xref: /qemu/hw/ppc/spapr_pci.c (revision 85aad98a)
1 /*
2  * QEMU sPAPR PCI host originated from Uninorth PCI host
3  *
4  * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5  * Copyright (C) 2011 David Gibson, IBM Corporation.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "hw/hw.h"
30 #include "hw/sysbus.h"
31 #include "hw/pci/pci.h"
32 #include "hw/pci/msi.h"
33 #include "hw/pci/msix.h"
34 #include "hw/pci/pci_host.h"
35 #include "hw/ppc/spapr.h"
36 #include "hw/pci-host/spapr.h"
37 #include "exec/address-spaces.h"
38 #include "exec/ram_addr.h"
39 #include <libfdt.h>
40 #include "trace.h"
41 #include "qemu/error-report.h"
42 #include "qapi/qmp/qerror.h"
43 
44 #include "hw/pci/pci_bridge.h"
45 #include "hw/pci/pci_bus.h"
46 #include "hw/ppc/spapr_drc.h"
47 #include "sysemu/device_tree.h"
48 #include "sysemu/kvm.h"
49 #include "sysemu/hostmem.h"
50 
51 #include "hw/vfio/vfio.h"
52 
53 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
54 #define RTAS_QUERY_FN           0
55 #define RTAS_CHANGE_FN          1
56 #define RTAS_RESET_FN           2
57 #define RTAS_CHANGE_MSI_FN      3
58 #define RTAS_CHANGE_MSIX_FN     4
59 
60 /* Interrupt types to return on RTAS_CHANGE_* */
61 #define RTAS_TYPE_MSI           1
62 #define RTAS_TYPE_MSIX          2
63 
64 #define FDT_NAME_MAX          128
65 
66 #define _FDT(exp) \
67     do { \
68         int ret = (exp);                                           \
69         if (ret < 0) {                                             \
70             return ret;                                            \
71         }                                                          \
72     } while (0)
73 
74 sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid)
75 {
76     sPAPRPHBState *sphb;
77 
78     QLIST_FOREACH(sphb, &spapr->phbs, list) {
79         if (sphb->buid != buid) {
80             continue;
81         }
82         return sphb;
83     }
84 
85     return NULL;
86 }
87 
88 PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid,
89                               uint32_t config_addr)
90 {
91     sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid);
92     PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
93     int bus_num = (config_addr >> 16) & 0xFF;
94     int devfn = (config_addr >> 8) & 0xFF;
95 
96     if (!phb) {
97         return NULL;
98     }
99 
100     return pci_find_device(phb->bus, bus_num, devfn);
101 }
102 
103 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
104 {
105     /* This handles the encoding of extended config space addresses */
106     return ((arg >> 20) & 0xf00) | (arg & 0xff);
107 }
108 
109 static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid,
110                                    uint32_t addr, uint32_t size,
111                                    target_ulong rets)
112 {
113     PCIDevice *pci_dev;
114     uint32_t val;
115 
116     if ((size != 1) && (size != 2) && (size != 4)) {
117         /* access must be 1, 2 or 4 bytes */
118         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
119         return;
120     }
121 
122     pci_dev = spapr_pci_find_dev(spapr, buid, addr);
123     addr = rtas_pci_cfgaddr(addr);
124 
125     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
126         /* Access must be to a valid device, within bounds and
127          * naturally aligned */
128         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
129         return;
130     }
131 
132     val = pci_host_config_read_common(pci_dev, addr,
133                                       pci_config_size(pci_dev), size);
134 
135     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
136     rtas_st(rets, 1, val);
137 }
138 
139 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
140                                      uint32_t token, uint32_t nargs,
141                                      target_ulong args,
142                                      uint32_t nret, target_ulong rets)
143 {
144     uint64_t buid;
145     uint32_t size, addr;
146 
147     if ((nargs != 4) || (nret != 2)) {
148         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
149         return;
150     }
151 
152     buid = rtas_ldq(args, 1);
153     size = rtas_ld(args, 3);
154     addr = rtas_ld(args, 0);
155 
156     finish_read_pci_config(spapr, buid, addr, size, rets);
157 }
158 
159 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
160                                  uint32_t token, uint32_t nargs,
161                                  target_ulong args,
162                                  uint32_t nret, target_ulong rets)
163 {
164     uint32_t size, addr;
165 
166     if ((nargs != 2) || (nret != 2)) {
167         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
168         return;
169     }
170 
171     size = rtas_ld(args, 1);
172     addr = rtas_ld(args, 0);
173 
174     finish_read_pci_config(spapr, 0, addr, size, rets);
175 }
176 
177 static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid,
178                                     uint32_t addr, uint32_t size,
179                                     uint32_t val, target_ulong rets)
180 {
181     PCIDevice *pci_dev;
182 
183     if ((size != 1) && (size != 2) && (size != 4)) {
184         /* access must be 1, 2 or 4 bytes */
185         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
186         return;
187     }
188 
189     pci_dev = spapr_pci_find_dev(spapr, buid, addr);
190     addr = rtas_pci_cfgaddr(addr);
191 
192     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
193         /* Access must be to a valid device, within bounds and
194          * naturally aligned */
195         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
196         return;
197     }
198 
199     pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
200                                  val, size);
201 
202     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
203 }
204 
205 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
206                                       uint32_t token, uint32_t nargs,
207                                       target_ulong args,
208                                       uint32_t nret, target_ulong rets)
209 {
210     uint64_t buid;
211     uint32_t val, size, addr;
212 
213     if ((nargs != 5) || (nret != 1)) {
214         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
215         return;
216     }
217 
218     buid = rtas_ldq(args, 1);
219     val = rtas_ld(args, 4);
220     size = rtas_ld(args, 3);
221     addr = rtas_ld(args, 0);
222 
223     finish_write_pci_config(spapr, buid, addr, size, val, rets);
224 }
225 
226 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
227                                   uint32_t token, uint32_t nargs,
228                                   target_ulong args,
229                                   uint32_t nret, target_ulong rets)
230 {
231     uint32_t val, size, addr;
232 
233     if ((nargs != 3) || (nret != 1)) {
234         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
235         return;
236     }
237 
238 
239     val = rtas_ld(args, 2);
240     size = rtas_ld(args, 1);
241     addr = rtas_ld(args, 0);
242 
243     finish_write_pci_config(spapr, 0, addr, size, val, rets);
244 }
245 
246 /*
247  * Set MSI/MSIX message data.
248  * This is required for msi_notify()/msix_notify() which
249  * will write at the addresses via spapr_msi_write().
250  *
251  * If hwaddr == 0, all entries will have .data == first_irq i.e.
252  * table will be reset.
