xref: /qemu/hw/ppc/spapr_hcall.c (revision 29b62a10)
1 #include "qemu/osdep.h"
2 #include "qemu/cutils.h"
3 #include "qapi/error.h"
4 #include "sysemu/hw_accel.h"
5 #include "sysemu/runstate.h"
6 #include "qemu/log.h"
7 #include "qemu/main-loop.h"
8 #include "qemu/module.h"
9 #include "qemu/error-report.h"
10 #include "exec/exec-all.h"
11 #include "helper_regs.h"
12 #include "hw/ppc/ppc.h"
13 #include "hw/ppc/spapr.h"
14 #include "hw/ppc/spapr_cpu_core.h"
15 #include "mmu-hash64.h"
16 #include "cpu-models.h"
17 #include "trace.h"
18 #include "kvm_ppc.h"
19 #include "hw/ppc/fdt.h"
20 #include "hw/ppc/spapr_ovec.h"
21 #include "hw/ppc/spapr_numa.h"
22 #include "mmu-book3s-v3.h"
23 #include "hw/mem/memory-device.h"
24 
25 bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
26 {
27     MachineState *machine = MACHINE(spapr);
28     DeviceMemoryState *dms = machine->device_memory;
29 
30     if (addr < machine->ram_size) {
31         return true;
32     }
33     if ((addr >= dms->base)
34         && ((addr - dms->base) < memory_region_size(&dms->mr))) {
35         return true;
36     }
37 
38     return false;
39 }
40 
41 /* Convert a return code from the KVM ioctl()s implementing resize HPT
42  * into a PAPR hypercall return code */
43 static target_ulong resize_hpt_convert_rc(int ret)
44 {
45     if (ret >= 100000) {
46         return H_LONG_BUSY_ORDER_100_SEC;
47     } else if (ret >= 10000) {
48         return H_LONG_BUSY_ORDER_10_SEC;
49     } else if (ret >= 1000) {
50         return H_LONG_BUSY_ORDER_1_SEC;
51     } else if (ret >= 100) {
52         return H_LONG_BUSY_ORDER_100_MSEC;
53     } else if (ret >= 10) {
54         return H_LONG_BUSY_ORDER_10_MSEC;
55     } else if (ret > 0) {
56         return H_LONG_BUSY_ORDER_1_MSEC;
57     }
58 
59     switch (ret) {
60     case 0:
61         return H_SUCCESS;
62     case -EPERM:
63         return H_AUTHORITY;
64     case -EINVAL:
65         return H_PARAMETER;
66     case -ENXIO:
67         return H_CLOSED;
68     case -ENOSPC:
69         return H_PTEG_FULL;
70     case -EBUSY:
71         return H_BUSY;
72     case -ENOMEM:
73         return H_NO_MEM;
74     default:
75         return H_HARDWARE;
76     }
77 }
78 
79 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
80                                          SpaprMachineState *spapr,
81                                          target_ulong opcode,
82                                          target_ulong *args)
83 {
84     target_ulong flags = args[0];
85     int shift = args[1];
86     uint64_t current_ram_size;
87     int rc;
88 
89     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
90         return H_AUTHORITY;
91     }
92 
93     if (!spapr->htab_shift) {
94         /* Radix guest, no HPT */
95         return H_NOT_AVAILABLE;
96     }
97 
98     trace_spapr_h_resize_hpt_prepare(flags, shift);
99 
100     if (flags != 0) {
101         return H_PARAMETER;
102     }
103 
104     if (shift && ((shift < 18) || (shift > 46))) {
105         return H_PARAMETER;
106     }
107 
108     current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
109 
110     /* We only allow the guest to allocate an HPT one order above what
111      * we'd normally give them (to stop a small guest claiming a huge
112      * chunk of resources in the HPT */
113     if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
114         return H_RESOURCE;
115     }
116 
117     rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
118     if (rc != -ENOSYS) {
119         return resize_hpt_convert_rc(rc);
120     }
121 
122     if (kvm_enabled()) {
123         return H_HARDWARE;
124     }
125 
126     return softmmu_resize_hpt_prepare(cpu, spapr, shift);
127 }
128 
129 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
130 {
131     int ret;
132 
133     cpu_synchronize_state(cs);
134 
135     ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
136     if (ret < 0) {
137         error_report("failed to push sregs to KVM: %s", strerror(-ret));
138         exit(1);
139     }
140 }
141 
142 void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
143 {
144     CPUState *cs;
145 
146     /*
147      * This is a hack for the benefit of KVM PR - it abuses the SDR1
148      * slot in kvm_sregs to communicate the userspace address of the
149      * HPT
150      */
151     if (!kvm_enabled() || !spapr->htab) {
152         return;
153     }
154 
155     CPU_FOREACH(cs) {
156         run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
157     }
158 }
159 
160 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
161                                         SpaprMachineState *spapr,
162                                         target_ulong opcode,
163                                         target_ulong *args)
164 {
165     target_ulong flags = args[0];
166     target_ulong shift = args[1];
167     int rc;
168 
169     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
170         return H_AUTHORITY;
171     }
172 
173     if (!spapr->htab_shift) {
174         /* Radix guest, no HPT */
175         return H_NOT_AVAILABLE;
176     }
177 
178     trace_spapr_h_resize_hpt_commit(flags, shift);
179 
180     rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
181     if (rc != -ENOSYS) {
182         rc = resize_hpt_convert_rc(rc);
183         if (rc == H_SUCCESS) {
184             /* Need to set the new htab_shift in the machine state */
185             spapr->htab_shift = shift;
186         }
187         return rc;
188     }
189 
190     if (kvm_enabled()) {
191         return H_HARDWARE;
192     }
193 
194     return softmmu_resize_hpt_commit(cpu, spapr, flags, shift);
195 }
196 
197 
198 
199 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
200                                 target_ulong opcode, target_ulong *args)
201 {
202     cpu_synchronize_state(CPU(cpu));
203     cpu->env.spr[SPR_SPRG0] = args[0];
204 
205     return H_SUCCESS;
206 }
207 
208 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
209                                target_ulong opcode, target_ulong *args)
210 {
211     if (!ppc_has_spr(cpu, SPR_DABR)) {
212         return H_HARDWARE;              /* DABR register not available */
213     }
214     cpu_synchronize_state(CPU(cpu));
215 
216     if (ppc_has_spr(cpu, SPR_DABRX)) {
217         cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
218     } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
219         return H_RESERVED_DABR;
220     }
221 
222     cpu->env.spr[SPR_DABR] = args[0];
223     return H_SUCCESS;
224 }
225 
226 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
227                                 target_ulong opcode, target_ulong *args)
228 {
229     target_ulong dabrx = args[1];
230 
231     if (!ppc_has_spr(cpu, SPR_DABR) || !ppc_has_spr(cpu, SPR_DABRX)) {
232         return H_HARDWARE;
233     }
234 
235     if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
236         || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
237         return H_PARAMETER;
238     }
239 
240     cpu_synchronize_state(CPU(cpu));
241     cpu->env.spr[SPR_DABRX] = dabrx;
242     cpu->env.spr[SPR_DABR] = args[0];
243 
244     return H_SUCCESS;
245 }
246 
247 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
248                                 target_ulong opcode, target_ulong *args)
249 {
250     target_ulong flags = args[0];
251     hwaddr dst = args[1];
252     hwaddr src = args[2];
253     hwaddr len = TARGET_PAGE_SIZE;
254     uint8_t *pdst, *psrc;
255     target_long ret = H_SUCCESS;
256 
257     if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
258                   | H_COPY_PAGE | H_ZERO_PAGE)) {
259         qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
260                       flags);
261         return H_PARAMETER;
262     }
263 
264     /* Map-in destination */
265     if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
266         return H_PARAMETER;
267     }
268     pdst = cpu_physical_memory_map(dst, &len, true);
269     if (!pdst || len != TARGET_PAGE_SIZE) {
270         return H_PARAMETER;
271     }
272 
273     if (flags & H_COPY_PAGE) {
274         /* Map-in source, copy to destination, and unmap source again */
275         if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
276             ret = H_PARAMETER;
277             goto unmap_out;
278         }
279         psrc = cpu_physical_memory_map(src, &len, false);
