xref: /qemu/hw/ppc/spapr_rtas.c (revision 814bb12a)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Hypercall based emulated RTAS
5  *
6  * Copyright (c) 2010-2011 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "cpu.h"
29 #include "qemu/log.h"
30 #include "qemu/error-report.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/char.h"
33 #include "hw/qdev.h"
34 #include "sysemu/device_tree.h"
35 #include "sysemu/cpus.h"
36 #include "sysemu/kvm.h"
37 
38 #include "hw/ppc/spapr.h"
39 #include "hw/ppc/spapr_vio.h"
40 #include "hw/ppc/spapr_rtas.h"
41 #include "hw/ppc/ppc.h"
42 #include "qapi-event.h"
43 #include "hw/boards.h"
44 
45 #include <libfdt.h>
46 #include "hw/ppc/spapr_drc.h"
47 #include "qemu/cutils.h"
48 #include "trace.h"
49 
50 static sPAPRConfigureConnectorState *spapr_ccs_find(sPAPRMachineState *spapr,
51                                                     uint32_t drc_index)
52 {
53     sPAPRConfigureConnectorState *ccs = NULL;
54 
55     QTAILQ_FOREACH(ccs, &spapr->ccs_list, next) {
56         if (ccs->drc_index == drc_index) {
57             break;
58         }
59     }
60 
61     return ccs;
62 }
63 
64 static void spapr_ccs_add(sPAPRMachineState *spapr,
65                           sPAPRConfigureConnectorState *ccs)
66 {
67     g_assert(!spapr_ccs_find(spapr, ccs->drc_index));
68     QTAILQ_INSERT_HEAD(&spapr->ccs_list, ccs, next);
69 }
70 
71 static void spapr_ccs_remove(sPAPRMachineState *spapr,
72                              sPAPRConfigureConnectorState *ccs)
73 {
74     QTAILQ_REMOVE(&spapr->ccs_list, ccs, next);
75     g_free(ccs);
76 }
77 
78 void spapr_ccs_reset_hook(void *opaque)
79 {
80     sPAPRMachineState *spapr = opaque;
81     sPAPRConfigureConnectorState *ccs, *ccs_tmp;
82 
83     QTAILQ_FOREACH_SAFE(ccs, &spapr->ccs_list, next, ccs_tmp) {
84         spapr_ccs_remove(spapr, ccs);
85     }
86 }
87 
88 static void rtas_display_character(PowerPCCPU *cpu, sPAPRMachineState *spapr,
89                                    uint32_t token, uint32_t nargs,
90                                    target_ulong args,
91                                    uint32_t nret, target_ulong rets)
92 {
93     uint8_t c = rtas_ld(args, 0);
94     VIOsPAPRDevice *sdev = vty_lookup(spapr, 0);
95 
96     if (!sdev) {
97         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
98     } else {
99         vty_putchars(sdev, &c, sizeof(c));
100         rtas_st(rets, 0, RTAS_OUT_SUCCESS);
101     }
102 }
103 
104 static void rtas_power_off(PowerPCCPU *cpu, sPAPRMachineState *spapr,
105                            uint32_t token, uint32_t nargs, target_ulong args,
106                            uint32_t nret, target_ulong rets)
107 {
108     if (nargs != 2 || nret != 1) {
109         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
110         return;
111     }
112     qemu_system_shutdown_request();
113     cpu_stop_current();
114     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
115 }
116 
117 static void rtas_system_reboot(PowerPCCPU *cpu, sPAPRMachineState *spapr,
118                                uint32_t token, uint32_t nargs,
119                                target_ulong args,
120                                uint32_t nret, target_ulong rets)
121 {
122     if (nargs != 0 || nret != 1) {
123         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
124         return;
125     }
126     qemu_system_reset_request();
127     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
128 }
129 
130 static void rtas_query_cpu_stopped_state(PowerPCCPU *cpu_,
131                                          sPAPRMachineState *spapr,
132                                          uint32_t token, uint32_t nargs,
133                                          target_ulong args,
134                                          uint32_t nret, target_ulong rets)
135 {
136     target_ulong id;
137     PowerPCCPU *cpu;
138 
139     if (nargs != 1 || nret != 2) {
140         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
141         return;
142     }
143 
144     id = rtas_ld(args, 0);
145     cpu = ppc_get_vcpu_by_dt_id(id);
146     if (cpu != NULL) {
147         if (CPU(cpu)->halted) {
148             rtas_st(rets, 1, 0);
149         } else {
150             rtas_st(rets, 1, 2);
151         }
152 
153         rtas_st(rets, 0, RTAS_OUT_SUCCESS);
154         return;
155     }
156 
157     /* Didn't find a matching cpu */
158     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
159 }
160 
161 /*
162  * Set the timebase offset of the CPU to that of first CPU.
