xref: /qemu/hw/ppc/spapr_drc.c (revision 7cebff0d)
1 /*
2  * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
3  *
4  * Copyright IBM Corp. 2014
5  *
6  * Authors:
7  *  Michael Roth      <mdroth@linux.vnet.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qapi/qmp/qnull.h"
16 #include "cpu.h"
17 #include "qemu/cutils.h"
18 #include "hw/ppc/spapr_drc.h"
19 #include "qom/object.h"
20 #include "migration/vmstate.h"
21 #include "qapi/visitor.h"
22 #include "qemu/error-report.h"
23 #include "hw/ppc/spapr.h" /* for RTAS return codes */
24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
25 #include "hw/ppc/spapr_nvdimm.h"
26 #include "sysemu/device_tree.h"
27 #include "sysemu/reset.h"
28 #include "trace.h"
29 
30 #define DRC_CONTAINER_PATH "/dr-connector"
31 #define DRC_INDEX_TYPE_SHIFT 28
32 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
33 
34 SpaprDrcType spapr_drc_type(SpaprDrc *drc)
35 {
36     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
37 
38     return 1 << drck->typeshift;
39 }
40 
41 uint32_t spapr_drc_index(SpaprDrc *drc)
42 {
43     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
44 
45     /* no set format for a drc index: it only needs to be globally
46      * unique. this is how we encode the DRC type on bare-metal
47      * however, so might as well do that here
48      */
49     return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
50         | (drc->id & DRC_INDEX_ID_MASK);
51 }
52 
53 static void spapr_drc_release(SpaprDrc *drc)
54 {
55     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
56 
57     drck->release(drc->dev);
58 
59     drc->unplug_requested = false;
60     timer_del(drc->unplug_timeout_timer);
61 
62     g_free(drc->fdt);
63     drc->fdt = NULL;
64     drc->fdt_start_offset = 0;
65     object_property_del(OBJECT(drc), "device");
66     drc->dev = NULL;
67 }
68 
69 static uint32_t drc_isolate_physical(SpaprDrc *drc)
70 {
71     switch (drc->state) {
72     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
73         return RTAS_OUT_SUCCESS; /* Nothing to do */
74     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
75         break; /* see below */
76     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
77         return RTAS_OUT_PARAM_ERROR; /* not allowed */
78     default:
79         g_assert_not_reached();
80     }
81 
82     drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
83 
84     if (drc->unplug_requested) {
85         uint32_t drc_index = spapr_drc_index(drc);
86         trace_spapr_drc_set_isolation_state_finalizing(drc_index);
87         spapr_drc_release(drc);
88     }
89 
90     return RTAS_OUT_SUCCESS;
91 }
92 
93 static uint32_t drc_unisolate_physical(SpaprDrc *drc)
94 {
95     switch (drc->state) {
96     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
97     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
98         return RTAS_OUT_SUCCESS; /* Nothing to do */
99     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
100         break; /* see below */
101     default:
102         g_assert_not_reached();
103     }
104 
105     /* cannot unisolate a non-existent resource, and, or resources
106      * which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
107      * 13.5.3.5)
108      */
109     if (!drc->dev) {
110         return RTAS_OUT_NO_SUCH_INDICATOR;
111     }
112 
113     drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE;
114     drc->ccs_offset = drc->fdt_start_offset;
115     drc->ccs_depth = 0;
116 
117     return RTAS_OUT_SUCCESS;
118 }
119 
120 static uint32_t drc_isolate_logical(SpaprDrc *drc)
121 {
122     switch (drc->state) {
123     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
124     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
125         return RTAS_OUT_SUCCESS; /* Nothing to do */
126     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
127         break; /* see below */
128     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
129         return RTAS_OUT_PARAM_ERROR; /* not allowed */
130     default:
131         g_assert_not_reached();
132     }
133 
134     /*
135      * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
136      * belong to a DIMM device that is marked for removal.
137      *
138      * Currently the guest userspace tool drmgr that drives the memory
139      * hotplug/unplug will just try to remove a set of 'removable' LMBs
140      * in response to a hot unplug request that is based on drc-count.
141      * If the LMB being removed doesn't belong to a DIMM device that is
142      * actually being unplugged, fail the isolation request here.
