xref: /qemu/hw/ppc/spapr_hcall.c (revision ac06724a)
1 #include "qemu/osdep.h"
2 #include "qapi/error.h"
3 #include "sysemu/hw_accel.h"
4 #include "sysemu/sysemu.h"
5 #include "qemu/log.h"
6 #include "cpu.h"
7 #include "exec/exec-all.h"
8 #include "helper_regs.h"
9 #include "hw/ppc/spapr.h"
10 #include "mmu-hash64.h"
11 #include "cpu-models.h"
12 #include "trace.h"
13 #include "kvm_ppc.h"
14 #include "hw/ppc/spapr_ovec.h"
15 #include "qemu/error-report.h"
16 #include "mmu-book3s-v3.h"
17 
18 struct SPRSyncState {
19     int spr;
20     target_ulong value;
21     target_ulong mask;
22 };
23 
24 static void do_spr_sync(CPUState *cs, run_on_cpu_data arg)
25 {
26     struct SPRSyncState *s = arg.host_ptr;
27     PowerPCCPU *cpu = POWERPC_CPU(cs);
28     CPUPPCState *env = &cpu->env;
29 
30     cpu_synchronize_state(cs);
31     env->spr[s->spr] &= ~s->mask;
32     env->spr[s->spr] |= s->value;
33 }
34 
35 static void set_spr(CPUState *cs, int spr, target_ulong value,
36                     target_ulong mask)
37 {
38     struct SPRSyncState s = {
39         .spr = spr,
40         .value = value,
41         .mask = mask
42     };
43     run_on_cpu(cs, do_spr_sync, RUN_ON_CPU_HOST_PTR(&s));
44 }
45 
46 static bool has_spr(PowerPCCPU *cpu, int spr)
47 {
48     /* We can test whether the SPR is defined by checking for a valid name */
49     return cpu->env.spr_cb[spr].name != NULL;
50 }
51 
52 static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex)
53 {
54     /*
55      * hash value/pteg group index is normalized by HPT mask
56      */
57     if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) {
58         return false;
59     }
60     return true;
61 }
62 
63 static bool is_ram_address(sPAPRMachineState *spapr, hwaddr addr)
64 {
65     MachineState *machine = MACHINE(spapr);
66     MemoryHotplugState *hpms = &spapr->hotplug_memory;
67 
68     if (addr < machine->ram_size) {
69         return true;
70     }
71     if ((addr >= hpms->base)
72         && ((addr - hpms->base) < memory_region_size(&hpms->mr))) {
73         return true;
74     }
75 
76     return false;
77 }
78 
79 static target_ulong h_enter(PowerPCCPU *cpu, sPAPRMachineState *spapr,
80                             target_ulong opcode, target_ulong *args)
81 {
82     target_ulong flags = args[0];
83     target_ulong ptex = args[1];
84     target_ulong pteh = args[2];
85     target_ulong ptel = args[3];
86     unsigned apshift;
87     target_ulong raddr;
88     target_ulong slot;
89     const ppc_hash_pte64_t *hptes;
90 
91     apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
92     if (!apshift) {
93         /* Bad page size encoding */
94         return H_PARAMETER;
95     }
96 
97     raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
98 
99     if (is_ram_address(spapr, raddr)) {
100         /* Regular RAM - should have WIMG=0010 */
101         if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
102             return H_PARAMETER;
103         }
104     } else {
105         target_ulong wimg_flags;
106         /* Looks like an IO address */
107         /* FIXME: What WIMG combinations could be sensible for IO?
108          * For now we allow WIMG=010x, but are there others? */
109         /* FIXME: Should we check against registered IO addresses? */
110         wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));
111 
112         if (wimg_flags != HPTE64_R_I &&
113             wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
114             return H_PARAMETER;
115         }
116     }
117 
118     pteh &= ~0x60ULL;
119 
120     if (!valid_ptex(cpu, ptex)) {
121         return H_PARAMETER;
122     }
123 
124     slot = ptex & 7ULL;
125     ptex = ptex & ~7ULL;
126 
127     if (likely((flags & H_EXACT) == 0)) {
128         hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
129         for (slot = 0; slot < 8; slot++) {
130             if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) {
131                 break;
132             }
133         }
134         ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
135         if (slot == 8) {
136             return H_PTEG_FULL;
137         }
138     } else {
139         hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1);
140         if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) {
141             ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1);
142             return H_PTEG_FULL;
143         }
144         ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
145     }
146 
147     ppc_hash64_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel);
148 
149     args[0] = ptex + slot;
150     return H_SUCCESS;
151 }
152 
153 typedef enum {
154     REMOVE_SUCCESS = 0,
155     REMOVE_NOT_FOUND = 1,
156     REMOVE_PARM = 2,
157     REMOVE_HW = 3,
158 } RemoveResult;
159 
160 static RemoveResult remove_hpte(PowerPCCPU *cpu, target_ulong ptex,
161                                 target_ulong avpn,
162                                 target_ulong flags,
163                                 target_ulong *vp, target_ulong *rp)
164 {
165     const ppc_hash_pte64_t *hptes;
166     target_ulong v, r;
167 
168     if (!valid_ptex(cpu, ptex)) {
169         return REMOVE_PARM;
170     }
171 
172     hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
173     v = ppc_hash64_hpte0(cpu, hptes, 0);
174     r = ppc_hash64_hpte1(cpu, hptes, 0);
175     ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
