xref: /qemu/hw/ppc/spapr_drc.c (revision ac06724a)
1 /*
2  * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
3  *
4  * Copyright IBM Corp. 2014
5  *
6  * Authors:
7  *  Michael Roth      <mdroth@linux.vnet.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "cpu.h"
16 #include "qemu/cutils.h"
17 #include "hw/ppc/spapr_drc.h"
18 #include "qom/object.h"
19 #include "hw/qdev.h"
20 #include "qapi/visitor.h"
21 #include "qemu/error-report.h"
22 #include "hw/ppc/spapr.h" /* for RTAS return codes */
23 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
24 #include "trace.h"
25 
26 #define DRC_CONTAINER_PATH "/dr-connector"
27 #define DRC_INDEX_TYPE_SHIFT 28
28 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
29 
30 sPAPRDRConnectorType spapr_drc_type(sPAPRDRConnector *drc)
31 {
32     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
33 
34     return 1 << drck->typeshift;
35 }
36 
37 uint32_t spapr_drc_index(sPAPRDRConnector *drc)
38 {
39     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
40 
41     /* no set format for a drc index: it only needs to be globally
42      * unique. this is how we encode the DRC type on bare-metal
43      * however, so might as well do that here
44      */
45     return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
46         | (drc->id & DRC_INDEX_ID_MASK);
47 }
48 
49 static uint32_t set_isolation_state(sPAPRDRConnector *drc,
50                                     sPAPRDRIsolationState state)
51 {
52     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
53 
54     trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
55 
56     /* if the guest is configuring a device attached to this DRC, we
57      * should reset the configuration state at this point since it may
58      * no longer be reliable (guest released device and needs to start
59      * over, or unplug occurred so the FDT is no longer valid)
60      */
61     if (state == SPAPR_DR_ISOLATION_STATE_ISOLATED) {
62         g_free(drc->ccs);
63         drc->ccs = NULL;
64     }
65 
66     if (state == SPAPR_DR_ISOLATION_STATE_UNISOLATED) {
67         /* cannot unisolate a non-existent resource, and, or resources
68          * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 13.5.3.5)
69          */
70         if (!drc->dev ||
71             drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_UNUSABLE) {
72             return RTAS_OUT_NO_SUCH_INDICATOR;
73         }
74     }
75 
76     /*
77      * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
78      * belong to a DIMM device that is marked for removal.
79      *
80      * Currently the guest userspace tool drmgr that drives the memory
81      * hotplug/unplug will just try to remove a set of 'removable' LMBs
82      * in response to a hot unplug request that is based on drc-count.
83      * If the LMB being removed doesn't belong to a DIMM device that is
84      * actually being unplugged, fail the isolation request here.
85      */
86     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB) {
87         if ((state == SPAPR_DR_ISOLATION_STATE_ISOLATED) &&
88              !drc->awaiting_release) {
89             return RTAS_OUT_HW_ERROR;
90         }
91     }
92 
93     drc->isolation_state = state;
94 
95     if (drc->isolation_state == SPAPR_DR_ISOLATION_STATE_ISOLATED) {
96         /* if we're awaiting release, but still in an unconfigured state,
97          * it's likely the guest is still in the process of configuring
98          * the device and is transitioning the devices to an ISOLATED
99          * state as a part of that process. so we only complete the
100          * removal when this transition happens for a device in a
101          * configured state, as suggested by the state diagram from
102          * PAPR+ 2.7, 13.4
103          */
104         if (drc->awaiting_release) {
105             uint32_t drc_index = spapr_drc_index(drc);
106             if (drc->configured) {
107                 trace_spapr_drc_set_isolation_state_finalizing(drc_index);
108                 drck->detach(drc, DEVICE(drc->dev), NULL);
109             } else {
110                 trace_spapr_drc_set_isolation_state_deferring(drc_index);
111             }
112         }
113         drc->configured = false;
114     }
115 
116     return RTAS_OUT_SUCCESS;
117 }
118 
119 static uint32_t set_indicator_state(sPAPRDRConnector *drc,
120                                     sPAPRDRIndicatorState state)
121 {
122     trace_spapr_drc_set_indicator_state(spapr_drc_index(drc), state);
123     drc->indicator_state = state;
124     return RTAS_OUT_SUCCESS;
125 }
126 
127 static uint32_t set_allocation_state(sPAPRDRConnector *drc,
128                                      sPAPRDRAllocationState state)
129 {
130     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
131 
132     trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
133 
134     if (state == SPAPR_DR_ALLOCATION_STATE_USABLE) {
135         /* if there's no resource/device associated with the DRC, there's
136          * no way for us to put it in an allocation state consistent with
137          * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
138          * result in an RTAS return code of -3 / "no such indicator"
139          */
140         if (!drc->dev) {
141             return RTAS_OUT_NO_SUCH_INDICATOR;
142         }
143         if (drc->awaiting_release && drc->awaiting_allocation) {
144             /* kernel is acknowledging a previous hotplug event
145              * while we are already removing it.
146              * it's safe to ignore awaiting_allocation here since we know the
147              * situation is predicated on the guest either already having done
148              * so (boot-time hotplug), or never being able to acquire in the
149              * first place (hotplug followed by immediate unplug).
