xref: /qemu/hw/ppc/spapr_pci.c (revision a7c31816)
1 /*
2  * QEMU sPAPR PCI host originated from Uninorth PCI host
3  *
4  * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5  * Copyright (C) 2011 David Gibson, IBM Corporation.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 #include "hw/hw.h"
26 #include "hw/pci/pci.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/pci/pci_host.h"
30 #include "hw/ppc/spapr.h"
31 #include "hw/pci-host/spapr.h"
32 #include "exec/address-spaces.h"
33 #include <libfdt.h>
34 #include "trace.h"
35 #include "qemu/error-report.h"
36 
37 #include "hw/pci/pci_bus.h"
38 
39 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
40 #define RTAS_QUERY_FN           0
41 #define RTAS_CHANGE_FN          1
42 #define RTAS_RESET_FN           2
43 #define RTAS_CHANGE_MSI_FN      3
44 #define RTAS_CHANGE_MSIX_FN     4
45 
46 /* Interrupt types to return on RTAS_CHANGE_* */
47 #define RTAS_TYPE_MSI           1
48 #define RTAS_TYPE_MSIX          2
49 
50 static sPAPRPHBState *find_phb(sPAPREnvironment *spapr, uint64_t buid)
51 {
52     sPAPRPHBState *sphb;
53 
54     QLIST_FOREACH(sphb, &spapr->phbs, list) {
55         if (sphb->buid != buid) {
56             continue;
57         }
58         return sphb;
59     }
60 
61     return NULL;
62 }
63 
64 static PCIDevice *find_dev(sPAPREnvironment *spapr, uint64_t buid,
65                            uint32_t config_addr)
66 {
67     sPAPRPHBState *sphb = find_phb(spapr, buid);
68     PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
69     int bus_num = (config_addr >> 16) & 0xFF;
70     int devfn = (config_addr >> 8) & 0xFF;
71 
72     if (!phb) {
73         return NULL;
74     }
75 
76     return pci_find_device(phb->bus, bus_num, devfn);
77 }
78 
79 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
80 {
81     /* This handles the encoding of extended config space addresses */
82     return ((arg >> 20) & 0xf00) | (arg & 0xff);
83 }
84 
85 static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid,
86                                    uint32_t addr, uint32_t size,
87                                    target_ulong rets)
88 {
89     PCIDevice *pci_dev;
90     uint32_t val;
91 
92     if ((size != 1) && (size != 2) && (size != 4)) {
93         /* access must be 1, 2 or 4 bytes */
94         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
95         return;
96     }
97 
98     pci_dev = find_dev(spapr, buid, addr);
99     addr = rtas_pci_cfgaddr(addr);
100 
101     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
102         /* Access must be to a valid device, within bounds and
103          * naturally aligned */
104         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
105         return;
106     }
107 
108     val = pci_host_config_read_common(pci_dev, addr,
109                                       pci_config_size(pci_dev), size);
110 
111     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
112     rtas_st(rets, 1, val);
113 }
114 
115 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
116                                      uint32_t token, uint32_t nargs,
117                                      target_ulong args,
118                                      uint32_t nret, target_ulong rets)
119 {
120     uint64_t buid;
121     uint32_t size, addr;
122 
123     if ((nargs != 4) || (nret != 2)) {
124         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
125         return;
126     }
127 
128     buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
129     size = rtas_ld(args, 3);
130     addr = rtas_ld(args, 0);
131 
132     finish_read_pci_config(spapr, buid, addr, size, rets);
133 }
134 
135 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
136                                  uint32_t token, uint32_t nargs,
137                                  target_ulong args,
138                                  uint32_t nret, target_ulong rets)
139 {
140     uint32_t size, addr;
141 
142     if ((nargs != 2) || (nret != 2)) {
143         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
144         return;
145     }
146 
147     size = rtas_ld(args, 1);
148     addr = rtas_ld(args, 0);
149 
150     finish_read_pci_config(spapr, 0, addr, size, rets);
151 }
152 
153 static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid,
154                                     uint32_t addr, uint32_t size,
155                                     uint32_t val, target_ulong rets)
156 {
157     PCIDevice *pci_dev;
158 
159     if ((size != 1) && (size != 2) && (size != 4)) {
160         /* access must be 1, 2 or 4 bytes */
161         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
162         return;
163     }
164 
165     pci_dev = find_dev(spapr, buid, addr);
166     addr = rtas_pci_cfgaddr(addr);
167 
168     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
169         /* Access must be to a valid device, within bounds and
170          * naturally aligned */
171         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
172         return;
173     }
174 
175     pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
176                                  val, size);
177 
178     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
179 }
180 
181 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
182                                       uint32_t token, uint32_t nargs,
183                                       target_ulong args,
184                                       uint32_t nret, target_ulong rets)
185 {
186     uint64_t buid;
187     uint32_t val, size, addr;
188 
189     if ((nargs != 5) || (nret != 1)) {
190         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
191         return;
192     }
193 
194     buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
195     val = rtas_ld(args, 4);
196     size = rtas_ld(args, 3);
197     addr = rtas_ld(args, 0);
198 
199     finish_write_pci_config(spapr, buid, addr, size, val, rets);
200 }
201 
202 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
203                                   uint32_t token, uint32_t nargs,
204                                   target_ulong args,
205                                   uint32_t nret, target_ulong rets)
206 {
207     uint32_t val, size, addr;
208 
209     if ((nargs != 3) || (nret != 1)) {
210         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
211         return;
212     }
213 
214 
215     val = rtas_ld(args, 2);
216     size = rtas_ld(args, 1);
217     addr = rtas_ld(args, 0);
218 
219     finish_write_pci_config(spapr, 0, addr, size, val, rets);
220 }
221 
222 /*
223  * Set MSI/MSIX message data.
