xref: /qemu/hw/ppc/spapr_numa.c (revision 35bafa95)
1 /*
2  * QEMU PowerPC pSeries Logical Partition NUMA associativity handling
3  *
4  * Copyright IBM Corp. 2020
5  *
6  * Authors:
7  *  Daniel Henrique Barboza      <danielhb413@gmail.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "hw/ppc/spapr_numa.h"
15 #include "hw/pci-host/spapr.h"
16 #include "hw/ppc/fdt.h"
17 
18 /* Moved from hw/ppc/spapr_pci_nvlink2.c */
19 #define SPAPR_GPU_NUMA_ID           (cpu_to_be32(1))
20 
21 /*
22  * Retrieves max_dist_ref_points of the current NUMA affinity.
23  */
24 static int get_max_dist_ref_points(SpaprMachineState *spapr)
25 {
26     if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
27         return FORM2_DIST_REF_POINTS;
28     }
29 
30     return FORM1_DIST_REF_POINTS;
31 }
32 
33 /*
34  * Retrieves numa_assoc_size of the current NUMA affinity.
35  */
36 static int get_numa_assoc_size(SpaprMachineState *spapr)
37 {
38     if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
39         return FORM2_NUMA_ASSOC_SIZE;
40     }
41 
42     return FORM1_NUMA_ASSOC_SIZE;
43 }
44 
45 /*
46  * Retrieves vcpu_assoc_size of the current NUMA affinity.
47  *
48  * vcpu_assoc_size is the size of ibm,associativity array
49  * for CPUs, which has an extra element (vcpu_id) in the end.
50  */
51 static int get_vcpu_assoc_size(SpaprMachineState *spapr)
52 {
53     return get_numa_assoc_size(spapr) + 1;
54 }
55 
56 /*
57  * Retrieves the ibm,associativity array of NUMA node 'node_id'
58  * for the current NUMA affinity.
59  */
60 static const uint32_t *get_associativity(SpaprMachineState *spapr, int node_id)
61 {
62     if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
63         return spapr->FORM2_assoc_array[node_id];
64     }
65     return spapr->FORM1_assoc_array[node_id];
66 }
67 
68 /*
69  * Wrapper that returns node distance from ms->numa_state->nodes
70  * after handling edge cases where the distance might be absent.
71  */
72 static int get_numa_distance(MachineState *ms, int src, int dst)
73 {
74     NodeInfo *numa_info = ms->numa_state->nodes;
75     int ret = numa_info[src].distance[dst];
76 
77     if (ret != 0) {
78         return ret;
79     }
80 
81     /*
82      * In case QEMU adds a default NUMA single node when the user
83      * did not add any, or where the user did not supply distances,
84      * the distance will be absent (zero). Return local/remote
85      * distance in this case.
