xref: /qemu/hw/ppc/spapr.c (revision c8a7fc51)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu/datadir.h"
29 #include "qemu/memalign.h"
30 #include "qemu/guest-random.h"
31 #include "qapi/error.h"
32 #include "qapi/qapi-events-machine.h"
33 #include "qapi/qapi-events-qdev.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hostmem.h"
37 #include "sysemu/numa.h"
38 #include "sysemu/qtest.h"
39 #include "sysemu/reset.h"
40 #include "sysemu/runstate.h"
41 #include "qemu/log.h"
42 #include "hw/fw-path-provider.h"
43 #include "elf.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/cpus.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm_ppc.h"
49 #include "migration/misc.h"
50 #include "migration/qemu-file-types.h"
51 #include "migration/global_state.h"
52 #include "migration/register.h"
53 #include "migration/blocker.h"
54 #include "mmu-hash64.h"
55 #include "mmu-book3s-v3.h"
56 #include "cpu-models.h"
57 #include "hw/core/cpu.h"
58 
59 #include "hw/ppc/ppc.h"
60 #include "hw/loader.h"
61 
62 #include "hw/ppc/fdt.h"
63 #include "hw/ppc/spapr.h"
64 #include "hw/ppc/spapr_nested.h"
65 #include "hw/ppc/spapr_vio.h"
66 #include "hw/ppc/vof.h"
67 #include "hw/qdev-properties.h"
68 #include "hw/pci-host/spapr.h"
69 #include "hw/pci/msi.h"
70 
71 #include "hw/pci/pci.h"
72 #include "hw/scsi/scsi.h"
73 #include "hw/virtio/virtio-scsi.h"
74 #include "hw/virtio/vhost-scsi-common.h"
75 
76 #include "exec/ram_addr.h"
77 #include "hw/usb.h"
78 #include "qemu/config-file.h"
79 #include "qemu/error-report.h"
80 #include "trace.h"
81 #include "hw/nmi.h"
82 #include "hw/intc/intc.h"
83 
84 #include "hw/ppc/spapr_cpu_core.h"
85 #include "hw/mem/memory-device.h"
86 #include "hw/ppc/spapr_tpm_proxy.h"
87 #include "hw/ppc/spapr_nvdimm.h"
88 #include "hw/ppc/spapr_numa.h"
89 #include "hw/ppc/pef.h"
90 
91 #include "monitor/monitor.h"
92 
93 #include <libfdt.h>
94 
95 /* SLOF memory layout:
96  *
97  * SLOF raw image loaded at 0, copies its romfs right below the flat
98  * device-tree, then position SLOF itself 31M below that
99  *
100  * So we set FW_OVERHEAD to 40MB which should account for all of that
101  * and more
102  *
103  * We load our kernel at 4M, leaving space for SLOF initial image
104  */
105 #define FDT_MAX_ADDR            0x80000000 /* FDT must stay below that */
106 #define FW_MAX_SIZE             0x400000
107 #define FW_FILE_NAME            "slof.bin"
108 #define FW_FILE_NAME_VOF        "vof.bin"
109 #define FW_OVERHEAD             0x2800000
110 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
111 
112 #define MIN_RMA_SLOF            (128 * MiB)
113 
114 #define PHANDLE_INTC            0x00001111
115 
116 /* These two functions implement the VCPU id numbering: one to compute them
117  * all and one to identify thread 0 of a VCORE. Any change to the first one
118  * is likely to have an impact on the second one, so let's keep them close.
119  */
120 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
121 {
122     MachineState *ms = MACHINE(spapr);
123     unsigned int smp_threads = ms->smp.threads;
124 
125     assert(spapr->vsmt);
126     return
127         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
128 }
129 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
130                                       PowerPCCPU *cpu)
131 {
132     assert(spapr->vsmt);
133     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
134 }
135 
136 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
137 {
138     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
139      * and newer QEMUs don't even have them. In both cases, we don't want
140      * to send anything on the wire.
141      */
142     return false;
143 }
144 
145 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
146     .name = "icp/server",
147     .version_id = 1,
148     .minimum_version_id = 1,
149     .needed = pre_2_10_vmstate_dummy_icp_needed,
150     .fields = (VMStateField[]) {
151         VMSTATE_UNUSED(4), /* uint32_t xirr */
152         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
153         VMSTATE_UNUSED(1), /* uint8_t mfrr */
154         VMSTATE_END_OF_LIST()
155     },
156 };
157 
158 static void pre_2_10_vmstate_register_dummy_icp(int i)
159 {
160     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
161                      (void *)(uintptr_t) i);
162 }
163 
164 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
165 {
166     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
167                        (void *)(uintptr_t) i);
168 }
169 
170 int spapr_max_server_number(SpaprMachineState *spapr)
171 {
172     MachineState *ms = MACHINE(spapr);
173 
174     assert(spapr->vsmt);
175     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
176 }
177 
178 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
179                                   int smt_threads)
180 {
181     int i, ret = 0;
182     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
183     g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2);
184     int index = spapr_get_vcpu_id(cpu);
185 
186     if (cpu->compat_pvr) {
187         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
188         if (ret < 0) {
189             return ret;
190         }
191     }
192 
193     /* Build interrupt servers and gservers properties */
194     for (i = 0; i < smt_threads; i++) {
195         servers_prop[i] = cpu_to_be32(index + i);
196         /* Hack, direct the group queues back to cpu 0 */
197         gservers_prop[i*2] = cpu_to_be32(index + i);
198         gservers_prop[i*2 + 1] = 0;
199     }
200     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
201                       servers_prop, sizeof(*servers_prop) * smt_threads);
202     if (ret < 0) {
203         return ret;
204     }
205     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
206                       gservers_prop, sizeof(*gservers_prop) * smt_threads * 2);
207 
208     return ret;
209 }
210 
211 static void spapr_dt_pa_features(SpaprMachineState *spapr,
212                                  PowerPCCPU *cpu,
213                                  void *fdt, int offset)
214 {
215     uint8_t pa_features_206[] = { 6, 0,
216         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
217     uint8_t pa_features_207[] = { 24, 0,
218         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
219         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
220         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
221         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
222     uint8_t pa_features_300[] = { 66, 0,
223         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
224         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
225         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
226         /* 6: DS207 */
227         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
228         /* 16: Vector */
229         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
230         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
231         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
232         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
233         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
234         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
235         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
236         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
237         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
238         /* 42: PM, 44: PC RA, 46: SC vec'd */
239         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
240         /* 48: SIMD, 50: QP BFP, 52: String */
241         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
242         /* 54: DecFP, 56: DecI, 58: SHA */
243         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
244         /* 60: NM atomic, 62: RNG */
245         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
246     };
247     uint8_t *pa_features = NULL;
248     size_t pa_size;
249 
250     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
251         pa_features = pa_features_206;
252         pa_size = sizeof(pa_features_206);
253     }
254     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
255         pa_features = pa_features_207;
256         pa_size = sizeof(pa_features_207);
257     }
258     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
259         pa_features = pa_features_300;
260         pa_size = sizeof(pa_features_300);
261     }
262     if (!pa_features) {
263         return;
264     }
265 
266     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
267         /*
268          * Note: we keep CI large pages off by default because a 64K capable
269          * guest provisioned with large pages might otherwise try to map a qemu
270          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
271          * even if that qemu runs on a 4k host.
272          * We dd this bit back here if we are confident this is not an issue
273          */
274         pa_features[3] |= 0x20;
275     }
276     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
277         pa_features[24] |= 0x80;    /* Transactional memory support */
278     }
279     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
280         /* Workaround for broken kernels that attempt (guest) radix
281          * mode when they can't handle it, if they see the radix bit set
282          * in pa-features. So hide it from them. */
283         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
284     }
285 
286     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
287 }
288 
289 static hwaddr spapr_node0_size(MachineState *machine)
290 {
291     if (machine->numa_state->num_nodes) {
292         int i;
293         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
294             if (machine->numa_state->nodes[i].node_mem) {
295                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
296                            machine->ram_size);
297             }
298         }
299     }
300     return machine->ram_size;
301 }
302 
303 static void add_str(GString *s, const gchar *s1)
304 {
305     g_string_append_len(s, s1, strlen(s1) + 1);
306 }
307 
308 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
309                                 hwaddr start, hwaddr size)
310 {
311     char mem_name[32];
312     uint64_t mem_reg_property[2];
313     int off;
314 
315     mem_reg_property[0] = cpu_to_be64(start);
316     mem_reg_property[1] = cpu_to_be64(size);
317 
318     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
319     off = fdt_add_subnode(fdt, 0, mem_name);
320     _FDT(off);
321     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
322     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
323                       sizeof(mem_reg_property))));
324     spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
325     return off;
326 }
327 
328 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
329 {
330     MemoryDeviceInfoList *info;
331 
332     for (info = list; info; info = info->next) {
333         MemoryDeviceInfo *value = info->value;
334 
335         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
336             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
337 
338             if (addr >= pcdimm_info->addr &&
339                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
340                 return pcdimm_info->node;
341             }
342         }
343     }
344 
345     return -1;
346 }
347 
348 struct sPAPRDrconfCellV2 {
349      uint32_t seq_lmbs;
350      uint64_t base_addr;
351      uint32_t drc_index;
352      uint32_t aa_index;
353      uint32_t flags;
354 } QEMU_PACKED;
355 
356 typedef struct DrconfCellQueue {
357     struct sPAPRDrconfCellV2 cell;
358     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
359 } DrconfCellQueue;
360 
361 static DrconfCellQueue *
362 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
363                       uint32_t drc_index, uint32_t aa_index,
364                       uint32_t flags)
365 {
366     DrconfCellQueue *elem;
367 
368     elem = g_malloc0(sizeof(*elem));
369     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
370     elem->cell.base_addr = cpu_to_be64(base_addr);
371     elem->cell.drc_index = cpu_to_be32(drc_index);
372     elem->cell.aa_index = cpu_to_be32(aa_index);
373     elem->cell.flags = cpu_to_be32(flags);
374 
375     return elem;
376 }
377 
378 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
379                                       int offset, MemoryDeviceInfoList *dimms)
380 {
381     MachineState *machine = MACHINE(spapr);
382     uint8_t *int_buf, *cur_index;
383     int ret;
384     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
385     uint64_t addr, cur_addr, size;
386     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
387     uint64_t mem_end = machine->device_memory->base +
388                        memory_region_size(&machine->device_memory->mr);
389     uint32_t node, buf_len, nr_entries = 0;
390     SpaprDrc *drc;
391     DrconfCellQueue *elem, *next;
392     MemoryDeviceInfoList *info;
393     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
394         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
395 
396     /* Entry to cover RAM and the gap area */
397     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
398                                  SPAPR_LMB_FLAGS_RESERVED |
399                                  SPAPR_LMB_FLAGS_DRC_INVALID);
400     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
401     nr_entries++;
402 
403     cur_addr = machine->device_memory->base;
404     for (info = dimms; info; info = info->next) {
405         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
406 
407         addr = di->addr;
408         size = di->size;
409         node = di->node;
410 
411         /*
412          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
413          * area is marked hotpluggable in the next iteration for the bigger
414          * chunk including the NVDIMM occupied area.
415          */
416         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
417             continue;
418 
419         /* Entry for hot-pluggable area */
420         if (cur_addr < addr) {
421             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
422             g_assert(drc);
423             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
424                                          cur_addr, spapr_drc_index(drc), -1, 0);
425             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
426             nr_entries++;
427         }
428 
429         /* Entry for DIMM */
430         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
431         g_assert(drc);
432         elem = spapr_get_drconf_cell(size / lmb_size, addr,
433                                      spapr_drc_index(drc), node,
434                                      (SPAPR_LMB_FLAGS_ASSIGNED |
435                                       SPAPR_LMB_FLAGS_HOTREMOVABLE));
436         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
437         nr_entries++;
438         cur_addr = addr + size;
439     }
440 
441     /* Entry for remaining hotpluggable area */
442     if (cur_addr < mem_end) {
443         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
444         g_assert(drc);
445         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
446                                      cur_addr, spapr_drc_index(drc), -1, 0);
447         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
448         nr_entries++;
449     }
450 
451     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
452     int_buf = cur_index = g_malloc0(buf_len);
453     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
454     cur_index += sizeof(nr_entries);
455 
456     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
457         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
458         cur_index += sizeof(elem->cell);
459         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
460         g_free(elem);
461     }
462 
463     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
464     g_free(int_buf);
465     if (ret < 0) {
466         return -1;
467     }
468     return 0;
469 }
470 
471 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
472                                    int offset, MemoryDeviceInfoList *dimms)
473 {
474     MachineState *machine = MACHINE(spapr);
475     int i, ret;
476     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
477     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
478     uint32_t nr_lmbs = (machine->device_memory->base +
479                        memory_region_size(&machine->device_memory->mr)) /
480                        lmb_size;
481     uint32_t *int_buf, *cur_index, buf_len;
482 
483     /*
484      * Allocate enough buffer size to fit in ibm,dynamic-memory
485      */
486     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
487     cur_index = int_buf = g_malloc0(buf_len);
488     int_buf[0] = cpu_to_be32(nr_lmbs);
489     cur_index++;
490     for (i = 0; i < nr_lmbs; i++) {
491         uint64_t addr = i * lmb_size;
492         uint32_t *dynamic_memory = cur_index;
493 
494         if (i >= device_lmb_start) {
495             SpaprDrc *drc;
496 
497             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
498             g_assert(drc);
499 
500             dynamic_memory[0] = cpu_to_be32(addr >> 32);
501             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
502             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
503             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
504             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
505             if (memory_region_present(get_system_memory(), addr)) {
506                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
507             } else {
508                 dynamic_memory[5] = cpu_to_be32(0);
509             }
510         } else {
511             /*
512              * LMB information for RMA, boot time RAM and gap b/n RAM and
513              * device memory region -- all these are marked as reserved
514              * and as having no valid DRC.
515              */
516             dynamic_memory[0] = cpu_to_be32(addr >> 32);
517             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
518             dynamic_memory[2] = cpu_to_be32(0);
519             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
520             dynamic_memory[4] = cpu_to_be32(-1);
521             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
522                                             SPAPR_LMB_FLAGS_DRC_INVALID);
523         }
524 
525         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
526     }
527     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
528     g_free(int_buf);
529     if (ret < 0) {
530         return -1;
531     }
532     return 0;
533 }
534 
535 /*
536  * Adds ibm,dynamic-reconfiguration-memory node.
537  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
538  * of this device tree node.
539  */
540 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
541                                                    void *fdt)
542 {
543     MachineState *machine = MACHINE(spapr);
544     int ret, offset;
545     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
546     uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
547                                 cpu_to_be32(lmb_size & 0xffffffff)};
548     MemoryDeviceInfoList *dimms = NULL;
549 
550     /* Don't create the node if there is no device memory. */
551     if (!machine->device_memory) {
552         return 0;
553     }
554 
555     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
556 
557     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
558                     sizeof(prop_lmb_size));
559     if (ret < 0) {
560         return ret;
561     }
562 
563     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
564     if (ret < 0) {
565         return ret;
566     }
567 
568     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
569     if (ret < 0) {
570         return ret;
571     }
572 
573     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
574     dimms = qmp_memory_device_list();
575     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
576         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
577     } else {
578         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
579     }
580     qapi_free_MemoryDeviceInfoList(dimms);
581 
582     if (ret < 0) {
583         return ret;
584     }
585 
586     ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
587 
588     return ret;
589 }
590 
591 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
592 {
593     MachineState *machine = MACHINE(spapr);
594     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
595     hwaddr mem_start, node_size;
596     int i, nb_nodes = machine->numa_state->num_nodes;
597     NodeInfo *nodes = machine->numa_state->nodes;
598 
599     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
600         if (!nodes[i].node_mem) {
601             continue;
602         }
603         if (mem_start >= machine->ram_size) {
604             node_size = 0;
605         } else {
606             node_size = nodes[i].node_mem;
607             if (node_size > machine->ram_size - mem_start) {
608                 node_size = machine->ram_size - mem_start;
609             }
610         }
611         if (!mem_start) {
612             /* spapr_machine_init() checks for rma_size <= node0_size
613              * already */
614             spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
615             mem_start += spapr->rma_size;
616             node_size -= spapr->rma_size;
617         }
618         for ( ; node_size; ) {
619             hwaddr sizetmp = pow2floor(node_size);
620 
621             /* mem_start != 0 here */
622             if (ctzl(mem_start) < ctzl(sizetmp)) {
623                 sizetmp = 1ULL << ctzl(mem_start);
624             }
625 
626             spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
627             node_size -= sizetmp;
628             mem_start += sizetmp;
629         }
630     }
631 
632     /* Generate ibm,dynamic-reconfiguration-memory node if required */
633     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
634         int ret;
635 
636         g_assert(smc->dr_lmb_enabled);
637         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
638         if (ret) {
639             return ret;
640         }
641     }
642 
643     return 0;
644 }
645 
646 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
647                          SpaprMachineState *spapr)
648 {
649     MachineState *ms = MACHINE(spapr);
650     PowerPCCPU *cpu = POWERPC_CPU(cs);
651     CPUPPCState *env = &cpu->env;
652     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
653     int index = spapr_get_vcpu_id(cpu);
654     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
655                        0xffffffff, 0xffffffff};
656     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
657         : SPAPR_TIMEBASE_FREQ;
658     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
659     uint32_t page_sizes_prop[64];
660     size_t page_sizes_prop_size;
661     unsigned int smp_threads = ms->smp.threads;
662     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
663     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
664     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
665     SpaprDrc *drc;
666     int drc_index;
667     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
668     int i;
669 
670     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
671     if (drc) {
672         drc_index = spapr_drc_index(drc);
673         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
674     }
675 
676     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
677     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
678 
679     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
680     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
681                            env->dcache_line_size)));
682     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
683                            env->dcache_line_size)));
684     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
685                            env->icache_line_size)));
686     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
687                            env->icache_line_size)));
688 
689     if (pcc->l1_dcache_size) {
690         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
691                                pcc->l1_dcache_size)));
692     } else {
693         warn_report("Unknown L1 dcache size for cpu");
694     }
695     if (pcc->l1_icache_size) {
696         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
697                                pcc->l1_icache_size)));
698     } else {
699         warn_report("Unknown L1 icache size for cpu");
700     }
701 
702     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
703     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
704     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
705     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
706     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
707     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
708 
709     if (ppc_has_spr(cpu, SPR_PURR)) {
710         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
711     }
712     if (ppc_has_spr(cpu, SPR_PURR)) {
713         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
714     }
715 
716     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
717         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
718                           segs, sizeof(segs))));
719     }
720 
721     /* Advertise VSX (vector extensions) if available
722      *   1               == VMX / Altivec available
723      *   2               == VSX available
724      *
725      * Only CPUs for which we create core types in spapr_cpu_core.c
726      * are possible, and all of those have VMX */
727     if (env->insns_flags & PPC_ALTIVEC) {
728         if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
729             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
730         } else {
731             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
732         }
733     }
734 
735     /* Advertise DFP (Decimal Floating Point) if available
736      *   0 / no property == no DFP
737      *   1               == DFP available */
738     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
739         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
740     }
741 
742     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
743                                                       sizeof(page_sizes_prop));
744     if (page_sizes_prop_size) {
745         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
746                           page_sizes_prop, page_sizes_prop_size)));
747     }
748 
749     spapr_dt_pa_features(spapr, cpu, fdt, offset);
750 
751     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
752                            cs->cpu_index / vcpus_per_socket)));
753 
754     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
755                       pft_size_prop, sizeof(pft_size_prop))));
756 
757     if (ms->numa_state->num_nodes > 1) {
758         _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
759     }
760 
761     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
762 
763     if (pcc->radix_page_info) {
764         for (i = 0; i < pcc->radix_page_info->count; i++) {
765             radix_AP_encodings[i] =
766                 cpu_to_be32(pcc->radix_page_info->entries[i]);
767         }
768         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
769                           radix_AP_encodings,
770                           pcc->radix_page_info->count *
771                           sizeof(radix_AP_encodings[0]))));
772     }
773 
774     /*
775      * We set this property to let the guest know that it can use the large
776      * decrementer and its width in bits.
