xref: /qemu/hw/ppc/spapr_numa.c (revision 922d42bb)
1 /*
2  * QEMU PowerPC pSeries Logical Partition NUMA associativity handling
3  *
4  * Copyright IBM Corp. 2020
5  *
6  * Authors:
7  *  Daniel Henrique Barboza      <danielhb413@gmail.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qemu-common.h"
15 #include "hw/ppc/spapr_numa.h"
16 #include "hw/pci-host/spapr.h"
17 #include "hw/ppc/fdt.h"
18 
19 /* Moved from hw/ppc/spapr_pci_nvlink2.c */
20 #define SPAPR_GPU_NUMA_ID           (cpu_to_be32(1))
21 
22 static bool spapr_numa_is_symmetrical(MachineState *ms)
23 {
24     int src, dst;
25     int nb_numa_nodes = ms->numa_state->num_nodes;
26     NodeInfo *numa_info = ms->numa_state->nodes;
27 
28     for (src = 0; src < nb_numa_nodes; src++) {
29         for (dst = src; dst < nb_numa_nodes; dst++) {
30             if (numa_info[src].distance[dst] !=
31                 numa_info[dst].distance[src]) {
32                 return false;
33             }
34         }
35     }
36 
37     return true;
38 }
39 
40 /*
41  * This function will translate the user distances into
42  * what the kernel understand as possible values: 10
43  * (local distance), 20, 40, 80 and 160, and return the equivalent
44  * NUMA level for each. Current heuristic is:
45  *  - local distance (10) returns numa_level = 0x4, meaning there is
46  *    no rounding for local distance
47  *  - distances between 11 and 30 inclusive -> rounded to 20,
48  *    numa_level = 0x3
49  *  - distances between 31 and 60 inclusive -> rounded to 40,
50  *    numa_level = 0x2
51  *  - distances between 61 and 120 inclusive -> rounded to 80,
52  *    numa_level = 0x1
53  *  - everything above 120 returns numa_level = 0 to indicate that
54  *    there is no match. This will be calculated as disntace = 160
55  *    by the kernel (as of v5.9)
56  */
57 static uint8_t spapr_numa_get_numa_level(uint8_t distance)
58 {
59     if (distance == 10) {
60         return 0x4;
61     } else if (distance > 11 && distance <= 30) {
62         return 0x3;
63     } else if (distance > 31 && distance <= 60) {
64         return 0x2;
65     } else if (distance > 61 && distance <= 120) {
66         return 0x1;
67     }
68 
69     return 0;
70 }
71 
72 static void spapr_numa_define_associativity_domains(SpaprMachineState *spapr)
73 {
74     MachineState *ms = MACHINE(spapr);
75     NodeInfo *numa_info = ms->numa_state->nodes;
76     int nb_numa_nodes = ms->numa_state->num_nodes;
77     int src, dst, i;
78 
79     for (src = 0; src < nb_numa_nodes; src++) {
80         for (dst = src; dst < nb_numa_nodes; dst++) {
81             /*
82              * This is how the associativity domain between A and B
83              * is calculated:
84              *
85              * - get the distance D between them
86              * - get the correspondent NUMA level 'n_level' for D
87              * - all associativity arrays were initialized with their own
88              * numa_ids, and we're calculating the distance in node_id
89              * ascending order, starting from node id 0 (the first node
90              * retrieved by numa_state). This will have a cascade effect in
91              * the algorithm because the associativity domains that node 0
92              * defines will be carried over to other nodes, and node 1
93              * associativities will be carried over after taking node 0
94              * associativities into account, and so on. This happens because
95              * we'll assign assoc_src as the associativity domain of dst
96              * as well, for all NUMA levels beyond and including n_level.
97              *
98              * The PPC kernel expects the associativity domains of node 0 to
99              * be always 0, and this algorithm will grant that by default.
100              */
101             uint8_t distance = numa_info[src].distance[dst];
102             uint8_t n_level = spapr_numa_get_numa_level(distance);
103             uint32_t assoc_src;
104 
105             /*
106              * n_level = 0 means that the distance is greater than our last
107              * rounded value (120). In this case there is no NUMA level match
108              * between src and dst and we can skip the remaining of the loop.
109              *
110              * The Linux kernel will assume that the distance between src and
111              * dst, in this case of no match, is 10 (local distance) doubled
112              * for each NUMA it didn't match. We have MAX_DISTANCE_REF_POINTS
113              * levels (4), so this gives us 10*2*2*2*2 = 160.
114              *
115              * This logic can be seen in the Linux kernel source code, as of
116              * v5.9, in arch/powerpc/mm/numa.c, function __node_distance().
117              */
118             if (n_level == 0) {
119                 continue;
120             }
121 
122             /*
123              * We must assign all assoc_src to dst, starting from n_level
124              * and going up to 0x1.
