xref: /qemu/hw/ppc/spapr_hcall.c (revision 58ea30f5)
1 #include "qemu/osdep.h"
2 #include "qapi/error.h"
3 #include "sysemu/hw_accel.h"
4 #include "sysemu/sysemu.h"
5 #include "qemu/log.h"
6 #include "qemu/error-report.h"
7 #include "cpu.h"
8 #include "exec/exec-all.h"
9 #include "helper_regs.h"
10 #include "hw/ppc/spapr.h"
11 #include "hw/ppc/spapr_cpu_core.h"
12 #include "mmu-hash64.h"
13 #include "cpu-models.h"
14 #include "trace.h"
15 #include "kvm_ppc.h"
16 #include "hw/ppc/spapr_ovec.h"
17 #include "mmu-book3s-v3.h"
18 #include "hw/mem/memory-device.h"
19 
20 static bool has_spr(PowerPCCPU *cpu, int spr)
21 {
22     /* We can test whether the SPR is defined by checking for a valid name */
23     return cpu->env.spr_cb[spr].name != NULL;
24 }
25 
26 static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex)
27 {
28     /*
29      * hash value/pteg group index is normalized by HPT mask
30      */
31     if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) {
32         return false;
33     }
34     return true;
35 }
36 
37 static bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
38 {
39     MachineState *machine = MACHINE(spapr);
40     DeviceMemoryState *dms = machine->device_memory;
41 
42     if (addr < machine->ram_size) {
43         return true;
44     }
45     if ((addr >= dms->base)
46         && ((addr - dms->base) < memory_region_size(&dms->mr))) {
47         return true;
48     }
49 
50     return false;
51 }
52 
53 static target_ulong h_enter(PowerPCCPU *cpu, SpaprMachineState *spapr,
54                             target_ulong opcode, target_ulong *args)
55 {
56     target_ulong flags = args[0];
57     target_ulong ptex = args[1];
58     target_ulong pteh = args[2];
59     target_ulong ptel = args[3];
60     unsigned apshift;
61     target_ulong raddr;
62     target_ulong slot;
63     const ppc_hash_pte64_t *hptes;
64 
65     apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
66     if (!apshift) {
67         /* Bad page size encoding */
68         return H_PARAMETER;
69     }
70 
71     raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
72 
73     if (is_ram_address(spapr, raddr)) {
74         /* Regular RAM - should have WIMG=0010 */
75         if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
76             return H_PARAMETER;
77         }
78     } else {
79         target_ulong wimg_flags;
80         /* Looks like an IO address */
81         /* FIXME: What WIMG combinations could be sensible for IO?
82          * For now we allow WIMG=010x, but are there others? */
83         /* FIXME: Should we check against registered IO addresses? */
84         wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));
85 
86         if (wimg_flags != HPTE64_R_I &&
87             wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
88             return H_PARAMETER;
89         }
90     }
91 
92     pteh &= ~0x60ULL;
93 
94     if (!valid_ptex(cpu, ptex)) {
95         return H_PARAMETER;
96     }
97 
98     slot = ptex & 7ULL;
99     ptex = ptex & ~7ULL;
100 
101     if (likely((flags & H_EXACT) == 0)) {
102         hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
103         for (slot = 0; slot < 8; slot++) {
104             if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) {
105                 break;
106             }
107         }
108         ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
109         if (slot == 8) {
110             return H_PTEG_FULL;
111         }
112     } else {
113         hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1);
114         if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) {
115             ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1);
116             return H_PTEG_FULL;
117         }
118         ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
119     }
120 
121     spapr_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel);
122 
123     args[0] = ptex + slot;
124     return H_SUCCESS;
125 }
126 
127 typedef enum {
128     REMOVE_SUCCESS = 0,
129     REMOVE_NOT_FOUND = 1,
130     REMOVE_PARM = 2,
131     REMOVE_HW = 3,
132 } RemoveResult;
133 
134 static RemoveResult remove_hpte(PowerPCCPU *cpu
135                                 , target_ulong ptex,
136                                 target_ulong avpn,
137                                 target_ulong flags,
138                                 target_ulong *vp, target_ulong *rp)
139 {
140     const ppc_hash_pte64_t *hptes;
141     target_ulong v, r;
142 
143     if (!valid_ptex(cpu, ptex)) {
144         return REMOVE_PARM;
145     }
146 
147     hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
148     v = ppc_hash64_hpte0(cpu, hptes, 0);
149     r = ppc_hash64_hpte1(cpu, hptes, 0);
150     ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
151 
152     if ((v & HPTE64_V_VALID) == 0 ||
153         ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
154         ((flags & H_ANDCOND) && (v & avpn) != 0)) {
155         return REMOVE_NOT_FOUND;
156     }
157     *vp = v;
158     *rp = r;
159     spapr_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
160     ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
161     return REMOVE_SUCCESS;
162 }
163 
164 static target_ulong h_remove(PowerPCCPU *cpu, SpaprMachineState *spapr,
165                              target_ulong opcode, target_ulong *args)
166 {
167     CPUPPCState *env = &cpu->env;
168     target_ulong flags = args[0];
169     target_ulong ptex = args[1];
170     target_ulong avpn = args[2];
171     RemoveResult ret;
172 
173     ret = remove_hpte(cpu, ptex, avpn, flags,
174                       &args[0], &args[1]);
175 
176     switch (ret) {
177     case REMOVE_SUCCESS:
178         check_tlb_flush(env, true);
179         return H_SUCCESS;
180 
181     case REMOVE_NOT_FOUND:
182         return H_NOT_FOUND;
183 
184     case REMOVE_PARM:
185         return H_PARAMETER;
186 
187     case REMOVE_HW:
188         return H_HARDWARE;
189     }
190 
191     g_assert_not_reached();
192 }
193 
194 #define H_BULK_REMOVE_TYPE             0xc000000000000000ULL
195 #define   H_BULK_REMOVE_REQUEST        0x4000000000000000ULL
196 #define   H_BULK_REMOVE_RESPONSE       0x8000000000000000ULL
197 #define   H_BULK_REMOVE_END            0xc000000000000000ULL
198 #define H_BULK_REMOVE_CODE             0x3000000000000000ULL
199 #define   H_BULK_REMOVE_SUCCESS        0x0000000000000000ULL
200 #define   H_BULK_REMOVE_NOT_FOUND      0x1000000000000000ULL
201 #define   H_BULK_REMOVE_PARM           0x2000000000000000ULL
202 #define   H_BULK_REMOVE_HW             0x3000000000000000ULL
203 #define H_BULK_REMOVE_RC               0x0c00000000000000ULL
204 #define H_BULK_REMOVE_FLAGS            0x0300000000000000ULL
205 #define   H_BULK_REMOVE_ABSOLUTE       0x0000000000000000ULL
206 #define   H_BULK_REMOVE_ANDCOND        0x0100000000000000ULL
207 #define   H_BULK_REMOVE_AVPN           0x0200000000000000ULL
208 #define H_BULK_REMOVE_PTEX             0x00ffffffffffffffULL
209 
210 #define H_BULK_REMOVE_MAX_BATCH        4
211 
212 static target_ulong h_bulk_remove(PowerPCCPU *cpu, SpaprMachineState *spapr,
213                                   target_ulong opcode, target_ulong *args)
214 {
215     CPUPPCState *env = &cpu->env;
216     int i;
217     target_ulong rc = H_SUCCESS;
218 
219     for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
220         target_ulong *tsh = &args[i*2];
221         target_ulong tsl = args[i*2 + 1];
222         target_ulong v, r, ret;
223 
224         if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
225             break;
226         } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
227             return H_PARAMETER;
228         }
229 
230         *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
231         *tsh |= H_BULK_REMOVE_RESPONSE;
232 
233         if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
234             *tsh |= H_BULK_REMOVE_PARM;
