xref: /qemu/hw/ppc/spapr_numa.c (revision a165ac67)
1 /*
2  * QEMU PowerPC pSeries Logical Partition NUMA associativity handling
3  *
4  * Copyright IBM Corp. 2020
5  *
6  * Authors:
7  *  Daniel Henrique Barboza      <danielhb413@gmail.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qemu-common.h"
15 #include "hw/ppc/spapr_numa.h"
16 #include "hw/pci-host/spapr.h"
17 #include "hw/ppc/fdt.h"
18 
19 /* Moved from hw/ppc/spapr_pci_nvlink2.c */
20 #define SPAPR_GPU_NUMA_ID           (cpu_to_be32(1))
21 
22 /*
23  * Retrieves max_dist_ref_points of the current NUMA affinity.
24  */
25 static int get_max_dist_ref_points(SpaprMachineState *spapr)
26 {
27     return FORM1_DIST_REF_POINTS;
28 }
29 
30 /*
31  * Retrieves numa_assoc_size of the current NUMA affinity.
32  */
33 static int get_numa_assoc_size(SpaprMachineState *spapr)
34 {
35     return FORM1_NUMA_ASSOC_SIZE;
36 }
37 
38 /*
39  * Retrieves vcpu_assoc_size of the current NUMA affinity.
40  *
41  * vcpu_assoc_size is the size of ibm,associativity array
42  * for CPUs, which has an extra element (vcpu_id) in the end.
43  */
44 static int get_vcpu_assoc_size(SpaprMachineState *spapr)
45 {
46     return get_numa_assoc_size(spapr) + 1;
47 }
48 
49 /*
50  * Retrieves the ibm,associativity array of NUMA node 'node_id'
51  * for the current NUMA affinity.
52  */
53 static const uint32_t *get_associativity(SpaprMachineState *spapr, int node_id)
54 {
55     return spapr->FORM1_assoc_array[node_id];
56 }
57 
58 static bool spapr_numa_is_symmetrical(MachineState *ms)
59 {
60     int src, dst;
61     int nb_numa_nodes = ms->numa_state->num_nodes;
62     NodeInfo *numa_info = ms->numa_state->nodes;
63 
64     for (src = 0; src < nb_numa_nodes; src++) {
65         for (dst = src; dst < nb_numa_nodes; dst++) {
66             if (numa_info[src].distance[dst] !=
67                 numa_info[dst].distance[src]) {
68                 return false;
69             }
70         }
71     }
72 
73     return true;
74 }
75 
76 /*
77  * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
78  * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
79  * called from vPHB reset handler so we initialize the counter here.
80  * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
81  * must be equally distant from any other node.
82  * The final value of spapr->gpu_numa_id is going to be written to
83  * max-associativity-domains in spapr_build_fdt().
84  */
85 unsigned int spapr_numa_initial_nvgpu_numa_id(MachineState *machine)
86 {
87     return MAX(1, machine->numa_state->num_nodes);
88 }
89 
90 /*
91  * This function will translate the user distances into
92  * what the kernel understand as possible values: 10
93  * (local distance), 20, 40, 80 and 160, and return the equivalent
94  * NUMA level for each. Current heuristic is:
95  *  - local distance (10) returns numa_level = 0x4, meaning there is
96  *    no rounding for local distance
97  *  - distances between 11 and 30 inclusive -> rounded to 20,
98  *    numa_level = 0x3
99  *  - distances between 31 and 60 inclusive -> rounded to 40,
100  *    numa_level = 0x2
101  *  - distances between 61 and 120 inclusive -> rounded to 80,
102  *    numa_level = 0x1
103  *  - everything above 120 returns numa_level = 0 to indicate that
104  *    there is no match. This will be calculated as disntace = 160
105  *    by the kernel (as of v5.9)
106  */
107 static uint8_t spapr_numa_get_numa_level(uint8_t distance)
108 {
109     if (distance == 10) {
110         return 0x4;
111     } else if (distance > 11 && distance <= 30) {
112         return 0x3;
113     } else if (distance > 31 && distance <= 60) {
114         return 0x2;
115     } else if (distance > 61 && distance <= 120) {
116         return 0x1;
117     }
118 
119     return 0;
120 }
121 
122 static void spapr_numa_define_FORM1_domains(SpaprMachineState *spapr)
123 {
124     MachineState *ms = MACHINE(spapr);
125     NodeInfo *numa_info = ms->numa_state->nodes;
126     int nb_numa_nodes = ms->numa_state->num_nodes;
127     int src, dst, i, j;
128 
129     /*
130      * Fill all associativity domains of non-zero NUMA nodes with
131      * node_id. This is required because the default value (0) is
132      * considered a match with associativity domains of node 0.