253  */
254 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
255                              unsigned first_irq, unsigned req_num)
256 {
257     unsigned i;
258     MSIMessage msg = { .address = addr, .data = first_irq };
259 
260     if (!msix) {
261         msi_set_message(pdev, msg);
262         trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
263         return;
264     }
265 
266     for (i = 0; i < req_num; ++i) {
267         msix_set_message(pdev, i, msg);
268         trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
269         if (addr) {
270             ++msg.data;
271         }
272     }
273 }
274 
275 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
276                                 uint32_t token, uint32_t nargs,
277                                 target_ulong args, uint32_t nret,
278                                 target_ulong rets)
279 {
280     uint32_t config_addr = rtas_ld(args, 0);
281     uint64_t buid = rtas_ldq(args, 1);
282     unsigned int func = rtas_ld(args, 3);
283     unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
284     unsigned int seq_num = rtas_ld(args, 5);
285     unsigned int ret_intr_type;
286     unsigned int irq, max_irqs = 0;
287     sPAPRPHBState *phb = NULL;
288     PCIDevice *pdev = NULL;
289     spapr_pci_msi *msi;
290     int *config_addr_key;
291     Error *err = NULL;
292 
293     switch (func) {
294     case RTAS_CHANGE_MSI_FN:
295     case RTAS_CHANGE_FN:
296         ret_intr_type = RTAS_TYPE_MSI;
297         break;
298     case RTAS_CHANGE_MSIX_FN:
299         ret_intr_type = RTAS_TYPE_MSIX;
300         break;
301     default:
302         error_report("rtas_ibm_change_msi(%u) is not implemented", func);
303         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
304         return;
305     }
306 
307     /* Fins sPAPRPHBState */
308     phb = spapr_pci_find_phb(spapr, buid);
309     if (phb) {
310         pdev = spapr_pci_find_dev(spapr, buid, config_addr);
311     }
312     if (!phb || !pdev) {
313         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
314         return;
315     }
316 
317     msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
318 
319     /* Releasing MSIs */
320     if (!req_num) {
321         if (!msi) {
322             trace_spapr_pci_msi("Releasing wrong config", config_addr);
323             rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
324             return;
325         }
326 
327         xics_spapr_free(spapr->xics, msi->first_irq, msi->num);
328         if (msi_present(pdev)) {
329             spapr_msi_setmsg(pdev, 0, false, 0, 0);
330         }
331         if (msix_present(pdev)) {
332             spapr_msi_setmsg(pdev, 0, true, 0, 0);
333         }
334         g_hash_table_remove(phb->msi, &config_addr);
335 
336         trace_spapr_pci_msi("Released MSIs", config_addr);
337         rtas_st(rets, 0, RTAS_OUT_SUCCESS);
338         rtas_st(rets, 1, 0);
339         return;
340     }
341 
342     /* Enabling MSI */
343 
344     /* Check if the device supports as many IRQs as requested */
345     if (ret_intr_type == RTAS_TYPE_MSI) {
346         max_irqs = msi_nr_vectors_allocated(pdev);
347     } else if (ret_intr_type == RTAS_TYPE_MSIX) {
348         max_irqs = pdev->msix_entries_nr;
349     }
350     if (!max_irqs) {
351         error_report("Requested interrupt type %d is not enabled for device %x",
352                      ret_intr_type, config_addr);
353         rtas_st(rets, 0, -1); /* Hardware error */
354         return;
355     }
356     /* Correct the number if the guest asked for too many */
357     if (req_num > max_irqs) {
358         trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
359         req_num = max_irqs;
360         irq = 0; /* to avoid misleading trace */
361         goto out;
362     }
363 
364     /* Allocate MSIs */
365     irq = xics_spapr_alloc_block(spapr->xics, 0, req_num, false,
366                            ret_intr_type == RTAS_TYPE_MSI, &err);
367     if (err) {
368         error_reportf_err(err, "Can't allocate MSIs for device %x: ",
369                           config_addr);
370         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
371         return;
372     }
373 
374     /* Release previous MSIs */
375     if (msi) {
376         xics_spapr_free(spapr->xics, msi->first_irq, msi->num);
377         g_hash_table_remove(phb->msi, &config_addr);
378     }
379 
380     /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
381     spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
382                      irq, req_num);
383 
384     /* Add MSI device to cache */
385     msi = g_new(spapr_pci_msi, 1);
386     msi->first_irq = irq;
387     msi->num = req_num;
388     config_addr_key = g_new(int, 1);
389     *config_addr_key = config_addr;
390     g_hash_table_insert(phb->msi, config_addr_key, msi);
391 
392 out:
393     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
394     rtas_st(rets, 1, req_num);
395     rtas_st(rets, 2, ++seq_num);
396     if (nret > 3) {
397         rtas_st(rets, 3, ret_intr_type);
398     }
399 
400     trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
401 }
402 
403 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
404                                                    sPAPRMachineState *spapr,
405                                                    uint32_t token,
406                                                    uint32_t nargs,
407                                                    target_ulong args,
408                                                    uint32_t nret,
409                                                    target_ulong rets)
410 {
411     uint32_t config_addr = rtas_ld(args, 0);
412     uint64_t buid = rtas_ldq(args, 1);
413     unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
414     sPAPRPHBState *phb = NULL;
415     PCIDevice *pdev = NULL;
416     spapr_pci_msi *msi;
417 
418     /* Find sPAPRPHBState */
419     phb = spapr_pci_find_phb(spapr, buid);
420     if (phb) {
421         pdev = spapr_pci_find_dev(spapr, buid, config_addr);
422     }
423     if (!phb || !pdev) {
424         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
425         return;
426     }
427 
428     /* Find device descriptor and start IRQ */
429     msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
430     if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
431         trace_spapr_pci_msi("Failed to return vector", config_addr);
432         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
433         return;
434     }
435     intr_src_num = msi->first_irq + ioa_intr_num;
436     trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
437                                                            intr_src_num);
438 
439     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
440     rtas_st(rets, 1, intr_src_num);
441     rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
442 }
443 
444 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
445                                     sPAPRMachineState *spapr,
446                                     uint32_t token, uint32_t nargs,
447                                     target_ulong args, uint32_t nret,
448                                     target_ulong rets)
449 {
450     sPAPRPHBState *sphb;
451     uint32_t addr, option;
452     uint64_t buid;
453     int ret;
454 
455     if ((nargs != 4) || (nret != 1)) {
456         goto param_error_exit;
457     }
458 
459     buid = rtas_ldq(args, 1);
460     addr = rtas_ld(args, 0);
461     option = rtas_ld(args, 3);
462 
463     sphb = spapr_pci_find_phb(spapr, buid);
464     if (!sphb) {
465         goto param_error_exit;
466     }
467 
468     if (!spapr_phb_eeh_available(sphb)) {
469         goto param_error_exit;
470     }
471 
472     ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option);
473     rtas_st(rets, 0, ret);
474     return;
475 
476 param_error_exit:
477     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
478 }
479 
480 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
481                                            sPAPRMachineState *spapr,
482                                            uint32_t token, uint32_t nargs,
483                                            target_ulong args, uint32_t nret,
484                                            target_ulong rets)
485 {
486     sPAPRPHBState *sphb;
487     PCIDevice *pdev;
488     uint32_t addr, option;
489     uint64_t buid;
490 
491     if ((nargs != 4) || (nret != 2)) {
492         goto param_error_exit;
493     }
494 
495     buid = rtas_ldq(args, 1);
496     sphb = spapr_pci_find_phb(spapr, buid);
497     if (!sphb) {
498         goto param_error_exit;
499     }
500 
501     if (!spapr_phb_eeh_available(sphb)) {
502         goto param_error_exit;
503     }
504 
505     /*
506      * We always have PE address of form "00BB0001". "BB"
507      * represents the bus number of PE's primary bus.