150              */
151             drc->awaiting_allocation_skippable = true;
152             return RTAS_OUT_NO_SUCH_INDICATOR;
153         }
154     }
155 
156     if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI) {
157         drc->allocation_state = state;
158         if (drc->awaiting_release &&
159             drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_UNUSABLE) {
160             uint32_t drc_index = spapr_drc_index(drc);
161             trace_spapr_drc_set_allocation_state_finalizing(drc_index);
162             drck->detach(drc, DEVICE(drc->dev), NULL);
163         } else if (drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_USABLE) {
164             drc->awaiting_allocation = false;
165         }
166     }
167     return RTAS_OUT_SUCCESS;
168 }
169 
170 static const char *get_name(sPAPRDRConnector *drc)
171 {
172     return drc->name;
173 }
174 
175 /* has the guest been notified of device attachment? */
176 static void set_signalled(sPAPRDRConnector *drc)
177 {
178     drc->signalled = true;
179 }
180 
181 /*
182  * dr-entity-sense sensor value
183  * returned via get-sensor-state RTAS calls
184  * as expected by state diagram in PAPR+ 2.7, 13.4
185  * based on the current allocation/indicator/power states
186  * for the DR connector.
187  */
188 static uint32_t entity_sense(sPAPRDRConnector *drc, sPAPRDREntitySense *state)
189 {
190     if (drc->dev) {
191         if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI &&
192             drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_UNUSABLE) {
193             /* for logical DR, we return a state of UNUSABLE
194              * iff the allocation state UNUSABLE.
195              * Otherwise, report the state as USABLE/PRESENT,
196              * as we would for PCI.
197              */
198             *state = SPAPR_DR_ENTITY_SENSE_UNUSABLE;
199         } else {
200             /* this assumes all PCI devices are assigned to
201              * a 'live insertion' power domain, where QEMU
202              * manages power state automatically as opposed
203              * to the guest. present, non-PCI resources are
204              * unaffected by power state.
205              */
206             *state = SPAPR_DR_ENTITY_SENSE_PRESENT;
207         }
208     } else {
209         if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_PCI) {
210             /* PCI devices, and only PCI devices, use EMPTY
211              * in cases where we'd otherwise use UNUSABLE
212              */
213             *state = SPAPR_DR_ENTITY_SENSE_EMPTY;
214         } else {
215             *state = SPAPR_DR_ENTITY_SENSE_UNUSABLE;
216         }
217     }
218 
219     trace_spapr_drc_entity_sense(spapr_drc_index(drc), *state);
220     return RTAS_OUT_SUCCESS;
221 }
222 
223 static void prop_get_index(Object *obj, Visitor *v, const char *name,
224                            void *opaque, Error **errp)
225 {
226     sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
227     uint32_t value = spapr_drc_index(drc);
228     visit_type_uint32(v, name, &value, errp);
229 }
230 
231 static char *prop_get_name(Object *obj, Error **errp)
232 {
233     sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
234     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
235     return g_strdup(drck->get_name(drc));
236 }
237 
238 static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
239                          void *opaque, Error **errp)
240 {
241     sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
242     Error *err = NULL;
243     int fdt_offset_next, fdt_offset, fdt_depth;
244     void *fdt;
245 
246     if (!drc->fdt) {
247         visit_type_null(v, NULL, errp);
248         return;
249     }
250 
251     fdt = drc->fdt;
252     fdt_offset = drc->fdt_start_offset;
253     fdt_depth = 0;
254 
255     do {
256         const char *name = NULL;
257         const struct fdt_property *prop = NULL;
258         int prop_len = 0, name_len = 0;
259         uint32_t tag;
260 
261         tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
262         switch (tag) {
263         case FDT_BEGIN_NODE:
264             fdt_depth++;
265             name = fdt_get_name(fdt, fdt_offset, &name_len);
266             visit_start_struct(v, name, NULL, 0, &err);
267             if (err) {
268                 error_propagate(errp, err);
269                 return;
270             }
271             break;
272         case FDT_END_NODE:
273             /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
274             g_assert(fdt_depth > 0);
275             visit_check_struct(v, &err);
276             visit_end_struct(v, NULL);
277             if (err) {
278                 error_propagate(errp, err);
279                 return;
280             }
281             fdt_depth--;
282             break;
283         case FDT_PROP: {
284             int i;
285             prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
286             name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
287             visit_start_list(v, name, NULL, 0, &err);
288             if (err) {
289                 error_propagate(errp, err);
290                 return;
291             }
292             for (i = 0; i < prop_len; i++) {
293                 visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err);
294                 if (err) {
295                     error_propagate(errp, err);
296                     return;
297                 }
298             }
299             visit_check_list(v, &err);
300             visit_end_list(v, NULL);
301             if (err) {
302                 error_propagate(errp, err);
303                 return;
304             }
305             break;
306         }
307         default:
308             error_setg(&error_abort, "device FDT in unexpected state: %d", tag);
309         }
310         fdt_offset = fdt_offset_next;
311     } while (fdt_depth != 0);
312 }
313 
314 static void attach(sPAPRDRConnector *drc, DeviceState *d, void *fdt,
315                    int fdt_start_offset, bool coldplug, Error **errp)
316 {
317     trace_spapr_drc_attach(spapr_drc_index(drc));
318 
319     if (drc->isolation_state != SPAPR_DR_ISOLATION_STATE_ISOLATED) {
320         error_setg(errp, "an attached device is still awaiting release");
321         return;
322     }
323     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_PCI) {
324         g_assert(drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_USABLE);
325     }
326     g_assert(fdt || coldplug);
327 
328     /* NOTE: setting initial isolation state to UNISOLATED means we can't
329      * detach unless guest has a userspace/kernel that moves this state
330      * back to ISOLATED in response to an unplug event, or this is done
331      * manually by the admin prior. if we force things while the guest
332      * may be accessing the device, we can easily crash the guest, so we
333      * we defer completion of removal in such cases to the reset() hook.
