xref: /qemu/hw/ppc/spapr.c (revision c7eb39cb)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/device_tree.h"
41 #include "kvm_ppc.h"
42 #include "migration/migration.h"
43 #include "mmu-hash64.h"
44 #include "qom/cpu.h"
45 
46 #include "hw/boards.h"
47 #include "hw/ppc/ppc.h"
48 #include "hw/loader.h"
49 
50 #include "hw/ppc/spapr.h"
51 #include "hw/ppc/spapr_vio.h"
52 #include "hw/pci-host/spapr.h"
53 #include "hw/ppc/xics.h"
54 #include "hw/pci/msi.h"
55 
56 #include "hw/pci/pci.h"
57 #include "hw/scsi/scsi.h"
58 #include "hw/virtio/virtio-scsi.h"
59 
60 #include "exec/address-spaces.h"
61 #include "hw/usb.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "trace.h"
65 #include "hw/nmi.h"
66 
67 #include "hw/compat.h"
68 #include "qemu/cutils.h"
69 #include "hw/ppc/spapr_cpu_core.h"
70 #include "qmp-commands.h"
71 
72 #include <libfdt.h>
73 
74 /* SLOF memory layout:
75  *
76  * SLOF raw image loaded at 0, copies its romfs right below the flat
77  * device-tree, then position SLOF itself 31M below that
78  *
79  * So we set FW_OVERHEAD to 40MB which should account for all of that
80  * and more
81  *
82  * We load our kernel at 4M, leaving space for SLOF initial image
83  */
84 #define FDT_MAX_SIZE            0x100000
85 #define RTAS_MAX_SIZE           0x10000
86 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
87 #define FW_MAX_SIZE             0x400000
88 #define FW_FILE_NAME            "slof.bin"
89 #define FW_OVERHEAD             0x2800000
90 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
91 
92 #define MIN_RMA_SLOF            128UL
93 
94 #define PHANDLE_XICP            0x00001111
95 
96 #define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
97 
98 static XICSState *try_create_xics(const char *type, int nr_servers,
99                                   int nr_irqs, Error **errp)
100 {
101     Error *err = NULL;
102     DeviceState *dev;
103 
104     dev = qdev_create(NULL, type);
105     qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
106     qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
107     object_property_set_bool(OBJECT(dev), true, "realized", &err);
108     if (err) {
109         error_propagate(errp, err);
110         object_unparent(OBJECT(dev));
111         return NULL;
112     }
113     return XICS_COMMON(dev);
114 }
115 
116 static XICSState *xics_system_init(MachineState *machine,
117                                    int nr_servers, int nr_irqs, Error **errp)
118 {
119     XICSState *xics = NULL;
120 
121     if (kvm_enabled()) {
122         Error *err = NULL;
123 
124         if (machine_kernel_irqchip_allowed(machine)) {
125             xics = try_create_xics(TYPE_XICS_SPAPR_KVM, nr_servers, nr_irqs,
126                                    &err);
127         }
128         if (machine_kernel_irqchip_required(machine) && !xics) {
129             error_reportf_err(err,
130                               "kernel_irqchip requested but unavailable: ");
131         } else {
132             error_free(err);
133         }
134     }
135 
136     if (!xics) {
137         xics = try_create_xics(TYPE_XICS_SPAPR, nr_servers, nr_irqs, errp);
138     }
139 
140     return xics;
141 }
142 
143 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
144                                   int smt_threads)
145 {
146     int i, ret = 0;
147     uint32_t servers_prop[smt_threads];
148     uint32_t gservers_prop[smt_threads * 2];
149     int index = ppc_get_vcpu_dt_id(cpu);
150 
151     if (cpu->cpu_version) {
152         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
153         if (ret < 0) {
154             return ret;
155         }
156     }
157 
158     /* Build interrupt servers and gservers properties */
159     for (i = 0; i < smt_threads; i++) {
160         servers_prop[i] = cpu_to_be32(index + i);
161         /* Hack, direct the group queues back to cpu 0 */
162         gservers_prop[i*2] = cpu_to_be32(index + i);
163         gservers_prop[i*2 + 1] = 0;
164     }
165     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
166                       servers_prop, sizeof(servers_prop));
167     if (ret < 0) {
168         return ret;
169     }
170     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
171                       gservers_prop, sizeof(gservers_prop));
172 
173     return ret;
174 }
175 
176 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
177 {
178     int ret = 0;
179     PowerPCCPU *cpu = POWERPC_CPU(cs);
180     int index = ppc_get_vcpu_dt_id(cpu);
181     uint32_t associativity[] = {cpu_to_be32(0x5),
182                                 cpu_to_be32(0x0),
183                                 cpu_to_be32(0x0),
184                                 cpu_to_be32(0x0),
185                                 cpu_to_be32(cs->numa_node),
186                                 cpu_to_be32(index)};
187 
188     /* Advertise NUMA via ibm,associativity */
189     if (nb_numa_nodes > 1) {
190         ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
191                           sizeof(associativity));
192     }
193 
194     return ret;
195 }
196 
197 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
198 {
199     int ret = 0, offset, cpus_offset;
200     CPUState *cs;
201     char cpu_model[32];
202     int smt = kvmppc_smt_threads();
203     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
204 
205     CPU_FOREACH(cs) {
206         PowerPCCPU *cpu = POWERPC_CPU(cs);
207         DeviceClass *dc = DEVICE_GET_CLASS(cs);
208         int index = ppc_get_vcpu_dt_id(cpu);
209 
210         if ((index % smt) != 0) {
211             continue;
212         }
213 
214         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
215 
216         cpus_offset = fdt_path_offset(fdt, "/cpus");
217         if (cpus_offset < 0) {
218             cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
219                                           "cpus");
220             if (cpus_offset < 0) {
221                 return cpus_offset;
222             }
223         }
224         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
225         if (offset < 0) {
226             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
227             if (offset < 0) {
228                 return offset;
229             }
230         }
231 
232         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
233                           pft_size_prop, sizeof(pft_size_prop));
234         if (ret < 0) {
235             return ret;
236         }
237 
238         ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
239         if (ret < 0) {
240             return ret;
241         }
242 
243         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
244                                      ppc_get_compat_smt_threads(cpu));
245         if (ret < 0) {
246             return ret;
247         }
248     }
249     return ret;
250 }
251 
252 
253 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
254                                      size_t maxsize)
255 {
256     size_t maxcells = maxsize / sizeof(uint32_t);
257     int i, j, count;
258     uint32_t *p = prop;
259 
260     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
261         struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
262 
263         if (!sps->page_shift) {
264             break;
265         }
266         for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
267             if (sps->enc[count].page_shift == 0) {
268                 break;
269             }
270         }
271         if ((p - prop) >= (maxcells - 3 - count * 2)) {
272             break;
273         }
274         *(p++) = cpu_to_be32(sps->page_shift);
275         *(p++) = cpu_to_be32(sps->slb_enc);
276         *(p++) = cpu_to_be32(count);
277         for (j = 0; j < count; j++) {
278             *(p++) = cpu_to_be32(sps->enc[j].page_shift);
279             *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
280         }
281     }
282 
283     return (p - prop) * sizeof(uint32_t);
284 }
285 
286 static hwaddr spapr_node0_size(void)
287 {
288     MachineState *machine = MACHINE(qdev_get_machine());
289 
290     if (nb_numa_nodes) {
291         int i;
292         for (i = 0; i < nb_numa_nodes; ++i) {
293             if (numa_info[i].node_mem) {
294                 return MIN(pow2floor(numa_info[i].node_mem),
295                            machine->ram_size);
296             }
297         }
298     }
299     return machine->ram_size;
300 }
301 
302 #define _FDT(exp) \
303     do { \
304         int ret = (exp);                                           \
305         if (ret < 0) {                                             \
306             fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
307                     #exp, fdt_strerror(ret));                      \
308             exit(1);                                               \
309         }                                                          \
310     } while (0)
311 
312 static void add_str(GString *s, const gchar *s1)
313 {
314     g_string_append_len(s, s1, strlen(s1) + 1);
315 }
316 
317 static void *spapr_create_fdt_skel(hwaddr initrd_base,
318                                    hwaddr initrd_size,
319                                    hwaddr kernel_size,
320                                    bool little_endian,
321                                    const char *kernel_cmdline,
322                                    uint32_t epow_irq)
323 {
324     void *fdt;
325     uint32_t start_prop = cpu_to_be32(initrd_base);
326     uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
327     GString *hypertas = g_string_sized_new(256);
328     GString *qemu_hypertas = g_string_sized_new(256);
329     uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
330     uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
331     unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
332     char *buf;
333 
334     add_str(hypertas, "hcall-pft");
335     add_str(hypertas, "hcall-term");
336     add_str(hypertas, "hcall-dabr");
337     add_str(hypertas, "hcall-interrupt");
338     add_str(hypertas, "hcall-tce");
339     add_str(hypertas, "hcall-vio");
340     add_str(hypertas, "hcall-splpar");
341     add_str(hypertas, "hcall-bulk");
342     add_str(hypertas, "hcall-set-mode");
343     add_str(hypertas, "hcall-sprg0");
344     add_str(hypertas, "hcall-copy");
345     add_str(hypertas, "hcall-debug");
346     add_str(qemu_hypertas, "hcall-memop1");
347 
348     fdt = g_malloc0(FDT_MAX_SIZE);
349     _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
350 
351     if (kernel_size) {
352         _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
353     }
354     if (initrd_size) {
355         _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
356     }
357     _FDT((fdt_finish_reservemap(fdt)));
358 
359     /* Root node */
360     _FDT((fdt_begin_node(fdt, "")));
361     _FDT((fdt_property_string(fdt, "device_type", "chrp")));
362     _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
363     _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
364 
365     /*
366      * Add info to guest to indentify which host is it being run on
367      * and what is the uuid of the guest
368      */
369     if (kvmppc_get_host_model(&buf)) {
370         _FDT((fdt_property_string(fdt, "host-model", buf)));
371         g_free(buf);
372     }
373     if (kvmppc_get_host_serial(&buf)) {
374         _FDT((fdt_property_string(fdt, "host-serial", buf)));
375         g_free(buf);
376     }
377 
378     buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
379                           qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
380                           qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
381                           qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
382                           qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
383                           qemu_uuid[14], qemu_uuid[15]);
384 
385     _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
386     if (qemu_uuid_set) {
387         _FDT((fdt_property_string(fdt, "system-id", buf)));
388     }
389     g_free(buf);
390 
391     if (qemu_get_vm_name()) {
392         _FDT((fdt_property_string(fdt, "ibm,partition-name",
393                                   qemu_get_vm_name())));
394     }
395 
396     _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
397     _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
398 
399     /* /chosen */
400     _FDT((fdt_begin_node(fdt, "chosen")));
401 
402     /* Set Form1_affinity */
403     _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
404 
405     _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
406     _FDT((fdt_property(fdt, "linux,initrd-start",
407                        &start_prop, sizeof(start_prop))));
408     _FDT((fdt_property(fdt, "linux,initrd-end",
409                        &end_prop, sizeof(end_prop))));
410     if (kernel_size) {
411         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
412                               cpu_to_be64(kernel_size) };
413 
414         _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
415         if (little_endian) {
416             _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
417         }
418     }
419     if (boot_menu) {
420         _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
421     }
422     _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
423     _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
424     _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
425 
426     _FDT((fdt_end_node(fdt)));
427 
428     /* RTAS */
429     _FDT((fdt_begin_node(fdt, "rtas")));
430 
431     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
432         add_str(hypertas, "hcall-multi-tce");
433     }
434     _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
435                        hypertas->len)));
436     g_string_free(hypertas, TRUE);
437     _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
438                        qemu_hypertas->len)));
439     g_string_free(qemu_hypertas, TRUE);
440 
441     _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
442         refpoints, sizeof(refpoints))));
443 
444     _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
445     _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
446                             RTAS_EVENT_SCAN_RATE)));
447 
448     if (msi_nonbroken) {
449         _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
450     }
451 
452     /*
453      * According to PAPR, rtas ibm,os-term does not guarantee a return
454      * back to the guest cpu.
