saved r3
917      * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
918      * does not look at the error value).
919      *
920      * System reset interrupts are not subject to interlock like machine
921      * check, so this memory area could be corrupted if the sreset is
922      * interrupted by a machine check (or vice versa) if it was shared. To
923      * prevent this, system reset uses per-CPU areas for the sreset save
924      * area. A system reset that interrupts a system reset handler could
925      * still overwrite this area, but Linux doesn't try to recover in that
926      * case anyway.
927      *
928      * The extra 8 bytes is required because Linux's FWNMI error log check
929      * is off-by-one.
930      *
931      * RTAS_MIN_SIZE is required for the RTAS blob itself.
932      */
933     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
934                           RTAS_ERROR_LOG_MAX +
935                           ms->smp.max_cpus * sizeof(uint64_t) * 2 +
936                           sizeof(uint64_t)));
937     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
938                           RTAS_ERROR_LOG_MAX));
939     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
940                           RTAS_EVENT_SCAN_RATE));
941 
942     g_assert(msi_nonbroken);
943     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
944 
945     /*
946      * According to PAPR, rtas ibm,os-term does not guarantee a return
947      * back to the guest cpu.
948      *
949      * While an additional ibm,extended-os-term property indicates
950      * that rtas call return will always occur. Set this property.
951      */
952     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
953 
954     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
955                      lrdr_capacity, sizeof(lrdr_capacity)));
956 
957     spapr_dt_rtas_tokens(fdt, rtas);
958 }
959 
960 /*
961  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
962  * and the XIVE features that the guest may request and thus the valid
963  * values for bytes 23..26 of option vector 5:
964  */
965 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
966                                           int chosen)
967 {
968     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
969 
970     char val[2 * 4] = {
971         23, 0x00, /* XICS / XIVE mode */
972         24, 0x00, /* Hash/Radix, filled in below. */
973         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
974         26, 0x40, /* Radix options: GTSE == yes. */
975     };
976 
977     if (spapr->irq->xics && spapr->irq->xive) {
978         val[1] = SPAPR_OV5_XIVE_BOTH;
979     } else if (spapr->irq->xive) {
980         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
981     } else {
982         assert(spapr->irq->xics);
983         val[1] = SPAPR_OV5_XIVE_LEGACY;
984     }
985 
986     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
987                           first_ppc_cpu->compat_pvr)) {
988         /*
989          * If we're in a pre POWER9 compat mode then the guest should
990          * do hash and use the legacy interrupt mode
991          */
992         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
993         val[3] = 0x00; /* Hash */
994         spapr_check_mmu_mode(false);
995     } else if (kvm_enabled()) {
996         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
997             val[3] = 0x80; /* OV5_MMU_BOTH */
998         } else if (kvmppc_has_cap_mmu_radix()) {
999             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1000         } else {
1001             val[3] = 0x00; /* Hash */
1002         }
1003     } else {
1004         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1005         val[3] = 0xC0;
1006     }
1007     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1008                      val, sizeof(val)));
1009 }
1010 
1011 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1012 {
1013     MachineState *machine = MACHINE(spapr);
1014     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1015     int chosen;
1016 
1017     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1018 
1019     if (reset) {
1020         const char *boot_device = spapr->boot_device;
1021         g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1022         size_t cb = 0;
1023         g_autofree char *bootlist = get_boot_devices_list(&cb);
1024 
1025         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1026             _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1027                                     machine->kernel_cmdline));
1028         }
1029 
1030         if (spapr->initrd_size) {
1031             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1032                                   spapr->initrd_base));
1033             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1034                                   spapr->initrd_base + spapr->initrd_size));
1035         }
1036 
1037         if (spapr->kernel_size) {
1038             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1039                                   cpu_to_be64(spapr->kernel_size) };
1040 
1041             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1042                          &kprop, sizeof(kprop)));
1043             if (spapr->kernel_le) {
1044                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1045             }
1046         }
1047         if (boot_menu) {
1048             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1049         }
1050         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1051         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1052         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1053 
1054         if (cb && bootlist) {
1055             int i;
1056 
1057             for (i = 0; i < cb; i++) {
1058                 if (bootlist[i] == '\n') {
1059                     bootlist[i] = ' ';
1060                 }
1061             }
1062             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1063         }
1064 
1065         if (boot_device && strlen(boot_device)) {
1066             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1067         }
1068 
1069         if (!spapr->has_graphics && stdout_path) {
1070             /*
1071              * "linux,stdout-path" and "stdout" properties are
1072              * deprecated by linux kernel. New platforms should only
1073              * use the "stdout-path" property. Set the new property
1074              * and continue using older property to remain compatible
1075              * with the existing firmware.
1076              */
1077             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1078             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1079         }
1080 
1081         /*
1082          * We can deal with BAR reallocation just fine, advertise it
1083          * to the guest
1084          */
1085         if (smc->linux_pci_probe) {
1086             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1087         }
1088 
1089         spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1090     }
1091 
1092     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1093 }
1094 
1095 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1096 {
1097     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1098      * KVM to work under pHyp with some guest co-operation */
1099     int hypervisor;
1100     uint8_t hypercall[16];
1101 
1102     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1103     /* indicate KVM hypercall interface */
1104     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1105     if (kvmppc_has_cap_fixup_hcalls()) {
1106         /*
1107          * Older KVM versions with older guest kernels were broken
1108          * with the magic page, don't allow the guest to map it.
1109          */
1110         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1111                                   sizeof(hypercall))) {
1112             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1113                              hypercall, sizeof(hypercall)));
1114         }
1115     }
1116 }
1117 
1118 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1119 {
1120     MachineState *machine = MACHINE(spapr);
1121     MachineClass *mc = MACHINE_GET_CLASS(machine);
1122     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1123     uint32_t root_drc_type_mask = 0;
1124     int ret;
1125     void *fdt;
1126     SpaprPhbState *phb;
1127     char *buf;
1128 
1129     fdt = g_malloc0(space);
1130     _FDT((fdt_create_empty_tree(fdt, space)));
1131 
1132     /* Root node */
1133     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1134     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1135     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1136 
1137     /* Guest UUID & Name*/
1138     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1139     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1140     if (qemu_uuid_set) {
1141         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1142     }
1143     g_free(buf);
1144 
1145     if (qemu_get_vm_name()) {
1146         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1147                                 qemu_get_vm_name()));
1148     }
1149 
1150     /* Host Model & Serial Number */
1151     if (spapr->host_model) {
1152         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1153     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1154         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1155         g_free(buf);
1156     }
1157 
1158     if (spapr->host_serial) {
1159         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1160     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1161         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1162         g_free(buf);
1163     }
1164 
1165     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1166     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1167 
1168     /* /interrupt controller */
1169     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1170 
1171     ret = spapr_dt_memory(spapr, fdt);
1172     if (ret < 0) {
1173         error_report("couldn't setup memory nodes in fdt");
1174         exit(1);
1175     }
1176 
1177     /* /vdevice */
1178     spapr_dt_vdevice(spapr->vio_bus, fdt);
1179 
1180     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1181         ret = spapr_dt_rng(fdt);
1182         if (ret < 0) {
1183             error_report("could not set up rng device in the fdt");
1184             exit(1);
1185         }
1186     }
1187 
1188     QLIST_FOREACH(phb, &spapr->phbs, list) {
1189         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1190         if (ret < 0) {
1191             error_report("couldn't setup PCI devices in fdt");
1192             exit(1);
1193         }
1194     }
1195 
1196     spapr_dt_cpus(fdt, spapr);
1197 
1198     /* ibm,drc-indexes and friends */
1199     if (smc->dr_lmb_enabled) {
1200         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1201     }
1202     if (smc->dr_phb_enabled) {
1203         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1204     }
1205     if (mc->nvdimm_supported) {
1206         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1207     }
1208     if (root_drc_type_mask) {
1209         _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1210     }
1211 
1212     if (mc->has_hotpluggable_cpus) {
1213         int offset = fdt_path_offset(fdt, "/cpus");
1214         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1215         if (ret < 0) {
1216             error_report("Couldn't set up CPU DR device tree properties");
1217             exit(1);
1218         }
1219     }
1220 
1221     /* /event-sources */
1222     spapr_dt_events(spapr, fdt);
1223 
1224     /* /rtas */
1225     spapr_dt_rtas(spapr, fdt);
1226 
1227     /* /chosen */
1228     spapr_dt_chosen(spapr, fdt, reset);
1229 
1230     /* /hypervisor */
1231     if (kvm_enabled()) {
1232         spapr_dt_hypervisor(spapr, fdt);
1233     }
1234 
1235     /* Build memory reserve map */
1236     if (reset) {
1237         if (spapr->kernel_size) {
1238             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1239                                   spapr->kernel_size)));
1240         }
1241         if (spapr->initrd_size) {
1242             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1243                                   spapr->initrd_size)));
1244         }
1245     }
1246 
1247     /* NVDIMM devices */
1248     if (mc->nvdimm_supported) {
1249         spapr_dt_persistent_memory(spapr, fdt);
1250     }
1251 
1252     return fdt;
1253 }
1254 
1255 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1256 {
1257     SpaprMachineState *spapr = opaque;
1258 
1259     return (addr & 0x0fffffff) + spapr->kernel_addr;
1260 }
1261 
1262 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1263                                     PowerPCCPU *cpu)
1264 {
1265     CPUPPCState *env = &cpu->env;
1266 
1267     /* The TCG path should also be holding the BQL at this point */
1268     g_assert(qemu_mutex_iothread_locked());
1269 
1270     g_assert(!vhyp_cpu_in_nested(cpu));
1271 
1272     if (msr_pr) {
1273         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1274         env->gpr[3] = H_PRIVILEGE;
1275     } else {
1276         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1277     }
1278 }
1279 
1280 struct LPCRSyncState {
1281     target_ulong value;
1282     target_ulong mask;
1283 };
1284 
1285 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1286 {
1287     struct LPCRSyncState *s = arg.host_ptr;
1288     PowerPCCPU *cpu = POWERPC_CPU(cs);
1289     CPUPPCState *env = &cpu->env;
1290     target_ulong lpcr;
1291 
1292     cpu_synchronize_state(cs);
1293     lpcr = env->spr[SPR_LPCR];
1294     lpcr &= ~s->mask;
1295     lpcr |= s->value;
1296     ppc_store_lpcr(cpu, lpcr);
1297 }
1298 
1299 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1300 {
1301     CPUState *cs;
1302     struct LPCRSyncState s = {
1303         .value = value,
1304         .mask = mask
1305     };
1306     CPU_FOREACH(cs) {
1307         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1308     }
1309 }
1310 
1311 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1312                            target_ulong lpid, ppc_v3_pate_t *entry)
1313 {
1314     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1315     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1316 
1317     if (!spapr_cpu->in_nested) {
1318         assert(lpid == 0);
1319 
1320         /* Copy PATE1:GR into PATE0:HR */
1321         entry->dw0 = spapr->patb_entry & PATE0_HR;
1322         entry->dw1 = spapr->patb_entry;
1323 
1324     } else {
1325         uint64_t patb, pats;
1326 
1327         assert(lpid != 0);
1328 
1329         patb = spapr->nested_ptcr & PTCR_PATB;
1330         pats = spapr->nested_ptcr & PTCR_PATS;
1331 
1332         /* Calculate number of entries */
1333         pats = 1ull << (pats + 12 - 4);
1334         if (pats <= lpid) {
1335             return false;
1336         }
1337 
1338         /* Grab entry */
1339         patb += 16 * lpid;
1340         entry->dw0 = ldq_phys(CPU(cpu)->as, patb);
1341         entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8);
1342     }
1343 
1344     return true;
1345 }
1346 
1347 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1348 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1349 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1350 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1351 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1352 
1353 /*
1354  * Get the fd to access the kernel htab, re-opening it if necessary
1355  */
1356 static int get_htab_fd(SpaprMachineState *spapr)
1357 {
1358     Error *local_err = NULL;
1359 
1360     if (spapr->htab_fd >= 0) {
1361         return spapr->htab_fd;
1362     }
1363 
1364     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1365     if (spapr->htab_fd < 0) {
1366         error_report_err(local_err);
1367     }
1368 
1369     return spapr->htab_fd;
1370 }
1371 
1372 void close_htab_fd(SpaprMachineState *spapr)
1373 {
1374     if (spapr->htab_fd >= 0) {
1375         close(spapr->htab_fd);
1376     }
1377     spapr->htab_fd = -1;
1378 }
1379 
1380 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1381 {
1382     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1383 
1384     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1385 }
1386 
1387 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1388 {
1389     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1390 
1391     assert(kvm_enabled());
1392 
1393     if (!spapr->htab) {
1394         return 0;
1395     }
1396 
1397     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1398 }
1399 
1400 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1401                                                 hwaddr ptex, int n)
1402 {
1403     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1404     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1405 
1406     if (!spapr->htab) {
1407         /*
1408          * HTAB is controlled by KVM. Fetch into temporary buffer
1409          */
1410         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1411         kvmppc_read_hptes(hptes, ptex, n);
1412         return hptes;
1413     }
1414 
1415     /*
1416      * HTAB is controlled by QEMU. Just point to the internally
1417      * accessible PTEG.