143      */
144     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB
145         && !drc->unplug_requested) {
146         return RTAS_OUT_HW_ERROR;
147     }
148 
149     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
150 
151     return RTAS_OUT_SUCCESS;
152 }
153 
154 static uint32_t drc_unisolate_logical(SpaprDrc *drc)
155 {
156     switch (drc->state) {
157     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
158     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
159         return RTAS_OUT_SUCCESS; /* Nothing to do */
160     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
161         break; /* see below */
162     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
163         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
164     default:
165         g_assert_not_reached();
166     }
167 
168     /* Move to AVAILABLE state should have ensured device was present */
169     g_assert(drc->dev);
170 
171     drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE;
172     drc->ccs_offset = drc->fdt_start_offset;
173     drc->ccs_depth = 0;
174 
175     return RTAS_OUT_SUCCESS;
176 }
177 
178 static uint32_t drc_set_usable(SpaprDrc *drc)
179 {
180     switch (drc->state) {
181     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
182     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
183     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
184         return RTAS_OUT_SUCCESS; /* Nothing to do */
185     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
186         break; /* see below */
187     default:
188         g_assert_not_reached();
189     }
190 
191     /* if there's no resource/device associated with the DRC, there's
192      * no way for us to put it in an allocation state consistent with
193      * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
194      * result in an RTAS return code of -3 / "no such indicator"
195      */
196     if (!drc->dev) {
197         return RTAS_OUT_NO_SUCH_INDICATOR;
198     }
199     if (drc->unplug_requested) {
200         /* Don't allow the guest to move a device away from UNUSABLE
201          * state when we want to unplug it */
202         return RTAS_OUT_NO_SUCH_INDICATOR;
203     }
204 
205     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
206 
207     return RTAS_OUT_SUCCESS;
208 }
209 
210 static uint32_t drc_set_unusable(SpaprDrc *drc)
211 {
212     switch (drc->state) {
213     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
214         return RTAS_OUT_SUCCESS; /* Nothing to do */
215     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
216         break; /* see below */
217     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
218     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
219         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
220     default:
221         g_assert_not_reached();
222     }
223 
224     drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
225     if (drc->unplug_requested) {
226         uint32_t drc_index = spapr_drc_index(drc);
227         trace_spapr_drc_set_allocation_state_finalizing(drc_index);
228         spapr_drc_release(drc);
229     }
230 
231     return RTAS_OUT_SUCCESS;
232 }
233 
234 static char *spapr_drc_name(SpaprDrc *drc)
235 {
236     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
237 
238     /* human-readable name for a DRC to encode into the DT
239      * description. this is mainly only used within a guest in place
240      * of the unique DRC index.
241      *
242      * in the case of VIO/PCI devices, it corresponds to a "location
243      * code" that maps a logical device/function (DRC index) to a
244      * physical (or virtual in the case of VIO) location in the system
245      * by chaining together the "location label" for each
246      * encapsulating component.
247      *
248      * since this is more to do with diagnosing physical hardware
249      * issues than guest compatibility, we choose location codes/DRC
250      * names that adhere to the documented format, but avoid encoding
251      * the entire topology information into the label/code, instead
252      * just using the location codes based on the labels for the
253      * endpoints (VIO/PCI adaptor connectors), which is basically just
254      * "C" followed by an integer ID.
255      *
256      * DRC names as documented by PAPR+ v2.7, 13.5.2.4
257      * location codes as documented by PAPR+ v2.7, 12.3.1.5
258      */
259     return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
260 }
261 
262 /*
263  * dr-entity-sense sensor value
264  * returned via get-sensor-state RTAS calls
265  * as expected by state diagram in PAPR+ 2.7, 13.4
266  * based on the current allocation/indicator/power states
267  * for the DR connector.
268  */
269 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc)
270 {
271     /* this assumes all PCI devices are assigned to a 'live insertion'
272      * power domain, where QEMU manages power state automatically as
273      * opposed to the guest. present, non-PCI resources are unaffected
274      * by power state.
275      */
276     return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
277         : SPAPR_DR_ENTITY_SENSE_EMPTY;
278 }
279 
280 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc)
281 {
282     switch (drc->state) {
283     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
284         return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
285     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
286     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
287     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
288         g_assert(drc->dev);
289         return SPAPR_DR_ENTITY_SENSE_PRESENT;
290     default:
291         g_assert_not_reached();
292     }
293 }
294 
295 static void prop_get_index(Object *obj, Visitor *v, const char *name,
296                            void *opaque, Error **errp)
297 {
298     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
299     uint32_t value = spapr_drc_index(drc);
300     visit_type_uint32(v, name, &value, errp);
301 }
302 
303 static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
