xref: /qemu/hw/ppc/spapr_rtas.c (revision 8d86ada2)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Hypercall based emulated RTAS
5  *
6  * Copyright (c) 2010-2011 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "cpu.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/char.h"
31 #include "hw/qdev.h"
32 #include "sysemu/device_tree.h"
33 #include "sysemu/cpus.h"
34 
35 #include "hw/ppc/spapr.h"
36 #include "hw/ppc/spapr_vio.h"
37 #include "qapi-event.h"
38 #include "hw/boards.h"
39 
40 #include <libfdt.h>
41 #include "hw/ppc/spapr_drc.h"
42 
43 /* #define DEBUG_SPAPR */
44 
45 #ifdef DEBUG_SPAPR
46 #define DPRINTF(fmt, ...) \
47     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
48 #else
49 #define DPRINTF(fmt, ...) \
50     do { } while (0)
51 #endif
52 
53 static sPAPRConfigureConnectorState *spapr_ccs_find(sPAPRMachineState *spapr,
54                                                     uint32_t drc_index)
55 {
56     sPAPRConfigureConnectorState *ccs = NULL;
57 
58     QTAILQ_FOREACH(ccs, &spapr->ccs_list, next) {
59         if (ccs->drc_index == drc_index) {
60             break;
61         }
62     }
63 
64     return ccs;
65 }
66 
67 static void spapr_ccs_add(sPAPRMachineState *spapr,
68                           sPAPRConfigureConnectorState *ccs)
69 {
70     g_assert(!spapr_ccs_find(spapr, ccs->drc_index));
71     QTAILQ_INSERT_HEAD(&spapr->ccs_list, ccs, next);
72 }
73 
74 static void spapr_ccs_remove(sPAPRMachineState *spapr,
75                              sPAPRConfigureConnectorState *ccs)
76 {
77     QTAILQ_REMOVE(&spapr->ccs_list, ccs, next);
78     g_free(ccs);
79 }
80 
81 void spapr_ccs_reset_hook(void *opaque)
82 {
83     sPAPRMachineState *spapr = opaque;
84     sPAPRConfigureConnectorState *ccs, *ccs_tmp;
85 
86     QTAILQ_FOREACH_SAFE(ccs, &spapr->ccs_list, next, ccs_tmp) {
87         spapr_ccs_remove(spapr, ccs);
88     }
89 }
90 
91 static void rtas_display_character(PowerPCCPU *cpu, sPAPRMachineState *spapr,
92                                    uint32_t token, uint32_t nargs,
93                                    target_ulong args,
94                                    uint32_t nret, target_ulong rets)
95 {
96     uint8_t c = rtas_ld(args, 0);
97     VIOsPAPRDevice *sdev = vty_lookup(spapr, 0);
98 
99     if (!sdev) {
100         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
101     } else {
102         vty_putchars(sdev, &c, sizeof(c));
103         rtas_st(rets, 0, RTAS_OUT_SUCCESS);
104     }
105 }
106 
107 static void rtas_power_off(PowerPCCPU *cpu, sPAPRMachineState *spapr,
108                            uint32_t token, uint32_t nargs, target_ulong args,
109                            uint32_t nret, target_ulong rets)
110 {
111     if (nargs != 2 || nret != 1) {
112         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
113         return;
114     }
115     qemu_system_shutdown_request();
116     cpu_stop_current();
117     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
118 }
119 
120 static void rtas_system_reboot(PowerPCCPU *cpu, sPAPRMachineState *spapr,
121                                uint32_t token, uint32_t nargs,
122                                target_ulong args,
123                                uint32_t nret, target_ulong rets)
124 {
125     if (nargs != 0 || nret != 1) {
126         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
127         return;
