xref: /qemu/hw/ppc/spapr_pci.c (revision 64552b6b)
1 /*
2  * QEMU sPAPR PCI host originated from Uninorth PCI host
3  *
4  * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5  * Copyright (C) 2011 David Gibson, IBM Corporation.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "qapi/error.h"
28 #include "cpu.h"
29 #include "hw/hw.h"
30 #include "hw/irq.h"
31 #include "hw/sysbus.h"
32 #include "hw/pci/pci.h"
33 #include "hw/pci/msi.h"
34 #include "hw/pci/msix.h"
35 #include "hw/pci/pci_host.h"
36 #include "hw/ppc/spapr.h"
37 #include "hw/pci-host/spapr.h"
38 #include "exec/address-spaces.h"
39 #include "exec/ram_addr.h"
40 #include <libfdt.h>
41 #include "trace.h"
42 #include "qemu/error-report.h"
43 #include "qemu/module.h"
44 #include "qapi/qmp/qerror.h"
45 #include "hw/ppc/fdt.h"
46 #include "hw/pci/pci_bridge.h"
47 #include "hw/pci/pci_bus.h"
48 #include "hw/pci/pci_ids.h"
49 #include "hw/ppc/spapr_drc.h"
50 #include "sysemu/device_tree.h"
51 #include "sysemu/kvm.h"
52 #include "sysemu/hostmem.h"
53 #include "sysemu/numa.h"
54 
55 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
56 #define RTAS_QUERY_FN           0
57 #define RTAS_CHANGE_FN          1
58 #define RTAS_RESET_FN           2
59 #define RTAS_CHANGE_MSI_FN      3
60 #define RTAS_CHANGE_MSIX_FN     4
61 
62 /* Interrupt types to return on RTAS_CHANGE_* */
63 #define RTAS_TYPE_MSI           1
64 #define RTAS_TYPE_MSIX          2
65 
66 SpaprPhbState *spapr_pci_find_phb(SpaprMachineState *spapr, uint64_t buid)
67 {
68     SpaprPhbState *sphb;
69 
70     QLIST_FOREACH(sphb, &spapr->phbs, list) {
71         if (sphb->buid != buid) {
72             continue;
73         }
74         return sphb;
75     }
76 
77     return NULL;
78 }
79 
80 PCIDevice *spapr_pci_find_dev(SpaprMachineState *spapr, uint64_t buid,
81                               uint32_t config_addr)
82 {
83     SpaprPhbState *sphb = spapr_pci_find_phb(spapr, buid);
84     PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
85     int bus_num = (config_addr >> 16) & 0xFF;
86     int devfn = (config_addr >> 8) & 0xFF;
87 
88     if (!phb) {
89         return NULL;
90     }
91 
92     return pci_find_device(phb->bus, bus_num, devfn);
93 }
94 
95 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
96 {
97     /* This handles the encoding of extended config space addresses */
98     return ((arg >> 20) & 0xf00) | (arg & 0xff);
99 }
100 
101 static void finish_read_pci_config(SpaprMachineState *spapr, uint64_t buid,
102                                    uint32_t addr, uint32_t size,
103                                    target_ulong rets)
104 {
105     PCIDevice *pci_dev;
106     uint32_t val;
107 
108     if ((size != 1) && (size != 2) && (size != 4)) {
109         /* access must be 1, 2 or 4 bytes */
110         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
111         return;
112     }
113 
114     pci_dev = spapr_pci_find_dev(spapr, buid, addr);
115     addr = rtas_pci_cfgaddr(addr);
116 
117     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
118         /* Access must be to a valid device, within bounds and
119          * naturally aligned */
120         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
121         return;
122     }
123 
124     val = pci_host_config_read_common(pci_dev, addr,
125                                       pci_config_size(pci_dev), size);
126 
127     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
128     rtas_st(rets, 1, val);
129 }
130 
131 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
132                                      uint32_t token, uint32_t nargs,
133                                      target_ulong args,
134                                      uint32_t nret, target_ulong rets)
135 {
136     uint64_t buid;
137     uint32_t size, addr;
138 
139     if ((nargs != 4) || (nret != 2)) {
140         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
141         return;
142     }
143 
144     buid = rtas_ldq(args, 1);
145     size = rtas_ld(args, 3);
146     addr = rtas_ld(args, 0);
147 
148     finish_read_pci_config(spapr, buid, addr, size, rets);
149 }
150 
151 static void rtas_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
152                                  uint32_t token, uint32_t nargs,
153                                  target_ulong args,
154                                  uint32_t nret, target_ulong rets)
155 {
156     uint32_t size, addr;
157 
158     if ((nargs != 2) || (nret != 2)) {
159         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
160         return;
161     }
162 
163     size = rtas_ld(args, 1);
164     addr = rtas_ld(args, 0);
165 
166     finish_read_pci_config(spapr, 0, addr, size, rets);
167 }
168 
169 static void finish_write_pci_config(SpaprMachineState *spapr, uint64_t buid,
170                                     uint32_t addr, uint32_t size,
171                                     uint32_t val, target_ulong rets)
172 {
173     PCIDevice *pci_dev;
174 
175     if ((size != 1) && (size != 2) && (size != 4)) {
176         /* access must be 1, 2 or 4 bytes */
177         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
178         return;
179     }
180 
181     pci_dev = spapr_pci_find_dev(spapr, buid, addr);
182     addr = rtas_pci_cfgaddr(addr);
183 
184     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
185         /* Access must be to a valid device, within bounds and
186          * naturally aligned */
187         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
188         return;
189     }
190 
191     pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
192                                  val, size);
193 
194     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
195 }
196 
197 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
198                                       uint32_t token, uint32_t nargs,
199                                       target_ulong args,
200                                       uint32_t nret, target_ulong rets)
201 {
202     uint64_t buid;
203     uint32_t val, size, addr;
204 
205     if ((nargs != 5) || (nret != 1)) {
206         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
207         return;
208     }
209 
210     buid = rtas_ldq(args, 1);
211     val = rtas_ld(args, 4);
212     size = rtas_ld(args, 3);
213     addr = rtas_ld(args, 0);
214 
215     finish_write_pci_config(spapr, buid, addr, size, val, rets);
216 }
217 
218 static void rtas_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
219                                   uint32_t token, uint32_t nargs,
220                                   target_ulong args,
221                                   uint32_t nret, target_ulong rets)
222 {
223     uint32_t val, size, addr;
224 
225     if ((nargs != 3) || (nret != 1)) {
226         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
227         return;
228     }
229 
230 
231     val = rtas_ld(args, 2);
232     size = rtas_ld(args, 1);
233     addr = rtas_ld(args, 0);
234 
235     finish_write_pci_config(spapr, 0, addr, size, val, rets);
236 }
237 
238 /*
239  * Set MSI/MSIX message data.
240  * This is required for msi_notify()/msix_notify() which
241  * will write at the addresses via spapr_msi_write().
242  *
243  * If hwaddr == 0, all entries will have .data == first_irq i.e.
244  * table will be reset.
245  */
246 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
247                              unsigned first_irq, unsigned req_num)
248 {
249     unsigned i;
250     MSIMessage msg = { .address = addr, .data = first_irq };
251 
252     if (!msix) {
253         msi_set_message(pdev, msg);
254         trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
255         return;
256     }
257 
258     for (i = 0; i < req_num; ++i) {
259         msix_set_message(pdev, i, msg);
260         trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
261         if (addr) {
262             ++msg.data;
263         }
264     }
265 }
266 
267 static void rtas_ibm_change_msi(PowerPCCPU *cpu, SpaprMachineState *spapr,
268                                 uint32_t token, uint32_t nargs,
269                                 target_ulong args, uint32_t nret,
270                                 target_ulong rets)
271 {
272     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
273     uint32_t config_addr = rtas_ld(args, 0);
274     uint64_t buid = rtas_ldq(args, 1);
275     unsigned int func = rtas_ld(args, 3);
276     unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
277     unsigned int seq_num = rtas_ld(args, 5);
278     unsigned int ret_intr_type;
279     unsigned int irq, max_irqs = 0;
280     SpaprPhbState *phb = NULL;
281     PCIDevice *pdev = NULL;
282     spapr_pci_msi *msi;
283     int *config_addr_key;
284     Error *err = NULL;
285     int i;
286 
287     /* Fins SpaprPhbState */
288     phb = spapr_pci_find_phb(spapr, buid);
289     if (phb) {
290         pdev = spapr_pci_find_dev(spapr, buid, config_addr);
291     }
292     if (!phb || !pdev) {
293         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
294         return;
295     }
296 
297     switch (func) {
298     case RTAS_CHANGE_FN:
299         if (msi_present(pdev)) {
300             ret_intr_type = RTAS_TYPE_MSI;
301         } else if (msix_present(pdev)) {
302             ret_intr_type = RTAS_TYPE_MSIX;
303         } else {
304             rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
305             return;
306         }
307         break;
308     case RTAS_CHANGE_MSI_FN:
309         if (msi_present(pdev)) {
310             ret_intr_type = RTAS_TYPE_MSI;
311         } else {
312             rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
313             return;
314         }
315         break;
316     case RTAS_CHANGE_MSIX_FN:
317         if (msix_present(pdev)) {
318             ret_intr_type = RTAS_TYPE_MSIX;
319         } else {
320             rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
321             return;
322         }
323         break;
324     default:
325         error_report("rtas_ibm_change_msi(%u) is not implemented", func);
326         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
327         return;
328     }
329 
330     msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
331 
332     /* Releasing MSIs */
333     if (!req_num) {
334         if (!msi) {
335             trace_spapr_pci_msi("Releasing wrong config", config_addr);
336             rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
337             return;
338         }
339 
340         if (!smc->legacy_irq_allocation) {
341             spapr_irq_msi_free(spapr, msi->first_irq, msi->num);
342         }
343         spapr_irq_free(spapr, msi->first_irq, msi->num);
344         if (msi_present(pdev)) {
345             spapr_msi_setmsg(pdev, 0, false, 0, 0);
346         }
347         if (msix_present(pdev)) {
348             spapr_msi_setmsg(pdev, 0, true, 0, 0);
349         }
350         g_hash_table_remove(phb->msi, &config_addr);
351 
352         trace_spapr_pci_msi("Released MSIs", config_addr);
353         rtas_st(rets, 0, RTAS_OUT_SUCCESS);
354         rtas_st(rets, 1, 0);
355         return;
356     }
357 
358     /* Enabling MSI */
359 
360     /* Check if the device supports as many IRQs as requested */
361     if (ret_intr_type == RTAS_TYPE_MSI) {
362         max_irqs = msi_nr_vectors_allocated(pdev);
363     } else if (ret_intr_type == RTAS_TYPE_MSIX) {
364         max_irqs = pdev->msix_entries_nr;
365     }
366     if (!max_irqs) {
367         error_report("Requested interrupt type %d is not enabled for device %x",
368                      ret_intr_type, config_addr);
369         rtas_st(rets, 0, -1); /* Hardware error */
370         return;