1418      */
1419     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1420 }
1421 
1422 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1423                               const ppc_hash_pte64_t *hptes,
1424                               hwaddr ptex, int n)
1425 {
1426     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1427 
1428     if (!spapr->htab) {
1429         g_free((void *)hptes);
1430     }
1431 
1432     /* Nothing to do for qemu managed HPT */
1433 }
1434 
1435 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1436                       uint64_t pte0, uint64_t pte1)
1437 {
1438     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1439     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1440 
1441     if (!spapr->htab) {
1442         kvmppc_write_hpte(ptex, pte0, pte1);
1443     } else {
1444         if (pte0 & HPTE64_V_VALID) {
1445             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1446             /*
1447              * When setting valid, we write PTE1 first. This ensures
1448              * proper synchronization with the reading code in
1449              * ppc_hash64_pteg_search()
1450              */
1451             smp_wmb();
1452             stq_p(spapr->htab + offset, pte0);
1453         } else {
1454             stq_p(spapr->htab + offset, pte0);
1455             /*
1456              * When clearing it we set PTE0 first. This ensures proper
1457              * synchronization with the reading code in
1458              * ppc_hash64_pteg_search()
1459              */
1460             smp_wmb();
1461             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1462         }
1463     }
1464 }
1465 
1466 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1467                              uint64_t pte1)
1468 {
1469     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1470     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1471 
1472     if (!spapr->htab) {
1473         /* There should always be a hash table when this is called */
1474         error_report("spapr_hpte_set_c called with no hash table !");
1475         return;
1476     }
1477 
1478     /* The HW performs a non-atomic byte update */
1479     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1480 }
1481 
1482 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1483                              uint64_t pte1)
1484 {
1485     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1486     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1487 
1488     if (!spapr->htab) {
1489         /* There should always be a hash table when this is called */
1490         error_report("spapr_hpte_set_r called with no hash table !");
1491         return;
1492     }
1493 
1494     /* The HW performs a non-atomic byte update */
1495     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1496 }
1497 
1498 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1499 {
1500     int shift;
1501 
1502     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1503      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1504      * that's much more than is needed for Linux guests */
1505     shift = ctz64(pow2ceil(ramsize)) - 7;
1506     shift = MAX(shift, 18); /* Minimum architected size */
1507     shift = MIN(shift, 46); /* Maximum architected size */
1508     return shift;
1509 }
1510 
1511 void spapr_free_hpt(SpaprMachineState *spapr)
1512 {
1513     g_free(spapr->htab);
1514     spapr->htab = NULL;
1515     spapr->htab_shift = 0;
1516     close_htab_fd(spapr);
1517 }
1518 
1519 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1520 {
1521     ERRP_GUARD();
1522     long rc;
1523 
1524     /* Clean up any HPT info from a previous boot */
1525     spapr_free_hpt(spapr);
1526 
1527     rc = kvmppc_reset_htab(shift);
1528 
1529     if (rc == -EOPNOTSUPP) {
1530         error_setg(errp, "HPT not supported in nested guests");
1531         return -EOPNOTSUPP;
1532     }
1533 
1534     if (rc < 0) {
1535         /* kernel-side HPT needed, but couldn't allocate one */
1536         error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1537                          shift);
1538         error_append_hint(errp, "Try smaller maxmem?\n");
1539         return -errno;
1540     } else if (rc > 0) {
1541         /* kernel-side HPT allocated */
1542         if (rc != shift) {
1543             error_setg(errp,
1544                        "Requested order %d HPT, but kernel allocated order %ld",
1545                        shift, rc);
1546             error_append_hint(errp, "Try smaller maxmem?\n");
1547             return -ENOSPC;
1548         }
1549 
1550         spapr->htab_shift = shift;
1551         spapr->htab = NULL;
1552     } else {
1553         /* kernel-side HPT not needed, allocate in userspace instead */
1554         size_t size = 1ULL << shift;
1555         int i;
1556 
1557         spapr->htab = qemu_memalign(size, size);
1558         memset(spapr->htab, 0, size);
1559         spapr->htab_shift = shift;
1560 
1561         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1562             DIRTY_HPTE(HPTE(spapr->htab, i));
1563         }
1564     }
1565     /* We're setting up a hash table, so that means we're not radix */
1566     spapr->patb_entry = 0;
1567     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1568     return 0;
1569 }
1570 
1571 void spapr_setup_hpt(SpaprMachineState *spapr)
1572 {
1573     int hpt_shift;
1574 
1575     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1576         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1577     } else {
1578         uint64_t current_ram_size;
1579 
1580         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1581         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1582     }
1583     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1584 
1585     if (kvm_enabled()) {
1586         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1587 
1588         /* Check our RMA fits in the possible VRMA */
1589         if (vrma_limit < spapr->rma_size) {
1590             error_report("Unable to create %" HWADDR_PRIu
1591                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1592                          spapr->rma_size / MiB, vrma_limit / MiB);
1593             exit(EXIT_FAILURE);
1594         }
1595     }
1596 }
1597 
1598 void spapr_check_mmu_mode(bool guest_radix)
1599 {
1600     if (guest_radix) {
1601         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1602             error_report("Guest requested unavailable MMU mode (radix).");
1603             exit(EXIT_FAILURE);
1604         }
1605     } else {
1606         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1607             && !kvmppc_has_cap_mmu_hash_v3()) {
1608             error_report("Guest requested unavailable MMU mode (hash).");
1609             exit(EXIT_FAILURE);
1610         }
1611     }
1612 }
1613 
1614 static void spapr_machine_reset(MachineState *machine)
1615 {
1616     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1617     PowerPCCPU *first_ppc_cpu;
1618     hwaddr fdt_addr;
1619     void *fdt;
1620     int rc;
1621 
1622     pef_kvm_reset(machine->cgs, &error_fatal);
1623     spapr_caps_apply(spapr);
1624 
1625     first_ppc_cpu = POWERPC_CPU(first_cpu);
1626     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1627         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1628                               spapr->max_compat_pvr)) {
1629         /*
1630          * If using KVM with radix mode available, VCPUs can be started
1631          * without a HPT because KVM will start them in radix mode.
1632          * Set the GR bit in PATE so that we know there is no HPT.
1633          */
1634         spapr->patb_entry = PATE1_GR;
1635         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1636     } else {
1637         spapr_setup_hpt(spapr);
1638     }
1639 
1640     qemu_devices_reset();
1641 
1642     spapr_ovec_cleanup(spapr->ov5_cas);
1643     spapr->ov5_cas = spapr_ovec_new();
1644 
1645     ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1646 
1647     /*
1648      * This is fixing some of the default configuration of the XIVE
1649      * devices. To be called after the reset of the machine devices.
1650      */
1651     spapr_irq_reset(spapr, &error_fatal);
1652 
1653     /*
1654      * There is no CAS under qtest. Simulate one to please the code that
1655      * depends on spapr->ov5_cas. This is especially needed to test device
1656      * unplug, so we do that before resetting the DRCs.
1657      */
1658     if (qtest_enabled()) {
1659         spapr_ovec_cleanup(spapr->ov5_cas);
1660         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1661     }
1662 
1663     spapr_nvdimm_finish_flushes();
1664 
1665     /* DRC reset may cause a device to be unplugged. This will cause troubles
1666      * if this device is used by another device (eg, a running vhost backend
1667      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1668      * situations, we reset DRCs after all devices have been reset.
1669      */
1670     spapr_drc_reset_all(spapr);
1671 
1672     spapr_clear_pending_events(spapr);
1673 
1674     /*
1675      * We place the device tree just below either the top of the RMA,
1676      * or just below 2GB, whichever is lower, so that it can be
1677      * processed with 32-bit real mode code if necessary
1678      */
1679     fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1680 
1681     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1682     if (spapr->vof) {
1683         spapr_vof_reset(spapr, fdt, &error_fatal);
1684         /*
1685          * Do not pack the FDT as the client may change properties.
1686          * VOF client does not expect the FDT so we do not load it to the VM.
1687          */
1688     } else {
1689         rc = fdt_pack(fdt);
1690         /* Should only fail if we've built a corrupted tree */
1691         assert(rc == 0);
1692 
1693         spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1694                                   0, fdt_addr, 0);
1695         cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1696     }
1697     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1698 
1699     g_free(spapr->fdt_blob);
1700     spapr->fdt_size = fdt_totalsize(fdt);
1701     spapr->fdt_initial_size = spapr->fdt_size;
1702     spapr->fdt_blob = fdt;
1703 
1704     /* Set up the entry state */
1705     first_ppc_cpu->env.gpr[5] = 0;
1706 
1707     spapr->fwnmi_system_reset_addr = -1;
1708     spapr->fwnmi_machine_check_addr = -1;
1709     spapr->fwnmi_machine_check_interlock = -1;
1710 
1711     /* Signal all vCPUs waiting on this condition */
1712     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1713 
1714     migrate_del_blocker(spapr->fwnmi_migration_blocker);
1715 }
1716 
1717 static void spapr_create_nvram(SpaprMachineState *spapr)
1718 {
1719     DeviceState *dev = qdev_new("spapr-nvram");
1720     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1721 
1722     if (dinfo) {
1723         qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1724                                 &error_fatal);
1725     }
1726 
1727     qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1728 
1729     spapr->nvram = (struct SpaprNvram *)dev;
1730 }
1731 
1732 static void spapr_rtc_create(SpaprMachineState *spapr)
1733 {
1734     object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1735                                        sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1736                                        &error_fatal, NULL);
1737     qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1738     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1739                               "date");
1740 }
1741 
1742 /* Returns whether we want to use VGA or not */
1743 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1744 {
1745     switch (vga_interface_type) {
1746     case VGA_NONE:
1747         return false;
1748     case VGA_DEVICE:
1749         return true;
1750     case VGA_STD:
1751     case VGA_VIRTIO:
1752     case VGA_CIRRUS:
1753         return pci_vga_init(pci_bus) != NULL;
1754     default:
1755         error_setg(errp,
1756                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1757         return false;
1758     }
1759 }
1760 
1761 static int spapr_pre_load(void *opaque)
1762 {
1763     int rc;
1764 
1765     rc = spapr_caps_pre_load(opaque);
1766     if (rc) {
1767         return rc;
1768     }
1769 
1770     return 0;
1771 }
1772 
1773 static int spapr_post_load(void *opaque, int version_id)
1774 {
1775     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1776     int err = 0;
1777 
1778     err = spapr_caps_post_migration(spapr);
1779     if (err) {
1780         return err;
1781     }
1782 
1783     /*
1784      * In earlier versions, there was no separate qdev for the PAPR
1785      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1786      * So when migrating from those versions, poke the incoming offset
1787      * value into the RTC device
1788      */
1789     if (version_id < 3) {
1790         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1791         if (err) {
1792             return err;
1793         }
1794     }
1795 
1796     if (kvm_enabled() && spapr->patb_entry) {
1797         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1798         bool radix = !!(spapr->patb_entry & PATE1_GR);
1799         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1800 
1801         /*
1802          * Update LPCR:HR and UPRT as they may not be set properly in
1803          * the stream
1804          */
1805         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1806                             LPCR_HR | LPCR_UPRT);
1807 
1808         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1809         if (err) {
1810             error_report("Process table config unsupported by the host");
1811             return -EINVAL;
1812         }
1813     }
1814 
1815     err = spapr_irq_post_load(spapr, version_id);
1816     if (err) {
1817         return err;
1818     }
1819 
1820     return err;
1821 }
1822 
1823 static int spapr_pre_save(void *opaque)
1824 {
1825     int rc;
1826 
1827     rc = spapr_caps_pre_save(opaque);
1828     if (rc) {
1829         return rc;
1830     }
1831 
1832     return 0;
1833 }
1834 
1835 static bool version_before_3(void *opaque, int version_id)
1836 {
1837     return version_id < 3;
1838 }
1839 
1840 static bool spapr_pending_events_needed(void *opaque)
1841 {
1842     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1843     return !QTAILQ_EMPTY(&spapr->pending_events);
1844 }
1845 
1846 static const VMStateDescription vmstate_spapr_event_entry = {
1847     .name = "spapr_event_log_entry",
1848     .version_id = 1,
1849     .minimum_version_id = 1,
1850     .fields = (VMStateField[]) {
1851         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1852         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1853         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1854                                      NULL, extended_length),
1855         VMSTATE_END_OF_LIST()
1856     },
1857 };
1858 
1859 static const VMStateDescription vmstate_spapr_pending_events = {
1860     .name = "spapr_pending_events",
1861     .version_id = 1,
1862     .minimum_version_id = 1,
1863     .needed = spapr_pending_events_needed,
1864     .fields = (VMStateField[]) {
1865         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1866                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1867         VMSTATE_END_OF_LIST()
1868     },
1869 };
1870 
1871 static bool spapr_ov5_cas_needed(void *opaque)
1872 {
1873     SpaprMachineState *spapr = opaque;
1874     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1875     bool cas_needed;
1876 
1877     /* Prior to the introduction of SpaprOptionVector, we had two option
1878      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1879      * Both of these options encode machine topology into the device-tree
1880      * in such a way that the now-booted OS should still be able to interact
1881      * appropriately with QEMU regardless of what options were actually
1882      * negotiatied on the source side.
1883      *
1884      * As such, we can avoid migrating the CAS-negotiated options if these
1885      * are the only options available on the current machine/platform.
1886      * Since these are the only options available for pseries-2.7 and
1887      * earlier, this allows us to maintain old->new/new->old migration
1888      * compatibility.
1889      *
1890      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1891      * via default pseries-2.8 machines and explicit command-line parameters.
1892      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1893      * of the actual CAS-negotiated values to continue working properly. For
1894      * example, availability of memory unplug depends on knowing whether
1895      * OV5_HP_EVT was negotiated via CAS.
1896      *
1897      * Thus, for any cases where the set of available CAS-negotiatable
1898      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1899      * include the CAS-negotiated options in the migration stream, unless
1900      * if they affect boot time behaviour only.
1901      */
1902     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1903     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1904     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1905 
1906     /* We need extra information if we have any bits outside the mask
1907      * defined above */
1908     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1909 
1910     spapr_ovec_cleanup(ov5_mask);
1911 
1912     return cas_needed;
1913 }
1914 
1915 static const VMStateDescription vmstate_spapr_ov5_cas = {
1916     .name = "spapr_option_vector_ov5_cas",
1917     .version_id = 1,
1918     .minimum_version_id = 1,
1919     .needed = spapr_ov5_cas_needed,
1920     .fields = (VMStateField[]) {
1921         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1922                                  vmstate_spapr_ovec, SpaprOptionVector),
1923         VMSTATE_END_OF_LIST()
1924     },
1925 };
1926 
1927 static bool spapr_patb_entry_needed(void *opaque)
1928 {
1929     SpaprMachineState *spapr = opaque;
1930 
1931     return !!spapr->patb_entry;
1932 }
1933 
1934 static const VMStateDescription vmstate_spapr_patb_entry = {
1935     .name = "spapr_patb_entry",
1936     .version_id = 1,
1937     .minimum_version_id = 1,
1938     .needed = spapr_patb_entry_needed,
1939     .fields = (VMStateField[]) {
1940         VMSTATE_UINT64(patb_entry, SpaprMachineState),
1941         VMSTATE_END_OF_LIST()
1942     },
1943 };
1944 
1945 static bool spapr_irq_map_needed(void *opaque)
1946 {
1947     SpaprMachineState *spapr = opaque;
1948 
1949     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1950 }
1951 
1952 static const VMStateDescription vmstate_spapr_irq_map = {
1953     .name = "spapr_irq_map",
1954     .version_id = 1,
1955     .minimum_version_id = 1,
1956     .needed = spapr_irq_map_needed,
1957     .fields = (VMStateField[]) {
1958         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1959         VMSTATE_END_OF_LIST()
1960     },
1961 };
1962 
1963 static bool spapr_dtb_needed(void *opaque)
1964 {
1965     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1966 
1967     return smc->update_dt_enabled;
1968 }
1969 
1970 static int spapr_dtb_pre_load(void *opaque)
1971 {
1972     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1973 
1974     g_free(spapr->fdt_blob);
1975     spapr->fdt_blob = NULL;
1976     spapr->fdt_size = 0;
1977 
1978     return 0;
1979 }
1980 
1981 static const VMStateDescription vmstate_spapr_dtb = {
1982     .name = "spapr_dtb",
1983     .version_id = 1,
1984     .minimum_version_id = 1,
1985     .needed = spapr_dtb_needed,
1986     .pre_load = spapr_dtb_pre_load,
1987     .fields = (VMStateField[]) {
1988         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1989         VMSTATE_UINT32(fdt_size, SpaprMachineState),
1990         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1991                                      fdt_size),
1992         VMSTATE_END_OF_LIST()
1993     },
1994 };
1995 
1996 static bool spapr_fwnmi_needed(void *opaque)
1997 {
1998     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1999 
2000     return spapr->fwnmi_machine_check_addr != -1;
2001 }
2002 
2003 static int spapr_fwnmi_pre_save(void *opaque)
2004 {
2005     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2006 
2007     /*
2008      * Check if machine check handling is in progress and print a
2009      * warning message.
