xref: /qemu/hw/ppc/spapr.c (revision f348b6d1)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "hw/fw-path-provider.h"
33 #include "elf.h"
34 #include "net/net.h"
35 #include "sysemu/device_tree.h"
36 #include "sysemu/block-backend.h"
37 #include "sysemu/cpus.h"
38 #include "sysemu/kvm.h"
39 #include "sysemu/device_tree.h"
40 #include "kvm_ppc.h"
41 #include "migration/migration.h"
42 #include "mmu-hash64.h"
43 #include "qom/cpu.h"
44 
45 #include "hw/boards.h"
46 #include "hw/ppc/ppc.h"
47 #include "hw/loader.h"
48 
49 #include "hw/ppc/spapr.h"
50 #include "hw/ppc/spapr_vio.h"
51 #include "hw/pci-host/spapr.h"
52 #include "hw/ppc/xics.h"
53 #include "hw/pci/msi.h"
54 
55 #include "hw/pci/pci.h"
56 #include "hw/scsi/scsi.h"
57 #include "hw/virtio/virtio-scsi.h"
58 
59 #include "exec/address-spaces.h"
60 #include "hw/usb.h"
61 #include "qemu/config-file.h"
62 #include "qemu/error-report.h"
63 #include "trace.h"
64 #include "hw/nmi.h"
65 
66 #include "hw/compat.h"
67 #include "qemu/cutils.h"
68 
69 #include <libfdt.h>
70 
71 /* SLOF memory layout:
72  *
73  * SLOF raw image loaded at 0, copies its romfs right below the flat
74  * device-tree, then position SLOF itself 31M below that
75  *
76  * So we set FW_OVERHEAD to 40MB which should account for all of that
77  * and more
78  *
79  * We load our kernel at 4M, leaving space for SLOF initial image
80  */
81 #define FDT_MAX_SIZE            0x100000
82 #define RTAS_MAX_SIZE           0x10000
83 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
84 #define FW_MAX_SIZE             0x400000
85 #define FW_FILE_NAME            "slof.bin"
86 #define FW_OVERHEAD             0x2800000
87 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
88 
89 #define MIN_RMA_SLOF            128UL
90 
91 #define TIMEBASE_FREQ           512000000ULL
92 
93 #define PHANDLE_XICP            0x00001111
94 
95 #define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
96 
97 static XICSState *try_create_xics(const char *type, int nr_servers,
98                                   int nr_irqs, Error **errp)
99 {
100     Error *err = NULL;
101     DeviceState *dev;
102 
103     dev = qdev_create(NULL, type);
104     qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
105     qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
106     object_property_set_bool(OBJECT(dev), true, "realized", &err);
107     if (err) {
108         error_propagate(errp, err);
109         object_unparent(OBJECT(dev));
110         return NULL;
111     }
112     return XICS_COMMON(dev);
113 }
114 
115 static XICSState *xics_system_init(MachineState *machine,
116                                    int nr_servers, int nr_irqs, Error **errp)
117 {
118     XICSState *icp = NULL;
119 
120     if (kvm_enabled()) {
121         Error *err = NULL;
122 
123         if (machine_kernel_irqchip_allowed(machine)) {
124             icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
125         }
126         if (machine_kernel_irqchip_required(machine) && !icp) {
127             error_reportf_err(err,
128                               "kernel_irqchip requested but unavailable: ");
129         } else {
130             error_free(err);
131         }
132     }
133 
134     if (!icp) {
135         icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, errp);
136     }
137 
138     return icp;
139 }
140 
141 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
142                                   int smt_threads)
143 {
144     int i, ret = 0;
145     uint32_t servers_prop[smt_threads];
146     uint32_t gservers_prop[smt_threads * 2];
147     int index = ppc_get_vcpu_dt_id(cpu);
148 
149     if (cpu->cpu_version) {
150         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
151         if (ret < 0) {
152             return ret;
153         }
154     }
155 
156     /* Build interrupt servers and gservers properties */
157     for (i = 0; i < smt_threads; i++) {
158         servers_prop[i] = cpu_to_be32(index + i);
159         /* Hack, direct the group queues back to cpu 0 */
160         gservers_prop[i*2] = cpu_to_be32(index + i);
161         gservers_prop[i*2 + 1] = 0;
162     }
163     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
164                       servers_prop, sizeof(servers_prop));
165     if (ret < 0) {
166         return ret;
167     }
168     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
169                       gservers_prop, sizeof(gservers_prop));
170 
171     return ret;
172 }
173 
174 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
175 {
176     int ret = 0;
177     PowerPCCPU *cpu = POWERPC_CPU(cs);
178     int index = ppc_get_vcpu_dt_id(cpu);
179     uint32_t associativity[] = {cpu_to_be32(0x5),
180                                 cpu_to_be32(0x0),
181                                 cpu_to_be32(0x0),
182                                 cpu_to_be32(0x0),
183                                 cpu_to_be32(cs->numa_node),
184                                 cpu_to_be32(index)};
185 
186     /* Advertise NUMA via ibm,associativity */
187     if (nb_numa_nodes > 1) {
188         ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
189                           sizeof(associativity));
190     }
191 
192     return ret;
193 }
194 
195 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
196 {
197     int ret = 0, offset, cpus_offset;
198     CPUState *cs;
199     char cpu_model[32];
200     int smt = kvmppc_smt_threads();
201     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
202 
203     CPU_FOREACH(cs) {
204         PowerPCCPU *cpu = POWERPC_CPU(cs);
205         DeviceClass *dc = DEVICE_GET_CLASS(cs);
206         int index = ppc_get_vcpu_dt_id(cpu);
207 
208         if ((index % smt) != 0) {
209             continue;
210         }
211 
212         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
213 
214         cpus_offset = fdt_path_offset(fdt, "/cpus");
215         if (cpus_offset < 0) {
216             cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
217                                           "cpus");
218             if (cpus_offset < 0) {
219                 return cpus_offset;
220             }
221         }
222         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
223         if (offset < 0) {
224             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
225             if (offset < 0) {
226                 return offset;
227             }
228         }
229 
230         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
231                           pft_size_prop, sizeof(pft_size_prop));
232         if (ret < 0) {
233             return ret;
234         }
235 
236         ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
237         if (ret < 0) {
238             return ret;
239         }
240 
241         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
242                                      ppc_get_compat_smt_threads(cpu));
243         if (ret < 0) {
244             return ret;
245         }
246     }
247     return ret;
248 }
249 
250 
251 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
252                                      size_t maxsize)
253 {
254     size_t maxcells = maxsize / sizeof(uint32_t);
255     int i, j, count;
256     uint32_t *p = prop;
257 
258     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
259         struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
260 
261         if (!sps->page_shift) {
262             break;
263         }
264         for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
265             if (sps->enc[count].page_shift == 0) {
266                 break;
267             }
268         }
269         if ((p - prop) >= (maxcells - 3 - count * 2)) {
270             break;
271         }
272         *(p++) = cpu_to_be32(sps->page_shift);
273         *(p++) = cpu_to_be32(sps->slb_enc);
274         *(p++) = cpu_to_be32(count);
275         for (j = 0; j < count; j++) {
276             *(p++) = cpu_to_be32(sps->enc[j].page_shift);
277             *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
278         }
279     }
280 
281     return (p - prop) * sizeof(uint32_t);
282 }
283 
284 static hwaddr spapr_node0_size(void)
285 {
286     MachineState *machine = MACHINE(qdev_get_machine());
287 
288     if (nb_numa_nodes) {
289         int i;
290         for (i = 0; i < nb_numa_nodes; ++i) {
291             if (numa_info[i].node_mem) {
292                 return MIN(pow2floor(numa_info[i].node_mem),
293                            machine->ram_size);
294             }
295         }
296     }
297     return machine->ram_size;
298 }
299 
300 #define _FDT(exp) \
301     do { \
302         int ret = (exp);                                           \
303         if (ret < 0) {                                             \
304             fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
305                     #exp, fdt_strerror(ret));                      \
306             exit(1);                                               \
307         }                                                          \
308     } while (0)
309 
310 static void add_str(GString *s, const gchar *s1)
311 {
312     g_string_append_len(s, s1, strlen(s1) + 1);
313 }
314 
315 static void *spapr_create_fdt_skel(hwaddr initrd_base,
316                                    hwaddr initrd_size,
317                                    hwaddr kernel_size,
318                                    bool little_endian,
319                                    const char *kernel_cmdline,
320                                    uint32_t epow_irq)
321 {
322     void *fdt;
323     uint32_t start_prop = cpu_to_be32(initrd_base);
324     uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
325     GString *hypertas = g_string_sized_new(256);
326     GString *qemu_hypertas = g_string_sized_new(256);
327     uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
328     uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
329     unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
330     char *buf;
331 
332     add_str(hypertas, "hcall-pft");
333     add_str(hypertas, "hcall-term");
334     add_str(hypertas, "hcall-dabr");
335     add_str(hypertas, "hcall-interrupt");
336     add_str(hypertas, "hcall-tce");
337     add_str(hypertas, "hcall-vio");
338     add_str(hypertas, "hcall-splpar");
339     add_str(hypertas, "hcall-bulk");
340     add_str(hypertas, "hcall-set-mode");