508      */
509     option = rtas_ld(args, 3);
510     switch (option) {
511     case RTAS_GET_PE_ADDR:
512         addr = rtas_ld(args, 0);
513         pdev = spapr_pci_find_dev(spapr, buid, addr);
514         if (!pdev) {
515             goto param_error_exit;
516         }
517 
518         rtas_st(rets, 1, (pci_bus_num(pdev->bus) << 16) + 1);
519         break;
520     case RTAS_GET_PE_MODE:
521         rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
522         break;
523     default:
524         goto param_error_exit;
525     }
526 
527     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
528     return;
529 
530 param_error_exit:
531     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
532 }
533 
534 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
535                                             sPAPRMachineState *spapr,
536                                             uint32_t token, uint32_t nargs,
537                                             target_ulong args, uint32_t nret,
538                                             target_ulong rets)
539 {
540     sPAPRPHBState *sphb;
541     uint64_t buid;
542     int state, ret;
543 
544     if ((nargs != 3) || (nret != 4 && nret != 5)) {
545         goto param_error_exit;
546     }
547 
548     buid = rtas_ldq(args, 1);
549     sphb = spapr_pci_find_phb(spapr, buid);
550     if (!sphb) {
551         goto param_error_exit;
552     }
553 
554     if (!spapr_phb_eeh_available(sphb)) {
555         goto param_error_exit;
556     }
557 
558     ret = spapr_phb_vfio_eeh_get_state(sphb, &state);
559     rtas_st(rets, 0, ret);
560     if (ret != RTAS_OUT_SUCCESS) {
561         return;
562     }
563 
564     rtas_st(rets, 1, state);
565     rtas_st(rets, 2, RTAS_EEH_SUPPORT);
566     rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
567     if (nret >= 5) {
568         rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
569     }
570     return;
571 
572 param_error_exit:
573     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
574 }
575 
576 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
577                                     sPAPRMachineState *spapr,
578                                     uint32_t token, uint32_t nargs,
579                                     target_ulong args, uint32_t nret,
580                                     target_ulong rets)
581 {
582     sPAPRPHBState *sphb;
583     uint32_t option;
584     uint64_t buid;
585     int ret;
586 
587     if ((nargs != 4) || (nret != 1)) {
588         goto param_error_exit;
589     }
590 
591     buid = rtas_ldq(args, 1);
592     option = rtas_ld(args, 3);
593     sphb = spapr_pci_find_phb(spapr, buid);
594     if (!sphb) {
595         goto param_error_exit;
596     }
597 
598     if (!spapr_phb_eeh_available(sphb)) {
599         goto param_error_exit;
600     }
601 
602     ret = spapr_phb_vfio_eeh_reset(sphb, option);
603     rtas_st(rets, 0, ret);
604     return;
605 
606 param_error_exit:
607     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
608 }
609 
610 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
611                                   sPAPRMachineState *spapr,
612                                   uint32_t token, uint32_t nargs,
613                                   target_ulong args, uint32_t nret,
614                                   target_ulong rets)
615 {
616     sPAPRPHBState *sphb;
617     uint64_t buid;
618     int ret;
619 
620     if ((nargs != 3) || (nret != 1)) {
621         goto param_error_exit;
622     }
623 
624     buid = rtas_ldq(args, 1);
625     sphb = spapr_pci_find_phb(spapr, buid);
626     if (!sphb) {
627         goto param_error_exit;
628     }
629 
630     if (!spapr_phb_eeh_available(sphb)) {
631         goto param_error_exit;
632     }
633 
634     ret = spapr_phb_vfio_eeh_configure(sphb);
635     rtas_st(rets, 0, ret);
636     return;
637 
638 param_error_exit:
639     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
640 }
641 
642 /* To support it later */
643 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
644                                        sPAPRMachineState *spapr,
645                                        uint32_t token, uint32_t nargs,
646                                        target_ulong args, uint32_t nret,
647                                        target_ulong rets)
648 {
649     sPAPRPHBState *sphb;
650     int option;
651     uint64_t buid;
652 
653     if ((nargs != 8) || (nret != 1)) {
654         goto param_error_exit;
655     }
656 
657     buid = rtas_ldq(args, 1);
658     sphb = spapr_pci_find_phb(spapr, buid);
659     if (!sphb) {
660         goto param_error_exit;
661     }
662 
663     if (!spapr_phb_eeh_available(sphb)) {
664         goto param_error_exit;
665     }
666 
667     option = rtas_ld(args, 7);
668     switch (option) {
669     case RTAS_SLOT_TEMP_ERR_LOG:
670     case RTAS_SLOT_PERM_ERR_LOG:
671         break;
672     default:
673         goto param_error_exit;
674     }
675 
676     /* We don't have error log yet */
677     rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
678     return;
679 
680 param_error_exit:
681     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
682 }
683 
684 static int pci_spapr_swizzle(int slot, int pin)
685 {
686     return (slot + pin) % PCI_NUM_PINS;
687 }
688 
689 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
690 {
691     /*
692      * Here we need to convert pci_dev + irq_num to some unique value
693      * which is less than number of IRQs on the specific bus (4).  We
694      * use standard PCI swizzling, that is (slot number + pin number)
695      * % 4.
696      */
697     return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
698 }
699 
700 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
701 {
702     /*
703      * Here we use the number returned by pci_spapr_map_irq to find a
704      * corresponding qemu_irq.
705      */
706     sPAPRPHBState *phb = opaque;
707 
708     trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
709     qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
710 }
711 
712 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
713 {
714     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
715     PCIINTxRoute route;
716 
717     route.mode = PCI_INTX_ENABLED;
718     route.irq = sphb->lsi_table[pin].irq;
719 
720     return route;
721 }
722 
723 /*
724  * MSI/MSIX memory region implementation.
725  * The handler handles both MSI and MSIX.
726  * For MSI-X, the vector number is encoded as a part of the address,
727  * data is set to 0.
728  * For MSI, the vector number is encoded in least bits in data.
729  */
730 static void spapr_msi_write(void *opaque, hwaddr addr,
731                             uint64_t data, unsigned size)
732 {
733     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
734     uint32_t irq = data;
735 
736     trace_spapr_pci_msi_write(addr, data, irq);
737 
738     qemu_irq_pulse(xics_get_qirq(spapr->xics, irq));
739 }
740 
741 static const MemoryRegionOps spapr_msi_ops = {
742     /* There is no .read as the read result is undefined by PCI spec */
743     .read = NULL,
744     .write = spapr_msi_write,
745     .endianness = DEVICE_LITTLE_ENDIAN
746 };
747 
748 /*
749  * PHB PCI device
750  */
751 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
752 {
753     sPAPRPHBState *phb = opaque;
754 
755     return &phb->iommu_as;
756 }
757 
758 static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb,  PCIDevice *pdev)
759 {
760     char *path = NULL, *buf = NULL, *host = NULL;
761 
762     /* Get the PCI VFIO host id */
763     host = object_property_get_str(OBJECT(pdev), "host", NULL);
764     if (!host) {
765         goto err_out;
766     }
767 
768     /* Construct the path of the file that will give us the DT location */
769     path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
770     g_free(host);
771     if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
772         goto err_out;
773     }
774     g_free(path);
775 
776     /* Construct and read from host device tree the loc-code */
777     path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
778     g_free(buf);
779     if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
780         goto err_out;
781     }
782     return buf;
783 
784 err_out:
785     g_free(path);
786     return NULL;
787 }
788 
789 static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
790 {
791     char *buf;
792     const char *devtype = "qemu";
793     uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
794 
795     if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
796         buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
797         if (buf) {
798             return buf;
799         }
800         devtype = "vfio";
801     }
802     /*
803      * For emulated devices and VFIO-failure case, make up
804      * the loc-code.
805      */
806     buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
807                           devtype, pdev->name, sphb->index, busnr,
808                           PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
809     return buf;
810 }
811 
812 /* Macros to operate with address in OF binding to PCI */
813 #define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
814 #define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
815 #define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
816 #define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
817 #define b_ss(x)         b_x((x), 24, 2) /* the space code */
818 #define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
819 #define b_ddddd(x)      b_x((x), 11, 5) /* device number */
820 #define b_fff(x)        b_x((x), 8, 3)  /* function number */
821 #define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */
822 
823 /* for 'reg'/'assigned-addresses' OF properties */
824 #define RESOURCE_CELLS_SIZE 2
825 #define RESOURCE_CELLS_ADDRESS 3
826 
827 typedef struct ResourceFields {
828     uint32_t phys_hi;
829     uint32_t phys_mid;
830     uint32_t phys_lo;
831     uint32_t size_hi;
832     uint32_t size_lo;
833 } QEMU_PACKED ResourceFields;
834 
835 typedef struct ResourceProps {
836     ResourceFields reg[8];
837     ResourceFields assigned[7];
838     uint32_t reg_len;
839     uint32_t assigned_len;
840 } ResourceProps;
841 
842 /* fill in the 'reg'/'assigned-resources' OF properties for
843  * a PCI device. 'reg' describes resource requirements for a
844  * device's IO/MEM regions, 'assigned-addresses' describes the
845  * actual resource assignments.