371     }
372     /* Correct the number if the guest asked for too many */
373     if (req_num > max_irqs) {
374         trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
375         req_num = max_irqs;
376         irq = 0; /* to avoid misleading trace */
377         goto out;
378     }
379 
380     /* Allocate MSIs */
381     if (smc->legacy_irq_allocation) {
382         irq = spapr_irq_find(spapr, req_num, ret_intr_type == RTAS_TYPE_MSI,
383                              &err);
384     } else {
385         irq = spapr_irq_msi_alloc(spapr, req_num,
386                                   ret_intr_type == RTAS_TYPE_MSI, &err);
387     }
388     if (err) {
389         error_reportf_err(err, "Can't allocate MSIs for device %x: ",
390                           config_addr);
391         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
392         return;
393     }
394 
395     for (i = 0; i < req_num; i++) {
396         spapr_irq_claim(spapr, irq + i, false, &err);
397         if (err) {
398             if (i) {
399                 spapr_irq_free(spapr, irq, i);
400             }
401             if (!smc->legacy_irq_allocation) {
402                 spapr_irq_msi_free(spapr, irq, req_num);
403             }
404             error_reportf_err(err, "Can't allocate MSIs for device %x: ",
405                               config_addr);
406             rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
407             return;
408         }
409     }
410 
411     /* Release previous MSIs */
412     if (msi) {
413         if (!smc->legacy_irq_allocation) {
414             spapr_irq_msi_free(spapr, msi->first_irq, msi->num);
415         }
416         spapr_irq_free(spapr, msi->first_irq, msi->num);
417         g_hash_table_remove(phb->msi, &config_addr);
418     }
419 
420     /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
421     spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
422                      irq, req_num);
423 
424     /* Add MSI device to cache */
425     msi = g_new(spapr_pci_msi, 1);
426     msi->first_irq = irq;
427     msi->num = req_num;
428     config_addr_key = g_new(int, 1);
429     *config_addr_key = config_addr;
430     g_hash_table_insert(phb->msi, config_addr_key, msi);
431 
432 out:
433     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
434     rtas_st(rets, 1, req_num);
435     rtas_st(rets, 2, ++seq_num);
436     if (nret > 3) {
437         rtas_st(rets, 3, ret_intr_type);
438     }
439 
440     trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
441 }
442 
443 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
444                                                    SpaprMachineState *spapr,
445                                                    uint32_t token,
446                                                    uint32_t nargs,
447                                                    target_ulong args,
448                                                    uint32_t nret,
449                                                    target_ulong rets)
450 {
451     uint32_t config_addr = rtas_ld(args, 0);
452     uint64_t buid = rtas_ldq(args, 1);
453     unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
454     SpaprPhbState *phb = NULL;
455     PCIDevice *pdev = NULL;
456     spapr_pci_msi *msi;
457 
458     /* Find SpaprPhbState */
459     phb = spapr_pci_find_phb(spapr, buid);
460     if (phb) {
461         pdev = spapr_pci_find_dev(spapr, buid, config_addr);
462     }
463     if (!phb || !pdev) {
464         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
465         return;
466     }
467 
468     /* Find device descriptor and start IRQ */
469     msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
470     if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
471         trace_spapr_pci_msi("Failed to return vector", config_addr);
472         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
473         return;
474     }
475     intr_src_num = msi->first_irq + ioa_intr_num;
476     trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
477                                                            intr_src_num);
478 
479     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
480     rtas_st(rets, 1, intr_src_num);
481     rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
482 }
483 
484 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
485                                     SpaprMachineState *spapr,
486                                     uint32_t token, uint32_t nargs,
487                                     target_ulong args, uint32_t nret,
488                                     target_ulong rets)
489 {
490     SpaprPhbState *sphb;
491     uint32_t addr, option;
492     uint64_t buid;
493     int ret;
494 
495     if ((nargs != 4) || (nret != 1)) {
496         goto param_error_exit;
497     }
498 
499     buid = rtas_ldq(args, 1);
500     addr = rtas_ld(args, 0);
501     option = rtas_ld(args, 3);
502 
503     sphb = spapr_pci_find_phb(spapr, buid);
504     if (!sphb) {
505         goto param_error_exit;
506     }
507 
508     if (!spapr_phb_eeh_available(sphb)) {
509         goto param_error_exit;
510     }
511 
512     ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option);
513     rtas_st(rets, 0, ret);
514     return;
515 
516 param_error_exit:
517     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
518 }
519 
520 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
521                                            SpaprMachineState *spapr,
522                                            uint32_t token, uint32_t nargs,
523                                            target_ulong args, uint32_t nret,
524                                            target_ulong rets)
525 {
526     SpaprPhbState *sphb;
527     PCIDevice *pdev;
528     uint32_t addr, option;
529     uint64_t buid;
530 
531     if ((nargs != 4) || (nret != 2)) {
532         goto param_error_exit;
533     }
534 
535     buid = rtas_ldq(args, 1);
536     sphb = spapr_pci_find_phb(spapr, buid);
537     if (!sphb) {
538         goto param_error_exit;
539     }
540 
541     if (!spapr_phb_eeh_available(sphb)) {
542         goto param_error_exit;
543     }
544 
545     /*
546      * We always have PE address of form "00BB0001". "BB"
547      * represents the bus number of PE's primary bus.
548      */
549     option = rtas_ld(args, 3);
550     switch (option) {
551     case RTAS_GET_PE_ADDR:
552         addr = rtas_ld(args, 0);
553         pdev = spapr_pci_find_dev(spapr, buid, addr);
554         if (!pdev) {
555             goto param_error_exit;
556         }
557 
558         rtas_st(rets, 1, (pci_bus_num(pci_get_bus(pdev)) << 16) + 1);
559         break;
560     case RTAS_GET_PE_MODE:
561         rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
562         break;
563     default:
564         goto param_error_exit;
565     }
566 
567     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
568     return;
569 
570 param_error_exit:
571     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
572 }
573 
574 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
575                                             SpaprMachineState *spapr,
576                                             uint32_t token, uint32_t nargs,
577                                             target_ulong args, uint32_t nret,
578                                             target_ulong rets)
579 {
580     SpaprPhbState *sphb;
581     uint64_t buid;
582     int state, ret;
583 
584     if ((nargs != 3) || (nret != 4 && nret != 5)) {
585         goto param_error_exit;
586     }
587 
588     buid = rtas_ldq(args, 1);
589     sphb = spapr_pci_find_phb(spapr, buid);
590     if (!sphb) {
591         goto param_error_exit;
592     }
593 
594     if (!spapr_phb_eeh_available(sphb)) {
595         goto param_error_exit;
596     }
597 
598     ret = spapr_phb_vfio_eeh_get_state(sphb, &state);
599     rtas_st(rets, 0, ret);
600     if (ret != RTAS_OUT_SUCCESS) {
601         return;
602     }
603 
604     rtas_st(rets, 1, state);
605     rtas_st(rets, 2, RTAS_EEH_SUPPORT);
606     rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
607     if (nret >= 5) {
608         rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
609     }
610     return;
611 
612 param_error_exit:
613     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
614 }
615 
616 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
617                                     SpaprMachineState *spapr,
618                                     uint32_t token, uint32_t nargs,
619                                     target_ulong args, uint32_t nret,
620                                     target_ulong rets)
621 {
622     SpaprPhbState *sphb;
623     uint32_t option;
624     uint64_t buid;
625     int ret;
626 
627     if ((nargs != 4) || (nret != 1)) {
628         goto param_error_exit;
629     }
630 
631     buid = rtas_ldq(args, 1);
632     option = rtas_ld(args, 3);
633     sphb = spapr_pci_find_phb(spapr, buid);
634     if (!sphb) {
635         goto param_error_exit;
636     }
637 
638     if (!spapr_phb_eeh_available(sphb)) {
639         goto param_error_exit;
640     }
641 
642     ret = spapr_phb_vfio_eeh_reset(sphb, option);
643     rtas_st(rets, 0, ret);
644     return;
645 
646 param_error_exit:
647     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
648 }
649 
650 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
651                                   SpaprMachineState *spapr,
652                                   uint32_t token, uint32_t nargs,
653                                   target_ulong args, uint32_t nret,
654                                   target_ulong rets)
655 {
656     SpaprPhbState *sphb;
657     uint64_t buid;
658     int ret;
659 
660     if ((nargs != 3) || (nret != 1)) {
661         goto param_error_exit;
662     }
663 
664     buid = rtas_ldq(args, 1);
665     sphb = spapr_pci_find_phb(spapr, buid);
666     if (!sphb) {
667         goto param_error_exit;
668     }
669 
670     if (!spapr_phb_eeh_available(sphb)) {
671         goto param_error_exit;
672     }
673 
674     ret = spapr_phb_vfio_eeh_configure(sphb);
675     rtas_st(rets, 0, ret);
676     return;
677 
678 param_error_exit:
679     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
680 }
681 
682 /* To support it later */
683 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
684                                        SpaprMachineState *spapr,
685                                        uint32_t token, uint32_t nargs,
686                                        target_ulong args, uint32_t nret,
687                                        target_ulong rets)
688 {
689     SpaprPhbState *sphb;
690     int option;
691     uint64_t buid;
692 
693     if ((nargs != 8) || (nret != 1)) {
694         goto param_error_exit;
695     }
696 
697     buid = rtas_ldq(args, 1);
698     sphb = spapr_pci_find_phb(spapr, buid);
699     if (!sphb) {
700         goto param_error_exit;
701     }
702 
703     if (!spapr_phb_eeh_available(sphb)) {
704         goto param_error_exit;
705     }
706 
707     option = rtas_ld(args, 7);
708     switch (option) {
709     case RTAS_SLOT_TEMP_ERR_LOG:
710     case RTAS_SLOT_PERM_ERR_LOG:
711         break;
712     default:
713         goto param_error_exit;
714     }
715 
716     /* We don't have error log yet */
717     rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
718     return;
719 
720 param_error_exit:
721     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
722 }
723 
724 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
725 {
726     /*
727      * Here we use the number returned by pci_swizzle_map_irq_fn to find a
728      * corresponding qemu_irq.