176 
177     if ((v & HPTE64_V_VALID) == 0 ||
178         ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
179         ((flags & H_ANDCOND) && (v & avpn) != 0)) {
180         return REMOVE_NOT_FOUND;
181     }
182     *vp = v;
183     *rp = r;
184     ppc_hash64_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
185     ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
186     return REMOVE_SUCCESS;
187 }
188 
189 static target_ulong h_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
190                              target_ulong opcode, target_ulong *args)
191 {
192     CPUPPCState *env = &cpu->env;
193     target_ulong flags = args[0];
194     target_ulong ptex = args[1];
195     target_ulong avpn = args[2];
196     RemoveResult ret;
197 
198     ret = remove_hpte(cpu, ptex, avpn, flags,
199                       &args[0], &args[1]);
200 
201     switch (ret) {
202     case REMOVE_SUCCESS:
203         check_tlb_flush(env, true);
204         return H_SUCCESS;
205 
206     case REMOVE_NOT_FOUND:
207         return H_NOT_FOUND;
208 
209     case REMOVE_PARM:
210         return H_PARAMETER;
211 
212     case REMOVE_HW:
213         return H_HARDWARE;
214     }
215 
216     g_assert_not_reached();
217 }
218 
219 #define H_BULK_REMOVE_TYPE             0xc000000000000000ULL
220 #define   H_BULK_REMOVE_REQUEST        0x4000000000000000ULL
221 #define   H_BULK_REMOVE_RESPONSE       0x8000000000000000ULL
222 #define   H_BULK_REMOVE_END            0xc000000000000000ULL
223 #define H_BULK_REMOVE_CODE             0x3000000000000000ULL
224 #define   H_BULK_REMOVE_SUCCESS        0x0000000000000000ULL
225 #define   H_BULK_REMOVE_NOT_FOUND      0x1000000000000000ULL
226 #define   H_BULK_REMOVE_PARM           0x2000000000000000ULL
227 #define   H_BULK_REMOVE_HW             0x3000000000000000ULL
228 #define H_BULK_REMOVE_RC               0x0c00000000000000ULL
229 #define H_BULK_REMOVE_FLAGS            0x0300000000000000ULL
230 #define   H_BULK_REMOVE_ABSOLUTE       0x0000000000000000ULL
231 #define   H_BULK_REMOVE_ANDCOND        0x0100000000000000ULL
232 #define   H_BULK_REMOVE_AVPN           0x0200000000000000ULL
233 #define H_BULK_REMOVE_PTEX             0x00ffffffffffffffULL
234 
235 #define H_BULK_REMOVE_MAX_BATCH        4
236 
237 static target_ulong h_bulk_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
238                                   target_ulong opcode, target_ulong *args)
239 {
240     CPUPPCState *env = &cpu->env;
241     int i;
242     target_ulong rc = H_SUCCESS;
243 
244     for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
245         target_ulong *tsh = &args[i*2];
246         target_ulong tsl = args[i*2 + 1];
247         target_ulong v, r, ret;
248 
249         if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
250             break;
251         } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
252             return H_PARAMETER;
253         }
254 
255         *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
256         *tsh |= H_BULK_REMOVE_RESPONSE;
257 
258         if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
259             *tsh |= H_BULK_REMOVE_PARM;
260             return H_PARAMETER;
261         }
262 
263         ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
264                           (*tsh & H_BULK_REMOVE_FLAGS) >> 26,
265                           &v, &r);
266 
267         *tsh |= ret << 60;
268 
269         switch (ret) {
270         case REMOVE_SUCCESS:
271             *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
272             break;
273 
274         case REMOVE_PARM:
275             rc = H_PARAMETER;
276             goto exit;
277 
278         case REMOVE_HW:
279             rc = H_HARDWARE;
280             goto exit;
281         }
282     }
283  exit:
284     check_tlb_flush(env, true);
285 
286     return rc;
287 }
288 
289 static target_ulong h_protect(PowerPCCPU *cpu, sPAPRMachineState *spapr,
290                               target_ulong opcode, target_ulong *args)
291 {
292     CPUPPCState *env = &cpu->env;
293     target_ulong flags = args[0];
294     target_ulong ptex = args[1];
295     target_ulong avpn = args[2];
296     const ppc_hash_pte64_t *hptes;
297     target_ulong v, r;
298 
299     if (!valid_ptex(cpu, ptex)) {
300         return H_PARAMETER;
301     }
302 
303     hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
304     v = ppc_hash64_hpte0(cpu, hptes, 0);
305     r = ppc_hash64_hpte1(cpu, hptes, 0);
306     ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
307 
308     if ((v & HPTE64_V_VALID) == 0 ||
309         ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
310         return H_NOT_FOUND;
311     }
312 
313     r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
314            HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
315     r |= (flags << 55) & HPTE64_R_PP0;
316     r |= (flags << 48) & HPTE64_R_KEY_HI;
317     r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
318     ppc_hash64_store_hpte(cpu, ptex,
319                           (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
320     ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
321     /* Flush the tlb */
322     check_tlb_flush(env, true);
323     /* Don't need a memory barrier, due to qemu's global lock */
324     ppc_hash64_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r);
325     return H_SUCCESS;
326 }
327 