455      *
456      * While an additional ibm,extended-os-term property indicates that
457      * rtas call return will always occur. Set this property.
458      */
459     _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
460 
461     _FDT((fdt_end_node(fdt)));
462 
463     /* interrupt controller */
464     _FDT((fdt_begin_node(fdt, "interrupt-controller")));
465 
466     _FDT((fdt_property_string(fdt, "device_type",
467                               "PowerPC-External-Interrupt-Presentation")));
468     _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
469     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
470     _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
471                        interrupt_server_ranges_prop,
472                        sizeof(interrupt_server_ranges_prop))));
473     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
474     _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
475     _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
476 
477     _FDT((fdt_end_node(fdt)));
478 
479     /* vdevice */
480     _FDT((fdt_begin_node(fdt, "vdevice")));
481 
482     _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
483     _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
484     _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
485     _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
486     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
487     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
488 
489     _FDT((fdt_end_node(fdt)));
490 
491     /* event-sources */
492     spapr_events_fdt_skel(fdt, epow_irq);
493 
494     /* /hypervisor node */
495     if (kvm_enabled()) {
496         uint8_t hypercall[16];
497 
498         /* indicate KVM hypercall interface */
499         _FDT((fdt_begin_node(fdt, "hypervisor")));
500         _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
501         if (kvmppc_has_cap_fixup_hcalls()) {
502             /*
503              * Older KVM versions with older guest kernels were broken with the
504              * magic page, don't allow the guest to map it.
505              */
506             if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
507                                       sizeof(hypercall))) {
508                 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
509                                    sizeof(hypercall))));
510             }
511         }
512         _FDT((fdt_end_node(fdt)));
513     }
514 
515     _FDT((fdt_end_node(fdt))); /* close root node */
516     _FDT((fdt_finish(fdt)));
517 
518     return fdt;
519 }
520 
521 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
522                                        hwaddr size)
523 {
524     uint32_t associativity[] = {
525         cpu_to_be32(0x4), /* length */
526         cpu_to_be32(0x0), cpu_to_be32(0x0),
527         cpu_to_be32(0x0), cpu_to_be32(nodeid)
528     };
529     char mem_name[32];
530     uint64_t mem_reg_property[2];
531     int off;
532 
533     mem_reg_property[0] = cpu_to_be64(start);
534     mem_reg_property[1] = cpu_to_be64(size);
535 
536     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
537     off = fdt_add_subnode(fdt, 0, mem_name);
538     _FDT(off);
539     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
540     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
541                       sizeof(mem_reg_property))));
542     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
543                       sizeof(associativity))));
544     return off;
545 }
546 
547 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
548 {
549     MachineState *machine = MACHINE(spapr);
550     hwaddr mem_start, node_size;
551     int i, nb_nodes = nb_numa_nodes;
552     NodeInfo *nodes = numa_info;
553     NodeInfo ramnode;
554 
555     /* No NUMA nodes, assume there is just one node with whole RAM */
556     if (!nb_numa_nodes) {
557         nb_nodes = 1;
558         ramnode.node_mem = machine->ram_size;
559         nodes = &ramnode;
560     }
561 
562     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
563         if (!nodes[i].node_mem) {
564             continue;
565         }
566         if (mem_start >= machine->ram_size) {
567             node_size = 0;
568         } else {
569             node_size = nodes[i].node_mem;
570             if (node_size > machine->ram_size - mem_start) {
571                 node_size = machine->ram_size - mem_start;
572             }
573         }
574         if (!mem_start) {
575             /* ppc_spapr_init() checks for rma_size <= node0_size already */
576             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
577             mem_start += spapr->rma_size;
578             node_size -= spapr->rma_size;
579         }
580         for ( ; node_size; ) {
581             hwaddr sizetmp = pow2floor(node_size);
582 
583             /* mem_start != 0 here */
584             if (ctzl(mem_start) < ctzl(sizetmp)) {
585                 sizetmp = 1ULL << ctzl(mem_start);
586             }
587 
588             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
589             node_size -= sizetmp;
590             mem_start += sizetmp;
591         }
592     }
593 
594     return 0;
595 }
596 
597 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
598                                   sPAPRMachineState *spapr)
599 {
600     PowerPCCPU *cpu = POWERPC_CPU(cs);
601     CPUPPCState *env = &cpu->env;
602     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
603     int index = ppc_get_vcpu_dt_id(cpu);
604     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
605                        0xffffffff, 0xffffffff};
606     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
607         : SPAPR_TIMEBASE_FREQ;
608     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
609     uint32_t page_sizes_prop[64];
610     size_t page_sizes_prop_size;
611     uint32_t vcpus_per_socket = smp_threads * smp_cores;
612     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
613     sPAPRDRConnector *drc;
614     sPAPRDRConnectorClass *drck;
615     int drc_index;
616 
617     drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
618     if (drc) {
619         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
620         drc_index = drck->get_index(drc);
621         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
622     }
623 
624     /* Note: we keep CI large pages off for now because a 64K capable guest
625      * provisioned with large pages might otherwise try to map a qemu
626      * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
627      * even if that qemu runs on a 4k host.
628      *
629      * We can later add this bit back when we are confident this is not
630      * an issue (!HV KVM or 64K host)
631      */
632     uint8_t pa_features_206[] = { 6, 0,
633         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
634     uint8_t pa_features_207[] = { 24, 0,
635         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
636         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
637         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
638         0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
639     uint8_t *pa_features;
640     size_t pa_size;
641 
642     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
643     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
644 
645     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
646     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
647                            env->dcache_line_size)));
648     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
649                            env->dcache_line_size)));
650     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
651                            env->icache_line_size)));
652     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
653                            env->icache_line_size)));
654 
655     if (pcc->l1_dcache_size) {
656         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
657                                pcc->l1_dcache_size)));
658     } else {
659         fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
660     }
661     if (pcc->l1_icache_size) {
662         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
663                                pcc->l1_icache_size)));
664     } else {
665         fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
666     }
667 
668     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
669     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
670     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
671     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
672     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
673     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
674 
675     if (env->spr_cb[SPR_PURR].oea_read) {
676         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
677     }
678 
679     if (env->mmu_model & POWERPC_MMU_1TSEG) {
680         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
681                           segs, sizeof(segs))));
682     }
683 
684     /* Advertise VMX/VSX (vector extensions) if available
685      *   0 / no property == no vector extensions
686      *   1               == VMX / Altivec available
687      *   2               == VSX available */
688     if (env->insns_flags & PPC_ALTIVEC) {
689         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
690 
691         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
692     }
693 
694     /* Advertise DFP (Decimal Floating Point) if available
695      *   0 / no property == no DFP
696      *   1               == DFP available */
697     if (env->insns_flags2 & PPC2_DFP) {
698         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
699     }
700 
701     page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
702                                                   sizeof(page_sizes_prop));
703     if (page_sizes_prop_size) {
704         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
705                           page_sizes_prop, page_sizes_prop_size)));
706     }
707 
708     /* Do the ibm,pa-features property, adjust it for ci-large-pages */
709     if (env->mmu_model == POWERPC_MMU_2_06) {
710         pa_features = pa_features_206;
711         pa_size = sizeof(pa_features_206);
712     } else /* env->mmu_model == POWERPC_MMU_2_07 */ {
713         pa_features = pa_features_207;
714         pa_size = sizeof(pa_features_207);
715     }
716     if (env->ci_large_pages) {
717         pa_features[3] |= 0x20;
718     }
719     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
720 
721     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
722                            cs->cpu_index / vcpus_per_socket)));
723 
724     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
725                       pft_size_prop, sizeof(pft_size_prop))));
726 
727     _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
728 
729     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
730                                 ppc_get_compat_smt_threads(cpu)));
731 }
732 
733 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
734 {
735     CPUState *cs;
736     int cpus_offset;
737     char *nodename;
738     int smt = kvmppc_smt_threads();
739 
740     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
741     _FDT(cpus_offset);
742     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
743     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
744 
745     /*
746      * We walk the CPUs in reverse order to ensure that CPU DT nodes
747      * created by fdt_add_subnode() end up in the right order in FDT
748      * for the guest kernel the enumerate the CPUs correctly.