729      */
730     SpaprPhbState *phb = opaque;
731 
732     trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
733     qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
734 }
735 
736 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
737 {
738     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
739     PCIINTxRoute route;
740 
741     route.mode = PCI_INTX_ENABLED;
742     route.irq = sphb->lsi_table[pin].irq;
743 
744     return route;
745 }
746 
747 /*
748  * MSI/MSIX memory region implementation.
749  * The handler handles both MSI and MSIX.
750  * The vector number is encoded in least bits in data.
751  */
752 static void spapr_msi_write(void *opaque, hwaddr addr,
753                             uint64_t data, unsigned size)
754 {
755     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
756     uint32_t irq = data;
757 
758     trace_spapr_pci_msi_write(addr, data, irq);
759 
760     qemu_irq_pulse(spapr_qirq(spapr, irq));
761 }
762 
763 static const MemoryRegionOps spapr_msi_ops = {
764     /* There is no .read as the read result is undefined by PCI spec */
765     .read = NULL,
766     .write = spapr_msi_write,
767     .endianness = DEVICE_LITTLE_ENDIAN
768 };
769 
770 /*
771  * PHB PCI device
772  */
773 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
774 {
775     SpaprPhbState *phb = opaque;
776 
777     return &phb->iommu_as;
778 }
779 
780 static char *spapr_phb_vfio_get_loc_code(SpaprPhbState *sphb,  PCIDevice *pdev)
781 {
782     char *path = NULL, *buf = NULL, *host = NULL;
783 
784     /* Get the PCI VFIO host id */
785     host = object_property_get_str(OBJECT(pdev), "host", NULL);
786     if (!host) {
787         goto err_out;
788     }
789 
790     /* Construct the path of the file that will give us the DT location */
791     path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
792     g_free(host);
793     if (!g_file_get_contents(path, &buf, NULL, NULL)) {
794         goto err_out;
795     }
796     g_free(path);
797 
798     /* Construct and read from host device tree the loc-code */
799     path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
800     g_free(buf);
801     if (!g_file_get_contents(path, &buf, NULL, NULL)) {
802         goto err_out;
803     }
804     return buf;
805 
806 err_out:
807     g_free(path);
808     return NULL;
809 }
810 
811 static char *spapr_phb_get_loc_code(SpaprPhbState *sphb, PCIDevice *pdev)
812 {
813     char *buf;
814     const char *devtype = "qemu";
815     uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
816 
817     if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
818         buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
819         if (buf) {
820             return buf;
821         }
822         devtype = "vfio";
823     }
824     /*
825      * For emulated devices and VFIO-failure case, make up
826      * the loc-code.
827      */
828     buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
829                           devtype, pdev->name, sphb->index, busnr,
830                           PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
831     return buf;
832 }
833 
834 /* Macros to operate with address in OF binding to PCI */
835 #define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
836 #define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
837 #define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
838 #define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
839 #define b_ss(x)         b_x((x), 24, 2) /* the space code */
840 #define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
841 #define b_ddddd(x)      b_x((x), 11, 5) /* device number */
842 #define b_fff(x)        b_x((x), 8, 3)  /* function number */
843 #define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */
844 
845 /* for 'reg'/'assigned-addresses' OF properties */
846 #define RESOURCE_CELLS_SIZE 2
847 #define RESOURCE_CELLS_ADDRESS 3
848 
849 typedef struct ResourceFields {
850     uint32_t phys_hi;
851     uint32_t phys_mid;
852     uint32_t phys_lo;
853     uint32_t size_hi;
854     uint32_t size_lo;
855 } QEMU_PACKED ResourceFields;
856 
857 typedef struct ResourceProps {
858     ResourceFields reg[8];
859     ResourceFields assigned[7];
860     uint32_t reg_len;
861     uint32_t assigned_len;
862 } ResourceProps;
863 
864 /* fill in the 'reg'/'assigned-resources' OF properties for
865  * a PCI device. 'reg' describes resource requirements for a
866  * device's IO/MEM regions, 'assigned-addresses' describes the
867  * actual resource assignments.
868  *
869  * the properties are arrays of ('phys-addr', 'size') pairs describing
870  * the addressable regions of the PCI device, where 'phys-addr' is a
871  * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
872  * (phys.hi, phys.mid, phys.lo), and 'size' is a
873  * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
874  *
875  * phys.hi = 0xYYXXXXZZ, where:
876  *   0xYY = npt000ss
877  *          |||   |
878  *          |||   +-- space code
879  *          |||               |
880  *          |||               +  00 if configuration space
881  *          |||               +  01 if IO region,
882  *          |||               +  10 if 32-bit MEM region
883  *          |||               +  11 if 64-bit MEM region
884  *          |||
885  *          ||+------ for non-relocatable IO: 1 if aliased
886  *          ||        for relocatable IO: 1 if below 64KB
887  *          ||        for MEM: 1 if below 1MB
888  *          |+------- 1 if region is prefetchable
889  *          +-------- 1 if region is non-relocatable
890  *   0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
891  *            bits respectively
892  *   0xZZ = rrrrrrrr, the register number of the BAR corresponding
893  *          to the region
894  *
895  * phys.mid and phys.lo correspond respectively to the hi/lo portions
896  * of the actual address of the region.
897  *
898  * how the phys-addr/size values are used differ slightly between
899  * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
900  * an additional description for the config space region of the
901  * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
902  * to describe the region as relocatable, with an address-mapping
903  * that corresponds directly to the PHB's address space for the
904  * resource. 'assigned-addresses' always has n=1 set with an absolute
905  * address assigned for the resource. in general, 'assigned-addresses'
906  * won't be populated, since addresses for PCI devices are generally
907  * unmapped initially and left to the guest to assign.
908  *
909  * note also that addresses defined in these properties are, at least
910  * for PAPR guests, relative to the PHBs IO/MEM windows, and
911  * correspond directly to the addresses in the BARs.
912  *
913  * in accordance with PCI Bus Binding to Open Firmware,
914  * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
915  * Appendix C.
916  */
917 static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
918 {
919     int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
920     uint32_t dev_id = (b_bbbbbbbb(bus_num) |
921                        b_ddddd(PCI_SLOT(d->devfn)) |
922                        b_fff(PCI_FUNC(d->devfn)));
923     ResourceFields *reg, *assigned;
924     int i, reg_idx = 0, assigned_idx = 0;
925 
926     /* config space region */
927     reg = &rp->reg[reg_idx++];
928     reg->phys_hi = cpu_to_be32(dev_id);
929     reg->phys_mid = 0;
930     reg->phys_lo = 0;
931     reg->size_hi = 0;
932     reg->size_lo = 0;
933 
934     for (i = 0; i < PCI_NUM_REGIONS; i++) {
935         if (!d->io_regions[i].size) {
936             continue;
937         }
938 
939         reg = &rp->reg[reg_idx++];
940 
941         reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
942         if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
943             reg->phys_hi |= cpu_to_be32(b_ss(1));
944         } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
945             reg->phys_hi |= cpu_to_be32(b_ss(3));
946         } else {
947             reg->phys_hi |= cpu_to_be32(b_ss(2));
948         }
949         reg->phys_mid = 0;
950         reg->phys_lo = 0;
951         reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
952         reg->size_lo = cpu_to_be32(d->io_regions[i].size);
953 
954         if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
955             continue;
956         }
957 
958         assigned = &rp->assigned[assigned_idx++];
959         assigned->phys_hi = cpu_to_be32(be32_to_cpu(reg->phys_hi) | b_n(1));
960         assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
961         assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
962         assigned->size_hi = reg->size_hi;
963         assigned->size_lo = reg->size_lo;
964     }
965 
966     rp->reg_len = reg_idx * sizeof(ResourceFields);
967     rp->assigned_len = assigned_idx * sizeof(ResourceFields);
968 }
969 
970 typedef struct PCIClass PCIClass;
971 typedef struct PCISubClass PCISubClass;
972 typedef struct PCIIFace PCIIFace;
973 
974 struct PCIIFace {
975     int iface;
976     const char *name;
977 };
978 
979 struct PCISubClass {
980     int subclass;
981     const char *name;
982     const PCIIFace *iface;
983 };
984 
985 struct PCIClass {
986     const char *name;
987     const PCISubClass *subc;
988 };
989 
990 static const PCISubClass undef_subclass[] = {
991     { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL },
992     { 0xFF, NULL, NULL },
993 };
994 
995 static const PCISubClass mass_subclass[] = {
996     { PCI_CLASS_STORAGE_SCSI, "scsi", NULL },
997     { PCI_CLASS_STORAGE_IDE, "ide", NULL },
998     { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL },
999     { PCI_CLASS_STORAGE_IPI, "ipi", NULL },
1000     { PCI_CLASS_STORAGE_RAID, "raid", NULL },
1001     { PCI_CLASS_STORAGE_ATA, "ata", NULL },
1002     { PCI_CLASS_STORAGE_SATA, "sata", NULL },
1003     { PCI_CLASS_STORAGE_SAS, "sas", NULL },
1004     { 0xFF, NULL, NULL },
1005 };
1006 
1007 static const PCISubClass net_subclass[] = {
1008     { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL },
1009     { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL },
1010     { PCI_CLASS_NETWORK_FDDI, "fddi", NULL },
1011     { PCI_CLASS_NETWORK_ATM, "atm", NULL },
1012     { PCI_CLASS_NETWORK_ISDN, "isdn", NULL },
1013     { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL },
1014     { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL },
1015     { 0xFF, NULL, NULL },
1016 };
1017 
1018 static const PCISubClass displ_subclass[] = {
1019     { PCI_CLASS_DISPLAY_VGA, "vga", NULL },
1020     { PCI_CLASS_DISPLAY_XGA, "xga", NULL },
1021     { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL },
1022     { 0xFF, NULL, NULL },
1023 };
1024 
1025 static const PCISubClass media_subclass[] = {
1026     { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL },
1027     { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL },
1028     { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL },
1029     { 0xFF, NULL, NULL },
1030 };
1031 
1032 static const PCISubClass mem_subclass[] = {
1033     { PCI_CLASS_MEMORY_RAM, "memory", NULL },
1034     { PCI_CLASS_MEMORY_FLASH, "flash", NULL },
1035     { 0xFF, NULL, NULL },
1036 };
1037 
1038 static const PCISubClass bridg_subclass[] = {
1039     { PCI_CLASS_BRIDGE_HOST, "host", NULL },