86      */
87     if (src == dst) {
88         return NUMA_DISTANCE_MIN;
89     }
90 
91     return NUMA_DISTANCE_DEFAULT;
92 }
93 
94 static bool spapr_numa_is_symmetrical(MachineState *ms)
95 {
96     int nb_numa_nodes = ms->numa_state->num_nodes;
97     int src, dst;
98 
99     for (src = 0; src < nb_numa_nodes; src++) {
100         for (dst = src; dst < nb_numa_nodes; dst++) {
101             if (get_numa_distance(ms, src, dst) !=
102                 get_numa_distance(ms, dst, src)) {
103                 return false;
104             }
105         }
106     }
107 
108     return true;
109 }
110 
111 /*
112  * This function will translate the user distances into
113  * what the kernel understand as possible values: 10
114  * (local distance), 20, 40, 80 and 160, and return the equivalent
115  * NUMA level for each. Current heuristic is:
116  *  - local distance (10) returns numa_level = 0x4, meaning there is
117  *    no rounding for local distance
118  *  - distances between 11 and 30 inclusive -> rounded to 20,
119  *    numa_level = 0x3
120  *  - distances between 31 and 60 inclusive -> rounded to 40,
121  *    numa_level = 0x2
122  *  - distances between 61 and 120 inclusive -> rounded to 80,
123  *    numa_level = 0x1
124  *  - everything above 120 returns numa_level = 0 to indicate that
125  *    there is no match. This will be calculated as disntace = 160
126  *    by the kernel (as of v5.9)
127  */
128 static uint8_t spapr_numa_get_numa_level(uint8_t distance)
129 {
130     if (distance == 10) {
131         return 0x4;
132     } else if (distance > 11 && distance <= 30) {
133         return 0x3;
134     } else if (distance > 31 && distance <= 60) {
135         return 0x2;
136     } else if (distance > 61 && distance <= 120) {
137         return 0x1;
138     }
139 
140     return 0;
141 }
142 
143 static void spapr_numa_define_FORM1_domains(SpaprMachineState *spapr)
144 {
145     MachineState *ms = MACHINE(spapr);
146     int nb_numa_nodes = ms->numa_state->num_nodes;
147     int src, dst, i, j;
148 
149     /*
150      * Fill all associativity domains of non-zero NUMA nodes with
151      * node_id. This is required because the default value (0) is
152      * considered a match with associativity domains of node 0.
153      */
154     for (i = 1; i < nb_numa_nodes; i++) {
155         for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
156             spapr->FORM1_assoc_array[i][j] = cpu_to_be32(i);
157         }
158     }
159 
160     for (src = 0; src < nb_numa_nodes; src++) {
161         for (dst = src; dst < nb_numa_nodes; dst++) {
162             /*
163              * This is how the associativity domain between A and B
164              * is calculated:
165              *
166              * - get the distance D between them
167              * - get the correspondent NUMA level 'n_level' for D
168              * - all associativity arrays were initialized with their own
169              * numa_ids, and we're calculating the distance in node_id
170              * ascending order, starting from node id 0 (the first node
171              * retrieved by numa_state). This will have a cascade effect in
172              * the algorithm because the associativity domains that node 0
173              * defines will be carried over to other nodes, and node 1
174              * associativities will be carried over after taking node 0
175              * associativities into account, and so on. This happens because
176              * we'll assign assoc_src as the associativity domain of dst
177              * as well, for all NUMA levels beyond and including n_level.
178              *
179              * The PPC kernel expects the associativity domains of node 0 to
180              * be always 0, and this algorithm will grant that by default.
181              */
182             uint8_t distance = get_numa_distance(ms, src, dst);
183             uint8_t n_level = spapr_numa_get_numa_level(distance);
184             uint32_t assoc_src;
185 
186             /*
187              * n_level = 0 means that the distance is greater than our last
188              * rounded value (120). In this case there is no NUMA level match
189              * between src and dst and we can skip the remaining of the loop.
190              *
191              * The Linux kernel will assume that the distance between src and
192              * dst, in this case of no match, is 10 (local distance) doubled
193              * for each NUMA it didn't match. We have FORM1_DIST_REF_POINTS
194              * levels (4), so this gives us 10*2*2*2*2 = 160.
195              *
196              * This logic can be seen in the Linux kernel source code, as of
197              * v5.9, in arch/powerpc/mm/numa.c, function __node_distance().
198              */
199             if (n_level == 0) {
200                 continue;
201             }
202 
203             /*
204              * We must assign all assoc_src to dst, starting from n_level
205              * and going up to 0x1.
206              */
207             for (i = n_level; i > 0; i--) {
208                 assoc_src = spapr->FORM1_assoc_array[src][i];
209                 spapr->FORM1_assoc_array[dst][i] = assoc_src;
210             }
211         }
212     }
213 
214 }
215 
216 static void spapr_numa_FORM1_affinity_check(MachineState *machine)
217 {
218     int i;
219 
220     /*
221      * Check we don't have a memory-less/cpu-less NUMA node
222      * Firmware relies on the existing memory/cpu topology to provide the
223      * NUMA topology to the kernel.