341     add_str(qemu_hypertas, "hcall-memop1");
342 
343     fdt = g_malloc0(FDT_MAX_SIZE);
344     _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
345 
346     if (kernel_size) {
347         _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
348     }
349     if (initrd_size) {
350         _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
351     }
352     _FDT((fdt_finish_reservemap(fdt)));
353 
354     /* Root node */
355     _FDT((fdt_begin_node(fdt, "")));
356     _FDT((fdt_property_string(fdt, "device_type", "chrp")));
357     _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
358     _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
359 
360     /*
361      * Add info to guest to indentify which host is it being run on
362      * and what is the uuid of the guest
363      */
364     if (kvmppc_get_host_model(&buf)) {
365         _FDT((fdt_property_string(fdt, "host-model", buf)));
366         g_free(buf);
367     }
368     if (kvmppc_get_host_serial(&buf)) {
369         _FDT((fdt_property_string(fdt, "host-serial", buf)));
370         g_free(buf);
371     }
372 
373     buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
374                           qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
375                           qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
376                           qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
377                           qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
378                           qemu_uuid[14], qemu_uuid[15]);
379 
380     _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
381     if (qemu_uuid_set) {
382         _FDT((fdt_property_string(fdt, "system-id", buf)));
383     }
384     g_free(buf);
385 
386     if (qemu_get_vm_name()) {
387         _FDT((fdt_property_string(fdt, "ibm,partition-name",
388                                   qemu_get_vm_name())));
389     }
390 
391     _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
392     _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
393 
394     /* /chosen */
395     _FDT((fdt_begin_node(fdt, "chosen")));
396 
397     /* Set Form1_affinity */
398     _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
399 
400     _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
401     _FDT((fdt_property(fdt, "linux,initrd-start",
402                        &start_prop, sizeof(start_prop))));
403     _FDT((fdt_property(fdt, "linux,initrd-end",
404                        &end_prop, sizeof(end_prop))));
405     if (kernel_size) {
406         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
407                               cpu_to_be64(kernel_size) };
408 
409         _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
410         if (little_endian) {
411             _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
412         }
413     }
414     if (boot_menu) {
415         _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
416     }
417     _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
418     _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
419     _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
420 
421     _FDT((fdt_end_node(fdt)));
422 
423     /* RTAS */
424     _FDT((fdt_begin_node(fdt, "rtas")));
425 
426     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
427         add_str(hypertas, "hcall-multi-tce");
428     }
429     _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
430                        hypertas->len)));
431     g_string_free(hypertas, TRUE);
432     _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
433                        qemu_hypertas->len)));
434     g_string_free(qemu_hypertas, TRUE);
435 
436     _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
437         refpoints, sizeof(refpoints))));
438 
439     _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
440     _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
441                             RTAS_EVENT_SCAN_RATE)));
442 
443     if (msi_nonbroken) {
444         _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
445     }
446 
447     /*
448      * According to PAPR, rtas ibm,os-term does not guarantee a return
449      * back to the guest cpu.
450      *
451      * While an additional ibm,extended-os-term property indicates that
452      * rtas call return will always occur. Set this property.
453      */
454     _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
455 
456     _FDT((fdt_end_node(fdt)));
457 
458     /* interrupt controller */
459     _FDT((fdt_begin_node(fdt, "interrupt-controller")));
460 
461     _FDT((fdt_property_string(fdt, "device_type",
462                               "PowerPC-External-Interrupt-Presentation")));
463     _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
464     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
465     _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
466                        interrupt_server_ranges_prop,
467                        sizeof(interrupt_server_ranges_prop))));
468     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
469     _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
470     _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
471 
472     _FDT((fdt_end_node(fdt)));
473 
474     /* vdevice */
475     _FDT((fdt_begin_node(fdt, "vdevice")));
476 
477     _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
478     _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
479     _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
480     _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
481     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
482     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
483 
484     _FDT((fdt_end_node(fdt)));
485 
486     /* event-sources */
487     spapr_events_fdt_skel(fdt, epow_irq);
488 
489     /* /hypervisor node */
490     if (kvm_enabled()) {
491         uint8_t hypercall[16];
492 
493         /* indicate KVM hypercall interface */
494         _FDT((fdt_begin_node(fdt, "hypervisor")));
495         _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
496         if (kvmppc_has_cap_fixup_hcalls()) {
497             /*
498              * Older KVM versions with older guest kernels were broken with the
499              * magic page, don't allow the guest to map it.
500              */
501             kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
502                                  sizeof(hypercall));
503             _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
504                               sizeof(hypercall))));
505         }
506         _FDT((fdt_end_node(fdt)));
507     }
508 
509     _FDT((fdt_end_node(fdt))); /* close root node */
510     _FDT((fdt_finish(fdt)));
511 
512     return fdt;
513 }
514 
515 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
516                                        hwaddr size)
517 {
518     uint32_t associativity[] = {
519         cpu_to_be32(0x4), /* length */
520         cpu_to_be32(0x0), cpu_to_be32(0x0),
521         cpu_to_be32(0x0), cpu_to_be32(nodeid)
522     };
523     char mem_name[32];
524     uint64_t mem_reg_property[2];
525     int off;
526 
527     mem_reg_property[0] = cpu_to_be64(start);
528     mem_reg_property[1] = cpu_to_be64(size);
529 
530     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
531     off = fdt_add_subnode(fdt, 0, mem_name);
532     _FDT(off);
533     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
534     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
535                       sizeof(mem_reg_property))));
536     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
537                       sizeof(associativity))));
538     return off;
539 }
540 
541 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
542 {
543     MachineState *machine = MACHINE(spapr);
544     hwaddr mem_start, node_size;
545     int i, nb_nodes = nb_numa_nodes;
546     NodeInfo *nodes = numa_info;
547     NodeInfo ramnode;
548 
549     /* No NUMA nodes, assume there is just one node with whole RAM */
550     if (!nb_numa_nodes) {
551         nb_nodes = 1;
552         ramnode.node_mem = machine->ram_size;
553         nodes = &ramnode;
554     }
555 
556     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
557         if (!nodes[i].node_mem) {
558             continue;
559         }
560         if (mem_start >= machine->ram_size) {
561             node_size = 0;
562         } else {
563             node_size = nodes[i].node_mem;
564             if (node_size > machine->ram_size - mem_start) {
565                 node_size = machine->ram_size - mem_start;
566             }
567         }
568         if (!mem_start) {
569             /* ppc_spapr_init() checks for rma_size <= node0_size already */
570             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
571             mem_start += spapr->rma_size;
572             node_size -= spapr->rma_size;
573         }
574         for ( ; node_size; ) {
575             hwaddr sizetmp = pow2floor(node_size);
576 
577             /* mem_start != 0 here */
578             if (ctzl(mem_start) < ctzl(sizetmp)) {
579                 sizetmp = 1ULL << ctzl(mem_start);
580             }
581 
582             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
583             node_size -= sizetmp;
584             mem_start += sizetmp;
585         }
586     }
587 
588     return 0;
589 }
590 
591 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
592                                   sPAPRMachineState *spapr)
593 {
594     PowerPCCPU *cpu = POWERPC_CPU(cs);
595     CPUPPCState *env = &cpu->env;
596     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
597     int index = ppc_get_vcpu_dt_id(cpu);
598     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
599                        0xffffffff, 0xffffffff};
600     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
601     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
602     uint32_t page_sizes_prop[64];
603     size_t page_sizes_prop_size;
604     uint32_t vcpus_per_socket = smp_threads * smp_cores;
605     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
606 
607     /* Note: we keep CI large pages off for now because a 64K capable guest
608      * provisioned with large pages might otherwise try to map a qemu
609      * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
610      * even if that qemu runs on a 4k host.