163  * This helps hotplugged CPU to have the correct timebase offset.
164  */
165 static void spapr_cpu_update_tb_offset(PowerPCCPU *cpu)
166 {
167     PowerPCCPU *fcpu = POWERPC_CPU(first_cpu);
168 
169     cpu->env.tb_env->tb_offset = fcpu->env.tb_env->tb_offset;
170 }
171 
172 static void spapr_cpu_set_endianness(PowerPCCPU *cpu)
173 {
174     PowerPCCPU *fcpu = POWERPC_CPU(first_cpu);
175     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(fcpu);
176 
177     if (!pcc->interrupts_big_endian(fcpu)) {
178         cpu->env.spr[SPR_LPCR] |= LPCR_ILE;
179     }
180 }
181 
182 static void rtas_start_cpu(PowerPCCPU *cpu_, sPAPRMachineState *spapr,
183                            uint32_t token, uint32_t nargs,
184                            target_ulong args,
185                            uint32_t nret, target_ulong rets)
186 {
187     target_ulong id, start, r3;
188     PowerPCCPU *cpu;
189 
190     if (nargs != 3 || nret != 1) {
191         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
192         return;
193     }
194 
195     id = rtas_ld(args, 0);
196     start = rtas_ld(args, 1);
197     r3 = rtas_ld(args, 2);
198 
199     cpu = ppc_get_vcpu_by_dt_id(id);
200     if (cpu != NULL) {
201         CPUState *cs = CPU(cpu);
202         CPUPPCState *env = &cpu->env;
203 
204         if (!cs->halted) {
205             rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
206             return;
207         }
208 
209         /* This will make sure qemu state is up to date with kvm, and
210          * mark it dirty so our changes get flushed back before the
211          * new cpu enters */
212         kvm_cpu_synchronize_state(cs);
213 
214         env->msr = (1ULL << MSR_SF) | (1ULL << MSR_ME);
215         env->nip = start;
216         env->gpr[3] = r3;
217         cs->halted = 0;
218         spapr_cpu_set_endianness(cpu);
219         spapr_cpu_update_tb_offset(cpu);
220 
221         qemu_cpu_kick(cs);
222 
223         rtas_st(rets, 0, RTAS_OUT_SUCCESS);
224         return;
225     }
226 
227     /* Didn't find a matching cpu */
228     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
229 }
230 
231 static void rtas_stop_self(PowerPCCPU *cpu, sPAPRMachineState *spapr,
232                            uint32_t token, uint32_t nargs,
233                            target_ulong args,
234                            uint32_t nret, target_ulong rets)
235 {
236     CPUState *cs = CPU(cpu);
237     CPUPPCState *env = &cpu->env;
238 
239     cs->halted = 1;
240     qemu_cpu_kick(cs);
241     /*
242      * While stopping a CPU, the guest calls H_CPPR which
243      * effectively disables interrupts on XICS level.
244      * However decrementer interrupts in TCG can still
245      * wake the CPU up so here we disable interrupts in MSR
246      * as well.
247      * As rtas_start_cpu() resets the whole MSR anyway, there is
248      * no need to bother with specific bits, we just clear it.