133      */
134     for (i = 1; i < nb_numa_nodes; i++) {
135         for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
136             spapr->FORM1_assoc_array[i][j] = cpu_to_be32(i);
137         }
138     }
139 
140     for (src = 0; src < nb_numa_nodes; src++) {
141         for (dst = src; dst < nb_numa_nodes; dst++) {
142             /*
143              * This is how the associativity domain between A and B
144              * is calculated:
145              *
146              * - get the distance D between them
147              * - get the correspondent NUMA level 'n_level' for D
148              * - all associativity arrays were initialized with their own
149              * numa_ids, and we're calculating the distance in node_id
150              * ascending order, starting from node id 0 (the first node
151              * retrieved by numa_state). This will have a cascade effect in
152              * the algorithm because the associativity domains that node 0
153              * defines will be carried over to other nodes, and node 1
154              * associativities will be carried over after taking node 0
155              * associativities into account, and so on. This happens because
156              * we'll assign assoc_src as the associativity domain of dst
157              * as well, for all NUMA levels beyond and including n_level.
158              *
159              * The PPC kernel expects the associativity domains of node 0 to
160              * be always 0, and this algorithm will grant that by default.
161              */
162             uint8_t distance = numa_info[src].distance[dst];
163             uint8_t n_level = spapr_numa_get_numa_level(distance);
164             uint32_t assoc_src;
165 
166             /*
167              * n_level = 0 means that the distance is greater than our last
168              * rounded value (120). In this case there is no NUMA level match
169              * between src and dst and we can skip the remaining of the loop.
170              *
171              * The Linux kernel will assume that the distance between src and
172              * dst, in this case of no match, is 10 (local distance) doubled
173              * for each NUMA it didn't match. We have FORM1_DIST_REF_POINTS
174              * levels (4), so this gives us 10*2*2*2*2 = 160.
175              *
176              * This logic can be seen in the Linux kernel source code, as of
177              * v5.9, in arch/powerpc/mm/numa.c, function __node_distance().
178              */
179             if (n_level == 0) {
180                 continue;
181             }
182 
183             /*
184              * We must assign all assoc_src to dst, starting from n_level
185              * and going up to 0x1.
186              */
187             for (i = n_level; i > 0; i--) {
188                 assoc_src = spapr->FORM1_assoc_array[src][i];
189                 spapr->FORM1_assoc_array[dst][i] = assoc_src;
190             }
191         }
192     }
193 
194 }
195 
196 /*
197  * Set NUMA machine state data based on FORM1 affinity semantics.
198  */
199 static void spapr_numa_FORM1_affinity_init(SpaprMachineState *spapr,
200                                            MachineState *machine)
201 {
202     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
203     int nb_numa_nodes = machine->numa_state->num_nodes;
204     int i, j, max_nodes_with_gpus;
205 
206     /*
207      * For all associativity arrays: first position is the size,
208      * position FORM1_DIST_REF_POINTS is always the numa_id,
209      * represented by the index 'i'.
210      *
211      * This will break on sparse NUMA setups, when/if QEMU starts
212      * to support it, because there will be no more guarantee that
213      * 'i' will be a valid node_id set by the user.
214      */
215     for (i = 0; i < nb_numa_nodes; i++) {
216         spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
217         spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
218     }
219 
220     /*
221      * Initialize NVLink GPU associativity arrays. We know that
222      * the first GPU will take the first available NUMA id, and
223      * we'll have a maximum of NVGPU_MAX_NUM GPUs in the machine.
224      * At this point we're not sure if there are GPUs or not, but
225      * let's initialize the associativity arrays and allow NVLink
226      * GPUs to be handled like regular NUMA nodes later on.
227      */
228     max_nodes_with_gpus = nb_numa_nodes + NVGPU_MAX_NUM;
229 
230     for (i = nb_numa_nodes; i < max_nodes_with_gpus; i++) {
231         spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
232 
233         for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
234             uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ?