749      */
750     CPU_FOREACH_REVERSE(cs) {
751         PowerPCCPU *cpu = POWERPC_CPU(cs);
752         int index = ppc_get_vcpu_dt_id(cpu);
753         DeviceClass *dc = DEVICE_GET_CLASS(cs);
754         int offset;
755 
756         if ((index % smt) != 0) {
757             continue;
758         }
759 
760         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
761         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
762         g_free(nodename);
763         _FDT(offset);
764         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
765     }
766 
767 }
768 
769 /*
770  * Adds ibm,dynamic-reconfiguration-memory node.
771  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
772  * of this device tree node.
773  */
774 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
775 {
776     MachineState *machine = MACHINE(spapr);
777     int ret, i, offset;
778     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
779     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
780     uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
781     uint32_t nr_lmbs = (spapr->hotplug_memory.base +
782                        memory_region_size(&spapr->hotplug_memory.mr)) /
783                        lmb_size;
784     uint32_t *int_buf, *cur_index, buf_len;
785     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
786 
787     /*
788      * Don't create the node if there is no hotpluggable memory
789      */
790     if (machine->ram_size == machine->maxram_size) {
791         return 0;
792     }
793 
794     /*
795      * Allocate enough buffer size to fit in ibm,dynamic-memory
796      * or ibm,associativity-lookup-arrays
797      */
798     buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
799               * sizeof(uint32_t);
800     cur_index = int_buf = g_malloc0(buf_len);
801 
802     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
803 
804     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
805                     sizeof(prop_lmb_size));
806     if (ret < 0) {
807         goto out;
808     }
809 
810     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
811     if (ret < 0) {
812         goto out;
813     }
814 
815     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
816     if (ret < 0) {
817         goto out;
818     }
819 
820     /* ibm,dynamic-memory */
821     int_buf[0] = cpu_to_be32(nr_lmbs);
822     cur_index++;
823     for (i = 0; i < nr_lmbs; i++) {
824         uint64_t addr = i * lmb_size;
825         uint32_t *dynamic_memory = cur_index;
826 
827         if (i >= hotplug_lmb_start) {
828             sPAPRDRConnector *drc;
829             sPAPRDRConnectorClass *drck;
830 
831             drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
832             g_assert(drc);
833             drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
834 
835             dynamic_memory[0] = cpu_to_be32(addr >> 32);
836             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
837             dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
838             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
839             dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
840             if (memory_region_present(get_system_memory(), addr)) {
841                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
842             } else {
843                 dynamic_memory[5] = cpu_to_be32(0);
844             }
845         } else {
846             /*
847              * LMB information for RMA, boot time RAM and gap b/n RAM and
848              * hotplug memory region -- all these are marked as reserved
849              * and as having no valid DRC.
850              */
851             dynamic_memory[0] = cpu_to_be32(addr >> 32);
852             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
853             dynamic_memory[2] = cpu_to_be32(0);
854             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
855             dynamic_memory[4] = cpu_to_be32(-1);
856             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
857                                             SPAPR_LMB_FLAGS_DRC_INVALID);
858         }
859 
860         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
861     }
862     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
863     if (ret < 0) {
864         goto out;
865     }
866 
867     /* ibm,associativity-lookup-arrays */
868     cur_index = int_buf;
869     int_buf[0] = cpu_to_be32(nr_nodes);
870     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
871     cur_index += 2;
872     for (i = 0; i < nr_nodes; i++) {
873         uint32_t associativity[] = {
874             cpu_to_be32(0x0),
875             cpu_to_be32(0x0),
876             cpu_to_be32(0x0),
877             cpu_to_be32(i)
878         };
879         memcpy(cur_index, associativity, sizeof(associativity));
880         cur_index += 4;
881     }
882     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
883             (cur_index - int_buf) * sizeof(uint32_t));
884 out:
885     g_free(int_buf);
886     return ret;
887 }
888 
889 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
890                                  target_ulong addr, target_ulong size,
891                                  bool cpu_update, bool memory_update)
892 {
893     void *fdt, *fdt_skel;
894     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
895     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
896 
897     size -= sizeof(hdr);
898 
899     /* Create sceleton */
900     fdt_skel = g_malloc0(size);
901     _FDT((fdt_create(fdt_skel, size)));
902     _FDT((fdt_begin_node(fdt_skel, "")));
903     _FDT((fdt_end_node(fdt_skel)));
904     _FDT((fdt_finish(fdt_skel)));
905     fdt = g_malloc0(size);
906     _FDT((fdt_open_into(fdt_skel, fdt, size)));
907     g_free(fdt_skel);
908 
909     /* Fixup cpu nodes */
910     if (cpu_update) {
911         _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
912     }
913 
914     /* Generate ibm,dynamic-reconfiguration-memory node if required */
915     if (memory_update && smc->dr_lmb_enabled) {
916         _FDT((spapr_populate_drconf_memory(spapr, fdt)));
917     }
918 
919     /* Pack resulting tree */
920     _FDT((fdt_pack(fdt)));
921 
922     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
923         trace_spapr_cas_failed(size);
924         return -1;
925     }
926 
927     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
928     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
929     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
930     g_free(fdt);
931 
932     return 0;
933 }
934 
935 static void spapr_finalize_fdt(sPAPRMachineState *spapr,
936                                hwaddr fdt_addr,
937                                hwaddr rtas_addr,
938                                hwaddr rtas_size)
939 {
940     MachineState *machine = MACHINE(qdev_get_machine());
941     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
942     const char *boot_device = machine->boot_order;
943     int ret, i;
944     size_t cb = 0;
945     char *bootlist;
946     void *fdt;
947     sPAPRPHBState *phb;
948 
949     fdt = g_malloc(FDT_MAX_SIZE);
950 
951     /* open out the base tree into a temp buffer for the final tweaks */
952     _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
953 
954     ret = spapr_populate_memory(spapr, fdt);
955     if (ret < 0) {
956         fprintf(stderr, "couldn't setup memory nodes in fdt\n");
957         exit(1);
958     }
959 
960     ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
961     if (ret < 0) {
962         fprintf(stderr, "couldn't setup vio devices in fdt\n");
963         exit(1);
964     }
965 
966     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
967         ret = spapr_rng_populate_dt(fdt);
968         if (ret < 0) {
969             fprintf(stderr, "could not set up rng device in the fdt\n");
970             exit(1);
971         }
972     }
973 
974     QLIST_FOREACH(phb, &spapr->phbs, list) {
975         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
976         if (ret < 0) {
977             error_report("couldn't setup PCI devices in fdt");
978             exit(1);
979         }
980     }
981 
982     /* RTAS */
983     ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
984     if (ret < 0) {
985         fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
986     }
987 
988     /* cpus */
989     spapr_populate_cpus_dt_node(fdt, spapr);
990 
991     bootlist = get_boot_devices_list(&cb, true);
992     if (cb && bootlist) {
993         int offset = fdt_path_offset(fdt, "/chosen");
994         if (offset < 0) {
995             exit(1);
996         }
997         for (i = 0; i < cb; i++) {
998             if (bootlist[i] == '\n') {
999                 bootlist[i] = ' ';
1000             }
1001 
1002         }
1003         ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
1004     }
1005 
1006     if (boot_device && strlen(boot_device)) {
1007         int offset = fdt_path_offset(fdt, "/chosen");
1008 
1009         if (offset < 0) {
1010             exit(1);
1011         }
1012         fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
1013     }
1014 
1015     if (!spapr->has_graphics) {
1016         spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
1017     }
1018 
1019     if (smc->dr_lmb_enabled) {
1020         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1021     }
1022 
1023     if (smc->dr_cpu_enabled) {
1024         int offset = fdt_path_offset(fdt, "/cpus");
1025         ret = spapr_drc_populate_dt(fdt, offset, NULL,
1026                                     SPAPR_DR_CONNECTOR_TYPE_CPU);
1027         if (ret < 0) {
1028             error_report("Couldn't set up CPU DR device tree properties");
1029             exit(1);
1030         }
1031     }
1032 
1033     _FDT((fdt_pack(fdt)));
1034 
1035     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1036         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1037                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1038         exit(1);
1039     }
1040 
1041     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1042     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1043 
1044     g_free(bootlist);
1045     g_free(fdt);
1046 }
1047 
1048 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1049 {
1050     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1051 }
1052 
1053 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
1054 {
1055     CPUPPCState *env = &cpu->env;
1056 
1057     if (msr_pr) {
1058         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1059         env->gpr[3] = H_PRIVILEGE;
1060     } else {
1061         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1062     }
1063 }
1064 
1065 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1066 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1067 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1068 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1069 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1070 
1071 /*
1072  * Get the fd to access the kernel htab, re-opening it if necessary
1073  */
1074 static int get_htab_fd(sPAPRMachineState *spapr)
1075 {
1076     if (spapr->htab_fd >= 0) {
1077         return spapr->htab_fd;
1078     }
1079 