235             return H_PARAMETER;
236         }
237 
238         ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
239                           (*tsh & H_BULK_REMOVE_FLAGS) >> 26,
240                           &v, &r);
241 
242         *tsh |= ret << 60;
243 
244         switch (ret) {
245         case REMOVE_SUCCESS:
246             *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
247             break;
248 
249         case REMOVE_PARM:
250             rc = H_PARAMETER;
251             goto exit;
252 
253         case REMOVE_HW:
254             rc = H_HARDWARE;
255             goto exit;
256         }
257     }
258  exit:
259     check_tlb_flush(env, true);
260 
261     return rc;
262 }
263 
264 static target_ulong h_protect(PowerPCCPU *cpu, SpaprMachineState *spapr,
265                               target_ulong opcode, target_ulong *args)
266 {
267     CPUPPCState *env = &cpu->env;
268     target_ulong flags = args[0];
269     target_ulong ptex = args[1];
270     target_ulong avpn = args[2];
271     const ppc_hash_pte64_t *hptes;
272     target_ulong v, r;
273 
274     if (!valid_ptex(cpu, ptex)) {
275         return H_PARAMETER;
276     }
277 
278     hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
279     v = ppc_hash64_hpte0(cpu, hptes, 0);
280     r = ppc_hash64_hpte1(cpu, hptes, 0);
281     ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
282 
283     if ((v & HPTE64_V_VALID) == 0 ||
284         ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
285         return H_NOT_FOUND;
286     }
287 
288     r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
289            HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
290     r |= (flags << 55) & HPTE64_R_PP0;
291     r |= (flags << 48) & HPTE64_R_KEY_HI;
292     r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
293     spapr_store_hpte(cpu, ptex,
294                      (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
295     ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
296     /* Flush the tlb */
297     check_tlb_flush(env, true);
298     /* Don't need a memory barrier, due to qemu's global lock */
299     spapr_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r);
300     return H_SUCCESS;
301 }
302 
303 static target_ulong h_read(PowerPCCPU *cpu, SpaprMachineState *spapr,
304                            target_ulong opcode, target_ulong *args)
305 {
306     target_ulong flags = args[0];
307     target_ulong ptex = args[1];
308     int i, ridx, n_entries = 1;
309     const ppc_hash_pte64_t *hptes;
310 
311     if (!valid_ptex(cpu, ptex)) {
312         return H_PARAMETER;
313     }
314 
315     if (flags & H_READ_4) {
316         /* Clear the two low order bits */
317         ptex &= ~(3ULL);
318         n_entries = 4;
319     }
320 
321     hptes = ppc_hash64_map_hptes(cpu, ptex, n_entries);
322     for (i = 0, ridx = 0; i < n_entries; i++) {
323         args[ridx++] = ppc_hash64_hpte0(cpu, hptes, i);
324         args[ridx++] = ppc_hash64_hpte1(cpu, hptes, i);
325     }
326     ppc_hash64_unmap_hptes(cpu, hptes, ptex, n_entries);
327 
328     return H_SUCCESS;
329 }
330 
331 struct SpaprPendingHpt {
332     /* These fields are read-only after initialization */
333     int shift;
334     QemuThread thread;
335 
336     /* These fields are protected by the BQL */
337     bool complete;
338 
339     /* These fields are private to the preparation thread if
340      * !complete, otherwise protected by the BQL */
341     int ret;
342     void *hpt;
343 };
344 
345 static void free_pending_hpt(SpaprPendingHpt *pending)
346 {
347     if (pending->hpt) {
348         qemu_vfree(pending->hpt);
349     }
350 
351     g_free(pending);
352 }
353 
354 static void *hpt_prepare_thread(void *opaque)
355 {
356     SpaprPendingHpt *pending = opaque;
357     size_t size = 1ULL << pending->shift;
358 
359     pending->hpt = qemu_memalign(size, size);
360     if (pending->hpt) {
361         memset(pending->hpt, 0, size);
362         pending->ret = H_SUCCESS;
363     } else {
364         pending->ret = H_NO_MEM;
365     }
366 
367     qemu_mutex_lock_iothread();
368 
369     if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) {
370         /* Ready to go */
371         pending->complete = true;
372     } else {
373         /* We've been cancelled, clean ourselves up */
374         free_pending_hpt(pending);
375     }
376 
377     qemu_mutex_unlock_iothread();
378     return NULL;
379 }
380 
381 /* Must be called with BQL held */
382 static void cancel_hpt_prepare(SpaprMachineState *spapr)
383 {
384     SpaprPendingHpt *pending = spapr->pending_hpt;
385 
386     /* Let the thread know it's cancelled */
387     spapr->pending_hpt = NULL;
388 
389     if (!pending) {
390         /* Nothing to do */
391         return;
392     }
393 
394     if (!pending->complete) {
395         /* thread will clean itself up */
396         return;
397     }
398 
399     free_pending_hpt(pending);
400 }
401 
402 /* Convert a return code from the KVM ioctl()s implementing resize HPT
403  * into a PAPR hypercall return code */
404 static target_ulong resize_hpt_convert_rc(int ret)
405 {
406     if (ret >= 100000) {
407         return H_LONG_BUSY_ORDER_100_SEC;
408     } else if (ret >= 10000) {
409         return H_LONG_BUSY_ORDER_10_SEC;
410     } else if (ret >= 1000) {
411         return H_LONG_BUSY_ORDER_1_SEC;
412     } else if (ret >= 100) {
413         return H_LONG_BUSY_ORDER_100_MSEC;
414     } else if (ret >= 10) {
415         return H_LONG_BUSY_ORDER_10_MSEC;
416     } else if (ret > 0) {
417         return H_LONG_BUSY_ORDER_1_MSEC;
418     }
419 
420     switch (ret) {
421     case 0:
422         return H_SUCCESS;
423     case -EPERM:
424         return H_AUTHORITY;
425     case -EINVAL:
426         return H_PARAMETER;
427     case -ENXIO:
428         return H_CLOSED;
429     case -ENOSPC:
430         return H_PTEG_FULL;
431     case -EBUSY:
432         return H_BUSY;
433     case -ENOMEM:
434         return H_NO_MEM;
435     default:
436         return H_HARDWARE;
437     }
438 }
439 
440 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
441                                          SpaprMachineState *spapr,
442                                          target_ulong opcode,
443                                          target_ulong *args)
444 {
445     target_ulong flags = args[0];
446     int shift = args[1];
447     SpaprPendingHpt *pending = spapr->pending_hpt;
448     uint64_t current_ram_size;
449     int rc;
450 
451     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
452         return H_AUTHORITY;
453     }
454 
455     if (!spapr->htab_shift) {
456         /* Radix guest, no HPT */
457         return H_NOT_AVAILABLE;
458     }
459 
460     trace_spapr_h_resize_hpt_prepare(flags, shift);
461 
462     if (flags != 0) {
463         return H_PARAMETER;
464     }
465 
466     if (shift && ((shift < 18) || (shift > 46))) {
467         return H_PARAMETER;
468     }
469 
470     current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
471 
472     /* We only allow the guest to allocate an HPT one order above what
473      * we'd normally give them (to stop a small guest claiming a huge
474      * chunk of resources in the HPT */
475     if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
476         return H_RESOURCE;
477     }
478 
479     rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
480     if (rc != -ENOSYS) {
481         return resize_hpt_convert_rc(rc);
482     }
483 
484     if (pending) {
485         /* something already in progress */
486         if (pending->shift == shift) {
487             /* and it's suitable */
488             if (pending->complete) {
489                 return pending->ret;
490             } else {
491                 return H_LONG_BUSY_ORDER_100_MSEC;
492             }
493         }
494 
495         /* not suitable, cancel and replace */
496         cancel_hpt_prepare(spapr);