235                                  SPAPR_GPU_NUMA_ID : cpu_to_be32(i);
236             spapr->FORM1_assoc_array[i][j] = gpu_assoc;
237         }
238 
239         spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
240     }
241 
242     /*
243      * Guests pseries-5.1 and older uses zeroed associativity domains,
244      * i.e. no domain definition based on NUMA distance input.
245      *
246      * Same thing with guests that have only one NUMA node.
247      */
248     if (smc->pre_5_2_numa_associativity ||
249         machine->numa_state->num_nodes <= 1) {
250         return;
251     }
252 
253     if (!spapr_numa_is_symmetrical(machine)) {
254         error_report("Asymmetrical NUMA topologies aren't supported "
255                      "in the pSeries machine");
256         exit(EXIT_FAILURE);
257     }
258 
259     spapr_numa_define_FORM1_domains(spapr);
260 }
261 
262 void spapr_numa_associativity_init(SpaprMachineState *spapr,
263                                    MachineState *machine)
264 {
265     spapr_numa_FORM1_affinity_init(spapr, machine);
266 }
267 
268 void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt,
269                                        int offset, int nodeid)
270 {
271     const uint32_t *associativity = get_associativity(spapr, nodeid);
272 
273     _FDT((fdt_setprop(fdt, offset, "ibm,associativity",
274                       associativity,
275                       get_numa_assoc_size(spapr) * sizeof(uint32_t))));
276 }
277 
278 static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr,
279                                            PowerPCCPU *cpu)
280 {
281     const uint32_t *associativity = get_associativity(spapr, cpu->node_id);
282     int max_distance_ref_points = get_max_dist_ref_points(spapr);
283     int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
284     uint32_t *vcpu_assoc = g_new(uint32_t, vcpu_assoc_size);
285     int index = spapr_get_vcpu_id(cpu);
286 
287     /*
288      * VCPUs have an extra 'cpu_id' value in ibm,associativity
289      * compared to other resources. Increment the size at index
290      * 0, put cpu_id last, then copy the remaining associativity
291      * domains.
292      */
293     vcpu_assoc[0] = cpu_to_be32(max_distance_ref_points + 1);
294     vcpu_assoc[vcpu_assoc_size - 1] = cpu_to_be32(index);
295     memcpy(vcpu_assoc + 1, associativity + 1,
296            (vcpu_assoc_size - 2) * sizeof(uint32_t));
297 
298     return vcpu_assoc;
299 }
300 
301 int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt,
302                             int offset, PowerPCCPU *cpu)
303 {
304     g_autofree uint32_t *vcpu_assoc = NULL;
305     int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
306 
307     vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu);
308 
309     /* Advertise NUMA via ibm,associativity */
310     return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc,
311                        vcpu_assoc_size * sizeof(uint32_t));
312 }
313 
314 
315 int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt,
316                                          int offset)
317 {
318     MachineState *machine = MACHINE(spapr);
319     int max_distance_ref_points = get_max_dist_ref_points(spapr);
320     int nb_numa_nodes = machine->numa_state->num_nodes;
321     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
322     uint32_t *int_buf, *cur_index, buf_len;
323     int ret, i;
324 
325     /* ibm,associativity-lookup-arrays */
326     buf_len = (nr_nodes * max_distance_ref_points + 2) * sizeof(uint32_t);
327     cur_index = int_buf = g_malloc0(buf_len);
328     int_buf[0] = cpu_to_be32(nr_nodes);
329      /* Number of entries per associativity list */
330     int_buf[1] = cpu_to_be32(max_distance_ref_points);
331     cur_index += 2;
332     for (i = 0; i < nr_nodes; i++) {
333         /*
334          * For the lookup-array we use the ibm,associativity array of the
335          * current NUMA affinity, without the first element (size).