846  *
847  * the properties are arrays of ('phys-addr', 'size') pairs describing
848  * the addressable regions of the PCI device, where 'phys-addr' is a
849  * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
850  * (phys.hi, phys.mid, phys.lo), and 'size' is a
851  * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
852  *
853  * phys.hi = 0xYYXXXXZZ, where:
854  *   0xYY = npt000ss
855  *          |||   |
856  *          |||   +-- space code
857  *          |||               |
858  *          |||               +  00 if configuration space
859  *          |||               +  01 if IO region,
860  *          |||               +  10 if 32-bit MEM region
861  *          |||               +  11 if 64-bit MEM region
862  *          |||
863  *          ||+------ for non-relocatable IO: 1 if aliased
864  *          ||        for relocatable IO: 1 if below 64KB
865  *          ||        for MEM: 1 if below 1MB
866  *          |+------- 1 if region is prefetchable
867  *          +-------- 1 if region is non-relocatable
868  *   0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
869  *            bits respectively
870  *   0xZZ = rrrrrrrr, the register number of the BAR corresponding
871  *          to the region
872  *
873  * phys.mid and phys.lo correspond respectively to the hi/lo portions
874  * of the actual address of the region.
875  *
876  * how the phys-addr/size values are used differ slightly between
877  * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
878  * an additional description for the config space region of the
879  * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
880  * to describe the region as relocatable, with an address-mapping
881  * that corresponds directly to the PHB's address space for the
882  * resource. 'assigned-addresses' always has n=1 set with an absolute
883  * address assigned for the resource. in general, 'assigned-addresses'
884  * won't be populated, since addresses for PCI devices are generally
885  * unmapped initially and left to the guest to assign.
886  *
887  * note also that addresses defined in these properties are, at least
888  * for PAPR guests, relative to the PHBs IO/MEM windows, and
889  * correspond directly to the addresses in the BARs.
890  *
891  * in accordance with PCI Bus Binding to Open Firmware,
892  * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
893  * Appendix C.
894  */
895 static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
896 {
897     int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
898     uint32_t dev_id = (b_bbbbbbbb(bus_num) |
899                        b_ddddd(PCI_SLOT(d->devfn)) |
900                        b_fff(PCI_FUNC(d->devfn)));
901     ResourceFields *reg, *assigned;
902     int i, reg_idx = 0, assigned_idx = 0;
903 
904     /* config space region */
905     reg = &rp->reg[reg_idx++];
906     reg->phys_hi = cpu_to_be32(dev_id);
907     reg->phys_mid = 0;
908     reg->phys_lo = 0;
909     reg->size_hi = 0;
910     reg->size_lo = 0;
911 
912     for (i = 0; i < PCI_NUM_REGIONS; i++) {
913         if (!d->io_regions[i].size) {
914             continue;
915         }
916 
917         reg = &rp->reg[reg_idx++];
918 
919         reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
920         if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
921             reg->phys_hi |= cpu_to_be32(b_ss(1));
922         } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
923             reg->phys_hi |= cpu_to_be32(b_ss(3));
924         } else {
925             reg->phys_hi |= cpu_to_be32(b_ss(2));
926         }
927         reg->phys_mid = 0;
928         reg->phys_lo = 0;
929         reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
930         reg->size_lo = cpu_to_be32(d->io_regions[i].size);
931 
932         if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
933             continue;
934         }
935 
936         assigned = &rp->assigned[assigned_idx++];
937         assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1));
938         assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
939         assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
940         assigned->size_hi = reg->size_hi;
941         assigned->size_lo = reg->size_lo;
942     }
943 
944     rp->reg_len = reg_idx * sizeof(ResourceFields);
945     rp->assigned_len = assigned_idx * sizeof(ResourceFields);
946 }
947 
948 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
949                                             PCIDevice *pdev);
950 
951 static int spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset,
952                                        sPAPRPHBState *sphb)
953 {
954     ResourceProps rp;
955     bool is_bridge = false;
956     int pci_status, err;
957     char *buf = NULL;
958     uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev);
959     uint32_t max_msi, max_msix;
960 
961     if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) ==
962         PCI_HEADER_TYPE_BRIDGE) {
963         is_bridge = true;
964     }
965 
966     /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
967     _FDT(fdt_setprop_cell(fdt, offset, "vendor-id",
968                           pci_default_read_config(dev, PCI_VENDOR_ID, 2)));
969     _FDT(fdt_setprop_cell(fdt, offset, "device-id",
970                           pci_default_read_config(dev, PCI_DEVICE_ID, 2)));
971     _FDT(fdt_setprop_cell(fdt, offset, "revision-id",
972                           pci_default_read_config(dev, PCI_REVISION_ID, 1)));
973     _FDT(fdt_setprop_cell(fdt, offset, "class-code",
974                           pci_default_read_config(dev, PCI_CLASS_PROG, 3)));
975     if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) {
976         _FDT(fdt_setprop_cell(fdt, offset, "interrupts",
977                  pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)));
978     }
979 
980     if (!is_bridge) {
981         _FDT(fdt_setprop_cell(fdt, offset, "min-grant",
982             pci_default_read_config(dev, PCI_MIN_GNT, 1)));
983         _FDT(fdt_setprop_cell(fdt, offset, "max-latency",
984             pci_default_read_config(dev, PCI_MAX_LAT, 1)));
985     }
986 
987     if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) {
988         _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id",
989                  pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)));
990     }
991 
992     if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) {
993         _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
994                  pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)));
995     }
996 
997     _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size",
998         pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1)));
999 
1000     /* the following fdt cells are masked off the pci status register */
1001     pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
1002     _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
1003                           PCI_STATUS_DEVSEL_MASK & pci_status));
1004 
1005     if (pci_status & PCI_STATUS_FAST_BACK) {
1006         _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1007     }
1008     if (pci_status & PCI_STATUS_66MHZ) {
1009         _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1010     }
1011     if (pci_status & PCI_STATUS_UDF) {
1012         _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1013     }
1014 
1015     /* NOTE: this is normally generated by firmware via path/unit name,