304                          void *opaque, Error **errp)
305 {
306     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
307     QNull *null = NULL;
308     int fdt_offset_next, fdt_offset, fdt_depth;
309     void *fdt;
310 
311     if (!drc->fdt) {
312         visit_type_null(v, NULL, &null, errp);
313         qobject_unref(null);
314         return;
315     }
316 
317     fdt = drc->fdt;
318     fdt_offset = drc->fdt_start_offset;
319     fdt_depth = 0;
320 
321     do {
322         const char *name = NULL;
323         const struct fdt_property *prop = NULL;
324         int prop_len = 0, name_len = 0;
325         uint32_t tag;
326         bool ok;
327 
328         tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
329         switch (tag) {
330         case FDT_BEGIN_NODE:
331             fdt_depth++;
332             name = fdt_get_name(fdt, fdt_offset, &name_len);
333             if (!visit_start_struct(v, name, NULL, 0, errp)) {
334                 return;
335             }
336             break;
337         case FDT_END_NODE:
338             /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
339             g_assert(fdt_depth > 0);
340             ok = visit_check_struct(v, errp);
341             visit_end_struct(v, NULL);
342             if (!ok) {
343                 return;
344             }
345             fdt_depth--;
346             break;
347         case FDT_PROP: {
348             int i;
349             prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
350             name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
351             if (!visit_start_list(v, name, NULL, 0, errp)) {
352                 return;
353             }
354             for (i = 0; i < prop_len; i++) {
355                 if (!visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i],
356                                       errp)) {
357                     return;
358                 }
359             }
360             ok = visit_check_list(v, errp);
361             visit_end_list(v, NULL);
362             if (!ok) {
363                 return;
364             }
365             break;
366         }
367         default:
368             error_report("device FDT in unexpected state: %d", tag);
369             abort();
370         }
371         fdt_offset = fdt_offset_next;
372     } while (fdt_depth != 0);
373 }
374 
375 static void spapr_drc_start_unplug_timeout_timer(SpaprDrc *drc)
376 {
377     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
378 
379     if (drck->unplug_timeout_seconds != 0) {
380         timer_mod(drc->unplug_timeout_timer,
381                   qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) +
382                   drck->unplug_timeout_seconds * 1000);
383     }
384 }
385 
386 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d)
387 {
388     trace_spapr_drc_attach(spapr_drc_index(drc));
389 
390     g_assert(!drc->dev);
391     g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE)
392              || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON));
393 
394     drc->dev = d;
395 
396     object_property_add_link(OBJECT(drc), "device",
397                              object_get_typename(OBJECT(drc->dev)),
398                              (Object **)(&drc->dev),
399                              NULL, 0);
400 }
401 
402 void spapr_drc_unplug_request(SpaprDrc *drc)
403 {
404     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
405 
406     trace_spapr_drc_unplug_request(spapr_drc_index(drc));
407 
408     g_assert(drc->dev);
409 
410     drc->unplug_requested = true;
411 
412     spapr_drc_start_unplug_timeout_timer(drc);
413 
414     if (drc->state != drck->empty_state) {
415         trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc));
416         return;
417     }
418 
419     spapr_drc_release(drc);
420 }
421 
422 int spapr_drc_unplug_timeout_remaining_sec(SpaprDrc *drc)
423 {
424     if (drc->unplug_requested) {
425         return timer_deadline_ms(drc->unplug_timeout_timer) / 1000;
426     }
427 
428     return 0;
429 }
430 
431 bool spapr_drc_reset(SpaprDrc *drc)
432 {
433     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
434     bool unplug_completed = false;
435 
436     trace_spapr_drc_reset(spapr_drc_index(drc));
437 
438     /* immediately upon reset we can safely assume DRCs whose devices
439      * are pending removal can be safely removed.
440      */
441     if (drc->unplug_requested) {
442         spapr_drc_release(drc);
443         unplug_completed = true;
444     }
445 
446     if (drc->dev) {
447         /* A device present at reset is ready to go, same as coldplugged */
448         drc->state = drck->ready_state;
449         /*
450          * Ensure that we are able to send the FDT fragment again
451          * via configure-connector call if the guest requests.
452          */
453         drc->ccs_offset = drc->fdt_start_offset;
454         drc->ccs_depth = 0;
455     } else {
456         drc->state = drck->empty_state;
457         drc->ccs_offset = -1;
458         drc->ccs_depth = -1;
459     }
460 
461     return unplug_completed;
462 }
463 
464 static bool spapr_drc_unplug_requested_needed(void *opaque)
465 {
466     return spapr_drc_unplug_requested(opaque);
467 }
468 
469 static const VMStateDescription vmstate_spapr_drc_unplug_requested = {
470     .name = "spapr_drc/unplug_requested",
471     .version_id = 1,
472     .minimum_version_id = 1,
473     .needed = spapr_drc_unplug_requested_needed,
474     .fields  = (VMStateField []) {
475         VMSTATE_BOOL(unplug_requested, SpaprDrc),
476         VMSTATE_END_OF_LIST()
477     }
478 };
479 
480 static bool spapr_drc_needed(void *opaque)
481 {
482     SpaprDrc *drc = opaque;
483     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
484 
485     /*
486      * If no dev is plugged in there is no need to migrate the DRC state
487      * nor to reset the DRC at CAS.
488      */
489     if (!drc->dev) {
490         return false;
491     }
492 
493     /*
494      * We need to reset the DRC at CAS or to migrate the DRC state if it's
495      * not equal to the expected long-term state, which is the same as the
496      * coldplugged initial state, or if an unplug request is pending.