611      *
612      * We can later add this bit back when we are confident this is not
613      * an issue (!HV KVM or 64K host)
614      */
615     uint8_t pa_features_206[] = { 6, 0,
616         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
617     uint8_t pa_features_207[] = { 24, 0,
618         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
619         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
620         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
621         0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
622     uint8_t *pa_features;
623     size_t pa_size;
624 
625     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
626     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
627 
628     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
629     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
630                            env->dcache_line_size)));
631     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
632                            env->dcache_line_size)));
633     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
634                            env->icache_line_size)));
635     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
636                            env->icache_line_size)));
637 
638     if (pcc->l1_dcache_size) {
639         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
640                                pcc->l1_dcache_size)));
641     } else {
642         fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
643     }
644     if (pcc->l1_icache_size) {
645         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
646                                pcc->l1_icache_size)));
647     } else {
648         fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
649     }
650 
651     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
652     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
653     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
654     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
655     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
656     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
657 
658     if (env->spr_cb[SPR_PURR].oea_read) {
659         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
660     }
661 
662     if (env->mmu_model & POWERPC_MMU_1TSEG) {
663         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
664                           segs, sizeof(segs))));
665     }
666 
667     /* Advertise VMX/VSX (vector extensions) if available
668      *   0 / no property == no vector extensions
669      *   1               == VMX / Altivec available
670      *   2               == VSX available */
671     if (env->insns_flags & PPC_ALTIVEC) {
672         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
673 
674         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
675     }
676 
677     /* Advertise DFP (Decimal Floating Point) if available
678      *   0 / no property == no DFP
679      *   1               == DFP available */
680     if (env->insns_flags2 & PPC2_DFP) {
681         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
682     }
683 
684     page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
685                                                   sizeof(page_sizes_prop));
686     if (page_sizes_prop_size) {
687         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
688                           page_sizes_prop, page_sizes_prop_size)));
689     }
690 
691     /* Do the ibm,pa-features property, adjust it for ci-large-pages */
692     if (env->mmu_model == POWERPC_MMU_2_06) {
693         pa_features = pa_features_206;
694         pa_size = sizeof(pa_features_206);
695     } else /* env->mmu_model == POWERPC_MMU_2_07 */ {
696         pa_features = pa_features_207;
697         pa_size = sizeof(pa_features_207);
698     }
699     if (env->ci_large_pages) {
700         pa_features[3] |= 0x20;
701     }
702     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
703 
704     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
705                            cs->cpu_index / vcpus_per_socket)));
706 
707     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
708                       pft_size_prop, sizeof(pft_size_prop))));
709 
710     _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
711 
712     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
713                                 ppc_get_compat_smt_threads(cpu)));
714 }
715 
716 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
717 {
718     CPUState *cs;
719     int cpus_offset;
720     char *nodename;
721     int smt = kvmppc_smt_threads();
722 
723     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
724     _FDT(cpus_offset);
725     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
726     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
727 
728     /*
729      * We walk the CPUs in reverse order to ensure that CPU DT nodes
730      * created by fdt_add_subnode() end up in the right order in FDT
731      * for the guest kernel the enumerate the CPUs correctly.
732      */
733     CPU_FOREACH_REVERSE(cs) {
734         PowerPCCPU *cpu = POWERPC_CPU(cs);
735         int index = ppc_get_vcpu_dt_id(cpu);
736         DeviceClass *dc = DEVICE_GET_CLASS(cs);
737         int offset;
738 
739         if ((index % smt) != 0) {
740             continue;
741         }
742 
743         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
744         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
745         g_free(nodename);
746         _FDT(offset);
747         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
748     }
749 
750 }
751 
752 /*
753  * Adds ibm,dynamic-reconfiguration-memory node.
754  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
755  * of this device tree node.
756  */
757 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
758 {
759     MachineState *machine = MACHINE(spapr);
760     int ret, i, offset;
761     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
762     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
763     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
764     uint32_t *int_buf, *cur_index, buf_len;
765     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
766 
767     /*
768      * Don't create the node if there are no DR LMBs.
769      */
770     if (!nr_lmbs) {
771         return 0;
772     }
773 
774     /*
775      * Allocate enough buffer size to fit in ibm,dynamic-memory
776      * or ibm,associativity-lookup-arrays
777      */
778     buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
779               * sizeof(uint32_t);
780     cur_index = int_buf = g_malloc0(buf_len);
781 
782     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
783 
784     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
785                     sizeof(prop_lmb_size));
786     if (ret < 0) {
787         goto out;
788     }
789 
790     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
791     if (ret < 0) {
792         goto out;
793     }
794 
795     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
796     if (ret < 0) {
797         goto out;
798     }
799 
800     /* ibm,dynamic-memory */
801     int_buf[0] = cpu_to_be32(nr_lmbs);
802     cur_index++;
803     for (i = 0; i < nr_lmbs; i++) {
804         sPAPRDRConnector *drc;
805         sPAPRDRConnectorClass *drck;
806         uint64_t addr = i * lmb_size + spapr->hotplug_memory.base;;
807         uint32_t *dynamic_memory = cur_index;
808 
809         drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
810                                        addr/lmb_size);
811         g_assert(drc);
812         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
813 
814         dynamic_memory[0] = cpu_to_be32(addr >> 32);
815         dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
816         dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
817         dynamic_memory[3] = cpu_to_be32(0); /* reserved */
818         dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
819         if (addr < machine->ram_size ||
820                     memory_region_present(get_system_memory(), addr)) {
821             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
822         } else {
823             dynamic_memory[5] = cpu_to_be32(0);
824         }
825 
826         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
827     }
828     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
829     if (ret < 0) {
830         goto out;
831     }
832 
833     /* ibm,associativity-lookup-arrays */
834     cur_index = int_buf;
835     int_buf[0] = cpu_to_be32(nr_nodes);
836     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
837     cur_index += 2;
838     for (i = 0; i < nr_nodes; i++) {
839         uint32_t associativity[] = {
840             cpu_to_be32(0x0),
841             cpu_to_be32(0x0),
842             cpu_to_be32(0x0),
843             cpu_to_be32(i)
844         };
845         memcpy(cur_index, associativity, sizeof(associativity));
846         cur_index += 4;
847     }
848     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
849             (cur_index - int_buf) * sizeof(uint32_t));
850 out:
851     g_free(int_buf);
852     return ret;
853 }
854 
855 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
856                                  target_ulong addr, target_ulong size,
857                                  bool cpu_update, bool memory_update)
858 {
859     void *fdt, *fdt_skel;
860     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
861     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
862 
863     size -= sizeof(hdr);
864 
865     /* Create sceleton */
866     fdt_skel = g_malloc0(size);
867     _FDT((fdt_create(fdt_skel, size)));
868     _FDT((fdt_begin_node(fdt_skel, "")));
869     _FDT((fdt_end_node(fdt_skel)));
870     _FDT((fdt_finish(fdt_skel)));
871     fdt = g_malloc0(size);
872     _FDT((fdt_open_into(fdt_skel, fdt, size)));
873     g_free(fdt_skel);
874 
875     /* Fixup cpu nodes */
876     if (cpu_update) {
877         _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
878     }
879 
880     /* Generate ibm,dynamic-reconfiguration-memory node if required */
881     if (memory_update && smc->dr_lmb_enabled) {
882         _FDT((spapr_populate_drconf_memory(spapr, fdt)));
883     }
884 
885     /* Pack resulting tree */
886     _FDT((fdt_pack(fdt)));
887 
888     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
889         trace_spapr_cas_failed(size);
890         return -1;
891     }
892 
893     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
894     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
895     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
896     g_free(fdt);
897 
898     return 0;
899 }
900 
901 static void spapr_finalize_fdt(sPAPRMachineState *spapr,
902                                hwaddr fdt_addr,
903                                hwaddr rtas_addr,
904                                hwaddr rtas_size)
905 {
906     MachineState *machine = MACHINE(qdev_get_machine());
907     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
908     const char *boot_device = machine->boot_order;
