xref: /qemu/hw/ppc/spapr.c (revision f2ad72b3)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "sysemu/sysemu.h"
29 #include "sysemu/numa.h"
30 #include "hw/hw.h"
31 #include "hw/fw-path-provider.h"
32 #include "elf.h"
33 #include "net/net.h"
34 #include "sysemu/device_tree.h"
35 #include "sysemu/block-backend.h"
36 #include "sysemu/cpus.h"
37 #include "sysemu/kvm.h"
38 #include "sysemu/device_tree.h"
39 #include "kvm_ppc.h"
40 #include "migration/migration.h"
41 #include "mmu-hash64.h"
42 #include "qom/cpu.h"
43 
44 #include "hw/boards.h"
45 #include "hw/ppc/ppc.h"
46 #include "hw/loader.h"
47 
48 #include "hw/ppc/spapr.h"
49 #include "hw/ppc/spapr_vio.h"
50 #include "hw/pci-host/spapr.h"
51 #include "hw/ppc/xics.h"
52 #include "hw/pci/msi.h"
53 
54 #include "hw/pci/pci.h"
55 #include "hw/scsi/scsi.h"
56 #include "hw/virtio/virtio-scsi.h"
57 
58 #include "exec/address-spaces.h"
59 #include "hw/usb.h"
60 #include "qemu/config-file.h"
61 #include "qemu/error-report.h"
62 #include "trace.h"
63 #include "hw/nmi.h"
64 
65 #include "hw/compat.h"
66 #include "qemu-common.h"
67 
68 #include <libfdt.h>
69 
70 /* SLOF memory layout:
71  *
72  * SLOF raw image loaded at 0, copies its romfs right below the flat
73  * device-tree, then position SLOF itself 31M below that
74  *
75  * So we set FW_OVERHEAD to 40MB which should account for all of that
76  * and more
77  *
78  * We load our kernel at 4M, leaving space for SLOF initial image
79  */
80 #define FDT_MAX_SIZE            0x100000
81 #define RTAS_MAX_SIZE           0x10000
82 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
83 #define FW_MAX_SIZE             0x400000
84 #define FW_FILE_NAME            "slof.bin"
85 #define FW_OVERHEAD             0x2800000
86 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
87 
88 #define MIN_RMA_SLOF            128UL
89 
90 #define TIMEBASE_FREQ           512000000ULL
91 
92 #define PHANDLE_XICP            0x00001111
93 
94 #define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
95 
96 static XICSState *try_create_xics(const char *type, int nr_servers,
97                                   int nr_irqs, Error **errp)
98 {
99     Error *err = NULL;
100     DeviceState *dev;
101 
102     dev = qdev_create(NULL, type);
103     qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
104     qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
105     object_property_set_bool(OBJECT(dev), true, "realized", &err);
106     if (err) {
107         error_propagate(errp, err);
108         object_unparent(OBJECT(dev));
109         return NULL;
110     }
111     return XICS_COMMON(dev);
112 }
113 
114 static XICSState *xics_system_init(MachineState *machine,
115                                    int nr_servers, int nr_irqs, Error **errp)
116 {
117     XICSState *icp = NULL;
118 
119     if (kvm_enabled()) {
120         Error *err = NULL;
121 
122         if (machine_kernel_irqchip_allowed(machine)) {
123             icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
124         }
125         if (machine_kernel_irqchip_required(machine) && !icp) {
126             error_reportf_err(err,
127                               "kernel_irqchip requested but unavailable: ");
128         } else {
129             error_free(err);
130         }
131     }
132 
133     if (!icp) {
134         icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, errp);
135     }
136 
137     return icp;
138 }
139 
140 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
141                                   int smt_threads)
142 {
143     int i, ret = 0;
144     uint32_t servers_prop[smt_threads];
145     uint32_t gservers_prop[smt_threads * 2];
146     int index = ppc_get_vcpu_dt_id(cpu);
147 
148     if (cpu->cpu_version) {
149         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
150         if (ret < 0) {
151             return ret;
152         }
153     }
154 
155     /* Build interrupt servers and gservers properties */
156     for (i = 0; i < smt_threads; i++) {
157         servers_prop[i] = cpu_to_be32(index + i);
158         /* Hack, direct the group queues back to cpu 0 */
159         gservers_prop[i*2] = cpu_to_be32(index + i);
160         gservers_prop[i*2 + 1] = 0;
161     }
162     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
163                       servers_prop, sizeof(servers_prop));
164     if (ret < 0) {
165         return ret;
166     }
167     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
168                       gservers_prop, sizeof(gservers_prop));
169 
170     return ret;
171 }
172 
173 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
174 {
175     int ret = 0;
176     PowerPCCPU *cpu = POWERPC_CPU(cs);
177     int index = ppc_get_vcpu_dt_id(cpu);
178     uint32_t associativity[] = {cpu_to_be32(0x5),
179                                 cpu_to_be32(0x0),
180                                 cpu_to_be32(0x0),
181                                 cpu_to_be32(0x0),
182                                 cpu_to_be32(cs->numa_node),
183                                 cpu_to_be32(index)};
184 
185     /* Advertise NUMA via ibm,associativity */
186     if (nb_numa_nodes > 1) {
187         ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
188                           sizeof(associativity));
189     }
190 
191     return ret;
192 }
193 
194 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
195 {
196     int ret = 0, offset, cpus_offset;
197     CPUState *cs;
198     char cpu_model[32];
199     int smt = kvmppc_smt_threads();
200     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
201 
202     CPU_FOREACH(cs) {
203         PowerPCCPU *cpu = POWERPC_CPU(cs);
204         DeviceClass *dc = DEVICE_GET_CLASS(cs);
205         int index = ppc_get_vcpu_dt_id(cpu);
206 
207         if ((index % smt) != 0) {
208             continue;
209         }
210 
211         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
212 
213         cpus_offset = fdt_path_offset(fdt, "/cpus");
214         if (cpus_offset < 0) {
215             cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
216                                           "cpus");
217             if (cpus_offset < 0) {
218                 return cpus_offset;
219             }
220         }
221         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
222         if (offset < 0) {
223             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
224             if (offset < 0) {
225                 return offset;
226             }
227         }
228 
229         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
230                           pft_size_prop, sizeof(pft_size_prop));
231         if (ret < 0) {
232             return ret;
233         }
234 
235         ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
236         if (ret < 0) {
237             return ret;
238         }
239 
240         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
241                                      ppc_get_compat_smt_threads(cpu));
242         if (ret < 0) {
243             return ret;
244         }
245     }
246     return ret;
247 }
248 
249 
250 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
251                                      size_t maxsize)
252 {
253     size_t maxcells = maxsize / sizeof(uint32_t);
254     int i, j, count;
255     uint32_t *p = prop;
256 
257     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
258         struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
259 
260         if (!sps->page_shift) {
261             break;
262         }
263         for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
264             if (sps->enc[count].page_shift == 0) {
265                 break;
266             }
267         }
268         if ((p - prop) >= (maxcells - 3 - count * 2)) {
269             break;
270         }
271         *(p++) = cpu_to_be32(sps->page_shift);
272         *(p++) = cpu_to_be32(sps->slb_enc);
273         *(p++) = cpu_to_be32(count);
274         for (j = 0; j < count; j++) {
275             *(p++) = cpu_to_be32(sps->enc[j].page_shift);
276             *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
277         }
278     }
279 
280     return (p - prop) * sizeof(uint32_t);
281 }
282 
283 static hwaddr spapr_node0_size(void)
284 {
285     MachineState *machine = MACHINE(qdev_get_machine());
286 
287     if (nb_numa_nodes) {
288         int i;
289         for (i = 0; i < nb_numa_nodes; ++i) {
290             if (numa_info[i].node_mem) {
291                 return MIN(pow2floor(numa_info[i].node_mem),
292                            machine->ram_size);
293             }
294         }
295     }
296     return machine->ram_size;
297 }
298 
299 #define _FDT(exp) \
300     do { \
301         int ret = (exp);                                           \
302         if (ret < 0) {                                             \
303             fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
304                     #exp, fdt_strerror(ret));                      \
305             exit(1);                                               \
306         }                                                          \
307     } while (0)
308 
309 static void add_str(GString *s, const gchar *s1)
310 {
311     g_string_append_len(s, s1, strlen(s1) + 1);
312 }
313 
314 static void *spapr_create_fdt_skel(hwaddr initrd_base,
315                                    hwaddr initrd_size,
316                                    hwaddr kernel_size,
317                                    bool little_endian,
318                                    const char *kernel_cmdline,
319                                    uint32_t epow_irq)
320 {
321     void *fdt;
322     uint32_t start_prop = cpu_to_be32(initrd_base);
323     uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
324     GString *hypertas = g_string_sized_new(256);
325     GString *qemu_hypertas = g_string_sized_new(256);
326     uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
327     uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
328     unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
329     char *buf;
330 
331     add_str(hypertas, "hcall-pft");
332     add_str(hypertas, "hcall-term");
333     add_str(hypertas, "hcall-dabr");
334     add_str(hypertas, "hcall-interrupt");
335     add_str(hypertas, "hcall-tce");
336     add_str(hypertas, "hcall-vio");
337     add_str(hypertas, "hcall-splpar");
338     add_str(hypertas, "hcall-bulk");
339     add_str(hypertas, "hcall-set-mode");