497     }
498 
499     if (!shift) {
500         /* nothing to do */
501         return H_SUCCESS;
502     }
503 
504     /* start new prepare */
505 
506     pending = g_new0(SpaprPendingHpt, 1);
507     pending->shift = shift;
508     pending->ret = H_HARDWARE;
509 
510     qemu_thread_create(&pending->thread, "sPAPR HPT prepare",
511                        hpt_prepare_thread, pending, QEMU_THREAD_DETACHED);
512 
513     spapr->pending_hpt = pending;
514 
515     /* In theory we could estimate the time more accurately based on
516      * the new size, but there's not much point */
517     return H_LONG_BUSY_ORDER_100_MSEC;
518 }
519 
520 static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot)
521 {
522     uint8_t *addr = htab;
523 
524     addr += pteg * HASH_PTEG_SIZE_64;
525     addr += slot * HASH_PTE_SIZE_64;
526     return  ldq_p(addr);
527 }
528 
529 static void new_hpte_store(void *htab, uint64_t pteg, int slot,
530                            uint64_t pte0, uint64_t pte1)
531 {
532     uint8_t *addr = htab;
533 
534     addr += pteg * HASH_PTEG_SIZE_64;
535     addr += slot * HASH_PTE_SIZE_64;
536 
537     stq_p(addr, pte0);
538     stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1);
539 }
540 
541 static int rehash_hpte(PowerPCCPU *cpu,
542                        const ppc_hash_pte64_t *hptes,
543                        void *old_hpt, uint64_t oldsize,
544                        void *new_hpt, uint64_t newsize,
545                        uint64_t pteg, int slot)
546 {
547     uint64_t old_hash_mask = (oldsize >> 7) - 1;
548     uint64_t new_hash_mask = (newsize >> 7) - 1;
549     target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot);
550     target_ulong pte1;
551     uint64_t avpn;
552     unsigned base_pg_shift;
553     uint64_t hash, new_pteg, replace_pte0;
554 
555     if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) {
556         return H_SUCCESS;
557     }
558 
559     pte1 = ppc_hash64_hpte1(cpu, hptes, slot);
560 
561     base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1);
562     assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */
563     avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23);
564 
565     if (pte0 & HPTE64_V_SECONDARY) {
566         pteg = ~pteg;
567     }
568 
569     if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) {
570         uint64_t offset, vsid;
571 
572         /* We only have 28 - 23 bits of offset in avpn */
573         offset = (avpn & 0x1f) << 23;
574         vsid = avpn >> 5;
575         /* We can find more bits from the pteg value */
576         if (base_pg_shift < 23) {
577             offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift;
578         }
579 
580         hash = vsid ^ (offset >> base_pg_shift);
581     } else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) {
582         uint64_t offset, vsid;
583 
584         /* We only have 40 - 23 bits of seg_off in avpn */
585         offset = (avpn & 0x1ffff) << 23;
586         vsid = avpn >> 17;
587         if (base_pg_shift < 23) {
588             offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask)
589                 << base_pg_shift;
590         }
591 
592         hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift);
593     } else {
594         error_report("rehash_pte: Bad segment size in HPTE");
595         return H_HARDWARE;
596     }
597 
598     new_pteg = hash & new_hash_mask;
599     if (pte0 & HPTE64_V_SECONDARY) {
600         assert(~pteg == (hash & old_hash_mask));
601         new_pteg = ~new_pteg;
602     } else {
603         assert(pteg == (hash & old_hash_mask));
604     }
605     assert((oldsize != newsize) || (pteg == new_pteg));
606     replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot);
607     /*
608      * Strictly speaking, we don't need all these tests, since we only
609      * ever rehash bolted HPTEs.  We might in future handle non-bolted
610      * HPTEs, though so make the logic correct for those cases as
611      * well.
612      */
613     if (replace_pte0 & HPTE64_V_VALID) {
614         assert(newsize < oldsize);
615         if (replace_pte0 & HPTE64_V_BOLTED) {
616             if (pte0 & HPTE64_V_BOLTED) {
617                 /* Bolted collision, nothing we can do */
618                 return H_PTEG_FULL;
619             } else {
620                 /* Discard this hpte */
621                 return H_SUCCESS;
622             }
623         }
624     }
625 
626     new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1);
627     return H_SUCCESS;
628 }
629 
630 static int rehash_hpt(PowerPCCPU *cpu,
631                       void *old_hpt, uint64_t oldsize,
632                       void *new_hpt, uint64_t newsize)
633 {
634     uint64_t n_ptegs = oldsize >> 7;
635     uint64_t pteg;
636     int slot;
637     int rc;
638 
639     for (pteg = 0; pteg < n_ptegs; pteg++) {
640         hwaddr ptex = pteg * HPTES_PER_GROUP;
641         const ppc_hash_pte64_t *hptes
642             = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
643 
644         if (!hptes) {
645             return H_HARDWARE;
646         }
647 
648         for (slot = 0; slot < HPTES_PER_GROUP; slot++) {
649             rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize,
650                              pteg, slot);
651             if (rc != H_SUCCESS) {
652                 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
653                 return rc;
654             }
655         }
656         ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
657     }
658 
659     return H_SUCCESS;
660 }
661 
662 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
663 {
664     int ret;
665 
666     cpu_synchronize_state(cs);
667 
668     ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
669     if (ret < 0) {
670         error_report("failed to push sregs to KVM: %s", strerror(-ret));
671         exit(1);
672     }
673 }
674 
675 static void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
676 {
677     CPUState *cs;
678 
679     /*
680      * This is a hack for the benefit of KVM PR - it abuses the SDR1
681      * slot in kvm_sregs to communicate the userspace address of the
682      * HPT
683      */
684     if (!kvm_enabled() || !spapr->htab) {
685         return;
686     }
687 
688     CPU_FOREACH(cs) {
689         run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
690     }
691 }
692 
693 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
694                                         SpaprMachineState *spapr,
695                                         target_ulong opcode,
696                                         target_ulong *args)
697 {
698     target_ulong flags = args[0];
699     target_ulong shift = args[1];
700     SpaprPendingHpt *pending = spapr->pending_hpt;
701     int rc;
702     size_t newsize;
703 
704     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
705         return H_AUTHORITY;
706     }
707 
708     if (!spapr->htab_shift) {
709         /* Radix guest, no HPT */
710         return H_NOT_AVAILABLE;
711     }
712 
713     trace_spapr_h_resize_hpt_commit(flags, shift);
714 
715     rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
716     if (rc != -ENOSYS) {
717         rc = resize_hpt_convert_rc(rc);
718         if (rc == H_SUCCESS) {
719             /* Need to set the new htab_shift in the machine state */
720             spapr->htab_shift = shift;
721         }
722         return rc;
723     }
724 
725     if (flags != 0) {
726         return H_PARAMETER;
727     }
728 
729     if (!pending || (pending->shift != shift)) {
730         /* no matching prepare */
731         return H_CLOSED;
732     }
733 
734     if (!pending->complete) {
735         /* prepare has not completed */
736         return H_BUSY;
737     }
738 
739     /* Shouldn't have got past PREPARE without an HPT */
740     g_assert(spapr->htab_shift);
741 
742     newsize = 1ULL << pending->shift;