280         if (!psrc || len != TARGET_PAGE_SIZE) {
281             ret = H_PARAMETER;
282             goto unmap_out;
283         }
284         memcpy(pdst, psrc, len);
285         cpu_physical_memory_unmap(psrc, len, 0, len);
286     } else if (flags & H_ZERO_PAGE) {
287         memset(pdst, 0, len);          /* Just clear the destination page */
288     }
289 
290     if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
291         kvmppc_dcbst_range(cpu, pdst, len);
292     }
293     if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
294         if (kvm_enabled()) {
295             kvmppc_icbi_range(cpu, pdst, len);
296         } else {
297             tb_flush(CPU(cpu));
298         }
299     }
300 
301 unmap_out:
302     cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
303     return ret;
304 }
305 
306 #define FLAGS_REGISTER_VPA         0x0000200000000000ULL
307 #define FLAGS_REGISTER_DTL         0x0000400000000000ULL
308 #define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
309 #define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
310 #define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
311 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
312 
313 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
314 {
315     CPUState *cs = CPU(cpu);
316     CPUPPCState *env = &cpu->env;
317     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
318     uint16_t size;
319     uint8_t tmp;
320 
321     if (vpa == 0) {
322         hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
323         return H_HARDWARE;
324     }
325 
326     if (vpa % env->dcache_line_size) {
327         return H_PARAMETER;
328     }
329     /* FIXME: bounds check the address */
330 
331     size = lduw_be_phys(cs->as, vpa + 0x4);
332 
333     if (size < VPA_MIN_SIZE) {
334         return H_PARAMETER;
335     }
336 
337     /* VPA is not allowed to cross a page boundary */
338     if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
339         return H_PARAMETER;
340     }
341 
342     spapr_cpu->vpa_addr = vpa;
343 
344     tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
345     tmp |= VPA_SHARED_PROC_VAL;
346     stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
347 
348     return H_SUCCESS;
349 }
350 
351 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
352 {
353     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
354 
355     if (spapr_cpu->slb_shadow_addr) {
356         return H_RESOURCE;
357     }
358 
359     if (spapr_cpu->dtl_addr) {
360         return H_RESOURCE;
361     }
362 
363     spapr_cpu->vpa_addr = 0;
364     return H_SUCCESS;
365 }
366 
367 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
368 {
369     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
370     uint32_t size;
371 
372     if (addr == 0) {
373         hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
374         return H_HARDWARE;
375     }
376 
377     size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
378     if (size < 0x8) {
379         return H_PARAMETER;
380     }
381 
382     if ((addr / 4096) != ((addr + size - 1) / 4096)) {
383         return H_PARAMETER;
384     }
385 
386     if (!spapr_cpu->vpa_addr) {
387         return H_RESOURCE;
388     }
389 
390     spapr_cpu->slb_shadow_addr = addr;
391     spapr_cpu->slb_shadow_size = size;
392 
393     return H_SUCCESS;
394 }
395 
396 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
397 {
398     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
399 
400     spapr_cpu->slb_shadow_addr = 0;
401     spapr_cpu->slb_shadow_size = 0;
402     return H_SUCCESS;
403 }
404 
405 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
406 {
407     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
408     uint32_t size;
409 
410     if (addr == 0) {
411         hcall_dprintf("Can't cope with DTL at logical 0\n");
412         return H_HARDWARE;
413     }
414 
415     size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
416 
417     if (size < 48) {
418         return H_PARAMETER;
419     }
420 
421     if (!spapr_cpu->vpa_addr) {
422         return H_RESOURCE;
423     }
424 
425     spapr_cpu->dtl_addr = addr;
426     spapr_cpu->dtl_size = size;
427 
428     return H_SUCCESS;
429 }
430 
431 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
432 {
433     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
434 
435     spapr_cpu->dtl_addr = 0;
436     spapr_cpu->dtl_size = 0;
437 
438     return H_SUCCESS;
439 }
440 
441 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
442                                    target_ulong opcode, target_ulong *args)
443 {
444     target_ulong flags = args[0];
445     target_ulong procno = args[1];
446     target_ulong vpa = args[2];
447     target_ulong ret = H_PARAMETER;
448     PowerPCCPU *tcpu;
449 
450     tcpu = spapr_find_cpu(procno);
451     if (!tcpu) {
452         return H_PARAMETER;
453     }
454 
455     switch (flags) {
456     case FLAGS_REGISTER_VPA:
457         ret = register_vpa(tcpu, vpa);
458         break;
459 
460     case FLAGS_DEREGISTER_VPA:
461         ret = deregister_vpa(tcpu, vpa);
462         break;
463 
464     case FLAGS_REGISTER_SLBSHADOW:
465         ret = register_slb_shadow(tcpu, vpa);
466         break;
467 
468     case FLAGS_DEREGISTER_SLBSHADOW:
469         ret = deregister_slb_shadow(tcpu, vpa);
470         break;
471 
472     case FLAGS_REGISTER_DTL:
473         ret = register_dtl(tcpu, vpa);
474         break;
475 
476     case FLAGS_DEREGISTER_DTL:
477         ret = deregister_dtl(tcpu, vpa);
478         break;
479     }
480 
481     return ret;
482 }
483 
484 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
485                            target_ulong opcode, target_ulong *args)
486 {
487     CPUPPCState *env = &cpu->env;
488     CPUState *cs = CPU(cpu);
489     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
490 
491     env->msr |= (1ULL << MSR_EE);
492     hreg_compute_hflags(env);
493     ppc_maybe_interrupt(env);
494 
495     if (spapr_cpu->prod) {
496         spapr_cpu->prod = false;
497         return H_SUCCESS;
498     }
499 
500     if (!cpu_has_work(cs)) {
501         cs->halted = 1;
502         cs->exception_index = EXCP_HLT;
503         cs->exit_request = 1;
504         ppc_maybe_interrupt(env);
505     }
506 
507     return H_SUCCESS;
508 }
509 
510 /*
511  * Confer to self, aka join. Cede could use the same pattern as well, if
512  * EXCP_HLT can be changed to ECXP_HALTED.
513  */
514 static target_ulong h_confer_self(PowerPCCPU *cpu)
515 {
516     CPUState *cs = CPU(cpu);
517     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
518 
519     if (spapr_cpu->prod) {
520         spapr_cpu->prod = false;
521         return H_SUCCESS;
522     }
523     cs->halted = 1;
524     cs->exception_index = EXCP_HALTED;
525     cs->exit_request = 1;
526     ppc_maybe_interrupt(&cpu->env);
527 
528     return H_SUCCESS;
529 }
530 
531 static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr,
532                            target_ulong opcode, target_ulong *args)
533 {
534     CPUPPCState *env = &cpu->env;
535     CPUState *cs;
536     bool last_unjoined = true;
537 
538     if (env->msr & (1ULL << MSR_EE)) {
539         return H_BAD_MODE;
540     }
541 
542     /*
543      * Must not join the last CPU running. Interestingly, no such restriction
544      * for H_CONFER-to-self, but that is probably not intended to be used
545      * when H_JOIN is available.
546      */
547     CPU_FOREACH(cs) {
548         PowerPCCPU *c = POWERPC_CPU(cs);
549         CPUPPCState *e = &c->env;
550         if (c == cpu) {
551             continue;
552         }
553 
554         /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
555         if (!cs->halted || (e->msr & (1ULL << MSR_EE))) {
556             last_unjoined = false;
557             break;
558         }
559     }
560     if (last_unjoined) {
561         return H_CONTINUE;
562     }
563 
564     return h_confer_self(cpu);
565 }
566 
567 static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr,
568                            target_ulong opcode, target_ulong *args)
569 {
570     target_long target = args[0];
571     uint32_t dispatch = args[1];
572     CPUState *cs = CPU(cpu);
573     SpaprCpuState *spapr_cpu;
574 
575     /*
576      * -1 means confer to all other CPUs without dispatch counter check,
577      *  otherwise it's a targeted confer.