328 static target_ulong h_read(PowerPCCPU *cpu, sPAPRMachineState *spapr,
329                            target_ulong opcode, target_ulong *args)
330 {
331     target_ulong flags = args[0];
332     target_ulong ptex = args[1];
333     uint8_t *hpte;
334     int i, ridx, n_entries = 1;
335 
336     if (!valid_ptex(cpu, ptex)) {
337         return H_PARAMETER;
338     }
339 
340     if (flags & H_READ_4) {
341         /* Clear the two low order bits */
342         ptex &= ~(3ULL);
343         n_entries = 4;
344     }
345 
346     hpte = spapr->htab + (ptex * HASH_PTE_SIZE_64);
347 
348     for (i = 0, ridx = 0; i < n_entries; i++) {
349         args[ridx++] = ldq_p(hpte);
350         args[ridx++] = ldq_p(hpte + (HASH_PTE_SIZE_64/2));
351         hpte += HASH_PTE_SIZE_64;
352     }
353 
354     return H_SUCCESS;
355 }
356 
357 static target_ulong h_set_sprg0(PowerPCCPU *cpu, sPAPRMachineState *spapr,
358                                 target_ulong opcode, target_ulong *args)
359 {
360     cpu_synchronize_state(CPU(cpu));
361     cpu->env.spr[SPR_SPRG0] = args[0];
362 
363     return H_SUCCESS;
364 }
365 
366 static target_ulong h_set_dabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
367                                target_ulong opcode, target_ulong *args)
368 {
369     if (!has_spr(cpu, SPR_DABR)) {
370         return H_HARDWARE;              /* DABR register not available */
371     }
372     cpu_synchronize_state(CPU(cpu));
373 
374     if (has_spr(cpu, SPR_DABRX)) {
375         cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
376     } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
377         return H_RESERVED_DABR;
378     }
379 
380     cpu->env.spr[SPR_DABR] = args[0];
381     return H_SUCCESS;
382 }
383 
384 static target_ulong h_set_xdabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
385                                 target_ulong opcode, target_ulong *args)
386 {
387     target_ulong dabrx = args[1];
388 
389     if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
390         return H_HARDWARE;
391     }
392 
393     if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
394         || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
395         return H_PARAMETER;
396     }
397 
398     cpu_synchronize_state(CPU(cpu));
399     cpu->env.spr[SPR_DABRX] = dabrx;
400     cpu->env.spr[SPR_DABR] = args[0];
401 
402     return H_SUCCESS;
403 }
404 
405 static target_ulong h_page_init(PowerPCCPU *cpu, sPAPRMachineState *spapr,
406                                 target_ulong opcode, target_ulong *args)
407 {
408     target_ulong flags = args[0];
409     hwaddr dst = args[1];
410     hwaddr src = args[2];
411     hwaddr len = TARGET_PAGE_SIZE;
412     uint8_t *pdst, *psrc;
413     target_long ret = H_SUCCESS;
414 
415     if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
416                   | H_COPY_PAGE | H_ZERO_PAGE)) {
417         qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
418                       flags);
419         return H_PARAMETER;
420     }
421 
422     /* Map-in destination */
423     if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
424         return H_PARAMETER;
425     }
426     pdst = cpu_physical_memory_map(dst, &len, 1);
427     if (!pdst || len != TARGET_PAGE_SIZE) {
428         return H_PARAMETER;
429     }
430 
431     if (flags & H_COPY_PAGE) {
432         /* Map-in source, copy to destination, and unmap source again */
433         if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
434             ret = H_PARAMETER;
435             goto unmap_out;
436         }
437         psrc = cpu_physical_memory_map(src, &len, 0);
438         if (!psrc || len != TARGET_PAGE_SIZE) {
439             ret = H_PARAMETER;
440             goto unmap_out;
441         }
442         memcpy(pdst, psrc, len);
443         cpu_physical_memory_unmap(psrc, len, 0, len);
444     } else if (flags & H_ZERO_PAGE) {
445         memset(pdst, 0, len);          /* Just clear the destination page */
446     }
447 
448     if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
449         kvmppc_dcbst_range(cpu, pdst, len);
450     }
451     if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
452         if (kvm_enabled()) {
453             kvmppc_icbi_range(cpu, pdst, len);
454         } else {
455             tb_flush(CPU(cpu));
456         }
457     }
458 
459 unmap_out:
460     cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
461     return ret;
462 }
463 
464 #define FLAGS_REGISTER_VPA         0x0000200000000000ULL
465 #define FLAGS_REGISTER_DTL         0x0000400000000000ULL
466 #define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
467 #define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
468 #define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
469 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
470 
471 #define VPA_MIN_SIZE           640
472 #define VPA_SIZE_OFFSET        0x4
473 #define VPA_SHARED_PROC_OFFSET 0x9
474 #define VPA_SHARED_PROC_VAL    0x2
475 
476 static target_ulong register_vpa(CPUPPCState *env, target_ulong vpa)
477 {
478     CPUState *cs = CPU(ppc_env_get_cpu(env));
479     uint16_t size;
480     uint8_t tmp;
481 
482     if (vpa == 0) {
483         hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
484         return H_HARDWARE;
485     }
486 
487     if (vpa % env->dcache_line_size) {
488         return H_PARAMETER;
489     }