340     add_str(qemu_hypertas, "hcall-memop1");
341 
342     fdt = g_malloc0(FDT_MAX_SIZE);
343     _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
344 
345     if (kernel_size) {
346         _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
347     }
348     if (initrd_size) {
349         _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
350     }
351     _FDT((fdt_finish_reservemap(fdt)));
352 
353     /* Root node */
354     _FDT((fdt_begin_node(fdt, "")));
355     _FDT((fdt_property_string(fdt, "device_type", "chrp")));
356     _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
357     _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
358 
359     /*
360      * Add info to guest to indentify which host is it being run on
361      * and what is the uuid of the guest
362      */
363     if (kvmppc_get_host_model(&buf)) {
364         _FDT((fdt_property_string(fdt, "host-model", buf)));
365         g_free(buf);
366     }
367     if (kvmppc_get_host_serial(&buf)) {
368         _FDT((fdt_property_string(fdt, "host-serial", buf)));
369         g_free(buf);
370     }
371 
372     buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
373                           qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
374                           qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
375                           qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
376                           qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
377                           qemu_uuid[14], qemu_uuid[15]);
378 
379     _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
380     if (qemu_uuid_set) {
381         _FDT((fdt_property_string(fdt, "system-id", buf)));
382     }
383     g_free(buf);
384 
385     if (qemu_get_vm_name()) {
386         _FDT((fdt_property_string(fdt, "ibm,partition-name",
387                                   qemu_get_vm_name())));
388     }
389 
390     _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
391     _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
392 
393     /* /chosen */
394     _FDT((fdt_begin_node(fdt, "chosen")));
395 
396     /* Set Form1_affinity */
397     _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
398 
399     _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
400     _FDT((fdt_property(fdt, "linux,initrd-start",
401                        &start_prop, sizeof(start_prop))));
402     _FDT((fdt_property(fdt, "linux,initrd-end",
403                        &end_prop, sizeof(end_prop))));
404     if (kernel_size) {
405         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
406                               cpu_to_be64(kernel_size) };
407 
408         _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
409         if (little_endian) {
410             _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
411         }
412     }
413     if (boot_menu) {
414         _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
415     }
416     _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
417     _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
418     _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
419 
420     _FDT((fdt_end_node(fdt)));
421 
422     /* RTAS */
423     _FDT((fdt_begin_node(fdt, "rtas")));
424 
425     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
426         add_str(hypertas, "hcall-multi-tce");
427     }
428     _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
429                        hypertas->len)));
430     g_string_free(hypertas, TRUE);
431     _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
432                        qemu_hypertas->len)));
433     g_string_free(qemu_hypertas, TRUE);
434 
435     _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
436         refpoints, sizeof(refpoints))));
437 
438     _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
439     _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
440                             RTAS_EVENT_SCAN_RATE)));
441 
442     if (msi_supported) {
443         _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
444     }
445 
446     /*
447      * According to PAPR, rtas ibm,os-term does not guarantee a return
448      * back to the guest cpu.
449      *
450      * While an additional ibm,extended-os-term property indicates that
451      * rtas call return will always occur. Set this property.
452      */
453     _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
454 
455     _FDT((fdt_end_node(fdt)));
456 
457     /* interrupt controller */
458     _FDT((fdt_begin_node(fdt, "interrupt-controller")));
459 
460     _FDT((fdt_property_string(fdt, "device_type",
461                               "PowerPC-External-Interrupt-Presentation")));
462     _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
463     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
464     _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
465                        interrupt_server_ranges_prop,
466                        sizeof(interrupt_server_ranges_prop))));
467     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
468     _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
469     _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
470 
471     _FDT((fdt_end_node(fdt)));
472 
473     /* vdevice */
474     _FDT((fdt_begin_node(fdt, "vdevice")));
475 
476     _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
477     _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
478     _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
479     _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
480     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
481     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
482 
483     _FDT((fdt_end_node(fdt)));
484 
485     /* event-sources */
486     spapr_events_fdt_skel(fdt, epow_irq);
487 
488     /* /hypervisor node */
489     if (kvm_enabled()) {
490         uint8_t hypercall[16];
491 
492         /* indicate KVM hypercall interface */
493         _FDT((fdt_begin_node(fdt, "hypervisor")));
494         _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
495         if (kvmppc_has_cap_fixup_hcalls()) {
496             /*
497              * Older KVM versions with older guest kernels were broken with the
498              * magic page, don't allow the guest to map it.
499              */
500             kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
501                                  sizeof(hypercall));
502             _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
503                               sizeof(hypercall))));
504         }
505         _FDT((fdt_end_node(fdt)));
506     }
507 
508     _FDT((fdt_end_node(fdt))); /* close root node */
509     _FDT((fdt_finish(fdt)));
510 
511     return fdt;
512 }
513 
514 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
515                                        hwaddr size)
516 {
517     uint32_t associativity[] = {
518         cpu_to_be32(0x4), /* length */
519         cpu_to_be32(0x0), cpu_to_be32(0x0),
520         cpu_to_be32(0x0), cpu_to_be32(nodeid)
521     };
522     char mem_name[32];
523     uint64_t mem_reg_property[2];
524     int off;
525 
526     mem_reg_property[0] = cpu_to_be64(start);
527     mem_reg_property[1] = cpu_to_be64(size);
528 
529     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
530     off = fdt_add_subnode(fdt, 0, mem_name);
531     _FDT(off);
532     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
533     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
534                       sizeof(mem_reg_property))));
535     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
536                       sizeof(associativity))));
537     return off;
538 }
539 
540 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
541 {
542     MachineState *machine = MACHINE(spapr);
543     hwaddr mem_start, node_size;
544     int i, nb_nodes = nb_numa_nodes;
545     NodeInfo *nodes = numa_info;
546     NodeInfo ramnode;
547 
548     /* No NUMA nodes, assume there is just one node with whole RAM */
549     if (!nb_numa_nodes) {
550         nb_nodes = 1;
551         ramnode.node_mem = machine->ram_size;
552         nodes = &ramnode;
553     }
554 
555     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
556         if (!nodes[i].node_mem) {
557             continue;
558         }
559         if (mem_start >= machine->ram_size) {
560             node_size = 0;
561         } else {
562             node_size = nodes[i].node_mem;
563             if (node_size > machine->ram_size - mem_start) {
564                 node_size = machine->ram_size - mem_start;
565             }
566         }
567         if (!mem_start) {
568             /* ppc_spapr_init() checks for rma_size <= node0_size already */
569             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
570             mem_start += spapr->rma_size;
571             node_size -= spapr->rma_size;
572         }
573         for ( ; node_size; ) {
574             hwaddr sizetmp = pow2floor(node_size);
575 
576             /* mem_start != 0 here */
577             if (ctzl(mem_start) < ctzl(sizetmp)) {
578                 sizetmp = 1ULL << ctzl(mem_start);
579             }
580 
581             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
582             node_size -= sizetmp;
583             mem_start += sizetmp;
584         }
585     }
586 
587     return 0;
588 }
589 
590 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
591                                   sPAPRMachineState *spapr)
592 {
593     PowerPCCPU *cpu = POWERPC_CPU(cs);
594     CPUPPCState *env = &cpu->env;
595     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
596     int index = ppc_get_vcpu_dt_id(cpu);
597     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
598                        0xffffffff, 0xffffffff};
599     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
600     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
601     uint32_t page_sizes_prop[64];
602     size_t page_sizes_prop_size;
603     uint32_t vcpus_per_socket = smp_threads * smp_cores;
604     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
605 
606     /* Note: we keep CI large pages off for now because a 64K capable guest
607      * provisioned with large pages might otherwise try to map a qemu
608      * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
609      * even if that qemu runs on a 4k host.