125              */
126             for (i = n_level; i > 0; i--) {
127                 assoc_src = spapr->numa_assoc_array[src][i];
128                 spapr->numa_assoc_array[dst][i] = assoc_src;
129             }
130         }
131     }
132 
133 }
134 
135 void spapr_numa_associativity_init(SpaprMachineState *spapr,
136                                    MachineState *machine)
137 {
138     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
139     int nb_numa_nodes = machine->numa_state->num_nodes;
140     int i, j, max_nodes_with_gpus;
141     bool using_legacy_numa = spapr_machine_using_legacy_numa(spapr);
142 
143     /*
144      * For all associativity arrays: first position is the size,
145      * position MAX_DISTANCE_REF_POINTS is always the numa_id,
146      * represented by the index 'i'.
147      *
148      * This will break on sparse NUMA setups, when/if QEMU starts
149      * to support it, because there will be no more guarantee that
150      * 'i' will be a valid node_id set by the user.
151      */
152     for (i = 0; i < nb_numa_nodes; i++) {
153         spapr->numa_assoc_array[i][0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);
154         spapr->numa_assoc_array[i][MAX_DISTANCE_REF_POINTS] = cpu_to_be32(i);
155 
156         /*
157          * Fill all associativity domains of non-zero NUMA nodes with
158          * node_id. This is required because the default value (0) is
159          * considered a match with associativity domains of node 0.
160          */
161         if (!using_legacy_numa && i != 0) {
162             for (j = 1; j < MAX_DISTANCE_REF_POINTS; j++) {
163                 spapr->numa_assoc_array[i][j] = cpu_to_be32(i);
164             }
165         }
166     }
167 
168     /*
169      * Initialize NVLink GPU associativity arrays. We know that
170      * the first GPU will take the first available NUMA id, and
171      * we'll have a maximum of NVGPU_MAX_NUM GPUs in the machine.
172      * At this point we're not sure if there are GPUs or not, but
173      * let's initialize the associativity arrays and allow NVLink
174      * GPUs to be handled like regular NUMA nodes later on.
175      */
176     max_nodes_with_gpus = nb_numa_nodes + NVGPU_MAX_NUM;
177 
178     for (i = nb_numa_nodes; i < max_nodes_with_gpus; i++) {
179         spapr->numa_assoc_array[i][0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);
180 
181         for (j = 1; j < MAX_DISTANCE_REF_POINTS; j++) {
182             uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ?
183                                  SPAPR_GPU_NUMA_ID : cpu_to_be32(i);
184             spapr->numa_assoc_array[i][j] = gpu_assoc;
185         }
186 
187         spapr->numa_assoc_array[i][MAX_DISTANCE_REF_POINTS] = cpu_to_be32(i);
188     }
189 
190     /*
191      * Legacy NUMA guests (pseries-5.1 and older, or guests with only
192      * 1 NUMA node) will not benefit from anything we're going to do
193      * after this point.
194      */
195     if (using_legacy_numa) {
196         return;
197     }
198 
199     if (!spapr_numa_is_symmetrical(machine)) {
200         error_report("Asymmetrical NUMA topologies aren't supported "
201                      "in the pSeries machine");
202         exit(EXIT_FAILURE);
203     }
204 
205     spapr_numa_define_associativity_domains(spapr);
206 }
207 
208 void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt,
209                                        int offset, int nodeid)
210 {
211     _FDT((fdt_setprop(fdt, offset, "ibm,associativity",
212                       spapr->numa_assoc_array[nodeid],
213                       sizeof(spapr->numa_assoc_array[nodeid]))));
214 }
215 
216 static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr,
217                                            PowerPCCPU *cpu)
218 {
219     uint32_t *vcpu_assoc = g_new(uint32_t, VCPU_ASSOC_SIZE);
220     int index = spapr_get_vcpu_id(cpu);
221 
222     /*
223      * VCPUs have an extra 'cpu_id' value in ibm,associativity
224      * compared to other resources. Increment the size at index
225      * 0, put cpu_id last, then copy the remaining associativity
226      * domains.
227      */
228     vcpu_assoc[0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS + 1);
229     vcpu_assoc[VCPU_ASSOC_SIZE - 1] = cpu_to_be32(index);
230     memcpy(vcpu_assoc + 1, spapr->numa_assoc_array[cpu->node_id] + 1,
231            (VCPU_ASSOC_SIZE - 2) * sizeof(uint32_t));
232 
233     return vcpu_assoc;
234 }
235 
236 int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt,
237                             int offset, PowerPCCPU *cpu)
238 {
239     g_autofree uint32_t *vcpu_assoc = NULL;
240 
241     vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu);
242 
243     /* Advertise NUMA via ibm,associativity */
244     return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc,
245                        VCPU_ASSOC_SIZE * sizeof(uint32_t));
246 }
247 
248 
249 int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt,
250                                          int offset)
251 {
252     MachineState *machine = MACHINE(spapr);
253     int nb_numa_nodes = machine->numa_state->num_nodes;
254     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
255     uint32_t *int_buf, *cur_index, buf_len;
256     int ret, i;
257 
258     /* ibm,associativity-lookup-arrays */
259     buf_len = (nr_nodes * MAX_DISTANCE_REF_POINTS + 2) * sizeof(uint32_t);
260     cur_index = int_buf = g_malloc0(buf_len);
261     int_buf[0] = cpu_to_be32(nr_nodes);
262      /* Number of entries per associativity list */
263     int_buf[1] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);
264     cur_index += 2;
265     for (i = 0; i < nr_nodes; i++) {
266         /*
267          * For the lookup-array we use the ibm,associativity array,
268          * from numa_assoc_array. without the first element (size).