1080     spapr->htab_fd = kvmppc_get_htab_fd(false);
1081     if (spapr->htab_fd < 0) {
1082         error_report("Unable to open fd for reading hash table from KVM: %s",
1083                      strerror(errno));
1084     }
1085 
1086     return spapr->htab_fd;
1087 }
1088 
1089 static void close_htab_fd(sPAPRMachineState *spapr)
1090 {
1091     if (spapr->htab_fd >= 0) {
1092         close(spapr->htab_fd);
1093     }
1094     spapr->htab_fd = -1;
1095 }
1096 
1097 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1098 {
1099     int shift;
1100 
1101     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1102      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1103      * that's much more than is needed for Linux guests */
1104     shift = ctz64(pow2ceil(ramsize)) - 7;
1105     shift = MAX(shift, 18); /* Minimum architected size */
1106     shift = MIN(shift, 46); /* Maximum architected size */
1107     return shift;
1108 }
1109 
1110 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1111                                  Error **errp)
1112 {
1113     long rc;
1114 
1115     /* Clean up any HPT info from a previous boot */
1116     g_free(spapr->htab);
1117     spapr->htab = NULL;
1118     spapr->htab_shift = 0;
1119     close_htab_fd(spapr);
1120 
1121     rc = kvmppc_reset_htab(shift);
1122     if (rc < 0) {
1123         /* kernel-side HPT needed, but couldn't allocate one */
1124         error_setg_errno(errp, errno,
1125                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1126                          shift);
1127         /* This is almost certainly fatal, but if the caller really
1128          * wants to carry on with shift == 0, it's welcome to try */
1129     } else if (rc > 0) {
1130         /* kernel-side HPT allocated */
1131         if (rc != shift) {
1132             error_setg(errp,
1133                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1134                        shift, rc);
1135         }
1136 
1137         spapr->htab_shift = shift;
1138         spapr->htab = NULL;
1139     } else {
1140         /* kernel-side HPT not needed, allocate in userspace instead */
1141         size_t size = 1ULL << shift;
1142         int i;
1143 
1144         spapr->htab = qemu_memalign(size, size);
1145         if (!spapr->htab) {
1146             error_setg_errno(errp, errno,
1147                              "Could not allocate HPT of order %d", shift);
1148             return;
1149         }
1150 
1151         memset(spapr->htab, 0, size);
1152         spapr->htab_shift = shift;
1153 
1154         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1155             DIRTY_HPTE(HPTE(spapr->htab, i));
1156         }
1157     }
1158 }
1159 
1160 static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1161 {
1162     bool matched = false;
1163 
1164     if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1165         matched = true;
1166     }
1167 
1168     if (!matched) {
1169         error_report("Device %s is not supported by this machine yet.",
1170                      qdev_fw_name(DEVICE(sbdev)));
1171         exit(1);
1172     }
1173 
1174     return 0;
1175 }
1176 
1177 static void ppc_spapr_reset(void)
1178 {
1179     MachineState *machine = MACHINE(qdev_get_machine());
1180     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1181     PowerPCCPU *first_ppc_cpu;
1182     uint32_t rtas_limit;
1183 
1184     /* Check for unknown sysbus devices */
1185     foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1186 
1187     /* Allocate and/or reset the hash page table */
1188     spapr_reallocate_hpt(spapr,
1189                          spapr_hpt_shift_for_ramsize(machine->maxram_size),
1190                          &error_fatal);
1191 
1192     /* Update the RMA size if necessary */
1193     if (spapr->vrma_adjust) {
1194         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1195                                           spapr->htab_shift);
1196     }
1197 
1198     qemu_devices_reset();
1199 
1200     /*
1201      * We place the device tree and RTAS just below either the top of the RMA,
1202      * or just below 2GB, whichever is lowere, so that it can be
1203      * processed with 32-bit real mode code if necessary
1204      */
1205     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1206     spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1207     spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1208 
1209     /* Load the fdt */
1210     spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
1211                        spapr->rtas_size);
1212 
1213     /* Copy RTAS over */
1214     cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
1215                               spapr->rtas_size);
1216 
1217     /* Set up the entry state */
1218     first_ppc_cpu = POWERPC_CPU(first_cpu);
1219     first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
1220     first_ppc_cpu->env.gpr[5] = 0;
1221     first_cpu->halted = 0;
1222     first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1223 
1224 }
1225 
1226 static void spapr_create_nvram(sPAPRMachineState *spapr)
1227 {
1228     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1229     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1230 
1231     if (dinfo) {
1232         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1233                             &error_fatal);
1234     }
1235 
1236     qdev_init_nofail(dev);
1237 
1238     spapr->nvram = (struct sPAPRNVRAM *)dev;
1239 }
1240 
1241 static void spapr_rtc_create(sPAPRMachineState *spapr)
1242 {
1243     DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1244 
1245     qdev_init_nofail(dev);
1246     spapr->rtc = dev;
1247 
1248     object_property_add_alias(qdev_get_machine(), "rtc-time",
1249                               OBJECT(spapr->rtc), "date", NULL);
1250 }
1251 
1252 /* Returns whether we want to use VGA or not */
1253 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1254 {
1255     switch (vga_interface_type) {
1256     case VGA_NONE:
1257         return false;
1258     case VGA_DEVICE:
1259         return true;
1260     case VGA_STD:
1261     case VGA_VIRTIO:
1262         return pci_vga_init(pci_bus) != NULL;
1263     default:
1264         error_setg(errp,
1265                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1266         return false;
1267     }
1268 }
1269 
1270 static int spapr_post_load(void *opaque, int version_id)
1271 {
1272     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1273     int err = 0;
1274 
1275     /* In earlier versions, there was no separate qdev for the PAPR
1276      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1277      * So when migrating from those versions, poke the incoming offset
1278      * value into the RTC device */
1279     if (version_id < 3) {
1280         err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1281     }
1282 
1283     return err;
1284 }
1285 
1286 static bool version_before_3(void *opaque, int version_id)
1287 {
1288     return version_id < 3;
1289 }
1290 
1291 static const VMStateDescription vmstate_spapr = {
1292     .name = "spapr",
1293     .version_id = 3,
1294     .minimum_version_id = 1,
1295     .post_load = spapr_post_load,
1296     .fields = (VMStateField[]) {
1297         /* used to be @next_irq */
1298         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1299 
1300         /* RTC offset */
1301         VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1302 
1303         VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1304         VMSTATE_END_OF_LIST()
1305     },
1306 };
1307 
1308 static int htab_save_setup(QEMUFile *f, void *opaque)
1309 {
1310     sPAPRMachineState *spapr = opaque;
1311 
1312     /* "Iteration" header */
1313     qemu_put_be32(f, spapr->htab_shift);
1314 
1315     if (spapr->htab) {
1316         spapr->htab_save_index = 0;
1317         spapr->htab_first_pass = true;
1318     } else {
1319         assert(kvm_enabled());
1320     }
1321 
1322 
1323     return 0;
1324 }
1325 
1326 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1327                                  int64_t max_ns)
1328 {
1329     bool has_timeout = max_ns != -1;
1330     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1331     int index = spapr->htab_save_index;
1332     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1333 
1334     assert(spapr->htab_first_pass);
1335 
1336     do {
1337         int chunkstart;
1338 
1339         /* Consume invalid HPTEs */
1340         while ((index < htabslots)
1341                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1342             index++;
1343             CLEAN_HPTE(HPTE(spapr->htab, index));
1344         }
1345 
1346         /* Consume valid HPTEs */
1347         chunkstart = index;
1348         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1349                && HPTE_VALID(HPTE(spapr->htab, index))) {
1350             index++;
1351             CLEAN_HPTE(HPTE(spapr->htab, index));
1352         }
1353 
1354         if (index > chunkstart) {
1355             int n_valid = index - chunkstart;
1356 
1357             qemu_put_be32(f, chunkstart);
1358             qemu_put_be16(f, n_valid);
1359             qemu_put_be16(f, 0);
1360             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1361                             HASH_PTE_SIZE_64 * n_valid);
1362 
1363             if (has_timeout &&
1364                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1365                 break;
1366             }
1367         }
1368     } while ((index < htabslots) && !qemu_file_rate_limit(f));
1369 
1370     if (index >= htabslots) {
1371         assert(index == htabslots);
1372         index = 0;
1373         spapr->htab_first_pass = false;
1374     }
1375     spapr->htab_save_index = index;
1376 }
1377 
1378 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1379                                 int64_t max_ns)
1380 {
1381     bool final = max_ns < 0;
1382     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1383     int examined = 0, sent = 0;
1384     int index = spapr->htab_save_index;
1385     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1386 
1387     assert(!spapr->htab_first_pass);
1388 
1389     do {
1390         int chunkstart, invalidstart;
1391 
1392         /* Consume non-dirty HPTEs */
1393         while ((index < htabslots)
1394                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1395             index++;
1396             examined++;
1397         }
1398 
1399         chunkstart = index;
1400         /* Consume valid dirty HPTEs */
1401         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1402                && HPTE_DIRTY(HPTE(spapr->htab, index))
1403                && HPTE_VALID(HPTE(spapr->htab, index))) {
1404             CLEAN_HPTE(HPTE(spapr->htab, index));
1405             index++;
1406             examined++;
1407         }
1408 
1409         invalidstart = index;
1410         /* Consume invalid dirty HPTEs */
1411         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1412                && HPTE_DIRTY(HPTE(spapr->htab, index))
1413                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1414             CLEAN_HPTE(HPTE(spapr->htab, index));
1415             index++;
1416             examined++;
1417         }