1016      * but in our case we must set it manually since it does not get
1017      * processed by OF beforehand
1018      */
1019     _FDT(fdt_setprop_string(fdt, offset, "name", "pci"));
1020     buf = spapr_phb_get_loc_code(sphb, dev);
1021     if (!buf) {
1022         error_report("Failed setting the ibm,loc-code");
1023         return -1;
1024     }
1025 
1026     err = fdt_setprop_string(fdt, offset, "ibm,loc-code", buf);
1027     g_free(buf);
1028     if (err < 0) {
1029         return err;
1030     }
1031 
1032     if (drc_index) {
1033         _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index));
1034     }
1035 
1036     _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1037                           RESOURCE_CELLS_ADDRESS));
1038     _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1039                           RESOURCE_CELLS_SIZE));
1040 
1041     max_msi = msi_nr_vectors_allocated(dev);
1042     if (max_msi) {
1043         _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1044     }
1045     max_msix = dev->msix_entries_nr;
1046     if (max_msix) {
1047         _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1048     }
1049 
1050     populate_resource_props(dev, &rp);
1051     _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1052     _FDT(fdt_setprop(fdt, offset, "assigned-addresses",
1053                      (uint8_t *)rp.assigned, rp.assigned_len));
1054 
1055     return 0;
1056 }
1057 
1058 /* create OF node for pci device and required OF DT properties */
1059 static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev,
1060                                      void *fdt, int node_offset)
1061 {
1062     int offset, ret;
1063     int slot = PCI_SLOT(dev->devfn);
1064     int func = PCI_FUNC(dev->devfn);
1065     char nodename[FDT_NAME_MAX];
1066 
1067     if (func != 0) {
1068         snprintf(nodename, FDT_NAME_MAX, "pci@%x,%x", slot, func);
1069     } else {
1070         snprintf(nodename, FDT_NAME_MAX, "pci@%x", slot);
1071     }
1072     offset = fdt_add_subnode(fdt, node_offset, nodename);
1073     ret = spapr_populate_pci_child_dt(dev, fdt, offset, phb);
1074 
1075     g_assert(!ret);
1076     if (ret) {
1077         return 0;
1078     }
1079     return offset;
1080 }
1081 
1082 static void spapr_phb_add_pci_device(sPAPRDRConnector *drc,
1083                                      sPAPRPHBState *phb,
1084                                      PCIDevice *pdev,
1085                                      Error **errp)
1086 {
1087     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1088     DeviceState *dev = DEVICE(pdev);
1089     void *fdt = NULL;
1090     int fdt_start_offset = 0, fdt_size;
1091 
1092     fdt = create_device_tree(&fdt_size);
1093     fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0);
1094     if (!fdt_start_offset) {
1095         error_setg(errp, "Failed to create pci child device tree node");
1096         goto out;
1097     }
1098 
1099     drck->attach(drc, DEVICE(pdev),
1100                  fdt, fdt_start_offset, !dev->hotplugged, errp);
1101 out:
1102     if (*errp) {
1103         g_free(fdt);
1104     }
1105 }
1106 
1107 static void spapr_phb_remove_pci_device_cb(DeviceState *dev, void *opaque)
1108 {
1109     /* some version guests do not wait for completion of a device
1110      * cleanup (generally done asynchronously by the kernel) before
1111      * signaling to QEMU that the device is safe, but instead sleep
1112      * for some 'safe' period of time. unfortunately on a busy host
1113      * this sleep isn't guaranteed to be long enough, resulting in
1114      * bad things like IRQ lines being left asserted during final
1115      * device removal. to deal with this we call reset just prior
1116      * to finalizing the device, which will put the device back into
1117      * an 'idle' state, as the device cleanup code expects.
1118      */
1119     pci_device_reset(PCI_DEVICE(dev));
1120     object_unparent(OBJECT(dev));
1121 }
1122 
1123 static void spapr_phb_remove_pci_device(sPAPRDRConnector *drc,
1124                                         sPAPRPHBState *phb,
1125                                         PCIDevice *pdev,
1126                                         Error **errp)
1127 {
1128     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1129 
1130     drck->detach(drc, DEVICE(pdev), spapr_phb_remove_pci_device_cb, phb, errp);
1131 }
1132 
1133 static sPAPRDRConnector *spapr_phb_get_pci_func_drc(sPAPRPHBState *phb,
1134                                                     uint32_t busnr,
1135                                                     int32_t devfn)
1136 {
1137     return spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_PCI,
1138                                     (phb->index << 16) |
1139                                     (busnr << 8) |
1140                                     devfn);
1141 }
1142 
1143 static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb,
1144                                                PCIDevice *pdev)
1145 {
1146     uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
1147     return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn);
1148 }
1149 
1150 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1151                                             PCIDevice *pdev)
1152 {
1153     sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1154     sPAPRDRConnectorClass *drck;
1155 
1156     if (!drc) {
1157         return 0;
1158     }
1159 
1160     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1161     return drck->get_index(drc);
1162 }
1163 
1164 static void spapr_phb_hot_plug_child(HotplugHandler *plug_handler,
1165                                      DeviceState *plugged_dev, Error **errp)
1166 {
1167     sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1168     PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1169     sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1170     Error *local_err = NULL;
1171     PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1172     uint32_t slotnr = PCI_SLOT(pdev->devfn);
1173 
1174     /* if DR is disabled we don't need to do anything in the case of
1175      * hotplug or coldplug callbacks
1176      */
1177     if (!phb->dr_enabled) {
1178         /* if this is a hotplug operation initiated by the user
1179          * we need to let them know it's not enabled
1180          */
1181         if (plugged_dev->hotplugged) {
1182             error_setg(errp, QERR_BUS_NO_HOTPLUG,
1183                        object_get_typename(OBJECT(phb)));
1184         }
1185         return;
1186     }
1187 
1188     g_assert(drc);
1189 
1190     /* Following the QEMU convention used for PCIe multifunction
1191      * hotplug, we do not allow functions to be hotplugged to a
1192      * slot that already has function 0 present
1193      */
1194     if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
1195         PCI_FUNC(pdev->devfn) != 0) {
1196         error_setg(errp, "PCI: slot %d function 0 already ocuppied by %s,"
1197                    " additional functions can no longer be exposed to guest.",
1198                    slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
1199         return;
1200     }
1201 
1202     spapr_phb_add_pci_device(drc, phb, pdev, &local_err);
1203     if (local_err) {
1204         error_propagate(errp, local_err);
1205         return;
1206     }
1207 
1208     /* If this is function 0, signal hotplug for all the device functions.
1209      * Otherwise defer sending the hotplug event.