497      */
498     return drc->state != drck->ready_state ||
499         spapr_drc_unplug_requested(drc);
500 }
501 
502 static int spapr_drc_post_load(void *opaque, int version_id)
503 {
504     SpaprDrc *drc = opaque;
505 
506     if (drc->unplug_requested) {
507         spapr_drc_start_unplug_timeout_timer(drc);
508     }
509 
510     return 0;
511 }
512 
513 static const VMStateDescription vmstate_spapr_drc = {
514     .name = "spapr_drc",
515     .version_id = 1,
516     .minimum_version_id = 1,
517     .needed = spapr_drc_needed,
518     .post_load = spapr_drc_post_load,
519     .fields  = (VMStateField []) {
520         VMSTATE_UINT32(state, SpaprDrc),
521         VMSTATE_END_OF_LIST()
522     },
523     .subsections = (const VMStateDescription * []) {
524         &vmstate_spapr_drc_unplug_requested,
525         NULL
526     }
527 };
528 
529 static void drc_unplug_timeout_cb(void *opaque)
530 {
531     SpaprDrc *drc = opaque;
532 
533     if (drc->unplug_requested) {
534         drc->unplug_requested = false;
535     }
536 }
537 
538 static void drc_realize(DeviceState *d, Error **errp)
539 {
540     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
541     Object *root_container;
542     gchar *link_name;
543     const char *child_name;
544 
545     trace_spapr_drc_realize(spapr_drc_index(drc));
546     /* NOTE: we do this as part of realize/unrealize due to the fact
547      * that the guest will communicate with the DRC via RTAS calls
548      * referencing the global DRC index. By unlinking the DRC
549      * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
550      * inaccessible by the guest, since lookups rely on this path
551      * existing in the composition tree
552      */
553     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
554     link_name = g_strdup_printf("%x", spapr_drc_index(drc));
555     child_name = object_get_canonical_path_component(OBJECT(drc));
556     trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
557     object_property_add_alias(root_container, link_name,
558                               drc->owner, child_name);
559     g_free(link_name);
560 
561     drc->unplug_timeout_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
562                                              drc_unplug_timeout_cb,
563                                              drc);
564 
565     vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
566                      drc);
567     trace_spapr_drc_realize_complete(spapr_drc_index(drc));
568 }
569 
570 static void drc_unrealize(DeviceState *d)
571 {
572     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
573     Object *root_container;
574     gchar *name;
575 
576     trace_spapr_drc_unrealize(spapr_drc_index(drc));
577     vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc);
578     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
579     name = g_strdup_printf("%x", spapr_drc_index(drc));
580     object_property_del(root_container, name);
581     g_free(name);
582     timer_free(drc->unplug_timeout_timer);
583 }
584 
585 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type,
586                                          uint32_t id)
587 {
588     SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type));
589     char *prop_name;
590 
591     drc->id = id;
592     drc->owner = owner;
593     prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
594                                 spapr_drc_index(drc));
595     object_property_add_child(owner, prop_name, OBJECT(drc));
596     object_unref(OBJECT(drc));
597     qdev_realize(DEVICE(drc), NULL, NULL);
598     g_free(prop_name);
599 
600     return drc;
601 }
602 
603 static void spapr_dr_connector_instance_init(Object *obj)
604 {
605     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
606     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
607 
608     object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ);
609     object_property_add(obj, "index", "uint32", prop_get_index,
610                         NULL, NULL, NULL);
611     object_property_add(obj, "fdt", "struct", prop_get_fdt,
612                         NULL, NULL, NULL);
613     drc->state = drck->empty_state;
614 }
615 
616 static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
617 {
618     DeviceClass *dk = DEVICE_CLASS(k);
619 
620     dk->realize = drc_realize;
621     dk->unrealize = drc_unrealize;
622     /*
623      * Reason: DR connector needs to be wired to either the machine or to a
624      * PHB in spapr_dr_connector_new().
625      */
626     dk->user_creatable = false;
627 }
628 
629 static bool drc_physical_needed(void *opaque)
630 {
631     SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque;
632     SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp);
633 
634     if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE))
635         || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) {
636         return false;
637     }
638     return true;
639 }
640 
641 static const VMStateDescription vmstate_spapr_drc_physical = {
642     .name = "spapr_drc/physical",
643     .version_id = 1,
644     .minimum_version_id = 1,
645     .needed = drc_physical_needed,
646     .fields  = (VMStateField []) {
647         VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical),
648         VMSTATE_END_OF_LIST()
649     }
650 };
651 
652 static void drc_physical_reset(void *opaque)
653 {
654     SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque);
655     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc);
656 
657     if (drc->dev) {
658         drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
659     } else {
660         drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
661     }
662 }
663 
664 static void realize_physical(DeviceState *d, Error **errp)
665 {
666     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
667     Error *local_err = NULL;
668 
669     drc_realize(d, &local_err);
670     if (local_err) {
671         error_propagate(errp, local_err);
672         return;
673     }
674 
675     vmstate_register(VMSTATE_IF(drcp),
676                      spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)),
677                      &vmstate_spapr_drc_physical, drcp);
678     qemu_register_reset(drc_physical_reset, drcp);
679 }
680 
681 static void unrealize_physical(DeviceState *d)
682 {
683     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
684 
685     drc_unrealize(d);
686     vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp);