334      */
335     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_PCI) {
336         drc->isolation_state = SPAPR_DR_ISOLATION_STATE_UNISOLATED;
337     }
338     drc->indicator_state = SPAPR_DR_INDICATOR_STATE_ACTIVE;
339 
340     drc->dev = d;
341     drc->fdt = fdt;
342     drc->fdt_start_offset = fdt_start_offset;
343     drc->configured = coldplug;
344     /* 'logical' DR resources such as memory/cpus are in some cases treated
345      * as a pool of resources from which the guest is free to choose from
346      * based on only a count. for resources that can be assigned in this
347      * fashion, we must assume the resource is signalled immediately
348      * since a single hotplug request might make an arbitrary number of
349      * such attached resources available to the guest, as opposed to
350      * 'physical' DR resources such as PCI where each device/resource is
351      * signalled individually.
352      */
353     drc->signalled = (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI)
354                      ? true : coldplug;
355 
356     if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI) {
357         drc->awaiting_allocation = true;
358     }
359 
360     object_property_add_link(OBJECT(drc), "device",
361                              object_get_typename(OBJECT(drc->dev)),
362                              (Object **)(&drc->dev),
363                              NULL, 0, NULL);
364 }
365 
366 static void detach(sPAPRDRConnector *drc, DeviceState *d, Error **errp)
367 {
368     trace_spapr_drc_detach(spapr_drc_index(drc));
369 
370     /* if we've signalled device presence to the guest, or if the guest
371      * has gone ahead and configured the device (via manually-executed
372      * device add via drmgr in guest, namely), we need to wait
373      * for the guest to quiesce the device before completing detach.
374      * Otherwise, we can assume the guest hasn't seen it and complete the
375      * detach immediately. Note that there is a small race window
376      * just before, or during, configuration, which is this context
377      * refers mainly to fetching the device tree via RTAS.
378      * During this window the device access will be arbitrated by
379      * associated DRC, which will simply fail the RTAS calls as invalid.
380      * This is recoverable within guest and current implementations of
381      * drmgr should be able to cope.
382      */
383     if (!drc->signalled && !drc->configured) {
384         /* if the guest hasn't seen the device we can't rely on it to
385          * set it back to an isolated state via RTAS, so do it here manually
386          */
387         drc->isolation_state = SPAPR_DR_ISOLATION_STATE_ISOLATED;
388     }
389 
390     if (drc->isolation_state != SPAPR_DR_ISOLATION_STATE_ISOLATED) {
391         trace_spapr_drc_awaiting_isolated(spapr_drc_index(drc));
392         drc->awaiting_release = true;
393         return;
394     }
395 
396     if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI &&
397         drc->allocation_state != SPAPR_DR_ALLOCATION_STATE_UNUSABLE) {
398         trace_spapr_drc_awaiting_unusable(spapr_drc_index(drc));
399         drc->awaiting_release = true;
400         return;
401     }
402 
403     if (drc->awaiting_allocation) {
404         if (!drc->awaiting_allocation_skippable) {
405             drc->awaiting_release = true;
406             trace_spapr_drc_awaiting_allocation(spapr_drc_index(drc));
407             return;
408         }
409     }
410 
411     drc->indicator_state = SPAPR_DR_INDICATOR_STATE_INACTIVE;
412 
413     /* Calling release callbacks based on spapr_drc_type(drc). */
414     switch (spapr_drc_type(drc)) {
415     case SPAPR_DR_CONNECTOR_TYPE_CPU:
416         spapr_core_release(drc->dev);
417         break;
418     case SPAPR_DR_CONNECTOR_TYPE_PCI:
419         spapr_phb_remove_pci_device_cb(drc->dev);
420         break;
421     case SPAPR_DR_CONNECTOR_TYPE_LMB:
422         spapr_lmb_release(drc->dev);
423         break;
424     case SPAPR_DR_CONNECTOR_TYPE_PHB:
425     case SPAPR_DR_CONNECTOR_TYPE_VIO:
426     default:
427         g_assert(false);
428     }
429 
430     drc->awaiting_release = false;
431     drc->awaiting_allocation_skippable = false;
432     g_free(drc->fdt);
433     drc->fdt = NULL;
434     drc->fdt_start_offset = 0;
435     object_property_del(OBJECT(drc), "device", NULL);
436     drc->dev = NULL;
437 }
438 
439 static bool release_pending(sPAPRDRConnector *drc)
440 {
441     return drc->awaiting_release;
442 }
443 
444 static void reset(DeviceState *d)
445 {
446     sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d);
447     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
448     sPAPRDREntitySense state;
449 
450     trace_spapr_drc_reset(spapr_drc_index(drc));
451 
452     g_free(drc->ccs);
453     drc->ccs = NULL;
454 
455     /* immediately upon reset we can safely assume DRCs whose devices
456      * are pending removal can be safely removed, and that they will
457      * subsequently be left in an ISOLATED state. move the DRC to this
458      * state in these cases (which will in turn complete any pending
459      * device removals)
460      */
461     if (drc->awaiting_release) {
462         drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_ISOLATED);
463         /* generally this should also finalize the removal, but if the device
464          * hasn't yet been configured we normally defer removal under the