2010      */
2011     if (spapr->fwnmi_machine_check_interlock != -1) {
2012         warn_report("A machine check is being handled during migration. The"
2013                 "handler may run and log hardware error on the destination");
2014     }
2015 
2016     return 0;
2017 }
2018 
2019 static const VMStateDescription vmstate_spapr_fwnmi = {
2020     .name = "spapr_fwnmi",
2021     .version_id = 1,
2022     .minimum_version_id = 1,
2023     .needed = spapr_fwnmi_needed,
2024     .pre_save = spapr_fwnmi_pre_save,
2025     .fields = (VMStateField[]) {
2026         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2027         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2028         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2029         VMSTATE_END_OF_LIST()
2030     },
2031 };
2032 
2033 static const VMStateDescription vmstate_spapr = {
2034     .name = "spapr",
2035     .version_id = 3,
2036     .minimum_version_id = 1,
2037     .pre_load = spapr_pre_load,
2038     .post_load = spapr_post_load,
2039     .pre_save = spapr_pre_save,
2040     .fields = (VMStateField[]) {
2041         /* used to be @next_irq */
2042         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2043 
2044         /* RTC offset */
2045         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2046 
2047         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2048         VMSTATE_END_OF_LIST()
2049     },
2050     .subsections = (const VMStateDescription*[]) {
2051         &vmstate_spapr_ov5_cas,
2052         &vmstate_spapr_patb_entry,
2053         &vmstate_spapr_pending_events,
2054         &vmstate_spapr_cap_htm,
2055         &vmstate_spapr_cap_vsx,
2056         &vmstate_spapr_cap_dfp,
2057         &vmstate_spapr_cap_cfpc,
2058         &vmstate_spapr_cap_sbbc,
2059         &vmstate_spapr_cap_ibs,
2060         &vmstate_spapr_cap_hpt_maxpagesize,
2061         &vmstate_spapr_irq_map,
2062         &vmstate_spapr_cap_nested_kvm_hv,
2063         &vmstate_spapr_dtb,
2064         &vmstate_spapr_cap_large_decr,
2065         &vmstate_spapr_cap_ccf_assist,
2066         &vmstate_spapr_cap_fwnmi,
2067         &vmstate_spapr_fwnmi,
2068         &vmstate_spapr_cap_rpt_invalidate,
2069         NULL
2070     }
2071 };
2072 
2073 static int htab_save_setup(QEMUFile *f, void *opaque)
2074 {
2075     SpaprMachineState *spapr = opaque;
2076 
2077     /* "Iteration" header */
2078     if (!spapr->htab_shift) {
2079         qemu_put_be32(f, -1);
2080     } else {
2081         qemu_put_be32(f, spapr->htab_shift);
2082     }
2083 
2084     if (spapr->htab) {
2085         spapr->htab_save_index = 0;
2086         spapr->htab_first_pass = true;
2087     } else {
2088         if (spapr->htab_shift) {
2089             assert(kvm_enabled());
2090         }
2091     }
2092 
2093 
2094     return 0;
2095 }
2096 
2097 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2098                             int chunkstart, int n_valid, int n_invalid)
2099 {
2100     qemu_put_be32(f, chunkstart);
2101     qemu_put_be16(f, n_valid);
2102     qemu_put_be16(f, n_invalid);
2103     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2104                     HASH_PTE_SIZE_64 * n_valid);
2105 }
2106 
2107 static void htab_save_end_marker(QEMUFile *f)
2108 {
2109     qemu_put_be32(f, 0);
2110     qemu_put_be16(f, 0);
2111     qemu_put_be16(f, 0);
2112 }
2113 
2114 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2115                                  int64_t max_ns)
2116 {
2117     bool has_timeout = max_ns != -1;
2118     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2119     int index = spapr->htab_save_index;
2120     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2121 
2122     assert(spapr->htab_first_pass);
2123 
2124     do {
2125         int chunkstart;
2126 
2127         /* Consume invalid HPTEs */
2128         while ((index < htabslots)
2129                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2130             CLEAN_HPTE(HPTE(spapr->htab, index));
2131             index++;
2132         }
2133 
2134         /* Consume valid HPTEs */
2135         chunkstart = index;
2136         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2137                && HPTE_VALID(HPTE(spapr->htab, index))) {
2138             CLEAN_HPTE(HPTE(spapr->htab, index));
2139             index++;
2140         }
2141 
2142         if (index > chunkstart) {
2143             int n_valid = index - chunkstart;
2144 
2145             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2146 
2147             if (has_timeout &&
2148                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2149                 break;
2150             }
2151         }
2152     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2153 
2154     if (index >= htabslots) {
2155         assert(index == htabslots);
2156         index = 0;
2157         spapr->htab_first_pass = false;
2158     }
2159     spapr->htab_save_index = index;
2160 }
2161 
2162 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2163                                 int64_t max_ns)
2164 {
2165     bool final = max_ns < 0;
2166     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2167     int examined = 0, sent = 0;
2168     int index = spapr->htab_save_index;
2169     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2170 
2171     assert(!spapr->htab_first_pass);
2172 
2173     do {
2174         int chunkstart, invalidstart;
2175 
2176         /* Consume non-dirty HPTEs */
2177         while ((index < htabslots)
2178                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2179             index++;
2180             examined++;
2181         }
2182 
2183         chunkstart = index;
2184         /* Consume valid dirty HPTEs */
2185         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2186                && HPTE_DIRTY(HPTE(spapr->htab, index))
2187                && HPTE_VALID(HPTE(spapr->htab, index))) {
2188             CLEAN_HPTE(HPTE(spapr->htab, index));
2189             index++;
2190             examined++;
2191         }
2192 
2193         invalidstart = index;
2194         /* Consume invalid dirty HPTEs */
2195         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2196                && HPTE_DIRTY(HPTE(spapr->htab, index))
2197                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2198             CLEAN_HPTE(HPTE(spapr->htab, index));
2199             index++;
2200             examined++;
2201         }
2202 
2203         if (index > chunkstart) {
2204             int n_valid = invalidstart - chunkstart;
2205             int n_invalid = index - invalidstart;
2206 
2207             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2208             sent += index - chunkstart;
2209 
2210             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2211                 break;
2212             }
2213         }
2214 
2215         if (examined >= htabslots) {
2216             break;
2217         }
2218 
2219         if (index >= htabslots) {
2220             assert(index == htabslots);
2221             index = 0;
2222         }
2223     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2224 
2225     if (index >= htabslots) {
2226         assert(index == htabslots);
2227         index = 0;
2228     }
2229 
2230     spapr->htab_save_index = index;
2231 
2232     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2233 }
2234 
2235 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2236 #define MAX_KVM_BUF_SIZE    2048
2237 
2238 static int htab_save_iterate(QEMUFile *f, void *opaque)
2239 {
2240     SpaprMachineState *spapr = opaque;
2241     int fd;
2242     int rc = 0;
2243 
2244     /* Iteration header */
2245     if (!spapr->htab_shift) {
2246         qemu_put_be32(f, -1);
2247         return 1;
2248     } else {
2249         qemu_put_be32(f, 0);
2250     }
2251 
2252     if (!spapr->htab) {
2253         assert(kvm_enabled());
2254 
2255         fd = get_htab_fd(spapr);
2256         if (fd < 0) {
2257             return fd;
2258         }
2259 
2260         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2261         if (rc < 0) {
2262             return rc;
2263         }
2264     } else  if (spapr->htab_first_pass) {
2265         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2266     } else {
2267         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2268     }
2269 
2270     htab_save_end_marker(f);
2271 
2272     return rc;
2273 }
2274 
2275 static int htab_save_complete(QEMUFile *f, void *opaque)
2276 {
2277     SpaprMachineState *spapr = opaque;
2278     int fd;
2279 
2280     /* Iteration header */
2281     if (!spapr->htab_shift) {
2282         qemu_put_be32(f, -1);
2283         return 0;
2284     } else {
2285         qemu_put_be32(f, 0);
2286     }
2287 
2288     if (!spapr->htab) {
2289         int rc;
2290 
2291         assert(kvm_enabled());
2292 
2293         fd = get_htab_fd(spapr);
2294         if (fd < 0) {
2295             return fd;
2296         }
2297 
2298         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2299         if (rc < 0) {
2300             return rc;
2301         }
2302     } else {
2303         if (spapr->htab_first_pass) {
2304             htab_save_first_pass(f, spapr, -1);
2305         }
2306         htab_save_later_pass(f, spapr, -1);
2307     }
2308 
2309     /* End marker */
2310     htab_save_end_marker(f);
2311 
2312     return 0;
2313 }
2314 
2315 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2316 {
2317     SpaprMachineState *spapr = opaque;
2318     uint32_t section_hdr;
2319     int fd = -1;
2320     Error *local_err = NULL;
2321 
2322     if (version_id < 1 || version_id > 1) {
2323         error_report("htab_load() bad version");
2324         return -EINVAL;
2325     }
2326 
2327     section_hdr = qemu_get_be32(f);
2328 
2329     if (section_hdr == -1) {
2330         spapr_free_hpt(spapr);
2331         return 0;
2332     }
2333 
2334     if (section_hdr) {
2335         int ret;
2336 
2337         /* First section gives the htab size */
2338         ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2339         if (ret < 0) {
2340             error_report_err(local_err);
2341             return ret;
2342         }
2343         return 0;
2344     }
2345 
2346     if (!spapr->htab) {
2347         assert(kvm_enabled());
2348 
2349         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2350         if (fd < 0) {
2351             error_report_err(local_err);
2352             return fd;
2353         }
2354     }
2355 
2356     while (true) {
2357         uint32_t index;
2358         uint16_t n_valid, n_invalid;
2359 
2360         index = qemu_get_be32(f);
2361         n_valid = qemu_get_be16(f);
2362         n_invalid = qemu_get_be16(f);
2363 
2364         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2365             /* End of Stream */
2366             break;
2367         }
2368 
2369         if ((index + n_valid + n_invalid) >
2370             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2371             /* Bad index in stream */
2372             error_report(
2373                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2374                 index, n_valid, n_invalid, spapr->htab_shift);
2375             return -EINVAL;
2376         }
2377 
2378         if (spapr->htab) {
2379             if (n_valid) {
2380                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2381                                 HASH_PTE_SIZE_64 * n_valid);
2382             }
2383             if (n_invalid) {
2384                 memset(HPTE(spapr->htab, index + n_valid), 0,
2385                        HASH_PTE_SIZE_64 * n_invalid);
2386             }
2387         } else {
2388             int rc;
2389 
2390             assert(fd >= 0);
2391 
2392             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2393                                         &local_err);
2394             if (rc < 0) {
2395                 error_report_err(local_err);
2396                 return rc;
2397             }
2398         }
2399     }
2400 
2401     if (!spapr->htab) {
2402         assert(fd >= 0);
2403         close(fd);
2404     }
2405 
2406     return 0;
2407 }
2408 
2409 static void htab_save_cleanup(void *opaque)
2410 {
2411     SpaprMachineState *spapr = opaque;
2412 
2413     close_htab_fd(spapr);
2414 }
2415 
2416 static SaveVMHandlers savevm_htab_handlers = {
2417     .save_setup = htab_save_setup,
2418     .save_live_iterate = htab_save_iterate,
2419     .save_live_complete_precopy = htab_save_complete,
2420     .save_cleanup = htab_save_cleanup,
2421     .load_state = htab_load,
2422 };
2423 
2424 static void spapr_boot_set(void *opaque, const char *boot_device,
2425                            Error **errp)
2426 {
2427     SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2428 
2429     g_free(spapr->boot_device);
2430     spapr->boot_device = g_strdup(boot_device);
2431 }
2432 
2433 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2434 {
2435     MachineState *machine = MACHINE(spapr);
2436     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2437     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2438     int i;
2439 
2440     for (i = 0; i < nr_lmbs; i++) {
2441         uint64_t addr;
2442 
2443         addr = i * lmb_size + machine->device_memory->base;
2444         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2445                                addr / lmb_size);
2446     }
2447 }
2448 
2449 /*
2450  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2451  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2452  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2453  */
2454 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2455 {
2456     int i;
2457 
2458     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2459         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2460                    " is not aligned to %" PRIu64 " MiB",
2461                    machine->ram_size,
2462                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2463         return;
2464     }
2465 
2466     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2467         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2468                    " is not aligned to %" PRIu64 " MiB",
2469                    machine->ram_size,
2470                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2471         return;
2472     }
2473 
2474     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2475         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2476             error_setg(errp,
2477                        "Node %d memory size 0x%" PRIx64
2478                        " is not aligned to %" PRIu64 " MiB",
2479                        i, machine->numa_state->nodes[i].node_mem,
2480                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2481             return;
2482         }
2483     }
2484 }
2485 
2486 /* find cpu slot in machine->possible_cpus by core_id */
2487 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2488 {
2489     int index = id / ms->smp.threads;
2490 
2491     if (index >= ms->possible_cpus->len) {
2492         return NULL;
2493     }
2494     if (idx) {
2495         *idx = index;
2496     }
2497     return &ms->possible_cpus->cpus[index];
2498 }
2499 
2500 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2501 {
2502     MachineState *ms = MACHINE(spapr);
2503     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2504     Error *local_err = NULL;
2505     bool vsmt_user = !!spapr->vsmt;
2506     int kvm_smt = kvmppc_smt_threads();
2507     int ret;
2508     unsigned int smp_threads = ms->smp.threads;
2509 
2510     if (!kvm_enabled() && (smp_threads > 1)) {
2511         error_setg(errp, "TCG cannot support more than 1 thread/core "
2512                    "on a pseries machine");
2513         return;
2514     }
2515     if (!is_power_of_2(smp_threads)) {
2516         error_setg(errp, "Cannot support %d threads/core on a pseries "
2517                    "machine because it must be a power of 2", smp_threads);
2518         return;
2519     }
2520 
2521     /* Detemine the VSMT mode to use: */
2522     if (vsmt_user) {
2523         if (spapr->vsmt < smp_threads) {
2524             error_setg(errp, "Cannot support VSMT mode %d"
2525                        " because it must be >= threads/core (%d)",
2526                        spapr->vsmt, smp_threads);
2527             return;
2528         }
2529         /* In this case, spapr->vsmt has been set by the command line */
2530     } else if (!smc->smp_threads_vsmt) {
2531         /*
2532          * Default VSMT value is tricky, because we need it to be as
2533          * consistent as possible (for migration), but this requires
2534          * changing it for at least some existing cases.  We pick 8 as
2535          * the value that we'd get with KVM on POWER8, the
2536          * overwhelmingly common case in production systems.