687     qemu_unregister_reset(drc_physical_reset, drcp);
688 }
689 
690 static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
691 {
692     DeviceClass *dk = DEVICE_CLASS(k);
693     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
694 
695     dk->realize = realize_physical;
696     dk->unrealize = unrealize_physical;
697     drck->dr_entity_sense = physical_entity_sense;
698     drck->isolate = drc_isolate_physical;
699     drck->unisolate = drc_unisolate_physical;
700     drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED;
701     drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
702 }
703 
704 static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
705 {
706     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
707 
708     drck->dr_entity_sense = logical_entity_sense;
709     drck->isolate = drc_isolate_logical;
710     drck->unisolate = drc_unisolate_logical;
711     drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED;
712     drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
713 }
714 
715 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
716 {
717     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
718 
719     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
720     drck->typename = "CPU";
721     drck->drc_name_prefix = "CPU ";
722     drck->release = spapr_core_release;
723     drck->dt_populate = spapr_core_dt_populate;
724     drck->unplug_timeout_seconds = 15;
725 }
726 
727 static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
728 {
729     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
730 
731     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
732     drck->typename = "28";
733     drck->drc_name_prefix = "C";
734     drck->release = spapr_phb_remove_pci_device_cb;
735     drck->dt_populate = spapr_pci_dt_populate;
736 }
737 
738 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
739 {
740     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
741 
742     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
743     drck->typename = "MEM";
744     drck->drc_name_prefix = "LMB ";
745     drck->release = spapr_lmb_release;
746     drck->dt_populate = spapr_lmb_dt_populate;
747 }
748 
749 static void spapr_drc_phb_class_init(ObjectClass *k, void *data)
750 {
751     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
752 
753     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB;
754     drck->typename = "PHB";
755     drck->drc_name_prefix = "PHB ";
756     drck->release = spapr_phb_release;
757     drck->dt_populate = spapr_phb_dt_populate;
758 }
759 
760 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data)
761 {
762     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
763 
764     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM;
765     drck->typename = "PMEM";
766     drck->drc_name_prefix = "PMEM ";
767     drck->release = NULL;
768     drck->dt_populate = spapr_pmem_dt_populate;
769 }
770 
771 static const TypeInfo spapr_dr_connector_info = {
772     .name          = TYPE_SPAPR_DR_CONNECTOR,
773     .parent        = TYPE_DEVICE,
774     .instance_size = sizeof(SpaprDrc),
775     .instance_init = spapr_dr_connector_instance_init,
776     .class_size    = sizeof(SpaprDrcClass),
777     .class_init    = spapr_dr_connector_class_init,
778     .abstract      = true,
779 };
780 
781 static const TypeInfo spapr_drc_physical_info = {
782     .name          = TYPE_SPAPR_DRC_PHYSICAL,
783     .parent        = TYPE_SPAPR_DR_CONNECTOR,
784     .instance_size = sizeof(SpaprDrcPhysical),
785     .class_init    = spapr_drc_physical_class_init,
786     .abstract      = true,
787 };
788 
789 static const TypeInfo spapr_drc_logical_info = {
790     .name          = TYPE_SPAPR_DRC_LOGICAL,
791     .parent        = TYPE_SPAPR_DR_CONNECTOR,
792     .class_init    = spapr_drc_logical_class_init,
793     .abstract      = true,
794 };
795 
796 static const TypeInfo spapr_drc_cpu_info = {
797     .name          = TYPE_SPAPR_DRC_CPU,
798     .parent        = TYPE_SPAPR_DRC_LOGICAL,
799     .class_init    = spapr_drc_cpu_class_init,
800 };
801 
802 static const TypeInfo spapr_drc_pci_info = {
803     .name          = TYPE_SPAPR_DRC_PCI,
804     .parent        = TYPE_SPAPR_DRC_PHYSICAL,
805     .class_init    = spapr_drc_pci_class_init,
806 };
807 
808 static const TypeInfo spapr_drc_lmb_info = {
809     .name          = TYPE_SPAPR_DRC_LMB,
810     .parent        = TYPE_SPAPR_DRC_LOGICAL,
811     .class_init    = spapr_drc_lmb_class_init,
812 };
813 
814 static const TypeInfo spapr_drc_phb_info = {
815     .name          = TYPE_SPAPR_DRC_PHB,
816     .parent        = TYPE_SPAPR_DRC_LOGICAL,
817     .instance_size = sizeof(SpaprDrc),
818     .class_init    = spapr_drc_phb_class_init,
819 };
820 
821 static const TypeInfo spapr_drc_pmem_info = {
822     .name          = TYPE_SPAPR_DRC_PMEM,
823     .parent        = TYPE_SPAPR_DRC_LOGICAL,
824     .class_init    = spapr_drc_pmem_class_init,
825 };
826 
827 /* helper functions for external users */
828 
829 SpaprDrc *spapr_drc_by_index(uint32_t index)
830 {
831     Object *obj;
832     gchar *name;
833 
834     name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index);
835     obj = object_resolve_path(name, NULL);
836     g_free(name);
837 
838     return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
839 }
840 
841 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id)
842 {
843     SpaprDrcClass *drck
844         = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
845 
846     return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
847                               | (id & DRC_INDEX_ID_MASK));
848 }
849 
850 /**
851  * spapr_dt_drc
852  *
853  * @fdt: libfdt device tree
854  * @path: path in the DT to generate properties
855  * @owner: parent Object/DeviceState for which to generate DRC
856  *         descriptions for
857  * @drc_type_mask: mask of SpaprDrcType values corresponding
858  *   to the types of DRCs to generate entries for
859  *
860  * generate OF properties to describe DRC topology/indices to guests
861  *
862  * as documented in PAPR+ v2.1, 13.5.2
863  */
864 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask)
865 {
866     Object *root_container;
867     ObjectProperty *prop;
868     ObjectPropertyIterator iter;
869     uint32_t drc_count = 0;
870     GArray *drc_indexes, *drc_power_domains;
871     GString *drc_names, *drc_types;
872     int ret;
873 
874     /*
875      * This should really be only called once per node since it overwrites
876      * the OF properties if they already exist.