465          * assumption that this transition is taking place as part of device
466          * configuration. so check if we're still waiting after this, and
467          * force removal if we are
468          */
469         if (drc->awaiting_release) {
470             drck->detach(drc, DEVICE(drc->dev), NULL);
471         }
472 
473         /* non-PCI devices may be awaiting a transition to UNUSABLE */
474         if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI &&
475             drc->awaiting_release) {
476             drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_UNUSABLE);
477         }
478     }
479 
480     drck->entity_sense(drc, &state);
481     if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
482         drck->set_signalled(drc);
483     }
484 }
485 
486 static bool spapr_drc_needed(void *opaque)
487 {
488     sPAPRDRConnector *drc = (sPAPRDRConnector *)opaque;
489     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
490     bool rc = false;
491     sPAPRDREntitySense value;
492     drck->entity_sense(drc, &value);
493 
494     /* If no dev is plugged in there is no need to migrate the DRC state */
495     if (value != SPAPR_DR_ENTITY_SENSE_PRESENT) {
496         return false;
497     }
498 
499     /*
500      * If there is dev plugged in, we need to migrate the DRC state when
501      * it is different from cold-plugged state
502      */
503     switch (spapr_drc_type(drc)) {
504     case SPAPR_DR_CONNECTOR_TYPE_PCI:
505     case SPAPR_DR_CONNECTOR_TYPE_CPU:
506     case SPAPR_DR_CONNECTOR_TYPE_LMB:
507         rc = !((drc->isolation_state == SPAPR_DR_ISOLATION_STATE_UNISOLATED) &&
508                (drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_USABLE) &&
509                drc->configured && drc->signalled && !drc->awaiting_release);
510         break;
511     case SPAPR_DR_CONNECTOR_TYPE_PHB:
512     case SPAPR_DR_CONNECTOR_TYPE_VIO:
513     default:
514         g_assert_not_reached();
515     }
516     return rc;
517 }
518 
519 static const VMStateDescription vmstate_spapr_drc = {
520     .name = "spapr_drc",
521     .version_id = 1,
522     .minimum_version_id = 1,
523     .needed = spapr_drc_needed,
524     .fields  = (VMStateField []) {
525         VMSTATE_UINT32(isolation_state, sPAPRDRConnector),
526         VMSTATE_UINT32(allocation_state, sPAPRDRConnector),
527         VMSTATE_UINT32(indicator_state, sPAPRDRConnector),
528         VMSTATE_BOOL(configured, sPAPRDRConnector),
529         VMSTATE_BOOL(awaiting_release, sPAPRDRConnector),
530         VMSTATE_BOOL(awaiting_allocation, sPAPRDRConnector),
531         VMSTATE_BOOL(signalled, sPAPRDRConnector),
532         VMSTATE_END_OF_LIST()
533     }
534 };
535 
536 static void realize(DeviceState *d, Error **errp)
537 {
538     sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d);
539     Object *root_container;
540     char link_name[256];
541     gchar *child_name;
542     Error *err = NULL;
543 
544     trace_spapr_drc_realize(spapr_drc_index(drc));
545     /* NOTE: we do this as part of realize/unrealize due to the fact
546      * that the guest will communicate with the DRC via RTAS calls
547      * referencing the global DRC index. By unlinking the DRC
548      * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
549      * inaccessible by the guest, since lookups rely on this path
550      * existing in the composition tree
551      */
552     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
553     snprintf(link_name, sizeof(link_name), "%x", spapr_drc_index(drc));
554     child_name = object_get_canonical_path_component(OBJECT(drc));
555     trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
556     object_property_add_alias(root_container, link_name,
557                               drc->owner, child_name, &err);
558     if (err) {
559         error_report_err(err);
560         object_unref(OBJECT(drc));
561     }
562     g_free(child_name);
563     vmstate_register(DEVICE(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
564                      drc);
565     trace_spapr_drc_realize_complete(spapr_drc_index(drc));
566 }
567 
568 static void unrealize(DeviceState *d, Error **errp)
569 {
570     sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d);
571     Object *root_container;
572     char name[256];
573     Error *err = NULL;
574 
575     trace_spapr_drc_unrealize(spapr_drc_index(drc));
576     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
577     snprintf(name, sizeof(name), "%x", spapr_drc_index(drc));
578     object_property_del(root_container, name, &err);
579     if (err) {
580         error_report_err(err);
581         object_unref(OBJECT(drc));
582     }
583 }
584 
585 sPAPRDRConnector *spapr_dr_connector_new(Object *owner, const char *type,
586                                          uint32_t id)
587 {
588     sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(object_new(type));
589     char *prop_name;
590 
591     drc->id = id;
592     drc->owner = owner;
593     prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
594                                 spapr_drc_index(drc));
595     object_property_add_child(owner, prop_name, OBJECT(drc), NULL);
596     object_property_set_bool(OBJECT(drc), true, "realized", NULL);
597     g_free(prop_name);
598 
599     /* human-readable name for a DRC to encode into the DT
600      * description. this is mainly only used within a guest in place
601      * of the unique DRC index.