224      * And the linux kernel needs to know the NUMA topology at start
225      * to be able to hotplug CPUs later.
226      */
227     if (machine->numa_state->num_nodes) {
228         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
229             /* check for memory-less node */
230             if (machine->numa_state->nodes[i].node_mem == 0) {
231                 CPUState *cs;
232                 int found = 0;
233                 /* check for cpu-less node */
234                 CPU_FOREACH(cs) {
235                     PowerPCCPU *cpu = POWERPC_CPU(cs);
236                     if (cpu->node_id == i) {
237                         found = 1;
238                         break;
239                     }
240                 }
241                 /* memory-less and cpu-less node */
242                 if (!found) {
243                     error_report(
244 "Memory-less/cpu-less nodes are not supported with FORM1 NUMA (node %d)", i);
245                     exit(EXIT_FAILURE);
246                 }
247             }
248         }
249     }
250 
251     if (!spapr_numa_is_symmetrical(machine)) {
252         error_report(
253 "Asymmetrical NUMA topologies aren't supported in the pSeries machine using FORM1 NUMA");
254         exit(EXIT_FAILURE);
255     }
256 }
257 
258 /*
259  * Set NUMA machine state data based on FORM1 affinity semantics.
260  */
261 static void spapr_numa_FORM1_affinity_init(SpaprMachineState *spapr,
262                                            MachineState *machine)
263 {
264     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
265     int nb_numa_nodes = machine->numa_state->num_nodes;
266     int i, j;
267 
268     /*
269      * For all associativity arrays: first position is the size,
270      * position FORM1_DIST_REF_POINTS is always the numa_id,
271      * represented by the index 'i'.
272      *
273      * This will break on sparse NUMA setups, when/if QEMU starts
274      * to support it, because there will be no more guarantee that
275      * 'i' will be a valid node_id set by the user.
276      */
277     for (i = 0; i < nb_numa_nodes; i++) {
278         spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
279         spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
280     }
281 
282     for (i = nb_numa_nodes; i < nb_numa_nodes; i++) {
283         spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
284 
285         for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
286             uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ?
287                                  SPAPR_GPU_NUMA_ID : cpu_to_be32(i);
288             spapr->FORM1_assoc_array[i][j] = gpu_assoc;
289         }
290 
291         spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
292     }
293 
294     /*
295      * Guests pseries-5.1 and older uses zeroed associativity domains,
296      * i.e. no domain definition based on NUMA distance input.
297      *
298      * Same thing with guests that have only one NUMA node.
299      */
300     if (smc->pre_5_2_numa_associativity ||
301         machine->numa_state->num_nodes <= 1) {
302         return;
303     }
304 
305     spapr_numa_define_FORM1_domains(spapr);
306 }
307 
308 /*
309  * Init NUMA FORM2 machine state data
310  */
311 static void spapr_numa_FORM2_affinity_init(SpaprMachineState *spapr)
312 {
313     int i;
314 
315     /*
316      * For all resources but CPUs, FORM2 associativity arrays will
317      * be a size 2 array with the following format:
318      *
319      * ibm,associativity = {1, numa_id}
320      *
321      * CPUs will write an additional 'vcpu_id' on top of the arrays
322      * being initialized here. 'numa_id' is represented by the
323      * index 'i' of the loop.
324      */
325     for (i = 0; i < NUMA_NODES_MAX_NUM; i++) {
326         spapr->FORM2_assoc_array[i][0] = cpu_to_be32(1);
327         spapr->FORM2_assoc_array[i][1] = cpu_to_be32(i);
328     }
329 }
330 
331 void spapr_numa_associativity_init(SpaprMachineState *spapr,
332                                    MachineState *machine)
333 {
334     spapr_numa_FORM1_affinity_init(spapr, machine);
335     spapr_numa_FORM2_affinity_init(spapr);
336 }
337 
338 void spapr_numa_associativity_check(SpaprMachineState *spapr)
339 {
340     /*
341      * FORM2 does not have any restrictions we need to handle
342      * at CAS time, for now.