777      */
778     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
779         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
780                               pcc->lrg_decr_bits)));
781 }
782 
783 static void spapr_dt_one_cpu(void *fdt, SpaprMachineState *spapr, CPUState *cs,
784                              int cpus_offset)
785 {
786     PowerPCCPU *cpu = POWERPC_CPU(cs);
787     int index = spapr_get_vcpu_id(cpu);
788     DeviceClass *dc = DEVICE_GET_CLASS(cs);
789     g_autofree char *nodename = NULL;
790     int offset;
791 
792     if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
793         return;
794     }
795 
796     nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
797     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
798     _FDT(offset);
799     spapr_dt_cpu(cs, fdt, offset, spapr);
800 }
801 
802 
803 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
804 {
805     CPUState **rev;
806     CPUState *cs;
807     int n_cpus;
808     int cpus_offset;
809     int i;
810 
811     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
812     _FDT(cpus_offset);
813     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
814     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
815 
816     /*
817      * We walk the CPUs in reverse order to ensure that CPU DT nodes
818      * created by fdt_add_subnode() end up in the right order in FDT
819      * for the guest kernel the enumerate the CPUs correctly.
820      *
821      * The CPU list cannot be traversed in reverse order, so we need
822      * to do extra work.
823      */
824     n_cpus = 0;
825     rev = NULL;
826     CPU_FOREACH(cs) {
827         rev = g_renew(CPUState *, rev, n_cpus + 1);
828         rev[n_cpus++] = cs;
829     }
830 
831     for (i = n_cpus - 1; i >= 0; i--) {
832         spapr_dt_one_cpu(fdt, spapr, rev[i], cpus_offset);
833     }
834 
835     g_free(rev);
836 }
837 
838 static int spapr_dt_rng(void *fdt)
839 {
840     int node;
841     int ret;
842 
843     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
844     if (node <= 0) {
845         return -1;
846     }
847     ret = fdt_setprop_string(fdt, node, "device_type",
848                              "ibm,platform-facilities");
849     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
850     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
851 
852     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
853     if (node <= 0) {
854         return -1;
855     }
856     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
857 
858     return ret ? -1 : 0;
859 }
860 
861 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
862 {
863     MachineState *ms = MACHINE(spapr);
864     int rtas;
865     GString *hypertas = g_string_sized_new(256);
866     GString *qemu_hypertas = g_string_sized_new(256);
867     uint32_t lrdr_capacity[] = {
868         0,
869         0,
870         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
871         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
872         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
873     };
874 
875     /* Do we have device memory? */
876     if (MACHINE(spapr)->device_memory) {
877         uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
878             memory_region_size(&MACHINE(spapr)->device_memory->mr);
879 
880         lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32);
881         lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff);
882     }
883 
884     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
885 
886     /* hypertas */
887     add_str(hypertas, "hcall-pft");
888     add_str(hypertas, "hcall-term");
889     add_str(hypertas, "hcall-dabr");
890     add_str(hypertas, "hcall-interrupt");
891     add_str(hypertas, "hcall-tce");
892     add_str(hypertas, "hcall-vio");
893     add_str(hypertas, "hcall-splpar");
894     add_str(hypertas, "hcall-join");
895     add_str(hypertas, "hcall-bulk");
896     add_str(hypertas, "hcall-set-mode");
897     add_str(hypertas, "hcall-sprg0");
898     add_str(hypertas, "hcall-copy");
899     add_str(hypertas, "hcall-debug");
900     add_str(hypertas, "hcall-vphn");
901     if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
902         add_str(hypertas, "hcall-rpt-invalidate");
903     }
904 
905     add_str(qemu_hypertas, "hcall-memop1");
906 
907     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
908         add_str(hypertas, "hcall-multi-tce");
909     }
910 
911     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
912         add_str(hypertas, "hcall-hpt-resize");
913     }
914 
915     add_str(hypertas, "hcall-watchdog");
916 
917     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
918                      hypertas->str, hypertas->len));
919     g_string_free(hypertas, TRUE);
920     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
921                      qemu_hypertas->str, qemu_hypertas->len));
922     g_string_free(qemu_hypertas, TRUE);
923 
924     spapr_numa_write_rtas_dt(spapr, fdt, rtas);
925 
926     /*
927      * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
928      * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
929      *
930      * The system reset requirements are driven by existing Linux and PowerVM
931      * implementation which (contrary to PAPR) saves r3 in the error log
932      * structure like machine check, so Linux expects to find the saved r3
933      * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
934      * does not look at the error value).
935      *
936      * System reset interrupts are not subject to interlock like machine
937      * check, so this memory area could be corrupted if the sreset is
938      * interrupted by a machine check (or vice versa) if it was shared. To
939      * prevent this, system reset uses per-CPU areas for the sreset save
940      * area. A system reset that interrupts a system reset handler could
941      * still overwrite this area, but Linux doesn't try to recover in that
942      * case anyway.
943      *
944      * The extra 8 bytes is required because Linux's FWNMI error log check
945      * is off-by-one.
946      *
947      * RTAS_MIN_SIZE is required for the RTAS blob itself.
948      */
949     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
950                           RTAS_ERROR_LOG_MAX +
951                           ms->smp.max_cpus * sizeof(uint64_t) * 2 +
952                           sizeof(uint64_t)));
953     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
954                           RTAS_ERROR_LOG_MAX));
955     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
956                           RTAS_EVENT_SCAN_RATE));
957 
958     g_assert(msi_nonbroken);
959     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
960 
961     /*
962      * According to PAPR, rtas ibm,os-term does not guarantee a return
963      * back to the guest cpu.
964      *
965      * While an additional ibm,extended-os-term property indicates
966      * that rtas call return will always occur. Set this property.
967      */
968     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
969 
970     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
971                      lrdr_capacity, sizeof(lrdr_capacity)));
972 
973     spapr_dt_rtas_tokens(fdt, rtas);
974 }
975 
976 /*
977  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
978  * and the XIVE features that the guest may request and thus the valid
979  * values for bytes 23..26 of option vector 5:
980  */
981 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
982                                           int chosen)
983 {
984     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
985 
986     char val[2 * 4] = {
987         23, 0x00, /* XICS / XIVE mode */
988         24, 0x00, /* Hash/Radix, filled in below. */
989         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
990         26, 0x40, /* Radix options: GTSE == yes. */
991     };
992 
993     if (spapr->irq->xics && spapr->irq->xive) {
994         val[1] = SPAPR_OV5_XIVE_BOTH;
995     } else if (spapr->irq->xive) {
996         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
997     } else {
998         assert(spapr->irq->xics);
999         val[1] = SPAPR_OV5_XIVE_LEGACY;
1000     }
1001 
1002     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1003                           first_ppc_cpu->compat_pvr)) {
1004         /*
1005          * If we're in a pre POWER9 compat mode then the guest should
1006          * do hash and use the legacy interrupt mode
1007          */
1008         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1009         val[3] = 0x00; /* Hash */
1010         spapr_check_mmu_mode(false);
1011     } else if (kvm_enabled()) {
1012         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1013             val[3] = 0x80; /* OV5_MMU_BOTH */
1014         } else if (kvmppc_has_cap_mmu_radix()) {
1015             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1016         } else {
1017             val[3] = 0x00; /* Hash */
1018         }
1019     } else {
1020         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1021         val[3] = 0xC0;
1022     }
1023     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1024                      val, sizeof(val)));
1025 }
1026 
1027 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1028 {
1029     MachineState *machine = MACHINE(spapr);
1030     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1031     int chosen;
1032 
1033     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1034 
1035     if (reset) {
1036         const char *boot_device = spapr->boot_device;
1037         g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1038         size_t cb = 0;
1039         g_autofree char *bootlist = get_boot_devices_list(&cb);
1040 
1041         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1042             _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1043                                     machine->kernel_cmdline));
1044         }
1045 
1046         if (spapr->initrd_size) {
1047             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1048                                   spapr->initrd_base));
1049             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1050                                   spapr->initrd_base + spapr->initrd_size));
1051         }
1052 
1053         if (spapr->kernel_size) {
1054             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1055                                   cpu_to_be64(spapr->kernel_size) };
1056 
1057             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1058                          &kprop, sizeof(kprop)));
1059             if (spapr->kernel_le) {
1060                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1061             }
1062         }
1063         if (machine->boot_config.has_menu && machine->boot_config.menu) {
1064             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
1065         }
1066         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1067         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1068         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1069 
1070         if (cb && bootlist) {
1071             int i;
1072 
1073             for (i = 0; i < cb; i++) {
1074                 if (bootlist[i] == '\n') {
1075                     bootlist[i] = ' ';
1076                 }
1077             }
1078             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1079         }
1080 
1081         if (boot_device && strlen(boot_device)) {
1082             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1083         }
1084 
1085         if (spapr->want_stdout_path && stdout_path) {
1086             /*
1087              * "linux,stdout-path" and "stdout" properties are
1088              * deprecated by linux kernel. New platforms should only
1089              * use the "stdout-path" property. Set the new property
1090              * and continue using older property to remain compatible
1091              * with the existing firmware.
1092              */
1093             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1094             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1095         }
1096 
1097         /*
1098          * We can deal with BAR reallocation just fine, advertise it
1099          * to the guest
1100          */
1101         if (smc->linux_pci_probe) {
1102             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1103         }
1104 
1105         spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1106     }
1107 
1108     _FDT(fdt_setprop(fdt, chosen, "rng-seed", spapr->fdt_rng_seed, 32));
1109 
1110     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1111 }
1112 
1113 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1114 {
1115     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1116      * KVM to work under pHyp with some guest co-operation */
1117     int hypervisor;
1118     uint8_t hypercall[16];
1119 
1120     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1121     /* indicate KVM hypercall interface */
1122     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1123     if (kvmppc_has_cap_fixup_hcalls()) {
1124         /*
1125          * Older KVM versions with older guest kernels were broken
1126          * with the magic page, don't allow the guest to map it.
1127          */
1128         if (!kvmppc_get_hypercall(cpu_env(first_cpu), hypercall,
1129                                   sizeof(hypercall))) {
1130             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1131                              hypercall, sizeof(hypercall)));
1132         }
1133     }
1134 }
1135 
1136 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1137 {
1138     MachineState *machine = MACHINE(spapr);
1139     MachineClass *mc = MACHINE_GET_CLASS(machine);
1140     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1141     uint32_t root_drc_type_mask = 0;
1142     int ret;
1143     void *fdt;
1144     SpaprPhbState *phb;
1145     char *buf;
1146 
1147     fdt = g_malloc0(space);
1148     _FDT((fdt_create_empty_tree(fdt, space)));
1149 
1150     /* Root node */
1151     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1152     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1153     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1154 
1155     /* Guest UUID & Name*/
1156     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1157     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1158     if (qemu_uuid_set) {
1159         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1160     }
1161     g_free(buf);
1162 
1163     if (qemu_get_vm_name()) {
1164         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1165                                 qemu_get_vm_name()));
1166     }
1167 
1168     /* Host Model & Serial Number */
1169     if (spapr->host_model) {
1170         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1171     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1172         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1173         g_free(buf);
1174     }
1175 
1176     if (spapr->host_serial) {
1177         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1178     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1179         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1180         g_free(buf);
1181     }
1182 
1183     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1184     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1185 
1186     /* /interrupt controller */
1187     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1188 
1189     ret = spapr_dt_memory(spapr, fdt);
1190     if (ret < 0) {
1191         error_report("couldn't setup memory nodes in fdt");
1192         exit(1);
1193     }
1194 
1195     /* /vdevice */
1196     spapr_dt_vdevice(spapr->vio_bus, fdt);
1197 
1198     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1199         ret = spapr_dt_rng(fdt);
1200         if (ret < 0) {
1201             error_report("could not set up rng device in the fdt");
1202             exit(1);
1203         }
1204     }
1205 
1206     QLIST_FOREACH(phb, &spapr->phbs, list) {
1207         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1208         if (ret < 0) {
1209             error_report("couldn't setup PCI devices in fdt");
1210             exit(1);
1211         }
1212     }
1213 
1214     spapr_dt_cpus(fdt, spapr);
1215 
1216     /* ibm,drc-indexes and friends */
1217     if (smc->dr_lmb_enabled) {
1218         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1219     }
1220     if (smc->dr_phb_enabled) {
1221         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1222     }
1223     if (mc->nvdimm_supported) {
1224         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1225     }
1226     if (root_drc_type_mask) {
1227         _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1228     }
1229 
1230     if (mc->has_hotpluggable_cpus) {
1231         int offset = fdt_path_offset(fdt, "/cpus");
1232         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1233         if (ret < 0) {
1234             error_report("Couldn't set up CPU DR device tree properties");
1235             exit(1);
1236         }
1237     }
1238 
1239     /* /event-sources */
1240     spapr_dt_events(spapr, fdt);
1241 
1242     /* /rtas */
1243     spapr_dt_rtas(spapr, fdt);
1244 
1245     /* /chosen */
1246     spapr_dt_chosen(spapr, fdt, reset);
1247 
1248     /* /hypervisor */
1249     if (kvm_enabled()) {
1250         spapr_dt_hypervisor(spapr, fdt);
1251     }
1252 
1253     /* Build memory reserve map */
1254     if (reset) {
1255         if (spapr->kernel_size) {
1256             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1257                                   spapr->kernel_size)));
1258         }
1259         if (spapr->initrd_size) {
1260             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1261                                   spapr->initrd_size)));
1262         }
1263     }
1264 
1265     /* NVDIMM devices */
1266     if (mc->nvdimm_supported) {
1267         spapr_dt_persistent_memory(spapr, fdt);
1268     }
1269 
1270     return fdt;
1271 }
1272 
1273 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1274 {
1275     SpaprMachineState *spapr = opaque;
1276 
1277     return (addr & 0x0fffffff) + spapr->kernel_addr;
1278 }
1279 
1280 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1281                                     PowerPCCPU *cpu)
1282 {
1283     CPUPPCState *env = &cpu->env;
1284 
1285     /* The TCG path should also be holding the BQL at this point */
1286     g_assert(qemu_mutex_iothread_locked());
1287 
1288     g_assert(!vhyp_cpu_in_nested(cpu));
1289 
1290     if (FIELD_EX64(env->msr, MSR, PR)) {
1291         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1292         env->gpr[3] = H_PRIVILEGE;
1293     } else {
1294         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1295     }
1296 }
1297 
1298 struct LPCRSyncState {
1299     target_ulong value;
1300     target_ulong mask;
1301 };
1302 
1303 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1304 {
1305     struct LPCRSyncState *s = arg.host_ptr;
1306     PowerPCCPU *cpu = POWERPC_CPU(cs);
1307     CPUPPCState *env = &cpu->env;
1308     target_ulong lpcr;
1309 
1310     cpu_synchronize_state(cs);
1311     lpcr = env->spr[SPR_LPCR];
1312     lpcr &= ~s->mask;
1313     lpcr |= s->value;
1314     ppc_store_lpcr(cpu, lpcr);
1315 }
1316 
1317 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1318 {
1319     CPUState *cs;
1320     struct LPCRSyncState s = {
1321         .value = value,
1322         .mask = mask
1323     };
1324     CPU_FOREACH(cs) {
1325         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1326     }
1327 }
1328 
1329 /* May be used when the machine is not running */
1330 void spapr_init_all_lpcrs(target_ulong value, target_ulong mask)
1331 {
1332     CPUState *cs;
1333     CPU_FOREACH(cs) {
1334         PowerPCCPU *cpu = POWERPC_CPU(cs);
1335         CPUPPCState *env = &cpu->env;
1336         target_ulong lpcr;
1337 
1338         lpcr = env->spr[SPR_LPCR];
1339         lpcr &= ~(LPCR_HR | LPCR_UPRT);
1340         ppc_store_lpcr(cpu, lpcr);
1341     }
1342 }
1343 
1344 
1345 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1346                            target_ulong lpid, ppc_v3_pate_t *entry)
1347 {
1348     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1349     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1350 
1351     if (!spapr_cpu->in_nested) {
1352         assert(lpid == 0);
1353 
1354         /* Copy PATE1:GR into PATE0:HR */
1355         entry->dw0 = spapr->patb_entry & PATE0_HR;
1356         entry->dw1 = spapr->patb_entry;
1357 
1358     } else {
1359         uint64_t patb, pats;
1360 
1361         assert(lpid != 0);
1362 
1363         patb = spapr->nested_ptcr & PTCR_PATB;
1364         pats = spapr->nested_ptcr & PTCR_PATS;
1365 
1366         /* Check if partition table is properly aligned */
1367         if (patb & MAKE_64BIT_MASK(0, pats + 12)) {
1368             return false;
1369         }
1370 
1371         /* Calculate number of entries */
1372         pats = 1ull << (pats + 12 - 4);
1373         if (pats <= lpid) {
1374             return false;
1375         }
1376 
1377         /* Grab entry */
1378         patb += 16 * lpid;
1379         entry->dw0 = ldq_phys(CPU(cpu)->as, patb);
1380         entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8);
1381     }
1382 
1383     return true;
1384 }
1385 
1386 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1387 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1388 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1389 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1390 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1391 
1392 /*
1393  * Get the fd to access the kernel htab, re-opening it if necessary
1394  */
1395 static int get_htab_fd(SpaprMachineState *spapr)
1396 {
1397     Error *local_err = NULL;
1398 
1399     if (spapr->htab_fd >= 0) {
1400         return spapr->htab_fd;
1401     }
1402 
1403     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1404     if (spapr->htab_fd < 0) {
1405         error_report_err(local_err);
1406     }
1407 
1408     return spapr->htab_fd;
1409 }
1410 
1411 void close_htab_fd(SpaprMachineState *spapr)
1412 {
1413     if (spapr->htab_fd >= 0) {
1414         close(spapr->htab_fd);
1415     }
1416     spapr->htab_fd = -1;
1417 }
1418 
1419 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1420 {
1421     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1422 
1423     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1424 }
1425 
1426 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1427 {
1428     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1429 
1430     assert(kvm_enabled());
1431 
1432     if (!spapr->htab) {
1433         return 0;
1434     }
1435 
1436     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1437 }
1438 
1439 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1440                                                 hwaddr ptex, int n)
1441 {
1442     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1443     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1444 
1445     if (!spapr->htab) {
1446         /*
1447          * HTAB is controlled by KVM. Fetch into temporary buffer
1448          */
1449         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1450         kvmppc_read_hptes(hptes, ptex, n);
1451         return hptes;
1452     }
1453 
1454     /*
1455      * HTAB is controlled by QEMU. Just point to the internally
1456      * accessible PTEG.