1210      */
1211     if (plugged_dev->hotplugged && PCI_FUNC(pdev->devfn) == 0) {
1212         int i;
1213 
1214         for (i = 0; i < 8; i++) {
1215             sPAPRDRConnector *func_drc;
1216             sPAPRDRConnectorClass *func_drck;
1217             sPAPRDREntitySense state;
1218 
1219             func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1220                                                   PCI_DEVFN(slotnr, i));
1221             func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1222             func_drck->entity_sense(func_drc, &state);
1223 
1224             if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1225                 spapr_hotplug_req_add_by_index(func_drc);
1226             }
1227         }
1228     }
1229 }
1230 
1231 static void spapr_phb_hot_unplug_child(HotplugHandler *plug_handler,
1232                                        DeviceState *plugged_dev, Error **errp)
1233 {
1234     sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1235     PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1236     sPAPRDRConnectorClass *drck;
1237     sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1238     Error *local_err = NULL;
1239 
1240     if (!phb->dr_enabled) {
1241         error_setg(errp, QERR_BUS_NO_HOTPLUG,
1242                    object_get_typename(OBJECT(phb)));
1243         return;
1244     }
1245 
1246     g_assert(drc);
1247 
1248     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1249     if (!drck->release_pending(drc)) {
1250         PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1251         uint32_t slotnr = PCI_SLOT(pdev->devfn);
1252         sPAPRDRConnector *func_drc;
1253         sPAPRDRConnectorClass *func_drck;
1254         sPAPRDREntitySense state;
1255         int i;
1256 
1257         /* ensure any other present functions are pending unplug */
1258         if (PCI_FUNC(pdev->devfn) == 0) {
1259             for (i = 1; i < 8; i++) {
1260                 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1261                                                       PCI_DEVFN(slotnr, i));
1262                 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1263                 func_drck->entity_sense(func_drc, &state);
1264                 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
1265                     && !func_drck->release_pending(func_drc)) {
1266                     error_setg(errp,
1267                                "PCI: slot %d, function %d still present. "
1268                                "Must unplug all non-0 functions first.",
1269                                slotnr, i);
1270                     return;
1271                 }
1272             }
1273         }
1274 
1275         spapr_phb_remove_pci_device(drc, phb, pdev, &local_err);
1276         if (local_err) {
1277             error_propagate(errp, local_err);
1278             return;
1279         }
1280 
1281         /* if this isn't func 0, defer unplug event. otherwise signal removal
1282          * for all present functions
1283          */
1284         if (PCI_FUNC(pdev->devfn) == 0) {
1285             for (i = 7; i >= 0; i--) {
1286                 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1287                                                       PCI_DEVFN(slotnr, i));
1288                 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1289                 func_drck->entity_sense(func_drc, &state);
1290                 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1291                     spapr_hotplug_req_remove_by_index(func_drc);
1292                 }
1293             }
1294         }
1295     }
1296 }
1297 
1298 static void spapr_phb_realize(DeviceState *dev, Error **errp)
1299 {
1300     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1301     SysBusDevice *s = SYS_BUS_DEVICE(dev);
1302     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1303     PCIHostState *phb = PCI_HOST_BRIDGE(s);
1304     char *namebuf;
1305     int i;
1306     PCIBus *bus;
1307     uint64_t msi_window_size = 4096;
1308     sPAPRTCETable *tcet;
1309     const unsigned windows_supported =
1310         sphb->ddw_enabled ? SPAPR_PCI_DMA_MAX_WINDOWS : 1;
1311 
1312     if (sphb->index != (uint32_t)-1) {
1313         hwaddr windows_base;
1314 
1315         if ((sphb->buid != (uint64_t)-1) || (sphb->dma_liobn[0] != (uint32_t)-1)
1316             || (sphb->dma_liobn[1] != (uint32_t)-1 && windows_supported == 2)
1317             || (sphb->mem_win_addr != (hwaddr)-1)
1318             || (sphb->io_win_addr != (hwaddr)-1)) {
1319             error_setg(errp, "Either \"index\" or other parameters must"
1320                        " be specified for PAPR PHB, not both");
1321             return;
1322         }
1323 
1324         if (sphb->index > SPAPR_PCI_MAX_INDEX) {
1325             error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
1326                        SPAPR_PCI_MAX_INDEX);
1327             return;
1328         }
1329 
1330         sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index;
1331         for (i = 0; i < windows_supported; ++i) {
1332             sphb->dma_liobn[i] = SPAPR_PCI_LIOBN(sphb->index, i);
1333         }
1334 
1335         windows_base = SPAPR_PCI_WINDOW_BASE
1336             + sphb->index * SPAPR_PCI_WINDOW_SPACING;
1337         sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF;
1338         sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF;
1339     }
1340 
1341     if (sphb->buid == (uint64_t)-1) {
1342         error_setg(errp, "BUID not specified for PHB");
1343         return;
1344     }
1345 
1346     if ((sphb->dma_liobn[0] == (uint32_t)-1) ||
1347         ((sphb->dma_liobn[1] == (uint32_t)-1) && (windows_supported > 1))) {
1348         error_setg(errp, "LIOBN(s) not specified for PHB");
1349         return;
1350     }
1351 
1352     if (sphb->mem_win_addr == (hwaddr)-1) {
1353         error_setg(errp, "Memory window address not specified for PHB");
1354         return;
1355     }
1356 
1357     if (sphb->io_win_addr == (hwaddr)-1) {
1358         error_setg(errp, "IO window address not specified for PHB");
1359         return;
1360     }
1361 
1362     if (spapr_pci_find_phb(spapr, sphb->buid)) {
1363         error_setg(errp, "PCI host bridges must have unique BUIDs");
1364         return;
1365     }
1366 
1367     sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1368 
1369     namebuf = alloca(strlen(sphb->dtbusname) + 32);
1370 
1371     /* Initialize memory regions */
1372     sprintf(namebuf, "%s.mmio", sphb->dtbusname);
1373     memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1374 
1375     sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
1376     memory_region_init_alias(&sphb->memwindow, OBJECT(sphb),
1377                              namebuf, &sphb->memspace,
1378                              SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1379     memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1380                                 &sphb->memwindow);
1381 
1382     /* Initialize IO regions */
1383     sprintf(namebuf, "%s.io", sphb->dtbusname);
1384     memory_region_init(&sphb->iospace, OBJECT(sphb),
1385                        namebuf, SPAPR_PCI_IO_WIN_SIZE);
1386 
1387     sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
1388     memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1389                              &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1390     memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1391                                 &sphb->iowindow);
1392 
1393     bus = pci_register_bus(dev, NULL,
1394                            pci_spapr_set_irq, pci_spapr_map_irq, sphb,
1395                            &sphb->memspace, &sphb->iospace,
1396                            PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
1397     phb->bus = bus;
1398     qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL);
1399 
1400     /*
1401      * Initialize PHB address space.
1402      * By default there will be at least one subregion for default
1403      * 32bit DMA window.
1404      * Later the guest might want to create another DMA window
1405      * which will become another memory subregion.
1406      */
1407     sprintf(namebuf, "%s.iommu-root", sphb->dtbusname);
1408 
1409     memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1410                        namebuf, UINT64_MAX);
1411     address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1412                        sphb->dtbusname);
1413 
1414     /*
1415      * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1416      * we need to allocate some memory to catch those writes coming
1417      * from msi_notify()/msix_notify().
1418      * As MSIMessage:addr is going to be the same and MSIMessage:data
1419      * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1420      * be used.
1421      *
1422      * For KVM we want to ensure that this memory is a full page so that
1423      * our memory slot is of page size granularity.