1040     { PCI_CLASS_BRIDGE_ISA, "isa", NULL },
1041     { PCI_CLASS_BRIDGE_EISA, "eisa", NULL },
1042     { PCI_CLASS_BRIDGE_MC, "mca", NULL },
1043     { PCI_CLASS_BRIDGE_PCI, "pci", NULL },
1044     { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL },
1045     { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL },
1046     { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL },
1047     { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL },
1048     { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL },
1049     { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL },
1050     { 0xFF, NULL, NULL },
1051 };
1052 
1053 static const PCISubClass comm_subclass[] = {
1054     { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL },
1055     { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL },
1056     { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL },
1057     { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL },
1058     { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL },
1059     { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL },
1060     { 0xFF, NULL, NULL, },
1061 };
1062 
1063 static const PCIIFace pic_iface[] = {
1064     { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" },
1065     { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" },
1066     { 0xFF, NULL },
1067 };
1068 
1069 static const PCISubClass sys_subclass[] = {
1070     { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface },
1071     { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL },
1072     { PCI_CLASS_SYSTEM_TIMER, "timer", NULL },
1073     { PCI_CLASS_SYSTEM_RTC, "rtc", NULL },
1074     { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL },
1075     { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL },
1076     { 0xFF, NULL, NULL },
1077 };
1078 
1079 static const PCISubClass inp_subclass[] = {
1080     { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL },
1081     { PCI_CLASS_INPUT_PEN, "pen", NULL },
1082     { PCI_CLASS_INPUT_MOUSE, "mouse", NULL },
1083     { PCI_CLASS_INPUT_SCANNER, "scanner", NULL },
1084     { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL },
1085     { 0xFF, NULL, NULL },
1086 };
1087 
1088 static const PCISubClass dock_subclass[] = {
1089     { PCI_CLASS_DOCKING_GENERIC, "dock", NULL },
1090     { 0xFF, NULL, NULL },
1091 };
1092 
1093 static const PCISubClass cpu_subclass[] = {
1094     { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL },
1095     { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL },
1096     { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL },
1097     { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL },
1098     { 0xFF, NULL, NULL },
1099 };
1100 
1101 static const PCIIFace usb_iface[] = {
1102     { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" },
1103     { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", },
1104     { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" },
1105     { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" },
1106     { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" },
1107     { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" },
1108     { 0xFF, NULL },
1109 };
1110 
1111 static const PCISubClass ser_subclass[] = {
1112     { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL },
1113     { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL },
1114     { PCI_CLASS_SERIAL_SSA, "ssa", NULL },
1115     { PCI_CLASS_SERIAL_USB, "usb", usb_iface },
1116     { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL },
1117     { PCI_CLASS_SERIAL_SMBUS, "smb", NULL },
1118     { PCI_CLASS_SERIAL_IB, "infiniband", NULL },
1119     { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL },
1120     { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL },
1121     { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL },
1122     { 0xFF, NULL, NULL },
1123 };
1124 
1125 static const PCISubClass wrl_subclass[] = {
1126     { PCI_CLASS_WIRELESS_IRDA, "irda", NULL },
1127     { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL },
1128     { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL },
1129     { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL },
1130     { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL },
1131     { 0xFF, NULL, NULL },
1132 };
1133 
1134 static const PCISubClass sat_subclass[] = {
1135     { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL },
1136     { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL },
1137     { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL },
1138     { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL },
1139     { 0xFF, NULL, NULL },
1140 };
1141 
1142 static const PCISubClass crypt_subclass[] = {
1143     { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL },
1144     { PCI_CLASS_CRYPT_ENTERTAINMENT,
1145       "entertainment-encryption", NULL },
1146     { 0xFF, NULL, NULL },
1147 };
1148 
1149 static const PCISubClass spc_subclass[] = {
1150     { PCI_CLASS_SP_DPIO, "dpio", NULL },
1151     { PCI_CLASS_SP_PERF, "counter", NULL },
1152     { PCI_CLASS_SP_SYNCH, "measurement", NULL },
1153     { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL },
1154     { 0xFF, NULL, NULL },
1155 };
1156 
1157 static const PCIClass pci_classes[] = {
1158     { "legacy-device", undef_subclass },
1159     { "mass-storage",  mass_subclass },
1160     { "network", net_subclass },
1161     { "display", displ_subclass, },
1162     { "multimedia-device", media_subclass },
1163     { "memory-controller", mem_subclass },
1164     { "unknown-bridge", bridg_subclass },
1165     { "communication-controller", comm_subclass},
1166     { "system-peripheral", sys_subclass },
1167     { "input-controller", inp_subclass },
1168     { "docking-station", dock_subclass },
1169     { "cpu", cpu_subclass },
1170     { "serial-bus", ser_subclass },
1171     { "wireless-controller", wrl_subclass },
1172     { "intelligent-io", NULL },
1173     { "satellite-device", sat_subclass },
1174     { "encryption", crypt_subclass },
1175     { "data-processing-controller", spc_subclass },
1176 };
1177 
1178 static const char *dt_name_from_class(uint8_t class, uint8_t subclass,
1179                                       uint8_t iface)
1180 {
1181     const PCIClass *pclass;
1182     const PCISubClass *psubclass;
1183     const PCIIFace *piface;
1184     const char *name;
1185 
1186     if (class >= ARRAY_SIZE(pci_classes)) {
1187         return "pci";
1188     }
1189 
1190     pclass = pci_classes + class;
1191     name = pclass->name;
1192 
1193     if (pclass->subc == NULL) {
1194         return name;
1195     }
1196 
1197     psubclass = pclass->subc;
1198     while ((psubclass->subclass & 0xff) != 0xff) {
1199         if ((psubclass->subclass & 0xff) == subclass) {
1200             name = psubclass->name;
1201             break;
1202         }
1203         psubclass++;
1204     }
1205 
1206     piface = psubclass->iface;
1207     if (piface == NULL) {
1208         return name;
1209     }
1210     while ((piface->iface & 0xff) != 0xff) {
1211         if ((piface->iface & 0xff) == iface) {
1212             name = piface->name;
1213             break;
1214         }
1215         piface++;
1216     }
1217 
1218     return name;
1219 }
1220 
1221 /*
1222  * DRC helper functions
1223  */
1224 
1225 static uint32_t drc_id_from_devfn(SpaprPhbState *phb,
1226                                   uint8_t chassis, int32_t devfn)
1227 {
1228     return (phb->index << 16) | (chassis << 8) | devfn;
1229 }
1230 
1231 static SpaprDrc *drc_from_devfn(SpaprPhbState *phb,
1232                                 uint8_t chassis, int32_t devfn)
1233 {
1234     return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI,
1235                            drc_id_from_devfn(phb, chassis, devfn));
1236 }
1237 
1238 static uint8_t chassis_from_bus(PCIBus *bus, Error **errp)
1239 {
1240     if (pci_bus_is_root(bus)) {
1241         return 0;
1242     } else {
1243         PCIDevice *bridge = pci_bridge_get_device(bus);
1244 
1245         return object_property_get_uint(OBJECT(bridge), "chassis_nr", errp);
1246     }
1247 }
1248 
1249 static SpaprDrc *drc_from_dev(SpaprPhbState *phb, PCIDevice *dev)
1250 {
1251     Error *local_err = NULL;
1252     uint8_t chassis = chassis_from_bus(pci_get_bus(dev), &local_err);
1253 
1254     if (local_err) {
1255         error_report_err(local_err);
1256         return NULL;
1257     }
1258 
1259     return drc_from_devfn(phb, chassis, dev->devfn);
1260 }
1261 
1262 static void add_drcs(SpaprPhbState *phb, PCIBus *bus, Error **errp)
1263 {
1264     Object *owner;
1265     int i;
1266     uint8_t chassis;
1267     Error *local_err = NULL;
1268 
1269     if (!phb->dr_enabled) {
1270         return;
1271     }
1272 
1273     chassis = chassis_from_bus(bus, &local_err);
1274     if (local_err) {
1275         error_propagate(errp, local_err);
1276         return;
1277     }
1278 
1279     if (pci_bus_is_root(bus)) {
1280         owner = OBJECT(phb);
1281     } else {
1282         owner = OBJECT(pci_bridge_get_device(bus));
1283     }
1284 
1285     for (i = 0; i < PCI_SLOT_MAX * PCI_FUNC_MAX; i++) {
1286         spapr_dr_connector_new(owner, TYPE_SPAPR_DRC_PCI,
1287                                drc_id_from_devfn(phb, chassis, i));
1288     }
1289 }
1290 
1291 static void remove_drcs(SpaprPhbState *phb, PCIBus *bus, Error **errp)
1292 {
1293     int i;
1294     uint8_t chassis;
1295     Error *local_err = NULL;
1296 
1297     if (!phb->dr_enabled) {
1298         return;
1299     }
1300 
1301     chassis = chassis_from_bus(bus, &local_err);
1302     if (local_err) {
1303         error_propagate(errp, local_err);
1304         return;
1305     }
1306 
1307     for (i = PCI_SLOT_MAX * PCI_FUNC_MAX - 1; i >= 0; i--) {
1308         SpaprDrc *drc = drc_from_devfn(phb, chassis, i);
1309 
1310         if (drc) {
1311             object_unparent(OBJECT(drc));
1312         }
1313     }
1314 }
1315 
1316 typedef struct PciWalkFdt {
1317     void *fdt;
1318     int offset;
1319     SpaprPhbState *sphb;
1320     int err;
1321 } PciWalkFdt;
1322 
1323 static int spapr_dt_pci_device(SpaprPhbState *sphb, PCIDevice *dev,
1324                                void *fdt, int parent_offset);
1325 
1326 static void spapr_dt_pci_device_cb(PCIBus *bus, PCIDevice *pdev,
1327                                    void *opaque)
1328 {
1329     PciWalkFdt *p = opaque;
1330     int err;
1331 
1332     if (p->err) {
1333         /* Something's already broken, don't keep going */
1334         return;
1335     }
1336 
1337     err = spapr_dt_pci_device(p->sphb, pdev, p->fdt, p->offset);
1338     if (err < 0) {
1339         p->err = err;
1340     }
1341 }
1342 
1343 /* Augment PCI device node with bridge specific information */
1344 static int spapr_dt_pci_bus(SpaprPhbState *sphb, PCIBus *bus,
1345                                void *fdt, int offset)
1346 {
1347     Object *owner;
1348     PciWalkFdt cbinfo = {
1349         .fdt = fdt,
1350         .offset = offset,
1351         .sphb = sphb,
1352         .err = 0,
1353     };
1354     int ret;
1355 
1356     _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1357                           RESOURCE_CELLS_ADDRESS));
1358     _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1359                           RESOURCE_CELLS_SIZE));
1360 
1361     assert(bus);
1362     pci_for_each_device_reverse(bus, pci_bus_num(bus),