1457      */
1458     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1459 }
1460 
1461 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1462                               const ppc_hash_pte64_t *hptes,
1463                               hwaddr ptex, int n)
1464 {
1465     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1466 
1467     if (!spapr->htab) {
1468         g_free((void *)hptes);
1469     }
1470 
1471     /* Nothing to do for qemu managed HPT */
1472 }
1473 
1474 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1475                       uint64_t pte0, uint64_t pte1)
1476 {
1477     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1478     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1479 
1480     if (!spapr->htab) {
1481         kvmppc_write_hpte(ptex, pte0, pte1);
1482     } else {
1483         if (pte0 & HPTE64_V_VALID) {
1484             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1485             /*
1486              * When setting valid, we write PTE1 first. This ensures
1487              * proper synchronization with the reading code in
1488              * ppc_hash64_pteg_search()
1489              */
1490             smp_wmb();
1491             stq_p(spapr->htab + offset, pte0);
1492         } else {
1493             stq_p(spapr->htab + offset, pte0);
1494             /*
1495              * When clearing it we set PTE0 first. This ensures proper
1496              * synchronization with the reading code in
1497              * ppc_hash64_pteg_search()
1498              */
1499             smp_wmb();
1500             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1501         }
1502     }
1503 }
1504 
1505 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1506                              uint64_t pte1)
1507 {
1508     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1509     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1510 
1511     if (!spapr->htab) {
1512         /* There should always be a hash table when this is called */
1513         error_report("spapr_hpte_set_c called with no hash table !");
1514         return;
1515     }
1516 
1517     /* The HW performs a non-atomic byte update */
1518     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1519 }
1520 
1521 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1522                              uint64_t pte1)
1523 {
1524     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1525     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1526 
1527     if (!spapr->htab) {
1528         /* There should always be a hash table when this is called */
1529         error_report("spapr_hpte_set_r called with no hash table !");
1530         return;
1531     }
1532 
1533     /* The HW performs a non-atomic byte update */
1534     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1535 }
1536 
1537 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1538 {
1539     int shift;
1540 
1541     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1542      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1543      * that's much more than is needed for Linux guests */
1544     shift = ctz64(pow2ceil(ramsize)) - 7;
1545     shift = MAX(shift, 18); /* Minimum architected size */
1546     shift = MIN(shift, 46); /* Maximum architected size */
1547     return shift;
1548 }
1549 
1550 void spapr_free_hpt(SpaprMachineState *spapr)
1551 {
1552     qemu_vfree(spapr->htab);
1553     spapr->htab = NULL;
1554     spapr->htab_shift = 0;
1555     close_htab_fd(spapr);
1556 }
1557 
1558 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1559 {
1560     ERRP_GUARD();
1561     long rc;
1562 
1563     /* Clean up any HPT info from a previous boot */
1564     spapr_free_hpt(spapr);
1565 
1566     rc = kvmppc_reset_htab(shift);
1567 
1568     if (rc == -EOPNOTSUPP) {
1569         error_setg(errp, "HPT not supported in nested guests");
1570         return -EOPNOTSUPP;
1571     }
1572 
1573     if (rc < 0) {
1574         /* kernel-side HPT needed, but couldn't allocate one */
1575         error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1576                          shift);
1577         error_append_hint(errp, "Try smaller maxmem?\n");
1578         return -errno;
1579     } else if (rc > 0) {
1580         /* kernel-side HPT allocated */
1581         if (rc != shift) {
1582             error_setg(errp,
1583                        "Requested order %d HPT, but kernel allocated order %ld",
1584                        shift, rc);
1585             error_append_hint(errp, "Try smaller maxmem?\n");
1586             return -ENOSPC;
1587         }
1588 
1589         spapr->htab_shift = shift;
1590         spapr->htab = NULL;
1591     } else {
1592         /* kernel-side HPT not needed, allocate in userspace instead */
1593         size_t size = 1ULL << shift;
1594         int i;
1595 
1596         spapr->htab = qemu_memalign(size, size);
1597         memset(spapr->htab, 0, size);
1598         spapr->htab_shift = shift;
1599 
1600         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1601             DIRTY_HPTE(HPTE(spapr->htab, i));
1602         }
1603     }
1604     /* We're setting up a hash table, so that means we're not radix */
1605     spapr->patb_entry = 0;
1606     spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1607     return 0;
1608 }
1609 
1610 void spapr_setup_hpt(SpaprMachineState *spapr)
1611 {
1612     int hpt_shift;
1613 
1614     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1615         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1616     } else {
1617         uint64_t current_ram_size;
1618 
1619         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1620         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1621     }
1622     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1623 
1624     if (kvm_enabled()) {
1625         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1626 
1627         /* Check our RMA fits in the possible VRMA */
1628         if (vrma_limit < spapr->rma_size) {
1629             error_report("Unable to create %" HWADDR_PRIu
1630                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1631                          spapr->rma_size / MiB, vrma_limit / MiB);
1632             exit(EXIT_FAILURE);
1633         }
1634     }
1635 }
1636 
1637 void spapr_check_mmu_mode(bool guest_radix)
1638 {
1639     if (guest_radix) {
1640         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1641             error_report("Guest requested unavailable MMU mode (radix).");
1642             exit(EXIT_FAILURE);
1643         }
1644     } else {
1645         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1646             && !kvmppc_has_cap_mmu_hash_v3()) {
1647             error_report("Guest requested unavailable MMU mode (hash).");
1648             exit(EXIT_FAILURE);
1649         }
1650     }
1651 }
1652 
1653 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason)
1654 {
1655     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1656     PowerPCCPU *first_ppc_cpu;
1657     hwaddr fdt_addr;
1658     void *fdt;
1659     int rc;
1660 
1661     if (reason != SHUTDOWN_CAUSE_SNAPSHOT_LOAD) {
1662         /*
1663          * Record-replay snapshot load must not consume random, this was
1664          * already replayed from initial machine reset.
1665          */
1666         qemu_guest_getrandom_nofail(spapr->fdt_rng_seed, 32);
1667     }
1668 
1669     pef_kvm_reset(machine->cgs, &error_fatal);
1670     spapr_caps_apply(spapr);
1671 
1672     first_ppc_cpu = POWERPC_CPU(first_cpu);
1673     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1674         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1675                               spapr->max_compat_pvr)) {
1676         /*
1677          * If using KVM with radix mode available, VCPUs can be started
1678          * without a HPT because KVM will start them in radix mode.
1679          * Set the GR bit in PATE so that we know there is no HPT.
1680          */
1681         spapr->patb_entry = PATE1_GR;
1682         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1683     } else {
1684         spapr_setup_hpt(spapr);
1685     }
1686 
1687     qemu_devices_reset(reason);
1688 
1689     spapr_ovec_cleanup(spapr->ov5_cas);
1690     spapr->ov5_cas = spapr_ovec_new();
1691 
1692     ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal);
1693 
1694     /*
1695      * This is fixing some of the default configuration of the XIVE
1696      * devices. To be called after the reset of the machine devices.
1697      */
1698     spapr_irq_reset(spapr, &error_fatal);
1699 
1700     /*
1701      * There is no CAS under qtest. Simulate one to please the code that
1702      * depends on spapr->ov5_cas. This is especially needed to test device
1703      * unplug, so we do that before resetting the DRCs.
1704      */
1705     if (qtest_enabled()) {
1706         spapr_ovec_cleanup(spapr->ov5_cas);
1707         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1708     }
1709 
1710     spapr_nvdimm_finish_flushes();
1711 
1712     /* DRC reset may cause a device to be unplugged. This will cause troubles
1713      * if this device is used by another device (eg, a running vhost backend
1714      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1715      * situations, we reset DRCs after all devices have been reset.
1716      */
1717     spapr_drc_reset_all(spapr);
1718 
1719     spapr_clear_pending_events(spapr);
1720 
1721     /*
1722      * We place the device tree just below either the top of the RMA,
1723      * or just below 2GB, whichever is lower, so that it can be
1724      * processed with 32-bit real mode code if necessary
1725      */
1726     fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1727 
1728     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1729     if (spapr->vof) {
1730         spapr_vof_reset(spapr, fdt, &error_fatal);
1731         /*
1732          * Do not pack the FDT as the client may change properties.
1733          * VOF client does not expect the FDT so we do not load it to the VM.
1734          */
1735     } else {
1736         rc = fdt_pack(fdt);
1737         /* Should only fail if we've built a corrupted tree */
1738         assert(rc == 0);
1739 
1740         spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1741                                   0, fdt_addr, 0);
1742         cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1743     }
1744     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1745 
1746     g_free(spapr->fdt_blob);
1747     spapr->fdt_size = fdt_totalsize(fdt);
1748     spapr->fdt_initial_size = spapr->fdt_size;
1749     spapr->fdt_blob = fdt;
1750 
1751     /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
1752     machine->fdt = fdt;
1753 
1754     /* Set up the entry state */
1755     first_ppc_cpu->env.gpr[5] = 0;
1756 
1757     spapr->fwnmi_system_reset_addr = -1;
1758     spapr->fwnmi_machine_check_addr = -1;
1759     spapr->fwnmi_machine_check_interlock = -1;
1760 
1761     /* Signal all vCPUs waiting on this condition */
1762     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1763 
1764     migrate_del_blocker(&spapr->fwnmi_migration_blocker);
1765 }
1766 
1767 static void spapr_create_nvram(SpaprMachineState *spapr)
1768 {
1769     DeviceState *dev = qdev_new("spapr-nvram");
1770     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1771 
1772     if (dinfo) {
1773         qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1774                                 &error_fatal);
1775     }
1776 
1777     qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1778 
1779     spapr->nvram = (struct SpaprNvram *)dev;
1780 }
1781 
1782 static void spapr_rtc_create(SpaprMachineState *spapr)
1783 {
1784     object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1785                                        sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1786                                        &error_fatal, NULL);
1787     qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1788     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1789                               "date");
1790 }
1791 
1792 /* Returns whether we want to use VGA or not */
1793 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1794 {
1795     vga_interface_created = true;
1796     switch (vga_interface_type) {
1797     case VGA_NONE:
1798         return false;
1799     case VGA_DEVICE:
1800         return true;
1801     case VGA_STD:
1802     case VGA_VIRTIO:
1803     case VGA_CIRRUS:
1804         return pci_vga_init(pci_bus) != NULL;
1805     default:
1806         error_setg(errp,
1807                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1808         return false;
1809     }
1810 }
1811 
1812 static int spapr_pre_load(void *opaque)
1813 {
1814     int rc;
1815 
1816     rc = spapr_caps_pre_load(opaque);
1817     if (rc) {
1818         return rc;
1819     }
1820 
1821     return 0;
1822 }
1823 
1824 static int spapr_post_load(void *opaque, int version_id)
1825 {
1826     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1827     int err = 0;
1828 
1829     err = spapr_caps_post_migration(spapr);
1830     if (err) {
1831         return err;
1832     }
1833 
1834     /*
1835      * In earlier versions, there was no separate qdev for the PAPR
1836      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1837      * So when migrating from those versions, poke the incoming offset
1838      * value into the RTC device
1839      */
1840     if (version_id < 3) {
1841         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1842         if (err) {
1843             return err;
1844         }
1845     }
1846 
1847     if (kvm_enabled() && spapr->patb_entry) {
1848         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1849         bool radix = !!(spapr->patb_entry & PATE1_GR);
1850         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1851 
1852         /*
1853          * Update LPCR:HR and UPRT as they may not be set properly in
1854          * the stream
1855          */
1856         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1857                             LPCR_HR | LPCR_UPRT);
1858 
1859         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1860         if (err) {
1861             error_report("Process table config unsupported by the host");
1862             return -EINVAL;
1863         }
1864     }
1865 
1866     err = spapr_irq_post_load(spapr, version_id);
1867     if (err) {
1868         return err;
1869     }
1870 
1871     return err;
1872 }
1873 
1874 static int spapr_pre_save(void *opaque)
1875 {
1876     int rc;
1877 
1878     rc = spapr_caps_pre_save(opaque);
1879     if (rc) {
1880         return rc;
1881     }
1882 
1883     return 0;
1884 }
1885 
1886 static bool version_before_3(void *opaque, int version_id)
1887 {
1888     return version_id < 3;
1889 }
1890 
1891 static bool spapr_pending_events_needed(void *opaque)
1892 {
1893     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1894     return !QTAILQ_EMPTY(&spapr->pending_events);
1895 }
1896 
1897 static const VMStateDescription vmstate_spapr_event_entry = {
1898     .name = "spapr_event_log_entry",
1899     .version_id = 1,
1900     .minimum_version_id = 1,
1901     .fields = (VMStateField[]) {
1902         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1903         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1904         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1905                                      NULL, extended_length),
1906         VMSTATE_END_OF_LIST()
1907     },
1908 };
1909 
1910 static const VMStateDescription vmstate_spapr_pending_events = {
1911     .name = "spapr_pending_events",
1912     .version_id = 1,
1913     .minimum_version_id = 1,
1914     .needed = spapr_pending_events_needed,
1915     .fields = (VMStateField[]) {
1916         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1917                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1918         VMSTATE_END_OF_LIST()
1919     },
1920 };
1921 
1922 static bool spapr_ov5_cas_needed(void *opaque)
1923 {
1924     SpaprMachineState *spapr = opaque;
1925     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1926     bool cas_needed;
1927 
1928     /* Prior to the introduction of SpaprOptionVector, we had two option
1929      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1930      * Both of these options encode machine topology into the device-tree
1931      * in such a way that the now-booted OS should still be able to interact
1932      * appropriately with QEMU regardless of what options were actually
1933      * negotiatied on the source side.
1934      *
1935      * As such, we can avoid migrating the CAS-negotiated options if these
1936      * are the only options available on the current machine/platform.
1937      * Since these are the only options available for pseries-2.7 and
1938      * earlier, this allows us to maintain old->new/new->old migration
1939      * compatibility.
1940      *
1941      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1942      * via default pseries-2.8 machines and explicit command-line parameters.
1943      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1944      * of the actual CAS-negotiated values to continue working properly. For
1945      * example, availability of memory unplug depends on knowing whether
1946      * OV5_HP_EVT was negotiated via CAS.
1947      *
1948      * Thus, for any cases where the set of available CAS-negotiatable
1949      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1950      * include the CAS-negotiated options in the migration stream, unless
1951      * if they affect boot time behaviour only.
1952      */
1953     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1954     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1955     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1956 
1957     /* We need extra information if we have any bits outside the mask
1958      * defined above */
1959     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1960 
1961     spapr_ovec_cleanup(ov5_mask);
1962 
1963     return cas_needed;
1964 }
1965 
1966 static const VMStateDescription vmstate_spapr_ov5_cas = {
1967     .name = "spapr_option_vector_ov5_cas",
1968     .version_id = 1,
1969     .minimum_version_id = 1,
1970     .needed = spapr_ov5_cas_needed,
1971     .fields = (VMStateField[]) {
1972         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1973                                  vmstate_spapr_ovec, SpaprOptionVector),
1974         VMSTATE_END_OF_LIST()
1975     },
1976 };
1977 
1978 static bool spapr_patb_entry_needed(void *opaque)
1979 {
1980     SpaprMachineState *spapr = opaque;
1981 
1982     return !!spapr->patb_entry;
1983 }
1984 
1985 static const VMStateDescription vmstate_spapr_patb_entry = {
1986     .name = "spapr_patb_entry",
1987     .version_id = 1,
1988     .minimum_version_id = 1,
1989     .needed = spapr_patb_entry_needed,
1990     .fields = (VMStateField[]) {
1991         VMSTATE_UINT64(patb_entry, SpaprMachineState),
1992         VMSTATE_END_OF_LIST()
1993     },
1994 };
1995 
1996 static bool spapr_irq_map_needed(void *opaque)
1997 {
1998     SpaprMachineState *spapr = opaque;
1999 
2000     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2001 }
2002 
2003 static const VMStateDescription vmstate_spapr_irq_map = {
2004     .name = "spapr_irq_map",
2005     .version_id = 1,
2006     .minimum_version_id = 1,
2007     .needed = spapr_irq_map_needed,
2008     .fields = (VMStateField[]) {
2009         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2010         VMSTATE_END_OF_LIST()
2011     },
2012 };
2013 
2014 static bool spapr_dtb_needed(void *opaque)
2015 {
2016     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2017 
2018     return smc->update_dt_enabled;
2019 }
2020 
2021 static int spapr_dtb_pre_load(void *opaque)
2022 {
2023     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2024 
2025     g_free(spapr->fdt_blob);
2026     spapr->fdt_blob = NULL;
2027     spapr->fdt_size = 0;
2028 
2029     return 0;
2030 }
2031 
2032 static const VMStateDescription vmstate_spapr_dtb = {
2033     .name = "spapr_dtb",
2034     .version_id = 1,
2035     .minimum_version_id = 1,
2036     .needed = spapr_dtb_needed,
2037     .pre_load = spapr_dtb_pre_load,
2038     .fields = (VMStateField[]) {
2039         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2040         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2041         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2042                                      fdt_size),
2043         VMSTATE_END_OF_LIST()
2044     },
2045 };
2046 
2047 static bool spapr_fwnmi_needed(void *opaque)
2048 {
2049     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2050 
2051     return spapr->fwnmi_machine_check_addr != -1;
2052 }
2053 
2054 static int spapr_fwnmi_pre_save(void *opaque)
2055 {
2056     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2057 
2058     /*
2059      * Check if machine check handling is in progress and print a
2060      * warning message.