128     }
129     qemu_system_reset_request();
130     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
131 }
132 
133 static void rtas_query_cpu_stopped_state(PowerPCCPU *cpu_,
134                                          sPAPRMachineState *spapr,
135                                          uint32_t token, uint32_t nargs,
136                                          target_ulong args,
137                                          uint32_t nret, target_ulong rets)
138 {
139     target_ulong id;
140     PowerPCCPU *cpu;
141 
142     if (nargs != 1 || nret != 2) {
143         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
144         return;
145     }
146 
147     id = rtas_ld(args, 0);
148     cpu = ppc_get_vcpu_by_dt_id(id);
149     if (cpu != NULL) {
150         if (CPU(cpu)->halted) {
151             rtas_st(rets, 1, 0);
152         } else {
153             rtas_st(rets, 1, 2);
154         }
155 
156         rtas_st(rets, 0, RTAS_OUT_SUCCESS);
157         return;
158     }
159 
160     /* Didn't find a matching cpu */
161     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
162 }
163 
164 static void rtas_start_cpu(PowerPCCPU *cpu_, sPAPRMachineState *spapr,
165                            uint32_t token, uint32_t nargs,
166                            target_ulong args,
167                            uint32_t nret, target_ulong rets)
168 {
169     target_ulong id, start, r3;
170     PowerPCCPU *cpu;
171 
172     if (nargs != 3 || nret != 1) {
173         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
174         return;
175     }
176 
177     id = rtas_ld(args, 0);
178     start = rtas_ld(args, 1);
179     r3 = rtas_ld(args, 2);
180 
181     cpu = ppc_get_vcpu_by_dt_id(id);
182     if (cpu != NULL) {
183         CPUState *cs = CPU(cpu);
184         CPUPPCState *env = &cpu->env;
185 
186         if (!cs->halted) {
187             rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
188             return;
189         }
190 
191         /* This will make sure qemu state is up to date with kvm, and
192          * mark it dirty so our changes get flushed back before the
193          * new cpu enters */
194         kvm_cpu_synchronize_state(cs);
195 
196         env->msr = (1ULL << MSR_SF) | (1ULL << MSR_ME);
197         env->nip = start;
198         env->gpr[3] = r3;
199         cs->halted = 0;
200 
201         qemu_cpu_kick(cs);
202 
203         rtas_st(rets, 0, RTAS_OUT_SUCCESS);
204         return;
205     }
206 
207     /* Didn't find a matching cpu */
208     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
209 }
210 
211 static void rtas_stop_self(PowerPCCPU *cpu, sPAPRMachineState *spapr,
212                            uint32_t token, uint32_t nargs,
213                            target_ulong args,
214                            uint32_t nret, target_ulong rets)
215 {
216     CPUState *cs = CPU(cpu);
217     CPUPPCState *env = &cpu->env;
218 
219     cs->halted = 1;
220     qemu_cpu_kick(cs);
221     /*
222      * While stopping a CPU, the guest calls H_CPPR which
223      * effectively disables interrupts on XICS level.
224      * However decrementer interrupts in TCG can still
225      * wake the CPU up so here we disable interrupts in MSR
226      * as well.
227      * As rtas_start_cpu() resets the whole MSR anyway, there is
228      * no need to bother with specific bits, we just clear it.