1363                                 spapr_dt_pci_device_cb, &cbinfo);
1364     if (cbinfo.err) {
1365         return cbinfo.err;
1366     }
1367 
1368     if (pci_bus_is_root(bus)) {
1369         owner = OBJECT(sphb);
1370     } else {
1371         owner = OBJECT(pci_bridge_get_device(bus));
1372     }
1373 
1374     ret = spapr_dt_drc(fdt, offset, owner,
1375                        SPAPR_DR_CONNECTOR_TYPE_PCI);
1376     if (ret) {
1377         return ret;
1378     }
1379 
1380     return offset;
1381 }
1382 
1383 /* create OF node for pci device and required OF DT properties */
1384 static int spapr_dt_pci_device(SpaprPhbState *sphb, PCIDevice *dev,
1385                                void *fdt, int parent_offset)
1386 {
1387     int offset;
1388     const gchar *basename;
1389     gchar *nodename;
1390     int slot = PCI_SLOT(dev->devfn);
1391     int func = PCI_FUNC(dev->devfn);
1392     PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(dev);
1393     ResourceProps rp;
1394     SpaprDrc *drc = drc_from_dev(sphb, dev);
1395     uint32_t vendor_id = pci_default_read_config(dev, PCI_VENDOR_ID, 2);
1396     uint32_t device_id = pci_default_read_config(dev, PCI_DEVICE_ID, 2);
1397     uint32_t revision_id = pci_default_read_config(dev, PCI_REVISION_ID, 1);
1398     uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1399     uint32_t irq_pin = pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1);
1400     uint32_t subsystem_id = pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2);
1401     uint32_t subsystem_vendor_id =
1402         pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2);
1403     uint32_t cache_line_size =
1404         pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1);
1405     uint32_t pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
1406     gchar *loc_code;
1407 
1408     basename = dt_name_from_class((ccode >> 16) & 0xff, (ccode >> 8) & 0xff,
1409                                   ccode & 0xff);
1410 
1411     if (func != 0) {
1412         nodename = g_strdup_printf("%s@%x,%x", basename, slot, func);
1413     } else {
1414         nodename = g_strdup_printf("%s@%x", basename, slot);
1415     }
1416 
1417     _FDT(offset = fdt_add_subnode(fdt, parent_offset, nodename));
1418 
1419     g_free(nodename);
1420 
1421     /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
1422     _FDT(fdt_setprop_cell(fdt, offset, "vendor-id", vendor_id));
1423     _FDT(fdt_setprop_cell(fdt, offset, "device-id", device_id));
1424     _FDT(fdt_setprop_cell(fdt, offset, "revision-id", revision_id));
1425 
1426     _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode));
1427     if (irq_pin) {
1428         _FDT(fdt_setprop_cell(fdt, offset, "interrupts", irq_pin));
1429     }
1430 
1431     if (subsystem_id) {
1432         _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id", subsystem_id));
1433     }
1434 
1435     if (subsystem_vendor_id) {
1436         _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
1437                               subsystem_vendor_id));
1438     }
1439 
1440     _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size", cache_line_size));
1441 
1442 
1443     /* the following fdt cells are masked off the pci status register */
1444     _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
1445                           PCI_STATUS_DEVSEL_MASK & pci_status));
1446 
1447     if (pci_status & PCI_STATUS_FAST_BACK) {
1448         _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1449     }
1450     if (pci_status & PCI_STATUS_66MHZ) {
1451         _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1452     }
1453     if (pci_status & PCI_STATUS_UDF) {
1454         _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1455     }
1456 
1457     loc_code = spapr_phb_get_loc_code(sphb, dev);
1458     _FDT(fdt_setprop_string(fdt, offset, "ibm,loc-code", loc_code));
1459     g_free(loc_code);
1460 
1461     if (drc) {
1462         _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index",
1463                               spapr_drc_index(drc)));
1464     }
1465 
1466     if (msi_present(dev)) {
1467         uint32_t max_msi = msi_nr_vectors_allocated(dev);
1468         if (max_msi) {
1469             _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1470         }
1471     }
1472     if (msix_present(dev)) {
1473         uint32_t max_msix = dev->msix_entries_nr;
1474         if (max_msix) {
1475             _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1476         }
1477     }
1478 
1479     populate_resource_props(dev, &rp);
1480     _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1481     _FDT(fdt_setprop(fdt, offset, "assigned-addresses",
1482                      (uint8_t *)rp.assigned, rp.assigned_len));
1483 
1484     if (sphb->pcie_ecs && pci_is_express(dev)) {
1485         _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1));
1486     }
1487 
1488     spapr_phb_nvgpu_populate_pcidev_dt(dev, fdt, offset, sphb);
1489 
1490     if (!pc->is_bridge) {
1491         /* Properties only for non-bridges */
1492         uint32_t min_grant = pci_default_read_config(dev, PCI_MIN_GNT, 1);
1493         uint32_t max_latency = pci_default_read_config(dev, PCI_MAX_LAT, 1);
1494         _FDT(fdt_setprop_cell(fdt, offset, "min-grant", min_grant));
1495         _FDT(fdt_setprop_cell(fdt, offset, "max-latency", max_latency));
1496         return offset;
1497     } else {
1498         PCIBus *sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(dev));
1499 
1500         return spapr_dt_pci_bus(sphb, sec_bus, fdt, offset);
1501     }
1502 }
1503 
1504 /* Callback to be called during DRC release. */
1505 void spapr_phb_remove_pci_device_cb(DeviceState *dev)
1506 {
1507     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
1508 
1509     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
1510     object_unparent(OBJECT(dev));
1511 }
1512 
1513 int spapr_pci_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
1514                           void *fdt, int *fdt_start_offset, Error **errp)
1515 {
1516     HotplugHandler *plug_handler = qdev_get_hotplug_handler(drc->dev);
1517     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(plug_handler);
1518     PCIDevice *pdev = PCI_DEVICE(drc->dev);
1519 
1520     *fdt_start_offset = spapr_dt_pci_device(sphb, pdev, fdt, 0);
1521     return 0;
1522 }
1523 
1524 static void spapr_pci_bridge_plug(SpaprPhbState *phb,
1525                                   PCIBridge *bridge,
1526                                   Error **errp)
1527 {
1528     Error *local_err = NULL;
1529     PCIBus *bus = pci_bridge_get_sec_bus(bridge);
1530 
1531     add_drcs(phb, bus, &local_err);
1532     if (local_err) {
1533         error_propagate(errp, local_err);
1534         return;
1535     }
1536 }
1537 
1538 static void spapr_pci_plug(HotplugHandler *plug_handler,
1539                            DeviceState *plugged_dev, Error **errp)
1540 {
1541     SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1542     PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1543     PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev);
1544     SpaprDrc *drc = drc_from_dev(phb, pdev);
1545     Error *local_err = NULL;
1546     PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1547     uint32_t slotnr = PCI_SLOT(pdev->devfn);
1548 
1549     /* if DR is disabled we don't need to do anything in the case of
1550      * hotplug or coldplug callbacks
1551      */
1552     if (!phb->dr_enabled) {
1553         /* if this is a hotplug operation initiated by the user
1554          * we need to let them know it's not enabled
1555          */
1556         if (plugged_dev->hotplugged) {
1557             error_setg(&local_err, QERR_BUS_NO_HOTPLUG,
1558                        object_get_typename(OBJECT(phb)));
1559         }
1560         goto out;
1561     }
1562 
1563     g_assert(drc);
1564 
1565     if (pc->is_bridge) {
1566         spapr_pci_bridge_plug(phb, PCI_BRIDGE(plugged_dev), &local_err);
1567         if (local_err) {
1568             error_propagate(errp, local_err);
1569             return;
1570         }
1571     }
1572 
1573     /* Following the QEMU convention used for PCIe multifunction
1574      * hotplug, we do not allow functions to be hotplugged to a
1575      * slot that already has function 0 present
1576      */
1577     if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
1578         PCI_FUNC(pdev->devfn) != 0) {
1579         error_setg(&local_err, "PCI: slot %d function 0 already ocuppied by %s,"
1580                    " additional functions can no longer be exposed to guest.",
1581                    slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
1582         goto out;
1583     }
1584 
1585     spapr_drc_attach(drc, DEVICE(pdev), &local_err);
1586     if (local_err) {
1587         goto out;
1588     }
1589 
1590     /* If this is function 0, signal hotplug for all the device functions.
1591      * Otherwise defer sending the hotplug event.
1592      */
1593     if (!spapr_drc_hotplugged(plugged_dev)) {
1594         spapr_drc_reset(drc);
1595     } else if (PCI_FUNC(pdev->devfn) == 0) {
1596         int i;
1597         uint8_t chassis = chassis_from_bus(pci_get_bus(pdev), &local_err);
1598 
1599         if (local_err) {
1600             error_propagate(errp, local_err);
1601             return;
1602         }
1603 
1604         for (i = 0; i < 8; i++) {
1605             SpaprDrc *func_drc;
1606             SpaprDrcClass *func_drck;
1607             SpaprDREntitySense state;
1608 
1609             func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i));
1610             func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1611             state = func_drck->dr_entity_sense(func_drc);
1612 
1613             if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1614                 spapr_hotplug_req_add_by_index(func_drc);
1615             }
1616         }
1617     }
1618 
1619 out:
1620     error_propagate(errp, local_err);
1621 }
1622 
1623 static void spapr_pci_bridge_unplug(SpaprPhbState *phb,
1624                                     PCIBridge *bridge,
1625                                     Error **errp)
1626 {
1627     Error *local_err = NULL;
1628     PCIBus *bus = pci_bridge_get_sec_bus(bridge);
1629 
1630     remove_drcs(phb, bus, &local_err);
1631     if (local_err) {
1632         error_propagate(errp, local_err);
1633         return;
1634     }
1635 }
1636 
1637 static void spapr_pci_unplug(HotplugHandler *plug_handler,
1638                              DeviceState *plugged_dev, Error **errp)
1639 {
1640     PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev);
1641     SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1642 
1643     /* some version guests do not wait for completion of a device
1644      * cleanup (generally done asynchronously by the kernel) before
1645      * signaling to QEMU that the device is safe, but instead sleep
1646      * for some 'safe' period of time. unfortunately on a busy host
1647      * this sleep isn't guaranteed to be long enough, resulting in
1648      * bad things like IRQ lines being left asserted during final
1649      * device removal. to deal with this we call reset just prior
1650      * to finalizing the device, which will put the device back into
1651      * an 'idle' state, as the device cleanup code expects.