269          */
270         uint32_t *associativity = spapr->numa_assoc_array[i];
271         memcpy(cur_index, ++associativity,
272                sizeof(uint32_t) * MAX_DISTANCE_REF_POINTS);
273         cur_index += MAX_DISTANCE_REF_POINTS;
274     }
275     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
276                       (cur_index - int_buf) * sizeof(uint32_t));
277     g_free(int_buf);
278 
279     return ret;
280 }
281 
282 /*
283  * Helper that writes ibm,associativity-reference-points and
284  * max-associativity-domains in the RTAS pointed by @rtas
285  * in the DT @fdt.
286  */
287 void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas)
288 {
289     MachineState *ms = MACHINE(spapr);
290     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
291     uint32_t refpoints[] = {
292         cpu_to_be32(0x4),
293         cpu_to_be32(0x3),
294         cpu_to_be32(0x2),
295         cpu_to_be32(0x1),
296     };
297     uint32_t nr_refpoints = ARRAY_SIZE(refpoints);
298     uint32_t maxdomain = ms->numa_state->num_nodes + spapr->gpu_numa_id;
299     uint32_t maxdomains[] = {
300         cpu_to_be32(4),
301         cpu_to_be32(maxdomain),
302         cpu_to_be32(maxdomain),
303         cpu_to_be32(maxdomain),
304         cpu_to_be32(maxdomain)
305     };
306 
307     if (spapr_machine_using_legacy_numa(spapr)) {
308         uint32_t legacy_refpoints[] = {
309             cpu_to_be32(0x4),
310             cpu_to_be32(0x4),
311             cpu_to_be32(0x2),
312         };
313         uint32_t legacy_maxdomain = spapr->gpu_numa_id > 1 ? 1 : 0;
314         uint32_t legacy_maxdomains[] = {
315             cpu_to_be32(4),
316             cpu_to_be32(legacy_maxdomain),
317             cpu_to_be32(legacy_maxdomain),
318             cpu_to_be32(legacy_maxdomain),
319             cpu_to_be32(spapr->gpu_numa_id),
320         };
321 
322         G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints));
323         G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains));
324 
325         nr_refpoints = 3;
326 
327         memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints));
328         memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains));
329 
330         /* pseries-5.0 and older reference-points array is {0x4, 0x4} */
331         if (smc->pre_5_1_assoc_refpoints) {
332             nr_refpoints = 2;
333         }
334     }
335 
336     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
337                      refpoints, nr_refpoints * sizeof(refpoints[0])));
338 
339     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
340                      maxdomains, sizeof(maxdomains)));
341 }
342 
343 static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
344                                               SpaprMachineState *spapr,
345                                               target_ulong opcode,
346                                               target_ulong *args)
347 {
348     g_autofree uint32_t *vcpu_assoc = NULL;
349     target_ulong flags = args[0];
350     target_ulong procno = args[1];
351     PowerPCCPU *tcpu;
352     int idx, assoc_idx;
353 
354     /* only support procno from H_REGISTER_VPA */
355     if (flags != 0x1) {
356         return H_FUNCTION;
357     }
358 
359     tcpu = spapr_find_cpu(procno);
360     if (tcpu == NULL) {
361         return H_P2;
362     }
363 
364     /*
365      * Given that we want to be flexible with the sizes and indexes,
366      * we must consider that there is a hard limit of how many
367      * associativities domain we can fit in R4 up to R9, which would be
368      * 12 associativity domains for vcpus. Assert and bail if that's
369      * not the case.
370      */
371     G_STATIC_ASSERT((VCPU_ASSOC_SIZE - 1) <= 12);
372 
373     vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu);
374     /* assoc_idx starts at 1 to skip associativity size */
375     assoc_idx = 1;
376 
377 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
378                              ((uint64_t)(b) & 0xffffffff))
379 
380     for (idx = 0; idx < 6; idx++) {
381         int32_t a, b;
382 
383         /*
384          * vcpu_assoc[] will contain the associativity domains for tcpu,
385          * including tcpu->node_id and procno, meaning that we don't
386          * need to use these variables here.
387          *
388          * We'll read 2 values at a time to fill up the ASSOCIATIVITY()
389          * macro. The ternary will fill the remaining registers with -1
390          * after we went through vcpu_assoc[].
391          */
392         a = assoc_idx < VCPU_ASSOC_SIZE ?
393             be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
394         b = assoc_idx < VCPU_ASSOC_SIZE ?
395             be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
396 
397         args[idx] = ASSOCIATIVITY(a, b);
398     }
399 #undef ASSOCIATIVITY
400 
401     return H_SUCCESS;
402 }
403 
404 static void spapr_numa_register_types(void)
405 {
406     /* Virtual Processor Home Node */
407     spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
408                              h_home_node_associativity);
409 }
410 
411 type_init(spapr_numa_register_types)
412