578      */
579     if (target != -1) {
580         PowerPCCPU *target_cpu = spapr_find_cpu(target);
581         uint32_t target_dispatch;
582 
583         if (!target_cpu) {
584             return H_PARAMETER;
585         }
586 
587         /*
588          * target == self is a special case, we wait until prodded, without
589          * dispatch counter check.
590          */
591         if (cpu == target_cpu) {
592             return h_confer_self(cpu);
593         }
594 
595         spapr_cpu = spapr_cpu_state(target_cpu);
596         if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) {
597             return H_SUCCESS;
598         }
599 
600         target_dispatch = ldl_be_phys(cs->as,
601                                   spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
602         if (target_dispatch != dispatch) {
603             return H_SUCCESS;
604         }
605 
606         /*
607          * The targeted confer does not do anything special beyond yielding
608          * the current vCPU, but even this should be better than nothing.
609          * At least for single-threaded tcg, it gives the target a chance to
610          * run before we run again. Multi-threaded tcg does not really do
611          * anything with EXCP_YIELD yet.
612          */
613     }
614 
615     cs->exception_index = EXCP_YIELD;
616     cs->exit_request = 1;
617     cpu_loop_exit(cs);
618 
619     return H_SUCCESS;
620 }
621 
622 static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr,
623                            target_ulong opcode, target_ulong *args)
624 {
625     target_long target = args[0];
626     PowerPCCPU *tcpu;
627     CPUState *cs;
628     SpaprCpuState *spapr_cpu;
629 
630     tcpu = spapr_find_cpu(target);
631     cs = CPU(tcpu);
632     if (!cs) {
633         return H_PARAMETER;
634     }
635 
636     spapr_cpu = spapr_cpu_state(tcpu);
637     spapr_cpu->prod = true;
638     cs->halted = 0;
639     ppc_maybe_interrupt(&cpu->env);
640     qemu_cpu_kick(cs);
641 
642     return H_SUCCESS;
643 }
644 
645 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
646                            target_ulong opcode, target_ulong *args)
647 {
648     target_ulong rtas_r3 = args[0];
649     uint32_t token = rtas_ld(rtas_r3, 0);
650     uint32_t nargs = rtas_ld(rtas_r3, 1);
651     uint32_t nret = rtas_ld(rtas_r3, 2);
652 
653     return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
654                            nret, rtas_r3 + 12 + 4*nargs);
655 }
656 
657 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
658                                    target_ulong opcode, target_ulong *args)
659 {
660     CPUState *cs = CPU(cpu);
661     target_ulong size = args[0];
662     target_ulong addr = args[1];
663 
664     switch (size) {
665     case 1:
666         args[0] = ldub_phys(cs->as, addr);
667         return H_SUCCESS;
668     case 2:
669         args[0] = lduw_phys(cs->as, addr);
670         return H_SUCCESS;
671     case 4:
672         args[0] = ldl_phys(cs->as, addr);
673         return H_SUCCESS;
674     case 8:
675         args[0] = ldq_phys(cs->as, addr);
676         return H_SUCCESS;
677     }
678     return H_PARAMETER;
679 }
680 
681 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
682                                     target_ulong opcode, target_ulong *args)
683 {
684     CPUState *cs = CPU(cpu);
685 
686     target_ulong size = args[0];
687     target_ulong addr = args[1];
688     target_ulong val  = args[2];
689 
690     switch (size) {
691     case 1:
692         stb_phys(cs->as, addr, val);
693         return H_SUCCESS;
694     case 2:
695         stw_phys(cs->as, addr, val);
696         return H_SUCCESS;
697     case 4:
698         stl_phys(cs->as, addr, val);
699         return H_SUCCESS;
700     case 8:
701         stq_phys(cs->as, addr, val);
702         return H_SUCCESS;
703     }
704     return H_PARAMETER;
705 }
706 
707 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
708                                     target_ulong opcode, target_ulong *args)
709 {
710     CPUState *cs = CPU(cpu);
711 
712     target_ulong dst   = args[0]; /* Destination address */
713     target_ulong src   = args[1]; /* Source address */
714     target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
715     target_ulong count = args[3]; /* Element count */
716     target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
717     uint64_t tmp;
718     unsigned int mask = (1 << esize) - 1;
719     int step = 1 << esize;
720 
721     if (count > 0x80000000) {
722         return H_PARAMETER;
723     }
724 
725     if ((dst & mask) || (src & mask) || (op > 1)) {
726         return H_PARAMETER;
727     }
728 
729     if (dst >= src && dst < (src + (count << esize))) {
730             dst = dst + ((count - 1) << esize);
731             src = src + ((count - 1) << esize);
732             step = -step;
733     }
734 
735     while (count--) {
736         switch (esize) {
737         case 0:
738             tmp = ldub_phys(cs->as, src);
739             break;
740         case 1:
741             tmp = lduw_phys(cs->as, src);
742             break;
743         case 2:
744             tmp = ldl_phys(cs->as, src);
745             break;
746         case 3:
747             tmp = ldq_phys(cs->as, src);
748             break;
749         default:
750             return H_PARAMETER;
751         }
752         if (op == 1) {
753             tmp = ~tmp;
754         }
755         switch (esize) {
756         case 0:
757             stb_phys(cs->as, dst, tmp);
758             break;
759         case 1:
760             stw_phys(cs->as, dst, tmp);
761             break;
762         case 2:
763             stl_phys(cs->as, dst, tmp);
764             break;
765         case 3:
766             stq_phys(cs->as, dst, tmp);
767             break;
768         }
769         dst = dst + step;
770         src = src + step;
771     }
772 
773     return H_SUCCESS;
774 }
775 
776 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
777                                    target_ulong opcode, target_ulong *args)
778 {
779     /* Nothing to do on emulation, KVM will trap this in the kernel */
780     return H_SUCCESS;
781 }
782 
783 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
784                                    target_ulong opcode, target_ulong *args)
785 {
786     /* Nothing to do on emulation, KVM will trap this in the kernel */
787     return H_SUCCESS;
788 }
789 
790 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
791                                            SpaprMachineState *spapr,
792                                            target_ulong mflags,
793                                            target_ulong value1,
794                                            target_ulong value2)
795 {
796     if (value1) {
797         return H_P3;
798     }
799     if (value2) {
800         return H_P4;
801     }
802 
803     switch (mflags) {
804     case H_SET_MODE_ENDIAN_BIG:
805         spapr_set_all_lpcrs(0, LPCR_ILE);
806         spapr_pci_switch_vga(spapr, true);
807         return H_SUCCESS;
808 
809     case H_SET_MODE_ENDIAN_LITTLE:
810         spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
811         spapr_pci_switch_vga(spapr, false);
812         return H_SUCCESS;
813     }
814 
815     return H_UNSUPPORTED_FLAG;
816 }
817 
818 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
819                                                         target_ulong mflags,
820                                                         target_ulong value1,
821                                                         target_ulong value2)
822 {
823     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
824 
825     if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
826         return H_P2;
827     }
828     if (value1) {
829         return H_P3;
830     }
831     if (value2) {
832         return H_P4;
833     }
834 
835     if (mflags == 1) {
836         /* AIL=1 is reserved in POWER8/POWER9/POWER10 */
837         return H_UNSUPPORTED_FLAG;
838     }
839 
840     if (mflags == 2 && (pcc->insns_flags2 & PPC2_ISA310)) {
841         /* AIL=2 is reserved in POWER10 (ISA v3.1) */
842         return H_UNSUPPORTED_FLAG;
843     }
844 
845     spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
846 
847     return H_SUCCESS;
848 }
849 
850 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
851                                target_ulong opcode, target_ulong *args)
852 {
853     target_ulong resource = args[1];
854     target_ulong ret = H_P2;
855 
856     switch (resource) {
857     case H_SET_MODE_RESOURCE_LE:
858         ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]);
859         break;
860     case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
861         ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
862                                                   args[2], args[3]);
863         break;
864     }
865 
866     return ret;
867 }
868 
869 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
870                                 target_ulong opcode, target_ulong *args)
871 {
872     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
873                   opcode, " (H_CLEAN_SLB)");
874     return H_FUNCTION;
875 }
876 
877 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
878                                      target_ulong opcode, target_ulong *args)
879 {
880     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