2061      */
2062     if (spapr->fwnmi_machine_check_interlock != -1) {
2063         warn_report("A machine check is being handled during migration. The"
2064                 "handler may run and log hardware error on the destination");
2065     }
2066 
2067     return 0;
2068 }
2069 
2070 static const VMStateDescription vmstate_spapr_fwnmi = {
2071     .name = "spapr_fwnmi",
2072     .version_id = 1,
2073     .minimum_version_id = 1,
2074     .needed = spapr_fwnmi_needed,
2075     .pre_save = spapr_fwnmi_pre_save,
2076     .fields = (VMStateField[]) {
2077         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2078         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2079         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2080         VMSTATE_END_OF_LIST()
2081     },
2082 };
2083 
2084 static const VMStateDescription vmstate_spapr = {
2085     .name = "spapr",
2086     .version_id = 3,
2087     .minimum_version_id = 1,
2088     .pre_load = spapr_pre_load,
2089     .post_load = spapr_post_load,
2090     .pre_save = spapr_pre_save,
2091     .fields = (VMStateField[]) {
2092         /* used to be @next_irq */
2093         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2094 
2095         /* RTC offset */
2096         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2097 
2098         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2099         VMSTATE_END_OF_LIST()
2100     },
2101     .subsections = (const VMStateDescription*[]) {
2102         &vmstate_spapr_ov5_cas,
2103         &vmstate_spapr_patb_entry,
2104         &vmstate_spapr_pending_events,
2105         &vmstate_spapr_cap_htm,
2106         &vmstate_spapr_cap_vsx,
2107         &vmstate_spapr_cap_dfp,
2108         &vmstate_spapr_cap_cfpc,
2109         &vmstate_spapr_cap_sbbc,
2110         &vmstate_spapr_cap_ibs,
2111         &vmstate_spapr_cap_hpt_maxpagesize,
2112         &vmstate_spapr_irq_map,
2113         &vmstate_spapr_cap_nested_kvm_hv,
2114         &vmstate_spapr_dtb,
2115         &vmstate_spapr_cap_large_decr,
2116         &vmstate_spapr_cap_ccf_assist,
2117         &vmstate_spapr_cap_fwnmi,
2118         &vmstate_spapr_fwnmi,
2119         &vmstate_spapr_cap_rpt_invalidate,
2120         NULL
2121     }
2122 };
2123 
2124 static int htab_save_setup(QEMUFile *f, void *opaque)
2125 {
2126     SpaprMachineState *spapr = opaque;
2127 
2128     /* "Iteration" header */
2129     if (!spapr->htab_shift) {
2130         qemu_put_be32(f, -1);
2131     } else {
2132         qemu_put_be32(f, spapr->htab_shift);
2133     }
2134 
2135     if (spapr->htab) {
2136         spapr->htab_save_index = 0;
2137         spapr->htab_first_pass = true;
2138     } else {
2139         if (spapr->htab_shift) {
2140             assert(kvm_enabled());
2141         }
2142     }
2143 
2144 
2145     return 0;
2146 }
2147 
2148 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2149                             int chunkstart, int n_valid, int n_invalid)
2150 {
2151     qemu_put_be32(f, chunkstart);
2152     qemu_put_be16(f, n_valid);
2153     qemu_put_be16(f, n_invalid);
2154     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2155                     HASH_PTE_SIZE_64 * n_valid);
2156 }
2157 
2158 static void htab_save_end_marker(QEMUFile *f)
2159 {
2160     qemu_put_be32(f, 0);
2161     qemu_put_be16(f, 0);
2162     qemu_put_be16(f, 0);
2163 }
2164 
2165 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2166                                  int64_t max_ns)
2167 {
2168     bool has_timeout = max_ns != -1;
2169     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2170     int index = spapr->htab_save_index;
2171     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2172 
2173     assert(spapr->htab_first_pass);
2174 
2175     do {
2176         int chunkstart;
2177 
2178         /* Consume invalid HPTEs */
2179         while ((index < htabslots)
2180                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2181             CLEAN_HPTE(HPTE(spapr->htab, index));
2182             index++;
2183         }
2184 
2185         /* Consume valid HPTEs */
2186         chunkstart = index;
2187         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2188                && HPTE_VALID(HPTE(spapr->htab, index))) {
2189             CLEAN_HPTE(HPTE(spapr->htab, index));
2190             index++;
2191         }
2192 
2193         if (index > chunkstart) {
2194             int n_valid = index - chunkstart;
2195 
2196             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2197 
2198             if (has_timeout &&
2199                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2200                 break;
2201             }
2202         }
2203     } while ((index < htabslots) && !migration_rate_exceeded(f));
2204 
2205     if (index >= htabslots) {
2206         assert(index == htabslots);
2207         index = 0;
2208         spapr->htab_first_pass = false;
2209     }
2210     spapr->htab_save_index = index;
2211 }
2212 
2213 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2214                                 int64_t max_ns)
2215 {
2216     bool final = max_ns < 0;
2217     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2218     int examined = 0, sent = 0;
2219     int index = spapr->htab_save_index;
2220     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2221 
2222     assert(!spapr->htab_first_pass);
2223 
2224     do {
2225         int chunkstart, invalidstart;
2226 
2227         /* Consume non-dirty HPTEs */
2228         while ((index < htabslots)
2229                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2230             index++;
2231             examined++;
2232         }
2233 
2234         chunkstart = index;
2235         /* Consume valid dirty HPTEs */
2236         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2237                && HPTE_DIRTY(HPTE(spapr->htab, index))
2238                && HPTE_VALID(HPTE(spapr->htab, index))) {
2239             CLEAN_HPTE(HPTE(spapr->htab, index));
2240             index++;
2241             examined++;
2242         }
2243 
2244         invalidstart = index;
2245         /* Consume invalid dirty HPTEs */
2246         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2247                && HPTE_DIRTY(HPTE(spapr->htab, index))
2248                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2249             CLEAN_HPTE(HPTE(spapr->htab, index));
2250             index++;
2251             examined++;
2252         }
2253 
2254         if (index > chunkstart) {
2255             int n_valid = invalidstart - chunkstart;
2256             int n_invalid = index - invalidstart;
2257 
2258             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2259             sent += index - chunkstart;
2260 
2261             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2262                 break;
2263             }
2264         }
2265 
2266         if (examined >= htabslots) {
2267             break;
2268         }
2269 
2270         if (index >= htabslots) {
2271             assert(index == htabslots);
2272             index = 0;
2273         }
2274     } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final));
2275 
2276     if (index >= htabslots) {
2277         assert(index == htabslots);
2278         index = 0;
2279     }
2280 
2281     spapr->htab_save_index = index;
2282 
2283     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2284 }
2285 
2286 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2287 #define MAX_KVM_BUF_SIZE    2048
2288 
2289 static int htab_save_iterate(QEMUFile *f, void *opaque)
2290 {
2291     SpaprMachineState *spapr = opaque;
2292     int fd;
2293     int rc = 0;
2294 
2295     /* Iteration header */
2296     if (!spapr->htab_shift) {
2297         qemu_put_be32(f, -1);
2298         return 1;
2299     } else {
2300         qemu_put_be32(f, 0);
2301     }
2302 
2303     if (!spapr->htab) {
2304         assert(kvm_enabled());
2305 
2306         fd = get_htab_fd(spapr);
2307         if (fd < 0) {
2308             return fd;
2309         }
2310 
2311         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2312         if (rc < 0) {
2313             return rc;
2314         }
2315     } else  if (spapr->htab_first_pass) {
2316         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2317     } else {
2318         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2319     }
2320 
2321     htab_save_end_marker(f);
2322 
2323     return rc;
2324 }
2325 
2326 static int htab_save_complete(QEMUFile *f, void *opaque)
2327 {
2328     SpaprMachineState *spapr = opaque;
2329     int fd;
2330 
2331     /* Iteration header */
2332     if (!spapr->htab_shift) {
2333         qemu_put_be32(f, -1);
2334         return 0;
2335     } else {
2336         qemu_put_be32(f, 0);
2337     }
2338 
2339     if (!spapr->htab) {
2340         int rc;
2341 
2342         assert(kvm_enabled());
2343 
2344         fd = get_htab_fd(spapr);
2345         if (fd < 0) {
2346             return fd;
2347         }
2348 
2349         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2350         if (rc < 0) {
2351             return rc;
2352         }
2353     } else {
2354         if (spapr->htab_first_pass) {
2355             htab_save_first_pass(f, spapr, -1);
2356         }
2357         htab_save_later_pass(f, spapr, -1);
2358     }
2359 
2360     /* End marker */
2361     htab_save_end_marker(f);
2362 
2363     return 0;
2364 }
2365 
2366 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2367 {
2368     SpaprMachineState *spapr = opaque;
2369     uint32_t section_hdr;
2370     int fd = -1;
2371     Error *local_err = NULL;
2372 
2373     if (version_id < 1 || version_id > 1) {
2374         error_report("htab_load() bad version");
2375         return -EINVAL;
2376     }
2377 
2378     section_hdr = qemu_get_be32(f);
2379 
2380     if (section_hdr == -1) {
2381         spapr_free_hpt(spapr);
2382         return 0;
2383     }
2384 
2385     if (section_hdr) {
2386         int ret;
2387 
2388         /* First section gives the htab size */
2389         ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2390         if (ret < 0) {
2391             error_report_err(local_err);
2392             return ret;
2393         }
2394         return 0;
2395     }
2396 
2397     if (!spapr->htab) {
2398         assert(kvm_enabled());
2399 
2400         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2401         if (fd < 0) {
2402             error_report_err(local_err);
2403             return fd;
2404         }
2405     }
2406 
2407     while (true) {
2408         uint32_t index;
2409         uint16_t n_valid, n_invalid;
2410 
2411         index = qemu_get_be32(f);
2412         n_valid = qemu_get_be16(f);
2413         n_invalid = qemu_get_be16(f);
2414 
2415         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2416             /* End of Stream */
2417             break;
2418         }
2419 
2420         if ((index + n_valid + n_invalid) >
2421             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2422             /* Bad index in stream */
2423             error_report(
2424                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2425                 index, n_valid, n_invalid, spapr->htab_shift);
2426             return -EINVAL;
2427         }
2428 
2429         if (spapr->htab) {
2430             if (n_valid) {
2431                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2432                                 HASH_PTE_SIZE_64 * n_valid);
2433             }
2434             if (n_invalid) {
2435                 memset(HPTE(spapr->htab, index + n_valid), 0,
2436                        HASH_PTE_SIZE_64 * n_invalid);
2437             }
2438         } else {
2439             int rc;
2440 
2441             assert(fd >= 0);
2442 
2443             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2444                                         &local_err);
2445             if (rc < 0) {
2446                 error_report_err(local_err);
2447                 return rc;
2448             }
2449         }
2450     }
2451 
2452     if (!spapr->htab) {
2453         assert(fd >= 0);
2454         close(fd);
2455     }
2456 
2457     return 0;
2458 }
2459 
2460 static void htab_save_cleanup(void *opaque)
2461 {
2462     SpaprMachineState *spapr = opaque;
2463 
2464     close_htab_fd(spapr);
2465 }
2466 
2467 static SaveVMHandlers savevm_htab_handlers = {
2468     .save_setup = htab_save_setup,
2469     .save_live_iterate = htab_save_iterate,
2470     .save_live_complete_precopy = htab_save_complete,
2471     .save_cleanup = htab_save_cleanup,
2472     .load_state = htab_load,
2473 };
2474 
2475 static void spapr_boot_set(void *opaque, const char *boot_device,
2476                            Error **errp)
2477 {
2478     SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2479 
2480     g_free(spapr->boot_device);
2481     spapr->boot_device = g_strdup(boot_device);
2482 }
2483 
2484 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2485 {
2486     MachineState *machine = MACHINE(spapr);
2487     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2488     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2489     int i;
2490 
2491     g_assert(!nr_lmbs || machine->device_memory);
2492     for (i = 0; i < nr_lmbs; i++) {
2493         uint64_t addr;
2494 
2495         addr = i * lmb_size + machine->device_memory->base;
2496         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2497                                addr / lmb_size);
2498     }
2499 }
2500 
2501 /*
2502  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2503  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2504  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2505  */
2506 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2507 {
2508     int i;
2509 
2510     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2511         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2512                    " is not aligned to %" PRIu64 " MiB",
2513                    machine->ram_size,
2514                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2515         return;
2516     }
2517 
2518     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2519         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2520                    " is not aligned to %" PRIu64 " MiB",
2521                    machine->ram_size,
2522                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2523         return;
2524     }
2525 
2526     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2527         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2528             error_setg(errp,
2529                        "Node %d memory size 0x%" PRIx64
2530                        " is not aligned to %" PRIu64 " MiB",
2531                        i, machine->numa_state->nodes[i].node_mem,
2532                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2533             return;
2534         }
2535     }
2536 }
2537 
2538 /* find cpu slot in machine->possible_cpus by core_id */
2539 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2540 {
2541     int index = id / ms->smp.threads;
2542 
2543     if (index >= ms->possible_cpus->len) {
2544         return NULL;
2545     }
2546     if (idx) {
2547         *idx = index;
2548     }
2549     return &ms->possible_cpus->cpus[index];
2550 }
2551 
2552 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2553 {
2554     MachineState *ms = MACHINE(spapr);
2555     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2556     Error *local_err = NULL;
2557     bool vsmt_user = !!spapr->vsmt;
2558     int kvm_smt = kvmppc_smt_threads();
2559     int ret;
2560     unsigned int smp_threads = ms->smp.threads;
2561 
2562     if (tcg_enabled()) {
2563         if (smp_threads > 1 &&
2564             !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0,
2565                                    spapr->max_compat_pvr)) {
2566             error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs");
2567             return;
2568         }
2569 
2570         if (smp_threads > 8) {
2571             error_setg(errp, "TCG cannot support more than 8 threads/core "
2572                        "on a pseries machine");
2573             return;
2574         }
2575     }
2576     if (!is_power_of_2(smp_threads)) {
2577         error_setg(errp, "Cannot support %d threads/core on a pseries "
2578                    "machine because it must be a power of 2", smp_threads);
2579         return;
2580     }
2581 
2582     /* Determine the VSMT mode to use: */
2583     if (vsmt_user) {
2584         if (spapr->vsmt < smp_threads) {
2585             error_setg(errp, "Cannot support VSMT mode %d"
2586                        " because it must be >= threads/core (%d)",
2587                        spapr->vsmt, smp_threads);
2588             return;
2589         }
2590         /* In this case, spapr->vsmt has been set by the command line */
2591     } else if (!smc->smp_threads_vsmt) {
2592         /*
2593          * Default VSMT value is tricky, because we need it to be as
2594          * consistent as possible (for migration), but this requires
2595          * changing it for at least some existing cases.  We pick 8 as
2596          * the value that we'd get with KVM on POWER8, the
2597          * overwhelmingly common case in production systems.
2598          */
2599         spapr->vsmt = MAX(8, smp_threads);
2600     } else {
2601         spapr->vsmt = smp_threads;
2602     }
2603 
2604     /* KVM: If necessary, set the SMT mode: */
2605     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2606         ret = kvmppc_set_smt_threads(spapr->vsmt);
2607         if (ret) {
2608             /* Looks like KVM isn't able to change VSMT mode */
2609             error_setg(&local_err,
2610                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2611                        spapr->vsmt, ret);
2612             /* We can live with that if the default one is big enough
2613              * for the number of threads, and a submultiple of the one
2614              * we want.  In this case we'll waste some vcpu ids, but
2615              * behaviour will be correct */
2616             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2617                 warn_report_err(local_err);
2618             } else {
2619                 if (!vsmt_user) {
2620                     error_append_hint(&local_err,
2621                                       "On PPC, a VM with %d threads/core"
2622                                       " on a host with %d threads/core"
2623                                       " requires the use of VSMT mode %d.\n",
2624                                       smp_threads, kvm_smt, spapr->vsmt);
2625                 }
2626                 kvmppc_error_append_smt_possible_hint(&local_err);
2627                 error_propagate(errp, local_err);
2628             }
2629         }
2630     }
2631     /* else TCG: nothing to do currently */
2632 }
2633 
2634 static void spapr_init_cpus(SpaprMachineState *spapr)
2635 {
2636     MachineState *machine = MACHINE(spapr);
2637     MachineClass *mc = MACHINE_GET_CLASS(machine);
2638     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2639     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2640     const CPUArchIdList *possible_cpus;
2641     unsigned int smp_cpus = machine->smp.cpus;
2642     unsigned int smp_threads = machine->smp.threads;
2643     unsigned int max_cpus = machine->smp.max_cpus;
2644     int boot_cores_nr = smp_cpus / smp_threads;
2645     int i;
2646 
2647     possible_cpus = mc->possible_cpu_arch_ids(machine);
2648     if (mc->has_hotpluggable_cpus) {
2649         if (smp_cpus % smp_threads) {
2650             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2651                          smp_cpus, smp_threads);
2652             exit(1);
2653         }
2654         if (max_cpus % smp_threads) {
2655             error_report("max_cpus (%u) must be multiple of threads (%u)",
2656                          max_cpus, smp_threads);
2657             exit(1);
2658         }
2659     } else {
2660         if (max_cpus != smp_cpus) {
2661             error_report("This machine version does not support CPU hotplug");
2662             exit(1);
2663         }
2664         boot_cores_nr = possible_cpus->len;
2665     }
2666 
2667     if (smc->pre_2_10_has_unused_icps) {
2668         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2669             /* Dummy entries get deregistered when real ICPState objects
2670              * are registered during CPU core hotplug.