336          */
337         const uint32_t *associativity = get_associativity(spapr, i);
338         memcpy(cur_index, ++associativity,
339                sizeof(uint32_t) * max_distance_ref_points);
340         cur_index += max_distance_ref_points;
341     }
342     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
343                       (cur_index - int_buf) * sizeof(uint32_t));
344     g_free(int_buf);
345 
346     return ret;
347 }
348 
349 static void spapr_numa_FORM1_write_rtas_dt(SpaprMachineState *spapr,
350                                            void *fdt, int rtas)
351 {
352     MachineState *ms = MACHINE(spapr);
353     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
354     uint32_t number_nvgpus_nodes = spapr->gpu_numa_id -
355                                    spapr_numa_initial_nvgpu_numa_id(ms);
356     uint32_t refpoints[] = {
357         cpu_to_be32(0x4),
358         cpu_to_be32(0x3),
359         cpu_to_be32(0x2),
360         cpu_to_be32(0x1),
361     };
362     uint32_t nr_refpoints = ARRAY_SIZE(refpoints);
363     uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes;
364     uint32_t maxdomains[] = {
365         cpu_to_be32(4),
366         cpu_to_be32(maxdomain),
367         cpu_to_be32(maxdomain),
368         cpu_to_be32(maxdomain),
369         cpu_to_be32(maxdomain)
370     };
371 
372     if (smc->pre_5_2_numa_associativity ||
373         ms->numa_state->num_nodes <= 1) {
374         uint32_t legacy_refpoints[] = {
375             cpu_to_be32(0x4),
376             cpu_to_be32(0x4),
377             cpu_to_be32(0x2),
378         };
379         uint32_t legacy_maxdomain = spapr->gpu_numa_id > 1 ? 1 : 0;
380         uint32_t legacy_maxdomains[] = {
381             cpu_to_be32(4),
382             cpu_to_be32(legacy_maxdomain),
383             cpu_to_be32(legacy_maxdomain),
384             cpu_to_be32(legacy_maxdomain),
385             cpu_to_be32(spapr->gpu_numa_id),
386         };
387 
388         G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints));
389         G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains));
390 
391         nr_refpoints = 3;
392 
393         memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints));
394         memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains));
395 
396         /* pseries-5.0 and older reference-points array is {0x4, 0x4} */
397         if (smc->pre_5_1_assoc_refpoints) {
398             nr_refpoints = 2;
399         }
400     }
401 
402     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
403                      refpoints, nr_refpoints * sizeof(refpoints[0])));
404 
405     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
406                      maxdomains, sizeof(maxdomains)));
407 }
408 
409 /*
410  * Helper that writes ibm,associativity-reference-points and
411  * max-associativity-domains in the RTAS pointed by @rtas
412  * in the DT @fdt.
413  */
414 void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas)
415 {
416     spapr_numa_FORM1_write_rtas_dt(spapr, fdt, rtas);
417 }
418 
419 static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
420                                               SpaprMachineState *spapr,
421                                               target_ulong opcode,
422                                               target_ulong *args)
423 {
424     g_autofree uint32_t *vcpu_assoc = NULL;
425     target_ulong flags = args[0];
426     target_ulong procno = args[1];
427     PowerPCCPU *tcpu;
428     int idx, assoc_idx;
429     int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
430 
431     /* only support procno from H_REGISTER_VPA */
432     if (flags != 0x1) {
433         return H_FUNCTION;
434     }
435 
436     tcpu = spapr_find_cpu(procno);
437     if (tcpu == NULL) {
438         return H_P2;
439     }
440 
441     /*
442      * Given that we want to be flexible with the sizes and indexes,
443      * we must consider that there is a hard limit of how many
444      * associativities domain we can fit in R4 up to R9, which would be
445      * 12 associativity domains for vcpus. Assert and bail if that's
446      * not the case.
447      */
448     g_assert((vcpu_assoc_size - 1) <= 12);
449 
450     vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu);
451     /* assoc_idx starts at 1 to skip associativity size */
452     assoc_idx = 1;
453 
454 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
455                              ((uint64_t)(b) & 0xffffffff))
456 
457     for (idx = 0; idx < 6; idx++) {
458         int32_t a, b;
459 
460         /*
461          * vcpu_assoc[] will contain the associativity domains for tcpu,
462          * including tcpu->node_id and procno, meaning that we don't
463          * need to use these variables here.
464          *
465          * We'll read 2 values at a time to fill up the ASSOCIATIVITY()
466          * macro. The ternary will fill the remaining registers with -1
467          * after we went through vcpu_assoc[].
468          */
469         a = assoc_idx < vcpu_assoc_size ?
470             be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
471         b = assoc_idx < vcpu_assoc_size ?
472             be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
473 
474         args[idx] = ASSOCIATIVITY(a, b);
475     }
476 #undef ASSOCIATIVITY
477 
478     return H_SUCCESS;
479 }
480 
481 static void spapr_numa_register_types(void)
482 {
483     /* Virtual Processor Home Node */
484     spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
485                              h_home_node_associativity);
486 }
487 
488 type_init(spapr_numa_register_types)
489