610      *
611      * We can later add this bit back when we are confident this is not
612      * an issue (!HV KVM or 64K host)
613      */
614     uint8_t pa_features_206[] = { 6, 0,
615         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
616     uint8_t pa_features_207[] = { 24, 0,
617         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
618         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
619         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
620         0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
621     uint8_t *pa_features;
622     size_t pa_size;
623 
624     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
625     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
626 
627     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
628     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
629                            env->dcache_line_size)));
630     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
631                            env->dcache_line_size)));
632     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
633                            env->icache_line_size)));
634     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
635                            env->icache_line_size)));
636 
637     if (pcc->l1_dcache_size) {
638         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
639                                pcc->l1_dcache_size)));
640     } else {
641         fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
642     }
643     if (pcc->l1_icache_size) {
644         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
645                                pcc->l1_icache_size)));
646     } else {
647         fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
648     }
649 
650     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
651     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
652     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
653     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
654     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
655     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
656 
657     if (env->spr_cb[SPR_PURR].oea_read) {
658         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
659     }
660 
661     if (env->mmu_model & POWERPC_MMU_1TSEG) {
662         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
663                           segs, sizeof(segs))));
664     }
665 
666     /* Advertise VMX/VSX (vector extensions) if available
667      *   0 / no property == no vector extensions
668      *   1               == VMX / Altivec available
669      *   2               == VSX available */
670     if (env->insns_flags & PPC_ALTIVEC) {
671         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
672 
673         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
674     }
675 
676     /* Advertise DFP (Decimal Floating Point) if available
677      *   0 / no property == no DFP
678      *   1               == DFP available */
679     if (env->insns_flags2 & PPC2_DFP) {
680         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
681     }
682 
683     page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
684                                                   sizeof(page_sizes_prop));
685     if (page_sizes_prop_size) {
686         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
687                           page_sizes_prop, page_sizes_prop_size)));
688     }
689 
690     /* Do the ibm,pa-features property, adjust it for ci-large-pages */
691     if (env->mmu_model == POWERPC_MMU_2_06) {
692         pa_features = pa_features_206;
693         pa_size = sizeof(pa_features_206);
694     } else /* env->mmu_model == POWERPC_MMU_2_07 */ {
695         pa_features = pa_features_207;
696         pa_size = sizeof(pa_features_207);
697     }
698     if (env->ci_large_pages) {
699         pa_features[3] |= 0x20;
700     }
701     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
702 
703     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
704                            cs->cpu_index / vcpus_per_socket)));
705 
706     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
707                       pft_size_prop, sizeof(pft_size_prop))));
708 
709     _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
710 
711     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
712                                 ppc_get_compat_smt_threads(cpu)));
713 }
714 
715 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
716 {
717     CPUState *cs;
718     int cpus_offset;
719     char *nodename;
720     int smt = kvmppc_smt_threads();
721 
722     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
723     _FDT(cpus_offset);
724     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
725     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
726 
727     /*
728      * We walk the CPUs in reverse order to ensure that CPU DT nodes
729      * created by fdt_add_subnode() end up in the right order in FDT
730      * for the guest kernel the enumerate the CPUs correctly.
731      */
732     CPU_FOREACH_REVERSE(cs) {
733         PowerPCCPU *cpu = POWERPC_CPU(cs);
734         int index = ppc_get_vcpu_dt_id(cpu);
735         DeviceClass *dc = DEVICE_GET_CLASS(cs);
736         int offset;
737 
738         if ((index % smt) != 0) {
739             continue;
740         }
741 
742         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
743         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
744         g_free(nodename);
745         _FDT(offset);
746         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
747     }
748 
749 }
750 
751 /*
752  * Adds ibm,dynamic-reconfiguration-memory node.
753  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
754  * of this device tree node.
755  */
756 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
757 {
758     MachineState *machine = MACHINE(spapr);
759     int ret, i, offset;
760     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
761     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
762     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
763     uint32_t *int_buf, *cur_index, buf_len;
764     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
765 
766     /*
767      * Don't create the node if there are no DR LMBs.
768      */
769     if (!nr_lmbs) {
770         return 0;
771     }
772 
773     /*
774      * Allocate enough buffer size to fit in ibm,dynamic-memory
775      * or ibm,associativity-lookup-arrays
776      */
777     buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
778               * sizeof(uint32_t);
779     cur_index = int_buf = g_malloc0(buf_len);
780 
781     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
782 
783     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
784                     sizeof(prop_lmb_size));
785     if (ret < 0) {
786         goto out;
787     }
788 
789     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
790     if (ret < 0) {
791         goto out;
792     }
793 
794     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
795     if (ret < 0) {
796         goto out;
797     }
798 
799     /* ibm,dynamic-memory */
800     int_buf[0] = cpu_to_be32(nr_lmbs);
801     cur_index++;
802     for (i = 0; i < nr_lmbs; i++) {
803         sPAPRDRConnector *drc;
804         sPAPRDRConnectorClass *drck;
805         uint64_t addr = i * lmb_size + spapr->hotplug_memory.base;;
806         uint32_t *dynamic_memory = cur_index;
807 
808         drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
809                                        addr/lmb_size);
810         g_assert(drc);
811         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
812 
813         dynamic_memory[0] = cpu_to_be32(addr >> 32);
814         dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
815         dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
816         dynamic_memory[3] = cpu_to_be32(0); /* reserved */
817         dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
818         if (addr < machine->ram_size ||
819                     memory_region_present(get_system_memory(), addr)) {
820             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
821         } else {
822             dynamic_memory[5] = cpu_to_be32(0);
823         }
824 
825         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
826     }
827     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
828     if (ret < 0) {
829         goto out;
830     }
831 
832     /* ibm,associativity-lookup-arrays */
833     cur_index = int_buf;
834     int_buf[0] = cpu_to_be32(nr_nodes);
835     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
836     cur_index += 2;
837     for (i = 0; i < nr_nodes; i++) {
838         uint32_t associativity[] = {
839             cpu_to_be32(0x0),
840             cpu_to_be32(0x0),
841             cpu_to_be32(0x0),
842             cpu_to_be32(i)
843         };
844         memcpy(cur_index, associativity, sizeof(associativity));
845         cur_index += 4;
846     }
847     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
848             (cur_index - int_buf) * sizeof(uint32_t));
849 out:
850     g_free(int_buf);
851     return ret;
852 }
853 
854 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
855                                  target_ulong addr, target_ulong size,
856                                  bool cpu_update, bool memory_update)
857 {
858     void *fdt, *fdt_skel;
859     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
860     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
861 
862     size -= sizeof(hdr);
863 
864     /* Create sceleton */
865     fdt_skel = g_malloc0(size);
866     _FDT((fdt_create(fdt_skel, size)));
867     _FDT((fdt_begin_node(fdt_skel, "")));
868     _FDT((fdt_end_node(fdt_skel)));
869     _FDT((fdt_finish(fdt_skel)));
870     fdt = g_malloc0(size);
871     _FDT((fdt_open_into(fdt_skel, fdt, size)));
872     g_free(fdt_skel);
873 
874     /* Fixup cpu nodes */
875     if (cpu_update) {
876         _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
877     }
878 
879     /* Generate ibm,dynamic-reconfiguration-memory node if required */
880     if (memory_update && smc->dr_lmb_enabled) {
881         _FDT((spapr_populate_drconf_memory(spapr, fdt)));
882     }
883 
884     /* Pack resulting tree */
885     _FDT((fdt_pack(fdt)));
886 
887     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
888         trace_spapr_cas_failed(size);
889         return -1;
890     }
891 
892     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
893     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
894     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
895     g_free(fdt);
896 
897     return 0;
898 }
899 
900 static void spapr_finalize_fdt(sPAPRMachineState *spapr,
901                                hwaddr fdt_addr,
902                                hwaddr rtas_addr,
903                                hwaddr rtas_size)
904 {
905     MachineState *machine = MACHINE(qdev_get_machine());
906     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
907     const char *boot_device = machine->boot_order;
908     int ret, i;
909     size_t cb = 0;
910     char *bootlist;
911     void *fdt;
912     sPAPRPHBState *phb;
913 
914     fdt = g_malloc(FDT_MAX_SIZE);
915 
916     /* open out the base tree into a temp buffer for the final tweaks */
917     _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
918 
919     ret = spapr_populate_memory(spapr, fdt);
920     if (ret < 0) {
921         fprintf(stderr, "couldn't setup memory nodes in fdt\n");
922         exit(1);
923     }
924 
925     ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
926     if (ret < 0) {
927         fprintf(stderr, "couldn't setup vio devices in fdt\n");
928         exit(1);
929     }
930 
931     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
932         ret = spapr_rng_populate_dt(fdt);
933         if (ret < 0) {
934             fprintf(stderr, "could not set up rng device in the fdt\n");
935             exit(1);
936         }
937     }
938 
939     QLIST_FOREACH(phb, &spapr->phbs, list) {
940         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
941     }
942 
943     if (ret < 0) {
944         fprintf(stderr, "couldn't setup PCI devices in fdt\n");
945         exit(1);
946     }
947 
948     /* RTAS */
949     ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
950     if (ret < 0) {
951         fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
952     }
953 
954     /* cpus */
955     spapr_populate_cpus_dt_node(fdt, spapr);
956 
957     bootlist = get_boot_devices_list(&cb, true);
958     if (cb && bootlist) {
959         int offset = fdt_path_offset(fdt, "/chosen");
960         if (offset < 0) {
961             exit(1);
962         }
963         for (i = 0; i < cb; i++) {
964             if (bootlist[i] == '\n') {
965                 bootlist[i] = ' ';
966             }
967 
968         }
969         ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
970     }
971 
972     if (boot_device && strlen(boot_device)) {
973         int offset = fdt_path_offset(fdt, "/chosen");
974 
975         if (offset < 0) {
976             exit(1);
977         }
978         fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
979     }
980 
981     if (!spapr->has_graphics) {
982         spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
983     }
984 
985     if (smc->dr_lmb_enabled) {
986         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
987     }
988 
989     _FDT((fdt_pack(fdt)));
990 
991     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
992         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
993                      fdt_totalsize(fdt), FDT_MAX_SIZE);
994         exit(1);
995     }
996 
997     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
998     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
999 
1000     g_free(bootlist);
1001     g_free(fdt);
1002 }
1003 
1004 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1005 {
1006     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1007 }
1008 
1009 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
1010 {
1011     CPUPPCState *env = &cpu->env;
1012 
1013     if (msr_pr) {
1014         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1015         env->gpr[3] = H_PRIVILEGE;
1016     } else {
1017         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1018     }
1019 }
1020 
1021 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1022 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1023 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1024 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1025 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1026 
1027 static void spapr_alloc_htab(sPAPRMachineState *spapr)
1028 {
1029     long shift;
1030     int index;
1031 
1032     /* allocate hash page table.  For now we always make this 16mb,
1033      * later we should probably make it scale to the size of guest
1034      * RAM */
1035 
1036     shift = kvmppc_reset_htab(spapr->htab_shift);
1037     if (shift < 0) {
1038         /*
1039          * For HV KVM, host kernel will return -ENOMEM when requested
1040          * HTAB size can't be allocated.