877      */
878     g_assert(!fdt_get_property(fdt, offset, "ibm,drc-indexes", NULL));
879 
880     /* the first entry of each properties is a 32-bit integer encoding
881      * the number of elements in the array. we won't know this until
882      * we complete the iteration through all the matching DRCs, but
883      * reserve the space now and set the offsets accordingly so we
884      * can fill them in later.
885      */
886     drc_indexes = g_array_new(false, true, sizeof(uint32_t));
887     drc_indexes = g_array_set_size(drc_indexes, 1);
888     drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
889     drc_power_domains = g_array_set_size(drc_power_domains, 1);
890     drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
891     drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
892 
893     /* aliases for all DRConnector objects will be rooted in QOM
894      * composition tree at DRC_CONTAINER_PATH
895      */
896     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
897 
898     object_property_iter_init(&iter, root_container);
899     while ((prop = object_property_iter_next(&iter))) {
900         Object *obj;
901         SpaprDrc *drc;
902         SpaprDrcClass *drck;
903         char *drc_name = NULL;
904         uint32_t drc_index, drc_power_domain;
905 
906         if (!strstart(prop->type, "link<", NULL)) {
907             continue;
908         }
909 
910         obj = object_property_get_link(root_container, prop->name,
911                                        &error_abort);
912         drc = SPAPR_DR_CONNECTOR(obj);
913         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
914 
915         if (owner && (drc->owner != owner)) {
916             continue;
917         }
918 
919         if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
920             continue;
921         }
922 
923         drc_count++;
924 
925         /* ibm,drc-indexes */
926         drc_index = cpu_to_be32(spapr_drc_index(drc));
927         g_array_append_val(drc_indexes, drc_index);
928 
929         /* ibm,drc-power-domains */
930         drc_power_domain = cpu_to_be32(-1);
931         g_array_append_val(drc_power_domains, drc_power_domain);
932 
933         /* ibm,drc-names */
934         drc_name = spapr_drc_name(drc);
935         drc_names = g_string_append(drc_names, drc_name);
936         drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
937         g_free(drc_name);
938 
939         /* ibm,drc-types */
940         drc_types = g_string_append(drc_types, drck->typename);
941         drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
942     }
943 
944     /* now write the drc count into the space we reserved at the
945      * beginning of the arrays previously
946      */
947     *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
948     *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
949     *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
950     *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
951 
952     ret = fdt_setprop(fdt, offset, "ibm,drc-indexes",
953                       drc_indexes->data,
954                       drc_indexes->len * sizeof(uint32_t));
955     if (ret) {
956         error_report("Couldn't create ibm,drc-indexes property");
957         goto out;
958     }
959 
960     ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains",
961                       drc_power_domains->data,
962                       drc_power_domains->len * sizeof(uint32_t));
963     if (ret) {
964         error_report("Couldn't finalize ibm,drc-power-domains property");
965         goto out;
966     }
967 
968     ret = fdt_setprop(fdt, offset, "ibm,drc-names",
969                       drc_names->str, drc_names->len);
970     if (ret) {
971         error_report("Couldn't finalize ibm,drc-names property");
972         goto out;
973     }
974 
975     ret = fdt_setprop(fdt, offset, "ibm,drc-types",
976                       drc_types->str, drc_types->len);
977     if (ret) {
978         error_report("Couldn't finalize ibm,drc-types property");
979         goto out;
980     }
981 
982 out:
983     g_array_free(drc_indexes, true);
984     g_array_free(drc_power_domains, true);
985     g_string_free(drc_names, true);
986     g_string_free(drc_types, true);
987 
988     return ret;
989 }
990 
991 void spapr_drc_reset_all(SpaprMachineState *spapr)
992 {
993     Object *drc_container;
994     ObjectProperty *prop;
995     ObjectPropertyIterator iter;
996 
997     drc_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
998 restart:
999     object_property_iter_init(&iter, drc_container);
1000     while ((prop = object_property_iter_next(&iter))) {
1001         SpaprDrc *drc;
1002 
1003         if (!strstart(prop->type, "link<", NULL)) {
1004             continue;
1005         }
1006         drc = SPAPR_DR_CONNECTOR(object_property_get_link(drc_container,
1007                                                           prop->name,
1008                                                           &error_abort));
1009 
1010         /*
1011          * This will complete any pending plug/unplug requests.
1012          * In case of a unplugged PHB or PCI bridge, this will
1013          * cause some DRCs to be destroyed and thus potentially
1014          * invalidate the iterator.