229      */
230     env->msr = 0;
231 }
232 
233 static inline int sysparm_st(target_ulong addr, target_ulong len,
234                              const void *val, uint16_t vallen)
235 {
236     hwaddr phys = ppc64_phys_to_real(addr);
237 
238     if (len < 2) {
239         return RTAS_OUT_SYSPARM_PARAM_ERROR;
240     }
241     stw_be_phys(&address_space_memory, phys, vallen);
242     cpu_physical_memory_write(phys + 2, val, MIN(len - 2, vallen));
243     return RTAS_OUT_SUCCESS;
244 }
245 
246 static void rtas_ibm_get_system_parameter(PowerPCCPU *cpu,
247                                           sPAPRMachineState *spapr,
248                                           uint32_t token, uint32_t nargs,
249                                           target_ulong args,
250                                           uint32_t nret, target_ulong rets)
251 {
252     target_ulong parameter = rtas_ld(args, 0);
253     target_ulong buffer = rtas_ld(args, 1);
254     target_ulong length = rtas_ld(args, 2);
255     target_ulong ret;
256 
257     switch (parameter) {
258     case RTAS_SYSPARM_SPLPAR_CHARACTERISTICS: {
259         char *param_val = g_strdup_printf("MaxEntCap=%d,"
260                                           "DesMem=%llu,"
261                                           "DesProcs=%d,"
262                                           "MaxPlatProcs=%d",
263                                           max_cpus,
264                                           current_machine->ram_size / M_BYTE,
265                                           smp_cpus,
266                                           max_cpus);
267         ret = sysparm_st(buffer, length, param_val, strlen(param_val) + 1);
268         g_free(param_val);
269         break;
270     }
271     case RTAS_SYSPARM_DIAGNOSTICS_RUN_MODE: {
272         uint8_t param_val = DIAGNOSTICS_RUN_MODE_DISABLED;
273 
274         ret = sysparm_st(buffer, length, &param_val, sizeof(param_val));
275         break;
276     }
277     case RTAS_SYSPARM_UUID:
278         ret = sysparm_st(buffer, length, qemu_uuid, (qemu_uuid_set ? 16 : 0));
279         break;
280     default:
281         ret = RTAS_OUT_NOT_SUPPORTED;
282     }
283 
284     rtas_st(rets, 0, ret);
285 }
286 
287 static void rtas_ibm_set_system_parameter(PowerPCCPU *cpu,
288                                           sPAPRMachineState *spapr,
289                                           uint32_t token, uint32_t nargs,
290                                           target_ulong args,
291                                           uint32_t nret, target_ulong rets)
292 {
293     target_ulong parameter = rtas_ld(args, 0);
294     target_ulong ret = RTAS_OUT_NOT_SUPPORTED;
295 
296     switch (parameter) {
297     case RTAS_SYSPARM_SPLPAR_CHARACTERISTICS:
298     case RTAS_SYSPARM_DIAGNOSTICS_RUN_MODE:
299     case RTAS_SYSPARM_UUID:
300         ret = RTAS_OUT_NOT_AUTHORIZED;
301         break;
302     }
303 
304     rtas_st(rets, 0, ret);
305 }
306 
307 static void rtas_ibm_os_term(PowerPCCPU *cpu,
308                             sPAPRMachineState *spapr,
309                             uint32_t token, uint32_t nargs,
310                             target_ulong args,
311                             uint32_t nret, target_ulong rets)
312 {
313     target_ulong ret = 0;
314 
315     qapi_event_send_guest_panicked(GUEST_PANIC_ACTION_PAUSE, &error_abort);
316 
317     rtas_st(rets, 0, ret);
318 }
319 
320 static void rtas_set_power_level(PowerPCCPU *cpu, sPAPRMachineState *spapr,
321                                  uint32_t token, uint32_t nargs,
322                                  target_ulong args, uint32_t nret,
323                                  target_ulong rets)
324 {
325     int32_t power_domain;
326 
327     if (nargs != 2 || nret != 2) {
328         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
329         return;
330     }
331 
332     /* we currently only use a single, "live insert" powerdomain for
333      * hotplugged/dlpar'd resources, so the power is always live/full (100)
334      */
335     power_domain = rtas_ld(args, 0);
336     if (power_domain != -1) {
337         rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED);
338         return;
339     }
340 
341     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
342     rtas_st(rets, 1, 100);
343 }
344 
345 static void rtas_get_power_level(PowerPCCPU *cpu, sPAPRMachineState *spapr,
346                                   uint32_t token, uint32_t nargs,
347                                   target_ulong args, uint32_t nret,
348                                   target_ulong rets)
349 {
350     int32_t power_domain;
351 
352     if (nargs != 1 || nret != 2) {
353         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
354         return;
355     }
356 
357     /* we currently only use a single, "live insert" powerdomain for
358      * hotplugged/dlpar'd resources, so the power is always live/full (100)