743     rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr),
744                     pending->hpt, newsize);
745     if (rc == H_SUCCESS) {
746         qemu_vfree(spapr->htab);
747         spapr->htab = pending->hpt;
748         spapr->htab_shift = pending->shift;
749 
750         push_sregs_to_kvm_pr(spapr);
751 
752         pending->hpt = NULL; /* so it's not free()d */
753     }
754 
755     /* Clean up */
756     spapr->pending_hpt = NULL;
757     free_pending_hpt(pending);
758 
759     return rc;
760 }
761 
762 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
763                                 target_ulong opcode, target_ulong *args)
764 {
765     cpu_synchronize_state(CPU(cpu));
766     cpu->env.spr[SPR_SPRG0] = args[0];
767 
768     return H_SUCCESS;
769 }
770 
771 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
772                                target_ulong opcode, target_ulong *args)
773 {
774     if (!has_spr(cpu, SPR_DABR)) {
775         return H_HARDWARE;              /* DABR register not available */
776     }
777     cpu_synchronize_state(CPU(cpu));
778 
779     if (has_spr(cpu, SPR_DABRX)) {
780         cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
781     } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
782         return H_RESERVED_DABR;
783     }
784 
785     cpu->env.spr[SPR_DABR] = args[0];
786     return H_SUCCESS;
787 }
788 
789 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
790                                 target_ulong opcode, target_ulong *args)
791 {
792     target_ulong dabrx = args[1];
793 
794     if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
795         return H_HARDWARE;
796     }
797 
798     if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
799         || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
800         return H_PARAMETER;
801     }
802 
803     cpu_synchronize_state(CPU(cpu));
804     cpu->env.spr[SPR_DABRX] = dabrx;
805     cpu->env.spr[SPR_DABR] = args[0];
806 
807     return H_SUCCESS;
808 }
809 
810 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
811                                 target_ulong opcode, target_ulong *args)
812 {
813     target_ulong flags = args[0];
814     hwaddr dst = args[1];
815     hwaddr src = args[2];
816     hwaddr len = TARGET_PAGE_SIZE;
817     uint8_t *pdst, *psrc;
818     target_long ret = H_SUCCESS;
819 
820     if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
821                   | H_COPY_PAGE | H_ZERO_PAGE)) {
822         qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
823                       flags);
824         return H_PARAMETER;
825     }
826 
827     /* Map-in destination */
828     if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
829         return H_PARAMETER;
830     }
831     pdst = cpu_physical_memory_map(dst, &len, 1);
832     if (!pdst || len != TARGET_PAGE_SIZE) {
833         return H_PARAMETER;
834     }
835 
836     if (flags & H_COPY_PAGE) {
837         /* Map-in source, copy to destination, and unmap source again */
838         if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
839             ret = H_PARAMETER;
840             goto unmap_out;
841         }
842         psrc = cpu_physical_memory_map(src, &len, 0);
843         if (!psrc || len != TARGET_PAGE_SIZE) {
844             ret = H_PARAMETER;
845             goto unmap_out;
846         }
847         memcpy(pdst, psrc, len);
848         cpu_physical_memory_unmap(psrc, len, 0, len);
849     } else if (flags & H_ZERO_PAGE) {
850         memset(pdst, 0, len);          /* Just clear the destination page */
851     }
852 
853     if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
854         kvmppc_dcbst_range(cpu, pdst, len);
855     }
856     if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
857         if (kvm_enabled()) {
858             kvmppc_icbi_range(cpu, pdst, len);
859         } else {
860             tb_flush(CPU(cpu));
861         }
862     }
863 
864 unmap_out:
865     cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
866     return ret;
867 }
868 
869 #define FLAGS_REGISTER_VPA         0x0000200000000000ULL
870 #define FLAGS_REGISTER_DTL         0x0000400000000000ULL
871 #define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
872 #define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
873 #define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
874 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
875 
876 #define VPA_MIN_SIZE           640
877 #define VPA_SIZE_OFFSET        0x4
878 #define VPA_SHARED_PROC_OFFSET 0x9
879 #define VPA_SHARED_PROC_VAL    0x2
880 
881 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
882 {
883     CPUState *cs = CPU(cpu);
884     CPUPPCState *env = &cpu->env;
885     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
886     uint16_t size;
887     uint8_t tmp;
888 
889     if (vpa == 0) {
890         hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
891         return H_HARDWARE;
892     }
893 
894     if (vpa % env->dcache_line_size) {
895         return H_PARAMETER;
896     }
897     /* FIXME: bounds check the address */
898 
899     size = lduw_be_phys(cs->as, vpa + 0x4);
900 
901     if (size < VPA_MIN_SIZE) {
902         return H_PARAMETER;
903     }
904 
905     /* VPA is not allowed to cross a page boundary */
906     if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
907         return H_PARAMETER;
908     }
909 
910     spapr_cpu->vpa_addr = vpa;
911 
912     tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
913     tmp |= VPA_SHARED_PROC_VAL;
914     stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
915 
916     return H_SUCCESS;
917 }
918 
919 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
920 {
921     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
922 
923     if (spapr_cpu->slb_shadow_addr) {
924         return H_RESOURCE;
925     }
926 
927     if (spapr_cpu->dtl_addr) {
928         return H_RESOURCE;
929     }
930 
931     spapr_cpu->vpa_addr = 0;
932     return H_SUCCESS;
933 }
934 
935 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
936 {
937     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
938     uint32_t size;
939 
940     if (addr == 0) {
941         hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
942         return H_HARDWARE;
943     }
944 
945     size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
946     if (size < 0x8) {
947         return H_PARAMETER;
948     }
949 
950     if ((addr / 4096) != ((addr + size - 1) / 4096)) {
951         return H_PARAMETER;
952     }
953 
954     if (!spapr_cpu->vpa_addr) {
955         return H_RESOURCE;
956     }
957 
958     spapr_cpu->slb_shadow_addr = addr;
959     spapr_cpu->slb_shadow_size = size;
960 
961     return H_SUCCESS;
962 }
963 
964 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
965 {
966     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
967 
968     spapr_cpu->slb_shadow_addr = 0;
969     spapr_cpu->slb_shadow_size = 0;
970     return H_SUCCESS;
971 }
972 
973 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
974 {
975     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
976     uint32_t size;
977 
978     if (addr == 0) {
979         hcall_dprintf("Can't cope with DTL at logical 0\n");
980         return H_HARDWARE;
981     }
982 
983     size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
984 
985     if (size < 48) {
986         return H_PARAMETER;
987     }
988 
989     if (!spapr_cpu->vpa_addr) {
990         return H_RESOURCE;
991     }
992 
993     spapr_cpu->dtl_addr = addr;
994     spapr_cpu->dtl_size = size;
995 
996     return H_SUCCESS;
997 }
998 
999 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
1000 {
1001     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1002 
1003     spapr_cpu->dtl_addr = 0;
1004     spapr_cpu->dtl_size = 0;
1005 
1006     return H_SUCCESS;
1007 }
1008 