343      */
344     if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
345         return;
346     }
347 
348     spapr_numa_FORM1_affinity_check(MACHINE(spapr));
349 }
350 
351 void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt,
352                                        int offset, int nodeid)
353 {
354     const uint32_t *associativity = get_associativity(spapr, nodeid);
355 
356     _FDT((fdt_setprop(fdt, offset, "ibm,associativity",
357                       associativity,
358                       get_numa_assoc_size(spapr) * sizeof(uint32_t))));
359 }
360 
361 static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr,
362                                            PowerPCCPU *cpu)
363 {
364     const uint32_t *associativity = get_associativity(spapr, cpu->node_id);
365     int max_distance_ref_points = get_max_dist_ref_points(spapr);
366     int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
367     uint32_t *vcpu_assoc = g_new(uint32_t, vcpu_assoc_size);
368     int index = spapr_get_vcpu_id(cpu);
369 
370     /*
371      * VCPUs have an extra 'cpu_id' value in ibm,associativity
372      * compared to other resources. Increment the size at index
373      * 0, put cpu_id last, then copy the remaining associativity
374      * domains.
375      */
376     vcpu_assoc[0] = cpu_to_be32(max_distance_ref_points + 1);
377     vcpu_assoc[vcpu_assoc_size - 1] = cpu_to_be32(index);
378     memcpy(vcpu_assoc + 1, associativity + 1,
379            (vcpu_assoc_size - 2) * sizeof(uint32_t));
380 
381     return vcpu_assoc;
382 }
383 
384 int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt,
385                             int offset, PowerPCCPU *cpu)
386 {
387     g_autofree uint32_t *vcpu_assoc = NULL;
388     int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
389 
390     vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu);
391 
392     /* Advertise NUMA via ibm,associativity */
393     return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc,
394                        vcpu_assoc_size * sizeof(uint32_t));
395 }
396 
397 
398 int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt,
399                                          int offset)
400 {
401     MachineState *machine = MACHINE(spapr);
402     int max_distance_ref_points = get_max_dist_ref_points(spapr);
403     int nb_numa_nodes = machine->numa_state->num_nodes;
404     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
405     g_autofree uint32_t *int_buf = NULL;
406     uint32_t *cur_index;
407     int i;
408 
409     /* ibm,associativity-lookup-arrays */
410     int_buf = g_new0(uint32_t, nr_nodes * max_distance_ref_points + 2);
411     cur_index = int_buf;
412     int_buf[0] = cpu_to_be32(nr_nodes);
413      /* Number of entries per associativity list */
414     int_buf[1] = cpu_to_be32(max_distance_ref_points);
415     cur_index += 2;
416     for (i = 0; i < nr_nodes; i++) {
417         /*
418          * For the lookup-array we use the ibm,associativity array of the
419          * current NUMA affinity, without the first element (size).