1418 
1419         if (index > chunkstart) {
1420             int n_valid = invalidstart - chunkstart;
1421             int n_invalid = index - invalidstart;
1422 
1423             qemu_put_be32(f, chunkstart);
1424             qemu_put_be16(f, n_valid);
1425             qemu_put_be16(f, n_invalid);
1426             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1427                             HASH_PTE_SIZE_64 * n_valid);
1428             sent += index - chunkstart;
1429 
1430             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1431                 break;
1432             }
1433         }
1434 
1435         if (examined >= htabslots) {
1436             break;
1437         }
1438 
1439         if (index >= htabslots) {
1440             assert(index == htabslots);
1441             index = 0;
1442         }
1443     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1444 
1445     if (index >= htabslots) {
1446         assert(index == htabslots);
1447         index = 0;
1448     }
1449 
1450     spapr->htab_save_index = index;
1451 
1452     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1453 }
1454 
1455 #define MAX_ITERATION_NS    5000000 /* 5 ms */
1456 #define MAX_KVM_BUF_SIZE    2048
1457 
1458 static int htab_save_iterate(QEMUFile *f, void *opaque)
1459 {
1460     sPAPRMachineState *spapr = opaque;
1461     int fd;
1462     int rc = 0;
1463 
1464     /* Iteration header */
1465     qemu_put_be32(f, 0);
1466 
1467     if (!spapr->htab) {
1468         assert(kvm_enabled());
1469 
1470         fd = get_htab_fd(spapr);
1471         if (fd < 0) {
1472             return fd;
1473         }
1474 
1475         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1476         if (rc < 0) {
1477             return rc;
1478         }
1479     } else  if (spapr->htab_first_pass) {
1480         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1481     } else {
1482         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1483     }
1484 
1485     /* End marker */
1486     qemu_put_be32(f, 0);
1487     qemu_put_be16(f, 0);
1488     qemu_put_be16(f, 0);
1489 
1490     return rc;
1491 }
1492 
1493 static int htab_save_complete(QEMUFile *f, void *opaque)
1494 {
1495     sPAPRMachineState *spapr = opaque;
1496     int fd;
1497 
1498     /* Iteration header */
1499     qemu_put_be32(f, 0);
1500 
1501     if (!spapr->htab) {
1502         int rc;
1503 
1504         assert(kvm_enabled());
1505 
1506         fd = get_htab_fd(spapr);
1507         if (fd < 0) {
1508             return fd;
1509         }
1510 
1511         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1512         if (rc < 0) {
1513             return rc;
1514         }
1515         close_htab_fd(spapr);
1516     } else {
1517         if (spapr->htab_first_pass) {
1518             htab_save_first_pass(f, spapr, -1);
1519         }
1520         htab_save_later_pass(f, spapr, -1);
1521     }
1522 
1523     /* End marker */
1524     qemu_put_be32(f, 0);
1525     qemu_put_be16(f, 0);
1526     qemu_put_be16(f, 0);
1527 
1528     return 0;
1529 }
1530 
1531 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1532 {
1533     sPAPRMachineState *spapr = opaque;
1534     uint32_t section_hdr;
1535     int fd = -1;
1536 
1537     if (version_id < 1 || version_id > 1) {
1538         error_report("htab_load() bad version");
1539         return -EINVAL;
1540     }
1541 
1542     section_hdr = qemu_get_be32(f);
1543 
1544     if (section_hdr) {
1545         Error *local_err = NULL;
1546 
1547         /* First section gives the htab size */
1548         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1549         if (local_err) {
1550             error_report_err(local_err);
1551             return -EINVAL;
1552         }
1553         return 0;
1554     }
1555 
1556     if (!spapr->htab) {
1557         assert(kvm_enabled());
1558 
1559         fd = kvmppc_get_htab_fd(true);
1560         if (fd < 0) {
1561             error_report("Unable to open fd to restore KVM hash table: %s",
1562                          strerror(errno));
1563         }
1564     }
1565 
1566     while (true) {
1567         uint32_t index;
1568         uint16_t n_valid, n_invalid;
1569 
1570         index = qemu_get_be32(f);
1571         n_valid = qemu_get_be16(f);
1572         n_invalid = qemu_get_be16(f);
1573 
1574         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1575             /* End of Stream */
1576             break;
1577         }
1578 
1579         if ((index + n_valid + n_invalid) >
1580             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1581             /* Bad index in stream */
1582             error_report(
1583                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1584                 index, n_valid, n_invalid, spapr->htab_shift);
1585             return -EINVAL;
1586         }
1587 
1588         if (spapr->htab) {
1589             if (n_valid) {
1590                 qemu_get_buffer(f, HPTE(spapr->htab, index),
1591                                 HASH_PTE_SIZE_64 * n_valid);
1592             }
1593             if (n_invalid) {
1594                 memset(HPTE(spapr->htab, index + n_valid), 0,
1595                        HASH_PTE_SIZE_64 * n_invalid);
1596             }
1597         } else {
1598             int rc;
1599 
1600             assert(fd >= 0);
1601 
1602             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1603             if (rc < 0) {
1604                 return rc;
1605             }
1606         }
1607     }
1608 
1609     if (!spapr->htab) {
1610         assert(fd >= 0);
1611         close(fd);
1612     }
1613 
1614     return 0;
1615 }
1616 
1617 static SaveVMHandlers savevm_htab_handlers = {
1618     .save_live_setup = htab_save_setup,
1619     .save_live_iterate = htab_save_iterate,
1620     .save_live_complete_precopy = htab_save_complete,
1621     .load_state = htab_load,
1622 };
1623 
1624 static void spapr_boot_set(void *opaque, const char *boot_device,
1625                            Error **errp)
1626 {
1627     MachineState *machine = MACHINE(qdev_get_machine());
1628     machine->boot_order = g_strdup(boot_device);
1629 }
1630 
1631 /*
1632  * Reset routine for LMB DR devices.
1633  *
1634  * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1635  * routine. Reset for PCI DR devices will be handled by PHB reset routine
1636  * when it walks all its children devices. LMB devices reset occurs
1637  * as part of spapr_ppc_reset().
1638  */
1639 static void spapr_drc_reset(void *opaque)
1640 {
1641     sPAPRDRConnector *drc = opaque;
1642     DeviceState *d = DEVICE(drc);
1643 
1644     if (d) {
1645         device_reset(d);
1646     }
1647 }
1648 
1649 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1650 {
1651     MachineState *machine = MACHINE(spapr);
1652     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1653     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1654     int i;
1655 
1656     for (i = 0; i < nr_lmbs; i++) {
1657         sPAPRDRConnector *drc;
1658         uint64_t addr;
1659 
1660         addr = i * lmb_size + spapr->hotplug_memory.base;
1661         drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1662                                      addr/lmb_size);
1663         qemu_register_reset(spapr_drc_reset, drc);
1664     }
1665 }
1666 
1667 /*
1668  * If RAM size, maxmem size and individual node mem sizes aren't aligned
1669  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1670  * since we can't support such unaligned sizes with DRCONF_MEMORY.
1671  */
1672 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1673 {
1674     int i;
1675 
1676     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1677         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1678                    " is not aligned to %llu MiB",
1679                    machine->ram_size,
1680                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1681         return;
1682     }
1683 
1684     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1685         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1686                    " is not aligned to %llu MiB",
1687                    machine->ram_size,
1688                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1689         return;
1690     }
1691 
1692     for (i = 0; i < nb_numa_nodes; i++) {
1693         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1694             error_setg(errp,
1695                        "Node %d memory size 0x%" PRIx64
1696                        " is not aligned to %llu MiB",
1697                        i, numa_info[i].node_mem,
1698                        SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1699             return;
1700         }
1701     }
1702 }
1703 
1704 /* pSeries LPAR / sPAPR hardware init */
1705 static void ppc_spapr_init(MachineState *machine)
1706 {
1707     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1708     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1709     const char *kernel_filename = machine->kernel_filename;
1710     const char *kernel_cmdline = machine->kernel_cmdline;
1711     const char *initrd_filename = machine->initrd_filename;
1712     PCIHostState *phb;
1713     int i;
1714     MemoryRegion *sysmem = get_system_memory();
1715     MemoryRegion *ram = g_new(MemoryRegion, 1);
1716     MemoryRegion *rma_region;
1717     void *rma = NULL;
1718     hwaddr rma_alloc_size;
1719     hwaddr node0_size = spapr_node0_size();
1720     uint32_t initrd_base = 0;
1721     long kernel_size = 0, initrd_size = 0;
1722     long load_limit, fw_size;
1723     bool kernel_le = false;
1724     char *filename;
1725     int smt = kvmppc_smt_threads();
1726     int spapr_cores = smp_cpus / smp_threads;
1727     int spapr_max_cores = max_cpus / smp_threads;
1728 
1729     if (smc->dr_cpu_enabled) {
1730         if (smp_cpus % smp_threads) {
1731             error_report("smp_cpus (%u) must be multiple of threads (%u)",
1732                          smp_cpus, smp_threads);
1733             exit(1);
1734         }
1735         if (max_cpus % smp_threads) {
1736             error_report("max_cpus (%u) must be multiple of threads (%u)",
1737                          max_cpus, smp_threads);
1738             exit(1);
1739         }
1740     }
1741 
1742     msi_nonbroken = true;
1743 
1744     QLIST_INIT(&spapr->phbs);
1745 
1746     cpu_ppc_hypercall = emulate_spapr_hypercall;
1747 
1748     /* Allocate RMA if necessary */
1749     rma_alloc_size = kvmppc_alloc_rma(&rma);
1750 
1751     if (rma_alloc_size == -1) {
1752         error_report("Unable to create RMA");
1753         exit(1);
1754     }
1755 
1756     if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1757         spapr->rma_size = rma_alloc_size;
1758     } else {
1759         spapr->rma_size = node0_size;
1760 
1761         /* With KVM, we don't actually know whether KVM supports an
1762          * unbounded RMA (PR KVM) or is limited by the hash table size
1763          * (HV KVM using VRMA), so we always assume the latter
1764          *
1765          * In that case, we also limit the initial allocations for RTAS
1766          * etc... to 256M since we have no way to know what the VRMA size
1767          * is going to be as it depends on the size of the hash table
1768          * isn't determined yet.