359      */
360     power_domain = rtas_ld(args, 0);
361     if (power_domain != -1) {
362         rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED);
363         return;
364     }
365 
366     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
367     rtas_st(rets, 1, 100);
368 }
369 
370 static bool sensor_type_is_dr(uint32_t sensor_type)
371 {
372     switch (sensor_type) {
373     case RTAS_SENSOR_TYPE_ISOLATION_STATE:
374     case RTAS_SENSOR_TYPE_DR:
375     case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
376         return true;
377     }
378 
379     return false;
380 }
381 
382 static void rtas_set_indicator(PowerPCCPU *cpu, sPAPRMachineState *spapr,
383                                uint32_t token, uint32_t nargs,
384                                target_ulong args, uint32_t nret,
385                                target_ulong rets)
386 {
387     uint32_t sensor_type;
388     uint32_t sensor_index;
389     uint32_t sensor_state;
390     uint32_t ret = RTAS_OUT_SUCCESS;
391     sPAPRDRConnector *drc;
392     sPAPRDRConnectorClass *drck;
393 
394     if (nargs != 3 || nret != 1) {
395         ret = RTAS_OUT_PARAM_ERROR;
396         goto out;
397     }
398 
399     sensor_type = rtas_ld(args, 0);
400     sensor_index = rtas_ld(args, 1);
401     sensor_state = rtas_ld(args, 2);
402 
403     if (!sensor_type_is_dr(sensor_type)) {
404         goto out_unimplemented;
405     }
406 
407     /* if this is a DR sensor we can assume sensor_index == drc_index */
408     drc = spapr_dr_connector_by_index(sensor_index);
409     if (!drc) {
410         DPRINTF("rtas_set_indicator: invalid sensor/DRC index: %xh\n",
411                 sensor_index);
412         ret = RTAS_OUT_PARAM_ERROR;
413         goto out;
414     }
415     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
416 
417     switch (sensor_type) {
418     case RTAS_SENSOR_TYPE_ISOLATION_STATE:
419         /* if the guest is configuring a device attached to this
420          * DRC, we should reset the configuration state at this
421          * point since it may no longer be reliable (guest released
422          * device and needs to start over, or unplug occurred so
423          * the FDT is no longer valid)
424          */
425         if (sensor_state == SPAPR_DR_ISOLATION_STATE_ISOLATED) {
426             sPAPRConfigureConnectorState *ccs = spapr_ccs_find(spapr,
427                                                                sensor_index);
428             if (ccs) {
429                 spapr_ccs_remove(spapr, ccs);
430             }
431         }
432         ret = drck->set_isolation_state(drc, sensor_state);
433         break;
434     case RTAS_SENSOR_TYPE_DR:
435         ret = drck->set_indicator_state(drc, sensor_state);
436         break;
437     case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
438         ret = drck->set_allocation_state(drc, sensor_state);
439         break;
440     default:
441         goto out_unimplemented;
442     }
443 
444 out:
445     rtas_st(rets, 0, ret);
446     return;
447 
448 out_unimplemented:
449     /* currently only DR-related sensors are implemented */
450     DPRINTF("rtas_set_indicator: sensor/indicator not implemented: %d\n",
451             sensor_type);
452     rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED);
453 }
454 
455 static void rtas_get_sensor_state(PowerPCCPU *cpu, sPAPRMachineState *spapr,
456                                   uint32_t token, uint32_t nargs,
457                                   target_ulong args, uint32_t nret,
458                                   target_ulong rets)
459 {
460     uint32_t sensor_type;
461     uint32_t sensor_index;
462     uint32_t sensor_state = 0;
463     sPAPRDRConnector *drc;
464     sPAPRDRConnectorClass *drck;
465     uint32_t ret = RTAS_OUT_SUCCESS;
466 
467     if (nargs != 2 || nret != 2) {
468         ret = RTAS_OUT_PARAM_ERROR;
469         goto out;
470     }
471 
472     sensor_type = rtas_ld(args, 0);
473     sensor_index = rtas_ld(args, 1);
474 
475     if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
476         /* currently only DR-related sensors are implemented */
477         DPRINTF("rtas_get_sensor_state: sensor/indicator not implemented: %d\n",
478                 sensor_type);
479         ret = RTAS_OUT_NOT_SUPPORTED;
480         goto out;
481     }
482 
483     drc = spapr_dr_connector_by_index(sensor_index);
484     if (!drc) {
485         DPRINTF("rtas_get_sensor_state: invalid sensor/DRC index: %xh\n",
486                 sensor_index);
487         ret = RTAS_OUT_PARAM_ERROR;
488         goto out;
489     }
490     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
491     ret = drck->entity_sense(drc, &sensor_state);
492 
493 out:
494     rtas_st(rets, 0, ret);
495     rtas_st(rets, 1, sensor_state);
496 }
497 
498 /* configure-connector work area offsets, int32_t units for field
499  * indexes, bytes for field offset/len values.