881                   opcode, " (H_INVALIDATE_PID)");
882     return H_FUNCTION;
883 }
884 
885 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
886                                        uint64_t patbe_old, uint64_t patbe_new)
887 {
888     /*
889      * We have 4 Options:
890      * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
891      * HASH->RADIX                                  : Free HPT
892      * RADIX->HASH                                  : Allocate HPT
893      * NOTHING->HASH                                : Allocate HPT
894      * Note: NOTHING implies the case where we said the guest could choose
895      *       later and so assumed radix and now it's called H_REG_PROC_TBL
896      */
897 
898     if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
899         /* We assume RADIX, so this catches all the "Do Nothing" cases */
900     } else if (!(patbe_old & PATE1_GR)) {
901         /* HASH->RADIX : Free HPT */
902         spapr_free_hpt(spapr);
903     } else if (!(patbe_new & PATE1_GR)) {
904         /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
905         spapr_setup_hpt(spapr);
906     }
907     return;
908 }
909 
910 #define FLAGS_MASK              0x01FULL
911 #define FLAG_MODIFY             0x10
912 #define FLAG_REGISTER           0x08
913 #define FLAG_RADIX              0x04
914 #define FLAG_HASH_PROC_TBL      0x02
915 #define FLAG_GTSE               0x01
916 
917 static target_ulong h_register_process_table(PowerPCCPU *cpu,
918                                              SpaprMachineState *spapr,
919                                              target_ulong opcode,
920                                              target_ulong *args)
921 {
922     target_ulong flags = args[0];
923     target_ulong proc_tbl = args[1];
924     target_ulong page_size = args[2];
925     target_ulong table_size = args[3];
926     target_ulong update_lpcr = 0;
927     target_ulong table_byte_size;
928     uint64_t cproc;
929 
930     if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
931         return H_PARAMETER;
932     }
933     if (flags & FLAG_MODIFY) {
934         if (flags & FLAG_REGISTER) {
935             /* Check process table alignment */
936             table_byte_size = 1ULL << (table_size + 12);
937             if (proc_tbl & (table_byte_size - 1)) {
938                 qemu_log_mask(LOG_GUEST_ERROR,
939                     "%s: process table not properly aligned: proc_tbl 0x"
940                     TARGET_FMT_lx" proc_tbl_size 0x"TARGET_FMT_lx"\n",
941                     __func__, proc_tbl, table_byte_size);
942             }
943             if (flags & FLAG_RADIX) { /* Register new RADIX process table */
944                 if (proc_tbl & 0xfff || proc_tbl >> 60) {
945                     return H_P2;
946                 } else if (page_size) {
947                     return H_P3;
948                 } else if (table_size > 24) {
949                     return H_P4;
950                 }
951                 cproc = PATE1_GR | proc_tbl | table_size;
952             } else { /* Register new HPT process table */
953                 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
954                     /* TODO - Not Supported */
955                     /* Technically caused by flag bits => H_PARAMETER */
956                     return H_PARAMETER;
957                 } else { /* Hash with SLB */
958                     if (proc_tbl >> 38) {
959                         return H_P2;
960                     } else if (page_size & ~0x7) {
961                         return H_P3;
962                     } else if (table_size > 24) {
963                         return H_P4;
964                     }
965                 }
966                 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
967             }
968 
969         } else { /* Deregister current process table */
970             /*
971              * Set to benign value: (current GR) | 0. This allows
972              * deregistration in KVM to succeed even if the radix bit
973              * in flags doesn't match the radix bit in the old PATE.
974              */
975             cproc = spapr->patb_entry & PATE1_GR;
976         }
977     } else { /* Maintain current registration */
978         if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
979             /* Technically caused by flag bits => H_PARAMETER */
980             return H_PARAMETER; /* Existing Process Table Mismatch */
981         }
982         cproc = spapr->patb_entry;
983     }
984 
985     /* Check if we need to setup OR free the hpt */
986     spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
987 
988     spapr->patb_entry = cproc; /* Save new process table */
989 
990     /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
991     if (flags & FLAG_RADIX)     /* Radix must use process tables, also set HR */
992         update_lpcr |= (LPCR_UPRT | LPCR_HR);
993     else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
994         update_lpcr |= LPCR_UPRT;
995     if (flags & FLAG_GTSE)      /* Guest translation shootdown enable */
996         update_lpcr |= LPCR_GTSE;
997 
998     spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
999 
1000     if (kvm_enabled()) {
1001         return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1002                                        flags & FLAG_GTSE, cproc);
1003     }
1004     return H_SUCCESS;
1005 }
1006 
1007 #define H_SIGNAL_SYS_RESET_ALL         -1
1008 #define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2
1009 
1010 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1011                                        SpaprMachineState *spapr,
1012                                        target_ulong opcode, target_ulong *args)
1013 {
1014     target_long target = args[0];
1015     CPUState *cs;
1016 
1017     if (target < 0) {
1018         /* Broadcast */
1019         if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1020             return H_PARAMETER;
1021         }
1022 
1023         CPU_FOREACH(cs) {
1024             PowerPCCPU *c = POWERPC_CPU(cs);
1025 
1026             if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1027                 if (c == cpu) {
1028                     continue;
1029                 }
1030             }
1031             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1032         }
1033         return H_SUCCESS;
1034 
1035     } else {
1036         /* Unicast */
1037         cs = CPU(spapr_find_cpu(target));
1038         if (cs) {
1039             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1040             return H_SUCCESS;
1041         }
1042         return H_PARAMETER;
1043     }
1044 }
1045 
1046 /* Returns either a logical PVR or zero if none was found */
1047 static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat,
1048                               target_ulong *addr, bool *raw_mode_supported)
1049 {
1050     bool explicit_match = false; /* Matched the CPU's real PVR */
1051     uint32_t best_compat = 0;
1052     int i;
1053 
1054     /*
1055      * We scan the supplied table of PVRs looking for two things
1056      *   1. Is our real CPU PVR in the list?
1057      *   2. What's the "best" listed logical PVR
1058      */
1059     for (i = 0; i < 512; ++i) {
1060         uint32_t pvr, pvr_mask;
1061 
1062         pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1063         pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1064         *addr += 8;
1065 
1066         if (~pvr_mask & pvr) {
1067             break; /* Terminator record */
1068         }
1069 
1070         if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1071             explicit_match = true;
1072         } else {
1073             if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1074                 best_compat = pvr;
1075             }
1076         }
1077     }
1078 
1079     *raw_mode_supported = explicit_match;
1080 
1081     /* Parsing finished */
1082     trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1083 
1084     return best_compat;
1085 }
1086 
1087 static
1088 target_ulong do_client_architecture_support(PowerPCCPU *cpu,
1089                                             SpaprMachineState *spapr,
1090                                             target_ulong vec,
1091                                             target_ulong fdt_bufsize)
1092 {
1093     target_ulong ov_table; /* Working address in data buffer */
1094     uint32_t cas_pvr;
1095     SpaprOptionVector *ov1_guest, *ov5_guest;
1096     bool guest_radix;
1097     bool raw_mode_supported = false;
1098     bool guest_xive;
1099     CPUState *cs;
1100     void *fdt;
1101     uint32_t max_compat = spapr->max_compat_pvr;
1102 
1103     /* CAS is supposed to be called early when only the boot vCPU is active. */
1104     CPU_FOREACH(cs) {
1105         if (cs == CPU(cpu)) {
1106             continue;
1107         }
1108         if (!cs->halted) {
1109             warn_report("guest has multiple active vCPUs at CAS, which is not allowed");
1110             return H_MULTI_THREADS_ACTIVE;
1111         }
1112     }
1113 
1114     cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported);
1115     if (!cas_pvr && (!raw_mode_supported || max_compat)) {
1116         /*
1117          * We couldn't find a suitable compatibility mode, and either
1118          * the guest doesn't support "raw" mode for this CPU, or "raw"
1119          * mode is disabled because a maximum compat mode is set.