909     int ret, i;
910     size_t cb = 0;
911     char *bootlist;
912     void *fdt;
913     sPAPRPHBState *phb;
914 
915     fdt = g_malloc(FDT_MAX_SIZE);
916 
917     /* open out the base tree into a temp buffer for the final tweaks */
918     _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
919 
920     ret = spapr_populate_memory(spapr, fdt);
921     if (ret < 0) {
922         fprintf(stderr, "couldn't setup memory nodes in fdt\n");
923         exit(1);
924     }
925 
926     ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
927     if (ret < 0) {
928         fprintf(stderr, "couldn't setup vio devices in fdt\n");
929         exit(1);
930     }
931 
932     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
933         ret = spapr_rng_populate_dt(fdt);
934         if (ret < 0) {
935             fprintf(stderr, "could not set up rng device in the fdt\n");
936             exit(1);
937         }
938     }
939 
940     QLIST_FOREACH(phb, &spapr->phbs, list) {
941         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
942     }
943 
944     if (ret < 0) {
945         fprintf(stderr, "couldn't setup PCI devices in fdt\n");
946         exit(1);
947     }
948 
949     /* RTAS */
950     ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
951     if (ret < 0) {
952         fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
953     }
954 
955     /* cpus */
956     spapr_populate_cpus_dt_node(fdt, spapr);
957 
958     bootlist = get_boot_devices_list(&cb, true);
959     if (cb && bootlist) {
960         int offset = fdt_path_offset(fdt, "/chosen");
961         if (offset < 0) {
962             exit(1);
963         }
964         for (i = 0; i < cb; i++) {
965             if (bootlist[i] == '\n') {
966                 bootlist[i] = ' ';
967             }
968 
969         }
970         ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
971     }
972 
973     if (boot_device && strlen(boot_device)) {
974         int offset = fdt_path_offset(fdt, "/chosen");
975 
976         if (offset < 0) {
977             exit(1);
978         }
979         fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
980     }
981 
982     if (!spapr->has_graphics) {
983         spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
984     }
985 
986     if (smc->dr_lmb_enabled) {
987         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
988     }
989 
990     _FDT((fdt_pack(fdt)));
991 
992     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
993         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
994                      fdt_totalsize(fdt), FDT_MAX_SIZE);
995         exit(1);
996     }
997 
998     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
999     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1000 
1001     g_free(bootlist);
1002     g_free(fdt);
1003 }
1004 
1005 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1006 {
1007     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1008 }
1009 
1010 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
1011 {
1012     CPUPPCState *env = &cpu->env;
1013 
1014     if (msr_pr) {
1015         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1016         env->gpr[3] = H_PRIVILEGE;
1017     } else {
1018         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1019     }
1020 }
1021 
1022 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1023 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1024 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1025 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1026 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1027 
1028 /*
1029  * Get the fd to access the kernel htab, re-opening it if necessary
1030  */
1031 static int get_htab_fd(sPAPRMachineState *spapr)
1032 {
1033     if (spapr->htab_fd >= 0) {
1034         return spapr->htab_fd;
1035     }
1036 
1037     spapr->htab_fd = kvmppc_get_htab_fd(false);
1038     if (spapr->htab_fd < 0) {
1039         error_report("Unable to open fd for reading hash table from KVM: %s",
1040                      strerror(errno));
1041     }
1042 
1043     return spapr->htab_fd;
1044 }
1045 
1046 static void close_htab_fd(sPAPRMachineState *spapr)
1047 {
1048     if (spapr->htab_fd >= 0) {
1049         close(spapr->htab_fd);
1050     }
1051     spapr->htab_fd = -1;
1052 }
1053 
1054 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1055 {
1056     int shift;
1057 
1058     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1059      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1060      * that's much more than is needed for Linux guests */
1061     shift = ctz64(pow2ceil(ramsize)) - 7;
1062     shift = MAX(shift, 18); /* Minimum architected size */
1063     shift = MIN(shift, 46); /* Maximum architected size */
1064     return shift;
1065 }
1066 
1067 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1068                                  Error **errp)
1069 {
1070     long rc;
1071 
1072     /* Clean up any HPT info from a previous boot */
1073     g_free(spapr->htab);
1074     spapr->htab = NULL;
1075     spapr->htab_shift = 0;
1076     close_htab_fd(spapr);
1077 
1078     rc = kvmppc_reset_htab(shift);
1079     if (rc < 0) {
1080         /* kernel-side HPT needed, but couldn't allocate one */
1081         error_setg_errno(errp, errno,
1082                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1083                          shift);
1084         /* This is almost certainly fatal, but if the caller really
1085          * wants to carry on with shift == 0, it's welcome to try */
1086     } else if (rc > 0) {
1087         /* kernel-side HPT allocated */
1088         if (rc != shift) {
1089             error_setg(errp,
1090                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1091                        shift, rc);
1092         }
1093 
1094         spapr->htab_shift = shift;
1095         spapr->htab = NULL;
1096     } else {
1097         /* kernel-side HPT not needed, allocate in userspace instead */
1098         size_t size = 1ULL << shift;
1099         int i;
1100 
1101         spapr->htab = qemu_memalign(size, size);
1102         if (!spapr->htab) {
1103             error_setg_errno(errp, errno,
1104                              "Could not allocate HPT of order %d", shift);
1105             return;
1106         }
1107 
1108         memset(spapr->htab, 0, size);
1109         spapr->htab_shift = shift;
1110 
1111         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1112             DIRTY_HPTE(HPTE(spapr->htab, i));
1113         }
1114     }
1115 }
1116 
1117 static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1118 {
1119     bool matched = false;
1120 
1121     if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1122         matched = true;
1123     }
1124 
1125     if (!matched) {
1126         error_report("Device %s is not supported by this machine yet.",
1127                      qdev_fw_name(DEVICE(sbdev)));
1128         exit(1);
1129     }
1130 
1131     return 0;
1132 }
1133 
1134 static void ppc_spapr_reset(void)
1135 {
1136     MachineState *machine = MACHINE(qdev_get_machine());
1137     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1138     PowerPCCPU *first_ppc_cpu;
1139     uint32_t rtas_limit;
1140 
1141     /* Check for unknown sysbus devices */
1142     foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1143 
1144     /* Allocate and/or reset the hash page table */
1145     spapr_reallocate_hpt(spapr,
1146                          spapr_hpt_shift_for_ramsize(machine->maxram_size),
1147                          &error_fatal);
1148 
1149     /* Update the RMA size if necessary */
1150     if (spapr->vrma_adjust) {
1151         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1152                                           spapr->htab_shift);
1153     }
1154 
1155     qemu_devices_reset();
1156 
1157     /*
1158      * We place the device tree and RTAS just below either the top of the RMA,
1159      * or just below 2GB, whichever is lowere, so that it can be
1160      * processed with 32-bit real mode code if necessary
1161      */
1162     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1163     spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1164     spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1165 
1166     /* Load the fdt */
1167     spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
1168                        spapr->rtas_size);
1169 
1170     /* Copy RTAS over */
1171     cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
1172                               spapr->rtas_size);
1173 
1174     /* Set up the entry state */
1175     first_ppc_cpu = POWERPC_CPU(first_cpu);
1176     first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
1177     first_ppc_cpu->env.gpr[5] = 0;
1178     first_cpu->halted = 0;
1179     first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1180 
1181 }
1182 
1183 static void spapr_cpu_reset(void *opaque)
1184 {
1185     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1186     PowerPCCPU *cpu = opaque;
1187     CPUState *cs = CPU(cpu);
1188     CPUPPCState *env = &cpu->env;
1189 
1190     cpu_reset(cs);
1191 
1192     /* All CPUs start halted.  CPU0 is unhalted from the machine level
1193      * reset code and the rest are explicitly started up by the guest
1194      * using an RTAS call */
1195     cs->halted = 1;
1196 
1197     env->spr[SPR_HIOR] = 0;
1198 
1199     ppc_hash64_set_external_hpt(cpu, spapr->htab, spapr->htab_shift,
1200                                 &error_fatal);
1201 }
1202 
1203 static void spapr_create_nvram(sPAPRMachineState *spapr)
1204 {
1205     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1206     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1207 
1208     if (dinfo) {
1209         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1210                             &error_fatal);
1211     }
1212 
1213     qdev_init_nofail(dev);
1214 
1215     spapr->nvram = (struct sPAPRNVRAM *)dev;
1216 }
1217 
1218 static void spapr_rtc_create(sPAPRMachineState *spapr)
1219 {
1220     DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1221 
1222     qdev_init_nofail(dev);
1223     spapr->rtc = dev;
1224 
1225     object_property_add_alias(qdev_get_machine(), "rtc-time",
1226                               OBJECT(spapr->rtc), "date", NULL);
1227 }
1228 
1229 /* Returns whether we want to use VGA or not */
1230 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1231 {
1232     switch (vga_interface_type) {
1233     case VGA_NONE:
1234         return false;
1235     case VGA_DEVICE:
1236         return true;
1237     case VGA_STD:
1238     case VGA_VIRTIO:
1239         return pci_vga_init(pci_bus) != NULL;
1240     default:
1241         error_setg(errp,
1242                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1243         return false;
1244     }
1245 }
1246 
1247 static int spapr_post_load(void *opaque, int version_id)
1248 {
1249     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1250     int err = 0;
1251 
1252     /* In earlier versions, there was no separate qdev for the PAPR