1041          */
1042         error_setg(&error_abort, "Failed to allocate HTAB of requested size, try with smaller maxmem");
1043     } else if (shift > 0) {
1044         /*
1045          * Kernel handles htab, we don't need to allocate one
1046          *
1047          * Older kernels can fall back to lower HTAB shift values,
1048          * but we don't allow booting of such guests.
1049          */
1050         if (shift != spapr->htab_shift) {
1051             error_setg(&error_abort, "Failed to allocate HTAB of requested size, try with smaller maxmem");
1052         }
1053 
1054         spapr->htab_shift = shift;
1055         kvmppc_kern_htab = true;
1056     } else {
1057         /* Allocate htab */
1058         spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
1059 
1060         /* And clear it */
1061         memset(spapr->htab, 0, HTAB_SIZE(spapr));
1062 
1063         for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
1064             DIRTY_HPTE(HPTE(spapr->htab, index));
1065         }
1066     }
1067 }
1068 
1069 /*
1070  * Clear HTAB entries during reset.
1071  *
1072  * If host kernel has allocated HTAB, KVM_PPC_ALLOCATE_HTAB ioctl is
1073  * used to clear HTAB. Otherwise QEMU-allocated HTAB is cleared manually.
1074  */
1075 static void spapr_reset_htab(sPAPRMachineState *spapr)
1076 {
1077     long shift;
1078     int index;
1079 
1080     shift = kvmppc_reset_htab(spapr->htab_shift);
1081     if (shift < 0) {
1082         error_setg(&error_abort, "Failed to reset HTAB");
1083     } else if (shift > 0) {
1084         if (shift != spapr->htab_shift) {
1085             error_setg(&error_abort, "Requested HTAB allocation failed during reset");
1086         }
1087 
1088         /* Tell readers to update their file descriptor */
1089         if (spapr->htab_fd >= 0) {
1090             spapr->htab_fd_stale = true;
1091         }
1092     } else {
1093         memset(spapr->htab, 0, HTAB_SIZE(spapr));
1094 
1095         for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
1096             DIRTY_HPTE(HPTE(spapr->htab, index));
1097         }
1098     }
1099 
1100     /* Update the RMA size if necessary */
1101     if (spapr->vrma_adjust) {
1102         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1103                                           spapr->htab_shift);
1104     }
1105 }
1106 
1107 static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1108 {
1109     bool matched = false;
1110 
1111     if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1112         matched = true;
1113     }
1114 
1115     if (!matched) {
1116         error_report("Device %s is not supported by this machine yet.",
1117                      qdev_fw_name(DEVICE(sbdev)));
1118         exit(1);
1119     }
1120 
1121     return 0;
1122 }
1123 
1124 /*
1125  * A guest reset will cause spapr->htab_fd to become stale if being used.
1126  * Reopen the file descriptor to make sure the whole HTAB is properly read.
1127  */
1128 static int spapr_check_htab_fd(sPAPRMachineState *spapr)
1129 {
1130     int rc = 0;
1131 
1132     if (spapr->htab_fd_stale) {
1133         close(spapr->htab_fd);
1134         spapr->htab_fd = kvmppc_get_htab_fd(false);
1135         if (spapr->htab_fd < 0) {
1136             error_report("Unable to open fd for reading hash table from KVM: "
1137                          "%s", strerror(errno));
1138             rc = -1;
1139         }
1140         spapr->htab_fd_stale = false;
1141     }
1142 
1143     return rc;
1144 }
1145 
1146 static void ppc_spapr_reset(void)
1147 {
1148     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1149     PowerPCCPU *first_ppc_cpu;
1150     uint32_t rtas_limit;
1151 
1152     /* Check for unknown sysbus devices */
1153     foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1154 
1155     /* Reset the hash table & recalc the RMA */
1156     spapr_reset_htab(spapr);
1157 
1158     qemu_devices_reset();
1159 
1160     /*
1161      * We place the device tree and RTAS just below either the top of the RMA,
1162      * or just below 2GB, whichever is lowere, so that it can be
1163      * processed with 32-bit real mode code if necessary
1164      */
1165     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1166     spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1167     spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1168 
1169     /* Load the fdt */
1170     spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
1171                        spapr->rtas_size);
1172 
1173     /* Copy RTAS over */
1174     cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
1175                               spapr->rtas_size);
1176 
1177     /* Set up the entry state */
1178     first_ppc_cpu = POWERPC_CPU(first_cpu);
1179     first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
1180     first_ppc_cpu->env.gpr[5] = 0;
1181     first_cpu->halted = 0;
1182     first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1183 
1184 }
1185 
1186 static void spapr_cpu_reset(void *opaque)
1187 {
1188     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1189     PowerPCCPU *cpu = opaque;
1190     CPUState *cs = CPU(cpu);
1191     CPUPPCState *env = &cpu->env;
1192 
1193     cpu_reset(cs);
1194 
1195     /* All CPUs start halted.  CPU0 is unhalted from the machine level
1196      * reset code and the rest are explicitly started up by the guest
1197      * using an RTAS call */
1198     cs->halted = 1;
1199 
1200     env->spr[SPR_HIOR] = 0;
1201 
1202     env->external_htab = (uint8_t *)spapr->htab;
1203     if (kvm_enabled() && !env->external_htab) {
1204         /*
1205          * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
1206          * functions do the right thing.
1207          */
1208         env->external_htab = (void *)1;
1209     }
1210     env->htab_base = -1;
1211     /*
1212      * htab_mask is the mask used to normalize hash value to PTEG index.
1213      * htab_shift is log2 of hash table size.
1214      * We have 8 hpte per group, and each hpte is 16 bytes.
1215      * ie have 128 bytes per hpte entry.