2537          */
2538         spapr->vsmt = MAX(8, smp_threads);
2539     } else {
2540         spapr->vsmt = smp_threads;
2541     }
2542 
2543     /* KVM: If necessary, set the SMT mode: */
2544     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2545         ret = kvmppc_set_smt_threads(spapr->vsmt);
2546         if (ret) {
2547             /* Looks like KVM isn't able to change VSMT mode */
2548             error_setg(&local_err,
2549                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2550                        spapr->vsmt, ret);
2551             /* We can live with that if the default one is big enough
2552              * for the number of threads, and a submultiple of the one
2553              * we want.  In this case we'll waste some vcpu ids, but
2554              * behaviour will be correct */
2555             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2556                 warn_report_err(local_err);
2557             } else {
2558                 if (!vsmt_user) {
2559                     error_append_hint(&local_err,
2560                                       "On PPC, a VM with %d threads/core"
2561                                       " on a host with %d threads/core"
2562                                       " requires the use of VSMT mode %d.\n",
2563                                       smp_threads, kvm_smt, spapr->vsmt);
2564                 }
2565                 kvmppc_error_append_smt_possible_hint(&local_err);
2566                 error_propagate(errp, local_err);
2567             }
2568         }
2569     }
2570     /* else TCG: nothing to do currently */
2571 }
2572 
2573 static void spapr_init_cpus(SpaprMachineState *spapr)
2574 {
2575     MachineState *machine = MACHINE(spapr);
2576     MachineClass *mc = MACHINE_GET_CLASS(machine);
2577     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2578     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2579     const CPUArchIdList *possible_cpus;
2580     unsigned int smp_cpus = machine->smp.cpus;
2581     unsigned int smp_threads = machine->smp.threads;
2582     unsigned int max_cpus = machine->smp.max_cpus;
2583     int boot_cores_nr = smp_cpus / smp_threads;
2584     int i;
2585 
2586     possible_cpus = mc->possible_cpu_arch_ids(machine);
2587     if (mc->has_hotpluggable_cpus) {
2588         if (smp_cpus % smp_threads) {
2589             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2590                          smp_cpus, smp_threads);
2591             exit(1);
2592         }
2593         if (max_cpus % smp_threads) {
2594             error_report("max_cpus (%u) must be multiple of threads (%u)",
2595                          max_cpus, smp_threads);
2596             exit(1);
2597         }
2598     } else {
2599         if (max_cpus != smp_cpus) {
2600             error_report("This machine version does not support CPU hotplug");
2601             exit(1);
2602         }
2603         boot_cores_nr = possible_cpus->len;
2604     }
2605 
2606     if (smc->pre_2_10_has_unused_icps) {
2607         int i;
2608 
2609         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2610             /* Dummy entries get deregistered when real ICPState objects
2611              * are registered during CPU core hotplug.
2612              */
2613             pre_2_10_vmstate_register_dummy_icp(i);
2614         }
2615     }
2616 
2617     for (i = 0; i < possible_cpus->len; i++) {
2618         int core_id = i * smp_threads;
2619 
2620         if (mc->has_hotpluggable_cpus) {
2621             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2622                                    spapr_vcpu_id(spapr, core_id));
2623         }
2624 
2625         if (i < boot_cores_nr) {
2626             Object *core  = object_new(type);
2627             int nr_threads = smp_threads;
2628 
2629             /* Handle the partially filled core for older machine types */
2630             if ((i + 1) * smp_threads >= smp_cpus) {
2631                 nr_threads = smp_cpus - i * smp_threads;
2632             }
2633 
2634             object_property_set_int(core, "nr-threads", nr_threads,
2635                                     &error_fatal);
2636             object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2637                                     &error_fatal);
2638             qdev_realize(DEVICE(core), NULL, &error_fatal);
2639 
2640             object_unref(core);
2641         }
2642     }
2643 }
2644 
2645 static PCIHostState *spapr_create_default_phb(void)
2646 {
2647     DeviceState *dev;
2648 
2649     dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2650     qdev_prop_set_uint32(dev, "index", 0);
2651     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2652 
2653     return PCI_HOST_BRIDGE(dev);
2654 }
2655 
2656 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2657 {
2658     MachineState *machine = MACHINE(spapr);
2659     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2660     hwaddr rma_size = machine->ram_size;
2661     hwaddr node0_size = spapr_node0_size(machine);
2662 
2663     /* RMA has to fit in the first NUMA node */
2664     rma_size = MIN(rma_size, node0_size);
2665 
2666     /*
2667      * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2668      * never exceed that
2669      */
2670     rma_size = MIN(rma_size, 1 * TiB);
2671 
2672     /*
2673      * Clamp the RMA size based on machine type.  This is for
2674      * migration compatibility with older qemu versions, which limited
2675      * the RMA size for complicated and mostly bad reasons.
2676      */
2677     if (smc->rma_limit) {
2678         rma_size = MIN(rma_size, smc->rma_limit);
2679     }
2680 
2681     if (rma_size < MIN_RMA_SLOF) {
2682         error_setg(errp,
2683                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2684                    "ldMiB guest RMA (Real Mode Area memory)",
2685                    MIN_RMA_SLOF / MiB);
2686         return 0;
2687     }
2688 
2689     return rma_size;
2690 }
2691 
2692 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2693 {
2694     MachineState *machine = MACHINE(spapr);
2695     int i;
2696 
2697     for (i = 0; i < machine->ram_slots; i++) {
2698         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2699     }
2700 }
2701 
2702 /* pSeries LPAR / sPAPR hardware init */
2703 static void spapr_machine_init(MachineState *machine)
2704 {
2705     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2706     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2707     MachineClass *mc = MACHINE_GET_CLASS(machine);
2708     const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2709     const char *bios_name = machine->firmware ?: bios_default;
2710     g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2711     const char *kernel_filename = machine->kernel_filename;
2712     const char *initrd_filename = machine->initrd_filename;
2713     PCIHostState *phb;
2714     int i;
2715     MemoryRegion *sysmem = get_system_memory();
2716     long load_limit, fw_size;
2717     Error *resize_hpt_err = NULL;
2718 
2719     if (!filename) {
2720         error_report("Could not find LPAR firmware '%s'", bios_name);
2721         exit(1);
2722     }
2723     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2724     if (fw_size <= 0) {
2725         error_report("Could not load LPAR firmware '%s'", filename);
2726         exit(1);
2727     }
2728 
2729     /*
2730      * if Secure VM (PEF) support is configured, then initialize it
2731      */
2732     pef_kvm_init(machine->cgs, &error_fatal);
2733 
2734     msi_nonbroken = true;
2735 
2736     QLIST_INIT(&spapr->phbs);
2737     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2738 
2739     /* Determine capabilities to run with */
2740     spapr_caps_init(spapr);
2741 
2742     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2743     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2744         /*
2745          * If the user explicitly requested a mode we should either
2746          * supply it, or fail completely (which we do below).  But if
2747          * it's not set explicitly, we reset our mode to something
2748          * that works
2749          */
2750         if (resize_hpt_err) {
2751             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2752             error_free(resize_hpt_err);
2753             resize_hpt_err = NULL;
2754         } else {
2755             spapr->resize_hpt = smc->resize_hpt_default;
2756         }
2757     }
2758 
2759     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2760 
2761     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2762         /*
2763          * User requested HPT resize, but this host can't supply it.  Bail out
2764          */
2765         error_report_err(resize_hpt_err);
2766         exit(1);
2767     }
2768     error_free(resize_hpt_err);
2769 
2770     spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2771 
2772     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2773     load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2774 
2775     /*
2776      * VSMT must be set in order to be able to compute VCPU ids, ie to
2777      * call spapr_max_server_number() or spapr_vcpu_id().
2778      */
2779     spapr_set_vsmt_mode(spapr, &error_fatal);
2780 
2781     /* Set up Interrupt Controller before we create the VCPUs */
2782     spapr_irq_init(spapr, &error_fatal);
2783 
2784     /* Set up containers for ibm,client-architecture-support negotiated options
2785      */
2786     spapr->ov5 = spapr_ovec_new();
2787     spapr->ov5_cas = spapr_ovec_new();
2788 
2789     if (smc->dr_lmb_enabled) {
2790         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2791         spapr_validate_node_memory(machine, &error_fatal);
2792     }
2793 
2794     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2795 
2796     /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2797     if (!smc->pre_6_2_numa_affinity) {
2798         spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2799     }
2800 
2801     /* advertise support for dedicated HP event source to guests */
2802     if (spapr->use_hotplug_event_source) {
2803         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2804     }
2805 
2806     /* advertise support for HPT resizing */
2807     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2808         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2809     }
2810 
2811     /* advertise support for ibm,dyamic-memory-v2 */
2812     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2813 
2814     /* advertise XIVE on POWER9 machines */
2815     if (spapr->irq->xive) {
2816         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2817     }
2818 
2819     /* init CPUs */
2820     spapr_init_cpus(spapr);
2821 
2822     spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2823 
2824     /* Init numa_assoc_array */
2825     spapr_numa_associativity_init(spapr, machine);
2826 
2827     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2828         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2829                               spapr->max_compat_pvr)) {
2830         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2831         /* KVM and TCG always allow GTSE with radix... */
2832         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2833     }
2834     /* ... but not with hash (currently). */
2835 
2836     if (kvm_enabled()) {
2837         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2838         kvmppc_enable_logical_ci_hcalls();
2839         kvmppc_enable_set_mode_hcall();
2840 
2841         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2842         kvmppc_enable_clear_ref_mod_hcalls();
2843 
2844         /* Enable H_PAGE_INIT */
2845         kvmppc_enable_h_page_init();
2846     }
2847 
2848     /* map RAM */
2849     memory_region_add_subregion(sysmem, 0, machine->ram);
2850 
2851     /* always allocate the device memory information */
2852     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2853 
2854     /* initialize hotplug memory address space */
2855     if (machine->ram_size < machine->maxram_size) {
2856         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2857         /*
2858          * Limit the number of hotpluggable memory slots to half the number
2859          * slots that KVM supports, leaving the other half for PCI and other
2860          * devices. However ensure that number of slots doesn't drop below 32.
2861          */
2862         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2863                            SPAPR_MAX_RAM_SLOTS;
2864 
2865         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2866             max_memslots = SPAPR_MAX_RAM_SLOTS;
2867         }
2868         if (machine->ram_slots > max_memslots) {
2869             error_report("Specified number of memory slots %"
2870                          PRIu64" exceeds max supported %d",
2871                          machine->ram_slots, max_memslots);
2872             exit(1);
2873         }
2874 
2875         machine->device_memory->base = ROUND_UP(machine->ram_size,
2876                                                 SPAPR_DEVICE_MEM_ALIGN);
2877         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2878                            "device-memory", device_mem_size);
2879         memory_region_add_subregion(sysmem, machine->device_memory->base,
2880                                     &machine->device_memory->mr);
2881     }
2882 
2883     if (smc->dr_lmb_enabled) {
2884         spapr_create_lmb_dr_connectors(spapr);
2885     }
2886 
2887     if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2888         /* Create the error string for live migration blocker */
2889         error_setg(&spapr->fwnmi_migration_blocker,
2890             "A machine check is being handled during migration. The handler"
2891             "may run and log hardware error on the destination");
2892     }
2893 
2894     if (mc->nvdimm_supported) {
2895         spapr_create_nvdimm_dr_connectors(spapr);
2896     }
2897 
2898     /* Set up RTAS event infrastructure */
2899     spapr_events_init(spapr);
2900 
2901     /* Set up the RTC RTAS interfaces */
2902     spapr_rtc_create(spapr);
2903 
2904     /* Set up VIO bus */
2905     spapr->vio_bus = spapr_vio_bus_init();
2906 
2907     for (i = 0; serial_hd(i); i++) {
2908         spapr_vty_create(spapr->vio_bus, serial_hd(i));
2909     }
2910 
2911     /* We always have at least the nvram device on VIO */
2912     spapr_create_nvram(spapr);
2913 
2914     /*
2915      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2916      * connectors (described in root DT node's "ibm,drc-types" property)
2917      * are pre-initialized here. additional child connectors (such as
2918      * connectors for a PHBs PCI slots) are added as needed during their
2919      * parent's realization.
2920      */
2921     if (smc->dr_phb_enabled) {
2922         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2923             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2924         }
2925     }
2926 
2927     /* Set up PCI */
2928     spapr_pci_rtas_init();
2929 
2930     phb = spapr_create_default_phb();
2931 
2932     for (i = 0; i < nb_nics; i++) {
2933         NICInfo *nd = &nd_table[i];
2934 
2935         if (!nd->model) {
2936             nd->model = g_strdup("spapr-vlan");
2937         }
2938 
2939         if (g_str_equal(nd->model, "spapr-vlan") ||
2940             g_str_equal(nd->model, "ibmveth")) {
2941             spapr_vlan_create(spapr->vio_bus, nd);
2942         } else {
2943             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2944         }
2945     }
2946 
2947     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2948         spapr_vscsi_create(spapr->vio_bus);
2949     }
2950 
2951     /* Graphics */
2952     if (spapr_vga_init(phb->bus, &error_fatal)) {
2953         spapr->has_graphics = true;
2954         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2955     }
2956 
2957     if (machine->usb) {
2958         if (smc->use_ohci_by_default) {
2959             pci_create_simple(phb->bus, -1, "pci-ohci");
2960         } else {
2961             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2962         }
2963 
2964         if (spapr->has_graphics) {
2965             USBBus *usb_bus = usb_bus_find(-1);
2966 
2967             usb_create_simple(usb_bus, "usb-kbd");
2968             usb_create_simple(usb_bus, "usb-mouse");
2969         }
2970     }
2971 
2972     if (kernel_filename) {
2973         spapr->kernel_size = load_elf(kernel_filename, NULL,
2974                                       translate_kernel_address, spapr,
2975                                       NULL, NULL, NULL, NULL, 1,
2976                                       PPC_ELF_MACHINE, 0, 0);
2977         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2978             spapr->kernel_size = load_elf(kernel_filename, NULL,
2979                                           translate_kernel_address, spapr,
2980                                           NULL, NULL, NULL, NULL, 0,
2981                                           PPC_ELF_MACHINE, 0, 0);
2982             spapr->kernel_le = spapr->kernel_size > 0;
2983         }
2984         if (spapr->kernel_size < 0) {
2985             error_report("error loading %s: %s", kernel_filename,
2986                          load_elf_strerror(spapr->kernel_size));
2987             exit(1);
2988         }
2989 
2990         /* load initrd */
2991         if (initrd_filename) {
2992             /* Try to locate the initrd in the gap between the kernel
2993              * and the firmware. Add a bit of space just in case
2994              */
2995             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2996                                   + 0x1ffff) & ~0xffff;
2997             spapr->initrd_size = load_image_targphys(initrd_filename,
2998                                                      spapr->initrd_base,
2999                                                      load_limit
3000                                                      - spapr->initrd_base);
3001             if (spapr->initrd_size < 0) {
3002                 error_report("could not load initial ram disk '%s'",
3003                              initrd_filename);
3004                 exit(1);
3005             }
3006         }
3007     }
3008 
3009     /* FIXME: Should register things through the MachineState's qdev
3010      * interface, this is a legacy from the sPAPREnvironment structure
3011      * which predated MachineState but had a similar function */
3012     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3013     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3014                          &savevm_htab_handlers, spapr);
3015 
3016     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3017 
3018     qemu_register_boot_set(spapr_boot_set, spapr);
3019 
3020     /*
3021      * Nothing needs to be done to resume a suspended guest because
3022      * suspending does not change the machine state, so no need for
3023      * a ->wakeup method.