602      *
603      * in the case of VIO/PCI devices, it corresponds to a
604      * "location code" that maps a logical device/function (DRC index)
605      * to a physical (or virtual in the case of VIO) location in the
606      * system by chaining together the "location label" for each
607      * encapsulating component.
608      *
609      * since this is more to do with diagnosing physical hardware
610      * issues than guest compatibility, we choose location codes/DRC
611      * names that adhere to the documented format, but avoid encoding
612      * the entire topology information into the label/code, instead
613      * just using the location codes based on the labels for the
614      * endpoints (VIO/PCI adaptor connectors), which is basically
615      * just "C" followed by an integer ID.
616      *
617      * DRC names as documented by PAPR+ v2.7, 13.5.2.4
618      * location codes as documented by PAPR+ v2.7, 12.3.1.5
619      */
620     switch (spapr_drc_type(drc)) {
621     case SPAPR_DR_CONNECTOR_TYPE_CPU:
622         drc->name = g_strdup_printf("CPU %d", id);
623         break;
624     case SPAPR_DR_CONNECTOR_TYPE_PHB:
625         drc->name = g_strdup_printf("PHB %d", id);
626         break;
627     case SPAPR_DR_CONNECTOR_TYPE_VIO:
628     case SPAPR_DR_CONNECTOR_TYPE_PCI:
629         drc->name = g_strdup_printf("C%d", id);
630         break;
631     case SPAPR_DR_CONNECTOR_TYPE_LMB:
632         drc->name = g_strdup_printf("LMB %d", id);
633         break;
634     default:
635         g_assert(false);
636     }
637 
638     /* PCI slot always start in a USABLE state, and stay there */
639     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_PCI) {
640         drc->allocation_state = SPAPR_DR_ALLOCATION_STATE_USABLE;
641     }
642 
643     return drc;
644 }
645 
646 static void spapr_dr_connector_instance_init(Object *obj)
647 {
648     sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
649 
650     object_property_add_uint32_ptr(obj, "id", &drc->id, NULL);
651     object_property_add(obj, "index", "uint32", prop_get_index,
652                         NULL, NULL, NULL, NULL);
653     object_property_add_str(obj, "name", prop_get_name, NULL, NULL);
654     object_property_add(obj, "fdt", "struct", prop_get_fdt,
655                         NULL, NULL, NULL, NULL);
656 }
657 
658 static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
659 {
660     DeviceClass *dk = DEVICE_CLASS(k);
661     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
662 
663     dk->reset = reset;
664     dk->realize = realize;
665     dk->unrealize = unrealize;
666     drck->set_isolation_state = set_isolation_state;
667     drck->set_indicator_state = set_indicator_state;
668     drck->set_allocation_state = set_allocation_state;
669     drck->get_name = get_name;
670     drck->entity_sense = entity_sense;
671     drck->attach = attach;
672     drck->detach = detach;
673     drck->release_pending = release_pending;
674     drck->set_signalled = set_signalled;
675     /*
676      * Reason: it crashes FIXME find and document the real reason
677      */
678     dk->user_creatable = false;
679 }
680 
681 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
682 {
683     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
684 
685     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
686     drck->typename = "CPU";
687 }
688 
689 static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
690 {
691     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
692 
693     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
694     drck->typename = "28";
695 }
696 
697 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
698 {
699     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
700 
701     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
702     drck->typename = "MEM";
703 }
704 
705 static const TypeInfo spapr_dr_connector_info = {
706     .name          = TYPE_SPAPR_DR_CONNECTOR,
707     .parent        = TYPE_DEVICE,
708     .instance_size = sizeof(sPAPRDRConnector),
709     .instance_init = spapr_dr_connector_instance_init,
710     .class_size    = sizeof(sPAPRDRConnectorClass),
711     .class_init    = spapr_dr_connector_class_init,
712     .abstract      = true,
713 };
714 
715 static const TypeInfo spapr_drc_physical_info = {
716     .name          = TYPE_SPAPR_DRC_PHYSICAL,
717     .parent        = TYPE_SPAPR_DR_CONNECTOR,
718     .instance_size = sizeof(sPAPRDRConnector),
719     .abstract      = true,
720 };
721 
722 static const TypeInfo spapr_drc_logical_info = {
723     .name          = TYPE_SPAPR_DRC_LOGICAL,
724     .parent        = TYPE_SPAPR_DR_CONNECTOR,
725     .instance_size = sizeof(sPAPRDRConnector),
726     .abstract      = true,
727 };
728 
729 static const TypeInfo spapr_drc_cpu_info = {
730     .name          = TYPE_SPAPR_DRC_CPU,
731     .parent        = TYPE_SPAPR_DRC_LOGICAL,
732     .instance_size = sizeof(sPAPRDRConnector),
733     .class_init    = spapr_drc_cpu_class_init,
734 };
735 
736 static const TypeInfo spapr_drc_pci_info = {