1015          */
1016         if (spapr_drc_reset(drc)) {
1017             goto restart;
1018         }
1019     }
1020 }
1021 
1022 /*
1023  * RTAS calls
1024  */
1025 
1026 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
1027 {
1028     SpaprDrc *drc = spapr_drc_by_index(idx);
1029     SpaprDrcClass *drck;
1030 
1031     if (!drc) {
1032         return RTAS_OUT_NO_SUCH_INDICATOR;
1033     }
1034 
1035     trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
1036 
1037     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1038 
1039     switch (state) {
1040     case SPAPR_DR_ISOLATION_STATE_ISOLATED:
1041         return drck->isolate(drc);
1042 
1043     case SPAPR_DR_ISOLATION_STATE_UNISOLATED:
1044         return drck->unisolate(drc);
1045 
1046     default:
1047         return RTAS_OUT_PARAM_ERROR;
1048     }
1049 }
1050 
1051 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
1052 {
1053     SpaprDrc *drc = spapr_drc_by_index(idx);
1054 
1055     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) {
1056         return RTAS_OUT_NO_SUCH_INDICATOR;
1057     }
1058 
1059     trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
1060 
1061     switch (state) {
1062     case SPAPR_DR_ALLOCATION_STATE_USABLE:
1063         return drc_set_usable(drc);
1064 
1065     case SPAPR_DR_ALLOCATION_STATE_UNUSABLE:
1066         return drc_set_unusable(drc);
1067 
1068     default:
1069         return RTAS_OUT_PARAM_ERROR;
1070     }
1071 }
1072 
1073 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
1074 {
1075     SpaprDrc *drc = spapr_drc_by_index(idx);
1076 
1077     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) {
1078         return RTAS_OUT_NO_SUCH_INDICATOR;
1079     }
1080     if ((state != SPAPR_DR_INDICATOR_INACTIVE)
1081         && (state != SPAPR_DR_INDICATOR_ACTIVE)
1082         && (state != SPAPR_DR_INDICATOR_IDENTIFY)
1083         && (state != SPAPR_DR_INDICATOR_ACTION)) {
1084         return RTAS_OUT_PARAM_ERROR; /* bad state parameter */
1085     }
1086 
1087     trace_spapr_drc_set_dr_indicator(idx, state);
1088     SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state;
1089     return RTAS_OUT_SUCCESS;
1090 }
1091 
1092 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr,
1093                                uint32_t token,
1094                                uint32_t nargs, target_ulong args,
1095                                uint32_t nret, target_ulong rets)
1096 {
1097     uint32_t type, idx, state;
1098     uint32_t ret = RTAS_OUT_SUCCESS;
1099 
1100     if (nargs != 3 || nret != 1) {
1101         ret = RTAS_OUT_PARAM_ERROR;
1102         goto out;
1103     }
1104 
1105     type = rtas_ld(args, 0);
1106     idx = rtas_ld(args, 1);
1107     state = rtas_ld(args, 2);
1108 
1109     switch (type) {
1110     case RTAS_SENSOR_TYPE_ISOLATION_STATE:
1111         ret = rtas_set_isolation_state(idx, state);
1112         break;
1113     case RTAS_SENSOR_TYPE_DR:
1114         ret = rtas_set_dr_indicator(idx, state);
1115         break;
1116     case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
1117         ret = rtas_set_allocation_state(idx, state);
1118         break;
1119     default:
1120         ret = RTAS_OUT_NOT_SUPPORTED;
1121     }
1122 
1123 out:
1124     rtas_st(rets, 0, ret);
1125 }
1126 
1127 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr,
1128                                   uint32_t token, uint32_t nargs,
1129                                   target_ulong args, uint32_t nret,
1130                                   target_ulong rets)
1131 {
1132     uint32_t sensor_type;
1133     uint32_t sensor_index;
1134     uint32_t sensor_state = 0;
1135     SpaprDrc *drc;
1136     SpaprDrcClass *drck;
1137     uint32_t ret = RTAS_OUT_SUCCESS;
1138 
1139     if (nargs != 2 || nret != 2) {
1140         ret = RTAS_OUT_PARAM_ERROR;
1141         goto out;
1142     }
1143 
1144     sensor_type = rtas_ld(args, 0);
1145     sensor_index = rtas_ld(args, 1);
1146 
1147     if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
1148         /* currently only DR-related sensors are implemented */
1149         trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
1150                                                         sensor_type);
1151         ret = RTAS_OUT_NOT_SUPPORTED;
1152         goto out;
1153     }
1154 
1155     drc = spapr_drc_by_index(sensor_index);
1156     if (!drc) {
1157         trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
1158         ret = RTAS_OUT_PARAM_ERROR;
1159         goto out;
1160     }
1161     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1162     sensor_state = drck->dr_entity_sense(drc);
1163 
1164 out:
1165     rtas_st(rets, 0, ret);
1166     rtas_st(rets, 1, sensor_state);
1167 }
1168 
1169 /* configure-connector work area offsets, int32_t units for field
1170  * indexes, bytes for field offset/len values.