490     /* FIXME: bounds check the address */
491 
492     size = lduw_be_phys(cs->as, vpa + 0x4);
493 
494     if (size < VPA_MIN_SIZE) {
495         return H_PARAMETER;
496     }
497 
498     /* VPA is not allowed to cross a page boundary */
499     if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
500         return H_PARAMETER;
501     }
502 
503     env->vpa_addr = vpa;
504 
505     tmp = ldub_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET);
506     tmp |= VPA_SHARED_PROC_VAL;
507     stb_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
508 
509     return H_SUCCESS;
510 }
511 
512 static target_ulong deregister_vpa(CPUPPCState *env, target_ulong vpa)
513 {
514     if (env->slb_shadow_addr) {
515         return H_RESOURCE;
516     }
517 
518     if (env->dtl_addr) {
519         return H_RESOURCE;
520     }
521 
522     env->vpa_addr = 0;
523     return H_SUCCESS;
524 }
525 
526 static target_ulong register_slb_shadow(CPUPPCState *env, target_ulong addr)
527 {
528     CPUState *cs = CPU(ppc_env_get_cpu(env));
529     uint32_t size;
530 
531     if (addr == 0) {
532         hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
533         return H_HARDWARE;
534     }
535 
536     size = ldl_be_phys(cs->as, addr + 0x4);
537     if (size < 0x8) {
538         return H_PARAMETER;
539     }
540 
541     if ((addr / 4096) != ((addr + size - 1) / 4096)) {
542         return H_PARAMETER;
543     }
544 
545     if (!env->vpa_addr) {
546         return H_RESOURCE;
547     }
548 
549     env->slb_shadow_addr = addr;
550     env->slb_shadow_size = size;
551 
552     return H_SUCCESS;
553 }
554 
555 static target_ulong deregister_slb_shadow(CPUPPCState *env, target_ulong addr)
556 {
557     env->slb_shadow_addr = 0;
558     env->slb_shadow_size = 0;
559     return H_SUCCESS;
560 }
561 
562 static target_ulong register_dtl(CPUPPCState *env, target_ulong addr)
563 {
564     CPUState *cs = CPU(ppc_env_get_cpu(env));
565     uint32_t size;
566 
567     if (addr == 0) {
568         hcall_dprintf("Can't cope with DTL at logical 0\n");
569         return H_HARDWARE;
570     }
571 
572     size = ldl_be_phys(cs->as, addr + 0x4);
573 
574     if (size < 48) {
575         return H_PARAMETER;
576     }
577 
578     if (!env->vpa_addr) {
579         return H_RESOURCE;
580     }
581 
582     env->dtl_addr = addr;
583     env->dtl_size = size;
584 
585     return H_SUCCESS;
586 }
587 
588 static target_ulong deregister_dtl(CPUPPCState *env, target_ulong addr)
589 {
590     env->dtl_addr = 0;
591     env->dtl_size = 0;
592 
593     return H_SUCCESS;
594 }
595 
596 static target_ulong h_register_vpa(PowerPCCPU *cpu, sPAPRMachineState *spapr,
597                                    target_ulong opcode, target_ulong *args)
598 {
599     target_ulong flags = args[0];
600     target_ulong procno = args[1];
601     target_ulong vpa = args[2];
602     target_ulong ret = H_PARAMETER;
603     CPUPPCState *tenv;
604     PowerPCCPU *tcpu;
605 
606     tcpu = ppc_get_vcpu_by_dt_id(procno);
607     if (!tcpu) {
608         return H_PARAMETER;
609     }
610     tenv = &tcpu->env;
611 
612     switch (flags) {
613     case FLAGS_REGISTER_VPA:
614         ret = register_vpa(tenv, vpa);
615         break;
616 
617     case FLAGS_DEREGISTER_VPA:
618         ret = deregister_vpa(tenv, vpa);
619         break;
620 
621     case FLAGS_REGISTER_SLBSHADOW:
622         ret = register_slb_shadow(tenv, vpa);
623         break;
624 
625     case FLAGS_DEREGISTER_SLBSHADOW:
626         ret = deregister_slb_shadow(tenv, vpa);
627         break;
628 
629     case FLAGS_REGISTER_DTL:
630         ret = register_dtl(tenv, vpa);
631         break;
632 
633     case FLAGS_DEREGISTER_DTL:
634         ret = deregister_dtl(tenv, vpa);
635         break;
636     }
637 
638     return ret;
639 }
640 
641 static target_ulong h_cede(PowerPCCPU *cpu, sPAPRMachineState *spapr,
642                            target_ulong opcode, target_ulong *args)
643 {
644     CPUPPCState *env = &cpu->env;
645     CPUState *cs = CPU(cpu);
646 
647     env->msr |= (1ULL << MSR_EE);
648     hreg_compute_hflags(env);
649     if (!cpu_has_work(cs)) {
650         cs->halted = 1;
651         cs->exception_index = EXCP_HLT;
652         cs->exit_request = 1;
653     }
654     return H_SUCCESS;
655 }
656 
657 static target_ulong h_rtas(PowerPCCPU *cpu, sPAPRMachineState *spapr,
658                            target_ulong opcode, target_ulong *args)
659 {
660     target_ulong rtas_r3 = args[0];
661     uint32_t token = rtas_ld(rtas_r3, 0);
662     uint32_t nargs = rtas_ld(rtas_r3, 1);
663     uint32_t nret = rtas_ld(rtas_r3, 2);
664 
665     return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
666                            nret, rtas_r3 + 12 + 4*nargs);
667 }
668 
669 static target_ulong h_logical_load(PowerPCCPU *cpu, sPAPRMachineState *spapr,
670                                    target_ulong opcode, target_ulong *args)
671 {
672     CPUState *cs = CPU(cpu);
673     target_ulong size = args[0];
674     target_ulong addr = args[1];
675 
676     switch (size) {
677     case 1:
678         args[0] = ldub_phys(cs->as, addr);
679         return H_SUCCESS;
680     case 2:
681         args[0] = lduw_phys(cs->as, addr);
682         return H_SUCCESS;
683     case 4:
684         args[0] = ldl_phys(cs->as, addr);
685         return H_SUCCESS;
686     case 8:
687         args[0] = ldq_phys(cs->as, addr);
688         return H_SUCCESS;