224  * This is required for msi_notify()/msix_notify() which
225  * will write at the addresses via spapr_msi_write().
226  *
227  * If hwaddr == 0, all entries will have .data == first_irq i.e.
228  * table will be reset.
229  */
230 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
231                              unsigned first_irq, unsigned req_num)
232 {
233     unsigned i;
234     MSIMessage msg = { .address = addr, .data = first_irq };
235 
236     if (!msix) {
237         msi_set_message(pdev, msg);
238         trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
239         return;
240     }
241 
242     for (i = 0; i < req_num; ++i) {
243         msix_set_message(pdev, i, msg);
244         trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
245         if (addr) {
246             ++msg.data;
247         }
248     }
249 }
250 
251 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPREnvironment *spapr,
252                                 uint32_t token, uint32_t nargs,
253                                 target_ulong args, uint32_t nret,
254                                 target_ulong rets)
255 {
256     uint32_t config_addr = rtas_ld(args, 0);
257     uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
258     unsigned int func = rtas_ld(args, 3);
259     unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
260     unsigned int seq_num = rtas_ld(args, 5);
261     unsigned int ret_intr_type;
262     unsigned int irq, max_irqs = 0, num = 0;
263     sPAPRPHBState *phb = NULL;
264     PCIDevice *pdev = NULL;
265     spapr_pci_msi *msi;
266     int *config_addr_key;
267 
268     switch (func) {
269     case RTAS_CHANGE_MSI_FN:
270     case RTAS_CHANGE_FN:
271         ret_intr_type = RTAS_TYPE_MSI;
272         break;
273     case RTAS_CHANGE_MSIX_FN:
274         ret_intr_type = RTAS_TYPE_MSIX;
275         break;
276     default:
277         error_report("rtas_ibm_change_msi(%u) is not implemented", func);
278         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
279         return;
280     }
281 
282     /* Fins sPAPRPHBState */
283     phb = find_phb(spapr, buid);
284     if (phb) {
285         pdev = find_dev(spapr, buid, config_addr);
286     }
287     if (!phb || !pdev) {
288         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
289         return;
290     }
291 
292     /* Releasing MSIs */
293     if (!req_num) {
294         msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
295         if (!msi) {
296             trace_spapr_pci_msi("Releasing wrong config", config_addr);
297             rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
298             return;
299         }
300 
301         xics_free(spapr->icp, msi->first_irq, msi->num);
302         if (msi_present(pdev)) {
303             spapr_msi_setmsg(pdev, 0, false, 0, num);
304         }
305         if (msix_present(pdev)) {
306             spapr_msi_setmsg(pdev, 0, true, 0, num);
307         }
308         g_hash_table_remove(phb->msi, &config_addr);
309 
310         trace_spapr_pci_msi("Released MSIs", config_addr);
311         rtas_st(rets, 0, RTAS_OUT_SUCCESS);
312         rtas_st(rets, 1, 0);
313         return;
314     }
315 
316     /* Enabling MSI */
317 
318     /* Check if the device supports as many IRQs as requested */
319     if (ret_intr_type == RTAS_TYPE_MSI) {
320         max_irqs = msi_nr_vectors_allocated(pdev);
321     } else if (ret_intr_type == RTAS_TYPE_MSIX) {
322         max_irqs = pdev->msix_entries_nr;
323     }
324     if (!max_irqs) {
325         error_report("Requested interrupt type %d is not enabled for device %x",
326                      ret_intr_type, config_addr);
327         rtas_st(rets, 0, -1); /* Hardware error */
328         return;
329     }
330     /* Correct the number if the guest asked for too many */
331     if (req_num > max_irqs) {
332         trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
333         req_num = max_irqs;
334         irq = 0; /* to avoid misleading trace */
335         goto out;
336     }
337 
338     /* Allocate MSIs */
339     irq = xics_alloc_block(spapr->icp, 0, req_num, false,
340                            ret_intr_type == RTAS_TYPE_MSI);
341     if (!irq) {
342         error_report("Cannot allocate MSIs for device %x", config_addr);
343         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
344         return;
345     }
346 
347     /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
348     spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
349                      irq, req_num);