500  *
501  * as documented by PAPR+ v2.7, 13.5.3.5
502  */
503 #define CC_IDX_NODE_NAME_OFFSET 2
504 #define CC_IDX_PROP_NAME_OFFSET 2
505 #define CC_IDX_PROP_LEN 3
506 #define CC_IDX_PROP_DATA_OFFSET 4
507 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
508 #define CC_WA_LEN 4096
509 
510 static void configure_connector_st(target_ulong addr, target_ulong offset,
511                                    const void *buf, size_t len)
512 {
513     cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
514                               buf, MIN(len, CC_WA_LEN - offset));
515 }
516 
517 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
518                                          sPAPRMachineState *spapr,
519                                          uint32_t token, uint32_t nargs,
520                                          target_ulong args, uint32_t nret,
521                                          target_ulong rets)
522 {
523     uint64_t wa_addr;
524     uint64_t wa_offset;
525     uint32_t drc_index;
526     sPAPRDRConnector *drc;
527     sPAPRDRConnectorClass *drck;
528     sPAPRConfigureConnectorState *ccs;
529     sPAPRDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
530     int rc;
531     const void *fdt;
532 
533     if (nargs != 2 || nret != 1) {
534         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
535         return;
536     }
537 
538     wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
539 
540     drc_index = rtas_ld(wa_addr, 0);
541     drc = spapr_dr_connector_by_index(drc_index);
542     if (!drc) {
543         DPRINTF("rtas_ibm_configure_connector: invalid DRC index: %xh\n",
544                 drc_index);
545         rc = RTAS_OUT_PARAM_ERROR;
546         goto out;
547     }
548 
549     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
550     fdt = drck->get_fdt(drc, NULL);
551     if (!fdt) {
552         DPRINTF("rtas_ibm_configure_connector: Missing FDT for DRC index: %xh\n",
553                 drc_index);
554         rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
555         goto out;
556     }
557 
558     ccs = spapr_ccs_find(spapr, drc_index);
559     if (!ccs) {
560         ccs = g_new0(sPAPRConfigureConnectorState, 1);
561         (void)drck->get_fdt(drc, &ccs->fdt_offset);
562         ccs->drc_index = drc_index;
563         spapr_ccs_add(spapr, ccs);
564     }
565 
566     do {
567         uint32_t tag;
568         const char *name;
569         const struct fdt_property *prop;
570         int fdt_offset_next, prop_len;
571 
572         tag = fdt_next_tag(fdt, ccs->fdt_offset, &fdt_offset_next);
573 
574         switch (tag) {
575         case FDT_BEGIN_NODE:
576             ccs->fdt_depth++;
577             name = fdt_get_name(fdt, ccs->fdt_offset, NULL);
578 
579             /* provide the name of the next OF node */
580             wa_offset = CC_VAL_DATA_OFFSET;
581             rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
582             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
583             resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
584             break;
585         case FDT_END_NODE:
586             ccs->fdt_depth--;
587             if (ccs->fdt_depth == 0) {
588                 /* done sending the device tree, don't need to track
589                  * the state anymore
590                  */
591                 drck->set_configured(drc);
592                 spapr_ccs_remove(spapr, ccs);
593                 ccs = NULL;
594                 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
595             } else {
596                 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
597             }