1424      */
1425 #ifdef CONFIG_KVM
1426     if (kvm_enabled()) {
1427         msi_window_size = getpagesize();
1428     }
1429 #endif
1430 
1431     memory_region_init_io(&sphb->msiwindow, NULL, &spapr_msi_ops, spapr,
1432                           "msi", msi_window_size);
1433     memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1434                                 &sphb->msiwindow);
1435 
1436     pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1437 
1438     pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1439 
1440     QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1441 
1442     /* Initialize the LSI table */
1443     for (i = 0; i < PCI_NUM_PINS; i++) {
1444         uint32_t irq;
1445         Error *local_err = NULL;
1446 
1447         irq = xics_spapr_alloc_block(spapr->xics, 0, 1, true, false,
1448                                      &local_err);
1449         if (local_err) {
1450             error_propagate(errp, local_err);
1451             error_prepend(errp, "can't allocate LSIs: ");
1452             return;
1453         }
1454 
1455         sphb->lsi_table[i].irq = irq;
1456     }
1457 
1458     /* allocate connectors for child PCI devices */
1459     if (sphb->dr_enabled) {
1460         for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
1461             spapr_dr_connector_new(OBJECT(phb),
1462                                    SPAPR_DR_CONNECTOR_TYPE_PCI,
1463                                    (sphb->index << 16) | i);
1464         }
1465     }
1466 
1467     /* DMA setup */
1468     for (i = 0; i < windows_supported; ++i) {
1469         tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]);
1470         if (!tcet) {
1471             error_setg(errp, "Creating window#%d failed for %s",
1472                        i, sphb->dtbusname);
1473             return;
1474         }
1475         memory_region_add_subregion_overlap(&sphb->iommu_root, 0,
1476                                             spapr_tce_get_iommu(tcet), 0);
1477     }
1478 
1479     sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
1480 }
1481 
1482 static int spapr_phb_children_reset(Object *child, void *opaque)
1483 {
1484     DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
1485 
1486     if (dev) {
1487         device_reset(dev);
1488     }
1489 
1490     return 0;
1491 }
1492 
1493 void spapr_phb_dma_reset(sPAPRPHBState *sphb)
1494 {
1495     int i;
1496     sPAPRTCETable *tcet;
1497 
1498     for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) {
1499         tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
1500 
1501         if (tcet && tcet->nb_table) {
1502             spapr_tce_table_disable(tcet);
1503         }
1504     }
1505 
1506     /* Register default 32bit DMA window */
1507     tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]);
1508     spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr,
1509                            sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT);
1510 }
1511 
1512 static void spapr_phb_reset(DeviceState *qdev)
1513 {
1514     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev);
1515 
1516     spapr_phb_dma_reset(sphb);
1517 
1518     /* Reset the IOMMU state */
1519     object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
1520 
1521     if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) {
1522         spapr_phb_vfio_reset(qdev);
1523     }
1524 }
1525 
1526 static Property spapr_phb_properties[] = {
1527     DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
1528     DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1),
1529     DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn[0], -1),
1530     DEFINE_PROP_UINT32("liobn64", sPAPRPHBState, dma_liobn[1], -1),
1531     DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
1532     DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
1533                        SPAPR_PCI_MMIO_WIN_SIZE),
1534     DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
1535     DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
1536                        SPAPR_PCI_IO_WIN_SIZE),
1537     DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled,
1538                      true),
1539     /* Default DMA window is 0..1GB */
1540     DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0),
1541     DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000),
1542     DEFINE_PROP_UINT64("dma64_win_addr", sPAPRPHBState, dma64_win_addr,
1543                        0x800000000000000ULL),
1544     DEFINE_PROP_BOOL("ddw", sPAPRPHBState, ddw_enabled, true),
1545     DEFINE_PROP_UINT64("pgsz", sPAPRPHBState, page_size_mask,
1546                        (1ULL << 12) | (1ULL << 16)),
1547     DEFINE_PROP_END_OF_LIST(),
1548 };
1549 
1550 static const VMStateDescription vmstate_spapr_pci_lsi = {
1551     .name = "spapr_pci/lsi",
1552     .version_id = 1,
1553     .minimum_version_id = 1,
1554     .fields = (VMStateField[]) {
1555         VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi),
1556 
1557         VMSTATE_END_OF_LIST()
1558     },
1559 };
1560 
1561 static const VMStateDescription vmstate_spapr_pci_msi = {
1562     .name = "spapr_pci/msi",
1563     .version_id = 1,
1564     .minimum_version_id = 1,
1565     .fields = (VMStateField []) {
1566         VMSTATE_UINT32(key, spapr_pci_msi_mig),
1567         VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
1568         VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
1569         VMSTATE_END_OF_LIST()
1570     },
1571 };
1572 
1573 static void spapr_pci_pre_save(void *opaque)
1574 {
1575     sPAPRPHBState *sphb = opaque;
1576     GHashTableIter iter;
1577     gpointer key, value;
1578     int i;
1579 
1580     g_free(sphb->msi_devs);
1581     sphb->msi_devs = NULL;
1582     sphb->msi_devs_num = g_hash_table_size(sphb->msi);
1583     if (!sphb->msi_devs_num) {
1584         return;
1585     }
1586     sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig));
1587 
1588     g_hash_table_iter_init(&iter, sphb->msi);
1589     for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
1590         sphb->msi_devs[i].key = *(uint32_t *) key;
1591         sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
1592     }
1593 }
1594 
1595 static int spapr_pci_post_load(void *opaque, int version_id)
1596 {
1597     sPAPRPHBState *sphb = opaque;
1598     gpointer key, value;
1599     int i;
1600 
1601     for (i = 0; i < sphb->msi_devs_num; ++i) {
1602         key = g_memdup(&sphb->msi_devs[i].key,
1603                        sizeof(sphb->msi_devs[i].key));
1604         value = g_memdup(&sphb->msi_devs[i].value,
1605                          sizeof(sphb->msi_devs[i].value));
1606         g_hash_table_insert(sphb->msi, key, value);
1607     }
1608     g_free(sphb->msi_devs);
1609     sphb->msi_devs = NULL;
1610     sphb->msi_devs_num = 0;
1611 
1612     return 0;
1613 }
1614 
1615 static const VMStateDescription vmstate_spapr_pci = {
1616     .name = "spapr_pci",
1617     .version_id = 2,
1618     .minimum_version_id = 2,
1619     .pre_save = spapr_pci_pre_save,
1620     .post_load = spapr_pci_post_load,
1621     .fields = (VMStateField[]) {
1622         VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState),
1623         VMSTATE_UINT32_EQUAL(dma_liobn[0], sPAPRPHBState),
1624         VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState),
1625         VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState),
1626         VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState),
1627         VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState),
1628         VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
1629                              vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
1630         VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
1631         VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
1632                                     vmstate_spapr_pci_msi, spapr_pci_msi_mig),
1633         VMSTATE_END_OF_LIST()
1634     },
1635 };
1636 
1637 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
1638                                            PCIBus *rootbus)
1639 {
1640     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
1641 
1642     return sphb->dtbusname;
1643 }
1644 
1645 static void spapr_phb_class_init(ObjectClass *klass, void *data)
1646 {
1647     PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1648     DeviceClass *dc = DEVICE_CLASS(klass);
1649     HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
1650 
1651     hc->root_bus_path = spapr_phb_root_bus_path;
1652     dc->realize = spapr_phb_realize;
1653     dc->props = spapr_phb_properties;
1654     dc->reset = spapr_phb_reset;
1655     dc->vmsd = &vmstate_spapr_pci;
1656     set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1657     hp->plug = spapr_phb_hot_plug_child;
1658     hp->unplug = spapr_phb_hot_unplug_child;
1659 }
1660 
1661 static const TypeInfo spapr_phb_info = {
1662     .name          = TYPE_SPAPR_PCI_HOST_BRIDGE,
1663     .parent        = TYPE_PCI_HOST_BRIDGE,
1664     .instance_size = sizeof(sPAPRPHBState),
1665     .class_init    = spapr_phb_class_init,
1666     .interfaces    = (InterfaceInfo[]) {
1667         { TYPE_HOTPLUG_HANDLER },
1668         { }
1669     }
1670 };
1671 
1672 PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index)
1673 {
1674     DeviceState *dev;
1675 
1676     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
1677     qdev_prop_set_uint32(dev, "index", index);
1678     qdev_init_nofail(dev);
1679 
1680     return PCI_HOST_BRIDGE(dev);
1681 }
1682 
1683 typedef struct sPAPRFDT {
1684     void *fdt;
1685     int node_off;
1686     sPAPRPHBState *sphb;
1687 } sPAPRFDT;
1688 
1689 static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev,
1690                                           void *opaque)
1691 {
1692     PCIBus *sec_bus;
1693     sPAPRFDT *p = opaque;
1694     int offset;
1695     sPAPRFDT s_fdt;
1696 
1697     offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off);
1698     if (!offset) {
1699         error_report("Failed to create pci child device tree node");
1700         return;
1701     }
1702 
1703     if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1704          PCI_HEADER_TYPE_BRIDGE)) {
1705         return;
1706     }
1707 
1708     sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
1709     if (!sec_bus) {