1652      */
1653     pci_device_reset(PCI_DEVICE(plugged_dev));
1654 
1655     if (pc->is_bridge) {
1656         Error *local_err = NULL;
1657         spapr_pci_bridge_unplug(phb, PCI_BRIDGE(plugged_dev), &local_err);
1658         if (local_err) {
1659             error_propagate(errp, local_err);
1660         }
1661         return;
1662     }
1663 
1664     object_property_set_bool(OBJECT(plugged_dev), false, "realized", NULL);
1665 }
1666 
1667 static void spapr_pci_unplug_request(HotplugHandler *plug_handler,
1668                                      DeviceState *plugged_dev, Error **errp)
1669 {
1670     SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1671     PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1672     SpaprDrc *drc = drc_from_dev(phb, pdev);
1673 
1674     if (!phb->dr_enabled) {
1675         error_setg(errp, QERR_BUS_NO_HOTPLUG,
1676                    object_get_typename(OBJECT(phb)));
1677         return;
1678     }
1679 
1680     g_assert(drc);
1681     g_assert(drc->dev == plugged_dev);
1682 
1683     if (!spapr_drc_unplug_requested(drc)) {
1684         PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev);
1685         uint32_t slotnr = PCI_SLOT(pdev->devfn);
1686         SpaprDrc *func_drc;
1687         SpaprDrcClass *func_drck;
1688         SpaprDREntitySense state;
1689         int i;
1690         Error *local_err = NULL;
1691         uint8_t chassis = chassis_from_bus(pci_get_bus(pdev), &local_err);
1692 
1693         if (local_err) {
1694             error_propagate(errp, local_err);
1695             return;
1696         }
1697 
1698         if (pc->is_bridge) {
1699             error_setg(errp, "PCI: Hot unplug of PCI bridges not supported");
1700         }
1701 
1702         /* ensure any other present functions are pending unplug */
1703         if (PCI_FUNC(pdev->devfn) == 0) {
1704             for (i = 1; i < 8; i++) {
1705                 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i));
1706                 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1707                 state = func_drck->dr_entity_sense(func_drc);
1708                 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
1709                     && !spapr_drc_unplug_requested(func_drc)) {
1710                     error_setg(errp,
1711                                "PCI: slot %d, function %d still present. "
1712                                "Must unplug all non-0 functions first.",
1713                                slotnr, i);
1714                     return;
1715                 }
1716             }
1717         }
1718 
1719         spapr_drc_detach(drc);
1720 
1721         /* if this isn't func 0, defer unplug event. otherwise signal removal
1722          * for all present functions
1723          */
1724         if (PCI_FUNC(pdev->devfn) == 0) {
1725             for (i = 7; i >= 0; i--) {
1726                 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i));
1727                 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1728                 state = func_drck->dr_entity_sense(func_drc);
1729                 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1730                     spapr_hotplug_req_remove_by_index(func_drc);
1731                 }
1732             }
1733         }
1734     }
1735 }
1736 
1737 static void spapr_phb_finalizefn(Object *obj)
1738 {
1739     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(obj);
1740 
1741     g_free(sphb->dtbusname);
1742     sphb->dtbusname = NULL;
1743 }
1744 
1745 static void spapr_phb_unrealize(DeviceState *dev, Error **errp)
1746 {
1747     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1748     SysBusDevice *s = SYS_BUS_DEVICE(dev);
1749     PCIHostState *phb = PCI_HOST_BRIDGE(s);
1750     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(phb);
1751     SpaprTceTable *tcet;
1752     int i;
1753     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
1754     Error *local_err = NULL;
1755 
1756     spapr_phb_nvgpu_free(sphb);
1757 
1758     if (sphb->msi) {
1759         g_hash_table_unref(sphb->msi);
1760         sphb->msi = NULL;
1761     }
1762 
1763     /*
1764      * Remove IO/MMIO subregions and aliases, rest should get cleaned
1765      * via PHB's unrealize->object_finalize
1766      */
1767     for (i = windows_supported - 1; i >= 0; i--) {
1768         tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
1769         if (tcet) {
1770             memory_region_del_subregion(&sphb->iommu_root,
1771                                         spapr_tce_get_iommu(tcet));
1772         }
1773     }
1774 
1775     remove_drcs(sphb, phb->bus, &local_err);
1776     if (local_err) {
1777         error_propagate(errp, local_err);
1778         return;
1779     }
1780 
1781     for (i = PCI_NUM_PINS - 1; i >= 0; i--) {
1782         if (sphb->lsi_table[i].irq) {
1783             spapr_irq_free(spapr, sphb->lsi_table[i].irq, 1);
1784             sphb->lsi_table[i].irq = 0;
1785         }
1786     }
1787 
1788     QLIST_REMOVE(sphb, list);
1789 
1790     memory_region_del_subregion(&sphb->iommu_root, &sphb->msiwindow);
1791 
1792     /*
1793      * An attached PCI device may have memory listeners, eg. VFIO PCI. We have
1794      * unmapped all sections. Remove the listeners now, before destroying the
1795      * address space.
1796      */
1797     address_space_remove_listeners(&sphb->iommu_as);
1798     address_space_destroy(&sphb->iommu_as);
1799 
1800     qbus_set_hotplug_handler(BUS(phb->bus), NULL, &error_abort);
1801     pci_unregister_root_bus(phb->bus);
1802 
1803     memory_region_del_subregion(get_system_memory(), &sphb->iowindow);
1804     if (sphb->mem64_win_pciaddr != (hwaddr)-1) {
1805         memory_region_del_subregion(get_system_memory(), &sphb->mem64window);
1806     }
1807     memory_region_del_subregion(get_system_memory(), &sphb->mem32window);
1808 }
1809 
1810 static void spapr_phb_realize(DeviceState *dev, Error **errp)
1811 {
1812     /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user
1813      * tries to add a sPAPR PHB to a non-pseries machine.
1814      */
1815     SpaprMachineState *spapr =
1816         (SpaprMachineState *) object_dynamic_cast(qdev_get_machine(),
1817                                                   TYPE_SPAPR_MACHINE);
1818     SpaprMachineClass *smc = spapr ? SPAPR_MACHINE_GET_CLASS(spapr) : NULL;
1819     SysBusDevice *s = SYS_BUS_DEVICE(dev);
1820     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1821     PCIHostState *phb = PCI_HOST_BRIDGE(s);
1822     char *namebuf;
1823     int i;
1824     PCIBus *bus;
1825     uint64_t msi_window_size = 4096;
1826     SpaprTceTable *tcet;
1827     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
1828     Error *local_err = NULL;
1829 
1830     if (!spapr) {
1831         error_setg(errp, TYPE_SPAPR_PCI_HOST_BRIDGE " needs a pseries machine");
1832         return;
1833     }
1834 
1835     assert(sphb->index != (uint32_t)-1); /* checked in spapr_phb_pre_plug() */
1836 
1837     if (sphb->mem64_win_size != 0) {
1838         if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1839             error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx
1840                        " (max 2 GiB)", sphb->mem_win_size);
1841             return;
1842         }
1843 
1844         /* 64-bit window defaults to identity mapping */
1845         sphb->mem64_win_pciaddr = sphb->mem64_win_addr;
1846     } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1847         /*
1848          * For compatibility with old configuration, if no 64-bit MMIO
1849          * window is specified, but the ordinary (32-bit) memory
1850          * window is specified as > 2GiB, we treat it as a 2GiB 32-bit
1851          * window, with a 64-bit MMIO window following on immediately
1852          * afterwards
1853          */
1854         sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE;
1855         sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE;
1856         sphb->mem64_win_pciaddr =
1857             SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE;
1858         sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE;
1859     }
1860 
1861     if (spapr_pci_find_phb(spapr, sphb->buid)) {
1862         SpaprPhbState *s;
1863 
1864         error_setg(errp, "PCI host bridges must have unique indexes");
1865         error_append_hint(errp, "The following indexes are already in use:");
1866         QLIST_FOREACH(s, &spapr->phbs, list) {
1867             error_append_hint(errp, " %d", s->index);
1868         }
1869         error_append_hint(errp, "\nTry another value for the index property\n");
1870         return;
1871     }
1872 
1873     if (sphb->numa_node != -1 &&
1874         (sphb->numa_node >= MAX_NODES || !numa_info[sphb->numa_node].present)) {
1875         error_setg(errp, "Invalid NUMA node ID for PCI host bridge");
1876         return;
1877     }
1878 
1879     sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1880 
1881     /* Initialize memory regions */
1882     namebuf = g_strdup_printf("%s.mmio", sphb->dtbusname);
1883     memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1884     g_free(namebuf);
1885 
1886     namebuf = g_strdup_printf("%s.mmio32-alias", sphb->dtbusname);
1887     memory_region_init_alias(&sphb->mem32window, OBJECT(sphb),
1888                              namebuf, &sphb->memspace,
1889                              SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1890     g_free(namebuf);
1891     memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1892                                 &sphb->mem32window);
1893 
1894     if (sphb->mem64_win_size != 0) {
1895         namebuf = g_strdup_printf("%s.mmio64-alias", sphb->dtbusname);
1896         memory_region_init_alias(&sphb->mem64window, OBJECT(sphb),
1897                                  namebuf, &sphb->memspace,
1898                                  sphb->mem64_win_pciaddr, sphb->mem64_win_size);
1899         g_free(namebuf);
1900 
1901         memory_region_add_subregion(get_system_memory(),
1902                                     sphb->mem64_win_addr,
1903                                     &sphb->mem64window);
1904     }
1905 
1906     /* Initialize IO regions */
1907     namebuf = g_strdup_printf("%s.io", sphb->dtbusname);
1908     memory_region_init(&sphb->iospace, OBJECT(sphb),
1909                        namebuf, SPAPR_PCI_IO_WIN_SIZE);
1910     g_free(namebuf);
1911 
1912     namebuf = g_strdup_printf("%s.io-alias", sphb->dtbusname);
1913     memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1914                              &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1915     g_free(namebuf);
1916     memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1917                                 &sphb->iowindow);
1918 
1919     bus = pci_register_root_bus(dev, NULL,
1920                                 pci_spapr_set_irq, pci_swizzle_map_irq_fn, sphb,
1921                                 &sphb->memspace, &sphb->iospace,
1922                                 PCI_DEVFN(0, 0), PCI_NUM_PINS,
1923                                 TYPE_PCI_BUS);
1924 
1925     /*
1926      * Despite resembling a vanilla PCI bus in most ways, the PAPR
1927      * para-virtualized PCI bus *does* permit PCI-E extended config
1928      * space access
1929      */
1930     if (sphb->pcie_ecs) {
1931         bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE;
1932     }
1933     phb->bus = bus;
1934     qbus_set_hotplug_handler(BUS(phb->bus), OBJECT(sphb), NULL);
1935 
1936     /*
1937      * Initialize PHB address space.