689     }
690     return H_PARAMETER;
691 }
692 
693 static target_ulong h_logical_store(PowerPCCPU *cpu, sPAPRMachineState *spapr,
694                                     target_ulong opcode, target_ulong *args)
695 {
696     CPUState *cs = CPU(cpu);
697 
698     target_ulong size = args[0];
699     target_ulong addr = args[1];
700     target_ulong val  = args[2];
701 
702     switch (size) {
703     case 1:
704         stb_phys(cs->as, addr, val);
705         return H_SUCCESS;
706     case 2:
707         stw_phys(cs->as, addr, val);
708         return H_SUCCESS;
709     case 4:
710         stl_phys(cs->as, addr, val);
711         return H_SUCCESS;
712     case 8:
713         stq_phys(cs->as, addr, val);
714         return H_SUCCESS;
715     }
716     return H_PARAMETER;
717 }
718 
719 static target_ulong h_logical_memop(PowerPCCPU *cpu, sPAPRMachineState *spapr,
720                                     target_ulong opcode, target_ulong *args)
721 {
722     CPUState *cs = CPU(cpu);
723 
724     target_ulong dst   = args[0]; /* Destination address */
725     target_ulong src   = args[1]; /* Source address */
726     target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
727     target_ulong count = args[3]; /* Element count */
728     target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
729     uint64_t tmp;
730     unsigned int mask = (1 << esize) - 1;
731     int step = 1 << esize;
732 
733     if (count > 0x80000000) {
734         return H_PARAMETER;
735     }
736 
737     if ((dst & mask) || (src & mask) || (op > 1)) {
738         return H_PARAMETER;
739     }
740 
741     if (dst >= src && dst < (src + (count << esize))) {
742             dst = dst + ((count - 1) << esize);
743             src = src + ((count - 1) << esize);
744             step = -step;
745     }
746 
747     while (count--) {
748         switch (esize) {
749         case 0:
750             tmp = ldub_phys(cs->as, src);
751             break;
752         case 1:
753             tmp = lduw_phys(cs->as, src);
754             break;
755         case 2:
756             tmp = ldl_phys(cs->as, src);
757             break;
758         case 3:
759             tmp = ldq_phys(cs->as, src);
760             break;
761         default:
762             return H_PARAMETER;
763         }
764         if (op == 1) {
765             tmp = ~tmp;
766         }
767         switch (esize) {
768         case 0:
769             stb_phys(cs->as, dst, tmp);
770             break;
771         case 1:
772             stw_phys(cs->as, dst, tmp);
773             break;
774         case 2:
775             stl_phys(cs->as, dst, tmp);
776             break;
777         case 3:
778             stq_phys(cs->as, dst, tmp);
779             break;
780         }
781         dst = dst + step;
782         src = src + step;
783     }
784 
785     return H_SUCCESS;
786 }
787 
788 static target_ulong h_logical_icbi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
789                                    target_ulong opcode, target_ulong *args)
790 {
791     /* Nothing to do on emulation, KVM will trap this in the kernel */
792     return H_SUCCESS;
793 }
794 
795 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, sPAPRMachineState *spapr,
796                                    target_ulong opcode, target_ulong *args)
797 {
798     /* Nothing to do on emulation, KVM will trap this in the kernel */
799     return H_SUCCESS;
800 }
801 
802 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
803                                            target_ulong mflags,
804                                            target_ulong value1,
805                                            target_ulong value2)
806 {
807     CPUState *cs;
808 
809     if (value1) {
810         return H_P3;
811     }
812     if (value2) {
813         return H_P4;
814     }
815 
816     switch (mflags) {
817     case H_SET_MODE_ENDIAN_BIG:
818         CPU_FOREACH(cs) {
819             set_spr(cs, SPR_LPCR, 0, LPCR_ILE);
820         }
821         spapr_pci_switch_vga(true);
822         return H_SUCCESS;
823 
824     case H_SET_MODE_ENDIAN_LITTLE:
825         CPU_FOREACH(cs) {
826             set_spr(cs, SPR_LPCR, LPCR_ILE, LPCR_ILE);
827         }
828         spapr_pci_switch_vga(false);
829         return H_SUCCESS;
830     }
831 
832     return H_UNSUPPORTED_FLAG;
833 }
834 
835 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
836                                                         target_ulong mflags,
837                                                         target_ulong value1,
838                                                         target_ulong value2)
839 {
840     CPUState *cs;
841     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
842 
843     if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
844         return H_P2;
845     }
846     if (value1) {
847         return H_P3;
848     }
849     if (value2) {
850         return H_P4;
851     }
852 
853     if (mflags == AIL_RESERVED) {
854         return H_UNSUPPORTED_FLAG;
855     }
856 
857     CPU_FOREACH(cs) {
858         set_spr(cs, SPR_LPCR, mflags << LPCR_AIL_SHIFT, LPCR_AIL);
859     }
860 
861     return H_SUCCESS;
862 }
863 
864 static target_ulong h_set_mode(PowerPCCPU *cpu, sPAPRMachineState *spapr,
865                                target_ulong opcode, target_ulong *args)
866 {
867     target_ulong resource = args[1];
868     target_ulong ret = H_P2;