249      */
250     env->msr = 0;
251 }
252 
253 static inline int sysparm_st(target_ulong addr, target_ulong len,
254                              const void *val, uint16_t vallen)
255 {
256     hwaddr phys = ppc64_phys_to_real(addr);
257 
258     if (len < 2) {
259         return RTAS_OUT_SYSPARM_PARAM_ERROR;
260     }
261     stw_be_phys(&address_space_memory, phys, vallen);
262     cpu_physical_memory_write(phys + 2, val, MIN(len - 2, vallen));
263     return RTAS_OUT_SUCCESS;
264 }
265 
266 static void rtas_ibm_get_system_parameter(PowerPCCPU *cpu,
267                                           sPAPRMachineState *spapr,
268                                           uint32_t token, uint32_t nargs,
269                                           target_ulong args,
270                                           uint32_t nret, target_ulong rets)
271 {
272     target_ulong parameter = rtas_ld(args, 0);
273     target_ulong buffer = rtas_ld(args, 1);
274     target_ulong length = rtas_ld(args, 2);
275     target_ulong ret;
276 
277     switch (parameter) {
278     case RTAS_SYSPARM_SPLPAR_CHARACTERISTICS: {
279         char *param_val = g_strdup_printf("MaxEntCap=%d,"
280                                           "DesMem=%llu,"
281                                           "DesProcs=%d,"
282                                           "MaxPlatProcs=%d",
283                                           max_cpus,
284                                           current_machine->ram_size / M_BYTE,
285                                           smp_cpus,
286                                           max_cpus);
287         ret = sysparm_st(buffer, length, param_val, strlen(param_val) + 1);
288         g_free(param_val);
289         break;
290     }
291     case RTAS_SYSPARM_DIAGNOSTICS_RUN_MODE: {
292         uint8_t param_val = DIAGNOSTICS_RUN_MODE_DISABLED;
293 
294         ret = sysparm_st(buffer, length, &param_val, sizeof(param_val));
295         break;
296     }
297     case RTAS_SYSPARM_UUID:
298         ret = sysparm_st(buffer, length, (unsigned char *)&qemu_uuid,
299                          (qemu_uuid_set ? 16 : 0));
300         break;
301     default:
302         ret = RTAS_OUT_NOT_SUPPORTED;
303     }
304 
305     rtas_st(rets, 0, ret);
306 }
307 
308 static void rtas_ibm_set_system_parameter(PowerPCCPU *cpu,
309                                           sPAPRMachineState *spapr,
310                                           uint32_t token, uint32_t nargs,
311                                           target_ulong args,
312                                           uint32_t nret, target_ulong rets)
313 {
314     target_ulong parameter = rtas_ld(args, 0);
315     target_ulong ret = RTAS_OUT_NOT_SUPPORTED;
316 
317     switch (parameter) {
318     case RTAS_SYSPARM_SPLPAR_CHARACTERISTICS:
319     case RTAS_SYSPARM_DIAGNOSTICS_RUN_MODE:
320     case RTAS_SYSPARM_UUID:
321         ret = RTAS_OUT_NOT_AUTHORIZED;
322         break;
323     }
324 
325     rtas_st(rets, 0, ret);
326 }
327 
328 static void rtas_ibm_os_term(PowerPCCPU *cpu,
329                             sPAPRMachineState *spapr,
330                             uint32_t token, uint32_t nargs,
331                             target_ulong args,
332                             uint32_t nret, target_ulong rets)
333 {
334     target_ulong ret = 0;
335 
336     qapi_event_send_guest_panicked(GUEST_PANIC_ACTION_PAUSE, &error_abort);
337 
338     rtas_st(rets, 0, ret);
339 }
340 
341 static void rtas_set_power_level(PowerPCCPU *cpu, sPAPRMachineState *spapr,
342                                  uint32_t token, uint32_t nargs,
343                                  target_ulong args, uint32_t nret,
344                                  target_ulong rets)
345 {
346     int32_t power_domain;
347 
348     if (nargs != 2 || nret != 2) {
349         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
350         return;
351     }
352 
353     /* we currently only use a single, "live insert" powerdomain for
354      * hotplugged/dlpar'd resources, so the power is always live/full (100)
355      */
356     power_domain = rtas_ld(args, 0);
357     if (power_domain != -1) {
358         rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED);
359         return;
360     }
361 
362     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
363     rtas_st(rets, 1, 100);
364 }
365 
366 static void rtas_get_power_level(PowerPCCPU *cpu, sPAPRMachineState *spapr,
367                                   uint32_t token, uint32_t nargs,
368                                   target_ulong args, uint32_t nret,
369                                   target_ulong rets)
370 {
371     int32_t power_domain;
372 
373     if (nargs != 1 || nret != 2) {
374         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
375         return;
376     }
377 
378     /* we currently only use a single, "live insert" powerdomain for