1938      * By default there will be at least one subregion for default
1939      * 32bit DMA window.
1940      * Later the guest might want to create another DMA window
1941      * which will become another memory subregion.
1942      */
1943     namebuf = g_strdup_printf("%s.iommu-root", sphb->dtbusname);
1944     memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1945                        namebuf, UINT64_MAX);
1946     g_free(namebuf);
1947     address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1948                        sphb->dtbusname);
1949 
1950     /*
1951      * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1952      * we need to allocate some memory to catch those writes coming
1953      * from msi_notify()/msix_notify().
1954      * As MSIMessage:addr is going to be the same and MSIMessage:data
1955      * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1956      * be used.
1957      *
1958      * For KVM we want to ensure that this memory is a full page so that
1959      * our memory slot is of page size granularity.
1960      */
1961     if (kvm_enabled()) {
1962         msi_window_size = getpagesize();
1963     }
1964 
1965     memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr,
1966                           "msi", msi_window_size);
1967     memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1968                                 &sphb->msiwindow);
1969 
1970     pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1971 
1972     pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1973 
1974     QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1975 
1976     /* Initialize the LSI table */
1977     for (i = 0; i < PCI_NUM_PINS; i++) {
1978         uint32_t irq = SPAPR_IRQ_PCI_LSI + sphb->index * PCI_NUM_PINS + i;
1979 
1980         if (smc->legacy_irq_allocation) {
1981             irq = spapr_irq_findone(spapr, &local_err);
1982             if (local_err) {
1983                 error_propagate_prepend(errp, local_err,
1984                                         "can't allocate LSIs: ");
1985                 /*
1986                  * Older machines will never support PHB hotplug, ie, this is an
1987                  * init only path and QEMU will terminate. No need to rollback.
1988                  */
1989                 return;
1990             }
1991         }
1992 
1993         spapr_irq_claim(spapr, irq, true, &local_err);
1994         if (local_err) {
1995             error_propagate_prepend(errp, local_err, "can't allocate LSIs: ");
1996             goto unrealize;
1997         }
1998 
1999         sphb->lsi_table[i].irq = irq;
2000     }
2001 
2002     /* allocate connectors for child PCI devices */
2003     add_drcs(sphb, phb->bus, &local_err);
2004     if (local_err) {
2005         error_propagate(errp, local_err);
2006         goto unrealize;
2007     }
2008 
2009     /* DMA setup */
2010     for (i = 0; i < windows_supported; ++i) {
2011         tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]);
2012         if (!tcet) {
2013             error_setg(errp, "Creating window#%d failed for %s",
2014                        i, sphb->dtbusname);
2015             goto unrealize;
2016         }
2017         memory_region_add_subregion(&sphb->iommu_root, 0,
2018                                     spapr_tce_get_iommu(tcet));
2019     }
2020 
2021     sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
2022     return;
2023 
2024 unrealize:
2025     spapr_phb_unrealize(dev, NULL);
2026 }
2027 
2028 static int spapr_phb_children_reset(Object *child, void *opaque)
2029 {
2030     DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
2031 
2032     if (dev) {
2033         device_reset(dev);
2034     }
2035 
2036     return 0;
2037 }
2038 
2039 void spapr_phb_dma_reset(SpaprPhbState *sphb)
2040 {
2041     int i;
2042     SpaprTceTable *tcet;
2043 
2044     for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) {
2045         tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
2046 
2047         if (tcet && tcet->nb_table) {
2048             spapr_tce_table_disable(tcet);
2049         }
2050     }
2051 
2052     /* Register default 32bit DMA window */
2053     tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]);
2054     spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr,
2055                            sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT);
2056 }
2057 
2058 static void spapr_phb_reset(DeviceState *qdev)
2059 {
2060     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev);
2061     Error *errp = NULL;
2062 
2063     spapr_phb_dma_reset(sphb);
2064     spapr_phb_nvgpu_free(sphb);
2065     spapr_phb_nvgpu_setup(sphb, &errp);
2066     if (errp) {
2067         error_report_err(errp);
2068     }
2069 
2070     /* Reset the IOMMU state */
2071     object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
2072 
2073     if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) {
2074         spapr_phb_vfio_reset(qdev);
2075     }
2076 }
2077 
2078 static Property spapr_phb_properties[] = {
2079     DEFINE_PROP_UINT32("index", SpaprPhbState, index, -1),
2080     DEFINE_PROP_UINT64("mem_win_size", SpaprPhbState, mem_win_size,
2081                        SPAPR_PCI_MEM32_WIN_SIZE),
2082     DEFINE_PROP_UINT64("mem64_win_size", SpaprPhbState, mem64_win_size,
2083                        SPAPR_PCI_MEM64_WIN_SIZE),
2084     DEFINE_PROP_UINT64("io_win_size", SpaprPhbState, io_win_size,
2085                        SPAPR_PCI_IO_WIN_SIZE),
2086     DEFINE_PROP_BOOL("dynamic-reconfiguration", SpaprPhbState, dr_enabled,
2087                      true),
2088     /* Default DMA window is 0..1GB */
2089     DEFINE_PROP_UINT64("dma_win_addr", SpaprPhbState, dma_win_addr, 0),
2090     DEFINE_PROP_UINT64("dma_win_size", SpaprPhbState, dma_win_size, 0x40000000),
2091     DEFINE_PROP_UINT64("dma64_win_addr", SpaprPhbState, dma64_win_addr,
2092                        0x800000000000000ULL),
2093     DEFINE_PROP_BOOL("ddw", SpaprPhbState, ddw_enabled, true),
2094     DEFINE_PROP_UINT64("pgsz", SpaprPhbState, page_size_mask,
2095                        (1ULL << 12) | (1ULL << 16)),
2096     DEFINE_PROP_UINT32("numa_node", SpaprPhbState, numa_node, -1),
2097     DEFINE_PROP_BOOL("pre-2.8-migration", SpaprPhbState,
2098                      pre_2_8_migration, false),
2099     DEFINE_PROP_BOOL("pcie-extended-configuration-space", SpaprPhbState,
2100                      pcie_ecs, true),
2101     DEFINE_PROP_UINT64("gpa", SpaprPhbState, nv2_gpa_win_addr, 0),
2102     DEFINE_PROP_UINT64("atsd", SpaprPhbState, nv2_atsd_win_addr, 0),
2103     DEFINE_PROP_END_OF_LIST(),
2104 };
2105 
2106 static const VMStateDescription vmstate_spapr_pci_lsi = {
2107     .name = "spapr_pci/lsi",
2108     .version_id = 1,
2109     .minimum_version_id = 1,
2110     .fields = (VMStateField[]) {
2111         VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi, NULL),
2112 
2113         VMSTATE_END_OF_LIST()
2114     },
2115 };
2116 
2117 static const VMStateDescription vmstate_spapr_pci_msi = {
2118     .name = "spapr_pci/msi",
2119     .version_id = 1,
2120     .minimum_version_id = 1,
2121     .fields = (VMStateField []) {
2122         VMSTATE_UINT32(key, spapr_pci_msi_mig),
2123         VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
2124         VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
2125         VMSTATE_END_OF_LIST()
2126     },
2127 };
2128 
2129 static int spapr_pci_pre_save(void *opaque)
2130 {
2131     SpaprPhbState *sphb = opaque;
2132     GHashTableIter iter;
2133     gpointer key, value;
2134     int i;
2135 
2136     if (sphb->pre_2_8_migration) {
2137         sphb->mig_liobn = sphb->dma_liobn[0];
2138         sphb->mig_mem_win_addr = sphb->mem_win_addr;
2139         sphb->mig_mem_win_size = sphb->mem_win_size;
2140         sphb->mig_io_win_addr = sphb->io_win_addr;
2141         sphb->mig_io_win_size = sphb->io_win_size;
2142 
2143         if ((sphb->mem64_win_size != 0)
2144             && (sphb->mem64_win_addr
2145                 == (sphb->mem_win_addr + sphb->mem_win_size))) {
2146             sphb->mig_mem_win_size += sphb->mem64_win_size;
2147         }
2148     }
2149 
2150     g_free(sphb->msi_devs);
2151     sphb->msi_devs = NULL;
2152     sphb->msi_devs_num = g_hash_table_size(sphb->msi);
2153     if (!sphb->msi_devs_num) {
2154         return 0;
2155     }
2156     sphb->msi_devs = g_new(spapr_pci_msi_mig, sphb->msi_devs_num);
2157 
2158     g_hash_table_iter_init(&iter, sphb->msi);
2159     for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
2160         sphb->msi_devs[i].key = *(uint32_t *) key;
2161         sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
2162     }
2163 
2164     return 0;
2165 }
2166 
2167 static int spapr_pci_post_load(void *opaque, int version_id)
2168 {
2169     SpaprPhbState *sphb = opaque;
2170     gpointer key, value;
2171     int i;
2172 
2173     for (i = 0; i < sphb->msi_devs_num; ++i) {
2174         key = g_memdup(&sphb->msi_devs[i].key,
2175                        sizeof(sphb->msi_devs[i].key));
2176         value = g_memdup(&sphb->msi_devs[i].value,
2177                          sizeof(sphb->msi_devs[i].value));
2178         g_hash_table_insert(sphb->msi, key, value);
2179     }
2180     g_free(sphb->msi_devs);
2181     sphb->msi_devs = NULL;
2182     sphb->msi_devs_num = 0;
2183 
2184     return 0;
2185 }
2186 
2187 static bool pre_2_8_migration(void *opaque, int version_id)
2188 {
2189     SpaprPhbState *sphb = opaque;
2190 
2191     return sphb->pre_2_8_migration;
2192 }
2193 
2194 static const VMStateDescription vmstate_spapr_pci = {
2195     .name = "spapr_pci",
2196     .version_id = 2,
2197     .minimum_version_id = 2,
2198     .pre_save = spapr_pci_pre_save,
2199     .post_load = spapr_pci_post_load,
2200     .fields = (VMStateField[]) {
2201         VMSTATE_UINT64_EQUAL(buid, SpaprPhbState, NULL),
2202         VMSTATE_UINT32_TEST(mig_liobn, SpaprPhbState, pre_2_8_migration),
2203         VMSTATE_UINT64_TEST(mig_mem_win_addr, SpaprPhbState, pre_2_8_migration),
2204         VMSTATE_UINT64_TEST(mig_mem_win_size, SpaprPhbState, pre_2_8_migration),
2205         VMSTATE_UINT64_TEST(mig_io_win_addr, SpaprPhbState, pre_2_8_migration),
2206         VMSTATE_UINT64_TEST(mig_io_win_size, SpaprPhbState, pre_2_8_migration),
2207         VMSTATE_STRUCT_ARRAY(lsi_table, SpaprPhbState, PCI_NUM_PINS, 0,
2208                              vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
2209         VMSTATE_INT32(msi_devs_num, SpaprPhbState),
2210         VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, SpaprPhbState, msi_devs_num, 0,
2211                                     vmstate_spapr_pci_msi, spapr_pci_msi_mig),
2212         VMSTATE_END_OF_LIST()
2213     },
2214 };
2215 
2216 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
2217                                            PCIBus *rootbus)
2218 {
2219     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
2220 
2221     return sphb->dtbusname;
2222 }
2223 
2224 static void spapr_phb_class_init(ObjectClass *klass, void *data)
2225 {
2226     PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
2227     DeviceClass *dc = DEVICE_CLASS(klass);