2671              */
2672             pre_2_10_vmstate_register_dummy_icp(i);
2673         }
2674     }
2675 
2676     for (i = 0; i < possible_cpus->len; i++) {
2677         int core_id = i * smp_threads;
2678 
2679         if (mc->has_hotpluggable_cpus) {
2680             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2681                                    spapr_vcpu_id(spapr, core_id));
2682         }
2683 
2684         if (i < boot_cores_nr) {
2685             Object *core  = object_new(type);
2686             int nr_threads = smp_threads;
2687 
2688             /* Handle the partially filled core for older machine types */
2689             if ((i + 1) * smp_threads >= smp_cpus) {
2690                 nr_threads = smp_cpus - i * smp_threads;
2691             }
2692 
2693             object_property_set_int(core, "nr-threads", nr_threads,
2694                                     &error_fatal);
2695             object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2696                                     &error_fatal);
2697             qdev_realize(DEVICE(core), NULL, &error_fatal);
2698 
2699             object_unref(core);
2700         }
2701     }
2702 }
2703 
2704 static PCIHostState *spapr_create_default_phb(void)
2705 {
2706     DeviceState *dev;
2707 
2708     dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2709     qdev_prop_set_uint32(dev, "index", 0);
2710     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2711 
2712     return PCI_HOST_BRIDGE(dev);
2713 }
2714 
2715 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2716 {
2717     MachineState *machine = MACHINE(spapr);
2718     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2719     hwaddr rma_size = machine->ram_size;
2720     hwaddr node0_size = spapr_node0_size(machine);
2721 
2722     /* RMA has to fit in the first NUMA node */
2723     rma_size = MIN(rma_size, node0_size);
2724 
2725     /*
2726      * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2727      * never exceed that
2728      */
2729     rma_size = MIN(rma_size, 1 * TiB);
2730 
2731     /*
2732      * Clamp the RMA size based on machine type.  This is for
2733      * migration compatibility with older qemu versions, which limited
2734      * the RMA size for complicated and mostly bad reasons.
2735      */
2736     if (smc->rma_limit) {
2737         rma_size = MIN(rma_size, smc->rma_limit);
2738     }
2739 
2740     if (rma_size < MIN_RMA_SLOF) {
2741         error_setg(errp,
2742                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2743                    "ldMiB guest RMA (Real Mode Area memory)",
2744                    MIN_RMA_SLOF / MiB);
2745         return 0;
2746     }
2747 
2748     return rma_size;
2749 }
2750 
2751 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2752 {
2753     MachineState *machine = MACHINE(spapr);
2754     int i;
2755 
2756     for (i = 0; i < machine->ram_slots; i++) {
2757         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2758     }
2759 }
2760 
2761 /* pSeries LPAR / sPAPR hardware init */
2762 static void spapr_machine_init(MachineState *machine)
2763 {
2764     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2765     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2766     MachineClass *mc = MACHINE_GET_CLASS(machine);
2767     const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2768     const char *bios_name = machine->firmware ?: bios_default;
2769     g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2770     const char *kernel_filename = machine->kernel_filename;
2771     const char *initrd_filename = machine->initrd_filename;
2772     PCIHostState *phb;
2773     bool has_vga;
2774     int i;
2775     MemoryRegion *sysmem = get_system_memory();
2776     long load_limit, fw_size;
2777     Error *resize_hpt_err = NULL;
2778 
2779     if (!filename) {
2780         error_report("Could not find LPAR firmware '%s'", bios_name);
2781         exit(1);
2782     }
2783     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2784     if (fw_size <= 0) {
2785         error_report("Could not load LPAR firmware '%s'", filename);
2786         exit(1);
2787     }
2788 
2789     /*
2790      * if Secure VM (PEF) support is configured, then initialize it
2791      */
2792     pef_kvm_init(machine->cgs, &error_fatal);
2793 
2794     msi_nonbroken = true;
2795 
2796     QLIST_INIT(&spapr->phbs);
2797     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2798 
2799     /* Determine capabilities to run with */
2800     spapr_caps_init(spapr);
2801 
2802     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2803     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2804         /*
2805          * If the user explicitly requested a mode we should either
2806          * supply it, or fail completely (which we do below).  But if
2807          * it's not set explicitly, we reset our mode to something
2808          * that works
2809          */
2810         if (resize_hpt_err) {
2811             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2812             error_free(resize_hpt_err);
2813             resize_hpt_err = NULL;
2814         } else {
2815             spapr->resize_hpt = smc->resize_hpt_default;
2816         }
2817     }
2818 
2819     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2820 
2821     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2822         /*
2823          * User requested HPT resize, but this host can't supply it.  Bail out
2824          */
2825         error_report_err(resize_hpt_err);
2826         exit(1);
2827     }
2828     error_free(resize_hpt_err);
2829 
2830     spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2831 
2832     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2833     load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2834 
2835     /*
2836      * VSMT must be set in order to be able to compute VCPU ids, ie to
2837      * call spapr_max_server_number() or spapr_vcpu_id().
2838      */
2839     spapr_set_vsmt_mode(spapr, &error_fatal);
2840 
2841     /* Set up Interrupt Controller before we create the VCPUs */
2842     spapr_irq_init(spapr, &error_fatal);
2843 
2844     /* Set up containers for ibm,client-architecture-support negotiated options
2845      */
2846     spapr->ov5 = spapr_ovec_new();
2847     spapr->ov5_cas = spapr_ovec_new();
2848 
2849     if (smc->dr_lmb_enabled) {
2850         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2851         spapr_validate_node_memory(machine, &error_fatal);
2852     }
2853 
2854     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2855 
2856     /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2857     if (!smc->pre_6_2_numa_affinity) {
2858         spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2859     }
2860 
2861     /* advertise support for dedicated HP event source to guests */
2862     if (spapr->use_hotplug_event_source) {
2863         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2864     }
2865 
2866     /* advertise support for HPT resizing */
2867     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2868         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2869     }
2870 
2871     /* advertise support for ibm,dyamic-memory-v2 */
2872     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2873 
2874     /* advertise XIVE on POWER9 machines */
2875     if (spapr->irq->xive) {
2876         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2877     }
2878 
2879     /* init CPUs */
2880     spapr_init_cpus(spapr);
2881 
2882     /* Init numa_assoc_array */
2883     spapr_numa_associativity_init(spapr, machine);
2884 
2885     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2886         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2887                               spapr->max_compat_pvr)) {
2888         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2889         /* KVM and TCG always allow GTSE with radix... */
2890         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2891     }
2892     /* ... but not with hash (currently). */
2893 
2894     if (kvm_enabled()) {
2895         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2896         kvmppc_enable_logical_ci_hcalls();
2897         kvmppc_enable_set_mode_hcall();
2898 
2899         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2900         kvmppc_enable_clear_ref_mod_hcalls();
2901 
2902         /* Enable H_PAGE_INIT */
2903         kvmppc_enable_h_page_init();
2904     }
2905 
2906     /* map RAM */
2907     memory_region_add_subregion(sysmem, 0, machine->ram);
2908 
2909     /* initialize hotplug memory address space */
2910     if (machine->ram_size < machine->maxram_size) {
2911         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2912         hwaddr device_mem_base;
2913 
2914         /*
2915          * Limit the number of hotpluggable memory slots to half the number
2916          * slots that KVM supports, leaving the other half for PCI and other
2917          * devices. However ensure that number of slots doesn't drop below 32.
2918          */
2919         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2920                            SPAPR_MAX_RAM_SLOTS;
2921 
2922         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2923             max_memslots = SPAPR_MAX_RAM_SLOTS;
2924         }
2925         if (machine->ram_slots > max_memslots) {
2926             error_report("Specified number of memory slots %"
2927                          PRIu64" exceeds max supported %d",
2928                          machine->ram_slots, max_memslots);
2929             exit(1);
2930         }
2931 
2932         device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN);
2933         machine_memory_devices_init(machine, device_mem_base, device_mem_size);
2934     }
2935 
2936     if (smc->dr_lmb_enabled) {
2937         spapr_create_lmb_dr_connectors(spapr);
2938     }
2939 
2940     if (mc->nvdimm_supported) {
2941         spapr_create_nvdimm_dr_connectors(spapr);
2942     }
2943 
2944     /* Set up RTAS event infrastructure */
2945     spapr_events_init(spapr);
2946 
2947     /* Set up the RTC RTAS interfaces */
2948     spapr_rtc_create(spapr);
2949 
2950     /* Set up VIO bus */
2951     spapr->vio_bus = spapr_vio_bus_init();
2952 
2953     for (i = 0; serial_hd(i); i++) {
2954         spapr_vty_create(spapr->vio_bus, serial_hd(i));
2955     }
2956 
2957     /* We always have at least the nvram device on VIO */
2958     spapr_create_nvram(spapr);
2959 
2960     /*
2961      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2962      * connectors (described in root DT node's "ibm,drc-types" property)
2963      * are pre-initialized here. additional child connectors (such as
2964      * connectors for a PHBs PCI slots) are added as needed during their
2965      * parent's realization.
2966      */
2967     if (smc->dr_phb_enabled) {
2968         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2969             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2970         }
2971     }
2972 
2973     /* Set up PCI */
2974     spapr_pci_rtas_init();
2975 
2976     phb = spapr_create_default_phb();
2977 
2978     for (i = 0; i < nb_nics; i++) {
2979         NICInfo *nd = &nd_table[i];
2980 
2981         if (!nd->model) {
2982             nd->model = g_strdup("spapr-vlan");
2983         }
2984 
2985         if (g_str_equal(nd->model, "spapr-vlan") ||
2986             g_str_equal(nd->model, "ibmveth")) {
2987             spapr_vlan_create(spapr->vio_bus, nd);
2988         } else {
2989             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2990         }
2991     }
2992 
2993     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2994         spapr_vscsi_create(spapr->vio_bus);
2995     }
2996 
2997     /* Graphics */
2998     has_vga = spapr_vga_init(phb->bus, &error_fatal);
2999     if (has_vga) {
3000         spapr->want_stdout_path = !machine->enable_graphics;
3001         machine->usb |= defaults_enabled() && !machine->usb_disabled;
3002     } else {
3003         spapr->want_stdout_path = true;
3004     }
3005 
3006     if (machine->usb) {
3007         if (smc->use_ohci_by_default) {
3008             pci_create_simple(phb->bus, -1, "pci-ohci");
3009         } else {
3010             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
3011         }
3012 
3013         if (has_vga) {
3014             USBBus *usb_bus = usb_bus_find(-1);
3015 
3016             usb_create_simple(usb_bus, "usb-kbd");
3017             usb_create_simple(usb_bus, "usb-mouse");
3018         }
3019     }
3020 
3021     if (kernel_filename) {
3022         uint64_t loaded_addr = 0;
3023 
3024         spapr->kernel_size = load_elf(kernel_filename, NULL,
3025                                       translate_kernel_address, spapr,
3026                                       NULL, &loaded_addr, NULL, NULL, 1,
3027                                       PPC_ELF_MACHINE, 0, 0);
3028         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3029             spapr->kernel_size = load_elf(kernel_filename, NULL,
3030                                           translate_kernel_address, spapr,
3031                                           NULL, &loaded_addr, NULL, NULL, 0,
3032                                           PPC_ELF_MACHINE, 0, 0);
3033             spapr->kernel_le = spapr->kernel_size > 0;
3034         }
3035         if (spapr->kernel_size < 0) {
3036             error_report("error loading %s: %s", kernel_filename,
3037                          load_elf_strerror(spapr->kernel_size));
3038             exit(1);
3039         }
3040 
3041         if (spapr->kernel_addr != loaded_addr) {
3042             warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3043                         " to 0x%"PRIx64,
3044                         spapr->kernel_addr, loaded_addr);
3045             spapr->kernel_addr = loaded_addr;
3046         }
3047 
3048         /* load initrd */
3049         if (initrd_filename) {
3050             /* Try to locate the initrd in the gap between the kernel
3051              * and the firmware. Add a bit of space just in case
3052              */
3053             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3054                                   + 0x1ffff) & ~0xffff;
3055             spapr->initrd_size = load_image_targphys(initrd_filename,
3056                                                      spapr->initrd_base,
3057                                                      load_limit
3058                                                      - spapr->initrd_base);
3059             if (spapr->initrd_size < 0) {
3060                 error_report("could not load initial ram disk '%s'",
3061                              initrd_filename);
3062                 exit(1);
3063             }
3064         }
3065     }
3066 
3067     /* FIXME: Should register things through the MachineState's qdev
3068      * interface, this is a legacy from the sPAPREnvironment structure
3069      * which predated MachineState but had a similar function */
3070     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3071     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3072                          &savevm_htab_handlers, spapr);
3073 
3074     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3075 
3076     qemu_register_boot_set(spapr_boot_set, spapr);
3077 
3078     /*
3079      * Nothing needs to be done to resume a suspended guest because
3080      * suspending does not change the machine state, so no need for
3081      * a ->wakeup method.
3082      */
3083     qemu_register_wakeup_support();
3084 
3085     if (kvm_enabled()) {
3086         /* to stop and start vmclock */
3087         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3088                                          &spapr->tb);
3089 
3090         kvmppc_spapr_enable_inkernel_multitce();
3091     }
3092 
3093     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3094     if (spapr->vof) {
3095         spapr->vof->fw_size = fw_size; /* for claim() on itself */
3096         spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3097     }
3098 
3099     spapr_watchdog_init(spapr);
3100 }
3101 
3102 #define DEFAULT_KVM_TYPE "auto"
3103 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3104 {
3105     /*
3106      * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3107      * accommodate the 'HV' and 'PV' formats that exists in the
3108      * wild. The 'auto' mode is being introduced already as
3109      * lower-case, thus we don't need to bother checking for
3110      * "AUTO".
3111      */
3112     if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3113         return 0;
3114     }
3115 
3116     if (!g_ascii_strcasecmp(vm_type, "hv")) {
3117         return 1;
3118     }
3119 
3120     if (!g_ascii_strcasecmp(vm_type, "pr")) {
3121         return 2;
3122     }
3123 
3124     error_report("Unknown kvm-type specified '%s'", vm_type);
3125     return -1;
3126 }
3127 
3128 /*
3129  * Implementation of an interface to adjust firmware path
3130  * for the bootindex property handling.
3131  */
3132 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3133                                    DeviceState *dev)
3134 {
3135 #define CAST(type, obj, name) \
3136     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3137     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3138     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3139     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3140     PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3141 
3142     if (d && bus) {
3143         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3144         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3145         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3146 
3147         if (spapr) {
3148             /*
3149              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3150              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3151              * 0x8000 | (target << 8) | (bus << 5) | lun
3152              * (see the "Logical unit addressing format" table in SAM5)
3153              */
3154             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3155             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3156                                    (uint64_t)id << 48);
3157         } else if (virtio) {
3158             /*
3159              * We use SRP luns of the form 01000000 | (target << 8) | lun
3160              * in the top 32 bits of the 64-bit LUN
3161              * Note: the quote above is from SLOF and it is wrong,
3162              * the actual binding is:
3163              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3164              */
3165             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3166             if (d->lun >= 256) {
3167                 /* Use the LUN "flat space addressing method" */
3168                 id |= 0x4000;
3169             }
3170             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3171                                    (uint64_t)id << 32);
3172         } else if (usb) {
3173             /*
3174              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3175              * in the top 32 bits of the 64-bit LUN
3176              */
3177             unsigned usb_port = atoi(usb->port->path);
3178             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3179             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3180                                    (uint64_t)id << 32);
3181         }
3182     }
3183 
3184     /*
3185      * SLOF probes the USB devices, and if it recognizes that the device is a
3186      * storage device, it changes its name to "storage" instead of "usb-host",
3187      * and additionally adds a child node for the SCSI LUN, so the correct
3188      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3189      */
3190     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3191         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3192         if (usb_device_is_scsi_storage(usbdev)) {
3193             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3194         }
3195     }
3196 
3197     if (phb) {
3198         /* Replace "pci" with "pci@800000020000000" */
3199         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3200     }
3201 
3202     if (vsc) {
3203         /* Same logic as virtio above */
3204         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3205         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3206     }
3207 
3208     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3209         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3210         PCIDevice *pdev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3211         return g_strdup_printf("pci@%x", PCI_SLOT(pdev->devfn));
3212     }
3213 
3214     if (pcidev) {
3215         return spapr_pci_fw_dev_name(pcidev);
3216     }
3217 
3218     return NULL;
3219 }
3220 
3221 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3222 {
3223     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3224 
3225     return g_strdup(spapr->kvm_type);
3226 }
3227 
3228 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3229 {
3230     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3231 
3232     g_free(spapr->kvm_type);
3233     spapr->kvm_type = g_strdup(value);
3234 }
3235 
3236 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3237 {
3238     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3239 
3240     return spapr->use_hotplug_event_source;
3241 }
3242 
3243 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3244                                             Error **errp)
3245 {
3246     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3247 
3248     spapr->use_hotplug_event_source = value;
3249 }
3250 
3251 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3252 {
3253     return true;
3254 }
3255 
3256 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3257 {
3258     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3259 
3260     switch (spapr->resize_hpt) {
3261     case SPAPR_RESIZE_HPT_DEFAULT:
3262         return g_strdup("default");
3263     case SPAPR_RESIZE_HPT_DISABLED:
3264         return g_strdup("disabled");
3265     case SPAPR_RESIZE_HPT_ENABLED:
3266         return g_strdup("enabled");
3267     case SPAPR_RESIZE_HPT_REQUIRED:
3268         return g_strdup("required");
3269     }
3270     g_assert_not_reached();
3271 }
3272 
3273 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3274 {
3275     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3276 
3277     if (strcmp(value, "default") == 0) {
3278         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3279     } else if (strcmp(value, "disabled") == 0) {
3280         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3281     } else if (strcmp(value, "enabled") == 0) {
3282         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3283     } else if (strcmp(value, "required") == 0) {
3284         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3285     } else {
3286         error_setg(errp, "Bad value for \"resize-hpt\" property");
3287     }
3288 }
3289 
3290 static bool spapr_get_vof(Object *obj, Error **errp)
3291 {
3292     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3293 
3294     return spapr->vof != NULL;
3295 }
3296 
3297 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3298 {
3299     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3300 
3301     if (spapr->vof) {
3302         vof_cleanup(spapr->vof);
3303         g_free(spapr->vof);
3304         spapr->vof = NULL;
3305     }
3306     if (!value) {
3307         return;
3308     }
3309     spapr->vof = g_malloc0(sizeof(*spapr->vof));
3310 }
3311 
3312 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3313 {
3314     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3315 
3316     if (spapr->irq == &spapr_irq_xics_legacy) {
3317         return g_strdup("legacy");
3318     } else if (spapr->irq == &spapr_irq_xics) {
3319         return g_strdup("xics");
3320     } else if (spapr->irq == &spapr_irq_xive) {
3321         return g_strdup("xive");
3322     } else if (spapr->irq == &spapr_irq_dual) {
3323         return g_strdup("dual");
3324     }
3325     g_assert_not_reached();
3326 }
3327 
3328 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3329 {
3330     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3331 
3332     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3333         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3334         return;
3335     }
3336 
3337     /* The legacy IRQ backend can not be set */
3338     if (strcmp(value, "xics") == 0) {
3339         spapr->irq = &spapr_irq_xics;
3340     } else if (strcmp(value, "xive") == 0) {
3341         spapr->irq = &spapr_irq_xive;
3342     } else if (strcmp(value, "dual") == 0) {
3343         spapr->irq = &spapr_irq_dual;
3344     } else {
3345         error_setg(errp, "Bad value for \"ic-mode\" property");
3346     }
3347 }
3348 
3349 static char *spapr_get_host_model(Object *obj, Error **errp)
3350 {
3351     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3352 
3353     return g_strdup(spapr->host_model);
3354 }
3355 
3356 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3357 {
3358     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3359 
3360     g_free(spapr->host_model);
3361     spapr->host_model = g_strdup(value);
3362 }
3363 
3364 static char *spapr_get_host_serial(Object *obj, Error **errp)
3365 {
3366     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3367 
3368     return g_strdup(spapr->host_serial);
3369 }
3370 
3371 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3372 {
3373     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3374 
3375     g_free(spapr->host_serial);
3376     spapr->host_serial = g_strdup(value);
3377 }
3378 
3379 static void spapr_instance_init(Object *obj)
3380 {
3381     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3382     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3383     MachineState *ms = MACHINE(spapr);
3384     MachineClass *mc = MACHINE_GET_CLASS(ms);
3385 
3386     /*
3387      * NVDIMM support went live in 5.1 without considering that, in
3388      * other archs, the user needs to enable NVDIMM support with the
3389      * 'nvdimm' machine option and the default behavior is NVDIMM
3390      * support disabled. It is too late to roll back to the standard
3391      * behavior without breaking 5.1 guests.