1120          */
1121         error_report("Couldn't negotiate a suitable PVR during CAS");
1122         return H_HARDWARE;
1123     }
1124 
1125     /* Update CPUs */
1126     if (cpu->compat_pvr != cas_pvr) {
1127         Error *local_err = NULL;
1128 
1129         if (ppc_set_compat_all(cas_pvr, &local_err) < 0) {
1130             /* We fail to set compat mode (likely because running with KVM PR),
1131              * but maybe we can fallback to raw mode if the guest supports it.
1132              */
1133             if (!raw_mode_supported) {
1134                 error_report_err(local_err);
1135                 return H_HARDWARE;
1136             }
1137             error_free(local_err);
1138         }
1139     }
1140 
1141     /* For the future use: here @ov_table points to the first option vector */
1142     ov_table = vec;
1143 
1144     ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1145     if (!ov1_guest) {
1146         warn_report("guest didn't provide option vector 1");
1147         return H_PARAMETER;
1148     }
1149     ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1150     if (!ov5_guest) {
1151         spapr_ovec_cleanup(ov1_guest);
1152         warn_report("guest didn't provide option vector 5");
1153         return H_PARAMETER;
1154     }
1155     if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1156         error_report("guest requested hash and radix MMU, which is invalid.");
1157         exit(EXIT_FAILURE);
1158     }
1159     if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
1160         error_report("guest requested an invalid interrupt mode");
1161         exit(EXIT_FAILURE);
1162     }
1163 
1164     guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1165 
1166     guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);
1167 
1168     /*
1169      * HPT resizing is a bit of a special case, because when enabled
1170      * we assume an HPT guest will support it until it says it
1171      * doesn't, instead of assuming it won't support it until it says
1172      * it does.  Strictly speaking that approach could break for
1173      * guests which don't make a CAS call, but those are so old we
1174      * don't care about them.  Without that assumption we'd have to
1175      * make at least a temporary allocation of an HPT sized for max
1176      * memory, which could be impossibly difficult under KVM HV if
1177      * maxram is large.
1178      */
1179     if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1180         int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1181 
1182         if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1183             error_report(
1184                 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1185             exit(1);
1186         }
1187 
1188         if (spapr->htab_shift < maxshift) {
1189             /* Guest doesn't know about HPT resizing, so we
1190              * pre-emptively resize for the maximum permitted RAM.  At
1191              * the point this is called, nothing should have been
1192              * entered into the existing HPT */
1193             spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1194             push_sregs_to_kvm_pr(spapr);
1195         }
1196     }
1197 
1198     /* NOTE: there are actually a number of ov5 bits where input from the
1199      * guest is always zero, and the platform/QEMU enables them independently
1200      * of guest input. To model these properly we'd want some sort of mask,
1201      * but since they only currently apply to memory migration as defined
1202      * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1203      * to worry about this for now.
1204      */
1205 
1206     /* full range of negotiated ov5 capabilities */
1207     spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1208     spapr_ovec_cleanup(ov5_guest);
1209 
1210     spapr_check_mmu_mode(guest_radix);
1211 
1212     spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00);
1213     spapr_ovec_cleanup(ov1_guest);
1214 
1215     /*
1216      * Check for NUMA affinity conditions now that we know which NUMA
1217      * affinity the guest will use.
1218      */
1219     spapr_numa_associativity_check(spapr);
1220 
1221     /*
1222      * Ensure the guest asks for an interrupt mode we support;
1223      * otherwise terminate the boot.
1224      */
1225     if (guest_xive) {
1226         if (!spapr->irq->xive) {
1227             error_report(
1228 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1229             exit(EXIT_FAILURE);
1230         }
1231     } else {
1232         if (!spapr->irq->xics) {
1233             error_report(
1234 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1235             exit(EXIT_FAILURE);
1236         }
1237     }
1238 
1239     spapr_irq_update_active_intc(spapr);
1240 
1241     /*
1242      * Process all pending hot-plug/unplug requests now. An updated full
1243      * rendered FDT will be returned to the guest.
1244      */
1245     spapr_drc_reset_all(spapr);
1246     spapr_clear_pending_hotplug_events(spapr);
1247 
1248     /*
1249      * If spapr_machine_reset() did not set up a HPT but one is necessary
1250      * (because the guest isn't going to use radix) then set it up here.
1251      */
1252     if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
1253         /* legacy hash or new hash: */
1254         spapr_setup_hpt(spapr);
1255     }
1256 
1257     fdt = spapr_build_fdt(spapr, spapr->vof != NULL, fdt_bufsize);
1258     g_free(spapr->fdt_blob);
1259     spapr->fdt_size = fdt_totalsize(fdt);
1260     spapr->fdt_initial_size = spapr->fdt_size;
1261     spapr->fdt_blob = fdt;
1262 
1263     /*
1264      * Set the machine->fdt pointer again since we just freed
1265      * it above (by freeing spapr->fdt_blob). We set this
1266      * pointer to enable support for the 'dumpdtb' QMP/HMP
1267      * command.
1268      */
1269     MACHINE(spapr)->fdt = fdt;
1270 
1271     return H_SUCCESS;
1272 }
1273 
1274 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1275                                                   SpaprMachineState *spapr,
1276                                                   target_ulong opcode,
1277                                                   target_ulong *args)
1278 {
1279     target_ulong vec = ppc64_phys_to_real(args[0]);
1280     target_ulong fdt_buf = args[1];
1281     target_ulong fdt_bufsize = args[2];
1282     target_ulong ret;
1283     SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
1284 
1285     if (fdt_bufsize < sizeof(hdr)) {
1286         error_report("SLOF provided insufficient CAS buffer "
1287                      TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr));
1288         exit(EXIT_FAILURE);
1289     }
1290 
1291     fdt_bufsize -= sizeof(hdr);
1292 
1293     ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize);
1294     if (ret == H_SUCCESS) {
1295         _FDT((fdt_pack(spapr->fdt_blob)));
1296         spapr->fdt_size = fdt_totalsize(spapr->fdt_blob);
1297         spapr->fdt_initial_size = spapr->fdt_size;
1298 
1299         cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr));
1300         cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob,
1301                                   spapr->fdt_size);
1302         trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr));
1303     }
1304 
1305     return ret;
1306 }
1307 
1308 target_ulong spapr_vof_client_architecture_support(MachineState *ms,
1309                                                    CPUState *cs,
1310                                                    target_ulong ovec_addr)
1311 {
1312     SpaprMachineState *spapr = SPAPR_MACHINE(ms);
1313 
1314     target_ulong ret = do_client_architecture_support(POWERPC_CPU(cs), spapr,
1315                                                       ovec_addr, FDT_MAX_SIZE);
1316 
1317     /*
1318      * This adds stdout and generates phandles for boottime and CAS FDTs.
1319      * It is alright to update the FDT here as do_client_architecture_support()
1320      * does not pack it.