1769          */
1770         if (kvm_enabled()) {
1771             spapr->vrma_adjust = 1;
1772             spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1773         }
1774 
1775         /* Actually we don't support unbounded RMA anymore since we
1776          * added proper emulation of HV mode. The max we can get is
1777          * 16G which also happens to be what we configure for PAPR
1778          * mode so make sure we don't do anything bigger than that
1779          */
1780         spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
1781     }
1782 
1783     if (spapr->rma_size > node0_size) {
1784         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
1785                      spapr->rma_size);
1786         exit(1);
1787     }
1788 
1789     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1790     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1791 
1792     /* Set up Interrupt Controller before we create the VCPUs */
1793     spapr->xics = xics_system_init(machine,
1794                                    DIV_ROUND_UP(max_cpus * smt, smp_threads),
1795                                    XICS_IRQS_SPAPR, &error_fatal);
1796 
1797     if (smc->dr_lmb_enabled) {
1798         spapr_validate_node_memory(machine, &error_fatal);
1799     }
1800 
1801     /* init CPUs */
1802     if (machine->cpu_model == NULL) {
1803         machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
1804     }
1805 
1806     if (smc->dr_cpu_enabled) {
1807         char *type = spapr_get_cpu_core_type(machine->cpu_model);
1808 
1809         spapr->cores = g_new0(Object *, spapr_max_cores);
1810         for (i = 0; i < spapr_max_cores; i++) {
1811             int core_dt_id = i * smt;
1812             sPAPRDRConnector *drc =
1813                 spapr_dr_connector_new(OBJECT(spapr),
1814                                        SPAPR_DR_CONNECTOR_TYPE_CPU, core_dt_id);
1815 
1816             qemu_register_reset(spapr_drc_reset, drc);
1817 
1818             if (i < spapr_cores) {
1819                 char *type = spapr_get_cpu_core_type(machine->cpu_model);
1820                 Object *core;
1821 
1822                 if (!object_class_by_name(type)) {
1823                     error_report("Unable to find sPAPR CPU Core definition");
1824                     exit(1);
1825                 }
1826 
1827                 core  = object_new(type);
1828                 object_property_set_int(core, smp_threads, "nr-threads",
1829                                         &error_fatal);
1830                 object_property_set_int(core, core_dt_id, CPU_CORE_PROP_CORE_ID,
1831                                         &error_fatal);
1832                 object_property_set_bool(core, true, "realized", &error_fatal);
1833             }
1834         }
1835         g_free(type);
1836     } else {
1837         for (i = 0; i < smp_cpus; i++) {
1838             PowerPCCPU *cpu = cpu_ppc_init(machine->cpu_model);
1839             if (cpu == NULL) {
1840                 error_report("Unable to find PowerPC CPU definition");
1841                 exit(1);
1842             }
1843             spapr_cpu_init(spapr, cpu, &error_fatal);
1844        }
1845     }
1846 
1847     if (kvm_enabled()) {
1848         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1849         kvmppc_enable_logical_ci_hcalls();
1850         kvmppc_enable_set_mode_hcall();
1851     }
1852 
1853     /* allocate RAM */
1854     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1855                                          machine->ram_size);
1856     memory_region_add_subregion(sysmem, 0, ram);
1857 
1858     if (rma_alloc_size && rma) {
1859         rma_region = g_new(MemoryRegion, 1);
1860         memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1861                                    rma_alloc_size, rma);
1862         vmstate_register_ram_global(rma_region);
1863         memory_region_add_subregion(sysmem, 0, rma_region);
1864     }
1865 
1866     /* initialize hotplug memory address space */
1867     if (machine->ram_size < machine->maxram_size) {
1868         ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1869         /*
1870          * Limit the number of hotpluggable memory slots to half the number
1871          * slots that KVM supports, leaving the other half for PCI and other
1872          * devices. However ensure that number of slots doesn't drop below 32.
1873          */
1874         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
1875                            SPAPR_MAX_RAM_SLOTS;
1876 
1877         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
1878             max_memslots = SPAPR_MAX_RAM_SLOTS;
1879         }
1880         if (machine->ram_slots > max_memslots) {
1881             error_report("Specified number of memory slots %"
1882                          PRIu64" exceeds max supported %d",
1883                          machine->ram_slots, max_memslots);
1884             exit(1);
1885         }
1886 
1887         spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1888                                               SPAPR_HOTPLUG_MEM_ALIGN);
1889         memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1890                            "hotplug-memory", hotplug_mem_size);
1891         memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1892                                     &spapr->hotplug_memory.mr);
1893     }
1894 
1895     if (smc->dr_lmb_enabled) {
1896         spapr_create_lmb_dr_connectors(spapr);
1897     }
1898 
1899     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1900     if (!filename) {
1901         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1902         exit(1);
1903     }
1904     spapr->rtas_size = get_image_size(filename);
1905     if (spapr->rtas_size < 0) {
1906         error_report("Could not get size of LPAR rtas '%s'", filename);
1907         exit(1);
1908     }
1909     spapr->rtas_blob = g_malloc(spapr->rtas_size);
1910     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1911         error_report("Could not load LPAR rtas '%s'", filename);
1912         exit(1);
1913     }
1914     if (spapr->rtas_size > RTAS_MAX_SIZE) {
1915         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1916                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1917         exit(1);
1918     }
1919     g_free(filename);
1920 
1921     /* Set up EPOW events infrastructure */
1922     spapr_events_init(spapr);
1923 
1924     /* Set up the RTC RTAS interfaces */
1925     spapr_rtc_create(spapr);
1926 
1927     /* Set up VIO bus */
1928     spapr->vio_bus = spapr_vio_bus_init();
1929 
1930     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1931         if (serial_hds[i]) {
1932             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1933         }
1934     }
1935 
1936     /* We always have at least the nvram device on VIO */
1937     spapr_create_nvram(spapr);
1938 
1939     /* Set up PCI */
1940     spapr_pci_rtas_init();
1941 
1942     phb = spapr_create_phb(spapr, 0);
1943 
1944     for (i = 0; i < nb_nics; i++) {
1945         NICInfo *nd = &nd_table[i];
1946 
1947         if (!nd->model) {
1948             nd->model = g_strdup("ibmveth");
1949         }
1950 
1951         if (strcmp(nd->model, "ibmveth") == 0) {
1952             spapr_vlan_create(spapr->vio_bus, nd);
1953         } else {
1954             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1955         }
1956     }
1957 
1958     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1959         spapr_vscsi_create(spapr->vio_bus);
1960     }
1961 
1962     /* Graphics */
1963     if (spapr_vga_init(phb->bus, &error_fatal)) {
1964         spapr->has_graphics = true;
1965         machine->usb |= defaults_enabled() && !machine->usb_disabled;
1966     }
1967 
1968     if (machine->usb) {
1969         if (smc->use_ohci_by_default) {
1970             pci_create_simple(phb->bus, -1, "pci-ohci");
1971         } else {
1972             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
1973         }
1974 
1975         if (spapr->has_graphics) {
1976             USBBus *usb_bus = usb_bus_find(-1);
1977 
1978             usb_create_simple(usb_bus, "usb-kbd");
1979             usb_create_simple(usb_bus, "usb-mouse");
1980         }
1981     }
1982 
1983     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1984         error_report(
1985             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
1986             MIN_RMA_SLOF);
1987         exit(1);
1988     }
1989 
1990     if (kernel_filename) {
1991         uint64_t lowaddr = 0;
1992 
1993         kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1994                                NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE,
1995                                0, 0);
1996         if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1997             kernel_size = load_elf(kernel_filename,
1998                                    translate_kernel_address, NULL,
1999                                    NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2000                                    0, 0);
2001             kernel_le = kernel_size > 0;
2002         }
2003         if (kernel_size < 0) {
2004             error_report("error loading %s: %s",
2005                          kernel_filename, load_elf_strerror(kernel_size));
2006             exit(1);
2007         }
2008 
2009         /* load initrd */
2010         if (initrd_filename) {
2011             /* Try to locate the initrd in the gap between the kernel
2012              * and the firmware. Add a bit of space just in case
2013              */
2014             initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
2015             initrd_size = load_image_targphys(initrd_filename, initrd_base,
2016                                               load_limit - initrd_base);
2017             if (initrd_size < 0) {
2018                 error_report("could not load initial ram disk '%s'",
2019                              initrd_filename);
2020                 exit(1);
2021             }
2022         } else {
2023             initrd_base = 0;
2024             initrd_size = 0;
2025         }
2026     }
2027 
2028     if (bios_name == NULL) {
2029         bios_name = FW_FILE_NAME;
2030     }
2031     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2032     if (!filename) {
2033         error_report("Could not find LPAR firmware '%s'", bios_name);
2034         exit(1);
2035     }
2036     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2037     if (fw_size <= 0) {
2038         error_report("Could not load LPAR firmware '%s'", filename);
2039         exit(1);
2040     }
2041     g_free(filename);
2042 
2043     /* FIXME: Should register things through the MachineState's qdev
2044      * interface, this is a legacy from the sPAPREnvironment structure
2045      * which predated MachineState but had a similar function */
2046     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2047     register_savevm_live(NULL, "spapr/htab", -1, 1,
2048                          &savevm_htab_handlers, spapr);
2049 
2050     /* Prepare the device tree */
2051     spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
2052                                             kernel_size, kernel_le,
2053                                             kernel_cmdline,
2054                                             spapr->check_exception_irq);
2055     assert(spapr->fdt_skel != NULL);
2056 
2057     /* used by RTAS */
2058     QTAILQ_INIT(&spapr->ccs_list);
2059     qemu_register_reset(spapr_ccs_reset_hook, spapr);
2060 
2061     qemu_register_boot_set(spapr_boot_set, spapr);
2062 }
2063 
2064 static int spapr_kvm_type(const char *vm_type)
2065 {
2066     if (!vm_type) {
2067         return 0;
2068     }
2069 
2070     if (!strcmp(vm_type, "HV")) {
2071         return 1;
2072     }
2073 
2074     if (!strcmp(vm_type, "PR")) {
2075         return 2;
2076     }
2077 
2078     error_report("Unknown kvm-type specified '%s'", vm_type);
2079     exit(1);
2080 }
2081 
2082 /*
2083  * Implementation of an interface to adjust firmware path
2084  * for the bootindex property handling.