3024      */
3025     qemu_register_wakeup_support();
3026 
3027     if (kvm_enabled()) {
3028         /* to stop and start vmclock */
3029         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3030                                          &spapr->tb);
3031 
3032         kvmppc_spapr_enable_inkernel_multitce();
3033     }
3034 
3035     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3036     if (spapr->vof) {
3037         spapr->vof->fw_size = fw_size; /* for claim() on itself */
3038         spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3039     }
3040 }
3041 
3042 #define DEFAULT_KVM_TYPE "auto"
3043 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3044 {
3045     /*
3046      * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3047      * accomodate the 'HV' and 'PV' formats that exists in the
3048      * wild. The 'auto' mode is being introduced already as
3049      * lower-case, thus we don't need to bother checking for
3050      * "AUTO".
3051      */
3052     if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3053         return 0;
3054     }
3055 
3056     if (!g_ascii_strcasecmp(vm_type, "hv")) {
3057         return 1;
3058     }
3059 
3060     if (!g_ascii_strcasecmp(vm_type, "pr")) {
3061         return 2;
3062     }
3063 
3064     error_report("Unknown kvm-type specified '%s'", vm_type);
3065     exit(1);
3066 }
3067 
3068 /*
3069  * Implementation of an interface to adjust firmware path
3070  * for the bootindex property handling.
3071  */
3072 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3073                                    DeviceState *dev)
3074 {
3075 #define CAST(type, obj, name) \
3076     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3077     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3078     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3079     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3080     PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3081 
3082     if (d && bus) {
3083         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3084         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3085         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3086 
3087         if (spapr) {
3088             /*
3089              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3090              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3091              * 0x8000 | (target << 8) | (bus << 5) | lun
3092              * (see the "Logical unit addressing format" table in SAM5)
3093              */
3094             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3095             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3096                                    (uint64_t)id << 48);
3097         } else if (virtio) {
3098             /*
3099              * We use SRP luns of the form 01000000 | (target << 8) | lun
3100              * in the top 32 bits of the 64-bit LUN
3101              * Note: the quote above is from SLOF and it is wrong,
3102              * the actual binding is:
3103              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3104              */
3105             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3106             if (d->lun >= 256) {
3107                 /* Use the LUN "flat space addressing method" */
3108                 id |= 0x4000;
3109             }
3110             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3111                                    (uint64_t)id << 32);
3112         } else if (usb) {
3113             /*
3114              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3115              * in the top 32 bits of the 64-bit LUN
3116              */
3117             unsigned usb_port = atoi(usb->port->path);
3118             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3119             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3120                                    (uint64_t)id << 32);
3121         }
3122     }
3123 
3124     /*
3125      * SLOF probes the USB devices, and if it recognizes that the device is a
3126      * storage device, it changes its name to "storage" instead of "usb-host",
3127      * and additionally adds a child node for the SCSI LUN, so the correct
3128      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3129      */
3130     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3131         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3132         if (usb_device_is_scsi_storage(usbdev)) {
3133             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3134         }
3135     }
3136 
3137     if (phb) {
3138         /* Replace "pci" with "pci@800000020000000" */
3139         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3140     }
3141 
3142     if (vsc) {
3143         /* Same logic as virtio above */
3144         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3145         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3146     }
3147 
3148     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3149         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3150         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3151         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3152     }
3153 
3154     if (pcidev) {
3155         return spapr_pci_fw_dev_name(pcidev);
3156     }
3157 
3158     return NULL;
3159 }
3160 
3161 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3162 {
3163     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3164 
3165     return g_strdup(spapr->kvm_type);
3166 }
3167 
3168 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3169 {
3170     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3171 
3172     g_free(spapr->kvm_type);
3173     spapr->kvm_type = g_strdup(value);
3174 }
3175 
3176 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3177 {
3178     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3179 
3180     return spapr->use_hotplug_event_source;
3181 }
3182 
3183 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3184                                             Error **errp)
3185 {
3186     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3187 
3188     spapr->use_hotplug_event_source = value;
3189 }
3190 
3191 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3192 {
3193     return true;
3194 }
3195 
3196 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3197 {
3198     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3199 
3200     switch (spapr->resize_hpt) {
3201     case SPAPR_RESIZE_HPT_DEFAULT:
3202         return g_strdup("default");
3203     case SPAPR_RESIZE_HPT_DISABLED:
3204         return g_strdup("disabled");
3205     case SPAPR_RESIZE_HPT_ENABLED:
3206         return g_strdup("enabled");
3207     case SPAPR_RESIZE_HPT_REQUIRED:
3208         return g_strdup("required");
3209     }
3210     g_assert_not_reached();
3211 }
3212 
3213 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3214 {
3215     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3216 
3217     if (strcmp(value, "default") == 0) {
3218         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3219     } else if (strcmp(value, "disabled") == 0) {
3220         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3221     } else if (strcmp(value, "enabled") == 0) {
3222         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3223     } else if (strcmp(value, "required") == 0) {
3224         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3225     } else {
3226         error_setg(errp, "Bad value for \"resize-hpt\" property");
3227     }
3228 }
3229 
3230 static bool spapr_get_vof(Object *obj, Error **errp)
3231 {
3232     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3233 
3234     return spapr->vof != NULL;
3235 }
3236 
3237 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3238 {
3239     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3240 
3241     if (spapr->vof) {
3242         vof_cleanup(spapr->vof);
3243         g_free(spapr->vof);
3244         spapr->vof = NULL;
3245     }
3246     if (!value) {
3247         return;
3248     }
3249     spapr->vof = g_malloc0(sizeof(*spapr->vof));
3250 }
3251 
3252 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3253 {
3254     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3255 
3256     if (spapr->irq == &spapr_irq_xics_legacy) {
3257         return g_strdup("legacy");
3258     } else if (spapr->irq == &spapr_irq_xics) {
3259         return g_strdup("xics");
3260     } else if (spapr->irq == &spapr_irq_xive) {
3261         return g_strdup("xive");
3262     } else if (spapr->irq == &spapr_irq_dual) {
3263         return g_strdup("dual");
3264     }
3265     g_assert_not_reached();
3266 }
3267 
3268 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3269 {
3270     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3271 
3272     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3273         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3274         return;
3275     }
3276 
3277     /* The legacy IRQ backend can not be set */
3278     if (strcmp(value, "xics") == 0) {
3279         spapr->irq = &spapr_irq_xics;
3280     } else if (strcmp(value, "xive") == 0) {
3281         spapr->irq = &spapr_irq_xive;
3282     } else if (strcmp(value, "dual") == 0) {
3283         spapr->irq = &spapr_irq_dual;
3284     } else {
3285         error_setg(errp, "Bad value for \"ic-mode\" property");
3286     }
3287 }
3288 
3289 static char *spapr_get_host_model(Object *obj, Error **errp)
3290 {
3291     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3292 
3293     return g_strdup(spapr->host_model);
3294 }
3295 
3296 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3297 {
3298     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3299 
3300     g_free(spapr->host_model);
3301     spapr->host_model = g_strdup(value);
3302 }
3303 
3304 static char *spapr_get_host_serial(Object *obj, Error **errp)
3305 {
3306     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3307 
3308     return g_strdup(spapr->host_serial);
3309 }
3310 
3311 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3312 {
3313     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3314 
3315     g_free(spapr->host_serial);
3316     spapr->host_serial = g_strdup(value);
3317 }
3318 
3319 static void spapr_instance_init(Object *obj)
3320 {
3321     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3322     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3323     MachineState *ms = MACHINE(spapr);
3324     MachineClass *mc = MACHINE_GET_CLASS(ms);
3325 
3326     /*
3327      * NVDIMM support went live in 5.1 without considering that, in
3328      * other archs, the user needs to enable NVDIMM support with the
3329      * 'nvdimm' machine option and the default behavior is NVDIMM
3330      * support disabled. It is too late to roll back to the standard
3331      * behavior without breaking 5.1 guests.
3332      */
3333     if (mc->nvdimm_supported) {
3334         ms->nvdimms_state->is_enabled = true;
3335     }
3336 
3337     spapr->htab_fd = -1;
3338     spapr->use_hotplug_event_source = true;
3339     spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3340     object_property_add_str(obj, "kvm-type",
3341                             spapr_get_kvm_type, spapr_set_kvm_type);
3342     object_property_set_description(obj, "kvm-type",
3343                                     "Specifies the KVM virtualization mode (auto,"
3344                                     " hv, pr). Defaults to 'auto'. This mode will use"
3345                                     " any available KVM module loaded in the host,"
3346                                     " where kvm_hv takes precedence if both kvm_hv and"
3347                                     " kvm_pr are loaded.");
3348     object_property_add_bool(obj, "modern-hotplug-events",
3349                             spapr_get_modern_hotplug_events,
3350                             spapr_set_modern_hotplug_events);
3351     object_property_set_description(obj, "modern-hotplug-events",
3352                                     "Use dedicated hotplug event mechanism in"
3353                                     " place of standard EPOW events when possible"
3354                                     " (required for memory hot-unplug support)");
3355     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3356                             "Maximum permitted CPU compatibility mode");
3357 
3358     object_property_add_str(obj, "resize-hpt",
3359                             spapr_get_resize_hpt, spapr_set_resize_hpt);
3360     object_property_set_description(obj, "resize-hpt",
3361                                     "Resizing of the Hash Page Table (enabled, disabled, required)");
3362     object_property_add_uint32_ptr(obj, "vsmt",
3363                                    &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3364     object_property_set_description(obj, "vsmt",
3365                                     "Virtual SMT: KVM behaves as if this were"
3366                                     " the host's SMT mode");
3367 
3368     object_property_add_bool(obj, "vfio-no-msix-emulation",
3369                              spapr_get_msix_emulation, NULL);
3370 
3371     object_property_add_uint64_ptr(obj, "kernel-addr",
3372                                    &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3373     object_property_set_description(obj, "kernel-addr",
3374                                     stringify(KERNEL_LOAD_ADDR)
3375                                     " for -kernel is the default");
3376     spapr->kernel_addr = KERNEL_LOAD_ADDR;
3377 
3378     object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3379     object_property_set_description(obj, "x-vof",
3380                                     "Enable Virtual Open Firmware (experimental)");
3381 
3382     /* The machine class defines the default interrupt controller mode */
3383     spapr->irq = smc->irq;
3384     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3385                             spapr_set_ic_mode);
3386     object_property_set_description(obj, "ic-mode",
3387                  "Specifies the interrupt controller mode (xics, xive, dual)");
3388 
3389     object_property_add_str(obj, "host-model",
3390         spapr_get_host_model, spapr_set_host_model);
3391     object_property_set_description(obj, "host-model",
3392         "Host model to advertise in guest device tree");
3393     object_property_add_str(obj, "host-serial",
3394         spapr_get_host_serial, spapr_set_host_serial);
3395     object_property_set_description(obj, "host-serial",
3396         "Host serial number to advertise in guest device tree");
3397 }
3398 
3399 static void spapr_machine_finalizefn(Object *obj)
3400 {
3401     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3402 
3403     g_free(spapr->kvm_type);
3404 }
3405 
3406 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3407 {
3408     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3409     PowerPCCPU *cpu = POWERPC_CPU(cs);
3410     CPUPPCState *env = &cpu->env;
3411 
3412     cpu_synchronize_state(cs);
3413     /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3414     if (spapr->fwnmi_system_reset_addr != -1) {
3415         uint64_t rtas_addr, addr;
3416 
3417         /* get rtas addr from fdt */
3418         rtas_addr = spapr_get_rtas_addr();
3419         if (!rtas_addr) {
3420             qemu_system_guest_panicked(NULL);
3421             return;
3422         }
3423 
3424         addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3425         stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3426         stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3427         env->gpr[3] = addr;
3428     }
3429     ppc_cpu_do_system_reset(cs);
3430     if (spapr->fwnmi_system_reset_addr != -1) {
3431         env->nip = spapr->fwnmi_system_reset_addr;
3432     }
3433 }
3434 
3435 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3436 {
3437     CPUState *cs;
3438 
3439     CPU_FOREACH(cs) {
3440         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3441     }
3442 }
3443 
3444 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3445                           void *fdt, int *fdt_start_offset, Error **errp)
3446 {
3447     uint64_t addr;
3448     uint32_t node;
3449 
3450     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3451     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3452                                     &error_abort);
3453     *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3454                                              SPAPR_MEMORY_BLOCK_SIZE);
3455     return 0;
3456 }
3457 
3458 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3459                            bool dedicated_hp_event_source)
3460 {
3461     SpaprDrc *drc;
3462     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3463     int i;
3464     uint64_t addr = addr_start;
3465     bool hotplugged = spapr_drc_hotplugged(dev);
3466 
3467     for (i = 0; i < nr_lmbs; i++) {
3468         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3469                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3470         g_assert(drc);
3471 
3472         /*
3473          * memory_device_get_free_addr() provided a range of free addresses
3474          * that doesn't overlap with any existing mapping at pre-plug. The
3475          * corresponding LMB DRCs are thus assumed to be all attachable.