379      * hotplugged/dlpar'd resources, so the power is always live/full (100)
380      */
381     power_domain = rtas_ld(args, 0);
382     if (power_domain != -1) {
383         rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED);
384         return;
385     }
386 
387     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
388     rtas_st(rets, 1, 100);
389 }
390 
391 static bool sensor_type_is_dr(uint32_t sensor_type)
392 {
393     switch (sensor_type) {
394     case RTAS_SENSOR_TYPE_ISOLATION_STATE:
395     case RTAS_SENSOR_TYPE_DR:
396     case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
397         return true;
398     }
399 
400     return false;
401 }
402 
403 static void rtas_set_indicator(PowerPCCPU *cpu, sPAPRMachineState *spapr,
404                                uint32_t token, uint32_t nargs,
405                                target_ulong args, uint32_t nret,
406                                target_ulong rets)
407 {
408     uint32_t sensor_type;
409     uint32_t sensor_index;
410     uint32_t sensor_state;
411     uint32_t ret = RTAS_OUT_SUCCESS;
412     sPAPRDRConnector *drc;
413     sPAPRDRConnectorClass *drck;
414 
415     if (nargs != 3 || nret != 1) {
416         ret = RTAS_OUT_PARAM_ERROR;
417         goto out;
418     }
419 
420     sensor_type = rtas_ld(args, 0);
421     sensor_index = rtas_ld(args, 1);
422     sensor_state = rtas_ld(args, 2);
423 
424     if (!sensor_type_is_dr(sensor_type)) {
425         goto out_unimplemented;
426     }
427 
428     /* if this is a DR sensor we can assume sensor_index == drc_index */
429     drc = spapr_dr_connector_by_index(sensor_index);
430     if (!drc) {
431         trace_spapr_rtas_set_indicator_invalid(sensor_index);
432         ret = RTAS_OUT_PARAM_ERROR;
433         goto out;
434     }
435     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
436 
437     switch (sensor_type) {
438     case RTAS_SENSOR_TYPE_ISOLATION_STATE:
439         /* if the guest is configuring a device attached to this
440          * DRC, we should reset the configuration state at this
441          * point since it may no longer be reliable (guest released
442          * device and needs to start over, or unplug occurred so
443          * the FDT is no longer valid)
444          */
445         if (sensor_state == SPAPR_DR_ISOLATION_STATE_ISOLATED) {
446             sPAPRConfigureConnectorState *ccs = spapr_ccs_find(spapr,
447                                                                sensor_index);
448             if (ccs) {
449                 spapr_ccs_remove(spapr, ccs);
450             }
451         }
452         ret = drck->set_isolation_state(drc, sensor_state);
453         break;
454     case RTAS_SENSOR_TYPE_DR:
455         ret = drck->set_indicator_state(drc, sensor_state);
456         break;
457     case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
458         ret = drck->set_allocation_state(drc, sensor_state);
459         break;
460     default:
461         goto out_unimplemented;
462     }
463 
464 out:
465     rtas_st(rets, 0, ret);
466     return;
467 
468 out_unimplemented:
469     /* currently only DR-related sensors are implemented */
470     trace_spapr_rtas_set_indicator_not_supported(sensor_index, sensor_type);
471     rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED);
472 }
473 
474 static void rtas_get_sensor_state(PowerPCCPU *cpu, sPAPRMachineState *spapr,
475                                   uint32_t token, uint32_t nargs,
476                                   target_ulong args, uint32_t nret,
477                                   target_ulong rets)
478 {
479     uint32_t sensor_type;
480     uint32_t sensor_index;
481     uint32_t sensor_state = 0;
482     sPAPRDRConnector *drc;
483     sPAPRDRConnectorClass *drck;
484     uint32_t ret = RTAS_OUT_SUCCESS;
485 
486     if (nargs != 2 || nret != 2) {
487         ret = RTAS_OUT_PARAM_ERROR;
488         goto out;
489     }
490 
491     sensor_type = rtas_ld(args, 0);
492     sensor_index = rtas_ld(args, 1);
493 
494     if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
495         /* currently only DR-related sensors are implemented */
496         trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
497                                                         sensor_type);
498         ret = RTAS_OUT_NOT_SUPPORTED;
499         goto out;
500     }
501 
502     drc = spapr_dr_connector_by_index(sensor_index);
503     if (!drc) {
504         trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
505         ret = RTAS_OUT_PARAM_ERROR;
506         goto out;
507     }
508     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
509     ret = drck->entity_sense(drc, &sensor_state);
510 
511 out:
512     rtas_st(rets, 0, ret);
513     rtas_st(rets, 1, sensor_state);
514 }
515 
516 /* configure-connector work area offsets, int32_t units for field
517  * indexes, bytes for field offset/len values.