1253      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1254      * So when migrating from those versions, poke the incoming offset
1255      * value into the RTC device */
1256     if (version_id < 3) {
1257         err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1258     }
1259 
1260     return err;
1261 }
1262 
1263 static bool version_before_3(void *opaque, int version_id)
1264 {
1265     return version_id < 3;
1266 }
1267 
1268 static const VMStateDescription vmstate_spapr = {
1269     .name = "spapr",
1270     .version_id = 3,
1271     .minimum_version_id = 1,
1272     .post_load = spapr_post_load,
1273     .fields = (VMStateField[]) {
1274         /* used to be @next_irq */
1275         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1276 
1277         /* RTC offset */
1278         VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1279 
1280         VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1281         VMSTATE_END_OF_LIST()
1282     },
1283 };
1284 
1285 static int htab_save_setup(QEMUFile *f, void *opaque)
1286 {
1287     sPAPRMachineState *spapr = opaque;
1288 
1289     /* "Iteration" header */
1290     qemu_put_be32(f, spapr->htab_shift);
1291 
1292     if (spapr->htab) {
1293         spapr->htab_save_index = 0;
1294         spapr->htab_first_pass = true;
1295     } else {
1296         assert(kvm_enabled());
1297     }
1298 
1299 
1300     return 0;
1301 }
1302 
1303 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1304                                  int64_t max_ns)
1305 {
1306     bool has_timeout = max_ns != -1;
1307     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1308     int index = spapr->htab_save_index;
1309     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1310 
1311     assert(spapr->htab_first_pass);
1312 
1313     do {
1314         int chunkstart;
1315 
1316         /* Consume invalid HPTEs */
1317         while ((index < htabslots)
1318                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1319             index++;
1320             CLEAN_HPTE(HPTE(spapr->htab, index));
1321         }
1322 
1323         /* Consume valid HPTEs */
1324         chunkstart = index;
1325         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1326                && HPTE_VALID(HPTE(spapr->htab, index))) {
1327             index++;
1328             CLEAN_HPTE(HPTE(spapr->htab, index));
1329         }
1330 
1331         if (index > chunkstart) {
1332             int n_valid = index - chunkstart;
1333 
1334             qemu_put_be32(f, chunkstart);
1335             qemu_put_be16(f, n_valid);
1336             qemu_put_be16(f, 0);
1337             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1338                             HASH_PTE_SIZE_64 * n_valid);
1339 
1340             if (has_timeout &&
1341                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1342                 break;
1343             }
1344         }
1345     } while ((index < htabslots) && !qemu_file_rate_limit(f));
1346 
1347     if (index >= htabslots) {
1348         assert(index == htabslots);
1349         index = 0;
1350         spapr->htab_first_pass = false;
1351     }
1352     spapr->htab_save_index = index;
1353 }
1354 
1355 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1356                                 int64_t max_ns)
1357 {
1358     bool final = max_ns < 0;
1359     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1360     int examined = 0, sent = 0;
1361     int index = spapr->htab_save_index;
1362     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1363 
1364     assert(!spapr->htab_first_pass);
1365 
1366     do {
1367         int chunkstart, invalidstart;
1368 
1369         /* Consume non-dirty HPTEs */
1370         while ((index < htabslots)
1371                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1372             index++;
1373             examined++;
1374         }
1375 
1376         chunkstart = index;
1377         /* Consume valid dirty HPTEs */
1378         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1379                && HPTE_DIRTY(HPTE(spapr->htab, index))
1380                && HPTE_VALID(HPTE(spapr->htab, index))) {
1381             CLEAN_HPTE(HPTE(spapr->htab, index));
1382             index++;
1383             examined++;
1384         }
1385 
1386         invalidstart = index;
1387         /* Consume invalid dirty HPTEs */
1388         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1389                && HPTE_DIRTY(HPTE(spapr->htab, index))
1390                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1391             CLEAN_HPTE(HPTE(spapr->htab, index));
1392             index++;
1393             examined++;
1394         }
1395 
1396         if (index > chunkstart) {
1397             int n_valid = invalidstart - chunkstart;
1398             int n_invalid = index - invalidstart;
1399 
1400             qemu_put_be32(f, chunkstart);
1401             qemu_put_be16(f, n_valid);
1402             qemu_put_be16(f, n_invalid);
1403             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1404                             HASH_PTE_SIZE_64 * n_valid);
1405             sent += index - chunkstart;
1406 
1407             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1408                 break;
1409             }
1410         }
1411 
1412         if (examined >= htabslots) {
1413             break;
1414         }
1415 
1416         if (index >= htabslots) {
1417             assert(index == htabslots);
1418             index = 0;
1419         }
1420     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1421 
1422     if (index >= htabslots) {
1423         assert(index == htabslots);
1424         index = 0;
1425     }
1426 
1427     spapr->htab_save_index = index;
1428 
1429     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1430 }
1431 
1432 #define MAX_ITERATION_NS    5000000 /* 5 ms */
1433 #define MAX_KVM_BUF_SIZE    2048
1434 
1435 static int htab_save_iterate(QEMUFile *f, void *opaque)
1436 {
1437     sPAPRMachineState *spapr = opaque;
1438     int fd;
1439     int rc = 0;
1440 
1441     /* Iteration header */
1442     qemu_put_be32(f, 0);
1443 
1444     if (!spapr->htab) {
1445         assert(kvm_enabled());
1446 
1447         fd = get_htab_fd(spapr);
1448         if (fd < 0) {
1449             return fd;
1450         }
1451 
1452         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1453         if (rc < 0) {
1454             return rc;
1455         }
1456     } else  if (spapr->htab_first_pass) {
1457         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1458     } else {
1459         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1460     }
1461 
1462     /* End marker */
1463     qemu_put_be32(f, 0);
1464     qemu_put_be16(f, 0);
1465     qemu_put_be16(f, 0);
1466 
1467     return rc;
1468 }
1469 
1470 static int htab_save_complete(QEMUFile *f, void *opaque)
1471 {
1472     sPAPRMachineState *spapr = opaque;
1473     int fd;
1474 
1475     /* Iteration header */
1476     qemu_put_be32(f, 0);
1477 
1478     if (!spapr->htab) {
1479         int rc;
1480 
1481         assert(kvm_enabled());
1482 
1483         fd = get_htab_fd(spapr);
1484         if (fd < 0) {
1485             return fd;
1486         }
1487 
1488         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1489         if (rc < 0) {
1490             return rc;
1491         }
1492         close_htab_fd(spapr);
1493     } else {
1494         if (spapr->htab_first_pass) {
1495             htab_save_first_pass(f, spapr, -1);
1496         }
1497         htab_save_later_pass(f, spapr, -1);
1498     }
1499 
1500     /* End marker */
1501     qemu_put_be32(f, 0);
1502     qemu_put_be16(f, 0);
1503     qemu_put_be16(f, 0);
1504 
1505     return 0;
1506 }
1507 
1508 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1509 {
1510     sPAPRMachineState *spapr = opaque;
1511     uint32_t section_hdr;
1512     int fd = -1;
1513 
1514     if (version_id < 1 || version_id > 1) {
1515         error_report("htab_load() bad version");
1516         return -EINVAL;
1517     }
1518 
1519     section_hdr = qemu_get_be32(f);
1520 
1521     if (section_hdr) {
1522         Error *local_err = NULL;
1523 
1524         /* First section gives the htab size */
1525         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1526         if (local_err) {
1527             error_report_err(local_err);
1528             return -EINVAL;
1529         }
1530         return 0;
1531     }
1532 
1533     if (!spapr->htab) {
1534         assert(kvm_enabled());
1535 
1536         fd = kvmppc_get_htab_fd(true);
1537         if (fd < 0) {
1538             error_report("Unable to open fd to restore KVM hash table: %s",
1539                          strerror(errno));
1540         }
1541     }
1542 
1543     while (true) {
1544         uint32_t index;
1545         uint16_t n_valid, n_invalid;
1546 
1547         index = qemu_get_be32(f);
1548         n_valid = qemu_get_be16(f);
1549         n_invalid = qemu_get_be16(f);
1550 
1551         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1552             /* End of Stream */
1553             break;
1554         }
1555 
1556         if ((index + n_valid + n_invalid) >
1557             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1558             /* Bad index in stream */
1559             error_report(
1560                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1561                 index, n_valid, n_invalid, spapr->htab_shift);
1562             return -EINVAL;
1563         }
1564 
1565         if (spapr->htab) {
1566             if (n_valid) {
1567                 qemu_get_buffer(f, HPTE(spapr->htab, index),
1568                                 HASH_PTE_SIZE_64 * n_valid);
1569             }
1570             if (n_invalid) {
1571                 memset(HPTE(spapr->htab, index + n_valid), 0,
1572                        HASH_PTE_SIZE_64 * n_invalid);
1573             }
1574         } else {
1575             int rc;
1576 
1577             assert(fd >= 0);
1578 
1579             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1580             if (rc < 0) {
1581                 return rc;
1582             }
1583         }
1584     }
1585 
1586     if (!spapr->htab) {
1587         assert(fd >= 0);
1588         close(fd);
1589     }
1590 
1591     return 0;
1592 }
1593 
1594 static SaveVMHandlers savevm_htab_handlers = {
1595     .save_live_setup = htab_save_setup,
1596     .save_live_iterate = htab_save_iterate,
1597     .save_live_complete_precopy = htab_save_complete,
1598     .load_state = htab_load,
1599 };
1600 
1601 static void spapr_boot_set(void *opaque, const char *boot_device,
1602                            Error **errp)
1603 {
1604     MachineState *machine = MACHINE(qdev_get_machine());
1605     machine->boot_order = g_strdup(boot_device);
1606 }
1607 
1608 static void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu,
1609                            Error **errp)
1610 {
1611     CPUPPCState *env = &cpu->env;
1612 
1613     /* Set time-base frequency to 512 MHz */
1614     cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1615 
1616     /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1617      * MSR[IP] should never be set.