350 
351     /* Add MSI device to cache */
352     msi = g_new(spapr_pci_msi, 1);
353     msi->first_irq = irq;
354     msi->num = req_num;
355     config_addr_key = g_new(int, 1);
356     *config_addr_key = config_addr;
357     g_hash_table_insert(phb->msi, config_addr_key, msi);
358 
359 out:
360     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
361     rtas_st(rets, 1, req_num);
362     rtas_st(rets, 2, ++seq_num);
363     rtas_st(rets, 3, ret_intr_type);
364 
365     trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
366 }
367 
368 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
369                                                    sPAPREnvironment *spapr,
370                                                    uint32_t token,
371                                                    uint32_t nargs,
372                                                    target_ulong args,
373                                                    uint32_t nret,
374                                                    target_ulong rets)
375 {
376     uint32_t config_addr = rtas_ld(args, 0);
377     uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
378     unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
379     sPAPRPHBState *phb = NULL;
380     PCIDevice *pdev = NULL;
381     spapr_pci_msi *msi;
382 
383     /* Find sPAPRPHBState */
384     phb = find_phb(spapr, buid);
385     if (phb) {
386         pdev = find_dev(spapr, buid, config_addr);
387     }
388     if (!phb || !pdev) {
389         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
390         return;
391     }
392 
393     /* Find device descriptor and start IRQ */
394     msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
395     if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
396         trace_spapr_pci_msi("Failed to return vector", config_addr);
397         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
398         return;
399     }
400     intr_src_num = msi->first_irq + ioa_intr_num;
401     trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
402                                                            intr_src_num);
403 
404     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
405     rtas_st(rets, 1, intr_src_num);
406     rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
407 }
408 
409 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
410                                     sPAPREnvironment *spapr,
411                                     uint32_t token, uint32_t nargs,
412                                     target_ulong args, uint32_t nret,
413                                     target_ulong rets)
414 {
415     sPAPRPHBState *sphb;
416     sPAPRPHBClass *spc;
417     uint32_t addr, option;
418     uint64_t buid;
419     int ret;
420 
421     if ((nargs != 4) || (nret != 1)) {
422         goto param_error_exit;
423     }
424 
425     buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
426     addr = rtas_ld(args, 0);
427     option = rtas_ld(args, 3);
428 
429     sphb = find_phb(spapr, buid);
430     if (!sphb) {
431         goto param_error_exit;
432     }
433 
434     spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
435     if (!spc->eeh_set_option) {
436         goto param_error_exit;
437     }
438 
439     ret = spc->eeh_set_option(sphb, addr, option);
440     rtas_st(rets, 0, ret);
441     return;
442 
443 param_error_exit:
444     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
445 }
446 
447 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
448                                            sPAPREnvironment *spapr,
449                                            uint32_t token, uint32_t nargs,
450                                            target_ulong args, uint32_t nret,
451                                            target_ulong rets)
452 {
453     sPAPRPHBState *sphb;
454     sPAPRPHBClass *spc;
455     PCIDevice *pdev;
456     uint32_t addr, option;
457     uint64_t buid;
458 
459     if ((nargs != 4) || (nret != 2)) {
460         goto param_error_exit;
461     }
462 
463     buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
464     sphb = find_phb(spapr, buid);
465     if (!sphb) {
466         goto param_error_exit;
467     }
468 
469     spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
470     if (!spc->eeh_set_option) {
471         goto param_error_exit;
472     }
473 
474     /*
475      * We always have PE address of form "00BB0001". "BB"
476      * represents the bus number of PE's primary bus.