3476          */
3477         spapr_drc_attach(drc, dev);
3478         if (!hotplugged) {
3479             spapr_drc_reset(drc);
3480         }
3481         addr += SPAPR_MEMORY_BLOCK_SIZE;
3482     }
3483     /* send hotplug notification to the
3484      * guest only in case of hotplugged memory
3485      */
3486     if (hotplugged) {
3487         if (dedicated_hp_event_source) {
3488             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3489                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3490             g_assert(drc);
3491             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3492                                                    nr_lmbs,
3493                                                    spapr_drc_index(drc));
3494         } else {
3495             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3496                                            nr_lmbs);
3497         }
3498     }
3499 }
3500 
3501 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3502 {
3503     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3504     PCDIMMDevice *dimm = PC_DIMM(dev);
3505     uint64_t size, addr;
3506     int64_t slot;
3507     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3508 
3509     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3510 
3511     pc_dimm_plug(dimm, MACHINE(ms));
3512 
3513     if (!is_nvdimm) {
3514         addr = object_property_get_uint(OBJECT(dimm),
3515                                         PC_DIMM_ADDR_PROP, &error_abort);
3516         spapr_add_lmbs(dev, addr, size,
3517                        spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3518     } else {
3519         slot = object_property_get_int(OBJECT(dimm),
3520                                        PC_DIMM_SLOT_PROP, &error_abort);
3521         /* We should have valid slot number at this point */
3522         g_assert(slot >= 0);
3523         spapr_add_nvdimm(dev, slot);
3524     }
3525 }
3526 
3527 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3528                                   Error **errp)
3529 {
3530     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3531     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3532     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3533     PCDIMMDevice *dimm = PC_DIMM(dev);
3534     Error *local_err = NULL;
3535     uint64_t size;
3536     Object *memdev;
3537     hwaddr pagesize;
3538 
3539     if (!smc->dr_lmb_enabled) {
3540         error_setg(errp, "Memory hotplug not supported for this machine");
3541         return;
3542     }
3543 
3544     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3545     if (local_err) {
3546         error_propagate(errp, local_err);
3547         return;
3548     }
3549 
3550     if (is_nvdimm) {
3551         if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3552             return;
3553         }
3554     } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3555         error_setg(errp, "Hotplugged memory size must be a multiple of "
3556                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3557         return;
3558     }
3559 
3560     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3561                                       &error_abort);
3562     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3563     if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3564         return;
3565     }
3566 
3567     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3568 }
3569 
3570 struct SpaprDimmState {
3571     PCDIMMDevice *dimm;
3572     uint32_t nr_lmbs;
3573     QTAILQ_ENTRY(SpaprDimmState) next;
3574 };
3575 
3576 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3577                                                        PCDIMMDevice *dimm)
3578 {
3579     SpaprDimmState *dimm_state = NULL;
3580 
3581     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3582         if (dimm_state->dimm == dimm) {
3583             break;
3584         }
3585     }
3586     return dimm_state;
3587 }
3588 
3589 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3590                                                       uint32_t nr_lmbs,
3591                                                       PCDIMMDevice *dimm)
3592 {
3593     SpaprDimmState *ds = NULL;
3594 
3595     /*
3596      * If this request is for a DIMM whose removal had failed earlier
3597      * (due to guest's refusal to remove the LMBs), we would have this
3598      * dimm already in the pending_dimm_unplugs list. In that
3599      * case don't add again.
3600      */
3601     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3602     if (!ds) {
3603         ds = g_new0(SpaprDimmState, 1);
3604         ds->nr_lmbs = nr_lmbs;
3605         ds->dimm = dimm;
3606         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3607     }
3608     return ds;
3609 }
3610 
3611 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3612                                               SpaprDimmState *dimm_state)
3613 {
3614     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3615     g_free(dimm_state);
3616 }
3617 
3618 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3619                                                         PCDIMMDevice *dimm)
3620 {
3621     SpaprDrc *drc;
3622     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3623                                                   &error_abort);
3624     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3625     uint32_t avail_lmbs = 0;
3626     uint64_t addr_start, addr;
3627     int i;
3628 
3629     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3630                                           &error_abort);
3631 
3632     addr = addr_start;
3633     for (i = 0; i < nr_lmbs; i++) {
3634         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3635                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3636         g_assert(drc);
3637         if (drc->dev) {
3638             avail_lmbs++;
3639         }
3640         addr += SPAPR_MEMORY_BLOCK_SIZE;
3641     }
3642 
3643     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3644 }
3645 
3646 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3647 {
3648     SpaprDimmState *ds;
3649     PCDIMMDevice *dimm;
3650     SpaprDrc *drc;
3651     uint32_t nr_lmbs;
3652     uint64_t size, addr_start, addr;
3653     g_autofree char *qapi_error = NULL;
3654     int i;
3655 
3656     if (!dev) {
3657         return;
3658     }
3659 
3660     dimm = PC_DIMM(dev);
3661     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3662 
3663     /*
3664      * 'ds == NULL' would mean that the DIMM doesn't have a pending
3665      * unplug state, but one of its DRC is marked as unplug_requested.
3666      * This is bad and weird enough to g_assert() out.
3667      */
3668     g_assert(ds);
3669 
3670     spapr_pending_dimm_unplugs_remove(spapr, ds);
3671 
3672     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3673     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3674 
3675     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3676                                           &error_abort);
3677 
3678     addr = addr_start;
3679     for (i = 0; i < nr_lmbs; i++) {
3680         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3681                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3682         g_assert(drc);
3683 
3684         drc->unplug_requested = false;
3685         addr += SPAPR_MEMORY_BLOCK_SIZE;
3686     }
3687 
3688     /*
3689      * Tell QAPI that something happened and the memory
3690      * hotunplug wasn't successful. Keep sending
3691      * MEM_UNPLUG_ERROR even while sending
3692      * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3693      * MEM_UNPLUG_ERROR is due.
3694      */
3695     qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3696                                  "for device %s", dev->id);
3697 
3698     qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
3699 
3700     qapi_event_send_device_unplug_guest_error(!!dev->id, dev->id,
3701                                               dev->canonical_path);
3702 }
3703 
3704 /* Callback to be called during DRC release. */
3705 void spapr_lmb_release(DeviceState *dev)
3706 {
3707     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3708     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3709     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3710 
3711     /* This information will get lost if a migration occurs
3712      * during the unplug process. In this case recover it. */
3713     if (ds == NULL) {
3714         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3715         g_assert(ds);
3716         /* The DRC being examined by the caller at least must be counted */
3717         g_assert(ds->nr_lmbs);
3718     }
3719 
3720     if (--ds->nr_lmbs) {
3721         return;
3722     }
3723 
3724     /*
3725      * Now that all the LMBs have been removed by the guest, call the
3726      * unplug handler chain. This can never fail.
3727      */
3728     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3729     object_unparent(OBJECT(dev));
3730 }
3731 
3732 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3733 {
3734     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3735     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3736 
3737     /* We really shouldn't get this far without anything to unplug */
3738     g_assert(ds);
3739 
3740     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3741     qdev_unrealize(dev);
3742     spapr_pending_dimm_unplugs_remove(spapr, ds);
3743 }
3744 
3745 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3746                                         DeviceState *dev, Error **errp)
3747 {
3748     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3749     PCDIMMDevice *dimm = PC_DIMM(dev);
3750     uint32_t nr_lmbs;
3751     uint64_t size, addr_start, addr;
3752     int i;
3753     SpaprDrc *drc;
3754 
3755     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3756         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3757         return;
3758     }
3759 
3760     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3761     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3762 
3763     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3764                                           &error_abort);
3765 
3766     /*
3767      * An existing pending dimm state for this DIMM means that there is an
3768      * unplug operation in progress, waiting for the spapr_lmb_release
3769      * callback to complete the job (BQL can't cover that far). In this case,
3770      * bail out to avoid detaching DRCs that were already released.
3771      */
3772     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3773         error_setg(errp, "Memory unplug already in progress for device %s",
3774                    dev->id);
3775         return;
3776     }
3777 
3778     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3779 
3780     addr = addr_start;
3781     for (i = 0; i < nr_lmbs; i++) {
3782         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3783                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3784         g_assert(drc);
3785 
3786         spapr_drc_unplug_request(drc);
3787         addr += SPAPR_MEMORY_BLOCK_SIZE;
3788     }
3789 
3790     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3791                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3792     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3793                                               nr_lmbs, spapr_drc_index(drc));
3794 }
3795 
3796 /* Callback to be called during DRC release. */
3797 void spapr_core_release(DeviceState *dev)
3798 {
3799     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3800 
3801     /* Call the unplug handler chain. This can never fail. */
3802     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3803     object_unparent(OBJECT(dev));
3804 }
3805 
3806 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3807 {
3808     MachineState *ms = MACHINE(hotplug_dev);
3809     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3810     CPUCore *cc = CPU_CORE(dev);
3811     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3812 
3813     if (smc->pre_2_10_has_unused_icps) {
3814         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3815         int i;
3816 
3817         for (i = 0; i < cc->nr_threads; i++) {
3818             CPUState *cs = CPU(sc->threads[i]);
3819 
3820             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3821         }
3822     }
3823 
3824     assert(core_slot);
3825     core_slot->cpu = NULL;
3826     qdev_unrealize(dev);
3827 }
3828 
3829 static
3830 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3831                                Error **errp)
3832 {
3833     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3834     int index;
3835     SpaprDrc *drc;
3836     CPUCore *cc = CPU_CORE(dev);
3837 
3838     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3839         error_setg(errp, "Unable to find CPU core with core-id: %d",
3840                    cc->core_id);
3841         return;
3842     }
3843     if (index == 0) {
3844         error_setg(errp, "Boot CPU core may not be unplugged");
3845         return;
3846     }
3847 
3848     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3849                           spapr_vcpu_id(spapr, cc->core_id));
3850     g_assert(drc);
3851 
3852     if (!spapr_drc_unplug_requested(drc)) {
3853         spapr_drc_unplug_request(drc);
3854     }
3855 
3856     /*
3857      * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3858      * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3859      * pulses removing the same CPU. Otherwise, in an failed hotunplug
3860      * attempt (e.g. the kernel will refuse to remove the last online
3861      * CPU), we will never attempt it again because unplug_requested
3862      * will still be 'true' in that case.
3863      */
3864     spapr_hotplug_req_remove_by_index(drc);
3865 }
3866 
3867 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3868                            void *fdt, int *fdt_start_offset, Error **errp)
3869 {
3870     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3871     CPUState *cs = CPU(core->threads[0]);
3872     PowerPCCPU *cpu = POWERPC_CPU(cs);
3873     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3874     int id = spapr_get_vcpu_id(cpu);
3875     g_autofree char *nodename = NULL;
3876     int offset;
3877 
3878     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3879     offset = fdt_add_subnode(fdt, 0, nodename);
3880 
3881     spapr_dt_cpu(cs, fdt, offset, spapr);
3882 
3883     /*
3884      * spapr_dt_cpu() does not fill the 'name' property in the
3885      * CPU node. The function is called during boot process, before
3886      * and after CAS, and overwriting the 'name' property written
3887      * by SLOF is not allowed.
3888      *
3889      * Write it manually after spapr_dt_cpu(). This makes the hotplug
3890      * CPUs more compatible with the coldplugged ones, which have
3891      * the 'name' property. Linux Kernel also relies on this
3892      * property to identify CPU nodes.
3893      */
3894     _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3895 
3896     *fdt_start_offset = offset;
3897     return 0;
3898 }
3899 
3900 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3901 {
3902     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3903     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3904     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3905     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3906     CPUCore *cc = CPU_CORE(dev);
3907     CPUState *cs;
3908     SpaprDrc *drc;
3909     CPUArchId *core_slot;
3910     int index;
3911     bool hotplugged = spapr_drc_hotplugged(dev);
3912     int i;
3913 
3914     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3915     g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3916 
3917     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3918                           spapr_vcpu_id(spapr, cc->core_id));
3919 
3920     g_assert(drc || !mc->has_hotpluggable_cpus);
3921 
3922     if (drc) {
3923         /*
3924          * spapr_core_pre_plug() already buys us this is a brand new
3925          * core being plugged into a free slot. Nothing should already
3926          * be attached to the corresponding DRC.
3927          */
3928         spapr_drc_attach(drc, dev);
3929 
3930         if (hotplugged) {
3931             /*
3932              * Send hotplug notification interrupt to the guest only
3933              * in case of hotplugged CPUs.
3934              */
3935             spapr_hotplug_req_add_by_index(drc);
3936         } else {
3937             spapr_drc_reset(drc);
3938         }
3939     }
3940 
3941     core_slot->cpu = OBJECT(dev);
3942 
3943     /*
3944      * Set compatibility mode to match the boot CPU, which was either set
3945      * by the machine reset code or by CAS. This really shouldn't fail at
3946      * this point.
3947      */
3948     if (hotplugged) {
3949         for (i = 0; i < cc->nr_threads; i++) {
3950             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3951                            &error_abort);
3952         }
3953     }
3954 
3955     if (smc->pre_2_10_has_unused_icps) {
3956         for (i = 0; i < cc->nr_threads; i++) {
3957             cs = CPU(core->threads[i]);
3958             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3959         }
3960     }
3961 }
3962 
3963 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3964                                 Error **errp)
3965 {
3966     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3967     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3968     CPUCore *cc = CPU_CORE(dev);
3969     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3970     const char *type = object_get_typename(OBJECT(dev));
3971     CPUArchId *core_slot;
3972     int index;
3973     unsigned int smp_threads = machine->smp.threads;
3974 
3975     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3976         error_setg(errp, "CPU hotplug not supported for this machine");
3977         return;
3978     }
3979 
3980     if (strcmp(base_core_type, type)) {
3981         error_setg(errp, "CPU core type should be %s", base_core_type);
3982         return;
3983     }
3984 
3985     if (cc->core_id % smp_threads) {
3986         error_setg(errp, "invalid core id %d", cc->core_id);
3987         return;
3988     }
3989 
3990     /*
3991      * In general we should have homogeneous threads-per-core, but old
3992      * (pre hotplug support) machine types allow the last core to have
3993      * reduced threads as a compatibility hack for when we allowed
3994      * total vcpus not a multiple of threads-per-core.
3995      */
3996     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3997         error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3998                    smp_threads);
3999         return;
4000     }
4001 
4002     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4003     if (!core_slot) {
4004         error_setg(errp, "core id %d out of range", cc->core_id);
4005         return;
4006     }
4007 
4008     if (core_slot->cpu) {
4009         error_setg(errp, "core %d already populated", cc->core_id);
4010         return;
4011     }
4012 
4013     numa_cpu_pre_plug(core_slot, dev, errp);
4014 }
4015 
4016 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4017                           void *fdt, int *fdt_start_offset, Error **errp)
4018 {
4019     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4020     int intc_phandle;
4021 
4022     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4023     if (intc_phandle <= 0) {
4024         return -1;
4025     }
4026 
4027     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4028         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4029         return -1;
4030     }
4031 
4032     /* generally SLOF creates these, for hotplug it's up to QEMU */
4033     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4034 
4035     return 0;
4036 }
4037 
4038 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4039                                Error **errp)
4040 {
4041     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4042     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4043     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4044     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4045     SpaprDrc *drc;
4046 
4047     if (dev->hotplugged && !smc->dr_phb_enabled) {
4048         error_setg(errp, "PHB hotplug not supported for this machine");
4049         return false;
4050     }
4051 
4052     if (sphb->index == (uint32_t)-1) {
4053         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4054         return false;
4055     }
4056 
4057     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4058     if (drc && drc->dev) {
4059         error_setg(errp, "PHB %d already attached", sphb->index);
4060         return false;
4061     }
4062 
4063     /*
4064      * This will check that sphb->index doesn't exceed the maximum number of
4065      * PHBs for the current machine type.