1618      */
1619     env->msr_mask &= ~(1 << 6);
1620 
1621     /* Tell KVM that we're in PAPR mode */
1622     if (kvm_enabled()) {
1623         kvmppc_set_papr(cpu);
1624     }
1625 
1626     if (cpu->max_compat) {
1627         Error *local_err = NULL;
1628 
1629         ppc_set_compat(cpu, cpu->max_compat, &local_err);
1630         if (local_err) {
1631             error_propagate(errp, local_err);
1632             return;
1633         }
1634     }
1635 
1636     xics_cpu_setup(spapr->icp, cpu);
1637 
1638     qemu_register_reset(spapr_cpu_reset, cpu);
1639 }
1640 
1641 /*
1642  * Reset routine for LMB DR devices.
1643  *
1644  * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1645  * routine. Reset for PCI DR devices will be handled by PHB reset routine
1646  * when it walks all its children devices. LMB devices reset occurs
1647  * as part of spapr_ppc_reset().
1648  */
1649 static void spapr_drc_reset(void *opaque)
1650 {
1651     sPAPRDRConnector *drc = opaque;
1652     DeviceState *d = DEVICE(drc);
1653 
1654     if (d) {
1655         device_reset(d);
1656     }
1657 }
1658 
1659 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1660 {
1661     MachineState *machine = MACHINE(spapr);
1662     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1663     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1664     int i;
1665 
1666     for (i = 0; i < nr_lmbs; i++) {
1667         sPAPRDRConnector *drc;
1668         uint64_t addr;
1669 
1670         addr = i * lmb_size + spapr->hotplug_memory.base;
1671         drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1672                                      addr/lmb_size);
1673         qemu_register_reset(spapr_drc_reset, drc);
1674     }
1675 }
1676 
1677 /*
1678  * If RAM size, maxmem size and individual node mem sizes aren't aligned
1679  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1680  * since we can't support such unaligned sizes with DRCONF_MEMORY.
1681  */
1682 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1683 {
1684     int i;
1685 
1686     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1687         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1688                    " is not aligned to %llu MiB",
1689                    machine->ram_size,
1690                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1691         return;
1692     }
1693 
1694     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1695         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1696                    " is not aligned to %llu MiB",
1697                    machine->ram_size,
1698                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1699         return;
1700     }
1701 
1702     for (i = 0; i < nb_numa_nodes; i++) {
1703         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1704             error_setg(errp,
1705                        "Node %d memory size 0x%" PRIx64
1706                        " is not aligned to %llu MiB",
1707                        i, numa_info[i].node_mem,
1708                        SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1709             return;
1710         }
1711     }
1712 }
1713 
1714 /* pSeries LPAR / sPAPR hardware init */
1715 static void ppc_spapr_init(MachineState *machine)
1716 {
1717     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1718     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1719     const char *kernel_filename = machine->kernel_filename;
1720     const char *kernel_cmdline = machine->kernel_cmdline;
1721     const char *initrd_filename = machine->initrd_filename;
1722     PowerPCCPU *cpu;
1723     PCIHostState *phb;
1724     int i;
1725     MemoryRegion *sysmem = get_system_memory();
1726     MemoryRegion *ram = g_new(MemoryRegion, 1);
1727     MemoryRegion *rma_region;
1728     void *rma = NULL;
1729     hwaddr rma_alloc_size;
1730     hwaddr node0_size = spapr_node0_size();
1731     uint32_t initrd_base = 0;
1732     long kernel_size = 0, initrd_size = 0;
1733     long load_limit, fw_size;
1734     bool kernel_le = false;
1735     char *filename;
1736 
1737     msi_nonbroken = true;
1738 
1739     QLIST_INIT(&spapr->phbs);
1740 
1741     cpu_ppc_hypercall = emulate_spapr_hypercall;
1742 
1743     /* Allocate RMA if necessary */
1744     rma_alloc_size = kvmppc_alloc_rma(&rma);
1745 
1746     if (rma_alloc_size == -1) {
1747         error_report("Unable to create RMA");
1748         exit(1);
1749     }
1750 
1751     if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1752         spapr->rma_size = rma_alloc_size;
1753     } else {
1754         spapr->rma_size = node0_size;
1755 
1756         /* With KVM, we don't actually know whether KVM supports an
1757          * unbounded RMA (PR KVM) or is limited by the hash table size
1758          * (HV KVM using VRMA), so we always assume the latter
1759          *
1760          * In that case, we also limit the initial allocations for RTAS
1761          * etc... to 256M since we have no way to know what the VRMA size
1762          * is going to be as it depends on the size of the hash table
1763          * isn't determined yet.
1764          */
1765         if (kvm_enabled()) {
1766             spapr->vrma_adjust = 1;
1767             spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1768         }
1769     }
1770 
1771     if (spapr->rma_size > node0_size) {
1772         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
1773                      spapr->rma_size);
1774         exit(1);
1775     }
1776 
1777     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1778     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1779 
1780     /* Set up Interrupt Controller before we create the VCPUs */
1781     spapr->icp = xics_system_init(machine,
1782                                   DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(),
1783                                                smp_threads),
1784                                   XICS_IRQS, &error_fatal);
1785 
1786     if (smc->dr_lmb_enabled) {
1787         spapr_validate_node_memory(machine, &error_fatal);
1788     }
1789 
1790     /* init CPUs */
1791     if (machine->cpu_model == NULL) {
1792         machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
1793     }
1794     for (i = 0; i < smp_cpus; i++) {
1795         cpu = cpu_ppc_init(machine->cpu_model);
1796         if (cpu == NULL) {
1797             error_report("Unable to find PowerPC CPU definition");
1798             exit(1);
1799         }
1800         spapr_cpu_init(spapr, cpu, &error_fatal);
1801     }
1802 
1803     if (kvm_enabled()) {
1804         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1805         kvmppc_enable_logical_ci_hcalls();
1806         kvmppc_enable_set_mode_hcall();
1807     }
1808 
1809     /* allocate RAM */
1810     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1811                                          machine->ram_size);
1812     memory_region_add_subregion(sysmem, 0, ram);
1813 
1814     if (rma_alloc_size && rma) {
1815         rma_region = g_new(MemoryRegion, 1);
1816         memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1817                                    rma_alloc_size, rma);
1818         vmstate_register_ram_global(rma_region);
1819         memory_region_add_subregion(sysmem, 0, rma_region);
1820     }
1821 
1822     /* initialize hotplug memory address space */
1823     if (machine->ram_size < machine->maxram_size) {
1824         ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1825 
1826         if (machine->ram_slots > SPAPR_MAX_RAM_SLOTS) {
1827             error_report("Specified number of memory slots %"
1828                          PRIu64" exceeds max supported %d",
1829                          machine->ram_slots, SPAPR_MAX_RAM_SLOTS);
1830             exit(1);
1831         }
1832 
1833         spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1834                                               SPAPR_HOTPLUG_MEM_ALIGN);
1835         memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1836                            "hotplug-memory", hotplug_mem_size);
1837         memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1838                                     &spapr->hotplug_memory.mr);
1839     }
1840 
1841     if (smc->dr_lmb_enabled) {
1842         spapr_create_lmb_dr_connectors(spapr);
1843     }
1844 
1845     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1846     if (!filename) {
1847         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1848         exit(1);
1849     }
1850     spapr->rtas_size = get_image_size(filename);
1851     spapr->rtas_blob = g_malloc(spapr->rtas_size);
1852     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1853         error_report("Could not load LPAR rtas '%s'", filename);
1854         exit(1);
1855     }
1856     if (spapr->rtas_size > RTAS_MAX_SIZE) {
1857         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1858                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1859         exit(1);
1860     }
1861     g_free(filename);
1862 
1863     /* Set up EPOW events infrastructure */
1864     spapr_events_init(spapr);
1865 
1866     /* Set up the RTC RTAS interfaces */
1867     spapr_rtc_create(spapr);
1868 
1869     /* Set up VIO bus */
1870     spapr->vio_bus = spapr_vio_bus_init();
1871 
1872     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1873         if (serial_hds[i]) {
1874             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1875         }
1876     }
1877 
1878     /* We always have at least the nvram device on VIO */
1879     spapr_create_nvram(spapr);
1880 
1881     /* Set up PCI */
1882     spapr_pci_rtas_init();
1883 
1884     phb = spapr_create_phb(spapr, 0);
1885 
1886     for (i = 0; i < nb_nics; i++) {
1887         NICInfo *nd = &nd_table[i];
1888 
1889         if (!nd->model) {
1890             nd->model = g_strdup("ibmveth");
1891         }
1892 
1893         if (strcmp(nd->model, "ibmveth") == 0) {
1894             spapr_vlan_create(spapr->vio_bus, nd);
1895         } else {
1896             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1897         }
1898     }
1899 
1900     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1901         spapr_vscsi_create(spapr->vio_bus);
1902     }
1903 
1904     /* Graphics */
1905     if (spapr_vga_init(phb->bus, &error_fatal)) {
1906         spapr->has_graphics = true;
1907         machine->usb |= defaults_enabled() && !machine->usb_disabled;
1908     }
1909 
1910     if (machine->usb) {
1911         if (smc->use_ohci_by_default) {
1912             pci_create_simple(phb->bus, -1, "pci-ohci");
1913         } else {
1914             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
1915         }
1916 
1917         if (spapr->has_graphics) {
1918             USBBus *usb_bus = usb_bus_find(-1);
1919 
1920             usb_create_simple(usb_bus, "usb-kbd");
1921             usb_create_simple(usb_bus, "usb-mouse");
1922         }
1923     }
1924 