477      */
478     option = rtas_ld(args, 3);
479     switch (option) {
480     case RTAS_GET_PE_ADDR:
481         addr = rtas_ld(args, 0);
482         pdev = find_dev(spapr, buid, addr);
483         if (!pdev) {
484             goto param_error_exit;
485         }
486 
487         rtas_st(rets, 1, (pci_bus_num(pdev->bus) << 16) + 1);
488         break;
489     case RTAS_GET_PE_MODE:
490         rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
491         break;
492     default:
493         goto param_error_exit;
494     }
495 
496     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
497     return;
498 
499 param_error_exit:
500     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
501 }
502 
503 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
504                                             sPAPREnvironment *spapr,
505                                             uint32_t token, uint32_t nargs,
506                                             target_ulong args, uint32_t nret,
507                                             target_ulong rets)
508 {
509     sPAPRPHBState *sphb;
510     sPAPRPHBClass *spc;
511     uint64_t buid;
512     int state, ret;
513 
514     if ((nargs != 3) || (nret != 4 && nret != 5)) {
515         goto param_error_exit;
516     }
517 
518     buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
519     sphb = find_phb(spapr, buid);
520     if (!sphb) {
521         goto param_error_exit;
522     }
523 
524     spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
525     if (!spc->eeh_get_state) {
526         goto param_error_exit;
527     }
528 
529     ret = spc->eeh_get_state(sphb, &state);
530     rtas_st(rets, 0, ret);
531     if (ret != RTAS_OUT_SUCCESS) {
532         return;
533     }
534 
535     rtas_st(rets, 1, state);
536     rtas_st(rets, 2, RTAS_EEH_SUPPORT);
537     rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
538     if (nret >= 5) {
539         rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
540     }
541     return;
542 
543 param_error_exit:
544     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
545 }
546 
547 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
548                                     sPAPREnvironment *spapr,
549                                     uint32_t token, uint32_t nargs,
550                                     target_ulong args, uint32_t nret,
551                                     target_ulong rets)
552 {
553     sPAPRPHBState *sphb;
554     sPAPRPHBClass *spc;
555     uint32_t option;
556     uint64_t buid;
557     int ret;
558 
559     if ((nargs != 4) || (nret != 1)) {
560         goto param_error_exit;
561     }
562 
563     buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
564     option = rtas_ld(args, 3);
565     sphb = find_phb(spapr, buid);
566     if (!sphb) {
567         goto param_error_exit;
568     }
569 
570     spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
571     if (!spc->eeh_reset) {
572         goto param_error_exit;
573     }
574 
575     ret = spc->eeh_reset(sphb, option);
576     rtas_st(rets, 0, ret);
577     return;
578 
579 param_error_exit:
580     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
581 }
582 
583 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
584                                   sPAPREnvironment *spapr,
585                                   uint32_t token, uint32_t nargs,
586                                   target_ulong args, uint32_t nret,
587                                   target_ulong rets)
588 {
589     sPAPRPHBState *sphb;
590     sPAPRPHBClass *spc;
591     uint64_t buid;
592     int ret;
593 
594     if ((nargs != 3) || (nret != 1)) {
595         goto param_error_exit;
596     }
597 
598     buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
599     sphb = find_phb(spapr, buid);
600     if (!sphb) {
601         goto param_error_exit;
602     }
603 
604     spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
605     if (!spc->eeh_configure) {
606         goto param_error_exit;
607     }
608 
609     ret = spc->eeh_configure(sphb);
610     rtas_st(rets, 0, ret);
611     return;
612 
613 param_error_exit:
614     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
615 }
616 
617 /* To support it later */
618 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
619                                        sPAPREnvironment *spapr,
620                                        uint32_t token, uint32_t nargs,
621                                        target_ulong args, uint32_t nret,
622                                        target_ulong rets)
623 {
624     sPAPRPHBState *sphb;
625     sPAPRPHBClass *spc;
626     int option;
627     uint64_t buid;
628 
629     if ((nargs != 8) || (nret != 1)) {
630         goto param_error_exit;
631     }
632 
633     buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
634     sphb = find_phb(spapr, buid);
635     if (!sphb) {
636         goto param_error_exit;
637     }
638 
639     spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
640     if (!spc->eeh_set_option) {
641         goto param_error_exit;
642     }
643 
644     option = rtas_ld(args, 7);
645     switch (option) {
646     case RTAS_SLOT_TEMP_ERR_LOG:
647     case RTAS_SLOT_PERM_ERR_LOG:
648         break;
649     default:
650         goto param_error_exit;
651     }
652 
653     /* We don't have error log yet */
654     rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
655     return;
656 
657 param_error_exit:
658     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
659 }
660 
661 static int pci_spapr_swizzle(int slot, int pin)
662 {
663     return (slot + pin) % PCI_NUM_PINS;
664 }
665 
666 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
667 {
668     /*
669      * Here we need to convert pci_dev + irq_num to some unique value
670      * which is less than number of IRQs on the specific bus (4).  We
671      * use standard PCI swizzling, that is (slot number + pin number)
672      * % 4.
673      */
674     return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
675 }
676 
677 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
678 {
679     /*
680      * Here we use the number returned by pci_spapr_map_irq to find a
681      * corresponding qemu_irq.
682      */
683     sPAPRPHBState *phb = opaque;
684 
685     trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
686     qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
687 }
688 
689 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
690 {
691     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
692     PCIINTxRoute route;
693 
694     route.mode = PCI_INTX_ENABLED;
695     route.irq = sphb->lsi_table[pin].irq;
696 
697     return route;
698 }
699 
700 /*
701  * MSI/MSIX memory region implementation.
702  * The handler handles both MSI and MSIX.
703  * For MSI-X, the vector number is encoded as a part of the address,
704  * data is set to 0.
705  * For MSI, the vector number is encoded in least bits in data.