3392      */
3393     if (mc->nvdimm_supported) {
3394         ms->nvdimms_state->is_enabled = true;
3395     }
3396 
3397     spapr->htab_fd = -1;
3398     spapr->use_hotplug_event_source = true;
3399     spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3400     object_property_add_str(obj, "kvm-type",
3401                             spapr_get_kvm_type, spapr_set_kvm_type);
3402     object_property_set_description(obj, "kvm-type",
3403                                     "Specifies the KVM virtualization mode (auto,"
3404                                     " hv, pr). Defaults to 'auto'. This mode will use"
3405                                     " any available KVM module loaded in the host,"
3406                                     " where kvm_hv takes precedence if both kvm_hv and"
3407                                     " kvm_pr are loaded.");
3408     object_property_add_bool(obj, "modern-hotplug-events",
3409                             spapr_get_modern_hotplug_events,
3410                             spapr_set_modern_hotplug_events);
3411     object_property_set_description(obj, "modern-hotplug-events",
3412                                     "Use dedicated hotplug event mechanism in"
3413                                     " place of standard EPOW events when possible"
3414                                     " (required for memory hot-unplug support)");
3415     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3416                             "Maximum permitted CPU compatibility mode");
3417 
3418     object_property_add_str(obj, "resize-hpt",
3419                             spapr_get_resize_hpt, spapr_set_resize_hpt);
3420     object_property_set_description(obj, "resize-hpt",
3421                                     "Resizing of the Hash Page Table (enabled, disabled, required)");
3422     object_property_add_uint32_ptr(obj, "vsmt",
3423                                    &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3424     object_property_set_description(obj, "vsmt",
3425                                     "Virtual SMT: KVM behaves as if this were"
3426                                     " the host's SMT mode");
3427 
3428     object_property_add_bool(obj, "vfio-no-msix-emulation",
3429                              spapr_get_msix_emulation, NULL);
3430 
3431     object_property_add_uint64_ptr(obj, "kernel-addr",
3432                                    &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3433     object_property_set_description(obj, "kernel-addr",
3434                                     stringify(KERNEL_LOAD_ADDR)
3435                                     " for -kernel is the default");
3436     spapr->kernel_addr = KERNEL_LOAD_ADDR;
3437 
3438     object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3439     object_property_set_description(obj, "x-vof",
3440                                     "Enable Virtual Open Firmware (experimental)");
3441 
3442     /* The machine class defines the default interrupt controller mode */
3443     spapr->irq = smc->irq;
3444     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3445                             spapr_set_ic_mode);
3446     object_property_set_description(obj, "ic-mode",
3447                  "Specifies the interrupt controller mode (xics, xive, dual)");
3448 
3449     object_property_add_str(obj, "host-model",
3450         spapr_get_host_model, spapr_set_host_model);
3451     object_property_set_description(obj, "host-model",
3452         "Host model to advertise in guest device tree");
3453     object_property_add_str(obj, "host-serial",
3454         spapr_get_host_serial, spapr_set_host_serial);
3455     object_property_set_description(obj, "host-serial",
3456         "Host serial number to advertise in guest device tree");
3457 }
3458 
3459 static void spapr_machine_finalizefn(Object *obj)
3460 {
3461     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3462 
3463     g_free(spapr->kvm_type);
3464 }
3465 
3466 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3467 {
3468     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3469     PowerPCCPU *cpu = POWERPC_CPU(cs);
3470     CPUPPCState *env = &cpu->env;
3471 
3472     cpu_synchronize_state(cs);
3473     /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3474     if (spapr->fwnmi_system_reset_addr != -1) {
3475         uint64_t rtas_addr, addr;
3476 
3477         /* get rtas addr from fdt */
3478         rtas_addr = spapr_get_rtas_addr();
3479         if (!rtas_addr) {
3480             qemu_system_guest_panicked(NULL);
3481             return;
3482         }
3483 
3484         addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3485         stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3486         stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3487         env->gpr[3] = addr;
3488     }
3489     ppc_cpu_do_system_reset(cs);
3490     if (spapr->fwnmi_system_reset_addr != -1) {
3491         env->nip = spapr->fwnmi_system_reset_addr;
3492     }
3493 }
3494 
3495 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3496 {
3497     CPUState *cs;
3498 
3499     CPU_FOREACH(cs) {
3500         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3501     }
3502 }
3503 
3504 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3505                           void *fdt, int *fdt_start_offset, Error **errp)
3506 {
3507     uint64_t addr;
3508     uint32_t node;
3509 
3510     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3511     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3512                                     &error_abort);
3513     *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3514                                              SPAPR_MEMORY_BLOCK_SIZE);
3515     return 0;
3516 }
3517 
3518 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3519                            bool dedicated_hp_event_source)
3520 {
3521     SpaprDrc *drc;
3522     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3523     int i;
3524     uint64_t addr = addr_start;
3525     bool hotplugged = spapr_drc_hotplugged(dev);
3526 
3527     for (i = 0; i < nr_lmbs; i++) {
3528         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3529                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3530         g_assert(drc);
3531 
3532         /*
3533          * memory_device_get_free_addr() provided a range of free addresses
3534          * that doesn't overlap with any existing mapping at pre-plug. The
3535          * corresponding LMB DRCs are thus assumed to be all attachable.
3536          */
3537         spapr_drc_attach(drc, dev);
3538         if (!hotplugged) {
3539             spapr_drc_reset(drc);
3540         }
3541         addr += SPAPR_MEMORY_BLOCK_SIZE;
3542     }
3543     /* send hotplug notification to the
3544      * guest only in case of hotplugged memory
3545      */
3546     if (hotplugged) {
3547         if (dedicated_hp_event_source) {
3548             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3549                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3550             g_assert(drc);
3551             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3552                                                    nr_lmbs,
3553                                                    spapr_drc_index(drc));
3554         } else {
3555             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3556                                            nr_lmbs);
3557         }
3558     }
3559 }
3560 
3561 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3562 {
3563     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3564     PCDIMMDevice *dimm = PC_DIMM(dev);
3565     uint64_t size, addr;
3566     int64_t slot;
3567     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3568 
3569     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3570 
3571     pc_dimm_plug(dimm, MACHINE(ms));
3572 
3573     if (!is_nvdimm) {
3574         addr = object_property_get_uint(OBJECT(dimm),
3575                                         PC_DIMM_ADDR_PROP, &error_abort);
3576         spapr_add_lmbs(dev, addr, size,
3577                        spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3578     } else {
3579         slot = object_property_get_int(OBJECT(dimm),
3580                                        PC_DIMM_SLOT_PROP, &error_abort);
3581         /* We should have valid slot number at this point */
3582         g_assert(slot >= 0);
3583         spapr_add_nvdimm(dev, slot);
3584     }
3585 }
3586 
3587 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3588                                   Error **errp)
3589 {
3590     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3591     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3592     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3593     PCDIMMDevice *dimm = PC_DIMM(dev);
3594     Error *local_err = NULL;
3595     uint64_t size;
3596     Object *memdev;
3597     hwaddr pagesize;
3598 
3599     if (!smc->dr_lmb_enabled) {
3600         error_setg(errp, "Memory hotplug not supported for this machine");
3601         return;
3602     }
3603 
3604     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3605     if (local_err) {
3606         error_propagate(errp, local_err);
3607         return;
3608     }
3609 
3610     if (is_nvdimm) {
3611         if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3612             return;
3613         }
3614     } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3615         error_setg(errp, "Hotplugged memory size must be a multiple of "
3616                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3617         return;
3618     }
3619 
3620     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3621                                       &error_abort);
3622     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3623     if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3624         return;
3625     }
3626 
3627     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3628 }
3629 
3630 struct SpaprDimmState {
3631     PCDIMMDevice *dimm;
3632     uint32_t nr_lmbs;
3633     QTAILQ_ENTRY(SpaprDimmState) next;
3634 };
3635 
3636 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3637                                                        PCDIMMDevice *dimm)
3638 {
3639     SpaprDimmState *dimm_state = NULL;
3640 
3641     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3642         if (dimm_state->dimm == dimm) {
3643             break;
3644         }
3645     }
3646     return dimm_state;
3647 }
3648 
3649 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3650                                                       uint32_t nr_lmbs,
3651                                                       PCDIMMDevice *dimm)
3652 {
3653     SpaprDimmState *ds = NULL;
3654 
3655     /*
3656      * If this request is for a DIMM whose removal had failed earlier
3657      * (due to guest's refusal to remove the LMBs), we would have this
3658      * dimm already in the pending_dimm_unplugs list. In that
3659      * case don't add again.
3660      */
3661     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3662     if (!ds) {
3663         ds = g_new0(SpaprDimmState, 1);
3664         ds->nr_lmbs = nr_lmbs;
3665         ds->dimm = dimm;
3666         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3667     }
3668     return ds;
3669 }
3670 
3671 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3672                                               SpaprDimmState *dimm_state)
3673 {
3674     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3675     g_free(dimm_state);
3676 }
3677 
3678 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3679                                                         PCDIMMDevice *dimm)
3680 {
3681     SpaprDrc *drc;
3682     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3683                                                   &error_abort);
3684     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3685     uint32_t avail_lmbs = 0;
3686     uint64_t addr_start, addr;
3687     int i;
3688 
3689     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3690                                           &error_abort);
3691 
3692     addr = addr_start;
3693     for (i = 0; i < nr_lmbs; i++) {
3694         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3695                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3696         g_assert(drc);
3697         if (drc->dev) {
3698             avail_lmbs++;
3699         }
3700         addr += SPAPR_MEMORY_BLOCK_SIZE;
3701     }
3702 
3703     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3704 }
3705 
3706 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3707 {
3708     SpaprDimmState *ds;
3709     PCDIMMDevice *dimm;
3710     SpaprDrc *drc;
3711     uint32_t nr_lmbs;
3712     uint64_t size, addr_start, addr;
3713     g_autofree char *qapi_error = NULL;
3714     int i;
3715 
3716     if (!dev) {
3717         return;
3718     }
3719 
3720     dimm = PC_DIMM(dev);
3721     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3722 
3723     /*
3724      * 'ds == NULL' would mean that the DIMM doesn't have a pending
3725      * unplug state, but one of its DRC is marked as unplug_requested.
3726      * This is bad and weird enough to g_assert() out.
3727      */
3728     g_assert(ds);
3729 
3730     spapr_pending_dimm_unplugs_remove(spapr, ds);
3731 
3732     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3733     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3734 
3735     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3736                                           &error_abort);
3737 
3738     addr = addr_start;
3739     for (i = 0; i < nr_lmbs; i++) {
3740         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3741                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3742         g_assert(drc);
3743 
3744         drc->unplug_requested = false;
3745         addr += SPAPR_MEMORY_BLOCK_SIZE;
3746     }
3747 
3748     /*
3749      * Tell QAPI that something happened and the memory
3750      * hotunplug wasn't successful. Keep sending
3751      * MEM_UNPLUG_ERROR even while sending
3752      * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3753      * MEM_UNPLUG_ERROR is due.
3754      */
3755     qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3756                                  "for device %s", dev->id);
3757 
3758     qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
3759 
3760     qapi_event_send_device_unplug_guest_error(dev->id,
3761                                               dev->canonical_path);
3762 }
3763 
3764 /* Callback to be called during DRC release. */
3765 void spapr_lmb_release(DeviceState *dev)
3766 {
3767     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3768     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3769     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3770 
3771     /* This information will get lost if a migration occurs
3772      * during the unplug process. In this case recover it. */
3773     if (ds == NULL) {
3774         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3775         g_assert(ds);
3776         /* The DRC being examined by the caller at least must be counted */
3777         g_assert(ds->nr_lmbs);
3778     }
3779 
3780     if (--ds->nr_lmbs) {
3781         return;
3782     }
3783 
3784     /*
3785      * Now that all the LMBs have been removed by the guest, call the
3786      * unplug handler chain. This can never fail.
3787      */
3788     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3789     object_unparent(OBJECT(dev));
3790 }
3791 
3792 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3793 {
3794     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3795     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3796 
3797     /* We really shouldn't get this far without anything to unplug */
3798     g_assert(ds);
3799 
3800     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3801     qdev_unrealize(dev);
3802     spapr_pending_dimm_unplugs_remove(spapr, ds);
3803 }
3804 
3805 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3806                                         DeviceState *dev, Error **errp)
3807 {
3808     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3809     PCDIMMDevice *dimm = PC_DIMM(dev);
3810     uint32_t nr_lmbs;
3811     uint64_t size, addr_start, addr;
3812     int i;
3813     SpaprDrc *drc;
3814 
3815     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3816         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3817         return;
3818     }
3819 
3820     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3821     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3822 
3823     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3824                                           &error_abort);
3825 
3826     /*
3827      * An existing pending dimm state for this DIMM means that there is an
3828      * unplug operation in progress, waiting for the spapr_lmb_release
3829      * callback to complete the job (BQL can't cover that far). In this case,
3830      * bail out to avoid detaching DRCs that were already released.
3831      */
3832     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3833         error_setg(errp, "Memory unplug already in progress for device %s",
3834                    dev->id);
3835         return;
3836     }
3837 
3838     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3839 
3840     addr = addr_start;
3841     for (i = 0; i < nr_lmbs; i++) {
3842         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3843                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3844         g_assert(drc);
3845 
3846         spapr_drc_unplug_request(drc);
3847         addr += SPAPR_MEMORY_BLOCK_SIZE;
3848     }
3849 
3850     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3851                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3852     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3853                                               nr_lmbs, spapr_drc_index(drc));
3854 }
3855 
3856 /* Callback to be called during DRC release. */
3857 void spapr_core_release(DeviceState *dev)
3858 {
3859     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3860 
3861     /* Call the unplug handler chain. This can never fail. */
3862     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3863     object_unparent(OBJECT(dev));
3864 }
3865 
3866 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3867 {
3868     MachineState *ms = MACHINE(hotplug_dev);
3869     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3870     CPUCore *cc = CPU_CORE(dev);
3871     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3872 
3873     if (smc->pre_2_10_has_unused_icps) {
3874         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3875         int i;
3876 
3877         for (i = 0; i < cc->nr_threads; i++) {
3878             CPUState *cs = CPU(sc->threads[i]);
3879 
3880             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3881         }
3882     }
3883 
3884     assert(core_slot);
3885     core_slot->cpu = NULL;
3886     qdev_unrealize(dev);
3887 }
3888 
3889 static
3890 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3891                                Error **errp)
3892 {
3893     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3894     int index;
3895     SpaprDrc *drc;
3896     CPUCore *cc = CPU_CORE(dev);
3897 
3898     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3899         error_setg(errp, "Unable to find CPU core with core-id: %d",
3900                    cc->core_id);
3901         return;
3902     }
3903     if (index == 0) {
3904         error_setg(errp, "Boot CPU core may not be unplugged");
3905         return;
3906     }
3907 
3908     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3909                           spapr_vcpu_id(spapr, cc->core_id));
3910     g_assert(drc);
3911 
3912     if (!spapr_drc_unplug_requested(drc)) {
3913         spapr_drc_unplug_request(drc);
3914     }
3915 
3916     /*
3917      * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3918      * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3919      * pulses removing the same CPU. Otherwise, in an failed hotunplug
3920      * attempt (e.g. the kernel will refuse to remove the last online
3921      * CPU), we will never attempt it again because unplug_requested
3922      * will still be 'true' in that case.