598             break;
599         case FDT_PROP:
600             prop = fdt_get_property_by_offset(fdt, ccs->fdt_offset,
601                                               &prop_len);
602             name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
603 
604             /* provide the name of the next OF property */
605             wa_offset = CC_VAL_DATA_OFFSET;
606             rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
607             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
608 
609             /* provide the length and value of the OF property. data gets
610              * placed immediately after NULL terminator of the OF property's
611              * name string
612              */
613             wa_offset += strlen(name) + 1,
614             rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
615             rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
616             configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
617             resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
618             break;
619         case FDT_END:
620             resp = SPAPR_DR_CC_RESPONSE_ERROR;
621         default:
622             /* keep seeking for an actionable tag */
623             break;
624         }
625         if (ccs) {
626             ccs->fdt_offset = fdt_offset_next;
627         }
628     } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
629 
630     rc = resp;
631 out:
632     rtas_st(rets, 0, rc);
633 }
634 
635 static struct rtas_call {
636     const char *name;
637     spapr_rtas_fn fn;
638 } rtas_table[RTAS_TOKEN_MAX - RTAS_TOKEN_BASE];
639 
640 target_ulong spapr_rtas_call(PowerPCCPU *cpu, sPAPRMachineState *spapr,
641                              uint32_t token, uint32_t nargs, target_ulong args,
642                              uint32_t nret, target_ulong rets)
643 {
644     if ((token >= RTAS_TOKEN_BASE) && (token < RTAS_TOKEN_MAX)) {
645         struct rtas_call *call = rtas_table + (token - RTAS_TOKEN_BASE);
646 
647         if (call->fn) {
648             call->fn(cpu, spapr, token, nargs, args, nret, rets);
649             return H_SUCCESS;
650         }
651     }
652 
653     /* HACK: Some Linux early debug code uses RTAS display-character,
654      * but assumes the token value is 0xa (which it is on some real
655      * machines) without looking it up in the device tree.  This
656      * special case makes this work */
657     if (token == 0xa) {
658         rtas_display_character(cpu, spapr, 0xa, nargs, args, nret, rets);
659         return H_SUCCESS;
660     }
661 
662     hcall_dprintf("Unknown RTAS token 0x%x\n", token);
663     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
664     return H_PARAMETER;
665 }
666 
667 void spapr_rtas_register(int token, const char *name, spapr_rtas_fn fn)
668 {
669     assert((token >= RTAS_TOKEN_BASE) && (token < RTAS_TOKEN_MAX));
670 
671     token -= RTAS_TOKEN_BASE;
672 
673     assert(!rtas_table[token].name);
674 
675     rtas_table[token].name = name;
676     rtas_table[token].fn = fn;
677 }
678 
679 int spapr_rtas_device_tree_setup(void *fdt, hwaddr rtas_addr,
680                                  hwaddr rtas_size)
681 {
682     int ret;
683     int i;
684     uint32_t lrdr_capacity[5];
685     MachineState *machine = MACHINE(qdev_get_machine());
686 
687     ret = fdt_add_mem_rsv(fdt, rtas_addr, rtas_size);
688     if (ret < 0) {
689         fprintf(stderr, "Couldn't add RTAS reserve entry: %s\n",
690                 fdt_strerror(ret));
691         return ret;
692     }
693 
694     ret = qemu_fdt_setprop_cell(fdt, "/rtas", "linux,rtas-base",
695                                 rtas_addr);