1925     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1926         error_report(
1927             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
1928             MIN_RMA_SLOF);
1929         exit(1);
1930     }
1931 
1932     if (kernel_filename) {
1933         uint64_t lowaddr = 0;
1934 
1935         kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1936                                NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE,
1937                                0, 0);
1938         if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1939             kernel_size = load_elf(kernel_filename,
1940                                    translate_kernel_address, NULL,
1941                                    NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE,
1942                                    0, 0);
1943             kernel_le = kernel_size > 0;
1944         }
1945         if (kernel_size < 0) {
1946             error_report("error loading %s: %s",
1947                          kernel_filename, load_elf_strerror(kernel_size));
1948             exit(1);
1949         }
1950 
1951         /* load initrd */
1952         if (initrd_filename) {
1953             /* Try to locate the initrd in the gap between the kernel
1954              * and the firmware. Add a bit of space just in case
1955              */
1956             initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1957             initrd_size = load_image_targphys(initrd_filename, initrd_base,
1958                                               load_limit - initrd_base);
1959             if (initrd_size < 0) {
1960                 error_report("could not load initial ram disk '%s'",
1961                              initrd_filename);
1962                 exit(1);
1963             }
1964         } else {
1965             initrd_base = 0;
1966             initrd_size = 0;
1967         }
1968     }
1969 
1970     if (bios_name == NULL) {
1971         bios_name = FW_FILE_NAME;
1972     }
1973     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1974     if (!filename) {
1975         error_report("Could not find LPAR firmware '%s'", bios_name);
1976         exit(1);
1977     }
1978     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1979     if (fw_size <= 0) {
1980         error_report("Could not load LPAR firmware '%s'", filename);
1981         exit(1);
1982     }
1983     g_free(filename);
1984 
1985     /* FIXME: Should register things through the MachineState's qdev
1986      * interface, this is a legacy from the sPAPREnvironment structure
1987      * which predated MachineState but had a similar function */
1988     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1989     register_savevm_live(NULL, "spapr/htab", -1, 1,
1990                          &savevm_htab_handlers, spapr);
1991 
1992     /* Prepare the device tree */
1993     spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1994                                             kernel_size, kernel_le,
1995                                             kernel_cmdline,
1996                                             spapr->check_exception_irq);
1997     assert(spapr->fdt_skel != NULL);
1998 
1999     /* used by RTAS */
2000     QTAILQ_INIT(&spapr->ccs_list);
2001     qemu_register_reset(spapr_ccs_reset_hook, spapr);
2002 
2003     qemu_register_boot_set(spapr_boot_set, spapr);
2004 }
2005 
2006 static int spapr_kvm_type(const char *vm_type)
2007 {
2008     if (!vm_type) {
2009         return 0;
2010     }
2011 
2012     if (!strcmp(vm_type, "HV")) {
2013         return 1;
2014     }
2015 
2016     if (!strcmp(vm_type, "PR")) {
2017         return 2;
2018     }
2019 
2020     error_report("Unknown kvm-type specified '%s'", vm_type);
2021     exit(1);
2022 }
2023 
2024 /*
2025  * Implementation of an interface to adjust firmware path
2026  * for the bootindex property handling.
2027  */
2028 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2029                                    DeviceState *dev)
2030 {
2031 #define CAST(type, obj, name) \
2032     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2033     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2034     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2035 
2036     if (d) {
2037         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2038         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2039         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2040 
2041         if (spapr) {
2042             /*
2043              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2044              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2045              * in the top 16 bits of the 64-bit LUN
2046              */
2047             unsigned id = 0x8000 | (d->id << 8) | d->lun;
2048             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2049                                    (uint64_t)id << 48);
2050         } else if (virtio) {
2051             /*
2052              * We use SRP luns of the form 01000000 | (target << 8) | lun
2053              * in the top 32 bits of the 64-bit LUN
2054              * Note: the quote above is from SLOF and it is wrong,
2055              * the actual binding is:
2056              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2057              */
2058             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2059             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2060                                    (uint64_t)id << 32);
2061         } else if (usb) {
2062             /*
2063              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2064              * in the top 32 bits of the 64-bit LUN
2065              */
2066             unsigned usb_port = atoi(usb->port->path);
2067             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2068             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2069                                    (uint64_t)id << 32);
2070         }
2071     }
2072 
2073     if (phb) {
2074         /* Replace "pci" with "pci@800000020000000" */
2075         return g_strdup_printf("pci@%"PRIX64, phb->buid);
2076     }
2077 
2078     return NULL;
2079 }
2080 
2081 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2082 {
2083     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2084 
2085     return g_strdup(spapr->kvm_type);
2086 }
2087 
2088 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2089 {
2090     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2091 
2092     g_free(spapr->kvm_type);
2093     spapr->kvm_type = g_strdup(value);
2094 }
2095 
2096 static void spapr_machine_initfn(Object *obj)
2097 {
2098     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2099 
2100     spapr->htab_fd = -1;
2101     object_property_add_str(obj, "kvm-type",
2102                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2103     object_property_set_description(obj, "kvm-type",
2104                                     "Specifies the KVM virtualization mode (HV, PR)",
2105                                     NULL);
2106 }
2107 
2108 static void spapr_machine_finalizefn(Object *obj)
2109 {
2110     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2111 
2112     g_free(spapr->kvm_type);
2113 }
2114 
2115 static void ppc_cpu_do_nmi_on_cpu(void *arg)
2116 {
2117     CPUState *cs = arg;
2118 
2119     cpu_synchronize_state(cs);
2120     ppc_cpu_do_system_reset(cs);
2121 }
2122 
2123 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2124 {
2125     CPUState *cs;
2126 
2127     CPU_FOREACH(cs) {
2128         async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
2129     }
2130 }
2131 
2132 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
2133                            uint32_t node, Error **errp)
2134 {
2135     sPAPRDRConnector *drc;
2136     sPAPRDRConnectorClass *drck;
2137     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2138     int i, fdt_offset, fdt_size;
2139     void *fdt;
2140 
2141     /*
2142      * Check for DRC connectors and send hotplug notification to the
2143      * guest only in case of hotplugged memory. This allows cold plugged
2144      * memory to be specified at boot time.
2145      */
2146     if (!dev->hotplugged) {
2147         return;
2148     }
2149 
2150     for (i = 0; i < nr_lmbs; i++) {
2151         drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2152                 addr/SPAPR_MEMORY_BLOCK_SIZE);
2153         g_assert(drc);
2154 
2155         fdt = create_device_tree(&fdt_size);
2156         fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2157                                                 SPAPR_MEMORY_BLOCK_SIZE);
2158 
2159         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2160         drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2161         addr += SPAPR_MEMORY_BLOCK_SIZE;
2162     }
2163     spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
2164 }
2165 
2166 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2167                               uint32_t node, Error **errp)
2168 {
2169     Error *local_err = NULL;
2170     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2171     PCDIMMDevice *dimm = PC_DIMM(dev);
2172     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2173     MemoryRegion *mr = ddc->get_memory_region(dimm);
2174     uint64_t align = memory_region_get_alignment(mr);
2175     uint64_t size = memory_region_size(mr);
2176     uint64_t addr;
2177 
2178     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2179         error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2180                       "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2181         goto out;
2182     }
2183 
2184     pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2185     if (local_err) {
2186         goto out;
2187     }
2188 
2189     addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2190     if (local_err) {
2191         pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2192         goto out;
2193     }
2194 
2195     spapr_add_lmbs(dev, addr, size, node, &error_abort);
2196 
2197 out:
2198     error_propagate(errp, local_err);
2199 }
2200 
2201 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2202                                       DeviceState *dev, Error **errp)
2203 {
2204     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2205 
2206     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2207         int node;
2208 
2209         if (!smc->dr_lmb_enabled) {
2210             error_setg(errp, "Memory hotplug not supported for this machine");
2211             return;
2212         }
2213         node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2214         if (*errp) {
2215             return;
2216         }
2217 
2218         /*
2219          * Currently PowerPC kernel doesn't allow hot-adding memory to
2220          * memory-less node, but instead will silently add the memory
2221          * to the first node that has some memory. This causes two
2222          * unexpected behaviours for the user.