420          */
421         const uint32_t *associativity = get_associativity(spapr, i);
422         memcpy(cur_index, ++associativity,
423                sizeof(uint32_t) * max_distance_ref_points);
424         cur_index += max_distance_ref_points;
425     }
426 
427     return fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays",
428                        int_buf, (cur_index - int_buf) * sizeof(uint32_t));
429 }
430 
431 static void spapr_numa_FORM1_write_rtas_dt(SpaprMachineState *spapr,
432                                            void *fdt, int rtas)
433 {
434     MachineState *ms = MACHINE(spapr);
435     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
436     uint32_t refpoints[] = {
437         cpu_to_be32(0x4),
438         cpu_to_be32(0x3),
439         cpu_to_be32(0x2),
440         cpu_to_be32(0x1),
441     };
442     uint32_t nr_refpoints = ARRAY_SIZE(refpoints);
443     uint32_t maxdomain = ms->numa_state->num_nodes;
444     uint32_t maxdomains[] = {
445         cpu_to_be32(4),
446         cpu_to_be32(maxdomain),
447         cpu_to_be32(maxdomain),
448         cpu_to_be32(maxdomain),
449         cpu_to_be32(maxdomain)
450     };
451 
452     if (smc->pre_5_2_numa_associativity ||
453         ms->numa_state->num_nodes <= 1) {
454         uint32_t legacy_refpoints[] = {
455             cpu_to_be32(0x4),
456             cpu_to_be32(0x4),
457             cpu_to_be32(0x2),
458         };
459         uint32_t legacy_maxdomains[] = {
460             cpu_to_be32(4),
461             cpu_to_be32(0),
462             cpu_to_be32(0),
463             cpu_to_be32(0),
464             cpu_to_be32(maxdomain ? maxdomain : 1),
465         };
466 
467         G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints));
468         G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains));
469 
470         nr_refpoints = 3;
471 
472         memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints));
473         memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains));
474 
475         /* pseries-5.0 and older reference-points array is {0x4, 0x4} */
476         if (smc->pre_5_1_assoc_refpoints) {
477             nr_refpoints = 2;
478         }
479     }
480 
481     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
482                      refpoints, nr_refpoints * sizeof(refpoints[0])));
483 
484     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
485                      maxdomains, sizeof(maxdomains)));
486 }
487 
488 static void spapr_numa_FORM2_write_rtas_tables(SpaprMachineState *spapr,
489                                                void *fdt, int rtas)
490 {
491     MachineState *ms = MACHINE(spapr);
492     int nb_numa_nodes = ms->numa_state->num_nodes;
493     int distance_table_entries = nb_numa_nodes * nb_numa_nodes;
494     g_autofree uint32_t *lookup_index_table = NULL;
495     g_autofree uint8_t *distance_table = NULL;
496     int src, dst, i, distance_table_size;
497 
498     /*
499      * ibm,numa-lookup-index-table: array with length and a
500      * list of NUMA ids present in the guest.
501      */
502     lookup_index_table = g_new0(uint32_t, nb_numa_nodes + 1);
503     lookup_index_table[0] = cpu_to_be32(nb_numa_nodes);
504 
505     for (i = 0; i < nb_numa_nodes; i++) {
506         lookup_index_table[i + 1] = cpu_to_be32(i);
507     }
508 
509     _FDT(fdt_setprop(fdt, rtas, "ibm,numa-lookup-index-table",
510                      lookup_index_table,
511                      (nb_numa_nodes + 1) * sizeof(uint32_t)));
512 
513     /*
514      * ibm,numa-distance-table: contains all node distances. First
515      * element is the size of the table as uint32, followed up
516      * by all the uint8 distances from the first NUMA node, then all
517      * distances from the second NUMA node and so on.
518      *
519      * ibm,numa-lookup-index-table is used by guest to navigate this
520      * array because NUMA ids can be sparse (node 0 is the first,
521      * node 8 is the second ...).
522      */
523     distance_table_size = distance_table_entries * sizeof(uint8_t) +
524                           sizeof(uint32_t);
525     distance_table = g_new0(uint8_t, distance_table_size);
526     stl_be_p(distance_table, distance_table_entries);
527 
528     /* Skip the uint32_t array length at the start */
529     i = sizeof(uint32_t);
530 
531     for (src = 0; src < nb_numa_nodes; src++) {
532         for (dst = 0; dst < nb_numa_nodes; dst++) {
533             distance_table[i++] = get_numa_distance(ms, src, dst);
534         }
535     }
536 
537     _FDT(fdt_setprop(fdt, rtas, "ibm,numa-distance-table",
538                      distance_table, distance_table_size));
539 }
540 
541 /*
542  * This helper could be compressed in a single function with
543  * FORM1 logic since we're setting the same DT values, with the
544  * difference being a call to spapr_numa_FORM2_write_rtas_tables()
545  * in the end. The separation was made to avoid clogging FORM1 code
546  * which already has to deal with compat modes from previous
547  * QEMU machine types.