706  */
707 static void spapr_msi_write(void *opaque, hwaddr addr,
708                             uint64_t data, unsigned size)
709 {
710     uint32_t irq = data;
711 
712     trace_spapr_pci_msi_write(addr, data, irq);
713 
714     qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
715 }
716 
717 static const MemoryRegionOps spapr_msi_ops = {
718     /* There is no .read as the read result is undefined by PCI spec */
719     .read = NULL,
720     .write = spapr_msi_write,
721     .endianness = DEVICE_LITTLE_ENDIAN
722 };
723 
724 /*
725  * PHB PCI device
726  */
727 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
728 {
729     sPAPRPHBState *phb = opaque;
730 
731     return &phb->iommu_as;
732 }
733 
734 static void spapr_phb_realize(DeviceState *dev, Error **errp)
735 {
736     SysBusDevice *s = SYS_BUS_DEVICE(dev);
737     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
738     PCIHostState *phb = PCI_HOST_BRIDGE(s);
739     sPAPRPHBClass *info = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(s);
740     char *namebuf;
741     int i;
742     PCIBus *bus;
743     uint64_t msi_window_size = 4096;
744 
745     if (sphb->index != -1) {
746         hwaddr windows_base;
747 
748         if ((sphb->buid != -1) || (sphb->dma_liobn != -1)
749             || (sphb->mem_win_addr != -1)
750             || (sphb->io_win_addr != -1)) {
751             error_setg(errp, "Either \"index\" or other parameters must"
752                        " be specified for PAPR PHB, not both");
753             return;
754         }
755 
756         if (sphb->index > SPAPR_PCI_MAX_INDEX) {
757             error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
758                        SPAPR_PCI_MAX_INDEX);
759             return;
760         }
761 
762         sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index;
763         sphb->dma_liobn = SPAPR_PCI_BASE_LIOBN + sphb->index;
764 
765         windows_base = SPAPR_PCI_WINDOW_BASE
766             + sphb->index * SPAPR_PCI_WINDOW_SPACING;
767         sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF;
768         sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF;
769     }
770 
771     if (sphb->buid == -1) {
772         error_setg(errp, "BUID not specified for PHB");
773         return;
774     }
775 
776     if (sphb->dma_liobn == -1) {
777         error_setg(errp, "LIOBN not specified for PHB");
778         return;
779     }
780 
781     if (sphb->mem_win_addr == -1) {
782         error_setg(errp, "Memory window address not specified for PHB");
783         return;
784     }
785 
786     if (sphb->io_win_addr == -1) {
787         error_setg(errp, "IO window address not specified for PHB");
788         return;
789     }
790 
791     if (find_phb(spapr, sphb->buid)) {
792         error_setg(errp, "PCI host bridges must have unique BUIDs");
793         return;
794     }
795 
796     sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
797 
798     namebuf = alloca(strlen(sphb->dtbusname) + 32);
799 
800     /* Initialize memory regions */
801     sprintf(namebuf, "%s.mmio", sphb->dtbusname);
802     memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
803 
804     sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
805     memory_region_init_alias(&sphb->memwindow, OBJECT(sphb),
806                              namebuf, &sphb->memspace,
807                              SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
808     memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
809                                 &sphb->memwindow);
810 
811     /* Initialize IO regions */
812     sprintf(namebuf, "%s.io", sphb->dtbusname);
813     memory_region_init(&sphb->iospace, OBJECT(sphb),
814                        namebuf, SPAPR_PCI_IO_WIN_SIZE);
815 
816     sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
817     memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
818                              &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
819     memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
820                                 &sphb->iowindow);
821 
822     bus = pci_register_bus(dev, NULL,
823                            pci_spapr_set_irq, pci_spapr_map_irq, sphb,
824                            &sphb->memspace, &sphb->iospace,
825                            PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
826     phb->bus = bus;
827 
828     /*
829      * Initialize PHB address space.
830      * By default there will be at least one subregion for default
831      * 32bit DMA window.
832      * Later the guest might want to create another DMA window
833      * which will become another memory subregion.
834      */
835     sprintf(namebuf, "%s.iommu-root", sphb->dtbusname);
836 
837     memory_region_init(&sphb->iommu_root, OBJECT(sphb),
838                        namebuf, UINT64_MAX);
839     address_space_init(&sphb->iommu_as, &sphb->iommu_root,
840                        sphb->dtbusname);
841 
842     /*
843      * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
844      * we need to allocate some memory to catch those writes coming
845      * from msi_notify()/msix_notify().
846      * As MSIMessage:addr is going to be the same and MSIMessage:data
847      * is going to be a VIRQ number, 4 bytes of the MSI MR will only
848      * be used.
849      *
850      * For KVM we want to ensure that this memory is a full page so that
851      * our memory slot is of page size granularity.