3923      */
3924     spapr_hotplug_req_remove_by_index(drc);
3925 }
3926 
3927 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3928                            void *fdt, int *fdt_start_offset, Error **errp)
3929 {
3930     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3931     CPUState *cs = CPU(core->threads[0]);
3932     PowerPCCPU *cpu = POWERPC_CPU(cs);
3933     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3934     int id = spapr_get_vcpu_id(cpu);
3935     g_autofree char *nodename = NULL;
3936     int offset;
3937 
3938     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3939     offset = fdt_add_subnode(fdt, 0, nodename);
3940 
3941     spapr_dt_cpu(cs, fdt, offset, spapr);
3942 
3943     /*
3944      * spapr_dt_cpu() does not fill the 'name' property in the
3945      * CPU node. The function is called during boot process, before
3946      * and after CAS, and overwriting the 'name' property written
3947      * by SLOF is not allowed.
3948      *
3949      * Write it manually after spapr_dt_cpu(). This makes the hotplug
3950      * CPUs more compatible with the coldplugged ones, which have
3951      * the 'name' property. Linux Kernel also relies on this
3952      * property to identify CPU nodes.
3953      */
3954     _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3955 
3956     *fdt_start_offset = offset;
3957     return 0;
3958 }
3959 
3960 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3961 {
3962     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3963     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3964     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3965     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3966     CPUCore *cc = CPU_CORE(dev);
3967     CPUState *cs;
3968     SpaprDrc *drc;
3969     CPUArchId *core_slot;
3970     int index;
3971     bool hotplugged = spapr_drc_hotplugged(dev);
3972     int i;
3973 
3974     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3975     g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3976 
3977     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3978                           spapr_vcpu_id(spapr, cc->core_id));
3979 
3980     g_assert(drc || !mc->has_hotpluggable_cpus);
3981 
3982     if (drc) {
3983         /*
3984          * spapr_core_pre_plug() already buys us this is a brand new
3985          * core being plugged into a free slot. Nothing should already
3986          * be attached to the corresponding DRC.
3987          */
3988         spapr_drc_attach(drc, dev);
3989 
3990         if (hotplugged) {
3991             /*
3992              * Send hotplug notification interrupt to the guest only
3993              * in case of hotplugged CPUs.
3994              */
3995             spapr_hotplug_req_add_by_index(drc);
3996         } else {
3997             spapr_drc_reset(drc);
3998         }
3999     }
4000 
4001     core_slot->cpu = OBJECT(dev);
4002 
4003     /*
4004      * Set compatibility mode to match the boot CPU, which was either set
4005      * by the machine reset code or by CAS. This really shouldn't fail at
4006      * this point.
4007      */
4008     if (hotplugged) {
4009         for (i = 0; i < cc->nr_threads; i++) {
4010             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
4011                            &error_abort);
4012         }
4013     }
4014 
4015     if (smc->pre_2_10_has_unused_icps) {
4016         for (i = 0; i < cc->nr_threads; i++) {
4017             cs = CPU(core->threads[i]);
4018             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
4019         }
4020     }
4021 }
4022 
4023 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4024                                 Error **errp)
4025 {
4026     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
4027     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
4028     CPUCore *cc = CPU_CORE(dev);
4029     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
4030     const char *type = object_get_typename(OBJECT(dev));
4031     CPUArchId *core_slot;
4032     int index;
4033     unsigned int smp_threads = machine->smp.threads;
4034 
4035     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
4036         error_setg(errp, "CPU hotplug not supported for this machine");
4037         return;
4038     }
4039 
4040     if (strcmp(base_core_type, type)) {
4041         error_setg(errp, "CPU core type should be %s", base_core_type);
4042         return;
4043     }
4044 
4045     if (cc->core_id % smp_threads) {
4046         error_setg(errp, "invalid core id %d", cc->core_id);
4047         return;
4048     }
4049 
4050     /*
4051      * In general we should have homogeneous threads-per-core, but old
4052      * (pre hotplug support) machine types allow the last core to have
4053      * reduced threads as a compatibility hack for when we allowed
4054      * total vcpus not a multiple of threads-per-core.
4055      */
4056     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
4057         error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4058                    smp_threads);
4059         return;
4060     }
4061 
4062     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4063     if (!core_slot) {
4064         error_setg(errp, "core id %d out of range", cc->core_id);
4065         return;
4066     }
4067 
4068     if (core_slot->cpu) {
4069         error_setg(errp, "core %d already populated", cc->core_id);
4070         return;
4071     }
4072 
4073     numa_cpu_pre_plug(core_slot, dev, errp);
4074 }
4075 
4076 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4077                           void *fdt, int *fdt_start_offset, Error **errp)
4078 {
4079     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4080     int intc_phandle;
4081 
4082     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4083     if (intc_phandle <= 0) {
4084         return -1;
4085     }
4086 
4087     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4088         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4089         return -1;
4090     }
4091 
4092     /* generally SLOF creates these, for hotplug it's up to QEMU */
4093     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4094 
4095     return 0;
4096 }
4097 
4098 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4099                                Error **errp)
4100 {
4101     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4102     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4103     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4104     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4105     SpaprDrc *drc;
4106 
4107     if (dev->hotplugged && !smc->dr_phb_enabled) {
4108         error_setg(errp, "PHB hotplug not supported for this machine");
4109         return false;
4110     }
4111 
4112     if (sphb->index == (uint32_t)-1) {
4113         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4114         return false;
4115     }
4116 
4117     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4118     if (drc && drc->dev) {
4119         error_setg(errp, "PHB %d already attached", sphb->index);
4120         return false;
4121     }
4122 
4123     /*
4124      * This will check that sphb->index doesn't exceed the maximum number of
4125      * PHBs for the current machine type.
4126      */
4127     return
4128         smc->phb_placement(spapr, sphb->index,
4129                            &sphb->buid, &sphb->io_win_addr,
4130                            &sphb->mem_win_addr, &sphb->mem64_win_addr,
4131                            windows_supported, sphb->dma_liobn,
4132                            errp);
4133 }
4134 
4135 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4136 {
4137     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4138     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4139     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4140     SpaprDrc *drc;
4141     bool hotplugged = spapr_drc_hotplugged(dev);
4142 
4143     if (!smc->dr_phb_enabled) {
4144         return;
4145     }
4146 
4147     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4148     /* hotplug hooks should check it's enabled before getting this far */
4149     assert(drc);
4150 
4151     /* spapr_phb_pre_plug() already checked the DRC is attachable */
4152     spapr_drc_attach(drc, dev);
4153 
4154     if (hotplugged) {
4155         spapr_hotplug_req_add_by_index(drc);
4156     } else {
4157         spapr_drc_reset(drc);
4158     }
4159 }
4160 
4161 void spapr_phb_release(DeviceState *dev)
4162 {
4163     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4164 
4165     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4166     object_unparent(OBJECT(dev));
4167 }
4168 
4169 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4170 {
4171     qdev_unrealize(dev);
4172 }
4173 
4174 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4175                                      DeviceState *dev, Error **errp)
4176 {
4177     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4178     SpaprDrc *drc;
4179 
4180     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4181     assert(drc);
4182 
4183     if (!spapr_drc_unplug_requested(drc)) {
4184         spapr_drc_unplug_request(drc);
4185         spapr_hotplug_req_remove_by_index(drc);
4186     } else {
4187         error_setg(errp,
4188                    "PCI Host Bridge unplug already in progress for device %s",
4189                    dev->id);
4190     }
4191 }
4192 
4193 static
4194 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4195                               Error **errp)
4196 {
4197     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4198 
4199     if (spapr->tpm_proxy != NULL) {
4200         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4201         return false;
4202     }
4203 
4204     return true;
4205 }
4206 
4207 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4208 {
4209     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4210     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4211 
4212     /* Already checked in spapr_tpm_proxy_pre_plug() */
4213     g_assert(spapr->tpm_proxy == NULL);
4214 
4215     spapr->tpm_proxy = tpm_proxy;
4216 }
4217 
4218 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4219 {
4220     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4221 
4222     qdev_unrealize(dev);
4223     object_unparent(OBJECT(dev));
4224     spapr->tpm_proxy = NULL;
4225 }
4226 
4227 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4228                                       DeviceState *dev, Error **errp)
4229 {
4230     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4231         spapr_memory_plug(hotplug_dev, dev);
4232     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4233         spapr_core_plug(hotplug_dev, dev);
4234     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4235         spapr_phb_plug(hotplug_dev, dev);
4236     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4237         spapr_tpm_proxy_plug(hotplug_dev, dev);
4238     }
4239 }
4240 
4241 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4242                                         DeviceState *dev, Error **errp)
4243 {
4244     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4245         spapr_memory_unplug(hotplug_dev, dev);
4246     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4247         spapr_core_unplug(hotplug_dev, dev);
4248     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4249         spapr_phb_unplug(hotplug_dev, dev);
4250     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4251         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4252     }
4253 }
4254 
4255 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4256 {
4257     return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4258         /*
4259          * CAS will process all pending unplug requests.
4260          *
4261          * HACK: a guest could theoretically have cleared all bits in OV5,
4262          * but none of the guests we care for do.
4263          */
4264         spapr_ovec_empty(spapr->ov5_cas);
4265 }
4266 
4267 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4268                                                 DeviceState *dev, Error **errp)
4269 {
4270     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4271     MachineClass *mc = MACHINE_GET_CLASS(sms);
4272     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4273 
4274     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4275         if (spapr_memory_hot_unplug_supported(sms)) {
4276             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4277         } else {
4278             error_setg(errp, "Memory hot unplug not supported for this guest");
4279         }
4280     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4281         if (!mc->has_hotpluggable_cpus) {
4282             error_setg(errp, "CPU hot unplug not supported on this machine");
4283             return;
4284         }
4285         spapr_core_unplug_request(hotplug_dev, dev, errp);
4286     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4287         if (!smc->dr_phb_enabled) {
4288             error_setg(errp, "PHB hot unplug not supported on this machine");
4289             return;
4290         }
4291         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4292     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4293         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4294     }
4295 }
4296 
4297 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4298                                           DeviceState *dev, Error **errp)
4299 {
4300     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4301         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4302     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4303         spapr_core_pre_plug(hotplug_dev, dev, errp);
4304     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4305         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4306     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4307         spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4308     }
4309 }
4310 
4311 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4312                                                  DeviceState *dev)
4313 {
4314     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4315         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4316         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4317         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4318         return HOTPLUG_HANDLER(machine);
4319     }
4320     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4321         PCIDevice *pcidev = PCI_DEVICE(dev);
4322         PCIBus *root = pci_device_root_bus(pcidev);
4323         SpaprPhbState *phb =
4324             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4325                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4326 
4327         if (phb) {
4328             return HOTPLUG_HANDLER(phb);
4329         }
4330     }
4331     return NULL;
4332 }
4333 
4334 static CpuInstanceProperties
4335 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4336 {
4337     CPUArchId *core_slot;
4338     MachineClass *mc = MACHINE_GET_CLASS(machine);
4339 
4340     /* make sure possible_cpu are initialized */
4341     mc->possible_cpu_arch_ids(machine);
4342     /* get CPU core slot containing thread that matches cpu_index */
4343     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4344     assert(core_slot);
4345     return core_slot->props;
4346 }
4347 
4348 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4349 {
4350     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4351 }
4352 
4353 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4354 {
4355     int i;
4356     unsigned int smp_threads = machine->smp.threads;
4357     unsigned int smp_cpus = machine->smp.cpus;
4358     const char *core_type;
4359     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4360     MachineClass *mc = MACHINE_GET_CLASS(machine);
4361 
4362     if (!mc->has_hotpluggable_cpus) {
4363         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4364     }
4365     if (machine->possible_cpus) {
4366         assert(machine->possible_cpus->len == spapr_max_cores);
4367         return machine->possible_cpus;
4368     }
4369 
4370     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4371     if (!core_type) {
4372         error_report("Unable to find sPAPR CPU Core definition");
4373         exit(1);
4374     }
4375 
4376     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4377                              sizeof(CPUArchId) * spapr_max_cores);
4378     machine->possible_cpus->len = spapr_max_cores;
4379     for (i = 0; i < machine->possible_cpus->len; i++) {
4380         int core_id = i * smp_threads;
4381 
4382         machine->possible_cpus->cpus[i].type = core_type;
4383         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4384         machine->possible_cpus->cpus[i].arch_id = core_id;
4385         machine->possible_cpus->cpus[i].props.has_core_id = true;
4386         machine->possible_cpus->cpus[i].props.core_id = core_id;
4387     }
4388     return machine->possible_cpus;
4389 }
4390 
4391 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4392                                 uint64_t *buid, hwaddr *pio,
4393                                 hwaddr *mmio32, hwaddr *mmio64,
4394                                 unsigned n_dma, uint32_t *liobns, Error **errp)
4395 {
4396     /*
4397      * New-style PHB window placement.
4398      *
4399      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4400      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4401      * windows.
4402      *
4403      * Some guest kernels can't work with MMIO windows above 1<<46
4404      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4405      *
4406      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4407      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4408      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4409      * 1TiB 64-bit MMIO windows for each PHB.
4410      */
4411     const uint64_t base_buid = 0x800000020000000ULL;
4412     int i;
4413 
4414     /* Sanity check natural alignments */
4415     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4416     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4417     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4418     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4419     /* Sanity check bounds */
4420     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4421                       SPAPR_PCI_MEM32_WIN_SIZE);
4422     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4423                       SPAPR_PCI_MEM64_WIN_SIZE);
4424 
4425     if (index >= SPAPR_MAX_PHBS) {
4426         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4427                    SPAPR_MAX_PHBS - 1);
4428         return false;
4429     }
4430 
4431     *buid = base_buid + index;
4432     for (i = 0; i < n_dma; ++i) {
4433         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4434     }
4435 
4436     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4437     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4438     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4439     return true;
4440 }
4441 
4442 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4443 {
4444     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4445 
4446     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4447 }
4448 
4449 static void spapr_ics_resend(XICSFabric *dev)
4450 {
4451     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4452 
4453     ics_resend(spapr->ics);
4454 }
4455 
4456 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4457 {
4458     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4459 
4460     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4461 }
4462 
4463 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4464                                  Monitor *mon)
4465 {
4466     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4467 
4468     spapr_irq_print_info(spapr, mon);
4469     monitor_printf(mon, "irqchip: %s\n",
4470                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4471 }
4472 
4473 /*
4474  * This is a XIVE only operation
4475  */
4476 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4477                            uint8_t nvt_blk, uint32_t nvt_idx,
4478                            bool cam_ignore, uint8_t priority,
4479                            uint32_t logic_serv, XiveTCTXMatch *match)
4480 {
4481     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4482     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4483     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4484     int count;
4485 
4486     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4487                            priority, logic_serv, match);
4488     if (count < 0) {
4489         return count;
4490     }
4491 
4492     /*
4493      * When we implement the save and restore of the thread interrupt
4494      * contexts in the enter/exit CPU handlers of the machine and the
4495      * escalations in QEMU, we should be able to handle non dispatched
4496      * vCPUs.
4497      *
4498      * Until this is done, the sPAPR machine should find at least one
4499      * matching context always.
4500      */
4501     if (count == 0) {
4502         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4503                       nvt_blk, nvt_idx);
4504     }
4505 
4506     return count;
4507 }
4508 
4509 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4510 {
4511     return cpu->vcpu_id;
4512 }
4513 
4514 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4515 {
4516     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4517     MachineState *ms = MACHINE(spapr);
4518     int vcpu_id;
4519 
4520     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4521 
4522     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4523         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4524         error_append_hint(errp, "Adjust the number of cpus to %d "
4525                           "or try to raise the number of threads per core\n",
4526                           vcpu_id * ms->smp.threads / spapr->vsmt);
4527         return false;
4528     }
4529 
4530     cpu->vcpu_id = vcpu_id;
4531     return true;
4532 }
4533 
4534 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4535 {
4536     CPUState *cs;
4537 
4538     CPU_FOREACH(cs) {
4539         PowerPCCPU *cpu = POWERPC_CPU(cs);
4540 
4541         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4542             return cpu;
4543         }
4544     }
4545 
4546     return NULL;
4547 }
4548 
4549 static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4550 {
4551     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4552 
4553     return spapr_cpu->in_nested;
4554 }
4555 
4556 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4557 {
4558     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4559 
4560     /* These are only called by TCG, KVM maintains dispatch state */
4561 
4562     spapr_cpu->prod = false;
4563     if (spapr_cpu->vpa_addr) {
4564         CPUState *cs = CPU(cpu);
4565         uint32_t dispatch;
4566 
4567         dispatch = ldl_be_phys(cs->as,
4568                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4569         dispatch++;
4570         if ((dispatch & 1) != 0) {
4571             qemu_log_mask(LOG_GUEST_ERROR,
4572                           "VPA: incorrect dispatch counter value for "
4573                           "dispatched partition %u, correcting.\n", dispatch);
4574             dispatch++;
4575         }
4576         stl_be_phys(cs->as,
4577                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4578     }
4579 }
4580 
4581 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4582 {
4583     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4584 
4585     if (spapr_cpu->vpa_addr) {
4586         CPUState *cs = CPU(cpu);
4587         uint32_t dispatch;
4588 
4589         dispatch = ldl_be_phys(cs->as,
4590                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4591         dispatch++;
4592         if ((dispatch & 1) != 1) {
4593             qemu_log_mask(LOG_GUEST_ERROR,
4594                           "VPA: incorrect dispatch counter value for "
4595                           "preempted partition %u, correcting.\n", dispatch);
4596             dispatch++;
4597         }
4598         stl_be_phys(cs->as,
4599                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4600     }
4601 }
4602 
4603 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4604 {
4605     MachineClass *mc = MACHINE_CLASS(oc);
4606     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4607     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4608     NMIClass *nc = NMI_CLASS(oc);
4609     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4610     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4611     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4612     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4613     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4614     VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4615 
4616     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4617     mc->ignore_boot_device_suffixes = true;
4618 
4619     /*
4620      * We set up the default / latest behaviour here.  The class_init
4621      * functions for the specific versioned machine types can override
4622      * these details for backwards compatibility
4623      */
4624     mc->init = spapr_machine_init;
4625     mc->reset = spapr_machine_reset;
4626     mc->block_default_type = IF_SCSI;
4627 
4628     /*
4629      * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4630      * should be limited by the host capability instead of hardcoded.