1009 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
1010                                    target_ulong opcode, target_ulong *args)
1011 {
1012     target_ulong flags = args[0];
1013     target_ulong procno = args[1];
1014     target_ulong vpa = args[2];
1015     target_ulong ret = H_PARAMETER;
1016     PowerPCCPU *tcpu;
1017 
1018     tcpu = spapr_find_cpu(procno);
1019     if (!tcpu) {
1020         return H_PARAMETER;
1021     }
1022 
1023     switch (flags) {
1024     case FLAGS_REGISTER_VPA:
1025         ret = register_vpa(tcpu, vpa);
1026         break;
1027 
1028     case FLAGS_DEREGISTER_VPA:
1029         ret = deregister_vpa(tcpu, vpa);
1030         break;
1031 
1032     case FLAGS_REGISTER_SLBSHADOW:
1033         ret = register_slb_shadow(tcpu, vpa);
1034         break;
1035 
1036     case FLAGS_DEREGISTER_SLBSHADOW:
1037         ret = deregister_slb_shadow(tcpu, vpa);
1038         break;
1039 
1040     case FLAGS_REGISTER_DTL:
1041         ret = register_dtl(tcpu, vpa);
1042         break;
1043 
1044     case FLAGS_DEREGISTER_DTL:
1045         ret = deregister_dtl(tcpu, vpa);
1046         break;
1047     }
1048 
1049     return ret;
1050 }
1051 
1052 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
1053                            target_ulong opcode, target_ulong *args)
1054 {
1055     CPUPPCState *env = &cpu->env;
1056     CPUState *cs = CPU(cpu);
1057 
1058     env->msr |= (1ULL << MSR_EE);
1059     hreg_compute_hflags(env);
1060     if (!cpu_has_work(cs)) {
1061         cs->halted = 1;
1062         cs->exception_index = EXCP_HLT;
1063         cs->exit_request = 1;
1064     }
1065     return H_SUCCESS;
1066 }
1067 
1068 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
1069                            target_ulong opcode, target_ulong *args)
1070 {
1071     target_ulong rtas_r3 = args[0];
1072     uint32_t token = rtas_ld(rtas_r3, 0);
1073     uint32_t nargs = rtas_ld(rtas_r3, 1);
1074     uint32_t nret = rtas_ld(rtas_r3, 2);
1075 
1076     return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
1077                            nret, rtas_r3 + 12 + 4*nargs);
1078 }
1079 
1080 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
1081                                    target_ulong opcode, target_ulong *args)
1082 {
1083     CPUState *cs = CPU(cpu);
1084     target_ulong size = args[0];
1085     target_ulong addr = args[1];
1086 
1087     switch (size) {
1088     case 1:
1089         args[0] = ldub_phys(cs->as, addr);
1090         return H_SUCCESS;
1091     case 2:
1092         args[0] = lduw_phys(cs->as, addr);
1093         return H_SUCCESS;
1094     case 4:
1095         args[0] = ldl_phys(cs->as, addr);
1096         return H_SUCCESS;
1097     case 8:
1098         args[0] = ldq_phys(cs->as, addr);
1099         return H_SUCCESS;
1100     }
1101     return H_PARAMETER;
1102 }
1103 
1104 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
1105                                     target_ulong opcode, target_ulong *args)
1106 {
1107     CPUState *cs = CPU(cpu);
1108 
1109     target_ulong size = args[0];
1110     target_ulong addr = args[1];
1111     target_ulong val  = args[2];
1112 
1113     switch (size) {
1114     case 1:
1115         stb_phys(cs->as, addr, val);
1116         return H_SUCCESS;
1117     case 2:
1118         stw_phys(cs->as, addr, val);
1119         return H_SUCCESS;
1120     case 4:
1121         stl_phys(cs->as, addr, val);
1122         return H_SUCCESS;
1123     case 8:
1124         stq_phys(cs->as, addr, val);
1125         return H_SUCCESS;
1126     }
1127     return H_PARAMETER;
1128 }
1129 
1130 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
1131                                     target_ulong opcode, target_ulong *args)
1132 {
1133     CPUState *cs = CPU(cpu);
1134 
1135     target_ulong dst   = args[0]; /* Destination address */
1136     target_ulong src   = args[1]; /* Source address */
1137     target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
1138     target_ulong count = args[3]; /* Element count */
1139     target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
1140     uint64_t tmp;
1141     unsigned int mask = (1 << esize) - 1;
1142     int step = 1 << esize;
1143 
1144     if (count > 0x80000000) {
1145         return H_PARAMETER;
1146     }
1147 
1148     if ((dst & mask) || (src & mask) || (op > 1)) {
1149         return H_PARAMETER;
1150     }
1151 
1152     if (dst >= src && dst < (src + (count << esize))) {
1153             dst = dst + ((count - 1) << esize);
1154             src = src + ((count - 1) << esize);
1155             step = -step;
1156     }
1157 
1158     while (count--) {
1159         switch (esize) {
1160         case 0:
1161             tmp = ldub_phys(cs->as, src);
1162             break;
1163         case 1:
1164             tmp = lduw_phys(cs->as, src);
1165             break;
1166         case 2:
1167             tmp = ldl_phys(cs->as, src);
1168             break;
1169         case 3:
1170             tmp = ldq_phys(cs->as, src);
1171             break;
1172         default:
1173             return H_PARAMETER;
1174         }
1175         if (op == 1) {
1176             tmp = ~tmp;
1177         }
1178         switch (esize) {
1179         case 0:
1180             stb_phys(cs->as, dst, tmp);
1181             break;
1182         case 1:
1183             stw_phys(cs->as, dst, tmp);
1184             break;
1185         case 2:
1186             stl_phys(cs->as, dst, tmp);
1187             break;
1188         case 3:
1189             stq_phys(cs->as, dst, tmp);
1190             break;
1191         }
1192         dst = dst + step;
1193         src = src + step;
1194     }
1195 
1196     return H_SUCCESS;
1197 }
1198 
1199 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
1200                                    target_ulong opcode, target_ulong *args)
1201 {
1202     /* Nothing to do on emulation, KVM will trap this in the kernel */
1203     return H_SUCCESS;
1204 }
1205 
1206 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
1207                                    target_ulong opcode, target_ulong *args)
1208 {
1209     /* Nothing to do on emulation, KVM will trap this in the kernel */
1210     return H_SUCCESS;
1211 }
1212 
1213 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
1214                                            target_ulong mflags,
1215                                            target_ulong value1,
1216                                            target_ulong value2)
1217 {
1218     if (value1) {
1219         return H_P3;
1220     }
1221     if (value2) {
1222         return H_P4;
1223     }
1224 
1225     switch (mflags) {
1226     case H_SET_MODE_ENDIAN_BIG:
1227         spapr_set_all_lpcrs(0, LPCR_ILE);
1228         spapr_pci_switch_vga(true);
1229         return H_SUCCESS;
1230 
1231     case H_SET_MODE_ENDIAN_LITTLE:
1232         spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
1233         spapr_pci_switch_vga(false);
1234         return H_SUCCESS;
1235     }
1236 
1237     return H_UNSUPPORTED_FLAG;
1238 }
1239 
1240 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
1241                                                         target_ulong mflags,
1242                                                         target_ulong value1,
1243                                                         target_ulong value2)
1244 {
1245     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1246 
1247     if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
1248         return H_P2;
1249     }
1250     if (value1) {
1251         return H_P3;
1252     }
1253     if (value2) {
1254         return H_P4;
1255     }
1256 
1257     if (mflags == AIL_RESERVED) {
1258         return H_UNSUPPORTED_FLAG;
1259     }
1260 
1261     spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
1262 
1263     return H_SUCCESS;
1264 }
1265 
1266 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