2085  */
2086 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2087                                    DeviceState *dev)
2088 {
2089 #define CAST(type, obj, name) \
2090     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2091     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2092     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2093 
2094     if (d) {
2095         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2096         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2097         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2098 
2099         if (spapr) {
2100             /*
2101              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2102              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2103              * in the top 16 bits of the 64-bit LUN
2104              */
2105             unsigned id = 0x8000 | (d->id << 8) | d->lun;
2106             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2107                                    (uint64_t)id << 48);
2108         } else if (virtio) {
2109             /*
2110              * We use SRP luns of the form 01000000 | (target << 8) | lun
2111              * in the top 32 bits of the 64-bit LUN
2112              * Note: the quote above is from SLOF and it is wrong,
2113              * the actual binding is:
2114              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2115              */
2116             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2117             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2118                                    (uint64_t)id << 32);
2119         } else if (usb) {
2120             /*
2121              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2122              * in the top 32 bits of the 64-bit LUN
2123              */
2124             unsigned usb_port = atoi(usb->port->path);
2125             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2126             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2127                                    (uint64_t)id << 32);
2128         }
2129     }
2130 
2131     if (phb) {
2132         /* Replace "pci" with "pci@800000020000000" */
2133         return g_strdup_printf("pci@%"PRIX64, phb->buid);
2134     }
2135 
2136     return NULL;
2137 }
2138 
2139 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2140 {
2141     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2142 
2143     return g_strdup(spapr->kvm_type);
2144 }
2145 
2146 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2147 {
2148     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2149 
2150     g_free(spapr->kvm_type);
2151     spapr->kvm_type = g_strdup(value);
2152 }
2153 
2154 static void spapr_machine_initfn(Object *obj)
2155 {
2156     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2157 
2158     spapr->htab_fd = -1;
2159     object_property_add_str(obj, "kvm-type",
2160                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2161     object_property_set_description(obj, "kvm-type",
2162                                     "Specifies the KVM virtualization mode (HV, PR)",
2163                                     NULL);
2164 }
2165 
2166 static void spapr_machine_finalizefn(Object *obj)
2167 {
2168     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2169 
2170     g_free(spapr->kvm_type);
2171 }
2172 
2173 static void ppc_cpu_do_nmi_on_cpu(void *arg)
2174 {
2175     CPUState *cs = arg;
2176 
2177     cpu_synchronize_state(cs);
2178     ppc_cpu_do_system_reset(cs);
2179 }
2180 
2181 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2182 {
2183     CPUState *cs;
2184 
2185     CPU_FOREACH(cs) {
2186         async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
2187     }
2188 }
2189 
2190 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
2191                            uint32_t node, Error **errp)
2192 {
2193     sPAPRDRConnector *drc;
2194     sPAPRDRConnectorClass *drck;
2195     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2196     int i, fdt_offset, fdt_size;
2197     void *fdt;
2198 
2199     for (i = 0; i < nr_lmbs; i++) {
2200         drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2201                 addr/SPAPR_MEMORY_BLOCK_SIZE);
2202         g_assert(drc);
2203 
2204         fdt = create_device_tree(&fdt_size);
2205         fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2206                                                 SPAPR_MEMORY_BLOCK_SIZE);
2207 
2208         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2209         drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2210         addr += SPAPR_MEMORY_BLOCK_SIZE;
2211     }
2212     /* send hotplug notification to the
2213      * guest only in case of hotplugged memory
2214      */
2215     if (dev->hotplugged) {
2216        spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
2217     }
2218 }
2219 
2220 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2221                               uint32_t node, Error **errp)
2222 {
2223     Error *local_err = NULL;
2224     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2225     PCDIMMDevice *dimm = PC_DIMM(dev);
2226     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2227     MemoryRegion *mr = ddc->get_memory_region(dimm);
2228     uint64_t align = memory_region_get_alignment(mr);
2229     uint64_t size = memory_region_size(mr);
2230     uint64_t addr;
2231 
2232     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2233         error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2234                       "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2235         goto out;
2236     }
2237 
2238     pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2239     if (local_err) {
2240         goto out;
2241     }
2242 
2243     addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2244     if (local_err) {
2245         pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2246         goto out;
2247     }
2248 
2249     spapr_add_lmbs(dev, addr, size, node, &error_abort);
2250 
2251 out:
2252     error_propagate(errp, local_err);
2253 }
2254 
2255 void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2256                                     sPAPRMachineState *spapr)
2257 {
2258     PowerPCCPU *cpu = POWERPC_CPU(cs);
2259     DeviceClass *dc = DEVICE_GET_CLASS(cs);
2260     int id = ppc_get_vcpu_dt_id(cpu);
2261     void *fdt;
2262     int offset, fdt_size;
2263     char *nodename;
2264 
2265     fdt = create_device_tree(&fdt_size);
2266     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2267     offset = fdt_add_subnode(fdt, 0, nodename);
2268 
2269     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2270     g_free(nodename);
2271 
2272     *fdt_offset = offset;
2273     return fdt;
2274 }
2275 
2276 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2277                                       DeviceState *dev, Error **errp)
2278 {
2279     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2280 
2281     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2282         int node;
2283 
2284         if (!smc->dr_lmb_enabled) {
2285             error_setg(errp, "Memory hotplug not supported for this machine");
2286             return;
2287         }
2288         node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2289         if (*errp) {
2290             return;
2291         }
2292         if (node < 0 || node >= MAX_NODES) {
2293             error_setg(errp, "Invaild node %d", node);
2294             return;
2295         }
2296 
2297         /*
2298          * Currently PowerPC kernel doesn't allow hot-adding memory to
2299          * memory-less node, but instead will silently add the memory
2300          * to the first node that has some memory. This causes two
2301          * unexpected behaviours for the user.
2302          *
2303          * - Memory gets hotplugged to a different node than what the user
2304          *   specified.
2305          * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2306          *   to memory-less node, a reboot will set things accordingly
2307          *   and the previously hotplugged memory now ends in the right node.
2308          *   This appears as if some memory moved from one node to another.
2309          *
2310          * So until kernel starts supporting memory hotplug to memory-less
2311          * nodes, just prevent such attempts upfront in QEMU.