869 
870     switch (resource) {
871     case H_SET_MODE_RESOURCE_LE:
872         ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]);
873         break;
874     case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
875         ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
876                                                   args[2], args[3]);
877         break;
878     }
879 
880     return ret;
881 }
882 
883 static target_ulong h_clean_slb(PowerPCCPU *cpu, sPAPRMachineState *spapr,
884                                 target_ulong opcode, target_ulong *args)
885 {
886     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
887                   opcode, " (H_CLEAN_SLB)");
888     return H_FUNCTION;
889 }
890 
891 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, sPAPRMachineState *spapr,
892                                      target_ulong opcode, target_ulong *args)
893 {
894     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
895                   opcode, " (H_INVALIDATE_PID)");
896     return H_FUNCTION;
897 }
898 
899 static void spapr_check_setup_free_hpt(sPAPRMachineState *spapr,
900                                        uint64_t patbe_old, uint64_t patbe_new)
901 {
902     /*
903      * We have 4 Options:
904      * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
905      * HASH->RADIX                                  : Free HPT
906      * RADIX->HASH                                  : Allocate HPT
907      * NOTHING->HASH                                : Allocate HPT
908      * Note: NOTHING implies the case where we said the guest could choose
909      *       later and so assumed radix and now it's called H_REG_PROC_TBL
910      */
911 
912     if ((patbe_old & PATBE1_GR) == (patbe_new & PATBE1_GR)) {
913         /* We assume RADIX, so this catches all the "Do Nothing" cases */
914     } else if (!(patbe_old & PATBE1_GR)) {
915         /* HASH->RADIX : Free HPT */
916         spapr_free_hpt(spapr);
917     } else if (!(patbe_new & PATBE1_GR)) {
918         /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
919         spapr_setup_hpt_and_vrma(spapr);
920     }
921     return;
922 }
923 
924 #define FLAGS_MASK              0x01FULL
925 #define FLAG_MODIFY             0x10
926 #define FLAG_REGISTER           0x08
927 #define FLAG_RADIX              0x04
928 #define FLAG_HASH_PROC_TBL      0x02
929 #define FLAG_GTSE               0x01
930 
931 static target_ulong h_register_process_table(PowerPCCPU *cpu,
932                                              sPAPRMachineState *spapr,
933                                              target_ulong opcode,
934                                              target_ulong *args)
935 {
936     CPUState *cs;
937     target_ulong flags = args[0];
938     target_ulong proc_tbl = args[1];
939     target_ulong page_size = args[2];
940     target_ulong table_size = args[3];
941     uint64_t cproc;
942 
943     if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
944         return H_PARAMETER;
945     }
946     if (flags & FLAG_MODIFY) {
947         if (flags & FLAG_REGISTER) {
948             if (flags & FLAG_RADIX) { /* Register new RADIX process table */
949                 if (proc_tbl & 0xfff || proc_tbl >> 60) {
950                     return H_P2;
951                 } else if (page_size) {
952                     return H_P3;
953                 } else if (table_size > 24) {
954                     return H_P4;
955                 }
956                 cproc = PATBE1_GR | proc_tbl | table_size;
957             } else { /* Register new HPT process table */
958                 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
959                     /* TODO - Not Supported */
960                     /* Technically caused by flag bits => H_PARAMETER */
961                     return H_PARAMETER;
962                 } else { /* Hash with SLB */
963                     if (proc_tbl >> 38) {
964                         return H_P2;
965                     } else if (page_size & ~0x7) {
966                         return H_P3;
967                     } else if (table_size > 24) {
968                         return H_P4;
969                     }
970                 }
971                 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
972             }
973 
974         } else { /* Deregister current process table */
975             /* Set to benign value: (current GR) | 0. This allows
976              * deregistration in KVM to succeed even if the radix bit in flags
977              * doesn't match the radix bit in the old PATB. */
978             cproc = spapr->patb_entry & PATBE1_GR;
979         }
980     } else { /* Maintain current registration */
981         if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATBE1_GR)) {
982             /* Technically caused by flag bits => H_PARAMETER */
983             return H_PARAMETER; /* Existing Process Table Mismatch */
984         }
985         cproc = spapr->patb_entry;
986     }
987 
988     /* Check if we need to setup OR free the hpt */
989     spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
990 
991     spapr->patb_entry = cproc; /* Save new process table */
992 
993     /* Update the UPRT and GTSE bits in the LPCR for all cpus */
994     CPU_FOREACH(cs) {
995         set_spr(cs, SPR_LPCR,
996                 ((flags & (FLAG_RADIX | FLAG_HASH_PROC_TBL)) ? LPCR_UPRT : 0) |