518  *
519  * as documented by PAPR+ v2.7, 13.5.3.5
520  */
521 #define CC_IDX_NODE_NAME_OFFSET 2
522 #define CC_IDX_PROP_NAME_OFFSET 2
523 #define CC_IDX_PROP_LEN 3
524 #define CC_IDX_PROP_DATA_OFFSET 4
525 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
526 #define CC_WA_LEN 4096
527 
528 static void configure_connector_st(target_ulong addr, target_ulong offset,
529                                    const void *buf, size_t len)
530 {
531     cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
532                               buf, MIN(len, CC_WA_LEN - offset));
533 }
534 
535 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
536                                          sPAPRMachineState *spapr,
537                                          uint32_t token, uint32_t nargs,
538                                          target_ulong args, uint32_t nret,
539                                          target_ulong rets)
540 {
541     uint64_t wa_addr;
542     uint64_t wa_offset;
543     uint32_t drc_index;
544     sPAPRDRConnector *drc;
545     sPAPRDRConnectorClass *drck;
546     sPAPRConfigureConnectorState *ccs;
547     sPAPRDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
548     int rc;
549     const void *fdt;
550 
551     if (nargs != 2 || nret != 1) {
552         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
553         return;
554     }
555 
556     wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
557 
558     drc_index = rtas_ld(wa_addr, 0);
559     drc = spapr_dr_connector_by_index(drc_index);
560     if (!drc) {
561         trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
562         rc = RTAS_OUT_PARAM_ERROR;
563         goto out;
564     }
565 
566     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
567     fdt = drck->get_fdt(drc, NULL);
568     if (!fdt) {
569         trace_spapr_rtas_ibm_configure_connector_missing_fdt(drc_index);
570         rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
571         goto out;
572     }
573 
574     ccs = spapr_ccs_find(spapr, drc_index);
575     if (!ccs) {
576         ccs = g_new0(sPAPRConfigureConnectorState, 1);
577         (void)drck->get_fdt(drc, &ccs->fdt_offset);
578         ccs->drc_index = drc_index;
579         spapr_ccs_add(spapr, ccs);
580     }
581 
582     do {
583         uint32_t tag;
584         const char *name;
585         const struct fdt_property *prop;
586         int fdt_offset_next, prop_len;
587 
588         tag = fdt_next_tag(fdt, ccs->fdt_offset, &fdt_offset_next);
589 
590         switch (tag) {
591         case FDT_BEGIN_NODE:
592             ccs->fdt_depth++;
593             name = fdt_get_name(fdt, ccs->fdt_offset, NULL);
594 
595             /* provide the name of the next OF node */
596             wa_offset = CC_VAL_DATA_OFFSET;
597             rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
598             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
599             resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
600             break;
601         case FDT_END_NODE:
602             ccs->fdt_depth--;
603             if (ccs->fdt_depth == 0) {
604                 /* done sending the device tree, don't need to track
605                  * the state anymore
606                  */
607                 drck->set_configured(drc);
608                 spapr_ccs_remove(spapr, ccs);
609                 ccs = NULL;
610                 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
611             } else {
612                 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
613             }
614             break;
615         case FDT_PROP:
616             prop = fdt_get_property_by_offset(fdt, ccs->fdt_offset,
617                                               &prop_len);
618             name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
619 
620             /* provide the name of the next OF property */