852      */
853 #ifdef CONFIG_KVM
854     if (kvm_enabled()) {
855         msi_window_size = getpagesize();
856     }
857 #endif
858 
859     memory_region_init_io(&sphb->msiwindow, NULL, &spapr_msi_ops, spapr,
860                           "msi", msi_window_size);
861     memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
862                                 &sphb->msiwindow);
863 
864     pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
865 
866     pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
867 
868     QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
869 
870     /* Initialize the LSI table */
871     for (i = 0; i < PCI_NUM_PINS; i++) {
872         uint32_t irq;
873 
874         irq = xics_alloc_block(spapr->icp, 0, 1, true, false);
875         if (!irq) {
876             error_setg(errp, "spapr_allocate_lsi failed");
877             return;
878         }
879 
880         sphb->lsi_table[i].irq = irq;
881     }
882 
883     if (!info->finish_realize) {
884         error_setg(errp, "finish_realize not defined");
885         return;
886     }
887 
888     info->finish_realize(sphb, errp);
889 
890     sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
891 }
892 
893 static void spapr_phb_finish_realize(sPAPRPHBState *sphb, Error **errp)
894 {
895     sPAPRTCETable *tcet;
896 
897     tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn,
898                                0,
899                                SPAPR_TCE_PAGE_SHIFT,
900                                0x40000000 >> SPAPR_TCE_PAGE_SHIFT, false);
901     if (!tcet) {
902         error_setg(errp, "Unable to create TCE table for %s",
903                    sphb->dtbusname);
904         return ;
905     }
906 
907     /* Register default 32bit DMA window */
908     memory_region_add_subregion(&sphb->iommu_root, 0,
909                                 spapr_tce_get_iommu(tcet));
910 }
911 
912 static int spapr_phb_children_reset(Object *child, void *opaque)
913 {
914     DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
915 
916     if (dev) {
917         device_reset(dev);
918     }
919 
920     return 0;
921 }
922 
923 static void spapr_phb_reset(DeviceState *qdev)
924 {
925     /* Reset the IOMMU state */
926     object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
927 }
928 
929 static Property spapr_phb_properties[] = {
930     DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
931     DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1),
932     DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn, -1),
933     DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
934     DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
935                        SPAPR_PCI_MMIO_WIN_SIZE),
936     DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
937     DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
938                        SPAPR_PCI_IO_WIN_SIZE),
939     DEFINE_PROP_END_OF_LIST(),
940 };
941 
942 static const VMStateDescription vmstate_spapr_pci_lsi = {
943     .name = "spapr_pci/lsi",
944     .version_id = 1,
945     .minimum_version_id = 1,
946     .fields = (VMStateField[]) {
947         VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi),
948 
949         VMSTATE_END_OF_LIST()
950     },
951 };
952 
953 static const VMStateDescription vmstate_spapr_pci_msi = {
954     .name = "spapr_pci/msi",
955     .version_id = 1,
956     .minimum_version_id = 1,
957     .fields = (VMStateField []) {
958         VMSTATE_UINT32(key, spapr_pci_msi_mig),
959         VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
960         VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
961         VMSTATE_END_OF_LIST()
962     },
963 };
964 
965 static void spapr_pci_fill_msi_devs(gpointer key, gpointer value,
966                                     gpointer opaque)
967 {
968     sPAPRPHBState *sphb = opaque;
969 
970     sphb->msi_devs[sphb->msi_devs_num].key = *(uint32_t *)key;
971     sphb->msi_devs[sphb->msi_devs_num].value = *(spapr_pci_msi *)value;
972     sphb->msi_devs_num++;
973 }
974 
975 static void spapr_pci_pre_save(void *opaque)
976 {
977     sPAPRPHBState *sphb = opaque;
978     int msi_devs_num;
979 
980     if (sphb->msi_devs) {
981         g_free(sphb->msi_devs);
982         sphb->msi_devs = NULL;
983     }
984     sphb->msi_devs_num = 0;
985     msi_devs_num = g_hash_table_size(sphb->msi);
986     if (!msi_devs_num) {
987         return;
988     }
989     sphb->msi_devs = g_malloc(msi_devs_num * sizeof(spapr_pci_msi_mig));
990 
991     g_hash_table_foreach(sphb->msi, spapr_pci_fill_msi_devs, sphb);
992     assert(sphb->msi_devs_num == msi_devs_num);
993 }
994 
995 static int spapr_pci_post_load(void *opaque, int version_id)
996 {
997     sPAPRPHBState *sphb = opaque;
998     gpointer key, value;
999     int i;
1000 
1001     for (i = 0; i < sphb->msi_devs_num; ++i) {
1002         key = g_memdup(&sphb->msi_devs[i].key,
1003                        sizeof(sphb->msi_devs[i].key));
1004         value = g_memdup(&sphb->msi_devs[i].value,
1005                          sizeof(sphb->msi_devs[i].value));
1006         g_hash_table_insert(sphb->msi, key, value);
1007     }
1008     if (sphb->msi_devs) {
1009         g_free(sphb->msi_devs);
1010         sphb->msi_devs = NULL;
1011     }
1012     sphb->msi_devs_num = 0;
1013 
1014     return 0;
1015 }
1016 
1017 static const VMStateDescription vmstate_spapr_pci = {
1018     .name = "spapr_pci",
1019     .version_id = 2,
1020     .minimum_version_id = 2,
1021     .pre_save = spapr_pci_pre_save,