1321      */
1322     spapr_vof_client_dt_finalize(spapr, spapr->fdt_blob);
1323 
1324     return ret;
1325 }
1326 
1327 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1328                                               SpaprMachineState *spapr,
1329                                               target_ulong opcode,
1330                                               target_ulong *args)
1331 {
1332     uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1333                                ~H_CPU_CHAR_THR_RECONF_TRIG;
1334     uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1335     uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1336     uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1337     uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1338     uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
1339                                                      SPAPR_CAP_CCF_ASSIST);
1340 
1341     switch (safe_cache) {
1342     case SPAPR_CAP_WORKAROUND:
1343         characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1344         characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1345         characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1346         behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1347         break;
1348     case SPAPR_CAP_FIXED:
1349         behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY;
1350         behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS;
1351         break;
1352     default: /* broken */
1353         assert(safe_cache == SPAPR_CAP_BROKEN);
1354         behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1355         break;
1356     }
1357 
1358     switch (safe_bounds_check) {
1359     case SPAPR_CAP_WORKAROUND:
1360         characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1361         behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1362         break;
1363     case SPAPR_CAP_FIXED:
1364         break;
1365     default: /* broken */
1366         assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1367         behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1368         break;
1369     }
1370 
1371     switch (safe_indirect_branch) {
1372     case SPAPR_CAP_FIXED_NA:
1373         break;
1374     case SPAPR_CAP_FIXED_CCD:
1375         characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1376         break;
1377     case SPAPR_CAP_FIXED_IBS:
1378         characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1379         break;
1380     case SPAPR_CAP_WORKAROUND:
1381         behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
1382         if (count_cache_flush_assist) {
1383             characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1384         }
1385         break;
1386     default: /* broken */
1387         assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1388         break;
1389     }
1390 
1391     args[0] = characteristics;
1392     args[1] = behaviour;
1393     return H_SUCCESS;
1394 }
1395 
1396 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
1397                                 target_ulong opcode, target_ulong *args)
1398 {
1399     target_ulong dt = ppc64_phys_to_real(args[0]);
1400     struct fdt_header hdr = { 0 };
1401     unsigned cb;
1402     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1403     void *fdt;
1404 
1405     cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1406     cb = fdt32_to_cpu(hdr.totalsize);
1407 
1408     if (!smc->update_dt_enabled) {
1409         return H_SUCCESS;
1410     }
1411 
1412     /* Check that the fdt did not grow out of proportion */
1413     if (cb > spapr->fdt_initial_size * 2) {
1414         trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1415                                           fdt32_to_cpu(hdr.magic));
1416         return H_PARAMETER;
1417     }
1418 
1419     fdt = g_malloc0(cb);
1420     cpu_physical_memory_read(dt, fdt, cb);
1421 
1422     /* Check the fdt consistency */
1423     if (fdt_check_full(fdt, cb)) {
1424         trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1425                                            fdt32_to_cpu(hdr.magic));
1426         return H_PARAMETER;
1427     }
1428 
1429     g_free(spapr->fdt_blob);
1430     spapr->fdt_size = cb;
1431     spapr->fdt_blob = fdt;
1432     trace_spapr_update_dt(cb);
1433 
1434     return H_SUCCESS;
1435 }
1436 
1437 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1438 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1439 static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1];
1440 
1441 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1442 {
1443     spapr_hcall_fn *slot;
1444 
1445     if (opcode <= MAX_HCALL_OPCODE) {
1446         assert((opcode & 0x3) == 0);
1447 
1448         slot = &papr_hypercall_table[opcode / 4];
1449     } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
1450         /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1451         assert((opcode & 0x3) == 0);
1452 
1453         slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1454     } else {
1455         assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1456 
1457         slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1458     }
1459 
1460     assert(!(*slot));
1461     *slot = fn;
1462 }
1463 
1464 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1465                              target_ulong *args)
1466 {
1467     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1468 
1469     if ((opcode <= MAX_HCALL_OPCODE)
1470         && ((opcode & 0x3) == 0)) {
1471         spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1472 
1473         if (fn) {
1474             return fn(cpu, spapr, opcode, args);
1475         }
1476     } else if ((opcode >= SVM_HCALL_BASE) &&
1477                (opcode <= SVM_HCALL_MAX)) {
1478         spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1479 
1480         if (fn) {
1481             return fn(cpu, spapr, opcode, args);
1482         }
1483     } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1484                (opcode <= KVMPPC_HCALL_MAX)) {
1485         spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1486 
1487         if (fn) {
1488             return fn(cpu, spapr, opcode, args);
1489         }
1490     }
1491 
1492     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1493                   opcode);
1494     return H_FUNCTION;
1495 }
1496 
1497 #ifdef CONFIG_TCG
1498 #define PRTS_MASK      0x1f
1499 
1500 static target_ulong h_set_ptbl(PowerPCCPU *cpu,
1501                                SpaprMachineState *spapr,
1502                                target_ulong opcode,
1503                                target_ulong *args)
1504 {
1505     target_ulong ptcr = args[0];
1506 
1507     if (!spapr_get_cap(spapr, SPAPR_CAP_NESTED_KVM_HV)) {
1508         return H_FUNCTION;
1509     }
1510 
1511     if ((ptcr & PRTS_MASK) + 12 - 4 > 12) {
1512         return H_PARAMETER;
1513     }
1514 
1515     spapr->nested_ptcr = ptcr; /* Save new partition table */
1516 
1517     return H_SUCCESS;
1518 }
1519 
1520 static target_ulong h_tlb_invalidate(PowerPCCPU *cpu,
1521                                      SpaprMachineState *spapr,
1522                                      target_ulong opcode,
1523                                      target_ulong *args)
1524 {
1525     /*
1526      * The spapr virtual hypervisor nested HV implementation retains no L2
1527      * translation state except for TLB. And the TLB is always invalidated
1528      * across L1<->L2 transitions, so nothing is required here.
1529      */
1530 
1531     return H_SUCCESS;
1532 }
1533 
1534 static target_ulong h_copy_tofrom_guest(PowerPCCPU *cpu,
1535                                         SpaprMachineState *spapr,
1536                                         target_ulong opcode,
1537                                         target_ulong *args)
1538 {
1539     /*
1540      * This HCALL is not required, L1 KVM will take a slow path and walk the
1541      * page tables manually to do the data copy.
1542      */
1543     return H_FUNCTION;
1544 }
1545 
1546 /*
1547  * When this handler returns, the environment is switched to the L2 guest
1548  * and TCG begins running that. spapr_exit_nested() performs the switch from
1549  * L2 back to L1 and returns from the H_ENTER_NESTED hcall.
1550  */
1551 static target_ulong h_enter_nested(PowerPCCPU *cpu,
1552                                    SpaprMachineState *spapr,
1553                                    target_ulong opcode,
1554                                    target_ulong *args)
1555 {
1556     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1557     CPUState *cs = CPU(cpu);
1558     CPUPPCState *env = &cpu->env;
1559     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1560     target_ulong hv_ptr = args[0];
1561     target_ulong regs_ptr = args[1];
1562     target_ulong hdec, now = cpu_ppc_load_tbl(env);
1563     target_ulong lpcr, lpcr_mask;
1564     struct kvmppc_hv_guest_state *hvstate;
1565     struct kvmppc_hv_guest_state hv_state;
1566     struct kvmppc_pt_regs *regs;
1567     hwaddr len;
1568     uint64_t cr;
1569     int i;
1570 
1571     if (spapr->nested_ptcr == 0) {
1572         return H_NOT_AVAILABLE;
1573     }
1574 
1575     len = sizeof(*hvstate);
1576     hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, false,
1577                                 MEMTXATTRS_UNSPECIFIED);
1578     if (len != sizeof(*hvstate)) {
1579         address_space_unmap(CPU(cpu)->as, hvstate, len, 0, false);
1580         return H_PARAMETER;
1581     }
1582 
1583     memcpy(&hv_state, hvstate, len);
1584 
1585     address_space_unmap(CPU(cpu)->as, hvstate, len, len, false);
1586 
1587     /*
1588      * We accept versions 1 and 2. Version 2 fields are unused because TCG
1589      * does not implement DAWR*.