621             wa_offset = CC_VAL_DATA_OFFSET;
622             rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
623             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
624 
625             /* provide the length and value of the OF property. data gets
626              * placed immediately after NULL terminator of the OF property's
627              * name string
628              */
629             wa_offset += strlen(name) + 1,
630             rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
631             rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
632             configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
633             resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
634             break;
635         case FDT_END:
636             resp = SPAPR_DR_CC_RESPONSE_ERROR;
637         default:
638             /* keep seeking for an actionable tag */
639             break;
640         }
641         if (ccs) {
642             ccs->fdt_offset = fdt_offset_next;
643         }
644     } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
645 
646     rc = resp;
647 out:
648     rtas_st(rets, 0, rc);
649 }
650 
651 static struct rtas_call {
652     const char *name;
653     spapr_rtas_fn fn;
654 } rtas_table[RTAS_TOKEN_MAX - RTAS_TOKEN_BASE];
655 
656 target_ulong spapr_rtas_call(PowerPCCPU *cpu, sPAPRMachineState *spapr,
657                              uint32_t token, uint32_t nargs, target_ulong args,
658                              uint32_t nret, target_ulong rets)
659 {
660     if ((token >= RTAS_TOKEN_BASE) && (token < RTAS_TOKEN_MAX)) {
661         struct rtas_call *call = rtas_table + (token - RTAS_TOKEN_BASE);
662 
663         if (call->fn) {
664             call->fn(cpu, spapr, token, nargs, args, nret, rets);
665             return H_SUCCESS;
666         }
667     }
668 
669     /* HACK: Some Linux early debug code uses RTAS display-character,
670      * but assumes the token value is 0xa (which it is on some real
671      * machines) without looking it up in the device tree.  This
672      * special case makes this work */
673     if (token == 0xa) {
674         rtas_display_character(cpu, spapr, 0xa, nargs, args, nret, rets);
675         return H_SUCCESS;
676     }
677 
678     hcall_dprintf("Unknown RTAS token 0x%x\n", token);
679     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
680     return H_PARAMETER;
681 }
682 
683 uint64_t qtest_rtas_call(char *cmd, uint32_t nargs, uint64_t args,
684                          uint32_t nret, uint64_t rets)
685 {
686     int token;
687 
688     for (token = 0; token < RTAS_TOKEN_MAX - RTAS_TOKEN_BASE; token++) {
689         if (strcmp(cmd, rtas_table[token].name) == 0) {
690             sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
691             PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
692 
693             rtas_table[token].fn(cpu, spapr, token + RTAS_TOKEN_BASE,
694                                  nargs, args, nret, rets);
695             return H_SUCCESS;
696         }
697     }
698     return H_PARAMETER;
699 }
700 
701 void spapr_rtas_register(int token, const char *name, spapr_rtas_fn fn)
702 {
703     assert((token >= RTAS_TOKEN_BASE) && (token < RTAS_TOKEN_MAX));
704 
705     token -= RTAS_TOKEN_BASE;
706 
707     assert(!rtas_table[token].name);
708 
709     rtas_table[token].name = name;
710     rtas_table[token].fn = fn;
711 }
712 
713 int spapr_rtas_device_tree_setup(void *fdt, hwaddr rtas_addr,
714                                  hwaddr rtas_size)
715 {
716     int ret;
717     int i;
718     uint32_t lrdr_capacity[5];
719     MachineState *machine = MACHINE(qdev_get_machine());
720     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
721     uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
722                                 memory_region_size(&spapr->hotplug_memory.mr);
723 
724     ret = fdt_add_mem_rsv(fdt, rtas_addr, rtas_size);