1022     .post_load = spapr_pci_post_load,
1023     .fields = (VMStateField[]) {
1024         VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState),
1025         VMSTATE_UINT32_EQUAL(dma_liobn, sPAPRPHBState),
1026         VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState),
1027         VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState),
1028         VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState),
1029         VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState),
1030         VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
1031                              vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
1032         VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
1033         VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
1034                                     vmstate_spapr_pci_msi, spapr_pci_msi_mig),
1035         VMSTATE_END_OF_LIST()
1036     },
1037 };
1038 
1039 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
1040                                            PCIBus *rootbus)
1041 {
1042     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
1043 
1044     return sphb->dtbusname;
1045 }
1046 
1047 static void spapr_phb_class_init(ObjectClass *klass, void *data)
1048 {
1049     PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1050     DeviceClass *dc = DEVICE_CLASS(klass);
1051     sPAPRPHBClass *spc = SPAPR_PCI_HOST_BRIDGE_CLASS(klass);
1052 
1053     hc->root_bus_path = spapr_phb_root_bus_path;
1054     dc->realize = spapr_phb_realize;
1055     dc->props = spapr_phb_properties;
1056     dc->reset = spapr_phb_reset;
1057     dc->vmsd = &vmstate_spapr_pci;
1058     set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1059     dc->cannot_instantiate_with_device_add_yet = false;
1060     spc->finish_realize = spapr_phb_finish_realize;
1061 }
1062 
1063 static const TypeInfo spapr_phb_info = {
1064     .name          = TYPE_SPAPR_PCI_HOST_BRIDGE,
1065     .parent        = TYPE_PCI_HOST_BRIDGE,
1066     .instance_size = sizeof(sPAPRPHBState),
1067     .class_init    = spapr_phb_class_init,
1068     .class_size    = sizeof(sPAPRPHBClass),
1069 };
1070 
1071 PCIHostState *spapr_create_phb(sPAPREnvironment *spapr, int index)
1072 {
1073     DeviceState *dev;
1074 
1075     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
1076     qdev_prop_set_uint32(dev, "index", index);
1077     qdev_init_nofail(dev);
1078 
1079     return PCI_HOST_BRIDGE(dev);
1080 }
1081 
1082 /* Macros to operate with address in OF binding to PCI */
1083 #define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
1084 #define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
1085 #define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
1086 #define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
1087 #define b_ss(x)         b_x((x), 24, 2) /* the space code */
1088 #define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
1089 #define b_ddddd(x)      b_x((x), 11, 5) /* device number */
1090 #define b_fff(x)        b_x((x), 8, 3)  /* function number */
1091 #define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */
1092 
1093 typedef struct sPAPRTCEDT {
1094     void *fdt;
1095     int node_off;
1096 } sPAPRTCEDT;
1097 
1098 static int spapr_phb_children_dt(Object *child, void *opaque)
1099 {
1100     sPAPRTCEDT *p = opaque;
1101     sPAPRTCETable *tcet;
1102 
1103     tcet = (sPAPRTCETable *) object_dynamic_cast(child, TYPE_SPAPR_TCE_TABLE);
1104     if (!tcet) {
1105         return 0;
1106     }
1107 
1108     spapr_dma_dt(p->fdt, p->node_off, "ibm,dma-window",
1109                  tcet->liobn, tcet->bus_offset,
1110                  tcet->nb_table << tcet->page_shift);
1111     /* Stop after the first window */
1112 
1113     return 1;
1114 }
1115 
1116 int spapr_populate_pci_dt(sPAPRPHBState *phb,
1117                           uint32_t xics_phandle,
1118                           void *fdt)
1119 {
1120     int bus_off, i, j;
1121     char nodename[256];
1122     uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
1123     const uint64_t mmiosize = memory_region_size(&phb->memwindow);
1124     const uint64_t w32max = (1ULL << 32) - SPAPR_PCI_MEM_WIN_BUS_OFFSET;
1125     const uint64_t w32size = MIN(w32max, mmiosize);
1126     const uint64_t w64size = (mmiosize > w32size) ? (mmiosize - w32size) : 0;
1127     struct {
1128         uint32_t hi;
1129         uint64_t child;
1130         uint64_t parent;
1131         uint64_t size;
1132     } QEMU_PACKED ranges[] = {
1133         {
1134             cpu_to_be32(b_ss(1)), cpu_to_be64(0),
1135             cpu_to_be64(phb->io_win_addr),
1136             cpu_to_be64(memory_region_size(&phb->iospace)),
1137         },
1138         {
1139             cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
1140             cpu_to_be64(phb->mem_win_addr),
1141             cpu_to_be64(w32size),
1142         },
1143         {
1144             cpu_to_be32(b_ss(3)), cpu_to_be64(1ULL << 32),
1145             cpu_to_be64(phb->mem_win_addr + w32size),
1146             cpu_to_be64(w64size)
1147         },
1148     };
1149     const unsigned sizeof_ranges = (w64size ? 3 : 2) * sizeof(ranges[0]);
1150     uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
1151     uint32_t interrupt_map_mask[] = {
1152         cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
1153     uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
1154 
1155     /* Start populating the FDT */
1156     sprintf(nodename, "pci@%" PRIx64, phb->buid);