4066      */
4067     return
4068         smc->phb_placement(spapr, sphb->index,
4069                            &sphb->buid, &sphb->io_win_addr,
4070                            &sphb->mem_win_addr, &sphb->mem64_win_addr,
4071                            windows_supported, sphb->dma_liobn,
4072                            &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4073                            errp);
4074 }
4075 
4076 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4077 {
4078     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4079     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4080     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4081     SpaprDrc *drc;
4082     bool hotplugged = spapr_drc_hotplugged(dev);
4083 
4084     if (!smc->dr_phb_enabled) {
4085         return;
4086     }
4087 
4088     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4089     /* hotplug hooks should check it's enabled before getting this far */
4090     assert(drc);
4091 
4092     /* spapr_phb_pre_plug() already checked the DRC is attachable */
4093     spapr_drc_attach(drc, dev);
4094 
4095     if (hotplugged) {
4096         spapr_hotplug_req_add_by_index(drc);
4097     } else {
4098         spapr_drc_reset(drc);
4099     }
4100 }
4101 
4102 void spapr_phb_release(DeviceState *dev)
4103 {
4104     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4105 
4106     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4107     object_unparent(OBJECT(dev));
4108 }
4109 
4110 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4111 {
4112     qdev_unrealize(dev);
4113 }
4114 
4115 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4116                                      DeviceState *dev, Error **errp)
4117 {
4118     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4119     SpaprDrc *drc;
4120 
4121     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4122     assert(drc);
4123 
4124     if (!spapr_drc_unplug_requested(drc)) {
4125         spapr_drc_unplug_request(drc);
4126         spapr_hotplug_req_remove_by_index(drc);
4127     } else {
4128         error_setg(errp,
4129                    "PCI Host Bridge unplug already in progress for device %s",
4130                    dev->id);
4131     }
4132 }
4133 
4134 static
4135 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4136                               Error **errp)
4137 {
4138     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4139 
4140     if (spapr->tpm_proxy != NULL) {
4141         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4142         return false;
4143     }
4144 
4145     return true;
4146 }
4147 
4148 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4149 {
4150     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4151     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4152 
4153     /* Already checked in spapr_tpm_proxy_pre_plug() */
4154     g_assert(spapr->tpm_proxy == NULL);
4155 
4156     spapr->tpm_proxy = tpm_proxy;
4157 }
4158 
4159 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4160 {
4161     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4162 
4163     qdev_unrealize(dev);
4164     object_unparent(OBJECT(dev));
4165     spapr->tpm_proxy = NULL;
4166 }
4167 
4168 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4169                                       DeviceState *dev, Error **errp)
4170 {
4171     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4172         spapr_memory_plug(hotplug_dev, dev);
4173     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4174         spapr_core_plug(hotplug_dev, dev);
4175     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4176         spapr_phb_plug(hotplug_dev, dev);
4177     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4178         spapr_tpm_proxy_plug(hotplug_dev, dev);
4179     }
4180 }
4181 
4182 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4183                                         DeviceState *dev, Error **errp)
4184 {
4185     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4186         spapr_memory_unplug(hotplug_dev, dev);
4187     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4188         spapr_core_unplug(hotplug_dev, dev);
4189     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4190         spapr_phb_unplug(hotplug_dev, dev);
4191     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4192         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4193     }
4194 }
4195 
4196 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4197 {
4198     return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4199         /*
4200          * CAS will process all pending unplug requests.
4201          *
4202          * HACK: a guest could theoretically have cleared all bits in OV5,
4203          * but none of the guests we care for do.
4204          */
4205         spapr_ovec_empty(spapr->ov5_cas);
4206 }
4207 
4208 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4209                                                 DeviceState *dev, Error **errp)
4210 {
4211     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4212     MachineClass *mc = MACHINE_GET_CLASS(sms);
4213     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4214 
4215     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4216         if (spapr_memory_hot_unplug_supported(sms)) {
4217             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4218         } else {
4219             error_setg(errp, "Memory hot unplug not supported for this guest");
4220         }
4221     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4222         if (!mc->has_hotpluggable_cpus) {
4223             error_setg(errp, "CPU hot unplug not supported on this machine");
4224             return;
4225         }
4226         spapr_core_unplug_request(hotplug_dev, dev, errp);
4227     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4228         if (!smc->dr_phb_enabled) {
4229             error_setg(errp, "PHB hot unplug not supported on this machine");
4230             return;
4231         }
4232         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4233     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4234         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4235     }
4236 }
4237 
4238 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4239                                           DeviceState *dev, Error **errp)
4240 {
4241     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4242         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4243     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4244         spapr_core_pre_plug(hotplug_dev, dev, errp);
4245     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4246         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4247     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4248         spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4249     }
4250 }
4251 
4252 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4253                                                  DeviceState *dev)
4254 {
4255     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4256         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4257         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4258         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4259         return HOTPLUG_HANDLER(machine);
4260     }
4261     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4262         PCIDevice *pcidev = PCI_DEVICE(dev);
4263         PCIBus *root = pci_device_root_bus(pcidev);
4264         SpaprPhbState *phb =
4265             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4266                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4267 
4268         if (phb) {
4269             return HOTPLUG_HANDLER(phb);
4270         }
4271     }
4272     return NULL;
4273 }
4274 
4275 static CpuInstanceProperties
4276 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4277 {
4278     CPUArchId *core_slot;
4279     MachineClass *mc = MACHINE_GET_CLASS(machine);
4280 
4281     /* make sure possible_cpu are intialized */
4282     mc->possible_cpu_arch_ids(machine);
4283     /* get CPU core slot containing thread that matches cpu_index */
4284     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4285     assert(core_slot);
4286     return core_slot->props;
4287 }
4288 
4289 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4290 {
4291     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4292 }
4293 
4294 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4295 {
4296     int i;
4297     unsigned int smp_threads = machine->smp.threads;
4298     unsigned int smp_cpus = machine->smp.cpus;
4299     const char *core_type;
4300     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4301     MachineClass *mc = MACHINE_GET_CLASS(machine);
4302 
4303     if (!mc->has_hotpluggable_cpus) {
4304         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4305     }
4306     if (machine->possible_cpus) {
4307         assert(machine->possible_cpus->len == spapr_max_cores);
4308         return machine->possible_cpus;
4309     }
4310 
4311     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4312     if (!core_type) {
4313         error_report("Unable to find sPAPR CPU Core definition");
4314         exit(1);
4315     }
4316 
4317     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4318                              sizeof(CPUArchId) * spapr_max_cores);
4319     machine->possible_cpus->len = spapr_max_cores;
4320     for (i = 0; i < machine->possible_cpus->len; i++) {
4321         int core_id = i * smp_threads;
4322 
4323         machine->possible_cpus->cpus[i].type = core_type;
4324         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4325         machine->possible_cpus->cpus[i].arch_id = core_id;
4326         machine->possible_cpus->cpus[i].props.has_core_id = true;
4327         machine->possible_cpus->cpus[i].props.core_id = core_id;
4328     }
4329     return machine->possible_cpus;
4330 }
4331 
4332 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4333                                 uint64_t *buid, hwaddr *pio,
4334                                 hwaddr *mmio32, hwaddr *mmio64,
4335                                 unsigned n_dma, uint32_t *liobns,
4336                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4337 {
4338     /*
4339      * New-style PHB window placement.
4340      *
4341      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4342      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4343      * windows.
4344      *
4345      * Some guest kernels can't work with MMIO windows above 1<<46
4346      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4347      *
4348      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4349      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4350      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4351      * 1TiB 64-bit MMIO windows for each PHB.
4352      */
4353     const uint64_t base_buid = 0x800000020000000ULL;
4354     int i;
4355 
4356     /* Sanity check natural alignments */
4357     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4358     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4359     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4360     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4361     /* Sanity check bounds */
4362     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4363                       SPAPR_PCI_MEM32_WIN_SIZE);
4364     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4365                       SPAPR_PCI_MEM64_WIN_SIZE);
4366 
4367     if (index >= SPAPR_MAX_PHBS) {
4368         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4369                    SPAPR_MAX_PHBS - 1);
4370         return false;
4371     }
4372 
4373     *buid = base_buid + index;
4374     for (i = 0; i < n_dma; ++i) {
4375         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4376     }
4377 
4378     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4379     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4380     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4381 
4382     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4383     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4384     return true;
4385 }
4386 
4387 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4388 {
4389     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4390 
4391     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4392 }
4393 
4394 static void spapr_ics_resend(XICSFabric *dev)
4395 {
4396     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4397 
4398     ics_resend(spapr->ics);
4399 }
4400 
4401 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4402 {
4403     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4404 
4405     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4406 }
4407 
4408 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4409                                  Monitor *mon)
4410 {
4411     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4412 
4413     spapr_irq_print_info(spapr, mon);
4414     monitor_printf(mon, "irqchip: %s\n",
4415                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4416 }
4417 
4418 /*
4419  * This is a XIVE only operation
4420  */
4421 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4422                            uint8_t nvt_blk, uint32_t nvt_idx,
4423                            bool cam_ignore, uint8_t priority,
4424                            uint32_t logic_serv, XiveTCTXMatch *match)
4425 {
4426     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4427     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4428     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4429     int count;
4430 
4431     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4432                            priority, logic_serv, match);
4433     if (count < 0) {
4434         return count;
4435     }
4436 
4437     /*
4438      * When we implement the save and restore of the thread interrupt
4439      * contexts in the enter/exit CPU handlers of the machine and the
4440      * escalations in QEMU, we should be able to handle non dispatched
4441      * vCPUs.
4442      *
4443      * Until this is done, the sPAPR machine should find at least one
4444      * matching context always.
4445      */
4446     if (count == 0) {
4447         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4448                       nvt_blk, nvt_idx);
4449     }
4450 
4451     return count;
4452 }
4453 
4454 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4455 {
4456     return cpu->vcpu_id;
4457 }
4458 
4459 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4460 {
4461     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4462     MachineState *ms = MACHINE(spapr);
4463     int vcpu_id;
4464 
4465     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4466 
4467     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4468         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4469         error_append_hint(errp, "Adjust the number of cpus to %d "
4470                           "or try to raise the number of threads per core\n",
4471                           vcpu_id * ms->smp.threads / spapr->vsmt);
4472         return false;
4473     }
4474 
4475     cpu->vcpu_id = vcpu_id;
4476     return true;
4477 }
4478 
4479 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4480 {
4481     CPUState *cs;
4482 
4483     CPU_FOREACH(cs) {
4484         PowerPCCPU *cpu = POWERPC_CPU(cs);
4485 
4486         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4487             return cpu;
4488         }
4489     }
4490 
4491     return NULL;
4492 }
4493 
4494 static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4495 {
4496     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4497 
4498     return spapr_cpu->in_nested;
4499 }
4500 
4501 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4502 {
4503     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4504 
4505     /* These are only called by TCG, KVM maintains dispatch state */
4506 
4507     spapr_cpu->prod = false;
4508     if (spapr_cpu->vpa_addr) {
4509         CPUState *cs = CPU(cpu);
4510         uint32_t dispatch;
4511 
4512         dispatch = ldl_be_phys(cs->as,
4513                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4514         dispatch++;
4515         if ((dispatch & 1) != 0) {
4516             qemu_log_mask(LOG_GUEST_ERROR,
4517                           "VPA: incorrect dispatch counter value for "
4518                           "dispatched partition %u, correcting.\n", dispatch);
4519             dispatch++;
4520         }
4521         stl_be_phys(cs->as,
4522                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4523     }
4524 }
4525 
4526 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4527 {
4528     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4529 
4530     if (spapr_cpu->vpa_addr) {
4531         CPUState *cs = CPU(cpu);
4532         uint32_t dispatch;
4533 
4534         dispatch = ldl_be_phys(cs->as,
4535                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4536         dispatch++;
4537         if ((dispatch & 1) != 1) {
4538             qemu_log_mask(LOG_GUEST_ERROR,
4539                           "VPA: incorrect dispatch counter value for "
4540                           "preempted partition %u, correcting.\n", dispatch);
4541             dispatch++;
4542         }
4543         stl_be_phys(cs->as,
4544                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4545     }
4546 }
4547 
4548 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4549 {
4550     MachineClass *mc = MACHINE_CLASS(oc);
4551     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4552     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4553     NMIClass *nc = NMI_CLASS(oc);
4554     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4555     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4556     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4557     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4558     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4559     VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4560 
4561     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4562     mc->ignore_boot_device_suffixes = true;
4563 
4564     /*
4565      * We set up the default / latest behaviour here.  The class_init
4566      * functions for the specific versioned machine types can override
4567      * these details for backwards compatibility
4568      */
4569     mc->init = spapr_machine_init;
4570     mc->reset = spapr_machine_reset;
4571     mc->block_default_type = IF_SCSI;
4572 
4573     /*
4574      * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4575      * should be limited by the host capability instead of hardcoded.
4576      * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4577      * guests are welcome to have as many CPUs as the host are capable
4578      * of emulate.