1590      */
1591     if (hv_state.version > HV_GUEST_STATE_VERSION) {
1592         return H_PARAMETER;
1593     }
1594 
1595     spapr_cpu->nested_host_state = g_try_new(CPUPPCState, 1);
1596     if (!spapr_cpu->nested_host_state) {
1597         return H_NO_MEM;
1598     }
1599 
1600     memcpy(spapr_cpu->nested_host_state, env, sizeof(CPUPPCState));
1601 
1602     len = sizeof(*regs);
1603     regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, false,
1604                                 MEMTXATTRS_UNSPECIFIED);
1605     if (!regs || len != sizeof(*regs)) {
1606         address_space_unmap(CPU(cpu)->as, regs, len, 0, false);
1607         g_free(spapr_cpu->nested_host_state);
1608         return H_P2;
1609     }
1610 
1611     len = sizeof(env->gpr);
1612     assert(len == sizeof(regs->gpr));
1613     memcpy(env->gpr, regs->gpr, len);
1614 
1615     env->lr = regs->link;
1616     env->ctr = regs->ctr;
1617     cpu_write_xer(env, regs->xer);
1618 
1619     cr = regs->ccr;
1620     for (i = 7; i >= 0; i--) {
1621         env->crf[i] = cr & 15;
1622         cr >>= 4;
1623     }
1624 
1625     env->msr = regs->msr;
1626     env->nip = regs->nip;
1627 
1628     address_space_unmap(CPU(cpu)->as, regs, len, len, false);
1629 
1630     env->cfar = hv_state.cfar;
1631 
1632     assert(env->spr[SPR_LPIDR] == 0);
1633     env->spr[SPR_LPIDR] = hv_state.lpid;
1634 
1635     lpcr_mask = LPCR_DPFD | LPCR_ILE | LPCR_AIL | LPCR_LD | LPCR_MER;
1636     lpcr = (env->spr[SPR_LPCR] & ~lpcr_mask) | (hv_state.lpcr & lpcr_mask);
1637     lpcr |= LPCR_HR | LPCR_UPRT | LPCR_GTSE | LPCR_HVICE | LPCR_HDICE;
1638     lpcr &= ~LPCR_LPES0;
1639     env->spr[SPR_LPCR] = lpcr & pcc->lpcr_mask;
1640 
1641     env->spr[SPR_PCR] = hv_state.pcr;
1642     /* hv_state.amor is not used */
1643     env->spr[SPR_DPDES] = hv_state.dpdes;
1644     env->spr[SPR_HFSCR] = hv_state.hfscr;
1645     hdec = hv_state.hdec_expiry - now;
1646     spapr_cpu->nested_tb_offset = hv_state.tb_offset;
1647     /* TCG does not implement DAWR*, CIABR, PURR, SPURR, IC, VTB, HEIR SPRs*/
1648     env->spr[SPR_SRR0] = hv_state.srr0;
1649     env->spr[SPR_SRR1] = hv_state.srr1;
1650     env->spr[SPR_SPRG0] = hv_state.sprg[0];
1651     env->spr[SPR_SPRG1] = hv_state.sprg[1];
1652     env->spr[SPR_SPRG2] = hv_state.sprg[2];
1653     env->spr[SPR_SPRG3] = hv_state.sprg[3];
1654     env->spr[SPR_BOOKS_PID] = hv_state.pidr;
1655     env->spr[SPR_PPR] = hv_state.ppr;
1656 
1657     cpu_ppc_hdecr_init(env);
1658     cpu_ppc_store_hdecr(env, hdec);
1659 
1660     /*
1661      * The hv_state.vcpu_token is not needed. It is used by the KVM
1662      * implementation to remember which L2 vCPU last ran on which physical
1663      * CPU so as to invalidate process scope translations if it is moved
1664      * between physical CPUs. For now TLBs are always flushed on L1<->L2
1665      * transitions so this is not a problem.
1666      *
1667      * Could validate that the same vcpu_token does not attempt to run on
1668      * different L1 vCPUs at the same time, but that would be a L1 KVM bug
1669      * and it's not obviously worth a new data structure to do it.
1670      */
1671 
1672     env->tb_env->tb_offset += spapr_cpu->nested_tb_offset;
1673     spapr_cpu->in_nested = true;
1674 
1675     hreg_compute_hflags(env);
1676     ppc_maybe_interrupt(env);
1677     tlb_flush(cs);
1678     env->reserve_addr = -1; /* Reset the reservation */
1679 
1680     /*
1681      * The spapr hcall helper sets env->gpr[3] to the return value, but at
1682      * this point the L1 is not returning from the hcall but rather we
1683      * start running the L2, so r3 must not be clobbered, so return env->gpr[3]
1684      * to leave it unchanged.
1685      */
1686     return env->gpr[3];
1687 }
1688 
1689 void spapr_exit_nested(PowerPCCPU *cpu, int excp)
1690 {
1691     CPUState *cs = CPU(cpu);
1692     CPUPPCState *env = &cpu->env;
1693     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1694     target_ulong r3_return = env->excp_vectors[excp]; /* hcall return value */
1695     target_ulong hv_ptr = spapr_cpu->nested_host_state->gpr[4];
1696     target_ulong regs_ptr = spapr_cpu->nested_host_state->gpr[5];
1697     struct kvmppc_hv_guest_state *hvstate;
1698     struct kvmppc_pt_regs *regs;
1699     hwaddr len;
1700     uint64_t cr;
1701     int i;
1702 
1703     assert(spapr_cpu->in_nested);
1704 
1705     cpu_ppc_hdecr_exit(env);
1706 
1707     len = sizeof(*hvstate);
1708     hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, true,
1709                                 MEMTXATTRS_UNSPECIFIED);
1710     if (len != sizeof(*hvstate)) {
1711         address_space_unmap(CPU(cpu)->as, hvstate, len, 0, true);
1712         r3_return = H_PARAMETER;
1713         goto out_restore_l1;
1714     }
1715 
1716     hvstate->cfar = env->cfar;
1717     hvstate->lpcr = env->spr[SPR_LPCR];
1718     hvstate->pcr = env->spr[SPR_PCR];
1719     hvstate->dpdes = env->spr[SPR_DPDES];
1720     hvstate->hfscr = env->spr[SPR_HFSCR];
1721 
1722     if (excp == POWERPC_EXCP_HDSI) {
1723         hvstate->hdar = env->spr[SPR_HDAR];
1724         hvstate->hdsisr = env->spr[SPR_HDSISR];
1725         hvstate->asdr = env->spr[SPR_ASDR];
1726     } else if (excp == POWERPC_EXCP_HISI) {
1727         hvstate->asdr = env->spr[SPR_ASDR];
1728     }
1729 
1730     /* HEIR should be implemented for HV mode and saved here. */
1731     hvstate->srr0 = env->spr[SPR_SRR0];
1732     hvstate->srr1 = env->spr[SPR_SRR1];
1733     hvstate->sprg[0] = env->spr[SPR_SPRG0];
1734     hvstate->sprg[1] = env->spr[SPR_SPRG1];
1735     hvstate->sprg[2] = env->spr[SPR_SPRG2];
1736     hvstate->sprg[3] = env->spr[SPR_SPRG3];
1737     hvstate->pidr = env->spr[SPR_BOOKS_PID];
1738     hvstate->ppr = env->spr[SPR_PPR];
1739 
1740     /* Is it okay to specify write length larger than actual data written? */
1741     address_space_unmap(CPU(cpu)->as, hvstate, len, len, true);
1742 
1743     len = sizeof(*regs);
1744     regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, true,
1745                                 MEMTXATTRS_UNSPECIFIED);
1746     if (!regs || len != sizeof(*regs)) {
1747         address_space_unmap(CPU(cpu)->as, regs, len, 0, true);
1748         r3_return = H_P2;
1749         goto out_restore_l1;
1750     }
1751 
1752     len = sizeof(env->gpr);
1753     assert(len == sizeof(regs->gpr));
1754     memcpy(regs->gpr, env->gpr, len);
1755 
1756     regs->link = env->lr;
1757     regs->ctr = env->ctr;
1758     regs->xer = cpu_read_xer(env);
1759 
1760     cr = 0;
1761     for (i = 0; i < 8; i++) {
1762         cr |= (env->crf[i] & 15) << (4 * (7 - i));
1763     }
1764     regs->ccr = cr;
1765 
1766     if (excp == POWERPC_EXCP_MCHECK ||