1216      */
1217     env->htab_mask = (1ULL << (spapr->htab_shift - 7)) - 1;
1218     env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
1219         (spapr->htab_shift - 18);
1220 }
1221 
1222 static void spapr_create_nvram(sPAPRMachineState *spapr)
1223 {
1224     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1225     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1226 
1227     if (dinfo) {
1228         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1229                             &error_fatal);
1230     }
1231 
1232     qdev_init_nofail(dev);
1233 
1234     spapr->nvram = (struct sPAPRNVRAM *)dev;
1235 }
1236 
1237 static void spapr_rtc_create(sPAPRMachineState *spapr)
1238 {
1239     DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1240 
1241     qdev_init_nofail(dev);
1242     spapr->rtc = dev;
1243 
1244     object_property_add_alias(qdev_get_machine(), "rtc-time",
1245                               OBJECT(spapr->rtc), "date", NULL);
1246 }
1247 
1248 /* Returns whether we want to use VGA or not */
1249 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1250 {
1251     switch (vga_interface_type) {
1252     case VGA_NONE:
1253         return false;
1254     case VGA_DEVICE:
1255         return true;
1256     case VGA_STD:
1257     case VGA_VIRTIO:
1258         return pci_vga_init(pci_bus) != NULL;
1259     default:
1260         error_setg(errp,
1261                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1262         return false;
1263     }
1264 }
1265 
1266 static int spapr_post_load(void *opaque, int version_id)
1267 {
1268     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1269     int err = 0;
1270 
1271     /* In earlier versions, there was no separate qdev for the PAPR
1272      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1273      * So when migrating from those versions, poke the incoming offset
1274      * value into the RTC device */
1275     if (version_id < 3) {
1276         err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1277     }
1278 
1279     return err;
1280 }
1281 
1282 static bool version_before_3(void *opaque, int version_id)
1283 {
1284     return version_id < 3;
1285 }
1286 
1287 static const VMStateDescription vmstate_spapr = {
1288     .name = "spapr",
1289     .version_id = 3,
1290     .minimum_version_id = 1,
1291     .post_load = spapr_post_load,
1292     .fields = (VMStateField[]) {
1293         /* used to be @next_irq */
1294         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1295 
1296         /* RTC offset */
1297         VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1298 
1299         VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1300         VMSTATE_END_OF_LIST()
1301     },
1302 };
1303 
1304 static int htab_save_setup(QEMUFile *f, void *opaque)
1305 {
1306     sPAPRMachineState *spapr = opaque;
1307 
1308     /* "Iteration" header */
1309     qemu_put_be32(f, spapr->htab_shift);
1310 
1311     if (spapr->htab) {
1312         spapr->htab_save_index = 0;
1313         spapr->htab_first_pass = true;
1314     } else {
1315         assert(kvm_enabled());
1316 
1317         spapr->htab_fd = kvmppc_get_htab_fd(false);
1318         spapr->htab_fd_stale = false;
1319         if (spapr->htab_fd < 0) {
1320             fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
1321                     strerror(errno));
1322             return -1;
1323         }
1324     }
1325 
1326 
1327     return 0;
1328 }
1329 
1330 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1331                                  int64_t max_ns)
1332 {
1333     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1334     int index = spapr->htab_save_index;
1335     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1336 
1337     assert(spapr->htab_first_pass);
1338 
1339     do {
1340         int chunkstart;
1341 
1342         /* Consume invalid HPTEs */
1343         while ((index < htabslots)
1344                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1345             index++;
1346             CLEAN_HPTE(HPTE(spapr->htab, index));
1347         }
1348 
1349         /* Consume valid HPTEs */
1350         chunkstart = index;
1351         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1352                && HPTE_VALID(HPTE(spapr->htab, index))) {
1353             index++;
1354             CLEAN_HPTE(HPTE(spapr->htab, index));
1355         }
1356 
1357         if (index > chunkstart) {
1358             int n_valid = index - chunkstart;
1359 
1360             qemu_put_be32(f, chunkstart);
1361             qemu_put_be16(f, n_valid);
1362             qemu_put_be16(f, 0);
1363             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1364                             HASH_PTE_SIZE_64 * n_valid);
1365 
1366             if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1367                 break;
1368             }
1369         }
1370     } while ((index < htabslots) && !qemu_file_rate_limit(f));
1371 
1372     if (index >= htabslots) {
1373         assert(index == htabslots);
1374         index = 0;
1375         spapr->htab_first_pass = false;
1376     }
1377     spapr->htab_save_index = index;
1378 }
1379 
1380 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1381                                 int64_t max_ns)
1382 {
1383     bool final = max_ns < 0;
1384     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1385     int examined = 0, sent = 0;
1386     int index = spapr->htab_save_index;
1387     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1388 
1389     assert(!spapr->htab_first_pass);
1390 
1391     do {
1392         int chunkstart, invalidstart;
1393 
1394         /* Consume non-dirty HPTEs */
1395         while ((index < htabslots)
1396                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1397             index++;
1398             examined++;
1399         }
1400 
1401         chunkstart = index;
1402         /* Consume valid dirty HPTEs */
1403         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1404                && HPTE_DIRTY(HPTE(spapr->htab, index))
1405                && HPTE_VALID(HPTE(spapr->htab, index))) {
1406             CLEAN_HPTE(HPTE(spapr->htab, index));
1407             index++;
1408             examined++;
1409         }
1410 
1411         invalidstart = index;
1412         /* Consume invalid dirty HPTEs */
1413         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1414                && HPTE_DIRTY(HPTE(spapr->htab, index))
1415                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1416             CLEAN_HPTE(HPTE(spapr->htab, index));
1417             index++;
1418             examined++;
1419         }
1420 
1421         if (index > chunkstart) {
1422             int n_valid = invalidstart - chunkstart;
1423             int n_invalid = index - invalidstart;
1424 
1425             qemu_put_be32(f, chunkstart);
1426             qemu_put_be16(f, n_valid);
1427             qemu_put_be16(f, n_invalid);
1428             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1429                             HASH_PTE_SIZE_64 * n_valid);
1430             sent += index - chunkstart;
1431 
1432             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1433                 break;
1434             }
1435         }
1436 
1437         if (examined >= htabslots) {
1438             break;
1439         }
1440 
1441         if (index >= htabslots) {
1442             assert(index == htabslots);
1443             index = 0;
1444         }
1445     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1446 
1447     if (index >= htabslots) {
1448         assert(index == htabslots);
1449         index = 0;
1450     }
1451 
1452     spapr->htab_save_index = index;
1453 
1454     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1455 }
1456 
1457 #define MAX_ITERATION_NS    5000000 /* 5 ms */
1458 #define MAX_KVM_BUF_SIZE    2048
1459 
1460 static int htab_save_iterate(QEMUFile *f, void *opaque)
1461 {
1462     sPAPRMachineState *spapr = opaque;
1463     int rc = 0;
1464 
1465     /* Iteration header */
1466     qemu_put_be32(f, 0);
1467 
1468     if (!spapr->htab) {
1469         assert(kvm_enabled());
1470 
1471         rc = spapr_check_htab_fd(spapr);
1472         if (rc < 0) {
1473             return rc;
1474         }
1475 
1476         rc = kvmppc_save_htab(f, spapr->htab_fd,
1477                               MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1478         if (rc < 0) {
1479             return rc;
1480         }
1481     } else  if (spapr->htab_first_pass) {
1482         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1483     } else {
1484         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1485     }
1486 
1487     /* End marker */
1488     qemu_put_be32(f, 0);
1489     qemu_put_be16(f, 0);
1490     qemu_put_be16(f, 0);
1491 
1492     return rc;
1493 }
1494 
1495 static int htab_save_complete(QEMUFile *f, void *opaque)
1496 {
1497     sPAPRMachineState *spapr = opaque;
1498 
1499     /* Iteration header */
1500     qemu_put_be32(f, 0);
1501 
1502     if (!spapr->htab) {
1503         int rc;
1504 
1505         assert(kvm_enabled());
1506 
1507         rc = spapr_check_htab_fd(spapr);
1508         if (rc < 0) {
1509             return rc;
1510         }
1511 
1512         rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1513         if (rc < 0) {
1514             return rc;
1515         }
1516         close(spapr->htab_fd);
1517         spapr->htab_fd = -1;
1518     } else {
1519         htab_save_later_pass(f, spapr, -1);
1520     }
1521 
1522     /* End marker */
1523     qemu_put_be32(f, 0);
1524     qemu_put_be16(f, 0);
1525     qemu_put_be16(f, 0);
1526 
1527     return 0;
1528 }
1529 
1530 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1531 {
1532     sPAPRMachineState *spapr = opaque;
1533     uint32_t section_hdr;
1534     int fd = -1;
1535 
1536     if (version_id < 1 || version_id > 1) {
1537         error_report("htab_load() bad version");
1538         return -EINVAL;
1539     }
1540 
1541     section_hdr = qemu_get_be32(f);
1542 
1543     if (section_hdr) {
1544         /* First section, just the hash shift */
1545         if (spapr->htab_shift != section_hdr) {
1546             error_report("htab_shift mismatch: source %d target %d",
1547                          section_hdr, spapr->htab_shift);
1548             return -EINVAL;
1549         }
1550         return 0;
1551     }
1552 
1553     if (!spapr->htab) {
1554         assert(kvm_enabled());
1555 
1556         fd = kvmppc_get_htab_fd(true);
1557         if (fd < 0) {
1558             error_report("Unable to open fd to restore KVM hash table: %s",
1559                          strerror(errno));
1560         }
1561     }
1562 
1563     while (true) {
1564         uint32_t index;
1565         uint16_t n_valid, n_invalid;
1566 
1567         index = qemu_get_be32(f);
1568         n_valid = qemu_get_be16(f);
1569         n_invalid = qemu_get_be16(f);
1570 
1571         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1572             /* End of Stream */
1573             break;
1574         }
1575 
1576         if ((index + n_valid + n_invalid) >
1577             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1578             /* Bad index in stream */
1579             error_report(
1580                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1581                 index, n_valid, n_invalid, spapr->htab_shift);
1582             return -EINVAL;
1583         }
1584 
1585         if (spapr->htab) {
1586             if (n_valid) {
1587                 qemu_get_buffer(f, HPTE(spapr->htab, index),
1588                                 HASH_PTE_SIZE_64 * n_valid);
1589             }
1590             if (n_invalid) {
1591                 memset(HPTE(spapr->htab, index + n_valid), 0,
1592                        HASH_PTE_SIZE_64 * n_invalid);
1593             }
1594         } else {
1595             int rc;
1596 
1597             assert(fd >= 0);
1598 
1599             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1600             if (rc < 0) {
1601                 return rc;
1602             }
1603         }
1604     }
1605 
1606     if (!spapr->htab) {
1607         assert(fd >= 0);
1608         close(fd);
1609     }
1610 
1611     return 0;
1612 }
1613 
1614 static SaveVMHandlers savevm_htab_handlers = {
1615     .save_live_setup = htab_save_setup,
1616     .save_live_iterate = htab_save_iterate,
1617     .save_live_complete_precopy = htab_save_complete,
1618     .load_state = htab_load,
1619 };
1620 
1621 static void spapr_boot_set(void *opaque, const char *boot_device,
1622                            Error **errp)
1623 {
1624     MachineState *machine = MACHINE(qdev_get_machine());
1625     machine->boot_order = g_strdup(boot_device);
1626 }
1627 
1628 static void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu,
1629                            Error **errp)
1630 {
1631     CPUPPCState *env = &cpu->env;
1632 
1633     /* Set time-base frequency to 512 MHz */
1634     cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1635 
1636     /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1637      * MSR[IP] should never be set.