696     if (ret < 0) {
697         fprintf(stderr, "Couldn't add linux,rtas-base property: %s\n",
698                 fdt_strerror(ret));
699         return ret;
700     }
701 
702     ret = qemu_fdt_setprop_cell(fdt, "/rtas", "linux,rtas-entry",
703                                 rtas_addr);
704     if (ret < 0) {
705         fprintf(stderr, "Couldn't add linux,rtas-entry property: %s\n",
706                 fdt_strerror(ret));
707         return ret;
708     }
709 
710     ret = qemu_fdt_setprop_cell(fdt, "/rtas", "rtas-size",
711                                 rtas_size);
712     if (ret < 0) {
713         fprintf(stderr, "Couldn't add rtas-size property: %s\n",
714                 fdt_strerror(ret));
715         return ret;
716     }
717 
718     for (i = 0; i < RTAS_TOKEN_MAX - RTAS_TOKEN_BASE; i++) {
719         struct rtas_call *call = &rtas_table[i];
720 
721         if (!call->name) {
722             continue;
723         }
724 
725         ret = qemu_fdt_setprop_cell(fdt, "/rtas", call->name,
726                                     i + RTAS_TOKEN_BASE);
727         if (ret < 0) {
728             fprintf(stderr, "Couldn't add rtas token for %s: %s\n",
729                     call->name, fdt_strerror(ret));
730             return ret;
731         }
732 
733     }
734 
735     lrdr_capacity[0] = cpu_to_be32(((uint64_t)machine->maxram_size) >> 32);
736     lrdr_capacity[1] = cpu_to_be32(machine->maxram_size & 0xffffffff);
737     lrdr_capacity[2] = 0;
738     lrdr_capacity[3] = cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE);
739     lrdr_capacity[4] = cpu_to_be32(max_cpus/smp_threads);
740     ret = qemu_fdt_setprop(fdt, "/rtas", "ibm,lrdr-capacity", lrdr_capacity,
741                      sizeof(lrdr_capacity));
742     if (ret < 0) {
743         fprintf(stderr, "Couldn't add ibm,lrdr-capacity rtas property\n");
744         return ret;
745     }
746 
747     return 0;
748 }
749 
750 static void core_rtas_register_types(void)
751 {
752     spapr_rtas_register(RTAS_DISPLAY_CHARACTER, "display-character",
753                         rtas_display_character);
754     spapr_rtas_register(RTAS_POWER_OFF, "power-off", rtas_power_off);
755     spapr_rtas_register(RTAS_SYSTEM_REBOOT, "system-reboot",
756                         rtas_system_reboot);
757     spapr_rtas_register(RTAS_QUERY_CPU_STOPPED_STATE, "query-cpu-stopped-state",
758                         rtas_query_cpu_stopped_state);
759     spapr_rtas_register(RTAS_START_CPU, "start-cpu", rtas_start_cpu);
760     spapr_rtas_register(RTAS_STOP_SELF, "stop-self", rtas_stop_self);
761     spapr_rtas_register(RTAS_IBM_GET_SYSTEM_PARAMETER,
762                         "ibm,get-system-parameter",
763                         rtas_ibm_get_system_parameter);
764     spapr_rtas_register(RTAS_IBM_SET_SYSTEM_PARAMETER,
765                         "ibm,set-system-parameter",
766                         rtas_ibm_set_system_parameter);
767     spapr_rtas_register(RTAS_IBM_OS_TERM, "ibm,os-term",
768                         rtas_ibm_os_term);
769     spapr_rtas_register(RTAS_SET_POWER_LEVEL, "set-power-level",
770                         rtas_set_power_level);
771     spapr_rtas_register(RTAS_GET_POWER_LEVEL, "get-power-level",
772                         rtas_get_power_level);
773     spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
774                         rtas_set_indicator);
775     spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
776                         rtas_get_sensor_state);
777     spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
778                         rtas_ibm_configure_connector);
779 }
780 
781 type_init(core_rtas_register_types)
782