1710         return;
1711     }
1712 
1713     s_fdt.fdt = p->fdt;
1714     s_fdt.node_off = offset;
1715     s_fdt.sphb = p->sphb;
1716     pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
1717                         spapr_populate_pci_devices_dt,
1718                         &s_fdt);
1719 }
1720 
1721 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
1722                                            void *opaque)
1723 {
1724     unsigned int *bus_no = opaque;
1725     unsigned int primary = *bus_no;
1726     unsigned int subordinate = 0xff;
1727     PCIBus *sec_bus = NULL;
1728 
1729     if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1730          PCI_HEADER_TYPE_BRIDGE)) {
1731         return;
1732     }
1733 
1734     (*bus_no)++;
1735     pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1);
1736     pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
1737     pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
1738 
1739     sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
1740     if (!sec_bus) {
1741         return;
1742     }
1743 
1744     pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1);
1745     pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
1746                         spapr_phb_pci_enumerate_bridge, bus_no);
1747     pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
1748 }
1749 
1750 static void spapr_phb_pci_enumerate(sPAPRPHBState *phb)
1751 {
1752     PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
1753     unsigned int bus_no = 0;
1754 
1755     pci_for_each_device(bus, pci_bus_num(bus),
1756                         spapr_phb_pci_enumerate_bridge,
1757                         &bus_no);
1758 
1759 }
1760 
1761 int spapr_populate_pci_dt(sPAPRPHBState *phb,
1762                           uint32_t xics_phandle,
1763                           void *fdt)
1764 {
1765     int bus_off, i, j, ret;
1766     char nodename[FDT_NAME_MAX];
1767     uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
1768     const uint64_t mmiosize = memory_region_size(&phb->memwindow);
1769     const uint64_t w32max = (1ULL << 32) - SPAPR_PCI_MEM_WIN_BUS_OFFSET;
1770     const uint64_t w32size = MIN(w32max, mmiosize);
1771     const uint64_t w64size = (mmiosize > w32size) ? (mmiosize - w32size) : 0;
1772     struct {
1773         uint32_t hi;
1774         uint64_t child;
1775         uint64_t parent;
1776         uint64_t size;
1777     } QEMU_PACKED ranges[] = {
1778         {
1779             cpu_to_be32(b_ss(1)), cpu_to_be64(0),
1780             cpu_to_be64(phb->io_win_addr),
1781             cpu_to_be64(memory_region_size(&phb->iospace)),
1782         },
1783         {
1784             cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
1785             cpu_to_be64(phb->mem_win_addr),
1786             cpu_to_be64(w32size),
1787         },
1788         {
1789             cpu_to_be32(b_ss(3)), cpu_to_be64(1ULL << 32),
1790             cpu_to_be64(phb->mem_win_addr + w32size),
1791             cpu_to_be64(w64size)
1792         },
1793     };
1794     const unsigned sizeof_ranges = (w64size ? 3 : 2) * sizeof(ranges[0]);
1795     uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
1796     uint32_t interrupt_map_mask[] = {
1797         cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
1798     uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
1799     uint32_t ddw_applicable[] = {
1800         cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW),
1801         cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW),
1802         cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW)
1803     };
1804     uint32_t ddw_extensions[] = {
1805         cpu_to_be32(1),
1806         cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW)
1807     };
1808     sPAPRTCETable *tcet;
1809     PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
1810     sPAPRFDT s_fdt;
1811 
1812     /* Start populating the FDT */
1813     snprintf(nodename, FDT_NAME_MAX, "pci@%" PRIx64, phb->buid);
1814     bus_off = fdt_add_subnode(fdt, 0, nodename);
1815     if (bus_off < 0) {
1816         return bus_off;
1817     }
1818 
1819     /* Write PHB properties */
1820     _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
1821     _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
1822     _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
1823     _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
1824     _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
1825     _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
1826     _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
1827     _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
1828     _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
1829     _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
1830     _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS_SPAPR));
1831 
1832     /* Dynamic DMA window */
1833     if (phb->ddw_enabled) {
1834         _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable,
1835                          sizeof(ddw_applicable)));
1836         _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions",
1837                          &ddw_extensions, sizeof(ddw_extensions)));
1838     }
1839 
1840     /* Build the interrupt-map, this must matches what is done
1841      * in pci_spapr_map_irq
1842      */
1843     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
1844                      &interrupt_map_mask, sizeof(interrupt_map_mask)));
1845     for (i = 0; i < PCI_SLOT_MAX; i++) {
1846         for (j = 0; j < PCI_NUM_PINS; j++) {
1847             uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
1848             int lsi_num = pci_spapr_swizzle(i, j);
1849 
1850             irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
1851             irqmap[1] = 0;
1852             irqmap[2] = 0;
1853             irqmap[3] = cpu_to_be32(j+1);
1854             irqmap[4] = cpu_to_be32(xics_phandle);
1855             irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
1856             irqmap[6] = cpu_to_be32(0x8);
1857         }
1858     }
1859     /* Write interrupt map */
1860     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
1861                      sizeof(interrupt_map)));
1862 
1863     tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]);
1864     if (!tcet) {
1865         return -1;
1866     }
1867     spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
1868                  tcet->liobn, tcet->bus_offset,
1869                  tcet->nb_table << tcet->page_shift);
1870 
1871     /* Walk the bridges and program the bus numbers*/
1872     spapr_phb_pci_enumerate(phb);
1873     _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
1874 
1875     /* Populate tree nodes with PCI devices attached */
1876     s_fdt.fdt = fdt;
1877     s_fdt.node_off = bus_off;
1878     s_fdt.sphb = phb;
1879     pci_for_each_device(bus, pci_bus_num(bus),
1880                         spapr_populate_pci_devices_dt,
1881                         &s_fdt);
1882 
1883     ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
1884                                 SPAPR_DR_CONNECTOR_TYPE_PCI);
1885     if (ret) {
1886         return ret;
1887     }
1888 
1889     return 0;
1890 }
1891 
1892 void spapr_pci_rtas_init(void)
1893 {
1894     spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
1895                         rtas_read_pci_config);
1896     spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
1897                         rtas_write_pci_config);
1898     spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
1899                         rtas_ibm_read_pci_config);
1900     spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
1901                         rtas_ibm_write_pci_config);
1902     if (msi_nonbroken) {
1903         spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
1904                             "ibm,query-interrupt-source-number",
1905                             rtas_ibm_query_interrupt_source_number);
1906         spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
1907                             rtas_ibm_change_msi);
1908     }
1909 
1910     spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
1911                         "ibm,set-eeh-option",
1912                         rtas_ibm_set_eeh_option);
1913     spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
1914                         "ibm,get-config-addr-info2",
1915                         rtas_ibm_get_config_addr_info2);
1916     spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
1917                         "ibm,read-slot-reset-state2",
1918                         rtas_ibm_read_slot_reset_state2);
1919     spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
1920                         "ibm,set-slot-reset",
1921                         rtas_ibm_set_slot_reset);
1922     spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
1923                         "ibm,configure-pe",
1924                         rtas_ibm_configure_pe);
1925     spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
1926                         "ibm,slot-error-detail",
1927                         rtas_ibm_slot_error_detail);
1928 }
1929 
1930 static void spapr_pci_register_types(void)
1931 {
1932     type_register_static(&spapr_phb_info);
1933 }
1934 
1935 type_init(spapr_pci_register_types)
1936 
1937 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
1938 {
1939     bool be = *(bool *)opaque;
1940 
1941     if (object_dynamic_cast(OBJECT(dev), "VGA")
1942         || object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
1943         object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
1944                                  &error_abort);
1945     }
1946     return 0;
1947 }
1948 
1949 void spapr_pci_switch_vga(bool big_endian)
1950 {
1951     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1952     sPAPRPHBState *sphb;
1953 
1954     /*
1955      * For backward compatibility with existing guests, we switch
1956      * the endianness of the VGA controller when changing the guest
1957      * interrupt mode
1958      */
1959     QLIST_FOREACH(sphb, &spapr->phbs, list) {
1960         BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
1961         qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
1962                            &big_endian);
1963     }
1964 }
1965