737     .name          = TYPE_SPAPR_DRC_PCI,
738     .parent        = TYPE_SPAPR_DRC_PHYSICAL,
739     .instance_size = sizeof(sPAPRDRConnector),
740     .class_init    = spapr_drc_pci_class_init,
741 };
742 
743 static const TypeInfo spapr_drc_lmb_info = {
744     .name          = TYPE_SPAPR_DRC_LMB,
745     .parent        = TYPE_SPAPR_DRC_LOGICAL,
746     .instance_size = sizeof(sPAPRDRConnector),
747     .class_init    = spapr_drc_lmb_class_init,
748 };
749 
750 /* helper functions for external users */
751 
752 sPAPRDRConnector *spapr_drc_by_index(uint32_t index)
753 {
754     Object *obj;
755     char name[256];
756 
757     snprintf(name, sizeof(name), "%s/%x", DRC_CONTAINER_PATH, index);
758     obj = object_resolve_path(name, NULL);
759 
760     return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
761 }
762 
763 sPAPRDRConnector *spapr_drc_by_id(const char *type, uint32_t id)
764 {
765     sPAPRDRConnectorClass *drck
766         = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
767 
768     return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
769                               | (id & DRC_INDEX_ID_MASK));
770 }
771 
772 /**
773  * spapr_drc_populate_dt
774  *
775  * @fdt: libfdt device tree
776  * @path: path in the DT to generate properties
777  * @owner: parent Object/DeviceState for which to generate DRC
778  *         descriptions for
779  * @drc_type_mask: mask of sPAPRDRConnectorType values corresponding
780  *   to the types of DRCs to generate entries for
781  *
782  * generate OF properties to describe DRC topology/indices to guests
783  *
784  * as documented in PAPR+ v2.1, 13.5.2
785  */
786 int spapr_drc_populate_dt(void *fdt, int fdt_offset, Object *owner,
787                           uint32_t drc_type_mask)
788 {
789     Object *root_container;
790     ObjectProperty *prop;
791     ObjectPropertyIterator iter;
792     uint32_t drc_count = 0;
793     GArray *drc_indexes, *drc_power_domains;
794     GString *drc_names, *drc_types;
795     int ret;
796 
797     /* the first entry of each properties is a 32-bit integer encoding
798      * the number of elements in the array. we won't know this until
799      * we complete the iteration through all the matching DRCs, but
800      * reserve the space now and set the offsets accordingly so we
801      * can fill them in later.
802      */
803     drc_indexes = g_array_new(false, true, sizeof(uint32_t));
804     drc_indexes = g_array_set_size(drc_indexes, 1);
805     drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
806     drc_power_domains = g_array_set_size(drc_power_domains, 1);
807     drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
808     drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
809 
810     /* aliases for all DRConnector objects will be rooted in QOM
811      * composition tree at DRC_CONTAINER_PATH
812      */
813     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
814 
815     object_property_iter_init(&iter, root_container);
816     while ((prop = object_property_iter_next(&iter))) {
817         Object *obj;
818         sPAPRDRConnector *drc;
819         sPAPRDRConnectorClass *drck;
820         uint32_t drc_index, drc_power_domain;
821 
822         if (!strstart(prop->type, "link<", NULL)) {
823             continue;
824         }
825 
826         obj = object_property_get_link(root_container, prop->name, NULL);
827         drc = SPAPR_DR_CONNECTOR(obj);
828         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
829 
830         if (owner && (drc->owner != owner)) {
831             continue;
832         }
833 
834         if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
835             continue;
836         }
837 
838         drc_count++;
839 
840         /* ibm,drc-indexes */
841         drc_index = cpu_to_be32(spapr_drc_index(drc));
842         g_array_append_val(drc_indexes, drc_index);
843 
844         /* ibm,drc-power-domains */
845         drc_power_domain = cpu_to_be32(-1);
846         g_array_append_val(drc_power_domains, drc_power_domain);
847 
848         /* ibm,drc-names */
849         drc_names = g_string_append(drc_names, drck->get_name(drc));
850         drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
851 
852         /* ibm,drc-types */
853         drc_types = g_string_append(drc_types, drck->typename);
854         drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
855     }
856 
857     /* now write the drc count into the space we reserved at the
858      * beginning of the arrays previously
859      */
860     *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
861     *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
862     *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
863     *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
864 
865     ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-indexes",
866                       drc_indexes->data,
867                       drc_indexes->len * sizeof(uint32_t));
868     if (ret) {