725     if (ret < 0) {
726         error_report("Couldn't add RTAS reserve entry: %s",
727                 fdt_strerror(ret));
728         return ret;
729     }
730 
731     ret = qemu_fdt_setprop_cell(fdt, "/rtas", "linux,rtas-base",
732                                 rtas_addr);
733     if (ret < 0) {
734         error_report("Couldn't add linux,rtas-base property: %s",
735                 fdt_strerror(ret));
736         return ret;
737     }
738 
739     ret = qemu_fdt_setprop_cell(fdt, "/rtas", "linux,rtas-entry",
740                                 rtas_addr);
741     if (ret < 0) {
742         error_report("Couldn't add linux,rtas-entry property: %s",
743                 fdt_strerror(ret));
744         return ret;
745     }
746 
747     ret = qemu_fdt_setprop_cell(fdt, "/rtas", "rtas-size",
748                                 rtas_size);
749     if (ret < 0) {
750         error_report("Couldn't add rtas-size property: %s",
751                 fdt_strerror(ret));
752         return ret;
753     }
754 
755     for (i = 0; i < RTAS_TOKEN_MAX - RTAS_TOKEN_BASE; i++) {
756         struct rtas_call *call = &rtas_table[i];
757 
758         if (!call->name) {
759             continue;
760         }
761 
762         ret = qemu_fdt_setprop_cell(fdt, "/rtas", call->name,
763                                     i + RTAS_TOKEN_BASE);
764         if (ret < 0) {
765             error_report("Couldn't add rtas token for %s: %s",
766                     call->name, fdt_strerror(ret));
767             return ret;
768         }
769 
770     }
771 
772     lrdr_capacity[0] = cpu_to_be32(max_hotplug_addr >> 32);
773     lrdr_capacity[1] = cpu_to_be32(max_hotplug_addr & 0xffffffff);
774     lrdr_capacity[2] = 0;
775     lrdr_capacity[3] = cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE);
776     lrdr_capacity[4] = cpu_to_be32(max_cpus/smp_threads);
777     ret = qemu_fdt_setprop(fdt, "/rtas", "ibm,lrdr-capacity", lrdr_capacity,
778                      sizeof(lrdr_capacity));
779     if (ret < 0) {
780         error_report("Couldn't add ibm,lrdr-capacity rtas property");
781         return ret;
782     }
783 
784     return 0;
785 }
786 
787 static void core_rtas_register_types(void)
788 {
789     spapr_rtas_register(RTAS_DISPLAY_CHARACTER, "display-character",
790                         rtas_display_character);
791     spapr_rtas_register(RTAS_POWER_OFF, "power-off", rtas_power_off);
792     spapr_rtas_register(RTAS_SYSTEM_REBOOT, "system-reboot",
793                         rtas_system_reboot);
794     spapr_rtas_register(RTAS_QUERY_CPU_STOPPED_STATE, "query-cpu-stopped-state",
795                         rtas_query_cpu_stopped_state);
796     spapr_rtas_register(RTAS_START_CPU, "start-cpu", rtas_start_cpu);
797     spapr_rtas_register(RTAS_STOP_SELF, "stop-self", rtas_stop_self);
798     spapr_rtas_register(RTAS_IBM_GET_SYSTEM_PARAMETER,
799                         "ibm,get-system-parameter",
800                         rtas_ibm_get_system_parameter);
801     spapr_rtas_register(RTAS_IBM_SET_SYSTEM_PARAMETER,
802                         "ibm,set-system-parameter",
803                         rtas_ibm_set_system_parameter);
804     spapr_rtas_register(RTAS_IBM_OS_TERM, "ibm,os-term",
805                         rtas_ibm_os_term);
806     spapr_rtas_register(RTAS_SET_POWER_LEVEL, "set-power-level",
807                         rtas_set_power_level);
808     spapr_rtas_register(RTAS_GET_POWER_LEVEL, "get-power-level",
809                         rtas_get_power_level);
810     spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
811                         rtas_set_indicator);
812     spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
813                         rtas_get_sensor_state);
814     spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
815                         rtas_ibm_configure_connector);
816 }
817 
818 type_init(core_rtas_register_types)
819