1638      */
1639     env->msr_mask &= ~(1 << 6);
1640 
1641     /* Tell KVM that we're in PAPR mode */
1642     if (kvm_enabled()) {
1643         kvmppc_set_papr(cpu);
1644     }
1645 
1646     if (cpu->max_compat) {
1647         Error *local_err = NULL;
1648 
1649         ppc_set_compat(cpu, cpu->max_compat, &local_err);
1650         if (local_err) {
1651             error_propagate(errp, local_err);
1652             return;
1653         }
1654     }
1655 
1656     xics_cpu_setup(spapr->icp, cpu);
1657 
1658     qemu_register_reset(spapr_cpu_reset, cpu);
1659 }
1660 
1661 /*
1662  * Reset routine for LMB DR devices.
1663  *
1664  * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1665  * routine. Reset for PCI DR devices will be handled by PHB reset routine
1666  * when it walks all its children devices. LMB devices reset occurs
1667  * as part of spapr_ppc_reset().
1668  */
1669 static void spapr_drc_reset(void *opaque)
1670 {
1671     sPAPRDRConnector *drc = opaque;
1672     DeviceState *d = DEVICE(drc);
1673 
1674     if (d) {
1675         device_reset(d);
1676     }
1677 }
1678 
1679 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1680 {
1681     MachineState *machine = MACHINE(spapr);
1682     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1683     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1684     int i;
1685 
1686     for (i = 0; i < nr_lmbs; i++) {
1687         sPAPRDRConnector *drc;
1688         uint64_t addr;
1689 
1690         addr = i * lmb_size + spapr->hotplug_memory.base;
1691         drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1692                                      addr/lmb_size);
1693         qemu_register_reset(spapr_drc_reset, drc);
1694     }
1695 }
1696 
1697 /*
1698  * If RAM size, maxmem size and individual node mem sizes aren't aligned
1699  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1700  * since we can't support such unaligned sizes with DRCONF_MEMORY.
1701  */
1702 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1703 {
1704     int i;
1705 
1706     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1707         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1708                    " is not aligned to %llu MiB",
1709                    machine->ram_size,
1710                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1711         return;
1712     }
1713 
1714     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1715         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1716                    " is not aligned to %llu MiB",
1717                    machine->ram_size,
1718                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1719         return;
1720     }
1721 
1722     for (i = 0; i < nb_numa_nodes; i++) {
1723         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1724             error_setg(errp,
1725                        "Node %d memory size 0x%" PRIx64
1726                        " is not aligned to %llu MiB",
1727                        i, numa_info[i].node_mem,
1728                        SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1729             return;
1730         }
1731     }
1732 }
1733 
1734 /* pSeries LPAR / sPAPR hardware init */
1735 static void ppc_spapr_init(MachineState *machine)
1736 {
1737     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1738     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1739     const char *kernel_filename = machine->kernel_filename;
1740     const char *kernel_cmdline = machine->kernel_cmdline;
1741     const char *initrd_filename = machine->initrd_filename;
1742     PowerPCCPU *cpu;
1743     PCIHostState *phb;
1744     int i;
1745     MemoryRegion *sysmem = get_system_memory();
1746     MemoryRegion *ram = g_new(MemoryRegion, 1);
1747     MemoryRegion *rma_region;
1748     void *rma = NULL;
1749     hwaddr rma_alloc_size;
1750     hwaddr node0_size = spapr_node0_size();
1751     uint32_t initrd_base = 0;
1752     long kernel_size = 0, initrd_size = 0;
1753     long load_limit, fw_size;
1754     bool kernel_le = false;
1755     char *filename;
1756 
1757     msi_supported = true;
1758 
1759     QLIST_INIT(&spapr->phbs);
1760 
1761     cpu_ppc_hypercall = emulate_spapr_hypercall;
1762 
1763     /* Allocate RMA if necessary */
1764     rma_alloc_size = kvmppc_alloc_rma(&rma);
1765 
1766     if (rma_alloc_size == -1) {
1767         error_report("Unable to create RMA");
1768         exit(1);
1769     }
1770 
1771     if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1772         spapr->rma_size = rma_alloc_size;
1773     } else {
1774         spapr->rma_size = node0_size;
1775 
1776         /* With KVM, we don't actually know whether KVM supports an
1777          * unbounded RMA (PR KVM) or is limited by the hash table size
1778          * (HV KVM using VRMA), so we always assume the latter
1779          *
1780          * In that case, we also limit the initial allocations for RTAS
1781          * etc... to 256M since we have no way to know what the VRMA size
1782          * is going to be as it depends on the size of the hash table
1783          * isn't determined yet.
1784          */
1785         if (kvm_enabled()) {
1786             spapr->vrma_adjust = 1;
1787             spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1788         }
1789     }
1790 
1791     if (spapr->rma_size > node0_size) {
1792         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
1793                      spapr->rma_size);
1794         exit(1);
1795     }
1796 
1797     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1798     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1799 
1800     /* We aim for a hash table of size 1/128 the size of RAM.  The
1801      * normal rule of thumb is 1/64 the size of RAM, but that's much
1802      * more than needed for the Linux guests we support. */
1803     spapr->htab_shift = 18; /* Minimum architected size */
1804     while (spapr->htab_shift <= 46) {
1805         if ((1ULL << (spapr->htab_shift + 7)) >= machine->maxram_size) {
1806             break;
1807         }
1808         spapr->htab_shift++;
1809     }
1810     spapr_alloc_htab(spapr);
1811 
1812     /* Set up Interrupt Controller before we create the VCPUs */
1813     spapr->icp = xics_system_init(machine,
1814                                   DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(),
1815                                                smp_threads),
1816                                   XICS_IRQS, &error_fatal);
1817 
1818     if (smc->dr_lmb_enabled) {
1819         spapr_validate_node_memory(machine, &error_fatal);
1820     }
1821 
1822     /* init CPUs */
1823     if (machine->cpu_model == NULL) {
1824         machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
1825     }
1826     for (i = 0; i < smp_cpus; i++) {
1827         cpu = cpu_ppc_init(machine->cpu_model);
1828         if (cpu == NULL) {
1829             error_report("Unable to find PowerPC CPU definition");
1830             exit(1);
1831         }
1832         spapr_cpu_init(spapr, cpu, &error_fatal);
1833     }
1834 
1835     if (kvm_enabled()) {
1836         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1837         kvmppc_enable_logical_ci_hcalls();
1838         kvmppc_enable_set_mode_hcall();
1839     }
1840 
1841     /* allocate RAM */
1842     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1843                                          machine->ram_size);
1844     memory_region_add_subregion(sysmem, 0, ram);
1845 
1846     if (rma_alloc_size && rma) {
1847         rma_region = g_new(MemoryRegion, 1);
1848         memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1849                                    rma_alloc_size, rma);
1850         vmstate_register_ram_global(rma_region);
1851         memory_region_add_subregion(sysmem, 0, rma_region);
1852     }
1853 
1854     /* initialize hotplug memory address space */
1855     if (machine->ram_size < machine->maxram_size) {
1856         ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1857 
1858         if (machine->ram_slots > SPAPR_MAX_RAM_SLOTS) {
1859             error_report("Specified number of memory slots %"
1860                          PRIu64" exceeds max supported %d",
1861                          machine->ram_slots, SPAPR_MAX_RAM_SLOTS);
1862             exit(1);
1863         }
1864 
1865         spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1866                                               SPAPR_HOTPLUG_MEM_ALIGN);
1867         memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1868                            "hotplug-memory", hotplug_mem_size);
1869         memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1870                                     &spapr->hotplug_memory.mr);
1871     }
1872 
1873     if (smc->dr_lmb_enabled) {
1874         spapr_create_lmb_dr_connectors(spapr);
1875     }
1876 
1877     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1878     if (!filename) {
1879         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1880         exit(1);
1881     }
1882     spapr->rtas_size = get_image_size(filename);
1883     spapr->rtas_blob = g_malloc(spapr->rtas_size);
1884     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1885         error_report("Could not load LPAR rtas '%s'", filename);
1886         exit(1);
1887     }
1888     if (spapr->rtas_size > RTAS_MAX_SIZE) {
1889         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1890                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1891         exit(1);
1892     }
1893     g_free(filename);
1894 
1895     /* Set up EPOW events infrastructure */
1896     spapr_events_init(spapr);
1897 
1898     /* Set up the RTC RTAS interfaces */
1899     spapr_rtc_create(spapr);
1900 
1901     /* Set up VIO bus */
1902     spapr->vio_bus = spapr_vio_bus_init();
1903 
1904     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1905         if (serial_hds[i]) {
1906             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1907         }
1908     }
1909 
1910     /* We always have at least the nvram device on VIO */
1911     spapr_create_nvram(spapr);
1912 
1913     /* Set up PCI */
1914     spapr_pci_rtas_init();
1915 
1916     phb = spapr_create_phb(spapr, 0);
1917 
1918     for (i = 0; i < nb_nics; i++) {
1919         NICInfo *nd = &nd_table[i];
1920 
1921         if (!nd->model) {
1922             nd->model = g_strdup("ibmveth");
1923         }
1924 
1925         if (strcmp(nd->model, "ibmveth") == 0) {
1926             spapr_vlan_create(spapr->vio_bus, nd);
1927         } else {
1928             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1929         }
1930     }
1931 
1932     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1933         spapr_vscsi_create(spapr->vio_bus);
1934     }
1935 
1936     /* Graphics */
1937     if (spapr_vga_init(phb->bus, &error_fatal)) {
1938         spapr->has_graphics = true;
1939         machine->usb |= defaults_enabled() && !machine->usb_disabled;
1940     }
1941 
1942     if (machine->usb) {
1943         if (smc->use_ohci_by_default) {
1944             pci_create_simple(phb->bus, -1, "pci-ohci");
1945         } else {