1767         excp == POWERPC_EXCP_RESET ||
1768         excp == POWERPC_EXCP_SYSCALL) {
1769         regs->nip = env->spr[SPR_SRR0];
1770         regs->msr = env->spr[SPR_SRR1] & env->msr_mask;
1771     } else {
1772         regs->nip = env->spr[SPR_HSRR0];
1773         regs->msr = env->spr[SPR_HSRR1] & env->msr_mask;
1774     }
1775 
1776     /* Is it okay to specify write length larger than actual data written? */
1777     address_space_unmap(CPU(cpu)->as, regs, len, len, true);
1778 
1779 out_restore_l1:
1780     memcpy(env->gpr, spapr_cpu->nested_host_state->gpr, sizeof(env->gpr));
1781     env->lr = spapr_cpu->nested_host_state->lr;
1782     env->ctr = spapr_cpu->nested_host_state->ctr;
1783     memcpy(env->crf, spapr_cpu->nested_host_state->crf, sizeof(env->crf));
1784     env->cfar = spapr_cpu->nested_host_state->cfar;
1785     env->xer = spapr_cpu->nested_host_state->xer;
1786     env->so = spapr_cpu->nested_host_state->so;
1787     env->ov = spapr_cpu->nested_host_state->ov;
1788     env->ov32 = spapr_cpu->nested_host_state->ov32;
1789     env->ca32 = spapr_cpu->nested_host_state->ca32;
1790     env->msr = spapr_cpu->nested_host_state->msr;
1791     env->nip = spapr_cpu->nested_host_state->nip;
1792 
1793     assert(env->spr[SPR_LPIDR] != 0);
1794     env->spr[SPR_LPCR] = spapr_cpu->nested_host_state->spr[SPR_LPCR];
1795     env->spr[SPR_LPIDR] = spapr_cpu->nested_host_state->spr[SPR_LPIDR];
1796     env->spr[SPR_PCR] = spapr_cpu->nested_host_state->spr[SPR_PCR];
1797     env->spr[SPR_DPDES] = 0;
1798     env->spr[SPR_HFSCR] = spapr_cpu->nested_host_state->spr[SPR_HFSCR];
1799     env->spr[SPR_SRR0] = spapr_cpu->nested_host_state->spr[SPR_SRR0];
1800     env->spr[SPR_SRR1] = spapr_cpu->nested_host_state->spr[SPR_SRR1];
1801     env->spr[SPR_SPRG0] = spapr_cpu->nested_host_state->spr[SPR_SPRG0];
1802     env->spr[SPR_SPRG1] = spapr_cpu->nested_host_state->spr[SPR_SPRG1];
1803     env->spr[SPR_SPRG2] = spapr_cpu->nested_host_state->spr[SPR_SPRG2];
1804     env->spr[SPR_SPRG3] = spapr_cpu->nested_host_state->spr[SPR_SPRG3];
1805     env->spr[SPR_BOOKS_PID] = spapr_cpu->nested_host_state->spr[SPR_BOOKS_PID];
1806     env->spr[SPR_PPR] = spapr_cpu->nested_host_state->spr[SPR_PPR];
1807 
1808     /*
1809      * Return the interrupt vector address from H_ENTER_NESTED to the L1
1810      * (or error code).
1811      */
1812     env->gpr[3] = r3_return;
1813 
1814     env->tb_env->tb_offset -= spapr_cpu->nested_tb_offset;
1815     spapr_cpu->in_nested = false;
1816 
1817     hreg_compute_hflags(env);
1818     ppc_maybe_interrupt(env);
1819     tlb_flush(cs);
1820     env->reserve_addr = -1; /* Reset the reservation */
1821 
1822     g_free(spapr_cpu->nested_host_state);
1823     spapr_cpu->nested_host_state = NULL;
1824 }
1825 
1826 static void hypercall_register_nested(void)
1827 {
1828     spapr_register_hypercall(KVMPPC_H_SET_PARTITION_TABLE, h_set_ptbl);
1829     spapr_register_hypercall(KVMPPC_H_ENTER_NESTED, h_enter_nested);
1830     spapr_register_hypercall(KVMPPC_H_TLB_INVALIDATE, h_tlb_invalidate);
1831     spapr_register_hypercall(KVMPPC_H_COPY_TOFROM_GUEST, h_copy_tofrom_guest);
1832 }
1833 
1834 static void hypercall_register_softmmu(void)
1835 {
1836     /* DO NOTHING */
1837 }
1838 #else
1839 void spapr_exit_nested(PowerPCCPU *cpu, int excp)
1840 {
1841     g_assert_not_reached();
1842 }
1843 
1844 static target_ulong h_softmmu(PowerPCCPU *cpu, SpaprMachineState *spapr,
1845                             target_ulong opcode, target_ulong *args)
1846 {
1847     g_assert_not_reached();
1848 }
1849 
1850 static void hypercall_register_nested(void)
1851 {
1852     /* DO NOTHING */
1853 }
1854 
1855 static void hypercall_register_softmmu(void)
1856 {
1857     /* hcall-pft */
1858     spapr_register_hypercall(H_ENTER, h_softmmu);
1859     spapr_register_hypercall(H_REMOVE, h_softmmu);
1860     spapr_register_hypercall(H_PROTECT, h_softmmu);
1861     spapr_register_hypercall(H_READ, h_softmmu);
1862 
1863     /* hcall-bulk */
1864     spapr_register_hypercall(H_BULK_REMOVE, h_softmmu);
1865 }
1866 #endif
1867 
1868 static void hypercall_register_types(void)
1869 {
1870     hypercall_register_softmmu();
1871 
1872     /* hcall-hpt-resize */
1873     spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1874     spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1875 
1876     /* hcall-splpar */
1877     spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1878     spapr_register_hypercall(H_CEDE, h_cede);
1879     spapr_register_hypercall(H_CONFER, h_confer);
1880     spapr_register_hypercall(H_PROD, h_prod);
1881 
1882     /* hcall-join */
1883     spapr_register_hypercall(H_JOIN, h_join);
1884 
1885     spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1886 
1887     /* processor register resource access h-calls */
1888     spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1889     spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1890     spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1891     spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1892     spapr_register_hypercall(H_SET_MODE, h_set_mode);
1893 
1894     /* In Memory Table MMU h-calls */
1895     spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1896     spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1897     spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1898 
1899     /* hcall-get-cpu-characteristics */
1900     spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
1901                              h_get_cpu_characteristics);
1902 
1903     /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1904      * here between the "CI" and the "CACHE" variants, they will use whatever
1905      * mapping attributes qemu is using. When using KVM, the kernel will
1906      * enforce the attributes more strongly
1907      */
1908     spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1909     spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1910     spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1911     spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1912     spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1913     spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1914     spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1915 
1916     /* qemu/KVM-PPC specific hcalls */
1917     spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1918 
1919     /* ibm,client-architecture-support support */
1920     spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1921 
1922     spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
1923 
1924     hypercall_register_nested();
1925 }
1926 
1927 type_init(hypercall_register_types)
1928