1171  *
1172  * as documented by PAPR+ v2.7, 13.5.3.5
1173  */
1174 #define CC_IDX_NODE_NAME_OFFSET 2
1175 #define CC_IDX_PROP_NAME_OFFSET 2
1176 #define CC_IDX_PROP_LEN 3
1177 #define CC_IDX_PROP_DATA_OFFSET 4
1178 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
1179 #define CC_WA_LEN 4096
1180 
1181 static void configure_connector_st(target_ulong addr, target_ulong offset,
1182                                    const void *buf, size_t len)
1183 {
1184     cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
1185                               buf, MIN(len, CC_WA_LEN - offset));
1186 }
1187 
1188 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
1189                                          SpaprMachineState *spapr,
1190                                          uint32_t token, uint32_t nargs,
1191                                          target_ulong args, uint32_t nret,
1192                                          target_ulong rets)
1193 {
1194     uint64_t wa_addr;
1195     uint64_t wa_offset;
1196     uint32_t drc_index;
1197     SpaprDrc *drc;
1198     SpaprDrcClass *drck;
1199     SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
1200     int rc;
1201 
1202     if (nargs != 2 || nret != 1) {
1203         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1204         return;
1205     }
1206 
1207     wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1208 
1209     drc_index = rtas_ld(wa_addr, 0);
1210     drc = spapr_drc_by_index(drc_index);
1211     if (!drc) {
1212         trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1213         rc = RTAS_OUT_PARAM_ERROR;
1214         goto out;
1215     }
1216 
1217     if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE)
1218         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)
1219         && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED)
1220         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) {
1221         /*
1222          * Need to unisolate the device before configuring
1223          * or it should already be in configured state to
1224          * allow configure-connector be called repeatedly.
1225          */
1226         rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1227         goto out;
1228     }
1229 
1230     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1231 
1232     /*
1233      * This indicates that the kernel is reconfiguring a LMB due to
1234      * a failed hotunplug. Rollback the DIMM unplug process.
1235      */
1236     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB &&
1237         drc->unplug_requested) {
1238         spapr_memory_unplug_rollback(spapr, drc->dev);
1239     }
1240 
1241     if (!drc->fdt) {
1242         void *fdt;
1243         int fdt_size;
1244 
1245         fdt = create_device_tree(&fdt_size);
1246 
1247         if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset,
1248                               NULL)) {
1249             g_free(fdt);
1250             rc = SPAPR_DR_CC_RESPONSE_ERROR;
1251             goto out;
1252         }
1253 
1254         drc->fdt = fdt;
1255         drc->ccs_offset = drc->fdt_start_offset;
1256         drc->ccs_depth = 0;
1257     }
1258 
1259     do {
1260         uint32_t tag;
1261         const char *name;
1262         const struct fdt_property *prop;
1263         int fdt_offset_next, prop_len;
1264 
1265         tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next);
1266 
1267         switch (tag) {
1268         case FDT_BEGIN_NODE:
1269             drc->ccs_depth++;
1270             name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL);
1271 
1272             /* provide the name of the next OF node */
1273             wa_offset = CC_VAL_DATA_OFFSET;
1274             rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1275             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1276             resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1277             break;
1278         case FDT_END_NODE:
1279             drc->ccs_depth--;
1280             if (drc->ccs_depth == 0) {
1281                 uint32_t drc_index = spapr_drc_index(drc);
1282 
1283                 /* done sending the device tree, move to configured state */
1284                 trace_spapr_drc_set_configured(drc_index);
1285                 drc->state = drck->ready_state;
1286                 /*
1287                  * Ensure that we are able to send the FDT fragment
1288                  * again via configure-connector call if the guest requests.
1289                  */
1290                 drc->ccs_offset = drc->fdt_start_offset;
1291                 drc->ccs_depth = 0;
1292                 fdt_offset_next = drc->fdt_start_offset;
1293                 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1294             } else {
1295                 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1296             }
1297             break;
1298         case FDT_PROP:
1299             prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset,
1300                                               &prop_len);
1301             name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1302 
1303             /* provide the name of the next OF property */
1304             wa_offset = CC_VAL_DATA_OFFSET;
1305             rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1306             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1307 
1308             /* provide the length and value of the OF property. data gets
1309              * placed immediately after NULL terminator of the OF property's
1310              * name string
1311              */
1312             wa_offset += strlen(name) + 1,
1313             rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1314             rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1315             configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1316             resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1317             break;
1318         case FDT_END:
1319             resp = SPAPR_DR_CC_RESPONSE_ERROR;
1320         default:
1321             /* keep seeking for an actionable tag */
1322             break;
1323         }
1324         if (drc->ccs_offset >= 0) {
1325             drc->ccs_offset = fdt_offset_next;
1326         }
1327     } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1328 
1329     rc = resp;
1330 out:
1331     rtas_st(rets, 0, rc);
1332 }
1333 
1334 static void spapr_drc_register_types(void)
1335 {
1336     type_register_static(&spapr_dr_connector_info);
1337     type_register_static(&spapr_drc_physical_info);
1338     type_register_static(&spapr_drc_logical_info);
1339     type_register_static(&spapr_drc_cpu_info);
1340     type_register_static(&spapr_drc_pci_info);
1341     type_register_static(&spapr_drc_lmb_info);
1342     type_register_static(&spapr_drc_phb_info);
1343     type_register_static(&spapr_drc_pmem_info);
1344 
1345     spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1346                         rtas_set_indicator);
1347     spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1348                         rtas_get_sensor_state);
1349     spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1350                         rtas_ibm_configure_connector);
1351 }
1352 type_init(spapr_drc_register_types)
1353