1267                                target_ulong opcode, target_ulong *args)
1268 {
1269     target_ulong resource = args[1];
1270     target_ulong ret = H_P2;
1271 
1272     switch (resource) {
1273     case H_SET_MODE_RESOURCE_LE:
1274         ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]);
1275         break;
1276     case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
1277         ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
1278                                                   args[2], args[3]);
1279         break;
1280     }
1281 
1282     return ret;
1283 }
1284 
1285 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
1286                                 target_ulong opcode, target_ulong *args)
1287 {
1288     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1289                   opcode, " (H_CLEAN_SLB)");
1290     return H_FUNCTION;
1291 }
1292 
1293 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
1294                                      target_ulong opcode, target_ulong *args)
1295 {
1296     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1297                   opcode, " (H_INVALIDATE_PID)");
1298     return H_FUNCTION;
1299 }
1300 
1301 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
1302                                        uint64_t patbe_old, uint64_t patbe_new)
1303 {
1304     /*
1305      * We have 4 Options:
1306      * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
1307      * HASH->RADIX                                  : Free HPT
1308      * RADIX->HASH                                  : Allocate HPT
1309      * NOTHING->HASH                                : Allocate HPT
1310      * Note: NOTHING implies the case where we said the guest could choose
1311      *       later and so assumed radix and now it's called H_REG_PROC_TBL
1312      */
1313 
1314     if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
1315         /* We assume RADIX, so this catches all the "Do Nothing" cases */
1316     } else if (!(patbe_old & PATE1_GR)) {
1317         /* HASH->RADIX : Free HPT */
1318         spapr_free_hpt(spapr);
1319     } else if (!(patbe_new & PATE1_GR)) {
1320         /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
1321         spapr_setup_hpt_and_vrma(spapr);
1322     }
1323     return;
1324 }
1325 
1326 #define FLAGS_MASK              0x01FULL
1327 #define FLAG_MODIFY             0x10
1328 #define FLAG_REGISTER           0x08
1329 #define FLAG_RADIX              0x04
1330 #define FLAG_HASH_PROC_TBL      0x02
1331 #define FLAG_GTSE               0x01
1332 
1333 static target_ulong h_register_process_table(PowerPCCPU *cpu,
1334                                              SpaprMachineState *spapr,
1335                                              target_ulong opcode,
1336                                              target_ulong *args)
1337 {
1338     target_ulong flags = args[0];
1339     target_ulong proc_tbl = args[1];
1340     target_ulong page_size = args[2];
1341     target_ulong table_size = args[3];
1342     target_ulong update_lpcr = 0;
1343     uint64_t cproc;
1344 
1345     if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
1346         return H_PARAMETER;
1347     }
1348     if (flags & FLAG_MODIFY) {
1349         if (flags & FLAG_REGISTER) {
1350             if (flags & FLAG_RADIX) { /* Register new RADIX process table */
1351                 if (proc_tbl & 0xfff || proc_tbl >> 60) {
1352                     return H_P2;
1353                 } else if (page_size) {
1354                     return H_P3;
1355                 } else if (table_size > 24) {
1356                     return H_P4;
1357                 }
1358                 cproc = PATE1_GR | proc_tbl | table_size;
1359             } else { /* Register new HPT process table */
1360                 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
1361                     /* TODO - Not Supported */
1362                     /* Technically caused by flag bits => H_PARAMETER */
1363                     return H_PARAMETER;
1364                 } else { /* Hash with SLB */
1365                     if (proc_tbl >> 38) {
1366                         return H_P2;
1367                     } else if (page_size & ~0x7) {
1368                         return H_P3;
1369                     } else if (table_size > 24) {
1370                         return H_P4;
1371                     }
1372                 }
1373                 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
1374             }
1375 
1376         } else { /* Deregister current process table */
1377             /*
1378              * Set to benign value: (current GR) | 0. This allows
1379              * deregistration in KVM to succeed even if the radix bit
1380              * in flags doesn't match the radix bit in the old PATE.
1381              */
1382             cproc = spapr->patb_entry & PATE1_GR;
1383         }
1384     } else { /* Maintain current registration */
1385         if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
1386             /* Technically caused by flag bits => H_PARAMETER */
1387             return H_PARAMETER; /* Existing Process Table Mismatch */
1388         }
1389         cproc = spapr->patb_entry;
1390     }
1391 
1392     /* Check if we need to setup OR free the hpt */
1393     spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
1394 
1395     spapr->patb_entry = cproc; /* Save new process table */
1396 
1397     /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
1398     if (flags & FLAG_RADIX)     /* Radix must use process tables, also set HR */
1399         update_lpcr |= (LPCR_UPRT | LPCR_HR);
1400     else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
1401         update_lpcr |= LPCR_UPRT;
1402     if (flags & FLAG_GTSE)      /* Guest translation shootdown enable */
1403         update_lpcr |= LPCR_GTSE;
1404 
1405     spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
1406 
1407     if (kvm_enabled()) {
1408         return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1409                                        flags & FLAG_GTSE, cproc);
1410     }
1411     return H_SUCCESS;
1412 }
1413 
1414 #define H_SIGNAL_SYS_RESET_ALL         -1
1415 #define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2
1416 
1417 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1418                                        SpaprMachineState *spapr,
1419                                        target_ulong opcode, target_ulong *args)
1420 {
1421     target_long target = args[0];
1422     CPUState *cs;
1423 
1424     if (target < 0) {
1425         /* Broadcast */
1426         if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1427             return H_PARAMETER;
1428         }
1429 
1430         CPU_FOREACH(cs) {
1431             PowerPCCPU *c = POWERPC_CPU(cs);
1432 
1433             if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1434                 if (c == cpu) {
1435                     continue;
1436                 }
1437             }
1438             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1439         }
1440         return H_SUCCESS;
1441 
1442     } else {
1443         /* Unicast */
1444         cs = CPU(spapr_find_cpu(target));
1445         if (cs) {
1446             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1447             return H_SUCCESS;
1448         }
1449         return H_PARAMETER;
1450     }
1451 }
1452 
1453 static uint32_t cas_check_pvr(SpaprMachineState *spapr, PowerPCCPU *cpu,
1454                               target_ulong *addr, bool *raw_mode_supported,
1455                               Error **errp)
1456 {
1457     bool explicit_match = false; /* Matched the CPU's real PVR */
1458     uint32_t max_compat = spapr->max_compat_pvr;
1459     uint32_t best_compat = 0;
1460     int i;
1461 
1462     /*
1463      * We scan the supplied table of PVRs looking for two things
1464      *   1. Is our real CPU PVR in the list?