4631      * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4632      * guests are welcome to have as many CPUs as the host are capable
4633      * of emulate.
4634      */
4635     mc->max_cpus = INT32_MAX;
4636 
4637     mc->no_parallel = 1;
4638     mc->default_boot_order = "";
4639     mc->default_ram_size = 512 * MiB;
4640     mc->default_ram_id = "ppc_spapr.ram";
4641     mc->default_display = "std";
4642     mc->kvm_type = spapr_kvm_type;
4643     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4644     mc->pci_allow_0_address = true;
4645     assert(!mc->get_hotplug_handler);
4646     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4647     hc->pre_plug = spapr_machine_device_pre_plug;
4648     hc->plug = spapr_machine_device_plug;
4649     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4650     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4651     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4652     hc->unplug_request = spapr_machine_device_unplug_request;
4653     hc->unplug = spapr_machine_device_unplug;
4654 
4655     smc->dr_lmb_enabled = true;
4656     smc->update_dt_enabled = true;
4657     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
4658     mc->has_hotpluggable_cpus = true;
4659     mc->nvdimm_supported = true;
4660     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4661     fwc->get_dev_path = spapr_get_fw_dev_path;
4662     nc->nmi_monitor_handler = spapr_nmi;
4663     smc->phb_placement = spapr_phb_placement;
4664     vhc->cpu_in_nested = spapr_cpu_in_nested;
4665     vhc->deliver_hv_excp = spapr_exit_nested;
4666     vhc->hypercall = emulate_spapr_hypercall;
4667     vhc->hpt_mask = spapr_hpt_mask;
4668     vhc->map_hptes = spapr_map_hptes;
4669     vhc->unmap_hptes = spapr_unmap_hptes;
4670     vhc->hpte_set_c = spapr_hpte_set_c;
4671     vhc->hpte_set_r = spapr_hpte_set_r;
4672     vhc->get_pate = spapr_get_pate;
4673     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4674     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4675     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4676     xic->ics_get = spapr_ics_get;
4677     xic->ics_resend = spapr_ics_resend;
4678     xic->icp_get = spapr_icp_get;
4679     ispc->print_info = spapr_pic_print_info;
4680     /* Force NUMA node memory size to be a multiple of
4681      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4682      * in which LMBs are represented and hot-added
4683      */
4684     mc->numa_mem_align_shift = 28;
4685     mc->auto_enable_numa = true;
4686 
4687     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4688     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4689     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4690     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4691     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4692     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4693     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4694     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4695     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4696     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4697     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4698     smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4699 
4700     /*
4701      * This cap specifies whether the AIL 3 mode for
4702      * H_SET_RESOURCE is supported. The default is modified
4703      * by default_caps_with_cpu().
4704      */
4705     smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON;
4706     spapr_caps_add_properties(smc);
4707     smc->irq = &spapr_irq_dual;
4708     smc->dr_phb_enabled = true;
4709     smc->linux_pci_probe = true;
4710     smc->smp_threads_vsmt = true;
4711     smc->nr_xirqs = SPAPR_NR_XIRQS;
4712     xfc->match_nvt = spapr_match_nvt;
4713     vmc->client_architecture_support = spapr_vof_client_architecture_support;
4714     vmc->quiesce = spapr_vof_quiesce;
4715     vmc->setprop = spapr_vof_setprop;
4716 }
4717 
4718 static const TypeInfo spapr_machine_info = {
4719     .name          = TYPE_SPAPR_MACHINE,
4720     .parent        = TYPE_MACHINE,
4721     .abstract      = true,
4722     .instance_size = sizeof(SpaprMachineState),
4723     .instance_init = spapr_instance_init,
4724     .instance_finalize = spapr_machine_finalizefn,
4725     .class_size    = sizeof(SpaprMachineClass),
4726     .class_init    = spapr_machine_class_init,
4727     .interfaces = (InterfaceInfo[]) {
4728         { TYPE_FW_PATH_PROVIDER },
4729         { TYPE_NMI },
4730         { TYPE_HOTPLUG_HANDLER },
4731         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4732         { TYPE_XICS_FABRIC },
4733         { TYPE_INTERRUPT_STATS_PROVIDER },
4734         { TYPE_XIVE_FABRIC },
4735         { TYPE_VOF_MACHINE_IF },
4736         { }
4737     },
4738 };
4739 
4740 static void spapr_machine_latest_class_options(MachineClass *mc)
4741 {
4742     mc->alias = "pseries";
4743     mc->is_default = true;
4744 }
4745 
4746 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4747     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4748                                                     void *data)      \
4749     {                                                                \
4750         MachineClass *mc = MACHINE_CLASS(oc);                        \
4751         spapr_machine_##suffix##_class_options(mc);                  \
4752         if (latest) {                                                \
4753             spapr_machine_latest_class_options(mc);                  \
4754         }                                                            \
4755     }                                                                \
4756     static const TypeInfo spapr_machine_##suffix##_info = {          \
4757         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4758         .parent = TYPE_SPAPR_MACHINE,                                \
4759         .class_init = spapr_machine_##suffix##_class_init,           \
4760     };                                                               \
4761     static void spapr_machine_register_##suffix(void)                \
4762     {                                                                \
4763         type_register(&spapr_machine_##suffix##_info);               \
4764     }                                                                \
4765     type_init(spapr_machine_register_##suffix)
4766 
4767 /*
4768  * pseries-8.2
4769  */
4770 static void spapr_machine_8_2_class_options(MachineClass *mc)
4771 {
4772     /* Defaults for the latest behaviour inherited from the base class */
4773 }
4774 
4775 DEFINE_SPAPR_MACHINE(8_2, "8.2", true);
4776 
4777 /*
4778  * pseries-8.1
4779  */
4780 static void spapr_machine_8_1_class_options(MachineClass *mc)
4781 {
4782     spapr_machine_8_2_class_options(mc);
4783     compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
4784 }
4785 
4786 DEFINE_SPAPR_MACHINE(8_1, "8.1", false);
4787 
4788 /*
4789  * pseries-8.0
4790  */
4791 static void spapr_machine_8_0_class_options(MachineClass *mc)
4792 {
4793     spapr_machine_8_1_class_options(mc);
4794     compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
4795 }
4796 
4797 DEFINE_SPAPR_MACHINE(8_0, "8.0", false);
4798 
4799 /*
4800  * pseries-7.2
4801  */
4802 static void spapr_machine_7_2_class_options(MachineClass *mc)
4803 {
4804     spapr_machine_8_0_class_options(mc);
4805     compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
4806 }
4807 
4808 DEFINE_SPAPR_MACHINE(7_2, "7.2", false);
4809 
4810 /*
4811  * pseries-7.1
4812  */
4813 static void spapr_machine_7_1_class_options(MachineClass *mc)
4814 {
4815     spapr_machine_7_2_class_options(mc);
4816     compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
4817 }
4818 
4819 DEFINE_SPAPR_MACHINE(7_1, "7.1", false);
4820 
4821 /*
4822  * pseries-7.0
4823  */
4824 static void spapr_machine_7_0_class_options(MachineClass *mc)
4825 {
4826     spapr_machine_7_1_class_options(mc);
4827     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
4828 }
4829 
4830 DEFINE_SPAPR_MACHINE(7_0, "7.0", false);
4831 
4832 /*
4833  * pseries-6.2
4834  */
4835 static void spapr_machine_6_2_class_options(MachineClass *mc)
4836 {
4837     spapr_machine_7_0_class_options(mc);
4838     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4839 }
4840 
4841 DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
4842 
4843 /*
4844  * pseries-6.1
4845  */
4846 static void spapr_machine_6_1_class_options(MachineClass *mc)
4847 {
4848     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4849 
4850     spapr_machine_6_2_class_options(mc);
4851     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4852     smc->pre_6_2_numa_affinity = true;
4853     mc->smp_props.prefer_sockets = true;
4854 }
4855 
4856 DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4857 
4858 /*
4859  * pseries-6.0
4860  */
4861 static void spapr_machine_6_0_class_options(MachineClass *mc)
4862 {
4863     spapr_machine_6_1_class_options(mc);
4864     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4865 }
4866 
4867 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4868 
4869 /*
4870  * pseries-5.2
4871  */
4872 static void spapr_machine_5_2_class_options(MachineClass *mc)
4873 {
4874     spapr_machine_6_0_class_options(mc);
4875     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4876 }
4877 
4878 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4879 
4880 /*
4881  * pseries-5.1
4882  */
4883 static void spapr_machine_5_1_class_options(MachineClass *mc)
4884 {
4885     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4886 
4887     spapr_machine_5_2_class_options(mc);
4888     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4889     smc->pre_5_2_numa_associativity = true;
4890 }
4891 
4892 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4893 
4894 /*
4895  * pseries-5.0
4896  */
4897 static void spapr_machine_5_0_class_options(MachineClass *mc)
4898 {
4899     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4900     static GlobalProperty compat[] = {
4901         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4902     };
4903 
4904     spapr_machine_5_1_class_options(mc);
4905     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4906     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4907     mc->numa_mem_supported = true;
4908     smc->pre_5_1_assoc_refpoints = true;
4909 }
4910 
4911 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4912 
4913 /*
4914  * pseries-4.2
4915  */
4916 static void spapr_machine_4_2_class_options(MachineClass *mc)
4917 {
4918     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4919 
4920     spapr_machine_5_0_class_options(mc);
4921     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4922     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4923     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4924     smc->rma_limit = 16 * GiB;
4925     mc->nvdimm_supported = false;
4926 }
4927 
4928 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4929 
4930 /*
4931  * pseries-4.1
4932  */
4933 static void spapr_machine_4_1_class_options(MachineClass *mc)
4934 {
4935     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4936     static GlobalProperty compat[] = {
4937         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4938         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4939     };
4940 
4941     spapr_machine_4_2_class_options(mc);
4942     smc->linux_pci_probe = false;
4943     smc->smp_threads_vsmt = false;
4944     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4945     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4946 }
4947 
4948 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4949 
4950 /*
4951  * pseries-4.0
4952  */
4953 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4954                               uint64_t *buid, hwaddr *pio,
4955                               hwaddr *mmio32, hwaddr *mmio64,
4956                               unsigned n_dma, uint32_t *liobns, Error **errp)
4957 {
4958     if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4959                              liobns, errp)) {
4960         return false;
4961     }
4962     return true;
4963 }
4964 static void spapr_machine_4_0_class_options(MachineClass *mc)
4965 {
4966     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4967 
4968     spapr_machine_4_1_class_options(mc);
4969     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4970     smc->phb_placement = phb_placement_4_0;
4971     smc->irq = &spapr_irq_xics;
4972     smc->pre_4_1_migration = true;
4973 }
4974 
4975 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4976 
4977 /*
4978  * pseries-3.1
4979  */
4980 static void spapr_machine_3_1_class_options(MachineClass *mc)
4981 {
4982     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4983 
4984     spapr_machine_4_0_class_options(mc);
4985     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4986 
4987     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4988     smc->update_dt_enabled = false;
4989     smc->dr_phb_enabled = false;
4990     smc->broken_host_serial_model = true;
4991     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4992     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4993     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4994     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4995 }
4996 
4997 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4998 
4999 /*
5000  * pseries-3.0
5001  */
5002 
5003 static void spapr_machine_3_0_class_options(MachineClass *mc)
5004 {
5005     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5006 
5007     spapr_machine_3_1_class_options(mc);
5008     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
5009 
5010     smc->legacy_irq_allocation = true;
5011     smc->nr_xirqs = 0x400;
5012     smc->irq = &spapr_irq_xics_legacy;
5013 }
5014 
5015 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
5016 
5017 /*
5018  * pseries-2.12
5019  */
5020 static void spapr_machine_2_12_class_options(MachineClass *mc)
5021 {
5022     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5023     static GlobalProperty compat[] = {
5024         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
5025         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
5026     };
5027 
5028     spapr_machine_3_0_class_options(mc);
5029     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
5030     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5031 
5032     /* We depend on kvm_enabled() to choose a default value for the
5033      * hpt-max-page-size capability. Of course we can't do it here
5034      * because this is too early and the HW accelerator isn't initialized
5035      * yet. Postpone this to machine init (see default_caps_with_cpu()).
5036      */
5037     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
5038 }
5039 
5040 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
5041 
5042 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
5043 {
5044     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5045 
5046     spapr_machine_2_12_class_options(mc);
5047     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
5048     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
5049     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
5050 }
5051 
5052 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
5053 
5054 /*
5055  * pseries-2.11
5056  */
5057 
5058 static void spapr_machine_2_11_class_options(MachineClass *mc)
5059 {
5060     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5061 
5062     spapr_machine_2_12_class_options(mc);
5063     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
5064     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
5065 }
5066 
5067 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
5068 
5069 /*
5070  * pseries-2.10
5071  */
5072 
5073 static void spapr_machine_2_10_class_options(MachineClass *mc)
5074 {
5075     spapr_machine_2_11_class_options(mc);
5076     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
5077 }
5078 
5079 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
5080 
5081 /*
5082  * pseries-2.9
5083  */
5084 
5085 static void spapr_machine_2_9_class_options(MachineClass *mc)
5086 {
5087     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5088     static GlobalProperty compat[] = {
5089         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
5090     };
5091 
5092     spapr_machine_2_10_class_options(mc);
5093     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
5094     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5095     smc->pre_2_10_has_unused_icps = true;
5096     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
5097 }
5098 
5099 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
5100 
5101 /*
5102  * pseries-2.8
5103  */
5104 
5105 static void spapr_machine_2_8_class_options(MachineClass *mc)
5106 {
5107     static GlobalProperty compat[] = {
5108         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
5109     };
5110 
5111     spapr_machine_2_9_class_options(mc);
5112     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
5113     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5114     mc->numa_mem_align_shift = 23;
5115 }
5116 
5117 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
5118 
5119 /*
5120  * pseries-2.7
5121  */
5122 
5123 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
5124                               uint64_t *buid, hwaddr *pio,
5125                               hwaddr *mmio32, hwaddr *mmio64,
5126                               unsigned n_dma, uint32_t *liobns, Error **errp)
5127 {
5128     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5129     const uint64_t base_buid = 0x800000020000000ULL;
5130     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
5131     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
5132     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
5133     const uint32_t max_index = 255;
5134     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
5135 
5136     uint64_t ram_top = MACHINE(spapr)->ram_size;
5137     hwaddr phb0_base, phb_base;
5138     int i;
5139 
5140     /* Do we have device memory? */
5141     if (MACHINE(spapr)->device_memory) {
5142         /* Can't just use maxram_size, because there may be an
5143          * alignment gap between normal and device memory regions
5144          */
5145         ram_top = MACHINE(spapr)->device_memory->base +
5146             memory_region_size(&MACHINE(spapr)->device_memory->mr);
5147     }
5148 
5149     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5150 
5151     if (index > max_index) {
5152         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5153                    max_index);
5154         return false;
5155     }
5156 
5157     *buid = base_buid + index;
5158     for (i = 0; i < n_dma; ++i) {
5159         liobns[i] = SPAPR_PCI_LIOBN(index, i);
5160     }
5161 
5162     phb_base = phb0_base + index * phb_spacing;
5163     *pio = phb_base + pio_offset;
5164     *mmio32 = phb_base + mmio_offset;
5165     /*
5166      * We don't set the 64-bit MMIO window, relying on the PHB's
5167      * fallback behaviour of automatically splitting a large "32-bit"
5168      * window into contiguous 32-bit and 64-bit windows
5169      */
5170 
5171     return true;
5172 }
5173 
5174 static void spapr_machine_2_7_class_options(MachineClass *mc)
5175 {
5176     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5177     static GlobalProperty compat[] = {
5178         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5179         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5180         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5181         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5182     };
5183 
5184     spapr_machine_2_8_class_options(mc);
5185     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5186     mc->default_machine_opts = "modern-hotplug-events=off";
5187     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5188     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5189     smc->phb_placement = phb_placement_2_7;
5190 }
5191 
5192 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5193 
5194 /*
5195  * pseries-2.6
5196  */
5197 
5198 static void spapr_machine_2_6_class_options(MachineClass *mc)
5199 {
5200     static GlobalProperty compat[] = {
5201         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5202     };
5203 
5204     spapr_machine_2_7_class_options(mc);
5205     mc->has_hotpluggable_cpus = false;
5206     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5207     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5208 }
5209 
5210 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5211 
5212 /*
5213  * pseries-2.5
5214  */
5215 
5216 static void spapr_machine_2_5_class_options(MachineClass *mc)
5217 {
5218     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5219     static GlobalProperty compat[] = {
5220         { "spapr-vlan", "use-rx-buffer-pools", "off" },
5221     };
5222 
5223     spapr_machine_2_6_class_options(mc);
5224     smc->use_ohci_by_default = true;
5225     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5226     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5227 }
5228 
5229 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5230 
5231 /*
5232  * pseries-2.4
5233  */
5234 
5235 static void spapr_machine_2_4_class_options(MachineClass *mc)
5236 {
5237     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5238 
5239     spapr_machine_2_5_class_options(mc);
5240     smc->dr_lmb_enabled = false;
5241     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5242 }
5243 
5244 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5245 
5246 /*
5247  * pseries-2.3
5248  */
5249 
5250 static void spapr_machine_2_3_class_options(MachineClass *mc)
5251 {
5252     static GlobalProperty compat[] = {
5253         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5254     };
5255     spapr_machine_2_4_class_options(mc);
5256     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5257     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5258 }
5259 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5260 
5261 /*
5262  * pseries-2.2
5263  */
5264 
5265 static void spapr_machine_2_2_class_options(MachineClass *mc)
5266 {
5267     static GlobalProperty compat[] = {
5268         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5269     };
5270 
5271     spapr_machine_2_3_class_options(mc);
5272     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5273     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5274     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5275 }
5276 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5277 
5278 /*
5279  * pseries-2.1
5280  */
5281 
5282 static void spapr_machine_2_1_class_options(MachineClass *mc)
5283 {
5284     spapr_machine_2_2_class_options(mc);
5285     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5286 }
5287 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5288 
5289 static void spapr_machine_register_types(void)
5290 {
5291     type_register_static(&spapr_machine_info);
5292 }
5293 
5294 type_init(spapr_machine_register_types)
5295