1157     bus_off = fdt_add_subnode(fdt, 0, nodename);
1158     if (bus_off < 0) {
1159         return bus_off;
1160     }
1161 
1162 #define _FDT(exp) \
1163     do { \
1164         int ret = (exp);                                           \
1165         if (ret < 0) {                                             \
1166             return ret;                                            \
1167         }                                                          \
1168     } while (0)
1169 
1170     /* Write PHB properties */
1171     _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
1172     _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
1173     _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
1174     _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
1175     _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
1176     _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
1177     _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
1178     _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
1179     _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
1180     _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
1181     _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS));
1182 
1183     /* Build the interrupt-map, this must matches what is done
1184      * in pci_spapr_map_irq
1185      */
1186     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
1187                      &interrupt_map_mask, sizeof(interrupt_map_mask)));
1188     for (i = 0; i < PCI_SLOT_MAX; i++) {
1189         for (j = 0; j < PCI_NUM_PINS; j++) {
1190             uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
1191             int lsi_num = pci_spapr_swizzle(i, j);
1192 
1193             irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
1194             irqmap[1] = 0;
1195             irqmap[2] = 0;
1196             irqmap[3] = cpu_to_be32(j+1);
1197             irqmap[4] = cpu_to_be32(xics_phandle);
1198             irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
1199             irqmap[6] = cpu_to_be32(0x8);
1200         }
1201     }
1202     /* Write interrupt map */
1203     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
1204                      sizeof(interrupt_map)));
1205 
1206     object_child_foreach(OBJECT(phb), spapr_phb_children_dt,
1207                          &((sPAPRTCEDT){ .fdt = fdt, .node_off = bus_off }));
1208 
1209     return 0;
1210 }
1211 
1212 void spapr_pci_rtas_init(void)
1213 {
1214     spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
1215                         rtas_read_pci_config);
1216     spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
1217                         rtas_write_pci_config);
1218     spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
1219                         rtas_ibm_read_pci_config);
1220     spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
1221                         rtas_ibm_write_pci_config);
1222     if (msi_supported) {
1223         spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
1224                             "ibm,query-interrupt-source-number",
1225                             rtas_ibm_query_interrupt_source_number);
1226         spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
1227                             rtas_ibm_change_msi);
1228     }
1229 
1230     spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
1231                         "ibm,set-eeh-option",
1232                         rtas_ibm_set_eeh_option);
1233     spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
1234                         "ibm,get-config-addr-info2",
1235                         rtas_ibm_get_config_addr_info2);
1236     spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
1237                         "ibm,read-slot-reset-state2",
1238                         rtas_ibm_read_slot_reset_state2);
1239     spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
1240                         "ibm,set-slot-reset",
1241                         rtas_ibm_set_slot_reset);
1242     spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
1243                         "ibm,configure-pe",
1244                         rtas_ibm_configure_pe);
1245     spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
1246                         "ibm,slot-error-detail",
1247                         rtas_ibm_slot_error_detail);
1248 }
1249 
1250 static void spapr_pci_register_types(void)
1251 {
1252     type_register_static(&spapr_phb_info);
1253 }
1254 
1255 type_init(spapr_pci_register_types)
1256 
1257 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
1258 {
1259     bool be = *(bool *)opaque;
1260 
1261     if (object_dynamic_cast(OBJECT(dev), "VGA")
1262         || object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
1263         object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
1264                                  &error_abort);
1265     }
1266     return 0;
1267 }
1268 
1269 void spapr_pci_switch_vga(bool big_endian)
1270 {
1271     sPAPRPHBState *sphb;
1272 
1273     /*
1274      * For backward compatibility with existing guests, we switch
1275      * the endianness of the VGA controller when changing the guest
1276      * interrupt mode
1277      */
1278     QLIST_FOREACH(sphb, &spapr->phbs, list) {
1279         BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
1280         qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
1281                            &big_endian);
1282     }
1283 }
1284