1465      *   2. What's the "best" listed logical PVR
1466      */
1467     for (i = 0; i < 512; ++i) {
1468         uint32_t pvr, pvr_mask;
1469 
1470         pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1471         pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1472         *addr += 8;
1473 
1474         if (~pvr_mask & pvr) {
1475             break; /* Terminator record */
1476         }
1477 
1478         if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1479             explicit_match = true;
1480         } else {
1481             if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1482                 best_compat = pvr;
1483             }
1484         }
1485     }
1486 
1487     if ((best_compat == 0) && (!explicit_match || max_compat)) {
1488         /* We couldn't find a suitable compatibility mode, and either
1489          * the guest doesn't support "raw" mode for this CPU, or raw
1490          * mode is disabled because a maximum compat mode is set */
1491         error_setg(errp, "Couldn't negotiate a suitable PVR during CAS");
1492         return 0;
1493     }
1494 
1495     *raw_mode_supported = explicit_match;
1496 
1497     /* Parsing finished */
1498     trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1499 
1500     return best_compat;
1501 }
1502 
1503 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1504                                                   SpaprMachineState *spapr,
1505                                                   target_ulong opcode,
1506                                                   target_ulong *args)
1507 {
1508     /* Working address in data buffer */
1509     target_ulong addr = ppc64_phys_to_real(args[0]);
1510     target_ulong ov_table;
1511     uint32_t cas_pvr;
1512     SpaprOptionVector *ov1_guest, *ov5_guest, *ov5_cas_old, *ov5_updates;
1513     bool guest_radix;
1514     Error *local_err = NULL;
1515     bool raw_mode_supported = false;
1516 
1517     cas_pvr = cas_check_pvr(spapr, cpu, &addr, &raw_mode_supported, &local_err);
1518     if (local_err) {
1519         error_report_err(local_err);
1520         return H_HARDWARE;
1521     }
1522 
1523     /* Update CPUs */
1524     if (cpu->compat_pvr != cas_pvr) {
1525         ppc_set_compat_all(cas_pvr, &local_err);
1526         if (local_err) {
1527             /* We fail to set compat mode (likely because running with KVM PR),
1528              * but maybe we can fallback to raw mode if the guest supports it.
1529              */
1530             if (!raw_mode_supported) {
1531                 error_report_err(local_err);
1532                 return H_HARDWARE;
1533             }
1534             error_free(local_err);
1535             local_err = NULL;
1536         }
1537     }
1538 
1539     /* For the future use: here @ov_table points to the first option vector */
1540     ov_table = addr;
1541 
1542     ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1543     ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1544     if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1545         error_report("guest requested hash and radix MMU, which is invalid.");
1546         exit(EXIT_FAILURE);
1547     }
1548     /* The radix/hash bit in byte 24 requires special handling: */
1549     guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1550     spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300);
1551 
1552     /*
1553      * HPT resizing is a bit of a special case, because when enabled
1554      * we assume an HPT guest will support it until it says it
1555      * doesn't, instead of assuming it won't support it until it says
1556      * it does.  Strictly speaking that approach could break for
1557      * guests which don't make a CAS call, but those are so old we
1558      * don't care about them.  Without that assumption we'd have to
1559      * make at least a temporary allocation of an HPT sized for max
1560      * memory, which could be impossibly difficult under KVM HV if
1561      * maxram is large.
1562      */
1563     if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1564         int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1565 
1566         if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1567             error_report(
1568                 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1569             exit(1);
1570         }
1571 
1572         if (spapr->htab_shift < maxshift) {
1573             /* Guest doesn't know about HPT resizing, so we
1574              * pre-emptively resize for the maximum permitted RAM.  At
1575              * the point this is called, nothing should have been
1576              * entered into the existing HPT */
1577             spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1578             push_sregs_to_kvm_pr(spapr);
1579         }
1580     }
1581 
1582     /* NOTE: there are actually a number of ov5 bits where input from the
1583      * guest is always zero, and the platform/QEMU enables them independently
1584      * of guest input. To model these properly we'd want some sort of mask,
1585      * but since they only currently apply to memory migration as defined
1586      * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1587      * to worry about this for now.
1588      */
1589     ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas);
1590 
1591     /* also clear the radix/hash bit from the current ov5_cas bits to
1592      * be in sync with the newly ov5 bits. Else the radix bit will be
1593      * seen as being removed and this will generate a reset loop
1594      */
1595     spapr_ovec_clear(ov5_cas_old, OV5_MMU_RADIX_300);
1596 
1597     /* full range of negotiated ov5 capabilities */
1598     spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1599     spapr_ovec_cleanup(ov5_guest);
1600     /* capabilities that have been added since CAS-generated guest reset.
1601      * if capabilities have since been removed, generate another reset
1602      */
1603     ov5_updates = spapr_ovec_new();
1604     spapr->cas_reboot = spapr_ovec_diff(ov5_updates,
1605                                         ov5_cas_old, spapr->ov5_cas);
1606     /* Now that processing is finished, set the radix/hash bit for the
1607      * guest if it requested a valid mode; otherwise terminate the boot. */
1608     if (guest_radix) {
1609         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1610             error_report("Guest requested unavailable MMU mode (radix).");
1611             exit(EXIT_FAILURE);
1612         }
1613         spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300);
1614     } else {
1615         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1616             && !kvmppc_has_cap_mmu_hash_v3()) {
1617             error_report("Guest requested unavailable MMU mode (hash).");
1618             exit(EXIT_FAILURE);
1619         }
1620     }
1621     spapr->cas_legacy_guest_workaround = !spapr_ovec_test(ov1_guest,
1622                                                           OV1_PPC_3_00);
1623     if (!spapr->cas_reboot) {
1624         /* If spapr_machine_reset() did not set up a HPT but one is necessary
1625          * (because the guest isn't going to use radix) then set it up here. */
1626         if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
1627             /* legacy hash or new hash: */
1628             spapr_setup_hpt_and_vrma(spapr);
1629         }
1630         spapr->cas_reboot =
1631             (spapr_h_cas_compose_response(spapr, args[1], args[2],
1632                                           ov5_updates) != 0);
1633     }
1634 
1635     /*
1636      * Generate a machine reset when we have an update of the
1637      * interrupt mode. Only required when the machine supports both
1638      * modes.