869         error_report("Couldn't create ibm,drc-indexes property");
870         goto out;
871     }
872 
873     ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-power-domains",
874                       drc_power_domains->data,
875                       drc_power_domains->len * sizeof(uint32_t));
876     if (ret) {
877         error_report("Couldn't finalize ibm,drc-power-domains property");
878         goto out;
879     }
880 
881     ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-names",
882                       drc_names->str, drc_names->len);
883     if (ret) {
884         error_report("Couldn't finalize ibm,drc-names property");
885         goto out;
886     }
887 
888     ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-types",
889                       drc_types->str, drc_types->len);
890     if (ret) {
891         error_report("Couldn't finalize ibm,drc-types property");
892         goto out;
893     }
894 
895 out:
896     g_array_free(drc_indexes, true);
897     g_array_free(drc_power_domains, true);
898     g_string_free(drc_names, true);
899     g_string_free(drc_types, true);
900 
901     return ret;
902 }
903 
904 /*
905  * RTAS calls
906  */
907 
908 static bool sensor_type_is_dr(uint32_t sensor_type)
909 {
910     switch (sensor_type) {
911     case RTAS_SENSOR_TYPE_ISOLATION_STATE:
912     case RTAS_SENSOR_TYPE_DR:
913     case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
914         return true;
915     }
916 
917     return false;
918 }
919 
920 static void rtas_set_indicator(PowerPCCPU *cpu, sPAPRMachineState *spapr,
921                                uint32_t token, uint32_t nargs,
922                                target_ulong args, uint32_t nret,
923                                target_ulong rets)
924 {
925     uint32_t sensor_type;
926     uint32_t sensor_index;
927     uint32_t sensor_state;
928     uint32_t ret = RTAS_OUT_SUCCESS;
929     sPAPRDRConnector *drc;
930     sPAPRDRConnectorClass *drck;
931 
932     if (nargs != 3 || nret != 1) {
933         ret = RTAS_OUT_PARAM_ERROR;
934         goto out;
935     }
936 
937     sensor_type = rtas_ld(args, 0);
938     sensor_index = rtas_ld(args, 1);
939     sensor_state = rtas_ld(args, 2);
940 
941     if (!sensor_type_is_dr(sensor_type)) {
942         goto out_unimplemented;
943     }
944 
945     /* if this is a DR sensor we can assume sensor_index == drc_index */
946     drc = spapr_drc_by_index(sensor_index);
947     if (!drc) {
948         trace_spapr_rtas_set_indicator_invalid(sensor_index);
949         ret = RTAS_OUT_PARAM_ERROR;
950         goto out;
951     }
952     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
953 
954     switch (sensor_type) {
955     case RTAS_SENSOR_TYPE_ISOLATION_STATE:
956         ret = drck->set_isolation_state(drc, sensor_state);
957         break;
958     case RTAS_SENSOR_TYPE_DR:
959         ret = drck->set_indicator_state(drc, sensor_state);
960         break;
961     case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
962         ret = drck->set_allocation_state(drc, sensor_state);
963         break;
964     default:
965         goto out_unimplemented;
966     }
967 
968 out:
969     rtas_st(rets, 0, ret);
970     return;
971 
972 out_unimplemented:
973     /* currently only DR-related sensors are implemented */
974     trace_spapr_rtas_set_indicator_not_supported(sensor_index, sensor_type);
975     rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED);
976 }
977 
978 static void rtas_get_sensor_state(PowerPCCPU *cpu, sPAPRMachineState *spapr,
979                                   uint32_t token, uint32_t nargs,
980                                   target_ulong args, uint32_t nret,
981                                   target_ulong rets)
982 {
983     uint32_t sensor_type;
984     uint32_t sensor_index;
985     uint32_t sensor_state = 0;
986     sPAPRDRConnector *drc;
987     sPAPRDRConnectorClass *drck;
988     uint32_t ret = RTAS_OUT_SUCCESS;
989 
990     if (nargs != 2 || nret != 2) {
991         ret = RTAS_OUT_PARAM_ERROR;
992         goto out;
993     }
994 
995     sensor_type = rtas_ld(args, 0);
996     sensor_index = rtas_ld(args, 1);
997 
998     if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
999         /* currently only DR-related sensors are implemented */
1000         trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
1001                                                         sensor_type);
1002         ret = RTAS_OUT_NOT_SUPPORTED;
1003         goto out;
1004     }
1005 
1006     drc = spapr_drc_by_index(sensor_index);
1007     if (!drc) {
1008         trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
1009         ret = RTAS_OUT_PARAM_ERROR;
1010         goto out;
1011     }
1012     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1013     ret = drck->entity_sense(drc, &sensor_state);
1014 
1015 out:
1016     rtas_st(rets, 0, ret);
1017     rtas_st(rets, 1, sensor_state);
1018 }
1019 
1020 /* configure-connector work area offsets, int32_t units for field
1021  * indexes, bytes for field offset/len values.