997                 ((flags & FLAG_GTSE) ? LPCR_GTSE : 0),
998                 LPCR_UPRT | LPCR_GTSE);
999     }
1000 
1001     if (kvm_enabled()) {
1002         return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1003                                        flags & FLAG_GTSE, cproc);
1004     }
1005     return H_SUCCESS;
1006 }
1007 
1008 #define H_SIGNAL_SYS_RESET_ALL         -1
1009 #define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2
1010 
1011 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1012                                        sPAPRMachineState *spapr,
1013                                        target_ulong opcode, target_ulong *args)
1014 {
1015     target_long target = args[0];
1016     CPUState *cs;
1017 
1018     if (target < 0) {
1019         /* Broadcast */
1020         if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1021             return H_PARAMETER;
1022         }
1023 
1024         CPU_FOREACH(cs) {
1025             PowerPCCPU *c = POWERPC_CPU(cs);
1026 
1027             if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1028                 if (c == cpu) {
1029                     continue;
1030                 }
1031             }
1032             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1033         }
1034         return H_SUCCESS;
1035 
1036     } else {
1037         /* Unicast */
1038         CPU_FOREACH(cs) {
1039             if (cpu->cpu_dt_id == target) {
1040                 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1041                 return H_SUCCESS;
1042             }
1043         }
1044         return H_PARAMETER;
1045     }
1046 }
1047 
1048 static uint32_t cas_check_pvr(PowerPCCPU *cpu, target_ulong *addr,
1049                               Error **errp)
1050 {
1051     bool explicit_match = false; /* Matched the CPU's real PVR */
1052     uint32_t max_compat = cpu->max_compat;
1053     uint32_t best_compat = 0;
1054     int i;
1055 
1056     /*
1057      * We scan the supplied table of PVRs looking for two things
1058      *   1. Is our real CPU PVR in the list?
1059      *   2. What's the "best" listed logical PVR
1060      */
1061     for (i = 0; i < 512; ++i) {
1062         uint32_t pvr, pvr_mask;
1063 
1064         pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1065         pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1066         *addr += 8;
1067 
1068         if (~pvr_mask & pvr) {
1069             break; /* Terminator record */
1070         }
1071 
1072         if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1073             explicit_match = true;
1074         } else {
1075             if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1076                 best_compat = pvr;
1077             }
1078         }
1079     }
1080 
1081     if ((best_compat == 0) && (!explicit_match || max_compat)) {
1082         /* We couldn't find a suitable compatibility mode, and either
1083          * the guest doesn't support "raw" mode for this CPU, or raw
1084          * mode is disabled because a maximum compat mode is set */
1085         error_setg(errp, "Couldn't negotiate a suitable PVR during CAS");
1086         return 0;
1087     }
1088 
1089     /* Parsing finished */
1090     trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1091 
1092     return best_compat;
1093 }
1094 
1095 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1096                                                   sPAPRMachineState *spapr,
1097                                                   target_ulong opcode,
1098                                                   target_ulong *args)
1099 {
1100     /* Working address in data buffer */
1101     target_ulong addr = ppc64_phys_to_real(args[0]);
1102     target_ulong ov_table;
1103     uint32_t cas_pvr;
1104     sPAPROptionVector *ov1_guest, *ov5_guest, *ov5_cas_old, *ov5_updates;
1105     bool guest_radix;
1106     Error *local_err = NULL;
1107 
1108     cas_pvr = cas_check_pvr(cpu, &addr, &local_err);
1109     if (local_err) {
1110         error_report_err(local_err);
1111         return H_HARDWARE;
1112     }
1113 
1114     /* Update CPUs */
1115     if (cpu->compat_pvr != cas_pvr) {
1116         ppc_set_compat_all(cas_pvr, &local_err);
1117         if (local_err) {
1118             error_report_err(local_err);
1119             return H_HARDWARE;
1120         }
1121     }
1122 
1123     /* For the future use: here @ov_table points to the first option vector */
1124     ov_table = addr;
1125 
1126     ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1127     ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1128     if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1129         error_report("guest requested hash and radix MMU, which is invalid.");
1130         exit(EXIT_FAILURE);
1131     }
1132     /* The radix/hash bit in byte 24 requires special handling: */
1133     guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1134     spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300);
1135 
1136     /* NOTE: there are actually a number of ov5 bits where input from the
1137      * guest is always zero, and the platform/QEMU enables them independently
1138      * of guest input. To model these properly we'd want some sort of mask,
1139      * but since they only currently apply to memory migration as defined
1140      * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1141      * to worry about this for now.