2228     HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
2229 
2230     hc->root_bus_path = spapr_phb_root_bus_path;
2231     dc->realize = spapr_phb_realize;
2232     dc->unrealize = spapr_phb_unrealize;
2233     dc->props = spapr_phb_properties;
2234     dc->reset = spapr_phb_reset;
2235     dc->vmsd = &vmstate_spapr_pci;
2236     /* Supported by TYPE_SPAPR_MACHINE */
2237     dc->user_creatable = true;
2238     set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
2239     hp->plug = spapr_pci_plug;
2240     hp->unplug = spapr_pci_unplug;
2241     hp->unplug_request = spapr_pci_unplug_request;
2242 }
2243 
2244 static const TypeInfo spapr_phb_info = {
2245     .name          = TYPE_SPAPR_PCI_HOST_BRIDGE,
2246     .parent        = TYPE_PCI_HOST_BRIDGE,
2247     .instance_size = sizeof(SpaprPhbState),
2248     .instance_finalize = spapr_phb_finalizefn,
2249     .class_init    = spapr_phb_class_init,
2250     .interfaces    = (InterfaceInfo[]) {
2251         { TYPE_HOTPLUG_HANDLER },
2252         { }
2253     }
2254 };
2255 
2256 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
2257                                            void *opaque)
2258 {
2259     unsigned int *bus_no = opaque;
2260     PCIBus *sec_bus = NULL;
2261 
2262     if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
2263          PCI_HEADER_TYPE_BRIDGE)) {
2264         return;
2265     }
2266 
2267     (*bus_no)++;
2268     pci_default_write_config(pdev, PCI_PRIMARY_BUS, pci_dev_bus_num(pdev), 1);
2269     pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
2270     pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2271 
2272     sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
2273     if (!sec_bus) {
2274         return;
2275     }
2276 
2277     pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
2278                         spapr_phb_pci_enumerate_bridge, bus_no);
2279     pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2280 }
2281 
2282 static void spapr_phb_pci_enumerate(SpaprPhbState *phb)
2283 {
2284     PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2285     unsigned int bus_no = 0;
2286 
2287     pci_for_each_device(bus, pci_bus_num(bus),
2288                         spapr_phb_pci_enumerate_bridge,
2289                         &bus_no);
2290 
2291 }
2292 
2293 int spapr_dt_phb(SpaprPhbState *phb, uint32_t intc_phandle, void *fdt,
2294                  uint32_t nr_msis, int *node_offset)
2295 {
2296     int bus_off, i, j, ret;
2297     uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
2298     struct {
2299         uint32_t hi;
2300         uint64_t child;
2301         uint64_t parent;
2302         uint64_t size;
2303     } QEMU_PACKED ranges[] = {
2304         {
2305             cpu_to_be32(b_ss(1)), cpu_to_be64(0),
2306             cpu_to_be64(phb->io_win_addr),
2307             cpu_to_be64(memory_region_size(&phb->iospace)),
2308         },
2309         {
2310             cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
2311             cpu_to_be64(phb->mem_win_addr),
2312             cpu_to_be64(phb->mem_win_size),
2313         },
2314         {
2315             cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr),
2316             cpu_to_be64(phb->mem64_win_addr),
2317             cpu_to_be64(phb->mem64_win_size),
2318         },
2319     };
2320     const unsigned sizeof_ranges =
2321         (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]);
2322     uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
2323     uint32_t interrupt_map_mask[] = {
2324         cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
2325     uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
2326     uint32_t ddw_applicable[] = {
2327         cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW),
2328         cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW),
2329         cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW)
2330     };
2331     uint32_t ddw_extensions[] = {
2332         cpu_to_be32(1),
2333         cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW)
2334     };
2335     uint32_t associativity[] = {cpu_to_be32(0x4),
2336                                 cpu_to_be32(0x0),
2337                                 cpu_to_be32(0x0),
2338                                 cpu_to_be32(0x0),
2339                                 cpu_to_be32(phb->numa_node)};
2340     SpaprTceTable *tcet;
2341     SpaprDrc *drc;
2342     Error *errp = NULL;
2343 
2344     /* Start populating the FDT */
2345     _FDT(bus_off = fdt_add_subnode(fdt, 0, phb->dtbusname));
2346     if (node_offset) {
2347         *node_offset = bus_off;
2348     }
2349 
2350     /* Write PHB properties */
2351     _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
2352     _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
2353     _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
2354     _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
2355     _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
2356     _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
2357     _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
2358     _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
2359     _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", nr_msis));
2360 
2361     /* Dynamic DMA window */
2362     if (phb->ddw_enabled) {
2363         _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable,
2364                          sizeof(ddw_applicable)));
2365         _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions",
2366                          &ddw_extensions, sizeof(ddw_extensions)));
2367     }
2368 
2369     /* Advertise NUMA via ibm,associativity */
2370     if (phb->numa_node != -1) {
2371         _FDT(fdt_setprop(fdt, bus_off, "ibm,associativity", associativity,
2372                          sizeof(associativity)));
2373     }
2374 
2375     /* Build the interrupt-map, this must matches what is done
2376      * in pci_swizzle_map_irq_fn
2377      */
2378     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
2379                      &interrupt_map_mask, sizeof(interrupt_map_mask)));
2380     for (i = 0; i < PCI_SLOT_MAX; i++) {
2381         for (j = 0; j < PCI_NUM_PINS; j++) {
2382             uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
2383             int lsi_num = pci_swizzle(i, j);
2384 
2385             irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
2386             irqmap[1] = 0;
2387             irqmap[2] = 0;
2388             irqmap[3] = cpu_to_be32(j+1);
2389             irqmap[4] = cpu_to_be32(intc_phandle);
2390             spapr_dt_irq(&irqmap[5], phb->lsi_table[lsi_num].irq, true);
2391         }
2392     }
2393     /* Write interrupt map */
2394     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
2395                      sizeof(interrupt_map)));
2396 
2397     tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]);
2398     if (!tcet) {
2399         return -1;
2400     }
2401     spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
2402                  tcet->liobn, tcet->bus_offset,
2403                  tcet->nb_table << tcet->page_shift);
2404 
2405     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, phb->index);
2406     if (drc) {
2407         uint32_t drc_index = cpu_to_be32(spapr_drc_index(drc));
2408 
2409         _FDT(fdt_setprop(fdt, bus_off, "ibm,my-drc-index", &drc_index,
2410                          sizeof(drc_index)));
2411     }
2412 
2413     /* Walk the bridges and program the bus numbers*/
2414     spapr_phb_pci_enumerate(phb);
2415     _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
2416 
2417     /* Walk the bridge and subordinate buses */
2418     ret = spapr_dt_pci_bus(phb, PCI_HOST_BRIDGE(phb)->bus, fdt, bus_off);
2419     if (ret < 0) {
2420         return ret;
2421     }
2422 
2423     spapr_phb_nvgpu_populate_dt(phb, fdt, bus_off, &errp);
2424     if (errp) {
2425         error_report_err(errp);
2426     }
2427     spapr_phb_nvgpu_ram_populate_dt(phb, fdt);
2428 
2429     return 0;
2430 }
2431 
2432 void spapr_pci_rtas_init(void)
2433 {
2434     spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
2435                         rtas_read_pci_config);
2436     spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
2437                         rtas_write_pci_config);
2438     spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
2439                         rtas_ibm_read_pci_config);
2440     spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
2441                         rtas_ibm_write_pci_config);
2442     if (msi_nonbroken) {
2443         spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
2444                             "ibm,query-interrupt-source-number",
2445                             rtas_ibm_query_interrupt_source_number);
2446         spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
2447                             rtas_ibm_change_msi);
2448     }
2449 
2450     spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
2451                         "ibm,set-eeh-option",
2452                         rtas_ibm_set_eeh_option);
2453     spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
2454                         "ibm,get-config-addr-info2",
2455                         rtas_ibm_get_config_addr_info2);
2456     spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
2457                         "ibm,read-slot-reset-state2",
2458                         rtas_ibm_read_slot_reset_state2);
2459     spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
2460                         "ibm,set-slot-reset",
2461                         rtas_ibm_set_slot_reset);
2462     spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
2463                         "ibm,configure-pe",
2464                         rtas_ibm_configure_pe);
2465     spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
2466                         "ibm,slot-error-detail",
2467                         rtas_ibm_slot_error_detail);
2468 }
2469 
2470 static void spapr_pci_register_types(void)
2471 {
2472     type_register_static(&spapr_phb_info);
2473 }
2474 
2475 type_init(spapr_pci_register_types)
2476 
2477 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
2478 {
2479     bool be = *(bool *)opaque;
2480 
2481     if (object_dynamic_cast(OBJECT(dev), "VGA")
2482         || object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
2483         object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
2484                                  &error_abort);
2485     }
2486     return 0;
2487 }
2488 
2489 void spapr_pci_switch_vga(bool big_endian)
2490 {
2491     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
2492     SpaprPhbState *sphb;
2493 
2494     /*
2495      * For backward compatibility with existing guests, we switch
2496      * the endianness of the VGA controller when changing the guest
2497      * interrupt mode
2498      */
2499     QLIST_FOREACH(sphb, &spapr->phbs, list) {
2500         BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
2501         qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
2502                            &big_endian);
2503     }
2504 }
2505