1022  *
1023  * as documented by PAPR+ v2.7, 13.5.3.5
1024  */
1025 #define CC_IDX_NODE_NAME_OFFSET 2
1026 #define CC_IDX_PROP_NAME_OFFSET 2
1027 #define CC_IDX_PROP_LEN 3
1028 #define CC_IDX_PROP_DATA_OFFSET 4
1029 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
1030 #define CC_WA_LEN 4096
1031 
1032 static void configure_connector_st(target_ulong addr, target_ulong offset,
1033                                    const void *buf, size_t len)
1034 {
1035     cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
1036                               buf, MIN(len, CC_WA_LEN - offset));
1037 }
1038 
1039 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
1040                                          sPAPRMachineState *spapr,
1041                                          uint32_t token, uint32_t nargs,
1042                                          target_ulong args, uint32_t nret,
1043                                          target_ulong rets)
1044 {
1045     uint64_t wa_addr;
1046     uint64_t wa_offset;
1047     uint32_t drc_index;
1048     sPAPRDRConnector *drc;
1049     sPAPRConfigureConnectorState *ccs;
1050     sPAPRDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
1051     int rc;
1052 
1053     if (nargs != 2 || nret != 1) {
1054         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1055         return;
1056     }
1057 
1058     wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1059 
1060     drc_index = rtas_ld(wa_addr, 0);
1061     drc = spapr_drc_by_index(drc_index);
1062     if (!drc) {
1063         trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1064         rc = RTAS_OUT_PARAM_ERROR;
1065         goto out;
1066     }
1067 
1068     if (!drc->fdt) {
1069         trace_spapr_rtas_ibm_configure_connector_missing_fdt(drc_index);
1070         rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1071         goto out;
1072     }
1073 
1074     ccs = drc->ccs;
1075     if (!ccs) {
1076         ccs = g_new0(sPAPRConfigureConnectorState, 1);
1077         ccs->fdt_offset = drc->fdt_start_offset;
1078         drc->ccs = ccs;
1079     }
1080 
1081     do {
1082         uint32_t tag;
1083         const char *name;
1084         const struct fdt_property *prop;
1085         int fdt_offset_next, prop_len;
1086 
1087         tag = fdt_next_tag(drc->fdt, ccs->fdt_offset, &fdt_offset_next);
1088 
1089         switch (tag) {
1090         case FDT_BEGIN_NODE:
1091             ccs->fdt_depth++;
1092             name = fdt_get_name(drc->fdt, ccs->fdt_offset, NULL);
1093 
1094             /* provide the name of the next OF node */
1095             wa_offset = CC_VAL_DATA_OFFSET;
1096             rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1097             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1098             resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1099             break;
1100         case FDT_END_NODE:
1101             ccs->fdt_depth--;
1102             if (ccs->fdt_depth == 0) {
1103                 sPAPRDRIsolationState state = drc->isolation_state;
1104                 uint32_t drc_index = spapr_drc_index(drc);
1105                 /* done sending the device tree, don't need to track
1106                  * the state anymore
1107                  */
1108                 trace_spapr_drc_set_configured(drc_index);
1109                 if (state == SPAPR_DR_ISOLATION_STATE_UNISOLATED) {
1110                     drc->configured = true;
1111                 } else {
1112                     /* guest should be not configuring an isolated device */
1113                     trace_spapr_drc_set_configured_skipping(drc_index);
1114                 }
1115                 g_free(ccs);
1116                 drc->ccs = NULL;
1117                 ccs = NULL;
1118                 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1119             } else {
1120                 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1121             }
1122             break;
1123         case FDT_PROP:
1124             prop = fdt_get_property_by_offset(drc->fdt, ccs->fdt_offset,
1125                                               &prop_len);
1126             name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1127 
1128             /* provide the name of the next OF property */
1129             wa_offset = CC_VAL_DATA_OFFSET;
1130             rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1131             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1132 
1133             /* provide the length and value of the OF property. data gets
1134              * placed immediately after NULL terminator of the OF property's
1135              * name string
1136              */
1137             wa_offset += strlen(name) + 1,
1138             rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1139             rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1140             configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1141             resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1142             break;
1143         case FDT_END:
1144             resp = SPAPR_DR_CC_RESPONSE_ERROR;
1145         default:
1146             /* keep seeking for an actionable tag */
1147             break;
1148         }
1149         if (ccs) {
1150             ccs->fdt_offset = fdt_offset_next;
1151         }
1152     } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1153 
1154     rc = resp;
1155 out:
1156     rtas_st(rets, 0, rc);
1157 }
1158 
1159 static void spapr_drc_register_types(void)
1160 {
1161     type_register_static(&spapr_dr_connector_info);
1162     type_register_static(&spapr_drc_physical_info);
1163     type_register_static(&spapr_drc_logical_info);
1164     type_register_static(&spapr_drc_cpu_info);
1165     type_register_static(&spapr_drc_pci_info);
1166     type_register_static(&spapr_drc_lmb_info);
1167 
1168     spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1169                         rtas_set_indicator);
1170     spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1171                         rtas_get_sensor_state);
1172     spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1173                         rtas_ibm_configure_connector);
1174 }
1175 type_init(spapr_drc_register_types)
1176