2312          */
2313         if (nb_numa_nodes && !numa_info[node].node_mem) {
2314             error_setg(errp, "Can't hotplug memory to memory-less node %d",
2315                        node);
2316             return;
2317         }
2318 
2319         spapr_memory_plug(hotplug_dev, dev, node, errp);
2320     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2321         spapr_core_plug(hotplug_dev, dev, errp);
2322     }
2323 }
2324 
2325 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2326                                       DeviceState *dev, Error **errp)
2327 {
2328     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2329 
2330     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2331         error_setg(errp, "Memory hot unplug not supported by sPAPR");
2332     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2333         if (!smc->dr_cpu_enabled) {
2334             error_setg(errp, "CPU hot unplug not supported on this machine");
2335             return;
2336         }
2337         spapr_core_unplug(hotplug_dev, dev, errp);
2338     }
2339 }
2340 
2341 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
2342                                           DeviceState *dev, Error **errp)
2343 {
2344     if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2345         spapr_core_pre_plug(hotplug_dev, dev, errp);
2346     }
2347 }
2348 
2349 static HotplugHandler *spapr_get_hotpug_handler(MachineState *machine,
2350                                              DeviceState *dev)
2351 {
2352     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2353         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2354         return HOTPLUG_HANDLER(machine);
2355     }
2356     return NULL;
2357 }
2358 
2359 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2360 {
2361     /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2362      * socket means much for the paravirtualized PAPR platform) */
2363     return cpu_index / smp_threads / smp_cores;
2364 }
2365 
2366 static HotpluggableCPUList *spapr_query_hotpluggable_cpus(MachineState *machine)
2367 {
2368     int i;
2369     HotpluggableCPUList *head = NULL;
2370     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2371     int spapr_max_cores = max_cpus / smp_threads;
2372     int smt = kvmppc_smt_threads();
2373 
2374     for (i = 0; i < spapr_max_cores; i++) {
2375         HotpluggableCPUList *list_item = g_new0(typeof(*list_item), 1);
2376         HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1);
2377         CpuInstanceProperties *cpu_props = g_new0(typeof(*cpu_props), 1);
2378 
2379         cpu_item->type = spapr_get_cpu_core_type(machine->cpu_model);
2380         cpu_item->vcpus_count = smp_threads;
2381         cpu_props->has_core_id = true;
2382         cpu_props->core_id = i * smt;
2383         /* TODO: add 'has_node/node' here to describe
2384            to which node core belongs */
2385 
2386         cpu_item->props = cpu_props;
2387         if (spapr->cores[i]) {
2388             cpu_item->has_qom_path = true;
2389             cpu_item->qom_path = object_get_canonical_path(spapr->cores[i]);
2390         }
2391         list_item->value = cpu_item;
2392         list_item->next = head;
2393         head = list_item;
2394     }
2395     return head;
2396 }
2397 
2398 static void spapr_machine_class_init(ObjectClass *oc, void *data)
2399 {
2400     MachineClass *mc = MACHINE_CLASS(oc);
2401     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2402     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2403     NMIClass *nc = NMI_CLASS(oc);
2404     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2405 
2406     mc->desc = "pSeries Logical Partition (PAPR compliant)";
2407 
2408     /*
2409      * We set up the default / latest behaviour here.  The class_init
2410      * functions for the specific versioned machine types can override
2411      * these details for backwards compatibility
2412      */
2413     mc->init = ppc_spapr_init;
2414     mc->reset = ppc_spapr_reset;
2415     mc->block_default_type = IF_SCSI;
2416     mc->max_cpus = MAX_CPUMASK_BITS;
2417     mc->no_parallel = 1;
2418     mc->default_boot_order = "";
2419     mc->default_ram_size = 512 * M_BYTE;
2420     mc->kvm_type = spapr_kvm_type;
2421     mc->has_dynamic_sysbus = true;
2422     mc->pci_allow_0_address = true;
2423     mc->get_hotplug_handler = spapr_get_hotpug_handler;
2424     hc->pre_plug = spapr_machine_device_pre_plug;
2425     hc->plug = spapr_machine_device_plug;
2426     hc->unplug = spapr_machine_device_unplug;
2427     mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
2428     mc->query_hotpluggable_cpus = spapr_query_hotpluggable_cpus;
2429 
2430     smc->dr_lmb_enabled = true;
2431     smc->dr_cpu_enabled = true;
2432     fwc->get_dev_path = spapr_get_fw_dev_path;
2433     nc->nmi_monitor_handler = spapr_nmi;
2434 }
2435 
2436 static const TypeInfo spapr_machine_info = {
2437     .name          = TYPE_SPAPR_MACHINE,
2438     .parent        = TYPE_MACHINE,
2439     .abstract      = true,
2440     .instance_size = sizeof(sPAPRMachineState),
2441     .instance_init = spapr_machine_initfn,
2442     .instance_finalize = spapr_machine_finalizefn,
2443     .class_size    = sizeof(sPAPRMachineClass),
2444     .class_init    = spapr_machine_class_init,
2445     .interfaces = (InterfaceInfo[]) {
2446         { TYPE_FW_PATH_PROVIDER },
2447         { TYPE_NMI },
2448         { TYPE_HOTPLUG_HANDLER },
2449         { }
2450     },
2451 };
2452 
2453 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
2454     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
2455                                                     void *data)      \
2456     {                                                                \
2457         MachineClass *mc = MACHINE_CLASS(oc);                        \
2458         spapr_machine_##suffix##_class_options(mc);                  \
2459         if (latest) {                                                \
2460             mc->alias = "pseries";                                   \
2461             mc->is_default = 1;                                      \
2462         }                                                            \
2463     }                                                                \
2464     static void spapr_machine_##suffix##_instance_init(Object *obj)  \
2465     {                                                                \
2466         MachineState *machine = MACHINE(obj);                        \
2467         spapr_machine_##suffix##_instance_options(machine);          \
2468     }                                                                \
2469     static const TypeInfo spapr_machine_##suffix##_info = {          \
2470         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
2471         .parent = TYPE_SPAPR_MACHINE,                                \
2472         .class_init = spapr_machine_##suffix##_class_init,           \
2473         .instance_init = spapr_machine_##suffix##_instance_init,     \
2474     };                                                               \
2475     static void spapr_machine_register_##suffix(void)                \
2476     {                                                                \
2477         type_register(&spapr_machine_##suffix##_info);               \
2478     }                                                                \
2479     type_init(spapr_machine_register_##suffix)
2480 
2481 /*
2482  * pseries-2.7
2483  */
2484 static void spapr_machine_2_7_instance_options(MachineState *machine)
2485 {
2486 }
2487 
2488 static void spapr_machine_2_7_class_options(MachineClass *mc)
2489 {
2490     /* Defaults for the latest behaviour inherited from the base class */
2491 }
2492 
2493 DEFINE_SPAPR_MACHINE(2_7, "2.7", true);
2494 
2495 /*
2496  * pseries-2.6
2497  */
2498 #define SPAPR_COMPAT_2_6 \
2499     HW_COMPAT_2_6 \
2500     { \
2501         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2502         .property = "ddw",\
2503         .value    = stringify(off),\
2504     },
2505 
2506 static void spapr_machine_2_6_instance_options(MachineState *machine)
2507 {
2508 }
2509 
2510 static void spapr_machine_2_6_class_options(MachineClass *mc)
2511 {
2512     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2513 
2514     spapr_machine_2_7_class_options(mc);
2515     smc->dr_cpu_enabled = false;
2516     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
2517 }
2518 
2519 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
2520 
2521 /*
2522  * pseries-2.5
2523  */
2524 #define SPAPR_COMPAT_2_5 \
2525     HW_COMPAT_2_5 \
2526     { \
2527         .driver   = "spapr-vlan", \
2528         .property = "use-rx-buffer-pools", \
2529         .value    = "off", \
2530     },
2531 
2532 static void spapr_machine_2_5_instance_options(MachineState *machine)
2533 {
2534 }
2535 
2536 static void spapr_machine_2_5_class_options(MachineClass *mc)
2537 {
2538     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2539 
2540     spapr_machine_2_6_class_options(mc);
2541     smc->use_ohci_by_default = true;
2542     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
2543 }
2544 
2545 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
2546 
2547 /*
2548  * pseries-2.4
2549  */
2550 #define SPAPR_COMPAT_2_4 \
2551         HW_COMPAT_2_4
2552 
2553 static void spapr_machine_2_4_instance_options(MachineState *machine)
2554 {
2555     spapr_machine_2_5_instance_options(machine);
2556 }
2557 
2558 static void spapr_machine_2_4_class_options(MachineClass *mc)
2559 {
2560     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2561 
2562     spapr_machine_2_5_class_options(mc);
2563     smc->dr_lmb_enabled = false;
2564     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
2565 }
2566 
2567 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
2568 
2569 /*
2570  * pseries-2.3
2571  */
2572 #define SPAPR_COMPAT_2_3 \
2573         HW_COMPAT_2_3 \
2574         {\
2575             .driver   = "spapr-pci-host-bridge",\
2576             .property = "dynamic-reconfiguration",\
2577             .value    = "off",\
2578         },
2579 
2580 static void spapr_machine_2_3_instance_options(MachineState *machine)
2581 {
2582     spapr_machine_2_4_instance_options(machine);
2583     savevm_skip_section_footers();
2584     global_state_set_optional();
2585     savevm_skip_configuration();
2586 }
2587 
2588 static void spapr_machine_2_3_class_options(MachineClass *mc)
2589 {
2590     spapr_machine_2_4_class_options(mc);
2591     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
2592 }
2593 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
2594 
2595 /*
2596  * pseries-2.2
2597  */
2598 
2599 #define SPAPR_COMPAT_2_2 \
2600         HW_COMPAT_2_2 \
2601         {\
2602             .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2603             .property = "mem_win_size",\
2604             .value    = "0x20000000",\
2605         },
2606 
2607 static void spapr_machine_2_2_instance_options(MachineState *machine)
2608 {
2609     spapr_machine_2_3_instance_options(machine);
2610     machine->suppress_vmdesc = true;
2611 }
2612 
2613 static void spapr_machine_2_2_class_options(MachineClass *mc)
2614 {
2615     spapr_machine_2_3_class_options(mc);
2616     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
2617 }
2618 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
2619 
2620 /*
2621  * pseries-2.1
2622  */
2623 #define SPAPR_COMPAT_2_1 \
2624         HW_COMPAT_2_1
2625 
2626 static void spapr_machine_2_1_instance_options(MachineState *machine)
2627 {
2628     spapr_machine_2_2_instance_options(machine);
2629 }
2630 
2631 static void spapr_machine_2_1_class_options(MachineClass *mc)
2632 {
2633     spapr_machine_2_2_class_options(mc);
2634     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
2635 }
2636 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
2637 
2638 static void spapr_machine_register_types(void)
2639 {
2640     type_register_static(&spapr_machine_info);
2641 }
2642 
2643 type_init(spapr_machine_register_types)
2644