1142      */
1143     ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas);
1144     /* full range of negotiated ov5 capabilities */
1145     spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1146     spapr_ovec_cleanup(ov5_guest);
1147     /* capabilities that have been added since CAS-generated guest reset.
1148      * if capabilities have since been removed, generate another reset
1149      */
1150     ov5_updates = spapr_ovec_new();
1151     spapr->cas_reboot = spapr_ovec_diff(ov5_updates,
1152                                         ov5_cas_old, spapr->ov5_cas);
1153     /* Now that processing is finished, set the radix/hash bit for the
1154      * guest if it requested a valid mode; otherwise terminate the boot. */
1155     if (guest_radix) {
1156         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1157             error_report("Guest requested unavailable MMU mode (radix).");
1158             exit(EXIT_FAILURE);
1159         }
1160         spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300);
1161     } else {
1162         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1163             && !kvmppc_has_cap_mmu_hash_v3()) {
1164             error_report("Guest requested unavailable MMU mode (hash).");
1165             exit(EXIT_FAILURE);
1166         }
1167     }
1168     spapr->cas_legacy_guest_workaround = !spapr_ovec_test(ov1_guest,
1169                                                           OV1_PPC_3_00);
1170     if (!spapr->cas_reboot) {
1171         spapr->cas_reboot =
1172             (spapr_h_cas_compose_response(spapr, args[1], args[2],
1173                                           ov5_updates) != 0);
1174     }
1175     spapr_ovec_cleanup(ov5_updates);
1176 
1177     if (spapr->cas_reboot) {
1178         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1179     } else {
1180         /* If ppc_spapr_reset() did not set up a HPT but one is necessary
1181          * (because the guest isn't going to use radix) then set it up here. */
1182         if ((spapr->patb_entry & PATBE1_GR) && !guest_radix) {
1183             /* legacy hash or new hash: */
1184             spapr_setup_hpt_and_vrma(spapr);
1185         }
1186     }
1187 
1188     return H_SUCCESS;
1189 }
1190 
1191 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1192 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1193 
1194 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1195 {
1196     spapr_hcall_fn *slot;
1197 
1198     if (opcode <= MAX_HCALL_OPCODE) {
1199         assert((opcode & 0x3) == 0);
1200 
1201         slot = &papr_hypercall_table[opcode / 4];
1202     } else {
1203         assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1204 
1205         slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1206     }
1207 
1208     assert(!(*slot));
1209     *slot = fn;
1210 }
1211 
1212 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1213                              target_ulong *args)
1214 {
1215     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1216 
1217     if ((opcode <= MAX_HCALL_OPCODE)
1218         && ((opcode & 0x3) == 0)) {
1219         spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1220 
1221         if (fn) {
1222             return fn(cpu, spapr, opcode, args);
1223         }
1224     } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1225                (opcode <= KVMPPC_HCALL_MAX)) {
1226         spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1227 
1228         if (fn) {
1229             return fn(cpu, spapr, opcode, args);
1230         }
1231     }
1232 
1233     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1234                   opcode);
1235     return H_FUNCTION;
1236 }
1237 
1238 static void hypercall_register_types(void)
1239 {
1240     /* hcall-pft */
1241     spapr_register_hypercall(H_ENTER, h_enter);
1242     spapr_register_hypercall(H_REMOVE, h_remove);
1243     spapr_register_hypercall(H_PROTECT, h_protect);
1244     spapr_register_hypercall(H_READ, h_read);
1245 
1246     /* hcall-bulk */
1247     spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
1248 
1249     /* hcall-splpar */
1250     spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1251     spapr_register_hypercall(H_CEDE, h_cede);
1252     spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1253 
1254     /* processor register resource access h-calls */
1255     spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1256     spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1257     spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1258     spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1259     spapr_register_hypercall(H_SET_MODE, h_set_mode);
1260 
1261     /* In Memory Table MMU h-calls */
1262     spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1263     spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1264     spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1265 
1266     /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1267      * here between the "CI" and the "CACHE" variants, they will use whatever
1268      * mapping attributes qemu is using. When using KVM, the kernel will
1269      * enforce the attributes more strongly
1270      */
1271     spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1272     spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1273     spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1274     spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1275     spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1276     spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1277     spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1278 
1279     /* qemu/KVM-PPC specific hcalls */
1280     spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1281 
1282     /* ibm,client-architecture-support support */
1283     spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1284 }
1285 
1286 type_init(hypercall_register_types)
1287