4579      */
4580     mc->max_cpus = INT32_MAX;
4581 
4582     mc->no_parallel = 1;
4583     mc->default_boot_order = "";
4584     mc->default_ram_size = 512 * MiB;
4585     mc->default_ram_id = "ppc_spapr.ram";
4586     mc->default_display = "std";
4587     mc->kvm_type = spapr_kvm_type;
4588     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4589     mc->pci_allow_0_address = true;
4590     assert(!mc->get_hotplug_handler);
4591     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4592     hc->pre_plug = spapr_machine_device_pre_plug;
4593     hc->plug = spapr_machine_device_plug;
4594     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4595     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4596     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4597     hc->unplug_request = spapr_machine_device_unplug_request;
4598     hc->unplug = spapr_machine_device_unplug;
4599 
4600     smc->dr_lmb_enabled = true;
4601     smc->update_dt_enabled = true;
4602     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4603     mc->has_hotpluggable_cpus = true;
4604     mc->nvdimm_supported = true;
4605     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4606     fwc->get_dev_path = spapr_get_fw_dev_path;
4607     nc->nmi_monitor_handler = spapr_nmi;
4608     smc->phb_placement = spapr_phb_placement;
4609     vhc->cpu_in_nested = spapr_cpu_in_nested;
4610     vhc->deliver_hv_excp = spapr_exit_nested;
4611     vhc->hypercall = emulate_spapr_hypercall;
4612     vhc->hpt_mask = spapr_hpt_mask;
4613     vhc->map_hptes = spapr_map_hptes;
4614     vhc->unmap_hptes = spapr_unmap_hptes;
4615     vhc->hpte_set_c = spapr_hpte_set_c;
4616     vhc->hpte_set_r = spapr_hpte_set_r;
4617     vhc->get_pate = spapr_get_pate;
4618     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4619     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4620     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4621     xic->ics_get = spapr_ics_get;
4622     xic->ics_resend = spapr_ics_resend;
4623     xic->icp_get = spapr_icp_get;
4624     ispc->print_info = spapr_pic_print_info;
4625     /* Force NUMA node memory size to be a multiple of
4626      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4627      * in which LMBs are represented and hot-added
4628      */
4629     mc->numa_mem_align_shift = 28;
4630     mc->auto_enable_numa = true;
4631 
4632     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4633     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4634     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4635     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4636     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4637     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4638     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4639     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4640     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4641     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4642     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4643     smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4644     spapr_caps_add_properties(smc);
4645     smc->irq = &spapr_irq_dual;
4646     smc->dr_phb_enabled = true;
4647     smc->linux_pci_probe = true;
4648     smc->smp_threads_vsmt = true;
4649     smc->nr_xirqs = SPAPR_NR_XIRQS;
4650     xfc->match_nvt = spapr_match_nvt;
4651     vmc->client_architecture_support = spapr_vof_client_architecture_support;
4652     vmc->quiesce = spapr_vof_quiesce;
4653     vmc->setprop = spapr_vof_setprop;
4654 }
4655 
4656 static const TypeInfo spapr_machine_info = {
4657     .name          = TYPE_SPAPR_MACHINE,
4658     .parent        = TYPE_MACHINE,
4659     .abstract      = true,
4660     .instance_size = sizeof(SpaprMachineState),
4661     .instance_init = spapr_instance_init,
4662     .instance_finalize = spapr_machine_finalizefn,
4663     .class_size    = sizeof(SpaprMachineClass),
4664     .class_init    = spapr_machine_class_init,
4665     .interfaces = (InterfaceInfo[]) {
4666         { TYPE_FW_PATH_PROVIDER },
4667         { TYPE_NMI },
4668         { TYPE_HOTPLUG_HANDLER },
4669         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4670         { TYPE_XICS_FABRIC },
4671         { TYPE_INTERRUPT_STATS_PROVIDER },
4672         { TYPE_XIVE_FABRIC },
4673         { TYPE_VOF_MACHINE_IF },
4674         { }
4675     },
4676 };
4677 
4678 static void spapr_machine_latest_class_options(MachineClass *mc)
4679 {
4680     mc->alias = "pseries";
4681     mc->is_default = true;
4682 }
4683 
4684 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4685     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4686                                                     void *data)      \
4687     {                                                                \
4688         MachineClass *mc = MACHINE_CLASS(oc);                        \
4689         spapr_machine_##suffix##_class_options(mc);                  \
4690         if (latest) {                                                \
4691             spapr_machine_latest_class_options(mc);                  \
4692         }                                                            \
4693     }                                                                \
4694     static const TypeInfo spapr_machine_##suffix##_info = {          \
4695         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4696         .parent = TYPE_SPAPR_MACHINE,                                \
4697         .class_init = spapr_machine_##suffix##_class_init,           \
4698     };                                                               \
4699     static void spapr_machine_register_##suffix(void)                \
4700     {                                                                \
4701         type_register(&spapr_machine_##suffix##_info);               \
4702     }                                                                \
4703     type_init(spapr_machine_register_##suffix)
4704 
4705 /*
4706  * pseries-7.1
4707  */
4708 static void spapr_machine_7_1_class_options(MachineClass *mc)
4709 {
4710     /* Defaults for the latest behaviour inherited from the base class */
4711 }
4712 
4713 DEFINE_SPAPR_MACHINE(7_1, "7.1", true);
4714 
4715 /*
4716  * pseries-7.0
4717  */
4718 static void spapr_machine_7_0_class_options(MachineClass *mc)
4719 {
4720     spapr_machine_7_1_class_options(mc);
4721     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
4722 }
4723 
4724 DEFINE_SPAPR_MACHINE(7_0, "7.0", false);
4725 
4726 /*
4727  * pseries-6.2
4728  */
4729 static void spapr_machine_6_2_class_options(MachineClass *mc)
4730 {
4731     spapr_machine_7_0_class_options(mc);
4732     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4733 }
4734 
4735 DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
4736 
4737 /*
4738  * pseries-6.1
4739  */
4740 static void spapr_machine_6_1_class_options(MachineClass *mc)
4741 {
4742     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4743 
4744     spapr_machine_6_2_class_options(mc);
4745     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4746     smc->pre_6_2_numa_affinity = true;
4747     mc->smp_props.prefer_sockets = true;
4748 }
4749 
4750 DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4751 
4752 /*
4753  * pseries-6.0
4754  */
4755 static void spapr_machine_6_0_class_options(MachineClass *mc)
4756 {
4757     spapr_machine_6_1_class_options(mc);
4758     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4759 }
4760 
4761 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4762 
4763 /*
4764  * pseries-5.2
4765  */
4766 static void spapr_machine_5_2_class_options(MachineClass *mc)
4767 {
4768     spapr_machine_6_0_class_options(mc);
4769     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4770 }
4771 
4772 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4773 
4774 /*
4775  * pseries-5.1
4776  */
4777 static void spapr_machine_5_1_class_options(MachineClass *mc)
4778 {
4779     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4780 
4781     spapr_machine_5_2_class_options(mc);
4782     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4783     smc->pre_5_2_numa_associativity = true;
4784 }
4785 
4786 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4787 
4788 /*
4789  * pseries-5.0
4790  */
4791 static void spapr_machine_5_0_class_options(MachineClass *mc)
4792 {
4793     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4794     static GlobalProperty compat[] = {
4795         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4796     };
4797 
4798     spapr_machine_5_1_class_options(mc);
4799     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4800     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4801     mc->numa_mem_supported = true;
4802     smc->pre_5_1_assoc_refpoints = true;
4803 }
4804 
4805 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4806 
4807 /*
4808  * pseries-4.2
4809  */
4810 static void spapr_machine_4_2_class_options(MachineClass *mc)
4811 {
4812     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4813 
4814     spapr_machine_5_0_class_options(mc);
4815     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4816     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4817     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4818     smc->rma_limit = 16 * GiB;
4819     mc->nvdimm_supported = false;
4820 }
4821 
4822 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4823 
4824 /*
4825  * pseries-4.1
4826  */
4827 static void spapr_machine_4_1_class_options(MachineClass *mc)
4828 {
4829     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4830     static GlobalProperty compat[] = {
4831         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4832         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4833     };
4834 
4835     spapr_machine_4_2_class_options(mc);
4836     smc->linux_pci_probe = false;
4837     smc->smp_threads_vsmt = false;
4838     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4839     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4840 }
4841 
4842 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4843 
4844 /*
4845  * pseries-4.0
4846  */
4847 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4848                               uint64_t *buid, hwaddr *pio,
4849                               hwaddr *mmio32, hwaddr *mmio64,
4850                               unsigned n_dma, uint32_t *liobns,
4851                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4852 {
4853     if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4854                              liobns, nv2gpa, nv2atsd, errp)) {
4855         return false;
4856     }
4857 
4858     *nv2gpa = 0;
4859     *nv2atsd = 0;
4860     return true;
4861 }
4862 static void spapr_machine_4_0_class_options(MachineClass *mc)
4863 {
4864     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4865 
4866     spapr_machine_4_1_class_options(mc);
4867     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4868     smc->phb_placement = phb_placement_4_0;
4869     smc->irq = &spapr_irq_xics;
4870     smc->pre_4_1_migration = true;
4871 }
4872 
4873 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4874 
4875 /*
4876  * pseries-3.1
4877  */
4878 static void spapr_machine_3_1_class_options(MachineClass *mc)
4879 {
4880     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4881 
4882     spapr_machine_4_0_class_options(mc);
4883     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4884 
4885     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4886     smc->update_dt_enabled = false;
4887     smc->dr_phb_enabled = false;
4888     smc->broken_host_serial_model = true;
4889     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4890     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4891     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4892     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4893 }
4894 
4895 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4896 
4897 /*
4898  * pseries-3.0
4899  */
4900 
4901 static void spapr_machine_3_0_class_options(MachineClass *mc)
4902 {
4903     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4904 
4905     spapr_machine_3_1_class_options(mc);
4906     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4907 
4908     smc->legacy_irq_allocation = true;
4909     smc->nr_xirqs = 0x400;
4910     smc->irq = &spapr_irq_xics_legacy;
4911 }
4912 
4913 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4914 
4915 /*
4916  * pseries-2.12
4917  */
4918 static void spapr_machine_2_12_class_options(MachineClass *mc)
4919 {
4920     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4921     static GlobalProperty compat[] = {
4922         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4923         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4924     };
4925 
4926     spapr_machine_3_0_class_options(mc);
4927     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4928     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4929 
4930     /* We depend on kvm_enabled() to choose a default value for the
4931      * hpt-max-page-size capability. Of course we can't do it here
4932      * because this is too early and the HW accelerator isn't initialzed
4933      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4934      */
4935     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4936 }
4937 
4938 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4939 
4940 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4941 {
4942     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4943 
4944     spapr_machine_2_12_class_options(mc);
4945     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4946     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4947     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4948 }
4949 
4950 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4951 
4952 /*
4953  * pseries-2.11
4954  */
4955 
4956 static void spapr_machine_2_11_class_options(MachineClass *mc)
4957 {
4958     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4959 
4960     spapr_machine_2_12_class_options(mc);
4961     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4962     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4963 }
4964 
4965 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4966 
4967 /*
4968  * pseries-2.10
4969  */
4970 
4971 static void spapr_machine_2_10_class_options(MachineClass *mc)
4972 {
4973     spapr_machine_2_11_class_options(mc);
4974     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4975 }
4976 
4977 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4978 
4979 /*
4980  * pseries-2.9
4981  */
4982 
4983 static void spapr_machine_2_9_class_options(MachineClass *mc)
4984 {
4985     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4986     static GlobalProperty compat[] = {
4987         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4988     };
4989 
4990     spapr_machine_2_10_class_options(mc);
4991     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4992     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4993     smc->pre_2_10_has_unused_icps = true;
4994     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4995 }
4996 
4997 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4998 
4999 /*
5000  * pseries-2.8
5001  */
5002 
5003 static void spapr_machine_2_8_class_options(MachineClass *mc)
5004 {
5005     static GlobalProperty compat[] = {
5006         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
5007     };
5008 
5009     spapr_machine_2_9_class_options(mc);
5010     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
5011     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5012     mc->numa_mem_align_shift = 23;
5013 }
5014 
5015 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
5016 
5017 /*
5018  * pseries-2.7
5019  */
5020 
5021 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
5022                               uint64_t *buid, hwaddr *pio,
5023                               hwaddr *mmio32, hwaddr *mmio64,
5024                               unsigned n_dma, uint32_t *liobns,
5025                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
5026 {
5027     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5028     const uint64_t base_buid = 0x800000020000000ULL;
5029     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
5030     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
5031     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
5032     const uint32_t max_index = 255;
5033     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
5034 
5035     uint64_t ram_top = MACHINE(spapr)->ram_size;
5036     hwaddr phb0_base, phb_base;
5037     int i;
5038 
5039     /* Do we have device memory? */
5040     if (MACHINE(spapr)->maxram_size > ram_top) {
5041         /* Can't just use maxram_size, because there may be an
5042          * alignment gap between normal and device memory regions
5043          */
5044         ram_top = MACHINE(spapr)->device_memory->base +
5045             memory_region_size(&MACHINE(spapr)->device_memory->mr);
5046     }
5047 
5048     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5049 
5050     if (index > max_index) {
5051         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5052                    max_index);
5053         return false;
5054     }
5055 
5056     *buid = base_buid + index;
5057     for (i = 0; i < n_dma; ++i) {
5058         liobns[i] = SPAPR_PCI_LIOBN(index, i);
5059     }
5060 
5061     phb_base = phb0_base + index * phb_spacing;
5062     *pio = phb_base + pio_offset;
5063     *mmio32 = phb_base + mmio_offset;
5064     /*
5065      * We don't set the 64-bit MMIO window, relying on the PHB's
5066      * fallback behaviour of automatically splitting a large "32-bit"
5067      * window into contiguous 32-bit and 64-bit windows
5068      */
5069 
5070     *nv2gpa = 0;
5071     *nv2atsd = 0;
5072     return true;
5073 }
5074 
5075 static void spapr_machine_2_7_class_options(MachineClass *mc)
5076 {
5077     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5078     static GlobalProperty compat[] = {
5079         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5080         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5081         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5082         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5083     };
5084 
5085     spapr_machine_2_8_class_options(mc);
5086     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5087     mc->default_machine_opts = "modern-hotplug-events=off";
5088     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5089     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5090     smc->phb_placement = phb_placement_2_7;
5091 }
5092 
5093 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5094 
5095 /*
5096  * pseries-2.6
5097  */
5098 
5099 static void spapr_machine_2_6_class_options(MachineClass *mc)
5100 {
5101     static GlobalProperty compat[] = {
5102         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5103     };
5104 
5105     spapr_machine_2_7_class_options(mc);
5106     mc->has_hotpluggable_cpus = false;
5107     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5108     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5109 }
5110 
5111 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5112 
5113 /*
5114  * pseries-2.5
5115  */
5116 
5117 static void spapr_machine_2_5_class_options(MachineClass *mc)
5118 {
5119     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5120     static GlobalProperty compat[] = {
5121         { "spapr-vlan", "use-rx-buffer-pools", "off" },
5122     };
5123 
5124     spapr_machine_2_6_class_options(mc);
5125     smc->use_ohci_by_default = true;
5126     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5127     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5128 }
5129 
5130 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5131 
5132 /*
5133  * pseries-2.4
5134  */
5135 
5136 static void spapr_machine_2_4_class_options(MachineClass *mc)
5137 {
5138     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5139 
5140     spapr_machine_2_5_class_options(mc);
5141     smc->dr_lmb_enabled = false;
5142     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5143 }
5144 
5145 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5146 
5147 /*
5148  * pseries-2.3
5149  */
5150 
5151 static void spapr_machine_2_3_class_options(MachineClass *mc)
5152 {
5153     static GlobalProperty compat[] = {
5154         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5155     };
5156     spapr_machine_2_4_class_options(mc);
5157     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5158     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5159 }
5160 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5161 
5162 /*
5163  * pseries-2.2
5164  */
5165 
5166 static void spapr_machine_2_2_class_options(MachineClass *mc)
5167 {
5168     static GlobalProperty compat[] = {
5169         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5170     };
5171 
5172     spapr_machine_2_3_class_options(mc);
5173     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5174     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5175     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5176 }
5177 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5178 
5179 /*
5180  * pseries-2.1
5181  */
5182 
5183 static void spapr_machine_2_1_class_options(MachineClass *mc)
5184 {
5185     spapr_machine_2_2_class_options(mc);
5186     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5187 }
5188 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5189 
5190 static void spapr_machine_register_types(void)
5191 {
5192     type_register_static(&spapr_machine_info);
5193 }
5194 
5195 type_init(spapr_machine_register_types)
5196