1639      */
1640     if (!spapr->cas_reboot) {
1641         spapr->cas_reboot = spapr_ovec_test(ov5_updates, OV5_XIVE_EXPLOIT)
1642             && spapr->irq->ov5 & SPAPR_OV5_XIVE_BOTH;
1643     }
1644 
1645     spapr_ovec_cleanup(ov5_updates);
1646 
1647     if (spapr->cas_reboot) {
1648         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1649     }
1650 
1651     return H_SUCCESS;
1652 }
1653 
1654 static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
1655                                               SpaprMachineState *spapr,
1656                                               target_ulong opcode,
1657                                               target_ulong *args)
1658 {
1659     target_ulong flags = args[0];
1660     target_ulong procno = args[1];
1661     PowerPCCPU *tcpu;
1662     int idx;
1663 
1664     /* only support procno from H_REGISTER_VPA */
1665     if (flags != 0x1) {
1666         return H_FUNCTION;
1667     }
1668 
1669     tcpu = spapr_find_cpu(procno);
1670     if (tcpu == NULL) {
1671         return H_P2;
1672     }
1673 
1674     /* sequence is the same as in the "ibm,associativity" property */
1675 
1676     idx = 0;
1677 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
1678                              ((uint64_t)(b) & 0xffffffff))
1679     args[idx++] = ASSOCIATIVITY(0, 0);
1680     args[idx++] = ASSOCIATIVITY(0, tcpu->node_id);
1681     args[idx++] = ASSOCIATIVITY(procno, -1);
1682     for ( ; idx < 6; idx++) {
1683         args[idx] = -1;
1684     }
1685 #undef ASSOCIATIVITY
1686 
1687     return H_SUCCESS;
1688 }
1689 
1690 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1691                                               SpaprMachineState *spapr,
1692                                               target_ulong opcode,
1693                                               target_ulong *args)
1694 {
1695     uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1696                                ~H_CPU_CHAR_THR_RECONF_TRIG;
1697     uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1698     uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1699     uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1700     uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1701     uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
1702                                                      SPAPR_CAP_CCF_ASSIST);
1703 
1704     switch (safe_cache) {
1705     case SPAPR_CAP_WORKAROUND:
1706         characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1707         characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1708         characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1709         behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1710         break;
1711     case SPAPR_CAP_FIXED:
1712         break;
1713     default: /* broken */
1714         assert(safe_cache == SPAPR_CAP_BROKEN);
1715         behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1716         break;
1717     }
1718 
1719     switch (safe_bounds_check) {
1720     case SPAPR_CAP_WORKAROUND:
1721         characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1722         behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1723         break;
1724     case SPAPR_CAP_FIXED:
1725         break;
1726     default: /* broken */
1727         assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1728         behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1729         break;
1730     }
1731 
1732     switch (safe_indirect_branch) {
1733     case SPAPR_CAP_FIXED_NA:
1734         break;
1735     case SPAPR_CAP_FIXED_CCD:
1736         characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1737         break;
1738     case SPAPR_CAP_FIXED_IBS:
1739         characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1740         break;
1741     case SPAPR_CAP_WORKAROUND:
1742         behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
1743         if (count_cache_flush_assist) {
1744             characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1745         }
1746         break;
1747     default: /* broken */
1748         assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1749         break;
1750     }
1751 
1752     args[0] = characteristics;
1753     args[1] = behaviour;
1754     return H_SUCCESS;
1755 }
1756 
1757 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
1758                                 target_ulong opcode, target_ulong *args)
1759 {
1760     target_ulong dt = ppc64_phys_to_real(args[0]);
1761     struct fdt_header hdr = { 0 };
1762     unsigned cb;
1763     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1764     void *fdt;
1765 
1766     cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1767     cb = fdt32_to_cpu(hdr.totalsize);
1768 
1769     if (!smc->update_dt_enabled) {
1770         return H_SUCCESS;
1771     }
1772 
1773     /* Check that the fdt did not grow out of proportion */
1774     if (cb > spapr->fdt_initial_size * 2) {
1775         trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1776                                           fdt32_to_cpu(hdr.magic));
1777         return H_PARAMETER;
1778     }
1779 
1780     fdt = g_malloc0(cb);
1781     cpu_physical_memory_read(dt, fdt, cb);
1782 
1783     /* Check the fdt consistency */
1784     if (fdt_check_full(fdt, cb)) {
1785         trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1786                                            fdt32_to_cpu(hdr.magic));
1787         return H_PARAMETER;
1788     }
1789 
1790     g_free(spapr->fdt_blob);
1791     spapr->fdt_size = cb;
1792     spapr->fdt_blob = fdt;
1793     trace_spapr_update_dt(cb);
1794 
1795     return H_SUCCESS;
1796 }
1797 
1798 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1799 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1800 
1801 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1802 {
1803     spapr_hcall_fn *slot;
1804 
1805     if (opcode <= MAX_HCALL_OPCODE) {
1806         assert((opcode & 0x3) == 0);
1807 
1808         slot = &papr_hypercall_table[opcode / 4];
1809     } else {
1810         assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1811 
1812         slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1813     }
1814 
1815     assert(!(*slot));
1816     *slot = fn;
1817 }
1818 
1819 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1820                              target_ulong *args)
1821 {
1822     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1823 
1824     if ((opcode <= MAX_HCALL_OPCODE)
1825         && ((opcode & 0x3) == 0)) {
1826         spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1827 
1828         if (fn) {
1829             return fn(cpu, spapr, opcode, args);
1830         }
1831     } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1832                (opcode <= KVMPPC_HCALL_MAX)) {
1833         spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1834 
1835         if (fn) {
1836             return fn(cpu, spapr, opcode, args);
1837         }
1838     }
1839 
1840     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1841                   opcode);
1842     return H_FUNCTION;
1843 }
1844 
1845 static void hypercall_register_types(void)
1846 {
1847     /* hcall-pft */
1848     spapr_register_hypercall(H_ENTER, h_enter);
1849     spapr_register_hypercall(H_REMOVE, h_remove);
1850     spapr_register_hypercall(H_PROTECT, h_protect);
1851     spapr_register_hypercall(H_READ, h_read);
1852 
1853     /* hcall-bulk */
1854     spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
1855 
1856     /* hcall-hpt-resize */
1857     spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1858     spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1859 
1860     /* hcall-splpar */
1861     spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1862     spapr_register_hypercall(H_CEDE, h_cede);
1863     spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1864 
1865     /* processor register resource access h-calls */
1866     spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1867     spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1868     spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1869     spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1870     spapr_register_hypercall(H_SET_MODE, h_set_mode);
1871 
1872     /* In Memory Table MMU h-calls */
1873     spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1874     spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1875     spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1876 
1877     /* hcall-get-cpu-characteristics */
1878     spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
1879                              h_get_cpu_characteristics);
1880 
1881     /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1882      * here between the "CI" and the "CACHE" variants, they will use whatever
1883      * mapping attributes qemu is using. When using KVM, the kernel will
1884      * enforce the attributes more strongly
1885      */
1886     spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1887     spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1888     spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1889     spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1890     spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1891     spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1892     spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1893 
1894     /* qemu/KVM-PPC specific hcalls */
1895     spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1896 
1897     /* ibm,client-architecture-support support */
1898     spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1899 
1900     spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
1901 
1902     /* Virtual Processor Home Node */
1903     spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
1904                              h_home_node_associativity);
1905 }
1906 
1907 type_init(hypercall_register_types)
1908