548  */
549 static void spapr_numa_FORM2_write_rtas_dt(SpaprMachineState *spapr,
550                                            void *fdt, int rtas)
551 {
552     MachineState *ms = MACHINE(spapr);
553 
554     /*
555      * In FORM2, ibm,associativity-reference-points will point to
556      * the element in the ibm,associativity array that contains the
557      * primary domain index (for FORM2, the first element).
558      *
559      * This value (in our case, the numa-id) is then used as an index
560      * to retrieve all other attributes of the node (distance,
561      * bandwidth, latency) via ibm,numa-lookup-index-table and other
562      * ibm,numa-*-table properties.
563      */
564     uint32_t refpoints[] = { cpu_to_be32(1) };
565 
566     uint32_t maxdomain = ms->numa_state->num_nodes;
567     uint32_t maxdomains[] = { cpu_to_be32(1), cpu_to_be32(maxdomain) };
568 
569     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
570                      refpoints, sizeof(refpoints)));
571 
572     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
573                      maxdomains, sizeof(maxdomains)));
574 
575     spapr_numa_FORM2_write_rtas_tables(spapr, fdt, rtas);
576 }
577 
578 /*
579  * Helper that writes ibm,associativity-reference-points and
580  * max-associativity-domains in the RTAS pointed by @rtas
581  * in the DT @fdt.
582  */
583 void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas)
584 {
585     if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
586         spapr_numa_FORM2_write_rtas_dt(spapr, fdt, rtas);
587         return;
588     }
589 
590     spapr_numa_FORM1_write_rtas_dt(spapr, fdt, rtas);
591 }
592 
593 static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
594                                               SpaprMachineState *spapr,
595                                               target_ulong opcode,
596                                               target_ulong *args)
597 {
598     g_autofree uint32_t *vcpu_assoc = NULL;
599     target_ulong flags = args[0];
600     target_ulong procno = args[1];
601     PowerPCCPU *tcpu;
602     int idx, assoc_idx;
603     int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
604 
605     /* only support procno from H_REGISTER_VPA */
606     if (flags != 0x1) {
607         return H_FUNCTION;
608     }
609 
610     tcpu = spapr_find_cpu(procno);
611     if (tcpu == NULL) {
612         return H_P2;
613     }
614 
615     /*
616      * Given that we want to be flexible with the sizes and indexes,
617      * we must consider that there is a hard limit of how many
618      * associativities domain we can fit in R4 up to R9, which would be
619      * 12 associativity domains for vcpus. Assert and bail if that's
620      * not the case.
621      */
622     g_assert((vcpu_assoc_size - 1) <= 12);
623 
624     vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu);
625     /* assoc_idx starts at 1 to skip associativity size */
626     assoc_idx = 1;
627 
628 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
629                              ((uint64_t)(b) & 0xffffffff))
630 
631     for (idx = 0; idx < 6; idx++) {
632         int32_t a, b;
633 
634         /*
635          * vcpu_assoc[] will contain the associativity domains for tcpu,
636          * including tcpu->node_id and procno, meaning that we don't
637          * need to use these variables here.
638          *
639          * We'll read 2 values at a time to fill up the ASSOCIATIVITY()
640          * macro. The ternary will fill the remaining registers with -1
641          * after we went through vcpu_assoc[].
642          */
643         a = assoc_idx < vcpu_assoc_size ?
644             be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
645         b = assoc_idx < vcpu_assoc_size ?
646             be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
647 
648         args[idx] = ASSOCIATIVITY(a, b);
649     }
650 #undef ASSOCIATIVITY
651 
652     return H_SUCCESS;
653 }
654 
655 static void spapr_numa_register_types(void)
656 {
657     /* Virtual Processor Home Node */
658     spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
659                              h_home_node_associativity);
660 }
661 
662 type_init(spapr_numa_register_types)
663