1946             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
1947         }
1948 
1949         if (spapr->has_graphics) {
1950             USBBus *usb_bus = usb_bus_find(-1);
1951 
1952             usb_create_simple(usb_bus, "usb-kbd");
1953             usb_create_simple(usb_bus, "usb-mouse");
1954         }
1955     }
1956 
1957     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1958         error_report(
1959             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
1960             MIN_RMA_SLOF);
1961         exit(1);
1962     }
1963 
1964     if (kernel_filename) {
1965         uint64_t lowaddr = 0;
1966 
1967         kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1968                                NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE, 0);
1969         if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1970             kernel_size = load_elf(kernel_filename,
1971                                    translate_kernel_address, NULL,
1972                                    NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE, 0);
1973             kernel_le = kernel_size > 0;
1974         }
1975         if (kernel_size < 0) {
1976             error_report("error loading %s: %s",
1977                          kernel_filename, load_elf_strerror(kernel_size));
1978             exit(1);
1979         }
1980 
1981         /* load initrd */
1982         if (initrd_filename) {
1983             /* Try to locate the initrd in the gap between the kernel
1984              * and the firmware. Add a bit of space just in case
1985              */
1986             initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1987             initrd_size = load_image_targphys(initrd_filename, initrd_base,
1988                                               load_limit - initrd_base);
1989             if (initrd_size < 0) {
1990                 error_report("could not load initial ram disk '%s'",
1991                              initrd_filename);
1992                 exit(1);
1993             }
1994         } else {
1995             initrd_base = 0;
1996             initrd_size = 0;
1997         }
1998     }
1999 
2000     if (bios_name == NULL) {
2001         bios_name = FW_FILE_NAME;
2002     }
2003     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2004     if (!filename) {
2005         error_report("Could not find LPAR firmware '%s'", bios_name);
2006         exit(1);
2007     }
2008     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2009     if (fw_size <= 0) {
2010         error_report("Could not load LPAR firmware '%s'", filename);
2011         exit(1);
2012     }
2013     g_free(filename);
2014 
2015     /* FIXME: Should register things through the MachineState's qdev
2016      * interface, this is a legacy from the sPAPREnvironment structure
2017      * which predated MachineState but had a similar function */
2018     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2019     register_savevm_live(NULL, "spapr/htab", -1, 1,
2020                          &savevm_htab_handlers, spapr);
2021 
2022     /* Prepare the device tree */
2023     spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
2024                                             kernel_size, kernel_le,
2025                                             kernel_cmdline,
2026                                             spapr->check_exception_irq);
2027     assert(spapr->fdt_skel != NULL);
2028 
2029     /* used by RTAS */
2030     QTAILQ_INIT(&spapr->ccs_list);
2031     qemu_register_reset(spapr_ccs_reset_hook, spapr);
2032 
2033     qemu_register_boot_set(spapr_boot_set, spapr);
2034 }
2035 
2036 static int spapr_kvm_type(const char *vm_type)
2037 {
2038     if (!vm_type) {
2039         return 0;
2040     }
2041 
2042     if (!strcmp(vm_type, "HV")) {
2043         return 1;
2044     }
2045 
2046     if (!strcmp(vm_type, "PR")) {
2047         return 2;
2048     }
2049 
2050     error_report("Unknown kvm-type specified '%s'", vm_type);
2051     exit(1);
2052 }
2053 
2054 /*
2055  * Implementation of an interface to adjust firmware path
2056  * for the bootindex property handling.
2057  */
2058 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2059                                    DeviceState *dev)
2060 {
2061 #define CAST(type, obj, name) \
2062     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2063     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2064     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2065 
2066     if (d) {
2067         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2068         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2069         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2070 
2071         if (spapr) {
2072             /*
2073              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2074              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2075              * in the top 16 bits of the 64-bit LUN
2076              */
2077             unsigned id = 0x8000 | (d->id << 8) | d->lun;
2078             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2079                                    (uint64_t)id << 48);
2080         } else if (virtio) {
2081             /*
2082              * We use SRP luns of the form 01000000 | (target << 8) | lun
2083              * in the top 32 bits of the 64-bit LUN
2084              * Note: the quote above is from SLOF and it is wrong,
2085              * the actual binding is:
2086              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2087              */
2088             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2089             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2090                                    (uint64_t)id << 32);
2091         } else if (usb) {
2092             /*
2093              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2094              * in the top 32 bits of the 64-bit LUN
2095              */
2096             unsigned usb_port = atoi(usb->port->path);
2097             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2098             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2099                                    (uint64_t)id << 32);
2100         }
2101     }
2102 
2103     if (phb) {
2104         /* Replace "pci" with "pci@800000020000000" */
2105         return g_strdup_printf("pci@%"PRIX64, phb->buid);
2106     }
2107 
2108     return NULL;
2109 }
2110 
2111 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2112 {
2113     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2114 
2115     return g_strdup(spapr->kvm_type);
2116 }
2117 
2118 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2119 {
2120     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2121 
2122     g_free(spapr->kvm_type);
2123     spapr->kvm_type = g_strdup(value);
2124 }
2125 
2126 static void spapr_machine_initfn(Object *obj)
2127 {
2128     object_property_add_str(obj, "kvm-type",
2129                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2130     object_property_set_description(obj, "kvm-type",
2131                                     "Specifies the KVM virtualization mode (HV, PR)",
2132                                     NULL);
2133 }
2134 
2135 static void spapr_machine_finalizefn(Object *obj)
2136 {
2137     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2138 
2139     g_free(spapr->kvm_type);
2140 }
2141 
2142 static void ppc_cpu_do_nmi_on_cpu(void *arg)
2143 {
2144     CPUState *cs = arg;
2145 
2146     cpu_synchronize_state(cs);
2147     ppc_cpu_do_system_reset(cs);
2148 }
2149 
2150 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2151 {
2152     CPUState *cs;
2153 
2154     CPU_FOREACH(cs) {
2155         async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
2156     }
2157 }
2158 
2159 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
2160                            uint32_t node, Error **errp)
2161 {
2162     sPAPRDRConnector *drc;
2163     sPAPRDRConnectorClass *drck;
2164     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2165     int i, fdt_offset, fdt_size;
2166     void *fdt;
2167 
2168     /*
2169      * Check for DRC connectors and send hotplug notification to the
2170      * guest only in case of hotplugged memory. This allows cold plugged
2171      * memory to be specified at boot time.
2172      */
2173     if (!dev->hotplugged) {
2174         return;
2175     }
2176 
2177     for (i = 0; i < nr_lmbs; i++) {
2178         drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2179                 addr/SPAPR_MEMORY_BLOCK_SIZE);
2180         g_assert(drc);
2181 
2182         fdt = create_device_tree(&fdt_size);
2183         fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2184                                                 SPAPR_MEMORY_BLOCK_SIZE);
2185 
2186         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2187         drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2188         addr += SPAPR_MEMORY_BLOCK_SIZE;
2189     }
2190     spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
2191 }
2192 
2193 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2194                               uint32_t node, Error **errp)
2195 {
2196     Error *local_err = NULL;
2197     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2198     PCDIMMDevice *dimm = PC_DIMM(dev);
2199     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2200     MemoryRegion *mr = ddc->get_memory_region(dimm);
2201     uint64_t align = memory_region_get_alignment(mr);
2202     uint64_t size = memory_region_size(mr);
2203     uint64_t addr;
2204 
2205     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2206         error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2207                       "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2208         goto out;
2209     }
2210 
2211     pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2212     if (local_err) {
2213         goto out;
2214     }
2215 
2216     addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2217     if (local_err) {
2218         pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2219         goto out;
2220     }
2221 
2222     spapr_add_lmbs(dev, addr, size, node, &error_abort);
2223 
2224 out:
2225     error_propagate(errp, local_err);
2226 }
2227 
2228 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2229                                       DeviceState *dev, Error **errp)
2230 {
2231     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2232 
2233     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2234         int node;
2235 
2236         if (!smc->dr_lmb_enabled) {
2237             error_setg(errp, "Memory hotplug not supported for this machine");
2238             return;
2239         }
2240         node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2241         if (*errp) {
2242             return;
2243         }
2244 
2245         /*
2246          * Currently PowerPC kernel doesn't allow hot-adding memory to
2247          * memory-less node, but instead will silently add the memory
2248          * to the first node that has some memory. This causes two
2249          * unexpected behaviours for the user.