2223          *
2224          * - Memory gets hotplugged to a different node than what the user
2225          *   specified.
2226          * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2227          *   to memory-less node, a reboot will set things accordingly
2228          *   and the previously hotplugged memory now ends in the right node.
2229          *   This appears as if some memory moved from one node to another.
2230          *
2231          * So until kernel starts supporting memory hotplug to memory-less
2232          * nodes, just prevent such attempts upfront in QEMU.
2233          */
2234         if (nb_numa_nodes && !numa_info[node].node_mem) {
2235             error_setg(errp, "Can't hotplug memory to memory-less node %d",
2236                        node);
2237             return;
2238         }
2239 
2240         spapr_memory_plug(hotplug_dev, dev, node, errp);
2241     }
2242 }
2243 
2244 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2245                                       DeviceState *dev, Error **errp)
2246 {
2247     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2248         error_setg(errp, "Memory hot unplug not supported by sPAPR");
2249     }
2250 }
2251 
2252 static HotplugHandler *spapr_get_hotpug_handler(MachineState *machine,
2253                                              DeviceState *dev)
2254 {
2255     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2256         return HOTPLUG_HANDLER(machine);
2257     }
2258     return NULL;
2259 }
2260 
2261 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2262 {
2263     /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2264      * socket means much for the paravirtualized PAPR platform) */
2265     return cpu_index / smp_threads / smp_cores;
2266 }
2267 
2268 static void spapr_machine_class_init(ObjectClass *oc, void *data)
2269 {
2270     MachineClass *mc = MACHINE_CLASS(oc);
2271     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2272     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2273     NMIClass *nc = NMI_CLASS(oc);
2274     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2275 
2276     mc->desc = "pSeries Logical Partition (PAPR compliant)";
2277 
2278     /*
2279      * We set up the default / latest behaviour here.  The class_init
2280      * functions for the specific versioned machine types can override
2281      * these details for backwards compatibility
2282      */
2283     mc->init = ppc_spapr_init;
2284     mc->reset = ppc_spapr_reset;
2285     mc->block_default_type = IF_SCSI;
2286     mc->max_cpus = MAX_CPUMASK_BITS;
2287     mc->no_parallel = 1;
2288     mc->default_boot_order = "";
2289     mc->default_ram_size = 512 * M_BYTE;
2290     mc->kvm_type = spapr_kvm_type;
2291     mc->has_dynamic_sysbus = true;
2292     mc->pci_allow_0_address = true;
2293     mc->get_hotplug_handler = spapr_get_hotpug_handler;
2294     hc->plug = spapr_machine_device_plug;
2295     hc->unplug = spapr_machine_device_unplug;
2296     mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
2297 
2298     smc->dr_lmb_enabled = true;
2299     fwc->get_dev_path = spapr_get_fw_dev_path;
2300     nc->nmi_monitor_handler = spapr_nmi;
2301 }
2302 
2303 static const TypeInfo spapr_machine_info = {
2304     .name          = TYPE_SPAPR_MACHINE,
2305     .parent        = TYPE_MACHINE,
2306     .abstract      = true,
2307     .instance_size = sizeof(sPAPRMachineState),
2308     .instance_init = spapr_machine_initfn,
2309     .instance_finalize = spapr_machine_finalizefn,
2310     .class_size    = sizeof(sPAPRMachineClass),
2311     .class_init    = spapr_machine_class_init,
2312     .interfaces = (InterfaceInfo[]) {
2313         { TYPE_FW_PATH_PROVIDER },
2314         { TYPE_NMI },
2315         { TYPE_HOTPLUG_HANDLER },
2316         { }
2317     },
2318 };
2319 
2320 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
2321     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
2322                                                     void *data)      \
2323     {                                                                \
2324         MachineClass *mc = MACHINE_CLASS(oc);                        \
2325         spapr_machine_##suffix##_class_options(mc);                  \
2326         if (latest) {                                                \
2327             mc->alias = "pseries";                                   \
2328             mc->is_default = 1;                                      \
2329         }                                                            \
2330     }                                                                \
2331     static void spapr_machine_##suffix##_instance_init(Object *obj)  \
2332     {                                                                \
2333         MachineState *machine = MACHINE(obj);                        \
2334         spapr_machine_##suffix##_instance_options(machine);          \
2335     }                                                                \
2336     static const TypeInfo spapr_machine_##suffix##_info = {          \
2337         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
2338         .parent = TYPE_SPAPR_MACHINE,                                \
2339         .class_init = spapr_machine_##suffix##_class_init,           \
2340         .instance_init = spapr_machine_##suffix##_instance_init,     \
2341     };                                                               \
2342     static void spapr_machine_register_##suffix(void)                \
2343     {                                                                \
2344         type_register(&spapr_machine_##suffix##_info);               \
2345     }                                                                \
2346     type_init(spapr_machine_register_##suffix)
2347 
2348 /*
2349  * pseries-2.6
2350  */
2351 static void spapr_machine_2_6_instance_options(MachineState *machine)
2352 {
2353 }
2354 
2355 static void spapr_machine_2_6_class_options(MachineClass *mc)
2356 {
2357     /* Defaults for the latest behaviour inherited from the base class */
2358 }
2359 
2360 DEFINE_SPAPR_MACHINE(2_6, "2.6", true);
2361 
2362 /*
2363  * pseries-2.5
2364  */
2365 #define SPAPR_COMPAT_2_5 \
2366         HW_COMPAT_2_5
2367 
2368 static void spapr_machine_2_5_instance_options(MachineState *machine)
2369 {
2370 }
2371 
2372 static void spapr_machine_2_5_class_options(MachineClass *mc)
2373 {
2374     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2375 
2376     spapr_machine_2_6_class_options(mc);
2377     smc->use_ohci_by_default = true;
2378     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
2379 }
2380 
2381 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
2382 
2383 /*
2384  * pseries-2.4
2385  */
2386 #define SPAPR_COMPAT_2_4 \
2387         SPAPR_COMPAT_2_5 \
2388         HW_COMPAT_2_4
2389 
2390 static void spapr_machine_2_4_instance_options(MachineState *machine)
2391 {
2392     spapr_machine_2_5_instance_options(machine);
2393 }
2394 
2395 static void spapr_machine_2_4_class_options(MachineClass *mc)
2396 {
2397     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2398 
2399     spapr_machine_2_5_class_options(mc);
2400     smc->dr_lmb_enabled = false;
2401     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
2402 }
2403 
2404 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
2405 
2406 /*
2407  * pseries-2.3
2408  */
2409 #define SPAPR_COMPAT_2_3 \
2410         SPAPR_COMPAT_2_4 \
2411         HW_COMPAT_2_3 \
2412         {\
2413             .driver   = "spapr-pci-host-bridge",\
2414             .property = "dynamic-reconfiguration",\
2415             .value    = "off",\
2416         },
2417 
2418 static void spapr_machine_2_3_instance_options(MachineState *machine)
2419 {
2420     spapr_machine_2_4_instance_options(machine);
2421     savevm_skip_section_footers();
2422     global_state_set_optional();
2423     savevm_skip_configuration();
2424 }
2425 
2426 static void spapr_machine_2_3_class_options(MachineClass *mc)
2427 {
2428     spapr_machine_2_4_class_options(mc);
2429     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
2430 }
2431 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
2432 
2433 /*
2434  * pseries-2.2
2435  */
2436 
2437 #define SPAPR_COMPAT_2_2 \
2438         SPAPR_COMPAT_2_3 \
2439         HW_COMPAT_2_2 \
2440         {\
2441             .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2442             .property = "mem_win_size",\
2443             .value    = "0x20000000",\
2444         },
2445 
2446 static void spapr_machine_2_2_instance_options(MachineState *machine)
2447 {
2448     spapr_machine_2_3_instance_options(machine);
2449     machine->suppress_vmdesc = true;
2450 }
2451 
2452 static void spapr_machine_2_2_class_options(MachineClass *mc)
2453 {
2454     spapr_machine_2_3_class_options(mc);
2455     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
2456 }
2457 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
2458 
2459 /*
2460  * pseries-2.1
2461  */
2462 #define SPAPR_COMPAT_2_1 \
2463         SPAPR_COMPAT_2_2 \
2464         HW_COMPAT_2_1
2465 
2466 static void spapr_machine_2_1_instance_options(MachineState *machine)
2467 {
2468     spapr_machine_2_2_instance_options(machine);
2469 }
2470 
2471 static void spapr_machine_2_1_class_options(MachineClass *mc)
2472 {
2473     spapr_machine_2_2_class_options(mc);
2474     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
2475 }
2476 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
2477 
2478 static void spapr_machine_register_types(void)
2479 {
2480     type_register_static(&spapr_machine_info);
2481 }
2482 
2483 type_init(spapr_machine_register_types)
2484