2250          *
2251          * - Memory gets hotplugged to a different node than what the user
2252          *   specified.
2253          * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2254          *   to memory-less node, a reboot will set things accordingly
2255          *   and the previously hotplugged memory now ends in the right node.
2256          *   This appears as if some memory moved from one node to another.
2257          *
2258          * So until kernel starts supporting memory hotplug to memory-less
2259          * nodes, just prevent such attempts upfront in QEMU.
2260          */
2261         if (nb_numa_nodes && !numa_info[node].node_mem) {
2262             error_setg(errp, "Can't hotplug memory to memory-less node %d",
2263                        node);
2264             return;
2265         }
2266 
2267         spapr_memory_plug(hotplug_dev, dev, node, errp);
2268     }
2269 }
2270 
2271 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2272                                       DeviceState *dev, Error **errp)
2273 {
2274     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2275         error_setg(errp, "Memory hot unplug not supported by sPAPR");
2276     }
2277 }
2278 
2279 static HotplugHandler *spapr_get_hotpug_handler(MachineState *machine,
2280                                              DeviceState *dev)
2281 {
2282     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2283         return HOTPLUG_HANDLER(machine);
2284     }
2285     return NULL;
2286 }
2287 
2288 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2289 {
2290     /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2291      * socket means much for the paravirtualized PAPR platform) */
2292     return cpu_index / smp_threads / smp_cores;
2293 }
2294 
2295 static void spapr_machine_class_init(ObjectClass *oc, void *data)
2296 {
2297     MachineClass *mc = MACHINE_CLASS(oc);
2298     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2299     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2300     NMIClass *nc = NMI_CLASS(oc);
2301     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2302 
2303     mc->desc = "pSeries Logical Partition (PAPR compliant)";
2304 
2305     /*
2306      * We set up the default / latest behaviour here.  The class_init
2307      * functions for the specific versioned machine types can override
2308      * these details for backwards compatibility
2309      */
2310     mc->init = ppc_spapr_init;
2311     mc->reset = ppc_spapr_reset;
2312     mc->block_default_type = IF_SCSI;
2313     mc->max_cpus = MAX_CPUMASK_BITS;
2314     mc->no_parallel = 1;
2315     mc->default_boot_order = "";
2316     mc->default_ram_size = 512 * M_BYTE;
2317     mc->kvm_type = spapr_kvm_type;
2318     mc->has_dynamic_sysbus = true;
2319     mc->pci_allow_0_address = true;
2320     mc->get_hotplug_handler = spapr_get_hotpug_handler;
2321     hc->plug = spapr_machine_device_plug;
2322     hc->unplug = spapr_machine_device_unplug;
2323     mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
2324 
2325     smc->dr_lmb_enabled = true;
2326     fwc->get_dev_path = spapr_get_fw_dev_path;
2327     nc->nmi_monitor_handler = spapr_nmi;
2328 }
2329 
2330 static const TypeInfo spapr_machine_info = {
2331     .name          = TYPE_SPAPR_MACHINE,
2332     .parent        = TYPE_MACHINE,
2333     .abstract      = true,
2334     .instance_size = sizeof(sPAPRMachineState),
2335     .instance_init = spapr_machine_initfn,
2336     .instance_finalize = spapr_machine_finalizefn,
2337     .class_size    = sizeof(sPAPRMachineClass),
2338     .class_init    = spapr_machine_class_init,
2339     .interfaces = (InterfaceInfo[]) {
2340         { TYPE_FW_PATH_PROVIDER },
2341         { TYPE_NMI },
2342         { TYPE_HOTPLUG_HANDLER },
2343         { }
2344     },
2345 };
2346 
2347 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
2348     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
2349                                                     void *data)      \
2350     {                                                                \
2351         MachineClass *mc = MACHINE_CLASS(oc);                        \
2352         spapr_machine_##suffix##_class_options(mc);                  \
2353         if (latest) {                                                \
2354             mc->alias = "pseries";                                   \
2355             mc->is_default = 1;                                      \
2356         }                                                            \
2357     }                                                                \
2358     static void spapr_machine_##suffix##_instance_init(Object *obj)  \
2359     {                                                                \
2360         MachineState *machine = MACHINE(obj);                        \
2361         spapr_machine_##suffix##_instance_options(machine);          \
2362     }                                                                \
2363     static const TypeInfo spapr_machine_##suffix##_info = {          \
2364         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
2365         .parent = TYPE_SPAPR_MACHINE,                                \
2366         .class_init = spapr_machine_##suffix##_class_init,           \
2367         .instance_init = spapr_machine_##suffix##_instance_init,     \
2368     };                                                               \
2369     static void spapr_machine_register_##suffix(void)                \
2370     {                                                                \
2371         type_register(&spapr_machine_##suffix##_info);               \
2372     }                                                                \
2373     machine_init(spapr_machine_register_##suffix)
2374 
2375 /*
2376  * pseries-2.6
2377  */
2378 static void spapr_machine_2_6_instance_options(MachineState *machine)
2379 {
2380 }
2381 
2382 static void spapr_machine_2_6_class_options(MachineClass *mc)
2383 {
2384     /* Defaults for the latest behaviour inherited from the base class */
2385 }
2386 
2387 DEFINE_SPAPR_MACHINE(2_6, "2.6", true);
2388 
2389 /*
2390  * pseries-2.5
2391  */
2392 #define SPAPR_COMPAT_2_5 \
2393         HW_COMPAT_2_5
2394 
2395 static void spapr_machine_2_5_instance_options(MachineState *machine)
2396 {
2397 }
2398 
2399 static void spapr_machine_2_5_class_options(MachineClass *mc)
2400 {
2401     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2402 
2403     spapr_machine_2_6_class_options(mc);
2404     smc->use_ohci_by_default = true;
2405     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
2406 }
2407 
2408 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
2409 
2410 /*
2411  * pseries-2.4
2412  */
2413 #define SPAPR_COMPAT_2_4 \
2414         HW_COMPAT_2_4
2415 
2416 static void spapr_machine_2_4_instance_options(MachineState *machine)
2417 {
2418     spapr_machine_2_5_instance_options(machine);
2419 }
2420 
2421 static void spapr_machine_2_4_class_options(MachineClass *mc)
2422 {
2423     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2424 
2425     spapr_machine_2_5_class_options(mc);
2426     smc->dr_lmb_enabled = false;
2427     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
2428 }
2429 
2430 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
2431 
2432 /*
2433  * pseries-2.3
2434  */
2435 #define SPAPR_COMPAT_2_3 \
2436         SPAPR_COMPAT_2_4 \
2437         HW_COMPAT_2_3 \
2438         {\
2439             .driver   = "spapr-pci-host-bridge",\
2440             .property = "dynamic-reconfiguration",\
2441             .value    = "off",\
2442         },
2443 
2444 static void spapr_machine_2_3_instance_options(MachineState *machine)
2445 {
2446     spapr_machine_2_4_instance_options(machine);
2447     savevm_skip_section_footers();
2448     global_state_set_optional();
2449 }
2450 
2451 static void spapr_machine_2_3_class_options(MachineClass *mc)
2452 {
2453     spapr_machine_2_4_class_options(mc);
2454     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
2455 }
2456 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
2457 
2458 /*
2459  * pseries-2.2
2460  */
2461 
2462 #define SPAPR_COMPAT_2_2 \
2463         SPAPR_COMPAT_2_3 \
2464         HW_COMPAT_2_2 \
2465         {\
2466             .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2467             .property = "mem_win_size",\
2468             .value    = "0x20000000",\
2469         },
2470 
2471 static void spapr_machine_2_2_instance_options(MachineState *machine)
2472 {
2473     spapr_machine_2_3_instance_options(machine);
2474 }
2475 
2476 static void spapr_machine_2_2_class_options(MachineClass *mc)
2477 {
2478     spapr_machine_2_3_class_options(mc);
2479     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
2480 }
2481 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
2482 
2483 /*
2484  * pseries-2.1
2485  */
2486 #define SPAPR_COMPAT_2_1 \
2487         SPAPR_COMPAT_2_2 \
2488         HW_COMPAT_2_1
2489 
2490 static void spapr_machine_2_1_instance_options(MachineState *machine)
2491 {
2492     spapr_machine_2_2_instance_options(machine);
2493 }
2494 
2495 static void spapr_machine_2_1_class_options(MachineClass *mc)
2496 {
2497     spapr_machine_2_2_class_options(mc);
2498     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
2499 }
2500 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
2501 
2502 static void spapr_machine_register_types(void)
2503 {
2504     type_register_static(&spapr_machine_info);
2505 }
2506 
2507 type_init(spapr_machine_register_types)
2508